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1. Introduction

As documented extensively by Piketty and Saez (2003) and Atkinson, Piketty and Saez

(2011), top income inequality — such as the share of income going to the top 1% or

top 0.1% of earners — has risen sharply in the United States since around 1980. The

pattern in other countries is different and heterogeneous. For example, top inequality

rose only slightly in France and Japan. Why? What economic forces explain the varied

patterns in top income inequality that we see around the world?

It is well-known that the upper tail of the income distribution follows a power law.

One way of thinking about this is to note that income inequality is fractal in nature,

as we document more carefully below. In particular, the following questions all have

essentially the same answer: What fraction of the income going to the top 10% of

earners accrues to the top 1%? What fraction of the income going to the top 1% of

earners accrues to the top 0.1%? What fraction of the income going to the top 0.1% of

earners accrues to the top 0.01%? The answer to each of these questions — which turns

out to be around 40% in the United States today — is a simple function of the parameter

that characterizes the power law. Therefore changes in top income inequality naturally

involve changes in the power law parameter. This paper considers a range of economic

explanations for such changes.

The model we develop uses the Pareto-generating mechanisms that researchers like

Gabaix (1999) and Luttmer (2007) have used in other contexts. Gabaix studied why the

distribution of city populations is Pareto with its key parameter equal to unity. Luttmer

studies why the distribution of employment by firms has the same structure. It is worth

noting that both cities and firm sizes exhibit substantially more inequality than top

incomes (power law inequality for incomes is around 0.5, as we show below, versus

around 1 for city populations and firm employment). Our approach therefore is slightly

different: why are incomes Pareto and why is Pareto inequality changing over time,

rather than why is a power law inequality measure so close to unity.1

The basic insight in this literature is that exponential growth, tweaked appropri-

ately, can deliver a Pareto distribution for outcomes. The tweak is needed for the fol-

1These papers in turn build on a large literature on such mechanisms outside economics. For example,
see Reed (2001), Mitzenmacher (2004), and Malevergne, Saichev and Sornette (2013). Gabaix (2009) and
Luttmer (2010) have excellent surveys of these mechanisms, written for economists. Benhabib (2014) and
Moll (2012b) provide very helpful teaching notes.
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lowing reason. Suppose that city populations (or incomes or employment by firms)

grow exponentially at 2% per year plus some random normally-distributed shock. In

this case, the log of population would follow a normal distribution with a variance that

grows over time. To keep the distribution from spreading out forever, we need some

kind of “tweak.” For example, a constant probability of death will suffice to render the

distribution stationary.

In the model we develop below, researchers create new ideas — new computer chips

or manufacturing techniques, but also best-selling books, smartphone apps, financial

products, surgical techniques, or even new ways of organizing a law firm. Ideas should

be interpreted broadly in this model. The random growth process corresponds to the

way entrepreneurs increase their productivity and build market share for their new

products. The growth rate of this process is tied to entrepreneurial effort, and anything

that raises this effort, resulting in faster growth in entrepreneurial income, will raise top

income inequality. The “death rate” in our setup is naturally tied to creative destruction:

researchers invent new ideas that make the previous state-of-the-art surgical technique

or best-selling iPad application obsolete. A higher rate of creative destruction restrains

entrepreneurial income growth and results in lower top income inequality. In this

way, the interplay between existing entrepreneurs growing their profits and the creative

destruction associated with new ideas determines top income inequality.

This paper proceeds as follows. Section 2 presents some basic facts of top income

inequality, emphasizing that the rise in the United States is accurately characterized by

a change in the power law parameter. Section 3 considers a simple model to illustrate

the main mechanism in the paper. The next two sections then develop the model,

first with an exogenous allocation of labor to research and then more fully with an

endogenous allocation of labor. Section 6 uses the IRS public use panel of tax returns

to estimate several of the key parameters of the model, illustrating that the mechanism

is economically significant. A final section studies numerical examples to highlight

several additional quantitative possibilities of the framework.

1.1. The existing literature

A number of other recent papers contribute to our understanding of the dynamics of

top income inequality. Piketty, Saez and Stantcheva (2014) and Rothschild and Scheuer
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(2011) explore the possibility that the decline in top tax rates has led to a rise in rent

seeking, leading top inequality to increase. Philippon and Reshef (2009) focus explic-

itly on finance and the extent to which rising rents in that sector can explain rising

inequality; see also Bell and Van Reenen (2010). Bakija, Cole and Heim (2010) and

Kaplan and Rauh (2010) note that the rise in top inequality occurs across a range of

occupations; it is not just focused in finance or among CEOs, for example, but in-

cludes doctors and lawyers and star athletes as well. Benabou and Tirole (2013) discuss

how competition for the most talented workers can result in a “bonus culture” with

excessive incentives for the highly skilled. Haskel, Lawrence, Leamer and Slaughter

(2012) suggest that globalization may have raised the returns to superstars via a Rosen

(1981) mechanism. Aghion, Akcigit, Bergeaud, Blundell and Hemous (2015) show that

innovation and top income inequality are positively correlated within U.S. states and

across U.S. commuting zones; we discuss how this finding might be reconciled with

our framework in the concluding section. There is of course a much larger literature

on changes in income inequality throughout the distribution. Katz and Autor (1999)

provide a general overview, while Autor, Katz and Kearney (2006), Gordon and Dew-

Becker (2008), and Acemoglu and Autor (2011) provide more recent updates. Banerjee

and Newman (1993) and Galor and Zeira (1993) study the interactions between eco-

nomic growth and income inequality.

Lucas and Moll (2014) explore a model of human capital and the sharing of ideas

that gives rise to endogenous growth. Perla and Tonetti (2014) study a similar mech-

anism in the context of technology adoption by firms. These papers show that if the

initial distribution of human capital or firm productivity has a Pareto upper tail, then

the ergodic distribution also inherits this property and the model can lead to endoge-

nous growth, a result reminiscent of Kortum (1997). The Pareto distribution, then, is

more of an “input” in these models rather than an outcome.2

The most closely-related papers to this one are Benhabib, Bisin and Zhu (2011),

Nirei (2009), Aoki and Nirei (2013), Moll (2012a), Piketty and Saez (2012), Piketty and

Zucman (2014), and Toda (2014). These papers study economic mechanisms that gen-

erate endogenously a Pareto distribution for wealth, and therefore for capital income.

2Luttmer (2014) extends this line of work in an attempt to get endogenous growth without assuming
a Pareto distribution and also considers implications for inequality. Koenig, Lorenz and Zilibotti (2012)
derive a Zipf distribution in the upper tail for firm productivity in an endogenous growth setting.
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The mechanism responsible for random growth in these papers is either the asset ac-

cumulation equation (which naturally follows a random walk when viewed in partial

equilibrium) or the capital accumulation equation in a neoclassical growth model. The

present paper differs most directly by focusing on labor income rather than wealth.

Since much of the rise in top income inequality in the United States is due to labor

income — e.g. see Piketty and Saez (2003) — this focus is appropriate. Geerolf (2014)

connects both top income inequality and firm size inequality in a Garicano (2000)-style

model of hierarchies.

Finally, Gabaix, Lasry, Lions and Moll (2015) show that the basic random growth

model has trouble matching the transition dynamics of top income inequality. Building

on Luttmer (2011), they suggest that a model with heterogeneous mean growth rates for

top earners will be more successful, and we incorporate their valuable insights.

2. Some Basic Facts

Figures 1 and 2 show some of the key facts about top income inequality that have been

documented by Piketty and Saez (2003) and Atkinson, Piketty and Saez (2011). For

example, the first figure shows the large increase in top inequality for the United States

since 1980, compared to the relative stability of inequality in France.

Figure 2 shows the dynamics of top income inequality for a range of countries. The

horizontal axis shows the share of aggregate income going to the top 1% of earners,

averaged between 1980 and 1982, while the vertical axis shows the same share for 2006–

2008. All the economies for which we have data lie above the 45-degree line: that is,

top income inequality has risen everywhere. The rise is largest in the United States,

South Africa, and Norway, but substantial increases are also seen elsewhere, such as in

Ireland, Portugal, Singapore, Italy, and Sweden. Japan and France exhibit smaller but

still noticeable increases. For example, the top 1% share in France rises from 7.4% to

9.0%.

2.1. The Role of Labor Income

As discussed by Atkinson, Piketty and Saez (2011), a substantial part of the rise in U.S.

top income inequality represents a rise in labor income inequality, particularly if one
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Figure 1: Top Income Inequality in the United States and France
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Source: Alvaredo, Atkinson, Piketty and Saez (2013), World Top Incomes
Database. Includes interest and dividends but not capital gains.

includes “business income” (i.e. profits from sole proprietorships, partnerships and S-

corporations) in the labor income category. Figure 3 shows an updated version of their

graph for the period since 1950, supporting this observation.

Because the model in this paper is based on labor income as opposed to capital

income, documenting the Pareto nature of labor income inequality in particular is also

important. It is well known, dating back to Pareto (1896), that the top portion of the

income distribution can be characterized by a power law. That is, at high levels, the

income distribution is approximately Pareto. In particular, if Y is a random variable

denoting incomes, then, at least above some high level (i.e. for Y ≥ y0)

Pr [Y > y] =

(
y

y0

)−ξ

, (1)

where ξ is called the “power law exponent.”

Saez (2001) shows that wage and salary income from U.S. income tax records in the

early 1990s is well-described by a Pareto distribution. Figure 4 replicates his analysis

for 1980 and 2005. In particular, the figures graph mean wage income above some
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Figure 2: Top Income Inequality around the World, 1980-82 and 2006–2008
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Note: Top income inequality has increased since 1980 in most countries for which we have data. The
size of the increase varies substantially, however. Source: World Top Incomes Database.
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Figure 3: The Composition of the Top 0.1 Percent Income Share
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Note: The figure shows the composition of the top 0.1 percent income share. Source:
These data are taken from the “data-Fig4B” tab of the September 2013 update of the
spreadsheet appendix to Piketty and Saez (2003).

threshold as a ratio to the threshold itself. If wage income obeys a Pareto distribution

like that in (1), then this ratio should equal the constant ξ
ξ−1 , regardless of the threshold.

That is, as we move to higher and higher income thresholds, the ratio of average income

above the threshold to the threshold itself should remain constant.3 Figure 4 shows

that this property holds reasonably well in 1980 and 2005, and also illustrates that the

ratio has risen substantially over this period, reflecting the rise in top wage income

inequality.

2.2. Fractal Inequality and the Pareto Distribution

There is a tight connection between Pareto distributions and the “top x percent” shares

that are the focus of Piketty and Saez (2003) and others. To see this, let S̃(p) denote the

share of income going to the top p percentiles. For the Pareto distribution defined in

equation (1) above, this share is given by (p/100)1−1/ξ. A larger power-law exponent, ξ,

3This follows easily from the fact that the mean of a Pareto distribution is ξy0
ξ−1

and that the conditional
mean just scales up with the threshold.
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Figure 4: The Pareto Nature of Wage Income
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Note: The figures plot the ratio of average wage income above some threshold z to the
threshold itself. For a Pareto distribution with Pareto inequality parameter η, this ratio
equals 1/(1 − η). Saez (2001) produced similar graphs for 1992 and 1993 using the IRS
public use tax files available from the NBER at www.nber.org/taxsim-notes.html. The
figures here replicate these results using the same data source for 1980 and 2005.

www.nber.org/taxsim-notes.html
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is associated with lower top income inequality. It is therefore convenient to define the

“power-law inequality” exponent as

η ≡
1

ξ
(2)

so that

S̃(p) =

(
100

p

)η−1

. (3)

For example, if η = 1/2, then the share of income going to the top 1% is 100−1/2 = .10.

However, if η = 3/4, the share going to the top 1% rises sharply to 100−1/4 ≈ 0.32.

An important property of Pareto distributions is that they exhibit a fractal pattern of

top inequality. To see this, let S(a) = S̃(a)/S̃(10a) denote the fraction of income earned

by the Top 10×a percent of people that actually goes to the top a percent. For example,

S(1) is the fraction of income going to the top 10% that actually accrues to the top 1%,

and S(.1) is the fraction of income going to the top 1% that actually goes to the top 1 in

1000 earners. Under a Pareto distribution,

S(a) = 10η−1. (4)

Notice that this last result holds for all values of a, or at least for all values for which

income follows a Pareto distribution. This means that top income inequality obeys a

fractal pattern: the fraction of the Top 10 percent’s income going to the Top 1 percent

is the same as the fraction of the Top 1 percent’s income going to the Top 0.1 percent,

which is the same as the fraction of the Top 0.1 percent’s income going to the Top 0.01

percent.

Not surprisingly, top income inequality is well-characterized by this fractal pattern.4

Figure 5 shows the S(a) shares directly. At the very top, the fractal prediction holds

remarkably well, and S(.01) ≈ S(.1) ≈ S(1). This is another indication that wage

income is well-described as a Pareto distribution. Prior to 1980, the fractal shares are

around 25 percent: one quarter of the Top X percent’s income goes to the Top X/10

percent. By the end of the sample in 2010, this fractal share is closer to 40 percent.

The rise in fractal inequality shown in Figure 5 can be related directly to the power-

law inequality exponent using equation (4) and taking logs. The corresponding Pareto

inequality measures are shown in Figure 6. This figure gives us the quantitative guid-

4Others have noticed this before. For example, see Aluation.wordpress.com (2011).
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Figure 5: Fractal Inequality of U.S. Wage Income
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Note: S(a) denotes the fraction of income going to the top 10a percent of
earners that actually goes to the top a percent. For example, S(1) is the share
of the Top 10%’s income that accrues to the Top 1%. Source: Underlying wage
income shares are from the September 2013 update of the Piketty and Saez (2003)
spreadsheet appendix.

Figure 6: The Power-Law Inequality Exponent η, United States
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Note: η(a) is the power law inequality exponent obtained from the fractal
inequality wage income shares in Figure 5 assuming a Pareto distribution. See
equation (4) in the text.
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ance that we need for theory. The goal is to build a model that explains why top incomes

are Pareto and that generates a Pareto exponent that rises from around 0.33 to around

0.55 for the United States but by much less in France and other countries.

2.3. Skill-Biased Technical Change?

Before moving on, it is worth pausing to consider a simple, familiar explanation in order

to understand why it is incomplete: skill-biased technical change. For example, if the

distribution of skill is Pareto and there is a rise in the return to skill, does this raise top

inequality? The answer is no, and it is instructive to see why.

Suppose the economy consists of a large number of homogeneous low-skilled work-

ers with fixed income ȳ. High-skilled people, in contrast, are heterogeneous: income

for highly-skilled person i is yi = w̄xαi , where xi is person i’s skill and w̄ is the wage

per unit of skill (ignore α for now). If the distribution of skill across people is Pareto

with inequality parameter ηx, then the income distribution at the top will be Pareto

with inequality parameter ηy = αηx. That is, if Pr [xi > x] = x−1/ηx , then Pr [yi > y] =
( y
w̄

)−1/ηy . An increase in w̄ — a skill-biased technical change that increases the return

to skill — shifts the Pareto distribution right, increasing the gap between high-skilled

and low-skilled workers. But it but does not change Pareto inequality ηy: a simple story

of skill-biased technical change is not enough.

Notice that if the exponentαwere to rise over time, this would lead to a rise in Pareto

inequality. But this requires something more than just a simple skill-biased technical

change story. Moreover, even a rising α would leave unexplained the question of why

the underlying skill distribution is Pareto. The remainder of this paper can be seen as

explaining why x is Pareto and what economic forces might causeα to change over time

or differ across countries.

2.4. Summary

Here then are the basic facts related to top income inequality that we’d like to be able

to explain. Between 1960 and 1980, top income inequality was relatively low and stable

in both the United States and France. Since around 1980, however, top inequality has

increased sharply in countries like the United States, Norway, and Portugal, while it has

increased only slightly in others, including France and Japan. Finally, labor income is
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Figure 7: Basic Mechanism: Exponential growth with death ⇒Pareto
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well-described by a Pareto distribution, and rising top income inequality is to a great

extent associated with rising labor income inequality. Changing top income inequality

corresponds to a change in the power-law inequality exponent, and the U.S. data sug-

gest a rise from about 0.33 in the 1970s to about 0.55 by 2010. The remainder of this

paper develops and analyzes a model to help us understand these facts.

3. A Simple Model of Top Income Inequality

It is well-known that exponential growth and Pareto distributions are tightly linked,

and this link is at the heart of the main mechanism in this paper. To illustrate this point

in the clearest way, we begin with a simple, stylized model, illustrated graphically in

Figure 7.5

When a person first becomes a top earner (“entrepreneur”), she earns income y0.

As long as she remains a top earner, her income grows over time at rate µ, so the

income of a person who’s been a top earner for x years — think of x as “entrepreneurial

experience” — is y(x) = y0e
µx.

5See Gabaix (2009) for a similar stylized model, which Gabaix attributes to Steindl (1965), applied to
Zipf’s Law for cities. Benhabib (2014) traces the history of Pareto-generating mechanisms and attributes
the earliest instance of a simple model like that outlined here to Cantelli (1921).
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People do not remain top earners forever. Instead, there is a constant probability

δ per unit of time (more formally, a Poisson process) that an existing entrepreneur is

displaced. If this occurs, the existing entrepreneur drops out of the top, becoming a

“normal” worker, and is replaced by a new entrepreneur who starts over at the bottom

of the ladder and earns y0.

What fraction of people in this economy have income greater than some level y?

The answer is simply the fraction of people who have been entrepreneurs for at least

x(y) years, where

x(y) =
1

µ
log

(
y

y0

)

. (5)

With a Poisson replacement process, it is well-known that the distribution of expe-

rience for a given individual follows an exponential distribution, i.e. Pr [Experience >

x] = e−δx. Let’s take for granted that the stationary distribution of experience across a

population of entrepreneurs is this same exponential distribution; this is shown more

formally in Appendix A. Then, the remainder of the argument is straightforward:

Pr [Income > y] = Pr [Experience > x(y)]

= e−δx(y)

=

(
y

y0

)−
δ
µ

(6)

which is a Pareto distribution!

Pareto inequality in this model is then given by the inverse of the exponent above:

ηy =
µ

δ
. (7)

Top income inequality can therefore change for two reasons. First, an increase in the

growth rate of top earners, µ, will widen the distribution: the higher is the growth rate,

the higher is the ratio of top incomes to the income of a new entrepreneur. Second, an

increase in the “death rate” δ will reduce top inequality, as entrepreneurs have less time

during which to build their advantage.

What are the economic determinants of µ and δ, and why might they change over

time or differ across countries? Answering these questions is one of the goals of the full

model that we develop below.
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3.1. Intuition

The logic of the simple model provides useful intuition about why the Pareto result

emerges. First, in equation (5), the log of income is proportional to experience. This is

a common and natural assumption. For example, in models where income grows expo-

nentially over time, income and time are related in this way. Or in labor economics, log

income and experience are linked in Mincer-style equations. Next, the distribution of

experience is exponential. This is a property of a Poisson process with a constant arrival

rate. Putting these two pieces together, log income has an exponential distribution. But

this is just another way of saying that income has a Pareto distribution. More briefly,

exponential growth occurring over an exponentially-distributed amount of time delivers

a Pareto distribution.

4. A Schumpeterian Model of Top Income Inequality

The simple model illustrates in a reduced-form fashion the main mechanism at work

in this paper. In our full model, we develop a theory in which the economic determi-

nants of µ and δ are apparent, and we consider what changes in the economy could be

responsible for the range of patterns we see in top income inequality across countries.

In the full model, effort by entrepreneurs influences the growth of their incomes. In

addition, this process is assumed to be stochastic, which allows us to better match up

the model with micro data on top incomes. Finally, the death rate is made to be endoge-

nous by tying it to the process of creative destruction in a Schumpeterian endogenous

growth model. The setup seems to capture some of the key features of top incomes: the

importance of entrepreneurial effort, the role of creative destruction, and the centrality

of “luck” as some people succeed beyond their wildest dreams while others fail.

4.1. Entrepreneurs

An entrepreneur is a monopolist with the exclusive right to sell a particular variety,

in competition with other varieties. We interpret this statement quite broadly. For

example, think of a Silicon Valley startup, an author of a new book, a new rock band,

an athlete just making it to the pro’s, or a doctor who has invented a new surgical

technique. Moreover, we do not associate a single variety with a single firm — the
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entrepreneur could be a middle manager in a large company who has made some

breakthrough and earned a promotion.

When a new variety is first introduced, it has a low quality/productivity, denoted

by x, which can be thought of as the entrepreneur’s human capital or as the stock of

the new incumbent’s innovation. The entrepreneur then expends effort to improve x.

We explain later how x affects firm productivity and profitability. For the moment, it

is sufficient to assume that the entrepreneur’s income is proportional to x, as it will be

in general equilibrium. Note that we are recycling notation: this x does not measure

experience as it did in the simple model of Section 2 (though it is related).

Given an x, the entrepreneur maximizes the expected present discounted value of

flow utility, u(c, ℓ) = log ct + β log ℓt, subject to the following constraints:

ct = ψtxt (8)

et + ℓt + τ = 1 (9)

dxt = µ(et)xtdt+ σxtdBt (10)

µ(e) = φe (11)

For simplicity, we do not allow entrepreneurs to smooth their consumption and

instead assume that consumption equals income, which in turn is proportional to the

entrepreneur’s human capital x. The factor of proportionality, ψt, is exogenous to the

individual’s actions and is the same for all entrepreneurs; it is endogenized in general

equilibrium shortly. The entrepreneur has one unit of time each period, which can be

used for effort e or leisure ℓ or it can be wasted, in amount τ . This could correspond to

time spent addressing government regulations and bureaucratic red tape, for example.

Equation (10) describes how effort improves the entrepreneur’s productivityx through

a geometric Brownian motion. The average growth rate of productivity is µ(e) = φe,

where φ is a technological parameter converting effort into growth. dBt denotes the

standard normal increment to the Brownian motion. This equation is a stochastic

version of the human capital accumulation process in Lucas (1988).

Finally, there is a Poisson creative destruction process by which the entrepreneur

loses her monopoly position and is replaced by a new entrepreneur. This occurs at the
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(endogenized in general equilibrium) rate δ. In addition, there is an exogenous piece to

destruction as well, which occurs at a constant rate δ̄.

The Bellman equation for the entrepreneur is

ρV (xt, t) = max
e

logψt + log xt + β log(Ω− et) +
E[dV (xt, t)]

dt
+ (δ + δ̄)(V w(t)− V (xt, t))

(12)

subject to (10), where Ω ≡ 1 − τ and E[dV (xt,t)]
dt is short-hand for the Ito calculus terms,

i.e. E[dV (xt,t)]
dt = µ(et)xtVx(xt, t)+

1
2σ

2x2tVxx(xt, t)+Vt(xt, t). V (x, t) is the expected utility

of an entrepreneur with quality x and rate of time preference ρ. The flow of the value

function depends on the “dividend” of utility from consumption and leisure, the “cap-

ital gain” associated with the expected change in the value function, and the possible

loss associated with creative destruction, in which case the entrepreneur becomes a

worker with expected utility V w.

The first key result describes the entrepreneur’s choice of effort. (Proofs of all propo-

sitions are given in the appendix).

Proposition 1 (Entrepreneurial Effort): Entrepreneurial effort solves the Bellman prob-

lem in equation (12) and along the balanced growth path is given by

e∗ = 1− τ −
1

φ
· β(ρ+ δ + δ̄). (13)

This proposition implies that entrepreneurial effort is an increasing function of the

technology parameter φ but decreases whenever τ , β, ρ, δ, or δ̄ are higher.

4.2. The Stationary Distribution of Entrepreneurial Income

Assume there is a continuum of entrepreneurs of unit measure at any point in time.

The initial distribution of entrepreneurial human capital x is given by f0(x), and the

distribution evolves according to the geometric Brownian motion process given above.

Entrepreneurs can be displaced in one of two ways. Endogenous creative destruction

(the Poisson process at rate δ) leads to replacement by a new entrepreneur who inherits

the existing quality x; hence the distribution is not mechanically altered by this form

of destruction. In large part, this is a simplifying assumption; otherwise one has to

worry about the extent to which the step up the quality ladder by a new entrepreneur



A SCHUMPETERIAN MODEL OF TOP INCOME INEQUALITY 17

trades off with the higher x that the previous entrepreneur has accumulated. We treat

the exogenous destruction at rate δ̄ differently. In this case, existing entrepreneurs

are replaced by new “young” entrepreneurs with a given initial human capital x0. Ex-

ogenous destruction could correspond to the actual death or retirement of existing

entrepreneurs, or it could stand in for policy actions by the government: one form of

misallocation may be that the government appropriates the patent from an existing

entrepreneur and gives it to a new favored individual. Finally, it simplifies the analysis

to assume that x0 is the minimum possible productivity: there is a “reflecting barrier”

at x0; this assumption could be relaxed.

We’ve set up the stochastic process for x so that we can apply a well-known result in

the literature for generating Pareto distributions.6 If a variable follows a Brownian mo-

tion, like x above, the density of the distribution f(x, t) satisfies a Kolmogorov forward

equation:7

∂f(x, t)

∂t
= −δ̄f(x, t)−

∂

∂x
[µ(e∗)xf(x, t)] +

1

2
·
∂2

∂x2
[
σ2x2f(x, t)

]
(14)

If a stationary distribution, limt→∞ f(x, t) = f(x) exists, it therefore satisfies

0 = −δ̄f(x)−
d

dx
[µ(e∗)xf(x)] +

1

2
·
d2

dx2
[
σ2x2f(x)

]
(15)

Guessing that the Pareto form f(x) = Cx−ξ−1 solves this differential equation, one

obtains the following result:

Proposition 2 (The Pareto Income Distribution): The stationary distribution of (nor-

malized) entrepreneurial income is given by

F (x) = 1−

(
x

x0

)−ξ∗

(16)

where

ξ∗ = −
µ̃∗

σ2
+

√
(
µ̃∗

σ2

)2

+
2 δ̄

σ2
(17)

6For more detailed discussion, see Reed (2001), Mitzenmacher (2004), Gabaix (2009), and Luttmer
(2010). Malevergne, Saichev and Sornette (2013) is closest to the present setup.

7This is the stochastic generalization of an equation like (A2) in the appendix, related to the simple
model at the start of the paper.
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and µ̃∗ ≡ µ(e∗)− 1
2σ

2 = φ(1− τ)−β(ρ+ δ∗+ δ̄)− 1
2σ

2 . Power-law inequality is therefore

given by η∗ ≡ 1/ξ∗.

The word “normalized” in the proposition refers to the fact that the income of an

entrepreneur with productivity x is ψtx. Aggregate growth occurs via the ψt term, as

discussed when we turn to general equilibrium, while the distribution of x is what is

stationary. Finally, we put a “star” on δ as a reminder that this value is determined in

general equilibrium as well.

Comparative statics: Taking δ∗ as exogenous for the moment, the comparative static

results are as follows: power-law inequality, η∗, increases if effort is more effective at

growing entrepreneurial income (a higher φ), decreases if the time endowment is re-

duced by government policy (a higher τ ), decreases if entrepreneurs place more weight

on leisure (a higher β), and decreases if either the endogenous or exogenous rates of

creative destruction rise (a higher δ∗ or δ̄).8

The analysis so far shows how one can endogenously obtain a Pareto-shaped in-

come distribution. We’ve purposefully gotten to this result as quickly as possible while

deferring our discussion of the general equilbrium in order to draw attention to the key

economic forces that determine top income inequality.

4.3. Heterogeneous Mean Growth Rates

As pointed out by Luttmer (2011) and Gabaix, Lasry, Lions and Moll (2015), the ba-

sic random growth framework that forms the heart of the model so far has trouble

explaining features of the data associated with transition dynamics. For example, in

the firm dynamics studied by Luttmer (2011), Google and Microsoft become billion-

dollar companies seemingly overnight, much faster (and more frequently) than occurs

in plausibly-calibrated basic random growth models. Gabaix, Lasry, Lions and Moll

(2015), partly motivated by a previous draft of our paper, also note that the speed of

convergence to the stationary distribution is very slow in such models, making it hard

for those models to match the rapid rise in top income inequality observed in the data.

Both papers suggest that a solution to these problems can be found by introducing

heterogeneous mean growth rates: that is, it is possible for some entrepreneurs to grow

8The effect of σ2 on power-law inequality is more subtle. If η∗ > µ∗/δ̄, then a rise in σ2 increases η∗.
Since η∗

→ µ∗/δ̄ as σ2
→ 0, this is the relevant case. Notice the similarity of this limit to the result in the

simple model given at the start of the paper.
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extremely rapidly, at least for awhile. This insight is consistent with recent empirical

work: Guvenen, Karahan, Ozkan and Song (2015) show that growth rates for top earners

are extremely heterogeneous, with the distribution of growth rates featuring a thick

upper tail that even appears to be Pareto itself.

We follow the implementation by Gabaix, Lasry, Lions and Moll (2015) and augment

our basic setup to include two growth states for entrepreneurs.9 When researchers

discover a new idea, a fraction of them inherit the high growth φH parameter. They

then face a Poisson process with arrival rate p̄ for transitioning permanently down to

the more normal φL low growth parameter. In addition, we allow the variance of the

shocks to also depend on the state, distinguishing σH and σL. This change is easily

introduced and has a straightforward effect on the analysis we’ve done so far, as shown

in the next proposition.

Proposition 3 (Pareto Inequality with Heterogeneous Mean Growth Rates): Extending

the model to include high and low growth rates as in Luttmer (2011) and Gabaix, Lasry,

Lions, and Moll (2015), for φH sufficiently large, the stationary distribution of (normal-

ized) entrepreneurial income has an upper tail with a Pareto inequality exponent η∗ ≡

1/ξH , where

ξH = −
µ̃∗H
σ2H

+

√
(
µ̃∗H
σ2H

)2

+
2 (δ̄ + p̄)

σ2H
(18)

and µ̃∗H ≡ µH(e
∗)− 1

2σ
2
H = φH(1− τ)− β(ρ+ δ∗ + δ̄)− 1

2σ
2
H .

That is, Pareto inequality is determined just as before, only with the key param-

eters replaced by those in the “high” growth case. The addition of φH allows some

entrepreneurs to grow very rapidly, addressing the Google/Microsoft problem. And the

speed of convergence to steady state is governed by the Poisson “death rate.” Here,

the relevant death rate includes p̄, the rate at which entrepreneurs “die” out of the high

growth state. We later estimate this rate to be very rapid, thereby substantially speeding

up the transition to the stationary distribution.

9The logic of the proposition below suggests that the restriction to only two states instead of more is
not especially important: the Pareto distribution will be dominated by the single state that delivers the
thickest tail.
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4.4. Production and General Equilibrium

Next, we flesh out the rest of the general equilibrium: how the entrepreneur’s human

capital x enters the model, how x affects entrepreneurial income (the proportionality

factor ψt), and how creative destruction δ∗ is determined.

The remainder of the setup is a relatively conventional model of endogenous growth

with quality ladders and creative destruction, in the tradition of Aghion and Howitt

(1992) and Grossman and Helpman (1991). A fixed population of people choose to

be basic laborers, researchers (searching for a new idea), or entrepreneurs (who have

found an idea and are in the process of improving it).

A unit measure of varieties exist in the economy, and varieties combine to produce

a single final output good:

Y =

(∫ 1

0
Y θ
i di

)1/θ

. (19)

Each variety is produced by an entrepreneur using a production function that exhibits

constant returns to basic labor Li:

Yi = γntxαi Li. (20)

The productivity in variety i’s production function depends on two terms. The

first captures aggregate productivity growth. The variable nt measures how far up the

quality ladder the variety is, and γ > 1 is the step size. For simplicity, we assume that

a researcher who moves a particular variety up the quality ladder generates spillovers

that move all varieties up the quality ladder: in equilibrium, every variety is on the same

rung of the ladder. (This just avoids us having to aggregate over varieties at different

positions on the ladder.) The second term is the key place where the entrepreneur’s

human capital enters: labor productivity depends on xαi . As usual, variety i’s market

share is increasing in xi.

The main resource constraint in this environment involves labor:

Lt +Rt + 1 = N̄ , Lt ≡

∫ 1

0
Litdi (21)

A fixed measure of people, N̄ , are available to the economy. People can work as the

raw labor making varieties, or as researchers, Rt, or as entrepreneurs — of which there



A SCHUMPETERIAN MODEL OF TOP INCOME INEQUALITY 21

is always just a unit measure, though their identities can change. It is convenient to

define L̄ ≡ N̄ − 1.

Researchers discover new ideas through a Poisson process with arrival rate λ per re-

searcher. Research is undirected and a successful discovery, if implemented, increases

the productivity of a randomly chosen variety by a proportion γ > 1. Once the research

is successful, the researcher becomes the entrepreneur of that variety, replacing the

old entrepreneur by endogenous creative destruction. In addition, as explained above,

the new idea generates spillovers that raise productivity in all other varieties as well.

Existing entrepreneurs, however, may use the political process to block new ideas. We

model this in a reduced form way: a fraction z̄ of new ideas are successfully blocked

from implementation, preserving the monopoly (and productivity) of the existing en-

trepreneur.

The flow rate of innovation is therefore

ṅt = λ(1− z̄)Rt (22)

and this also gives the rate of creative destruction:

δt = ṅt. (23)

4.5. The Allocation of Resources

There are 12 key endogenous variables in this economic environment: Y , Yi, xi, Li, L,

R, n, δ, ei, ci, ℓi, ψ. The entrepreneur’s choice problem laid out earlier pins down c, ℓ,

and e for each entrepreneur. Production functions and resource constraints determine

Y , Yi, L, xi, n, and δ. This leaves us needing to determine R, Li, and ψ.

It is easiest to do this in two stages. Conditional on a choice for R, standard equi-

librium analysis can easily pin down the other variables, and the comparative statics

can be calculated analytically. So to begin, we focus on a situation in which the fraction

of people working as researchers is given exogenously: R/L̄ = s̄. Later, we let markets

determine this allocation as well and provide numerical results.

We follow a standard approach to decentralizing the allocation of resources. The

final goods sector is perfectly competitive, while each entrepreneur engages in monop-

olistic competition in selling their varieties. Each entrepreneur is allowed by the patent
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system to act as a monopolist and charges a markup over marginal cost given by 1/θ.

In equilibrium, then, wages and profits are given by the following proposition.

Proposition 4 (Output, Wages, and Profits): Let w denote the wage per unit of raw

labor, and let πi denote the profit earned by the entrepreneur selling variety i. Assume

now and for the rest of the paper that α = (1−θ)/θ.10 The equilibrium with monopolistic

competition leads to

Yt = γntXα
t Lt (24)

wt = θγntXα
t (25)

πit = (1− θ)γntXα
t

(
xit
Xt

)

Lt (26)

where Xt ≡
∫ 1
0 xitdi is the mean of the x distribution across entrepreneurs.

According to the proposition, aggregate output is an increasing function of the mean

of the idiosyncratic productivity distribution,X . In the baseline case with only a single

state for φ, the stationary distribution is Pareto throughout, and an important intuition

is available. The mean of the x distribution is then X = x0
1−η . More inequality (a higher

η) therefore has a long-run level effect in this economy, raising both output and wages.

We can now determine the value of ψt, the parameter that relates entrepreneurial

income to x. Entrepreneurs earn the profits from their variety, πit. In the entrepreneur’s

problem, we previously stated that the entrepreneur’s income is ψtxit, so these two

equations define ψt as

ψt = (1− θ)γntXα−1
t Lt. (27)

Finally, we can now determine the overall growth rate of the economy along a bal-

anced growth path. Once the stationary distribution of x has been reached, X is con-

stant. Since L is also constant over time, the aggregate production function in equa-

tion (24) implies that growth in output per person is ṅt log γ = λ(1 − z̄)s̄L̄ log γ if the

allocation of research is given by R/L̄ = s̄. This insight pins down the key endogenous

variables of the model, as shown in the next result.11

10This is merely a simplifying assumption that makes profits a linear function of xi. It can be relaxed
with a bit more algebra.

11At least one of the authors feels a painful twinge writing down a model in which the scale of the
economy affects the long-run growth rate. The rationalization is that this allows us to focus on steady
states and avoid transition dynamics. This is certainly one target for valuable future work.
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Proposition 5 (Growth and inequality in the s̄ case): If the allocation of research is

given exogenously by R/L̄ = s̄ with 0 < s̄ < 1, then along a balanced growth path, the

growth of final output per person, gy, and the rate of creative destruction are given by

g∗y = λ(1− z̄)s̄L̄ log γ (28)

δ∗ = λ(1− z̄)s̄L̄. (29)

Power-law inequality is then given by Proposition 2 or Proposition 3 with this value of

δ∗.

4.6. Growth and Inequality: Comparative Statics

In the setup with an exogenously-given allocation of research, the comparative static

results are easy to see, and these comparative statics can be divided into those that

affect top income inequality only, and those that also affect economic growth.

First, a technological change that increases φ will increase top income inequality

in the long run. This corresponds to anything that increases the effectiveness of en-

trepreneurs in building the market for their product. A canonical example of such a

change might be the rise in the World Wide Web. For a given amount of effort, the rise of

information technology and the internet allows successful entrepreneurs to grow their

profits much more quickly than before, and we now see many examples now of firms

that go from being very small to very large quite quickly. Such a change is arguably not

specific to any particular economy but rather common to the world. This change can

be thought of as contributing to the overall rise in top income inequality throughout

most economies, as was documented back in Figure 2.

Interestingly, this technological change has no affect on the long-run growth rate

of the economy, at least as long as s̄ is held fixed. The reason is instructive about how

the model works. In the long run, there is a stationary distribution of entrepreneurial

human capital x. Some varieties are extraordinarily successful, while most are not.

Even though an increase in φ increases the rate of growth of x for all entrepreneurs, this

only serves to widen the stationary distribution. There is a level effect on overall GDP

(working throughX), but no growth effect. Long-run growth comes about only through

the arrival of new ideas, not through the productivity growth associated with enhanc-
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ing an existing idea. Loosely speaking, the model features Lucas-style growth at the

micro level, but long-run macro growth is entirely Romer/Aghion-Howitt/Grossman-

Helpman.

The parameters τ and β also affect top income inequality without affecting growth

when s̄ is held constant. An increase in τ corresponds to a reduction in the time endow-

ment available to entrepreneurs — an example of such a policy might be the red tape

and regulations associated with starting and maintaining a business. With less time

available to devote to the productive aspects of running a business, the distribution of

x and therefore the distribution of entrepreneurial income is narrowed and top income

inequality declines. A similar result obtains if two economies differ with respect to β.

An economy where preferences are such that entrepreneurs put more weight on leisure

will spend less time building businesses and feature lower top income inequality in the

long run.

The two key parameters in the model that affect both growth and top income in-

equality are s̄ and z̄, and they work the same way. If a larger fraction of the labor

works in research (↑s̄) or if fewer innovations are blocked by incumbents (↓z̄), the long-

run growth rate will be higher — a traditional result in Schumpeterian growth models.

Here, however, there will also be an effect on top income inequality. In particular, faster

growth means more creative destruction — a higher δ. This means that entrepreneurs

have less time to build successful businesses, and this reduces top income inequality

in the stationary distribution.

These are the basic comparative statics of top income inequality. Notice that a rise

in top income inequality can be the result of either favorable changes in the economy

— a new technology like the World Wide Web — or unfavorable changes — like policies

that protect existing entrepreneurs from creative destruction.

5. Endogenizing R&D

We now endogenize the allocation of labor to research, s. This allocation is pinned

down by the following condition: ex ante, people are indifferent between being a worker

and being a researcher.

A worker earns a wage that grows at a constant rate and simply consumes this labor
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income. The worker’s value function is therefore

ρV w(t) = logwt +
dV w(t)

dt
(30)

A researcher searches for a new idea. If successful, the researcher becomes an en-

trepreneur. If unsuccessful, we assume the researcher still earns a wage m̄w, where m̄

is a parameter measuring the amount of social insurance for unsuccessful research.

The value function for a researcher at time t is

ρV R(t) = log(m̄wt) +
dV R(t)

dt
+ λ(1− z̄)

(
E[V (x, t)]− V R

t

)
+ δ̄R

(
E[V (x0, t)]− V R(t)

)
.

(31)

The first two terms on the right-hand side capture the basic consumption of an un-

succesful entrepreneur and the capital gain associated with wage growth. The last two

terms capture the successful transition a researcher makes to being an entrepreneur

when a new idea is discovered. This can happen in two ways. First, with Poisson flow

rate λ(1 − z̄) the researcher innovates, pushing the research frontier forward by the

factor γ, and replaces some randomly-selected existing entrepreneur. Alternatively, the

researcher may benefit from the exogenous misallocation process: at rate δ̄R ≡ δ̄/R,

the researcher replaces a randomly-chosen variety and becomes a new entrepreneur

with productivity x0.

Finally the indifference condition V w(t) = V R(t) determines the allocation of labor

as summarized in the following proposition.

Proposition 6 (Allocation of Labor): In the stationary general equilibrium, the alloca-

tion of labor to research, s, is determined by the condition that V w(t) = V R(t), where

expressions for these value functions are given by equations (30) and (31).

The key equations that describe the stationary general equilibrium are then shown

in Table 1. However, it is not easy to discuss comparative statics as there is no closed-

form solution for s∗. Instead, in the next section we show numerically how each pa-

rameter affects growth and inequality. The appendix explains in detail how the model

is solved.

The model features transition dynamics away from steady state. The key reason

for this is that the initial distribution of x can be anything, and the evolution of this
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Table 1: Key Equations Characterizing the Stationary General Equilibrium

Drift of log x µ̃∗H = φH(1− τ)− β(ρ+ δ∗ + δ̄)− 1
2σ

2
H

Pareto inequality η∗ = 1/ξ∗, ξ∗ = −
µ̃∗

H

σ2
H

+

√
(
µ̃∗

H

σ2
H

)2
+ 2 (δ̄+p̄)

σ2
H

Creative destruction δ∗ = λ(1− z̄)s∗L̄

Growth g∗ = δ∗ log γ

Research allocation V w(s∗) = V R(s∗)

distribution affects aggregate variables throughXt and δt. Gabaix, Lasry, Lions and Moll

(2015) conduct a careful analysis of transition dynamics in a heterogeneous random

growth model and show that in the context of the present paper, the rate of convergence

is δ̄ + p̄. This rate takes the value of approximately 0.8 (i.e. 80 percent, not 0.8 percent)

in our baseline calibration, which is very rapid, though the rate in the upper tail can

be slower. Partly motivated by their calculations and partly for ease of exposition, the

numerical results that follow will therefore take the form of comparing steady states.

5.1. Comparative Statics

Figure 8 shows numerical results when s ≡ R/L̄ is endogenously determined. The ef-

fects on Pareto inequality are similar to those from the exogenous s̄ case. Now, however,

we can also study the effects on economic growth. For example, consider the effect of

an increase in the technology parameter φ, shown in Figure 8a: an increase in φ raises

Pareto inequality, as discussed earlier, but — perhaps surprisingly — causes a decline in

the long-run growth rate of GDP per person. Similar results occur throughout Figure 8:

parameter changes that increase Pareto inequality tend to reduce economic growth.

To understand this result, recall that the growth rate of the economy is determined

by the fraction of people who decide to enter the research process, prospecting for
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Figure 8: Numerical Examples: Endogenous s
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(d) Varying m̄
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(e) Varying σ
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(f ) Varying τ

Note: The baseline parameter values in these examples are ρ = .03, L̄ = 15, θ = 2/3, γ = 1.4, λ = .027,
φ = .5, β = 1, σ = 0.122, δ̄ = .04, m̄ = .5, z̄ = 0.2, τ = 0, p̄ = .767, and q̄ = .504. These values will be
discussed in more detail in Section 7.
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the possibility of becoming successful entrepreneurs. On the one hand, an increase

in φ makes it easier for entrepreneurs to grow their profits, which tends to make re-

search more attractive. However, from the standpoint of a researcher who has not yet

discovered a new idea, another effect dominates. The positive technological improve-

ment from a rising φ raises average wages in the economy throughX , both for workers

and for unsuccessful researchers. The mean effect on the level of wages and profits is

therefore neutral with respect to the allocation of labor. However, it also increases the

inequality among successful researchers, making the research process itself more risky.

Our researchers are risk-averse individuals with log utility, and the result of this risk

aversion is that a rise in φ results in a smaller fraction of people becoming researchers,

which lowers the long-run growth rate in this endogenous growth model.

One can, of course, imagine writing down the model in a different way. For example,

if research is undertaken by risk-neutral firms, then this effect would not be present.

Ultimately, this question must be decided by empirical work. Our model, however,

makes it clear that this additional force is present, so that increases in Pareto inequality

that result from positive technological changes need not increase the rate of growth.

The model generally features a negative relationship between growth and top in-

come inequality for two reasons. First is the reason just given: higher inequality tends

to reduce growth by making research riskier. The second completes the cycle of feed-

back: faster growth leads to more creative destruction, which lowers inequality. The

implication for empirical work is complicated by level effects that would show up along

any transition path, for example as discussed above with respect to a rise in φ.

6. Micro Evidence

To what extent is our model consistent with empirical evidence? There are several ways

to answer this question. Some relate to previous empirical work on income dynamics.

Some relate to evidence we provide using public use micro data from the U.S. Internal

Revenue Service. And some relate to evidence that we hope others with better access

to administrative data can conceivably provide in the future.

The first point to make is that the basic stochastic process for incomes assumed

in our model — a geometric random walk with positive drift — is the canonical data
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generating process estimated in an extensive empirical literature on income dynamics.

Meghir and Pistaferri (2011) surveys this literature, highlighting prominent examples

such as MaCurdy (1982), Abowd and Card (1989), Topel and Ward (1992), Baker and

Solon (2003), and Meghir and Pistaferri (2004). There are of course exceptions and

some papers prefer alternative specifications, with the main one being the “heteroge-

neous income profiles” which allow for individual-specific means and returns to expe-

rience — consistent with the extended model with heterogeneous mean growth rates

— but often find a persistence parameter less than one; for example, see Lillard and

Willis (1978), Baker (1997), and Guvenen (2007, 2009). While debate continues within

this literature, it is fair to say that a fundamental benchmark is that the log of income

features a random walk component. In that sense, the basic data generating process

we assume in this paper has solid micro-econometric foundations.

With unlimited access to micro data, our model makes some clear predictions that

could be tested. In particular, one could estimate the stochastic process for incomes

around the top of the income distribution. In addition to the geometric random walk

with heterogeneous drifts, one could estimate the creative destruction parameters —

to what extent do high income earners see their incomes drop by a large amount in

a short time? Guvenen, Ozkan and Song (2014b) provide evidence for precisely this

effect, stating “[I]ndividuals in higher earnings percentiles face persistent shocks that

are more negatively skewed than those faced by individuals that are ranked lower, con-

sistent with the idea that the higher an individual’s earnings are, the more room he has

to fall” (p. 20).

Beyond estimating this stochastic process, one could also see how the process dif-

fers before and after 1980 in the United States and how it differs between the United

States and other countries. For example, one would expect the positive drift of the

random walk to be higher for top incomes after 1980 than before. And one would expect

this drift to be higher in the United States in the 2000s than in France; there could also

be differences in the creative destruction parameters between countries and over time

that could be estimated.

Access to panel micro data on top income earners in the U.S. over time and in

other countries is typically very hard to gain. However, we can make some progress

by combining some of the moments made available by Guvenen, Karahan, Ozkan and
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Figure 9: The Distribution of Top Income Growth Rates, 1995–1996 (Guvenen et al.)
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Note: This figure shows the density of annual log income changes in 1995–96 for the 90th
percentile of top earners aged 45-50, obtained from the spreadsheet data appendix of
Guvenen, Karahan, Ozkan and Song (2015).

Song (2015) with the U.S. Internal Revenue Service public use tax model panel files

created by the Statistics of Income Division from 1979 to 1990, hosted by the NBER.12

6.1. The Distribution of Top Income Growth Rates

According to our model, the distribution of income growth rates for top earners should

display thick tails at both the top and the bottom. At the bottom, the destruction

shock results in a potentially large downward shift in incomes, causing the growth rate

distribution to be left-skewed. At the top, the presence of a “high growth” group leads to

a mixture of normal distributions that thickens the right tail. As noted earlier, Guvenen,

Karahan, Ozkan and Song (2015) provide evidence for thick tails on both sides of the

growth rate distribution, and some of their evidence is shown in Figure 9.13

We can see the same thing in our data from the IRS public use panel. Restricting

12See http://www.nber.org/taxsim-notes.html.
13Their evidence suggests very thick Pareto-like tails for the growth rate distribution, a fact that our

simple model cannot match.

http://www.nber.org/taxsim-notes.html
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Figure 10: The Distribution of Top Income Growth Rates 1988 and 1989 (IRS)
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Note: This figure shows a histogram of the change in log wage and salary income for tax
units consisting of married taxpayers filing jointly that are in the Top 5 percent of tax units
in 1988 and for which we also observe income in 1989. The income levels are normalized
by mean taxable income excluding capital gains.

our sample to tax units that involve married taxpayers filing jointly in two consecutive

years, an example of this growth rate distribution for tax units starting in the 95th

percentile and above in 1988 is shown in Figure 10. Quantitatively, the left-skewness

of the distribution of growth rates helps us to identify δet ≡ δ̄t + δt. A thick right tail

is also evident in both the IRS and Guvenen et al data, and this right tail helps us to

identify µ̃H . For example, in Figure 9, 1 in 1000 top earners see their incomes rise by

a factor of 6.8 over the course of a year, and 1 in 10,000 see an increase by a factor of

nearly 25! The same phenomenon can be seen in the IRS data in Figure 10, but the

relatively small sample size makes this tail less dramatic.

6.2. Empirical Results

Our data and estimation are discussed in more detail in Appendix B, and the results are

summarized in Table 2. In brief, the parameters are estimated by specifying a cutoff

value for growth rates, as suggested in a stylized way in Figure 9. For example, if top
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Table 2: Empirical Estimates

IRS IRS Guvenen et al.

Parameter 1979–81 1988–90 1995–96

δe 0.06 ...

σH 0.122 ...

p̄ 0.767 ...

µ̃H 0.244 0.303 0.435

Model: η∗ 0.330 0.398 0.556

Data: η 0.33 0.48 0.55

Note: To estimate µ̃H , we look at growth rates for the Top 10% of earners. From this distribution
of growth rates, we focus on the upper tail. In particular, we estimate µ̃H as the median of growth
rates above the 90th percentile of the growth rate distribution, i.e. as the growth rate at the 95th
percentile. The number from Guvenen, Karahan, Ozkan and Song (2015) for 1995–96 is the 95th
percentile of the distribution of growth rates for the 90th percentile of top earners aged 45-50,
obtained from the spreadsheet data appendix for that paper. We estimate σH as the standard
deviation of growth rates above the 90th percentile of the growth rate distribution, which averages
to 0.122. Finally, we choose p̄ to fit the value of η∗ in 1980 of 0.33, which gives p̄ = 0.767. η∗ in
later years is computed from the other parameter values using equation (18) assuming δ̄ = .04. The
last row of the table reports empirical values for η in the United States taken in a stylized way from
Figure 6 to capture “pre-1980,” 1988–90, and 1995–2010.

incomes fall by more than 40 percent, we consider this a destruction event. The fraction

of growth rates below this cutoff is an estimate of δe, which is estimated to be around

6% in the IRS data.

To estimate µ̃H , σH , and p̄ using the IRS data, we look at growth rates for the Top

10% of earners. From this distribution of growth rates, we focus on the upper tail. In

particular, we estimate µ̃H as the median of growth rates above the 90th percentile of

the growth rate distribution, i.e. as the growth rate at the 95th percentile. We estimate

σH as the standard deviation of growth rates above the 90th percentile of the growth

rate distribution.

Next, and motivated by the empirical income dynamics literature, we make an ad-

justment for the presence of temporary income shocks, which are absent from our

theory. Calculations from Blundell, Pistaferri and Preston (2008) and Heathcote, Perri



A SCHUMPETERIAN MODEL OF TOP INCOME INEQUALITY 33

and Violante (2010) suggest that the variance of the random walk innovation accounts

for only about 1/6 to 1/3 of the variance of income growth rates. It is unclear how this

applies to top incomes. Hence we make the following correction: we calculate σ2, the

variance of the random walk innovation, to be 1/3 the variance calculated from the

highest decile of the growth rate distribution.14

The IRS panel data are not sufficiently rich to provide an estimate of p̄ because the

panel dimension is too short for individual earners. Instead, we choose the value of p̄

so that the model exactly matches Pareto inequality in 1979–81, using the formula in

equation (18). We set the value of δ̄ to 0.04, a fairly conventional value, which leaves an

estimate of δ = δe − δ̄ ≈ 0.02. Matching the Pareto inequality estimate in 1979–81 of

0.33 then leads to p̄ = 0.767. Over the course of a year, this implies that a high growth

entrepreneur has a probability of approximately 1 − e−p̄ ≈ 0.54 of transitioning to the

low-growth state.15 From this value, one can see how transition dynamics are much

faster when based on p̄ than when involving only δ̄, a key point made by Gabaix, Lasry,

Lions and Moll (2015).

We are now ready to put these numbers together to see what they imply about the

evolution of top income inequality over time. For this purpose, we assume all the

parameters other than µ̃H are constant. (In our empirical work, there was no obvious

trend in the other parameter values, though estimates often bounced around; see the

appendix for more details.) We obtain estimates for µ̃H for 1979–81 and 1988–90 from

the IRS data. From Guvenen, Karahan, Ozkan and Song (2015), we obtain an estimate

of µ̃H for 1995–96, as the 95th percentile of the distribution of growth rates for the 90th

percentile of top earners, obtained from the spreadsheet data appendix for that paper.

As discussed in our appendix, we have done our best to make this number comparable

to the IRS numbers, though some questions about comparability certainly remain. We

anticipate using data from Guvenen et al in the near future when they make available

some of the moments from the time series of their growth rate distributions.

The last two rows of Table 2 compare the estimated value of η∗ from our model to

the values observed in the U.S. data from Figure 6. As already mentioned, we fit the

14As shown later, this leads to estimates of σ of around 0.122 in 1979–1990, corresponding to a variance
of the random walk innovations of about 0.015. This is in the right ballpark based on the empirical
literature.

15More precisely, the probability is p̄/(p̄ + δ + δ̄) · (1 − e−(p̄+δ+δ̄)) ≈ 0.52, because we have to consider
the probability that high to low transition happens before arrival of death.
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1979–81 value by construction. The rise in µ̃H through the 1980s then implies a value

of η∗ of 0.398 by 1988–90, compared to a value of around 0.48 in the data. The estimate

of µ̃H from Guvenen, Karahan, Ozkan and Song (2015) then rises sharply by 1995–96,

implying a value of η∗ = 0.556, very close to the empirically observed value of 0.55 from

the 1995–2010 period.

Limited sample sizes in the IRS data and the comparability of the Guvenen, Kara-

han, Ozkan and Song (2015) data mean that this exercise should at best be viewed as

a suggestive illustration. The basic model used in this paper is capable of explaining

a substantial rise in U.S. top income inequality in a manner that is broadly consistent

with the micro data. Access to additional moments from administrative data via the

IRS and the Social Security Administration and from administrative authorities in other

countries could be used to make additional progress and is a clear priority for future

research.

Based on these estimates, one can also explore the extent to which different param-

eters are responsible for the overall level of inequality. For example, Table 2 already

shows the key role played by the drift parameter µ̃H . The rate at which high-growth

entrepreneurs transit to the low-growth state, p̄, also plays a crucial empirical role:

raising this parameter by 10 percent essentially lowers η∗ by around 10 percent. But

two other parameters one might have thought to be important play a much smaller

role. First, the exogenous destruction rate δ̄ is very small relative to p̄ and therefore

plays a correspondingly small role. More interestingly, the standard deviation of the

random walk process, σH , is relatively unimportant in our calibration: reducing this

parameter all the way to zero at the 1995–96 parameter values only lowers η∗ from 0.556

to 0.539; this small impact can also be seen earlier back in Figure 8. Luck matters in

our calibration, but it is luck in the form of becoming and remaining a high-growth

entrepreneur that is most crucial.

7. Numerical Examples

We now provide three numerical examples to illustrate the ability of the Schumpeterian

model to match the levels and changes of top income inequality in the United States

and France. Where possible, our baseline parameter values are chosen to be consistent
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with the empirical estimates of the previous section. For example, we assume that σH

and σL for the United States are constant and equal at 0.122, broadly consistent with

the evidence in Section 6. We assume δ̄ = 0.04 and γ = 1.4, so that δ ≈ 0.06 when

the economy’s growth rate is 2 percent, and therefore δ̄ + δ ≈ 0.10, similar to what we

estimated in the previous section.

These remain examples, however, for two main reasons. First, the “reduced-form”

empirical evidence is insufficient to identify the underlying structural parameters of

the model. As one simple example, movements in both φ and τ can deliver changes

in µ over time, as we show below. Second, for reasons discussed earlier, our numerical

exercises do not consider transition dynamics and instead report a sequence of steady

states. Nevertheless, the aim is to show that the Schumpeterian model can deliver

changes in top income inequality consistent with both the overall inequality data and

with the underlying micro data on top incomes.

7.1. Matching U.S. Inequality

Figure 11 shows a numerical example that illustrates one way in which the model can

match the time series behavior of top income inequality in the United States. We start

with a set of baseline parameters — ρ = 0.03, L̄ = 15, τ = 0, θ = 2/3, β = 1, λ =

0.027, z̄ = 0.2, σ = 0.122, δ̄ = 0.04, φH = 0.5, p̄ = 0.767, m̄ = 0.5, and q̄ = .504 —

which match U.S. Pareto inequality in 1980.16 Next, we assume that φH , the technology

parameter converting entrepreneurial effort into growth in a variety’s productivity, rises

over time. We calibrate the change in φH to match the rise in the U.S. top inequality

between 1980 and 2007. The values of φH we recover produce values of µ̃H ranging

from 0.25 to 0.43, broadly consistent with the micro evidence presented earlier.

Although the increases in φH matches the changes in inequality, they have a neg-

ative impact on long-run growth. An increase in φH leads to a rise in entrepreneurial

effort and to a rise in inequality. Because prospective researchers are risk averse, more

inequality among entrepreneurs reduces the number of researchers, thereby limiting

overall growth. This is effect is relatively small in Figure 11; it could be offset in the

short run by transition dynamics or by changes in other parameter values.

16The value of q̄ is chosen so that the fraction of high-growth entrepreneurs in the stationary distribution
is 2.5 percent.
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Figure 11: Numerical Example: Matching U.S. Inequality
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Note: Baseline parameter values are given in the text. Over time in this simulation, φH

rises linearly from 0.385 to 0.568. All other parameters are held constant.

7.2. Matching Inequality in France

Next, we illustrate the ability of the model to simultaneously match the patterns of

top income inequality in both the U.S. and France. For the United States, we assume

the same parameter values just described. For France, we assume the same rise in

φH applies, for example capturing the fact that the World Wide Web is a worldwide

phenomenon. We know from our U.S. example that this would produce a large rise in

top inequality, other things equal, so some other change is needed to offset the rise in

France. For this example, we consider changes in p̄ and z̄ in France. First, we choose

a higher value of p̄ in France to match their lower top inequality. This example then

matches the modest increase in inequality in France by assuming a combination of

a decline in innovation blocking, z̄, and a rise in the rate at which high-growth en-

trepreneurs transition to normal entrepreneurs. These changes allow us to match the

evidence on French inequality, as shown in Figure 12.
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Figure 12: Numerical Example: U.S. and France
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Note: The baseline parameter values described in the text are used; for example, the U.S.
parameter values are the same as in Figure 11. In France, we assume φ rises in exactly the
same way. To offset the large increase in inequality that would be implied, we assume z̄
and p̄ change, as shown in the figure.

7.3. Taxes

As already discussed, these exercises are simply numerical examples, and there are

other ways to match the change in top inequality in the model in ways that are broadly

consistent with the data. In this example, we consider changes in the tax parameter

τ . A literal interpretation of this parameter is that it is a tax on the time endowment

of entrepreneurs — e.g. lost time due to “red tape.” It is tempting to wonder about the

effects of marginal labor income tax rates. However, because consumption enters in log

form in the utility function (to obtain analytic tractability), the income and substitution

effects from a labor income tax cancel exactly and a labor income tax leaves equilibrium

effort — and therefore top income inequality — unchanged in this setup. The time tax

τ is suggestive of what labor income taxes might imply in a richer framework.17

17Kim (2013) considers labor income taxes in a model in which goods are used to accumulate human
capital, so that labor income taxes can affect top income inequality, and finds that tax changes can account
for a modest portion of the changes in inequality over time and across countries. Kindermann and Krueger
(2014) study optimal taxation in a model in which the coefficient of relative risk aversion is larger than one
so that the income effect dominates the substitution effect and find that this supports very high optimal
tax rates on top incomes. In our setting, this would imply that higher income taxes increase the effort of
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Figure 13: Numerical Example: Taxes and Inequality
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Note: The figure shows the results of linear declines in the tax parameter τ on top income
inequality and on economy-wide average income growth. φH is held constant over time
at 0.59.

To what extent can changes in τ account for the differential patterns of top income

inequality that we see in the United States and France? This question is considered in

Figure 13. The baseline parameter values used in this example are identical to those

used in Figure 12, with two exceptions. First, we raise the (constant) level of φH to

0.59 to match the level of U.S. inequality in 1980, when the initial tax rate is positive.

Second, we consider linear declines in τ for both the U.S. and France. Having τ in the

United States fall from 35 percent to 3.8 percent generates the U.S. inequality numbers.

And a more modest decline from 39.5 percent to 25 percent can generate the French

inequality facts. While it is possible to make the tax story work in our paper, this does

require extraordinary efforts — viewing taxes as reducing the time endowment and

requiring an implausibly large decline in τ for the United States. We therefore infer

that the technology-based story surrounding φH is likely to be an important part of the

explanation of rising top inequality.

entrepreneurs and increase top (pre-tax) inequality. The decline in U.S. top marginal rates would not then
be able to explain the rise in Pareto inequality.
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8. Conclusion

A model in which entrepreneurs expend effort to increase the profits from their existing

ideas while researchers seek new ideas to replace incumbents in a process of creative

destruction generates a Pareto distribution for top incomes. Moreover, it suggests eco-

nomic forces that change top income inequality. Forces that increase the effort of fast-

growing entrepreneurs in improving their products — or that increase the productivity

of their effort — can increase top inequality. Forces that enhance creative destruction

or that raise the rate at which high-growth entrepreneurs lose that status can decrease

top inequality.

Globalization is a general economic phenomenon that could be driving these changes.

Greater globalization allows entrepreneurs to grow their profits more rapidly for a given

amount of effort, increasing φ and raising inequality. On the other hand, as countries

open their domestic markets to more competition via globalization, rates of creative

destruction (including p̄) go up, reducing inequality. Changes in these impacts over

time or differences in their strength across countries can potentially explain the pat-

terns of top income inequality that we see in the data.

A theme that emerges clearly from our analysis is that there are rich connections

between models of top income inequality and the underlying micro data on income

dynamics. Work connecting these two literatures is likely to be quite fruitful in com-

ing years. For example, Guvenen, Kaplan and Song (2014a) study the role of gender

differences in the rise in top earnings inequality. These same authors (in progress) are

working to estimate a rich model of micro income dynamics and tie it more closely

to the rise in top income inequality. In a future version of this paper, we plan to use

moments they release to compute estimates of Pareto inequality over time that are

perhaps even more comparable than what we already show in Table 2.

Finally, in a recent paper, Aghion, Akcigit, Bergeaud, Blundell and Hemous (2015)

document that innovation and top income inequality are positively correlated within

U.S. states and across U.S. commuting zones. On the surface, there might be some

tension between their results and ours (innovation raising inequality empirically versus

the creative destruction effect in our model), but we instead see it as more likely that

the results are complementary. For example, some of the x accumulation by existing

entrepreneurs in our model might show up as patents in the data on innovation; one
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could recast the model so that x captures the incumbent’s innovation while creative

destruction is about innovation by new entrants. In addition, the empirical correlation

may not estimate the creative destruction causal effect: perhaps the rise of information

technology leads to many new patents but also causes the effect working through φ in

our paper, leading to a positive empirical correlation. Exploring these connections is

an important direction for future research.

A Appendix: The Stationary Distribution of Experience

It is helpful to show the argument that the stationary distribution of experience in the

simple model of Section 3 is exponential. The reason is that this illustrates a basic ver-

sion of the Kolmogorov forward equation, which is used later in solving for inequality

in the full stochastic model.

Let F (x, t) denote the distribution of experience at time t, and consider how this

distribution evolves over some discrete time interval ∆t:18

F (x, t+∆t)− F (x, t) = δ∆t(1− F (x, t))
︸ ︷︷ ︸

inflow from above x

− [F (x, t)− F (x−∆x, t)]
︸ ︷︷ ︸

outflow as top folks age

Dividing both sides by ∆t = ∆x and taking the limit as the time interval goes to zero

yields:
∂F (x, t)

∂t
= δ(1− F (x, t))−

∂F (x, t)

∂x
(A1)

One can continue with this equation directly. But for what comes later, it is more useful

to take the derivative of both sides of this equation with respect to x. Letting f(x, t) :=
∂F (x,t)

∂x denote the pdf,
∂f(x, t)

∂t
= −δf(x, t)−

∂f(x, t)

∂x
. (A2)

This equation is the non-stochastic version of the Kolmogorov forward equation that

we will see later. The intuition underlying this equation is easiest to see in the version

involving the cdf, equation (A1), which just involves the inflows and outflows men-

tioned earlier.

Finally, to solve for the stationary distribution, we seek f(x) such that
∂f(x,t)

∂t = 0.

18This equation drops a term involving both ∆t and ∆x, as it goes to zero later when we take limits.
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Therefore

0 = −δf(x)−
df(x)

dx
.

Integrating this equation twice yields the result that the stationary distribution is expo-

nential: F (x) = 1− e−δx.

B Appendix: Estimating the U.S. Stochastic Income Process

B1. Data

The data we use are the U.S. Internal Revenue Service public use tax model panel files

created by the Statistics of Income Division from 1979 to 1990, hosted by the NBER.

See http://www.nber.org/taxsim-notes.html. We restrict our sample to tax units that

involved married taxpayers filing jointly in two consecutive years and convert nominal

values to 2012 constant dollars using the consumer price index. Our income measure

is field 11 of the data, corresponding to wages and salaries. In our model, the Pareto

distribution applies to “normalized” incomes, i.e. netting out the effect of aggregate

growth. For this reason, we divide our micro income observations by average taxable

income in each year, excluding capital gains. We use the series from Table A0 in the

updated spreadsheet for Piketty and Saez (2003). For each pair of consecutive years,

we record initial income and the change in log income for each tax unit. This consti-

tutes our main data used in the estimation. Two sets of estimates are made, based on

different cutoffs for the meaning of “top incomes.” In the main case, we use only tax

units in the Top 10 percent of our income measure, which facilitates comparability to

the Guvenen, Karahan, Ozkan and Song (2015) data. As a robustness check, we also

consider a Top 5 percent cutoff.

B2. Estimation

For each set of consecutive years, we use our cross-section of income levels and growth

rates to estimate the key parameters governing the stochastic process for top incomes

in our model. Hence, our key parameters are indexed by time. We assume that any

growth rates that reduce income by more than ∆ percent are due to the destruction

shocks. For our benchmark estimates, we assume ∆ = 40. Our estimate of δet is there-

http://www.nber.org/taxsim-notes.html
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fore the fraction of growth rates that reduce incomes by more than ∆ percent.

To estimate µ̃H and σH , we look at growth rates for the Top 10% of earners. From this

distribution of growth rates, we focus on the upper tail. In particular, we estimate µ̃H

as the median of growth rates above the 90th percentile of the growth rate distribution,

i.e. as the growth rate at the 95th percentile. We estimate σH as the standard deviation

of growth rates above the 90th percentile of the growth rate distribution. In an earlier

version of this paper, with different estimation, we computed confidence intervals us-

ing bootstraps. These were generally wide, and we expect the same thing is true here

given the small numbers of observations. These will be provided in a future draft.

Table A1 shows the details of our baseline estimates for the Top 10% of earners, year

by year using the panel data. For the results reported in the main text, we consider the

observations based on the largest sample sizes, averaging the results for 1979–81 (the

first two observations) and 1988–90 (the last two observations). We do not consider any

trend in σH , in part because the data are very noisy, in part to focus on µ̃H , and in part

becauses the effect of rises in σ in our model are very small (see Figure 8). Our estimate

of σH is based on the average value over the entire decade, equal to 0.2109 before we

make the permanent versus transitory adjustment.

Tables A2 shows the results for the Top 5% of earners, probably a better sample given

our model. We do not make this the baseline, however, simply so we can compare our

estimates to the 1995–96 estimates from Guvenen, Karahan, Ozkan and Song (2015),

which are based on earners at the 90th percentile.

The estimate of µ̃H reported in Table 2 from Guvenen, Karahan, Ozkan and Song

(2015) for 1995–96 is the 95th percentile of the distribution of 1-year log changes for

the 90th percentile of top earners aged 45-50, obtained from the “Figure 3” tab in the

spreadsheet data appendix for that paper (available here). They also report the growth

rate distribution for earners aged 25-34; this estimate is even higher and would imply

an even larger increase in top inequality.

In the future, we understand that Guvenen et al will provide time series data on

the moments of the growth rate distribution, so we hope to be able to provide more

comparable estimates over time in this fashion.

http://web.stanford.edu/~chadj/Guvenen_moments_for_publicationChad.xls
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Table A1: Parameter Estimates (Top 10 percentile cutoff)

Year µ̃H σ δe N

1980 0.2407 0.1906 0.0542 2123

1981 0.2470 0.2322 0.0465 2109

1982 0.3249 0.1588 0.0586 444

1983 0.2691 0.1177 0.0610 426

1984 0.2058 0.1483 0.0433 439

1985 0.2384 0.1885 0.0556 450

1986 0.2310 0.2602 0.0569 457

1987 0.3492 0.2052 0.0671 447

1988 0.3193 0.3090 0.0701 899

1989 0.2911 0.1761 0.0789 900

1990 0.3142 0.3335 0.0615 911

Note: See text for details. The sample size N in the last column is the number of
observations in our panel for which we can compute a growth rate for a Top 10% earner.
The 95th percentile of the growth rate distribution will then be the .05 ·N th highest growth
rate, typically around 106th or 46th from the top for the key 1979–81 and 1988–90 periods.
The estimates of σ do not include the

√

1/3 correction for permanent versus transitory
shocks.
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Table A2: Parameter Estimates (Top 5 percentile cutoff)

Year µ̃H σ δe N

1980 0.2893 0.2321 0.0609 1067

1981 0.2843 0.2790 0.0535 1046

1982 0.4145 0.1544 0.0811 222

1983 0.2545 0.1070 0.0892 213

1984 0.2058 0.1203 0.0648 216

1985 0.2580 0.2034 0.0575 226

1986 0.2859 0.3228 0.0652 230

1987 0.4884 0.2132 0.1018 226

1988 0.4379 0.2714 0.0976 451

1989 0.3596 0.2049 0.1091 440

1990 0.3607 0.4301 0.0615 455

Note: See text for details. The sample size N in the last column is the number of observations in
our panel for which we can compute a growth rate for a Top 5% earner. The 95th percentile of the
growth rate distribution will then be the .05 ·N th highest growth rate, typically around 53rd or 24th
from the top for the key 1979–81 and 1988–90 periods. The estimates of σ do not include the

√

1/3
correction for permanent versus transitory shocks.
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C Appendix: Proofs of the Propositions

This appendix contains outlines of the proofs of the propositions reported in the paper.

Proof of Proposition 1. Entrepreneurial Effort

The first order condition for the Bellman equation (12) yields

β

Ω− e∗
= φVx(xt, t)xt, (C1)

where e∗ denotes the optimal level of entrepreneurial effort.

Next, we conjecture that the value function takes the form of V (xt, t) = ζ0+ζ1t+ζ2 log xt

for some constants ζ0, ζ1, and ζ2. We then rewrite (C1) as

β

Ω− e∗
= φζ2. (C2)

Now substituting (C2) into (12), we have

(ρ+ δ + δ̄)(ζ0 + ζ1t+ ζ2 log xt)

= β log

(
β

φζ2

)

+ ζ2φe
∗ −

1

2
ζ2σ

2 + ζ1 + (δ + δ̄)V w(t) + logψt + log xt (C3)

Equating the coefficients on log xt yields

ζ2 =
1

ρ+ δ + δ̄
.

We then substitute ζ2 into (C2) to obtain

e∗ = Ω−
1

φ
β(ρ+ δ + δ̄).

To complete the proof, we next outline how to solve for ζ0 and ζ1 by showing that the

right-hand side of (C3) has the same form as our conjecture. As we later show in the

proof of Proposition 5, V w(t) = 1
ρ logwt +

g
ρ2

, where g is some constant. Moreover,

(25) and (27) imply that both logwt and logψt are linear functions of nt. Since ṅt is

constant in the stationary equilibrium, logwt and logψt are linear in t. Therefore, the

right-hand side of (C3) will have the same form as our conjecture, and we obtain ζ0 and
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ζ1 by equating the coefficients and constants in (C3). QED.

Proof of Proposition 2. The Pareto Income Distribution

Substituting our guess f(x) = Cx−ξ−1 to (15), we obtain

0 = −δ̄f(x) + ξµf(x) +
1

2
ξ(ξ − 1)σ2f(x).

To make this equation hold for every x, we require

1

2
ξ(ξ − 1)σ2 + µξ − δ̄ = 0.

Solving this equation for ξ, we obtain the positive root in (17). QED.

Proof of Proposition 3. Pareto Inequality with Heterogeneous Mean Growth Rates

The heterogeneous random growth model differs from the baseline model by having

entrepreneurs heterogeneous not only in productivity x but also in the growth state,

which the growth parameter φ and the variance of the shocks σ2 depend on. We explain

in detail here how the growth state of an entrepreneur is determined.

When an entrepreneur is replaced by exogenous destruction (the Poisson process

at rate δ̄), the new replacing entrepreneur, who starts with an initial human capital x0,

inherits the high growth state (φH , σH) with probability q̄ and the low growth state (φL,

σL) with probability 1− q̄. On the other hand, in the case of replacement by endogenous

creative destruction (the Poisson process at rate δ), the new entrepreneur inherits the

growth state as well as the quality x of the replaced entrepreneur. Therefore, the dis-

tribution of high-growth and low-growth entrepreneurs as well as the distribution of x

are not mechanically altered by creative destruction. In addition, we assume that high-

growth entrepreneurs transition to the low-growth state following a Poisson process

with arrival rate p̄.

We summarize the Poisson arrival rates of the state transition events in the following
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table.







(From \ To) High growth Low growth Workers

High growth p̄ δ + δ̄

Low growth 0 δ + δ̄

Researchers q̄δ̄R + πHδR (1− q̄)δ̄R + (1− πH)δR






,

where πH is the measure of the high-growth entrepreneurs and δR = δ/R, δ̄R = δ̄/R.

In addition, unlike in the baseline model, we do not assume a minimum possible

productivity level, or a reflecting barrier, x0 to simplify the analysis.

In this proof, we first solve for the optimal entrepreneurial effort to specify the

geometric Brownian motion process that productivity x follows for each state. We then

solve for the stationary distribution of x to determine Pareto inequality.

We start from the optimal effort of entrepreneurs in the low-growth state. The Bell-

man equation for an entrepreneur in the low-growth state is given by

ρV L(xt, t) = max
e

logψt+log xt+β log(Ω−et)+
E[dV L(xt, t)]

dt
+(δ+ δ̄)(V w(t)−V L(xt, t)).

(C4)

Notice that the Bellman equations (C4) and (12) differ only in the subscripts for the

state-specific variables. Therefore, from the proof of Proposition 1, we find that (1) the

value function takes the form of V L(xt, t) = ζ0+ ζ1t+ ζ2 log xt for some constants ζ0, ζ1,

and ζ2 =
1

ρ+ δ + δ̄
, and (2) e∗L = (1− τ)− 1

φL
β(ρ+ δ + δ̄).

Next, the Bellman equation for an entrepreneur in the high-growth state is given by

ρV H(xt, t) = max
e

logψt + log xt + β log(Ω− et) +
E[dV H(xt, t)]

dt
+

p̄(V L(xt, t)− V H(xt, t)) + (δ + δ̄)(V w(t)− V H(xt, t)).

(C5)

Applying the same form of conjecture on V H(xt, t) and substituting in V L(xt, t), we find

that the optimal effort of entrepreneurs in the high-growth state is e∗H = (1 − τ) − 1
φH

·

β(ρ+ δ + δ̄).

The optimal entrepreneurial efforts e∗H , e
∗
L pin down the mean growth rates in the

geometric Brownian motion process (10) to have µ∗H = µ(e∗H) = φHe
∗
H = φH(1 − τ) −

β(ρ+ δ + δ̄) and µ∗L = µ(e∗L) = φLe
∗
L = φL(1− τ)− β(ρ+ δ + δ̄).

Now we’ve set up the stochastic processes for x in each state so that we can move



48 JONES AND KIM

on to study the density of the distribution f(x, t). The remainder of the proof closely

follows the heterogeneous mean growth model in Gabaix, Lasry, Lions and Moll (2015).

We change the variable of interest to “y ≡ log x”, which simplifies the mathematical

analysis that follows. By applying Ito’s formula to dxt = µ(et)xtdt + σxtdBt, we obtain

the following stochastic process for y:

dy = µ̃dt+ σdBt, where µ̃ = µ(et)−
σ2

2
. (C6)

Let the density g(y, t) = gH(y, t)+ gL(y, t), where gH(y, t) and gL(y, t) are the densities of

entrepreneurs in the high and low growth states, respectively. Then the densities satisfy

the following Kolmogorov forward equations:

∂gH(y, t)

∂t
= −(δ̄ + p̄)gH(y, t)−

∂

∂y
[µ̃HgH(y, t)] +

1

2
·
∂2

∂y2
[
σ2gH(y, t)

]
+ q̄δ̄δ0(y) (C7)

∂gL(y, t)

∂t
= −δ̄gL(y, t) + p̄gH(y, t)−

∂

∂y
[µ̃LgL(y, t)] +

1

2
·
∂2

∂y2
[
σ2gL(y, t)

]
+ (1− q̄)δ̄δ0(y),

(C8)

where δ0 is a Dirac delta function (a point mass function at y = 0, or equivalently at

x = 1, which can be interpreted as the case when x0 is normalized to be 1).

By applying the Laplace transform ĝ(s, t) = E[e−sy] to equations (C7) and (C8), we

obtain the new system of Kolmogorov forward equations in the following.

∂ĝH(s, t)

∂t
= −(δ̄ + p̄)ĝH(s, t)− [sµ̃H ĝH(s, t)] +

1

2
·
[
s2σ2ĝH(s, t)

]
+ q̄δ̄,

∂ĝL(s, t)

∂t
= −δ̄ĝL(s, t) + p̄ĝH(s, t)− [sµ̃LĝL(s, t)] +

1

2

[
s2σ2ĝL(s, t)

]
+ (1− q̄)δ̄,

which is a system of ODE. This can be rewritten in a matrix form as ĝt = Aĝ + β,

where

A =







−(δ̄ + p̄)− sµ̃H + s2
σ2
H

2 0

p̄ −δ̄ − sµ̃L + s2
σ2
L

2







≡







−λH(s) 0

p̄ −λL(s)






, β =







q̄δ̄

(1− q̄)δ̄






.

If a stationary distribution exists, limt→∞ ĝH(s, t) = ĝH(s) and limt→∞ ĝL(s, t) =

ĝL(s) exist. Therefore, we obtain ĝH(s) and ĝL(s) by solving ĝt = Aĝ + β = 0. The
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corresponding stationary distribution ĝ(s) = ĝH(s) + ĝL(s) is then given by







ĝH(s)

ĝL(s)







=







q̄δ̄
λH (s)

p̄q̄δ̄
λH (s)λL(s)

+ (1−q̄)δ̄
λL(s)






. (C9)

Note that the Laplace transform ĝ(s) is ‘−s’-moment of the stationary distribution of

income f(x) as ĝ(s) = E[e−sy] = E[(ey)−s] = E[x−s]. Moreover, for any distribution

with a Pareto tail ξ, higher moments than ξ is infinite. Using this moment condition,

we obtain the Pareto tail index ξ of the income distribution f(x), ξ = min{ξH , ξL}, where

ξH = −
µ̃∗

H

σ2
H

+

√
(
µ̃∗

H

σ2
H

)2
+ 2 (δ̄+p̄)

σ2
H

is a positive root of λH(−ξ) = −(δ̄ + p̄) + ξµ̃H + ξ2
σ2
H

2 = 0

and ξL = −
µ̃∗

L

σ2
L

+

√
(
µ̃∗

L

σ2
L

)2
+ 2 δ̄

σ2
L

is a positive root of λL(−ξ) = −δ̄ + ξµ̃L + ξ2
σ2
L

2 = 0.

It is easy to see that ξ = min{ξH , ξL} = ξH when φH is sufficiently large to have
µ̃∗

H

σ2
H

≫
µ̃∗

L

σ2
L

. That is, Pareto inequality is determined by the distribution of high-growth

entrepreneurs when there is a big gap in the mean growth rate (after adjusting for the

variance), µ̃∗

σ2 , between the two states.

We list here two relatively simple and intuitive example cases where high-growth

entrepreneurs pin down the tail parameter. First, probably the most intuitive case we

can think of where the tail of high-growth entrepreneurs is thicker than that of low-

growth entrepreneurs is the case when the high growth is accompanied with slower

arrival of death. Recall that the Pareto inequality is pinned down by the growth and

death rates in the simple model of Section 3. It is actually easy to see that ξH is always

smaller than ξL if
µ̃∗

H

σ2
H

>
µ̃∗

L

σ2
L

and
2 (δ̄+p̄)
σ2
H

< 2 δ̄
σ2
L

. Second, if µ̃∗L < 0 < µ̃∗H (φL is small enough

to make µ̃∗L negative), even when death arrives faster in the high-growth state, more

precisely when 2 (δ̄+p̄)
σ2
H

> 2 δ̄
σ2
L

, ξH is always smaller than ξL if
µ̃∗

H

σ2
H

>
(
δ̄+p̄
σ2
H

− δ̄
σ2
L

)√
σ2
L

2δ̄
(φH

is large enough to offset the faster arrival of death in the high-growth state) or
µ̃∗

L

σ2
L

<

−
(
δ̄+p̄
σ2
H

− δ̄
σ2
L

)
√

σ2
H

2(δ̄+p̄)
(φL is small enough to offset the slower arrival of death in the

low growth state). Note that ξ = min{ξH , ξL} = ξH holds under more general parameter

conditions than the ones just discussed here. QED.

Proof of Proposition 4. Output, Wages, and Profits

Note that we omit the time subscripts for convenience since the final goods sector’s
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problem and the entrepreneurs’ monopoly decisions are temporal.

We begin by solving the final goods sector’s problem. A perfectly competitive final

goods sector combines the varieties i of price pi to produce the final good Y . This

representative firm solves

max
Yi,∀i∈[0,1]

(∫
∞

0
Y θ
i di

) 1
θ

−

∫
∞

0
piYidi.

The demand equations for each variety i that follow from the first order conditions are

(
Y

Yi

)1−θ

= pi. (C10)

Each variety i is produced by a monopolistic entrepreneur, who solves

max
Yi

pi(Yi)Yi − wLi = Y 1−θY θ
i −

w

γnxαi
Yi. (C11)

The solution involves a usual monopoly markup 1
θ over marginal cost and is given by

Yi =

(
1

θ

w

γnxαi

) 1
θ−1

Y. (C12)

By plugging (C12) in the final goods production function, we obtain the equilibrium

wage equation

w = θγn
(∫ 1

0
x
α θ

1−θ

i

) 1−θ
θ

≡ θγnXα, (C13)

where we assume α θ
1−θ = 1 and X ≡

∫ 1
0 xidi. Using this equation we can rewrite (C12)

as

Yi =
(xi
X

) 1
θ
Y. (C14)

Next, combining (C14) and (20) to get an expression forLi and substituting this into the

labor market clearing condition
∫ 1
0 Lidi = L yields the following equation for the final

output Y :

Y = γnXαL. (C15)

Lastly, the profit πi is calculated from plugging the optimal solution (C10), (C12), and

(C14) into the monopoly problem (C11). QED.
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Proof of Proposition 5. Growth and inequality in the s̄ case

The proof is provided in the main text. QED.

Proof of Proposition 6. Allocation of Labor

Allocation of labor in the baseline model

To solve the indifference equation V w(t) = V R(t), we begin by studying the value of

being a worker V w(t). The value function given in (30) can be rewritten as

V w(t) =

∫
∞

t
exp−ρ(τ−t) logwτdτ =

1

ρ
logwt +

g

ρ2
, (C16)

where the last equality comes from the fact that wt given in Proposition 4 grows at the

constant rate of growth g ≡ ṅt log γ in the stationary general equilibrium. Note that

dV w(t)/dt = g
ρ .

We next derive the value of being a researcher V R(t). V R(t) given in (31) suggests

that we start from studying the value function for an entrepreneur to get E[V (xt, t)] and

V (x0, t). Recall that the value function for an entrepreneur with quality xt is given in

(12) and (C3). We rewrite (C3) as

(ρ+ δ + δ̄)V (xt, t) = logψt + log xt + C + (δ + δ̄)V w(t) +
dV (x, t)

dt
, (C17)

where C = β log(Ω − e∗) +
φe∗ − 1

2σ
2

ρ+ δ + δ̄
contains constant terms. Differentiating (C17)

with respect to time, we obtain

dV (x, t)

dt
=

1

ρ+ δ + δ̄

(

ψ̇t

ψt
+ (δ + δ̄)

dV w

dt

)

=
g

ρ
. (C18)

The last equality comes from the fact thatψt =
1−θ
θ

wtLt

Xt
andXt =

∫ 1
0 xitdi = E[xt] =

x0
1−η .

Substituting (C18) and (C16) into (C17) yields

(ρ+δ+δ̄)V (x, t) = log 1−θ
θ +logLt−log x0+log(1−η)+log xt+C+(ρ+δ+δ̄)V w(t). (C19)
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Now taking expectations on (C19) and rearranging, we get

E[V (xt, t)] =
1

ρ+ δ + δ̄

(
log 1−θ

θ + logLt + log(1− η) + η + C
)
+ V w(t), (C20)

where we set the minimum value x0 = 1 and use E[log x] = η if x follows a Pareto

distribution with the inequality parameter η. Furthermore, we know from (C19) that

V (x0, t) =
1

ρ+ δ + δ̄

(
log 1−θ

θ + logLt + log(1− η) + C
)
+ V w(t). (C21)

We then rewrite (C20) as

E[V (xt, t)] = V (x0, t) +
η

ρ+ δ + δ̄
. (C22)

Next substituting (C22) into (31) and rearranging, we obtain

(ρ+λ(1− z̄)+ δ̄R)V
R(t) = log m̄+logwt +

g

ρ
︸ ︷︷ ︸

=ρV w(t)

+(λ(1− z̄)+ δ̄R)V (x0, t)+
λ(1− z̄)η

ρ+ δ + δ̄
. (C23)

Lastly we substitute (C21) into (C23) and apply the indifference equation V w(t) = V R(t)

to (C23) to get

0 = (ρ+ δ + δ̄) log m̄+ (λ(1− z̄) + δ̄R)(log
1−θ
θ + logLt + log(1− η) + C) + λ(1− z̄)η.

Solving the last equation for logLt, we finally obtain the allocation of labor to research

s∗ = 1− L∗

L̄
, where

logL∗ = log θ
1−θ −

(ρ+δ∗+δ̄) log m̄+λ(1−z̄)η∗

λ(1−z̄)+δ̄R
− β log(1− τ − e∗)−

φe∗− 1
2
σ2

ρ+δ∗+δ̄
− log(1− η∗).

Allocation of labor with heterogeneous mean growth rates

The value function for a worker, V w(t), does not change with heterogeneous mean

growth rates, thus we have V w(t) = 1
ρ logwt +

g
ρ2

as given in the equation (C16). On

the other hand, the value function for a researcher at time t, V R(t), changes from equa-
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tion (31) to consider the two different growth states, which is shown below.

ρV R(t) = log(m̄wt) +
dV R(t)

dt
+ λ(1− z̄)

(
πHE[V

H(x, t)] + πLE[V
L(x, t)]− V R(t)

)

+δ̄R
(
q̄V H(x0, t) + (1− q̄)V L(x0, t)− V R(t)

)
,

(C24)

where π = (πH, πL) is the distribution of high-growth and low-growth entrepreneurs. In

the remainder of the proof, we will solve for each term in (C24) to explicitly solve forLt.

Starting from the first two terms, we have

log(m̄wt) +
dV R(t)

dt
= log m̄+ logwt +

dV w(t)

dt
= log m̄+ ρV w(t). (C25)

We next calculate the stationary distribution π∗. It can be obtained by describing the

state transitions among entrepreneurs as a continuous time Markov chain, where we

consider the state space {‘high growth’, ‘low-growth’} and ignore replacements by de-

structions.19 Specifically, the rate matrix Q of this Markov chain is given by

Q =





High growth Low growth

High growth −(p̄+ (1− q̄)δ̄) p̄+ (1− q̄)δ̄

Low growth q̄δ̄ −q̄δ̄



.

We then obtain the stationary distribution π∗ by solving πQ = 0 as below:

π∗ = (π∗H , π
∗
L) =

(
δ̄q̄

p̄+ δ̄
,
p̄q̄

p̄+ δ̄
+ (1− q̄)

)

.

Moving on to the next terms E[V H(x, t)] and E[V L(x, t)], recall that the value functions

for an entrepreneur with quality xt is given in (C5) and (C4). We rewrite them as

(ρ+ δ + δ̄)V H(xt, t) = logψt + log xt + CH + p̄(V L(xt, t)− V H(xt, t))

+(δ + δ̄)V w(t) +
dV H

dt
,

(C26)

(ρ+ δ + δ̄)V L(xt, t) = logψt + log xt + CL + (δ + δ̄)V w(t) +
dV L

dt
, (C27)

19For example, if a high-growth entrepreneur is replaced by another high-growth entrepreneur due to
an exogenous destruction event, we do not consider this event as a state transition because it does not
change the distribution of entrepreneurs’ growth states.
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where CH ≡ β log(Ω− e∗H) +
φHe

∗
H − 1

2σ
2
H

ρ+ δ + δ̄
and CL ≡ β log(Ω− e∗L) +

φLe
∗
L − 1

2σ
2
L

ρ+ δ + δ̄
contain

constant terms. Moreover, recall that ψt =
1−θ
θ

wtLt

Xt
and Xt =

∫ 1
0 xitdi = E[xt].

Differentiating (C26) and (C27) with respect to t as in (C18), we get

dV H(x, t)

dt
=
dV L(x, t)

dt
=
g

ρ
. (C28)

We can also replace V L − V H in (C26) by subtracting (C26) from (C27) to get

V L(xt, t)− V H(xt, t) =
CL − CH

ρ+ δ + δ̄ + p̄
. (C29)

Substituting (C28), (C29), and (C16) into (C26) and (C27) yields

V H(x, t) = V w(t) + 1
ρ+δ+δ̄

(

log 1−θ
θ + logLt − logE[xt] + log xt + CH + p̄(CL−CH)

ρ+δ+δ̄+p̄

)

,(C30)

V L(x, t) = V w(t) + 1
ρ+δ+δ̄

(
log 1−θ

θ + logLt − logE[xt] + log xt + CL

)
. (C31)

Now taking expectations and rearranging, we get

πHE[V
H(x, t)] + πLE[V

L(x, t)] =

V w(t) + 1
ρ+δ+δ̄

(
log 1−θ

θ + logLt − logE[xt] + E[log xt] +D(πH, πL)
)
,

(C32)

where D(πH, πL) ≡ πH

(ρ+δ+δ̄)CH+p̄CL

ρ+δ+δ̄+p̄
+ πLCL.

Similarly, we also obtain

q̄V H(x0, t) + (1− q̄)V L(x0, t) =

V w(t) + 1
ρ+δ+δ̄

(
log 1−θ

θ + logLt − logE[xt] +D(q̄, 1− q̄)
)
,

(C33)

where we normalized x0 to be 1.

Substituting (C25), (C32), (C33), and the indifference equation V w(t) = V R(t) into

(C24), we get

0 = (ρ+ δ + δ̄) log m̄+ (λ(1− z̄) + δ̄R)(log
1−θ
θ + logLt − logE[x])+

λ(1− z̄) (E[log x] +D(πH , πL)) + δ̄RD(q̄, 1− q̄).
(C34)

Solving (C34) for logLt, we finally obtain the allocation of labor to research with het-
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erogeneous mean growth rates s∗ = 1− L∗

L̄
, where

logL∗ = log θ
1−θ+logE[x]−

(ρ+ δ∗ + δ̄) log m̄+ λ(1− z̄)(E[logx] +D(πH, πL)) + δ̄RD(q̄, 1− q̄)

λ(1− z̄) + δ̄R
.

Note that we can further solve for E[log x] and E[x] by applying the Laplace transform

ĝ(s) = E[e−sy] of which the explicit functional form is given in (C9). Specifically, they

are given by

E[x] = E[ey] = ĝ(−1) = δ̄q̄
δ̄+p̄−µH

+ δ̄(1−q̄)
δ̄−µL

+ δ̄q̄p̄
(δ̄+p̄−µH)(δ̄−µL)

,

E[logx] =

∫

(log x)f(x)dx =

∫

ye−syg(y)dy|s=0 = −ĝ′(0) = δ̄q̄µ̃H+(p̄+δ̄(1−q̄))µ̃L

δ̄(δ̄+p̄)
.

QED.
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