
NBER WORKING PAPER SERIES

SOCIAL INSURANCE, INFORMATION REVELATION, AND LACK OF COMMITMENT

Mikhail Golosov
Luigi Iovino

Working Paper 20633
http://www.nber.org/papers/w20633

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
October 2014

We thank Mark Aguiar, Fernando Alvarez, V.V. Chari, Hugo Hopenhayn, Ramon Marimon, Stephen
Morris, Chris Sleet, Pierre Yared, Sevin Yeltekin, Ariel Zetlin-Jones for invaluable suggestions and all
the participants at the seminars in Bocconi, Carnegie Mellon, EIEF, Georgetown, Minnesota, Norwegian
Business School, Paris School of Economics, Princeton, University of Lausanne, University of Vienna,
Washington University, the SED 2013, the SITE 2013, the ESSET 2013 meeting in Gerzensee, 12th
Hydra Workshop on Dynamic Macroeconomics and 2014 Econometric Society meeting in Minneapolis.
Golosov thanks the NSF for support and the EIEF for hospitality. We thank Sergii Kiiashko and Pedro
Olea for excellent research assistance. The views expressed herein are those of the authors and do
not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2014 by Mikhail Golosov and Luigi Iovino. All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.



Social Insurance, Information Revelation, and Lack of Commitment
Mikhail Golosov and Luigi Iovino
NBER Working Paper No. 20633
October 2014
JEL No. D82,D86,E61,H3

ABSTRACT

We study the optimal provision of insurance against unobservable idiosyncratic shocks in a setting
in which a benevolent government cannot commit. A continuum of agents and the government play
an infinitely repeated game. Actions of the government are constrained only by the threat of reverting
to the worst perfect Bayesian equilibrium (PBE). We construct a recursive problem that characterizes
the resource allocation and information revelation on the Pareto frontier of the set of PBE. We prove
a version of the Revelation Principle and find an upper bound on the maximum number of messages
that are needed to achieve the optimal allocation. Agents play mixed strategies over that message set
to limit the amount of information transmitted to the government. The central feature of the optimal
contract is that agents who enter the period with low implicitly-promised lifetime utilities reveal no
information to the government and receive no insurance against current period shock, while agents
with high promised utilities reveal precise information about their current shock and receive insurance
as in economies with full commitment by the government.

Mikhail Golosov
Department of Economics
Princeton University
111 Fisher Hall
Princeton, NJ 08544
and NBER
golosov@princeton.edu

Luigi Iovino
Department of Economics
Bocconi University and IGIER 
via Roentgen 1 
Milano 20136 
Italy 
luigi.iovino@unibocconi.it



1 Introduction

The major insight of the normative public finance literature is that there are substantial benefits

from using past and present information about individuals to provide them with insurance

against shocks and incentives to work. A common assumption of the normative literature is

that the government is a benevolent social planner with perfect ability to commit. The more

information such a planner has, the more effi ciently she can allocate resources.1

The political economy literature has long emphasized that such commitment may be dif-

ficult to achieve in practice.2 Self-interested politicians and voters —whom we would broadly

refer to as “the government”—are tempted to re-optimize over time and choose new policies.

When the government cannot commit, the benefits of providing more information to the gov-

ernment are less clear. Better informed governments may allocate resources more effi ciently

as in the conventional normative analysis but may also be more tempted to depart from the

ex-ante desirable policies. The analysis of such environments is diffi cult because the main

analytical tool to study private information economies —the Revelation Principle —fails when

the decision maker cannot commit.

In this paper we study optimal information revelation and resource allocation in a simple

model of social insurance —the unobservable taste shock environment of Atkeson and Lucas

(1992). This environment, together with closely related models of Green (1987), Thomas and

Worrall (1990), Phelan and Townsend (1991), provides theoretical foundation for a lot of recent

work in macro and public finance. This set up and its extensions was used to study design of

unemployment and disability insurance (Hopenhayn and Nicolini (1997), Golosov and Tsyvin-

ski (2006)), life cycle taxation (Farhi and Werning (2013), Golosov, Troshkin and Tsyvinski

(2011)), human capital policies (Stantcheva (2014)), firm dynamics (Clementi and Hopenhayn

(2006)), military conflict (Yared (2010)), international borrowing and lending (Dovis (2009)).

In the key departure from that literature we assume that resources are allocated by the govern-

ment, which, although benevolent, lacks commitment. We study how information revelation

affects incentives of the government to provide insurance in such settings and characterize the

1The seminal work of Mirrlees (1971) started a large literature in public finance on taxation, redistribution and
social insurance in presence of private information about individuals’types. Well known work of Akerlof (1978)
on “tagging” is another early example of how a benevolent government can use information about individuals
to impove effi ciency. For the surveys of the recent literature on social insurance and private informaiton see
Golosov, Tsyvinski and Werning (2006) and Kocherlakota (2010).

2There is a vast literature in political economy that studies frictions that policymakers face. For our purposes,
work of Acemoglu (2003) and Besley and Coate (1998) is particularly relevant who argue that ineffi ciencies in
a large class of politico-economic models can be traced back to the lack of commitment. Kydland and Prescott
(1977) is the seminal contribution that was the first to analyze policy choices when the policymaker cannot
commit.
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properties of the optimal contract.

Formally, we study a repeated game between the government and a continuum of atomless

citizens in the spirit of Chari and Kehoe (1990) and focus on the perfect Bayesian equilibria

(PBE) that are not Pareto-dominated by other PBE. The economy is endowed with a constant

amount of perishable good in each period and the government allocates that endowment among

agents. Agents receive privately observable taste shocks that follow a Markov process, which

is assumed to be iid in the baseline version of our model. Agents transmit information about

their shocks to the government by sending messages. The government uses these messages

to form posterior beliefs about realization of agents’types and allocate resources. The main

friction is that ex-post, upon learning information about the agent’s type, the government

has the temptation to allocate resources differently from what is required ex-ante to provide

incentives to reveal information. The more precise information the government has about the

agents’types, the higher its payoff from deviation is.

Our paper makes three contributions. First, we construct a recursive formulation of our

problem. The key diffi culty that we need to overcome is that the value of the worst equilibrium

depends on the implicit promises made to all agents. The standard recursive techniques,

that characterize optimal insurance for each history of past shocks in isolation from other

histories, do not apply directly since information that any agent reveals affects the government’s

incentives to renege on the promises made to other agents. We make progress by showing how

to construct an upper bound for the value of deviation which coincides with that value if

all agents play the best PBE and takes weakly higher value for any other strategy. This

upper bound can be represented as a history-by-history integral of functions that depends only

on the current reporting strategy of a given agent, and thus can be represented recursively.

Since the original best PBE strategies still satisfy all the constraints of this modified, tighter

problem, the solution to this recursive problem allows us to uncover the best PBE. The resulting

recursive problem is very simple. It is essentially a standard problem familiar from the recursive

contract literature with two modifications: agents are allowed to choose mixed rather than

pure strategies over their reports and there is an extra term in planner’s objective function

that captures "temptation" costs of revealing more information.

Our second contribution is to show a version of the Revelation Principle for our settings. It

is well known that standard direct revelation mechanisms, in which agents report their types

truthfully to the government, are not effi cient in this type of settings. Bester and Strausz

(2001) showed that, in a repeated game between one principle and one agent whose type can

take N values, the message space can be restricted to only N messages over which agents play
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mixed reporting strategies. These techniques do not apply to economies with more than one

agent.3 We show that in our baseline version of the model with continuum of agents and iid

shocks it is without loss of generality to restrict attention to message spaces with at most 2N−1

messages. This result follows from the fact that with iid shocks our recursive characterization

satisfies single-crossing property, and therefore all messages that give any type n the highest

utility can be partitioned in three regions: those that also give the highest utility to types

n + 1 and n − 1 and those that give the highest utility to only type n. There can be at most

2N − 1 of such partitions and convexity of our problem implies that it is suffi cient to have one

message per each partition.

Our third contribution is the characterization of the properties of the optimal contract and

the effi cient information revelation. As in the full commitment case of Atkeson and Lucas

(1992), it is optimal to allocate resources to agents with temporality high taste shocks by

implicitly promising to increase future lifetime utility of agents with temporarily low taste

shocks. As agents experience different histories of shocks, there is a distribution of promised

utilities at any given time. We show that it is effi cient for agents who enter the period with

different promised utilities to reveal different amounts of information. In particular, we show

that under quite general conditions agents who enter the period with low promised utilities

reveal no information about their idiosyncratic shock in that period and receive no insurance.

In contrast, under some additional assumption on the utility function and the distribution of

shocks, agents who enter the period with high promised utilities reveal their private information

fully to the government. The optimal insurance contract for such agents closely resembles the

contract when the government can commit.

The intuition for this result can be seen from comparing costs and benefits of revealing

information to the government. The costs are driven by the temptation to deviate from the ex-

ante optimal plan and re-optimize. When the government deviates from the best equilibrium,

it reneges on all the past implicit promises and allocates consumption to each agent based on

its posterior beliefs about agent’s current type. Therefore, the incentives for the government

to deviate depend only on the total amount information it has but not on which agents reveal

it. On the contrary, the benefits of information revelation depend on the effi ciency gains from

better information on the equilibrium path, which in turn depend on the implicit promises

with which an agent enters the period. The general lesson is that the agents for whom better

3See also Skreta (2006) who extends the analysis to an arbitrary type space and show the optimal selling
mechanism in a game between one buyer and one seller. Bester and Strausz (2000) provide an example of an
economy with two agents to illustrate that that with more than one agent message spaces with only N elements
are restrictive.
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information leads to the highest effi ciency gains on the equilibrium path should send precise

signals to the government. In Atkeson and Lucas (1992) multiplicative taste shock environment

those are the agents with high promised utility.

Participation constraints of the government prevent the emergence of the extreme inequal-

ity, known as immiseration, which is a common feature of environments with commitment. The

optimal contract exhibits mean reversion, so that agents with low current promised utilities

receive in expectation higher future promises, and vice versa. This implies that in an invariant

distribution no agent is stuck in the no-insurance region forever, and in a finite number of steps

he reaches a point when he reveals some information about his shock and some insurance is

provided. Thus, we show that in the invariant distribution there is generally an endogenous

lower bound below which agent’s promised utility never falls.

Our paper is related to a relatively small literature on mechanism design without commit-

ment. Roberts (1984) was one of the first to explore the implications of lack of commitment for

social insurance. He studied a dynamic economy in which types are private information but

do not change over time. More recently, Sleet and Yeltekin (2006), Sleet and Yeltekin (2008),

Acemoglu, Golosov and Tsyvinski (2010), Farhi et al. (2012) all studied versions of dynamic

economies with idiosyncratic shocks closely related to our economy but made various assump-

tions on commitment technology and shock processes to ensure that any information becomes

obsolete once the government deviates. In contrast, the focus of our paper is on understanding

incentives to reveal information and their interaction with the incentives of the government.

Our paper is also related to the literature on the ratchet effect, e.g. Freixas, Guesnerie and

Tirole (1985), Laffont and Tirole (1988). These authors pointed out that without commitment

it is diffi cult to establish which incentive constraints bind, which significantly inhibited further

development of this literature. Some papers have thus focused on the analysis of suboptimal

but tractable incentive schemes. We show that the problem substantially simplifies when the

principal interacts with a continuum of agents since any agent’s report does not affect the

aggregate distribution of the signals received by the principal. In this case we can obtain a

tight characterization of the optimal information revelation for high and low values of promised

utilities.

Our results about effi cient information revelation are also related to the insights on optimal

monitoring in Aiyagari and Alvarez (1995). In their paper the government has commitment but

can also use a costly monitoring technology to verify the agents’reports. They characterize how

monitoring probabilities depend on the agents’promised values. Although our environment and

theirs are very different in many respects, we both share the same insight that more information
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should be revealed by those agents for whom effi ciency gains from better information are the

highest. Work of Bisin and Rampini (2006) pointed out that in general it might be desirable

to hide information from a benevolent government in a two period economy. Finally, our

recursive formulation builds on the literature on recursive contracts with private information

and a patient social planner. Work of Farhi and Werning (2007) provides recursive tools that

are particularly useful in our settings.

The rest of the paper is organized as follows. Section 2 describes our baseline environment

with iid shocks. Section 3 derives the recursive characterization and shows a version of the

Revelation Principle. Section 4 analyzes effi cient information revelation and optimal insurance.

Section 5 extends our analysis to general Markov shocks.

2 The model

The economy is populated by a continuum of agents of total measure 1 and the govern-

ment. There is an infinite number of periods, t = 0, 1, 2, ... The economy is endowed with

e units of a perishable good in each period. Agent’s instantaneous utility from consuming

ct units of the good in period t is given by θtU (ct) where U : R+ → R is an increas-

ing, strictly concave, continuously differentiable function. The utility function U satisfies

Inada conditions limc→0 U
′ (c) = ∞ and limc→∞ U ′ (c) = 0 and it may be bounded or un-

bounded. All agents have a common discount factor β. Let v̄ = limc→∞ U (c) / (1− β) and

v = limc→0 U (c) / (1− β) be the upper and lower bounds on the lifetime expected utility of

the agents (v̄ and v may be finite or infinite). For our purposes it is more convenient to work

with utils rather than consumption units. Let C ≡ U−1 be the inverse of the utility function.

The taste shock θt takes values in a finite set Θ with cardinality |Θ|. For most of the analysis
we assume that θt are iid across agents and across time, but we relax this assumption in Section

5. Let π (θ) > 0 be the probability of realization of θ ∈ Θ. We assume that θ1 < ... < θ|Θ| and

normalize
∑

θ∈Θ π (θ) θ = 1. We use superscript t notation to denote a history of realization

of any variable up to period t, e.g. θt = (θ0, ..., θt). Let πt
(
θt
)
denote the probability of

realization of history θt. We assume that types are private information.

Each agent is identified with a real number v ∈ [v, v̄] which we soon interpret as a lifetime

promised utility. All consumers with the same v are treated symmetrically. The distribution

of promises v is denoted by ψ. As it will become clear shortly, the initial distribution ψ gives

us a flexible way to trace the Pareto frontier of the set of subgame perfect equilibria.

The government collects reports from agents about their types and allocates consumption

subject to the aggregate feasibility in each period. The government is benevolent and its payoff
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is given by the sum of expected lifetime utilities of all agents.

2.1 The game between the government and agents

The physical structure of our environment corresponds exactly to the model of Atkeson and

Lucas (1992). The constrained effi cient allocations that they characterize can be achieved by

the government which is able to commit in period 0 to infinite period contracts. We focus

on the environment without commitment. We model the interaction between the government

and individuals along the lines of the literature on sustainable plans (Chari and Kehoe (1990),

Chari and Kehoe (1993)). Before formally defining the game we briefly outline its structure.

The government does not observes agents’types, so it collects information by having the agents

submit messages. More specifically, at the beginning of any period t the government chooses

a message set Mt from some space M. All agents observe their types and submits messages

mt ∈ Mt. The government allocates consumption to agents as a function of current and past

reports.

To capture the main trade-off in information revelation we assume that the government

cannot commit even within a period: it can pick any feasible allocation of resources after

collecting agents’reports. This allows for a simple and transparent analysis in our benchmark

case of iid shocks. As we discuss in Section 5, much of the analysis carries through to the case

when shocks are persistent.4

We now formally define our game. We start with information sets. Let St−1 be the

summary of information available to the government at the end of period t− 1. We define this

set recursively with S−1 = ψ. St−1 is the space of public histories St−1.

Each period has three stages. In the first stage the government chooses a message set

Mt : St−1 → M. In the second stage agents send reports about their types. Each agent i

observes the realization of his type in period t, θi,t, and of a payoff irrelevant random variable zi,t

uniformly distributed on Z = [0, 1] . The realizations of zi,t are publicly observable. Each agent

chooses a reporting strategy σ̃i,t over Mt as a function of the aggregate history
(
St−1,Mt

)
,

his past history of reports and sunspot realizations ht−1
i =

(
vi,m

t−1
i , zt−1

i

)
, current realization

zi,t, and the history of his shocks θti. Realizations of θ
t are privately observed and we call them

private history. Realizations of ht−1 are publicly observed and we call them personal history

4A small recent literature on social insurance without commitment sidesteps the possibility that the govern-
ment may misuse information when it deviates from equilibrium strategies. For example, Acemoglu, Golosov
and Tsyvinski (2010) allow agents to stop interacting with the government if it deviates, while Sleet and Yel-
tekin (2008), Farhi et al. (2012) assume that shocks are iid but there is commitment within the period. All
these environment are constructed so that the information about individuals becomes obsolete if the government
deviates.
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with a space of ht−1 denoted by Ht−1. To economize on notation, define h̆t ≡
(
v,mt−1, zt

)
and let H̆t be the space of all h̆t. Formally, the reporting strategy is defined as σ̃i,t : St−1 ×
M× H̆t × Θt → ∆ (Mt) where ∆ (Mt) is a set of all Borel probability measures on Mt. We

assume that all agents i with the same history choose the same strategy σ̃i,t, and that the law

of large numbers holds so that strategies σ̃i,t generate a distribution of reports σt over Mt. To

simplify the exposition, we will refer to σt as agents’strategy. Finally, in the last stage of the

period the government chooses utility allocations ut for each personal history ht as a function

of S̆t =
(
St−1,Mt, σt

)
. The distribution of ut, σt,Mt and St−1 constitute the aggregate history

at the beginning of the next period, St. Let σG,t be the government strategy in period t and

Σt and ΣG,t be the spaces of feasible σt and σG,t respectively. We use boldface letters x to

denote the whole infinite sequence of {xt}∞t=0 .

For our purposes it is useful to keep track of two objects, the distribution of the agents’

private histories and that of personal histories. For any St define ηt(h
t, θt|St) as the measure

of agents with histories
(
ht, θt

)
. It is defined recursively. Let η−1 = ψ. Any Borel set At of

[v, v̄]×M t ×Zt ×Θt can be represented as a product At = At−1 ×Bm ×Bz ×Bθ where At−1

is a Borel set of Ht−1 × Θt−1 and Bm, Bz, Bθ are the mt-,z- and θ-sections of some Borel set

of Mt × Z ×Θ. The measure ηt
(
ht, θt|St

)
over space Ht ×Θt is defined as

ηt
(
At|St

)
= ηt−1

(
At−1|St−1

)
Pr (z ∈ Bz) Pr (θ ∈ Bθ)σt

(
Bm|St−1,Mt, At−1 ×Bz ×Bθ

)
.

Let µt(h
t|St) be the measure of agents with personal histories ht, defined for each Borel

set A of Ht as

µt
(
A|St

)
=

∫
Θt
ηt
(
A× θt|St

)
dπt

(
θt
)
. (1)

We require the government’s strategy to be feasible, so that it satisfies for any St∫
Ht

C
(
ut
(
·, St

))
dµt

(
·|St
)
≤ e. (2)

Citizens’strategies induce posterior beliefs pt over ∆
(
Θt
)
. These beliefs are define for all

ht and St and satisfy Bayes’rule, i.e. that for any Borel set A of Ht and any θt,∫
A
pt
(
θt|St, h

)
µt
(
dh|St

)
= ηt

(
A× θt|St

)
whenever µt

(
A|St

)
> 0. (3)

Finally, we define continuation payoffs for agents and the government. Any pair (σ,σG)

generates a stochastic process for utility allocation u. We use E(σ,σG)xt to denote the ex-

pectation of the random variable xt : St × Ht × Θt → R with respect to the probability

measures generated by strategies (σ,σG) , and E(σ,σG) [xt|A] to denote the conditional ex-

pectation given some Borel subset A of St × Ht × Θt. The lifetime utility of agent v is
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then E(σ,σG)

[∑∞
t=0 β

tθtut|v
]
. Since the government is benevolent and utilitarian, its payoff

is E(σ,σG)

[∑∞
t=0 β

tθtut
]

=
∫
E(σ,σG)

[∑∞
t=0 β

tθtut|v
]
ψ (dv) .

Definition 1 A Perfect Bayesian Equilibrium (PBE) is a strategy profile (σ∗,σ∗G) and a belief

system p∗ such that conditions (2) and (3) are satisfied, and both agents and the government

choose σ∗ and σ∗G as their best responses, i.e.

• Agents’best response: for every ST−1,MT , h̆
T , θT ,

E(σ∗,σ∗G)

[ ∞∑
t=T

βt−T θtut

∣∣∣∣∣ST−1,MT , h̆
T , θT

]
≥ E(σ′,σ∗G)

[ ∞∑
t=T

βt−T θtut

∣∣∣∣∣ST−1,MT , h̆
T , θT

]
for all σ′ ∈ Σ,

(4)

• Government’s best response: for every S̃T ∈
{
ST−1, S̆T

}
,

E(σ∗,σ∗G)

[ ∞∑
t=T

βt−T θtut

∣∣∣∣∣ S̃T
]
≥
∫
E(σ∗,σ′G)

[ ∞∑
t=T

βt−T θtut

∣∣∣∣∣ S̃T
]
for all σ′G ∈ ΣG. (5)

We focus on equilibria that maximize the payoff of the utilitarian government subject to

delivering lifetime utility of at least v to an agent that belongs to family v. We call it a best

equilibrium and define it as follows

Definition 2 A triple (σ∗,σ∗G,p
∗) is a best equilibrium if it is a PBE such that

E(σ∗,σ∗G)

[ ∞∑
t=0

βtθtut

∣∣∣∣∣ v
]
≥ v for all v, (6)

and there is no other PBE (σ′,σ′G,p
′) that satisfies (6) and delivers a higher payoff to the

government,

E(σ′,σ′G)

[ ∞∑
t=0

βtθtut

]
> E(σ∗,σ∗G)

[ ∞∑
t=0

βtθtut

]
.

Throughout the paper we assume that ψ is such that a best equilibrium exists. We further

assume that ψ is such that (6) holds with equality in a best equilibrium. This assumption

simplifies the recursive formulation since all the “promise keeping”constraints can be defined

as equalities in that case. Without this assumption our period 0 recursive formulation would

have to be defined as an inequality, which would make notation more bulky but not affect any

of our results.
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3 The recursive problem and the Revelation principle

In this section we discuss two intermediate results that are necessary for our analysis of optimal

information revelation. First, we derive the recursive problem solution to which characterizes

the optimal reporting strategy and consumption allocation in best PBEs. Recursive techniques

are the standard tool to solve dynamic contracting problems, which essentially allow to solve

for optimal insurance after any given history of shocks separately from the other histories.

In our game-theoretic settings the standard approach to constructing Bellman equations is

not applicable: the government’s incentive to deviate from a best equilibrium depends on the

reporting strategies of all agents making the usual history-by-history separation of incentives is

impossible. To overcome this diffi culty, we consider a constrained problem in which we replace

the function that characterizes the value of deviation for the government with another function

which is linear in the distribution of the past histories of reports. We show that this function

can be chosen such that a solution to the original problem is also a solution to the constrained

problem. The advantage is that the linearity of the constrained problem in the distribution

of past reports allows us to solve for the optimal contract recursively, history-by-history. The

key insight for this construction is that the Lagrange multiplier on resource constraint in the

best one shot deviation from best equilibrium strategies summarizes all relevant information.

The second result of this section characterizes the minimum dimension of the message space

M that is needed to support best PBEs. Reduction of an arbitrarily message space M to a

smaller dimension object is important for tractability of the maximization problem. This step

is similar in spirit to invoking the Revelation Principle in standard mechanism design problems

with commitment, and we refer to this result as the (generalized) Revelation principle.

Although these steps are crucial for our ultimate goal —characterization of effi cient infor-

mation revelation —these tools are of interest in themselves. A lot of environments without

commitment share the feature that value of deviation for the “principal”depends on actions of

many agents, and the recursive techniques developed in our settings should also be applicable

to such environments. To the best of our knowledge, there is no version of the Revelation

Principle for economies with multiple agents when the principal lacks commitment. A well

known paper by Bester and Strausz (2001) developed a version the Revelation Principle for an

economy with one agent, but their approach and the main result do not extend to multi-agent

settings.
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3.1 The recursive problem

We start by describing a PBE that delivers the lowest payoff to the government, to which we

refer as the worst PBE. It is easy to show that there are worst equilibria in which no information

is revealed.5 To see this, let m∅(M) be an arbitrary message from a set M ∈ M. Consider a

strategy profile (σw,σwG) in which all agents report message m∅(M) with probability 1 for all

M , and the government allocates the same utility uwt = C−1 (e) for any message m it receives.

The beliefs pw that satisfy (3) are given by pwt
(
θt|ht, St

)
= πt

(
θt
)
for all

(
ht, St

)
.

Lemma 1 (σw,σwG,p
w) is a worst PBE.

Proof. The best response of the government to agents’reporting strategy σw is to allocate

the same utility to all agents since its beliefs pw do not depend on m and C is strictly convex.

Given this allocation rule, playing σw is optimal for agents, therefore (σw,σwG,p
w) is a PBE

that delivers the government payoff U (e) / (1− β) . Strategy σwG is feasible for any reporting

strategy that agents choose, so the government can attain payoff U (e) / (1− β) in any PBE,

which proves that (σw,σwG,p
w) is a worst PBE for the government.

Standard arguments establish that best equilibria are supported to reverting to the worst

PBE following any deviation of the government from its equilibrium strategies. We split

our problem in two parts. First, we fix any sequence of message sets M and describe the

maximization problem that characterizes the best PBE given that sequence of message sets,

which we call the best equilibria given M. We then show that the same payoff can be achieved

with a much simpler message set that has only a finite number of messages. That set is

independent of M and hence without loss of generality it can be chosen as the message set in

the best PBE.

We start with several preliminary observations that simplify the notation. Since there is no

aggregate uncertainty the aggregate distribution of reports and allocations is a deterministic

sequence. Therefore, it is redundant to keep track of the aggregate history St in best equilibria

and we drop this explicit dependence from our notation. Moreover, without loss of generality

we can restrict attention to reporting strategies σt that depend on ht−1, zt and θt, but not

on the past history of shocks θt−1.6 This results holds more generally with Markov shocks,

since as long as θt follows a Markov process, θt−1 is payoff irrelevant and agents with the same

5 In fact, a stronger statement is true that in any worst equilibrium no information is revealed. This statement
follows from our Lemma 2.

6 In the Supplementary Material we show that for any PBE (σ′,σ′G,p
′) there is another PBE (σ,σG,p) which

delivers the same payoff to all agents and the government as (σ′,σ′G,p
′) (i.e. (σ,σG,p) is payoff-equivalent to

(σ′,σ′G,p
′)) and has the property that σt does not depend on θt−1.
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(
h̆t, θt

)
can replicate each other strategies for all past θt−1. This implies that all information

about agents at the beginning of period t can be summarized by the distribution of reports

µt−1.

We now turn to setting up the maximization problem that characterizes best equilibria

given M. Since any deviation by the government from a best equilibrium triggers a switch to

the worst PBE, it is suffi cient to consider only the best one-shot deviation from equilibrium

strategies by the government. The government that observes the distribution of personal

histories µt can achieve the maximum payoff W̃t (µt) defined as

W̃t (µt) = sup
{u(h)}h∈Ht

∫
Ht

Eσt [θ|h]u (h) dµt (7)

subject to ∫
Ht

C (u (h)) dµt ≤ e. (8)

Therefore, any best equilibrium given M is a solution to

max
u,σ

Eσ
∞∑
t=0

βtθtut (9)

subject to (2),

Eσ
∞∑
s=t

βs−tθsus ≥ W̃t (µt) +
β

1− βU (e) for all t, (10)

Eσ
∞∑
t=0

βtθtut ≥ Eσ′
∞∑
t=0

βtθtut for all σ′ (11)

and

Eσ

[ ∞∑
t=0

βtθtut

∣∣∣∣∣ v
]

= v. (12)

The main diffi culty in the analysis of problem (9) is that the sustainability constraint (10)

depends on W̃t, which is a non-linear function of the past reports embedded in the probability

distribution µt−1. To make progress, we replaced W̃t with a function that (i) is linear in µt−1,

(ii) is weakly greater than W̃t for all µt, and (iii) equals W̃t at a best equilibrium’s distribution of

reports. This defines a more constrained maximization problem for which the best equilibrium

is still a solution. The linearity of the constraining function in µt−1 allows us to write the

constrained problem recursively.

Let (u∗,σ∗) be a solution to (9) and µ∗ be the distribution of personal histories induced

by σ∗. Let λwt ≥ 0 be a Lagrange multiplier in problem (7) given µ∗t . For any mapping σ : Θ→

11



∆ (Mt) define

Wt (σ) = max
{u(m)}m∈Mt

∫
Mt×Θ

(θu (m)− λwt C (u (m)))σ (dm|θ)π (dθ) + λwt e. (13)

We use {uw (m)}m∈Mt
to denote the solution to (13), which is given by equation λwt C

′ (uw (m)) =

Eσ [θ|m].

FunctionWt plays an important role in our analysis: We show that
∫
Wt (σt) dztdµt−1 is an

upper bound forWt (µt) that satisfies the three properties needed for recursive characterization.

Before formally proving this result, it is useful to introduce some definitions. We say that

reporting strategies σ are uninformative if Eσ [θ|m] =
∑

θ π (θ) θ = 1 a.s., i.e. for almost every

message m with respect to the measure generated by σ. Uninformative reporting strategies

reveal no additional information other than the unconditional expectation of θ. All other

strategies are called informative. We also need to generalize the notion of the envelope theorem

for Wt. For any σ and σ′ define a derivative of Wt (σ) in the direction σ′ as

∂Wt (σ)

∂σ′
≡ lim

α↓0

Wt ((1− α)σ + ασ′)−Wt (σ)

α
.

With these definitions we can state the following lemma, which is important for all subsequent

analysis.

Lemma 2 The multiplier λwt is uniformly bounded away from 0 and belongs to a compact set

and, therefore, uw (m) belongs to a compact set in the interior of [(1− β) v, (1− β) v̄] for all

σ. Family of {Wt}t and all families of its directional derivaties are uniformly bounded.
Function Wt is well defined, continuous, convex, and is minimized if and only if σ is

uninformative. For any
(
σt, µt−1

)
W̃t (µt) ≤

∫
H̆t

Wt

(
σt

(
·|h̆t, ·

))
dzdµt−1 (14)

with equality if
(
σt, µt−1

)
=
(
σ∗t , µ

∗
t−1

)
.

The derivative ∂Wt (σ) /∂σ′ is well-defined for all σ′ and satisfies

∂Wt (σ)

∂σ′
=

∫
Mt×Θ

(θuw (m)− λwt C (uw (m)))
[
σ′ (m|θ)− σ (m|θ)

]
dmπ (dθ) . (15)

Consider now a modified maximization problem (9) in which we replace (10) with

Eσ
∞∑
s=t

βs−tθsus ≥
∫
H̆t

Wt

(
σt

(
·|h̆t−1, ·

))
dzdµt−1 +

β

1− βU (e) . (16)

The constraint set is tighter in the modified problem, but (u∗,σ∗) still satisfies all the con-

straints, therefore (u∗,σ∗) is a solution to the modified problem. One can then use standard
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techniques (see, e.g. Marcet and Marimon (2009) and Sleet and Yeltekin (2008)) and use

Lagrangian multipliers to re-write it as

L = max
u,σ

Eσ
∞∑
t=0

β̄t [θtut − ζtC (ut)− χtWt] (17)

subject to (11) and (12) for some non-negative sequences
{
β̄t, χt, ζt

}∞
t=0
, with a property that

β̂t ≡ β̄t/β̄t−1 ≥ β, with strictly inequality if and only if constraint (16) binds in period t.7 We
interpret β̂t as the effective discount factor of the government in the best equilibrium. It is

greater than agents’discount factor β because the government also needs to take into account

how its actions affects the sustainability constraints in the future. This is a general result

about the role of the lack of commitment on discounting that was highlighted, for example, by

Sleet and Yeltekin (2008) and Farhi et al. (2012).

The maximization problem (17) shows costs and benefits of information revelation. The

more information the agents reveal, the easier it is for the planner to maximize the cost-

weighted utility function of the agents, θtut − ζtC (ut) . At the same time, better information

also increases the temptation to deviate, captured by the term −χtWt. This trade-off is at the

heart of our characterization in Section 4.

We make two assumptions on the properties of these Lagrange multipliers which we main-

tain throughout the analysis, lim supχt > 0 and lim inf ζt > 0. These conditions simplify

technical arguments and in the Supplementary material we provide suffi cient conditions for

C that ensure that these assumptions are satisfied. Since the Langrange multipliers should

satisfy these properties much more generally —for example whenever the economy converges

to an invariant distribution and the long-run immiseration is a feature of the optimal contract

with full commitment —we opted to make assumptions on the multipliers directly.8

An important simplifying feature of the modified maximization problem and the Lagrangian

(17) is that the distribution of past reports µt−1 enters the objective function and the con-

straints linearly. This allows us to solve for the optimal allocations and reporting strategies

separately for each history ht−1. We do so by extending the recursive techniques developed by

Farhi and Werning (2007) who study an economy with commitment but in which the principal

is more patient than agents.

7This representation is possible since allowing the government and agents to condition their strategies on
z convexifies the maximization problem (9). The formal arguments are straightforward but cumbersome, we
present their sketch in the Supplementary Material.

8 Immiseration is a common feature of long-term contracts with commitment. See Ljunqvist and Sargent
(2004) for a textbook discussion and Phelan (2006) and Hosseini, Jones and Shourideh (2013) for recent contri-
butions to the literature. We discuss existence of the invariant distribution in Section 5.1.
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Let k0 (v) be the value of the objective function (17) for family v, defined as

k0 (v) =
1

β̄0

max
u,σ

Eσ

[ ∞∑
t=0

β̄t (θtut − ζtC (ut)− χtWt)

∣∣∣∣∣ v
]

(18)

subject to (11) and (12). The Lagrangian defined in (17) satisfies L =
∫
β̄0k0 (v)ψ (dv) .

Similarly we can define9

kt (v) =
1

β̄t
max
u,σ

Eσ

[ ∞∑
s=0

β̄t+s
(
θsus − ζt+sC (us)− χt+sWs

)∣∣∣∣∣ v
]

(19)

subject to (11) and (12). The next proposition shows the relationship between kt (v) and

kt+1 (v) .

Proposition 1 The value function kt (v) is continuous, concave, differentiable with limv→v̄ k′t (v) =

−∞. If utility is unbounded below, then limv→−∞ k′t (v) = 1; if utility is bounded below, then

limv→v k′t (v) =∞. The value function kt (v) satisfies the Bellman equation

kt (v) = max
{u(m,z),w(m,z),σ(·|z,θ)}(m,z)∈Mt×Z

σ(·|z,θ)∈∆(Mt)

Eσ
[
θu− ζtC (u) + β̂t+1kt+1 (w)− χtWt

]
(20)

subject to

v = Eσ [θu+ βw] (21)

Eσ
[
θ̂u+ βw|θ̂, z

]
≥ Eσ′

[
θ̂u+ βw|θ̂, z

]
for all z, θ̂, σ′ (22)

Without loss of generality, the optimum is achieved by randomization between at most two

points, i.e. one can choose z̄ ∈ [0, 1] and set (u (·, z′) , w (·, z′) , σ (·|z′, ·)) = (u (·, z′′) , w (·, z′′) , σ (·|z′′, ·))
for all z′, z′′ ≤ z̄ and all z′, z′′ > z̄.

Most of the proof of this proposition follows the arguments of Farhi and Werning (2007) and

is provided in the Supplementary materials. The solution to this Bellman equation is attained

by some function gut (v, θ, z) , gwt (v, θ, z) and gσt (v, θ, z) . We can use these policy functions to

generate recursively ut and σt. Standard arguments establish when these (u,σ) are a solution

to the original problem (9).

Proposition 2 If (u,σ) obtains a maximum to (18), then it is generated by (gu,gw,gσ) . If

(u,σ) generated by (gu,gw,gσ) is such that

lim
t→∞

Eσβtvt = 0 (23)

then it is a solution to (18).

Condition (23) can be verified in the same way as in Farhi and Werning (2007).
9Variables (u,σ) = {ut, σt}∞t=0 are defined over slightly difference spaces in problems (18) and (19). The

sequence of message sets is {Mt}∞t=0 in (18), while it is {Ms+t}∞t=0 in (19).
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3.2 The Revelation Principle

The recursive problem (20) is similar to the usual recursive dynamic contract formulation

with commitment with two modifications. First, agents play a mixed reporting strategy over

set M rather than a pure reporting strategy over set Θ. Second, there is an additional term

−χtWt that captures the cost of information revelation. In this section we further simplify

the problem by showing that incentive constraints (22) impose a lot of structure on agents’

reporting strategies and simplify the message space that needs to be considered in best PBEs.

Since incentive constraints (22) hold for each z, we drop in this section the explicit depen-

dence of strategies on the payoff irrelevant variable, and our arguments should be understood to

apply for any z. Let {u (m) , w (m)}m∈Mt
be any allocation that satisfies (22). LetMt (θ) ⊂Mt

be the subset of messages that give type θ the highest utility, i.e.

θu (m) + βw (m) ≥ θu
(
m′
)

+ βw
(
m′
)
for all m ∈Mt (θ) ,m′ ∈Mt.

Sum this inequality with an analogous condition for type θ′ to get(
θ − θ′

)
u (m) ≥

(
θ − θ′

)
u
(
m′
)
for all θ, θ′,m ∈Mt (θ) ,m′ ∈Mt

(
θ′
)
. (24)

One immediate implication of this equation is that any incentive compatible allocation is

monotone in types, i.e. θ > θ′ implies u (m) ≥ u (m′) and w (m) ≤ w (m′) . It follows that

each message set Mt (θi) can be partitioned into three regions: the messages that also belong

to Mt (θi+1) , the messages that also belong to Mt (θi−1), and the messages that do not belong

to any other Mt (θj) .

The next proposition shows that it is without loss of generality to assume that agents send

only one message per each partition. Since there can be at most 2|Θ| − 1 of such partitions, it

also gives an upper bound on the cardinality of the message space needed in best PBEs.

Proposition 3 Any best PBE is payoff equivalent to a PBE in which agents report no more

than 2|Θ| − 1 messages after any history h̆t. Furthermore such PBE can be constructed so that

if m′ 6= m′′ then the utility allocation in equilibrium, ut, satisfies ut
(
h̆t,m

)
6= ut

(
h̆t, m̂

)
.

We briefly sketch the key steps of the arguments. Consider any partitionMt (θi)∩Mt (θi+1) .

Equation (24) implies that (u (m) , w (m)) must be the same for all m ∈ Mt (θi) ∩Mt (θi+1) .

Therefore, all reporting strategies σ that keep the same probability of reporting messages m /∈
Mt (θi)∩Mt (θi+1) have the same on-the-equilibrium-path payoffEσ

[
θu− ζtC (u) + β̂t+1kt+1 (w)

]
.

Thus, in a best BPE the reporting of messages in Mt (θi) ∩Mt (θi+1) must minimize the off-

the-equilibrium-path payoff Eσ [χtWt]. Convexity of Wt implies that such reporting strategy
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keeps posterior beliefs of the government the same for all m ∈ Mt (θi) ∩Mt (θi+1) . Then it is

without loss of generality to allow only one message for each Mt (θi) ∩Mt (θi+1) .

The reverse arguments allow to reach the same conclusion for the subset ofMt (θi) that does

not intersect with any otherMt (θj) , which we denoteM excl
t (θi) . Conditional of observing any

message sent with a positive probability from subsetM excl
t (θi) , the government learns that the

sender is type θi with certainty. Therefore the off-the-equilibrium-path payoff does not depend

on the exact probability with each type θi reports messages inM excl
t (θi) . Strict convexity of the

on-the-equilibrium-path payoff implies that the government chooses that same (u (m) , w (m))

for all m ∈ M excl
t (θi), which again implies that it is without loss of generality to restrict

attention to only one message.

Proposition 3 is very useful for the characterization of the optimal incentive provision and

information revelation in the next section. It also allows us to prove a version of the Revelation

Principle in our economy. Let MΘ be any set of cardinality |Θ|.

Corollary 1 Any best PBE given M is payoff equivalent to a best PBE given Mt = MΘ

for all t. The incentive constraint (22) for such equilibrium can be written, for each z, as

σ (m2i−1|θ2i−1) > 0 and

θiu (m2i−1) + βw (m2i−1) ≥ θiu (m) + βw (m) , (25)

σ (m|θi) [(θiu (m2i−1) + βw (m2i−1))− (θiu (m) + βw (m))] = 0 for all i = 1, .., |Θ|,m ∈MΘ.

This result shows that in general the dimensionality of message space with a continuum of

agents is finite but bigger than the dimensionality of the message space with only one agent.

In the latter case Bester and Strausz (2001) showed that without loss of generality one can

restrict attention to a message space M = Θ. Their result does not extend to economies with

multiple agents.10 Corollary 1 shows that even with a continuum of agents the dimensionality

of the message space remains small.

4 Characterization

In this section we characterize properties of the effi cient information revelation. We start with a

simplified environment that illustrates the main trade-offs very transparently. We then extend

the insights developed by this example to our general settings.

10See Bester and Strausz (2000) for a counterexample with two agents.
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4.1 A simplified environment

We make two simplifying assumptions in this section. First, we assume that the government

can deviate from its implicit promises in period t only if it deviates in period 0. This simplifies

the analysis of the best equilibrium as it is suffi cient to ensure that government’s sustainability

constraint (10) holds only in period 0. This case is isomorphic to our Lagrangian formulation

with χt = 0 for all t > 0. Secondly, we assume that agents’preferences can be represented by

a utility function U (c) = ac1/a when 1/a < 1, with U (c) = ln c when 1/a = 0.

Under the first simplifying assumption the Lagrangian (17) can be written, up to a constant,

as

L = max
u,σ

Eσ

{
−
∞∑
t=0

βtζtC (ut)− χ0W0

}
subject to (11) and (12). First, consider the sub-game starting from t = 1. Since the sustain-

ability constraints do not bind for all t ≥ 1, the standard Revelation principle applies and the

maximization problem that characterizes the optimal allocations is identical to that in Atkeson

and Lucas (1992). It is easy to show that the value function with CRRA preferences takes the

form κ1 (v) = const · |v|a when 1/a 6= 0 and κ1 (v) = const · exp (v) when 1/a = 0.

For any reporting strategy σ ∈ ∆ (M0) in period 0, let κ0 (v;σ) be defined as

κ0 (v;σ) = max
{u(m),w(m)}m∈M0

Eσ [−ζ0C (u) + βκ1 (v)]

subject to (21) and (22). Function κ0 (v;σ) is interpreted as the value function for the govern-

ment on the equilibrium path if an agent plays reporting strategy σ. It inherits the homogeneity

property of function κ1, namely κ0 (v;σ) = d (σ) |v|a for some constant d (σ) .

If no public randomization is allowed, the actual value function κ0(v) is given by

κ0 (v) = max
σ

κ0 (v;σ)− χ0W0 (σ) .

With public randomization the maximum is taken over the convex hull of the function on the

right hand side.

Consider first the case when |Θ| = 2 and agents can only play two reporting strategies:

a full information revelation strategy σin, when each type reports a distinct message with

probability 1, and a no information revelation strategy σun, when each type randomizes between

all messages with the same probability. Since the former strategy has higher payoff both on-

and off- the equilibrium path, d
(
σin
)
> d (σun) and W0

(
σin
)
> W0 (σun) .

Figure 1 plots κ0 (v;σ)−χ0W0 (σ) for σ ∈
{
σin, σun

}
, as well as κ0(v) with public random-

ization. The key observation is that function κ0

(
·;σin

)
− χ0W0

(
σin
)
intersects κ0 (·;σun) −
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χ0W0 (σun) only once, from below at some point v2. This shows that the uninformative strategy

σun gives higher value to the government than σin for all v < v2 and lower value for all v > v2.

Allowing public randomization may further increase the government’s payoff and create an

intermediate region (region (v1, v3) on the graph) in which the reporing strategy is stochastic

but it does not alter the main conclusion: no information revelation is optimal for low values

of v and full information is optimal for high values of v.

To understand the intution for this result, it is useful to compare the on the equilibium

path benefits of information revelation, κ0

(
·;σin

)
−κ0 (·;σun) , to the off the equilibrium path

costs W0

(
σin
)
−W0 (σun) . Given our CRRA assumption, it is easy to see that the benefits

are monotonically increasing in v, equal to zero as v → v and to infinity as v → v̄. The off the

equilibrium path costs of information revelation do not depend on v. Therefore, there must

exist a region of low enough v where the costs of better information revelation exceed the

benefits and a region of high enough v where the opposite conclusion holds.

This conclusion does not depend on the fact that we restricted attention to only two

reporting strategies. When |Θ| = 2, any σ that reveals some but not all information to

the government satisfies d
(
σin
)
> d (σ) and W0 (σ) > W0 (σun) . This implies that reporting

strategies σun and σin have higher payoff than σ for low and high values of v respectively.

v
1

v
2

v
3

⇐
no info

⇒
full info

κ(
v)

Figure 1: Value functions in the simplified example. Solid line: κ0 (v) with public randomization, dotted:
κin0 (v)− χ0W

(
σin0
)
, dashed: κun0 (v)− χ0W (σun0 ) .

When |Θ| > 2, it is still true thatW0 (σ) > W0 (σun) and therefore no information revelation

is optimal for low enough v. However, full information revelation no longer gives strictly higher

value than any other reporting strategy on the equilibrium path. The reason for it is that

bunching might be optimal even in standard mechanism design problems with commitment.

Our result for high values of v extends if the distribution of types is such that no bunching

is desirable with commitment (equation (33) provides a suffi cient condition for that). More
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generally, it can be shown that some information revelation is desirable for high v, in particular

it is optimal for θ1 to reveal his type perfectly.

Finally, we comment on the role of the assumption of constant relative risk aversion. Our

arguments for no information revelation for low values of v only used the fact that σun provides

the lowest value to the government off the equilibrium path. This is true for any preferences.

The arguments for effi ciency of full information revelation rely on the fact that κ0

(
v;σin

)
−

κ0 (v;σ) becomes unboundedly large for high values of v. A suffi cient condition for this is that

the absolute risk aversion goes to zero as consumption goes to infinity, and our conclusion

holds for all preferences satisfying this condition.

This example illustrates the general principle that goes beyond the particular taste-shock

model that we consider in this paper. Since the off the equilibrium path costs of information

revelation do not depend on past promises (the principal simply reneges on them when deviates)

but the benefits do, it is optimal to reveal less information for those agents for whom the on

the equilibrium gains are lowest. The gains from better information are monotone in v in the

taste shock economy that we consider in this paper, which allows us to get sharp cut-offs, but

the general principle holds regardless of this property.

4.2 Characterization of the general case

In this section we study effi cient information revelation in our baseline model of Section 3. Let

(uv, wv, σv) be a solution to (20). To streamline the exposition, in the body of the paper we

focus on interior optimum when the lower bound U (0) does not bind; many arguments are

simpler if the lower bound binds.

We start with two key optimality conditions. The first order conditions for uv and wv can

be re-arranged as
β̂t+1

β
Eσv

[
k′t+1 (wv) |z

]
= k′t (v) (26)

and

k′t (v) = 1− ζtEσv
[
C ′ (uv) |z

]
. (27)

The first condition describes the law of motion for promised utilities. Since β̂t+1 ≥ β with strict
inequality when the sustainability constraint binds in period t+ 1, it shows a version of mean-

reversion in promised utilities. Since kt and kt+1 are concave functions with interior maxima,

it implies that period t+ 1 promises have a drift towards the value that maximizes kt+1. This

drift component implies higher future promises for low-v agents and lower promises for high-v

agents. This mean-reverting drift helps the government to relax sustainability constraints in
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future periods. The second condition provides a linkage between promised and current utility

allocations.

For our purposes it is important to establish bounds for uv and wv. The optimality condi-

tions (see Appendix for details) imply that(
1− k′t (v)

)
θ1 ≤ ζtC ′ (uv (m, z)) ≤

(
1− k′t (v)

)
θ|Θ|, (28)

and

%
[
1− k′t (v)

]
+

(
1− β

β̂t+1

)
≤ 1− k′t+1 (wv (m, z)) ≤ %̄

[
1− k′t (v)

]
+

(
1− β

β̂t+1

)
(29)

for some numbers %̄, % with a property that %̄, %→ β/β̂t+1 as θ|Θ| − θ1 → 0.

Equation (28) shows the role of private information. If agents’ types were observable,

the planner would equalize the marginal costs of providing 1 util to type θ, 1 − 1
θ ζtC

′ (u) ,

to the shadow cost of past promises, k′t (v) , while allocating the same promised utility w

to all types. This would give more consumption to higher θ types, which is not incentive

compatible. With private information the dispersion of current period consumption allocations

is smaller, which can be seen by the bounds (28). Equation (29) shows, in addition, how the

sustainability constraints in future periods interact with the provision of incentives in the

current period. It shows that bounds for future promises 1 − k′t+1 (wv) shrink as v → v.

When future sustainability constraints bind, the government realizes that more dispersion of

inequality tomorrow makes it harder to sustain effi cient outcomes, which limits the dispersion

of promises that the government gives and prevents the long run immiseration.

Conditions similar to (26)-(29) also appear in the problems in which the government can

fully commit (see Atkeson and Lucas (1992) and Farhi and Werning (2007)). Our analysis

generalizes those conditions to the environments with no commitment. A novel feature of such

environments is that complete information revelation is generally suboptimal. We next turn

to the characterization of the effi cient information revelation.

Suppose that it is optimal for type θ to randomize between messages m′ and m′′. The

optimality for the reporting strategy σv together with the envelope theorem yields11(
θuv

(
m′′, z

)
− ζtC

(
uv
(
m′′, z

))
+ β̂t+1kt+1

(
wv
(
m′′, z

)))
(30)

−
(
θuv

(
m′, z

)
− ζtC

(
uv
(
m′, z

))
+ β̂t+1kt+1

(
wv
(
m′, z

)))
= χt

{[
θuwv

(
m′′, z

)
− λwt C

(
uwv
(
m′′, z

))]
−
[
θuwv

(
m′, z

)
− λwt C

(
uwv
(
m′, z

))]}
.

11Formally, we take a derivative of σv in the direction σ′, defined as σ′ (m′|θ, z) = σv (m′|θ, z) +σv (m′′|θ, z) ,
σ′ (m′′|θ, z) = 0 and σ′ (m|θ, z) = σv (m|θ, z) for all other m, θ, and apply (15).
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Equation (30) captures benefits and costs of information revelation. The left hand side of

the equation captures the benefits of better information revelation on the equilibrium path.

It compares the “cost-weighted”utility that the government obtains for type θ if it receives

messages m′ and m′′. This term is the general form of the expression κ0

(
v;σin

)
− κ0 (v;σun)

that appeared in our simplified example in Section 4.1. The right hand side of the equation

captures the cost of information revelation off the equilibrium path. If message m′′ reveals

more information about θ than m′, in a sense that the expectation of θ conditional on m′′ is

further from θ than the expectation conditional on m′, this expression is positive. The right

hand side of (30) is the analogue of χ0

{
W0

(
σin
)
−W0 (σun)

}
in Section 4.1.

Equation (30) develops the key intuition for effi cient information revelation. First, consider

information revelation for low values of v. Bounds (28) and (29) imply the expression on the

left hand side of (30) converges to zero as v → v, so that the gains from information revelation

disappear for low values of v. Therefore, the optimal reporting strategy must converge to

a strategy that minimizes the off the equilibrium path cost of information revelation. Such

strategy must be uninformative by Lemma 2. Note that the uninformative strategy assigns

the same posterior belief for any reported message, so that that right hand side of (30) is zero.

In the Appendix we prove a stronger result that the uninformative strategy is optimal for all

v suffi ciently low.

Theorem 1 Suppose that the sustainability constraint (10) binds in periods t and t+ 1. There

exists v−t > v such that for all v ∈
[
v, v−t

]
the allocation (uv, wv, σv) does not depend on z,

strategy σv is uninformative and (uv (m) , wv (m)) = (uv (m′) , wv (m′)) for all m,m′.

We now turn to the analysis of information revelation for high values of v. Consider the

case when |Θ| = 2. By Proposition 3 we can restrict attention to at most 3 messages, such that

reporting two of those messages reveals the type of the sender perfectly. Therefore the left

hand side of (30) compares on-the-equilibrium-path benefits from a message that reveals full

information about a sender and a message that reveals only some of the information. Bounds

(28) and (29) can be used to show that as long as the coeffi cient of absolute risk aversion,

U ′′(c)/U ′(c) goes to zero for high c, the informational gains from better information must go

to infinity as v → v̄. Since the informational costs are bounded by Lemma 2, this implies that

equation (30) cannot hold and each agent must reveal his type fully for all v high enough.

Formally, suppose that utility satisfies

Assumption 1 (decreasing absolute risk aversion) U is twice continuously differentiable
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and

lim
c→∞

U ′′ (c) /U (c) = 0. (31)

We say that σv reveals full information about type θi if no type j 6= i sends the same

messages as type θi with positive probability.

Theorem 2 Suppose that Assumption 1 is satisfied and |Θ| = 2. Then there exists v+
t < v̄

such that for all v ≥ v+
t , σv reveals full information about each type.

Previous arguments can also be extended for the first and the last type of arbitrary message

spaces.

Corollary 2 Suppose that Assumption 1 is satisfied.

1. (no informational distortions at the top). Then σv reveals full information about

θ1 for all v suffi ciently high.

2. (no informational distortions at the bottom). Suppose in addition that % ≥ 0 and

π
(
θ|Θ|−1

) (
θ|Θ| − θ|Θ|−1

)
>
(
π
(
θ|Θ|−1

)
+ π

(
θ|Θ|
)) (

θ|Θ|−1 − θ|Θ|−2

)
. Then σv reveals full

information about θ|Θ| for all v suffi ciently high.

The first part of this Corollary shows that full information for the lowest type θ1 is optimal

for high v. It is an informational analogue of the “no distortion at the top” result from the

mechanism design literature (see, e.g. Mirrlees (1971)). In the mechanism design version of

our environment, the incentive constraints bind upward, so that θ1 is the “top type”in a sense

that no other type wants to pretend to be θ1. This property of the top types drives both the

“no distortion at the top”result in standard mechanism design models with commitment and

part 1 of Corollary 2 in our environment.

Part 2 of Corollary 2 shows that informational distortions are suboptimal for the highest

θ|Θ| as long as the types are not too close to each other. The extra condition is needed to

rule out bunching. When some types are close, it might be optimal to give them the same

allocations even if they reveal their type fully (as, for example, in models with commitment)

in order to provide incentives for other types. Since bunching is suboptimal with two types,

no additional conditions were necessary in Theorem 2.

More insight into the behavior of the interior types can be gained from assuming that the

utility function satisfies U (c) = ac1/a for a > 1. In this case it is easy to find the limiting

allocations towards (uv, wv, σv) converge as v → v̄. In particular, we can use homogeneity of

22



C and boundedness from below of u to show that for any v, kt (v0v) /va → k̃t (v) as v0 → v̄,

where function k̃t (v) is defined by

k̃t (v) = max
{u(m),w(m),σ(m|θ)}m∈MΘ

σ(·|θ)∈∆(MΘ)

Eσ
[
−ζtC (u) + β̂t+1kt+1 (w)

]
(32)

subject to (22) and (21). Moreover, σv converges to a solution σ̃ of this problem.

The limiting problem (32) has no cost of information revelation. It is equivalent to a

standard mechanism design problem in which agents can send reports over a redundantly large

message set MΘ. If it is suboptimal to bunch different types when agents report over Θ, it

is also suboptimal to bunch types when agents report over MΘ. A suffi cient condition to rule

out bunching in mechanism design problems is an assumption that types are not too close,

which we state as Assumption 2. It turns out to be a suffi cient condition for full information

revelation for high enough v in our economy without commitment.

Assumption 2 The distribution of θ satisfies

π (θn−1) [θn − θn−1]− (θn−1 − θn−2)

|Θ|∑
i=n−1

π (θi) ≥ 0 for all n > 2. (33)

Note that this assumption is satisfied both in Theorem 1 and Corollary 2. Suboptimality of

bunching in the limit implies that information revelation is suboptimal for all suffi ciently high

v. The proof of this result is a tedious but mostly straightforward application of the Theorem

of Maximum and we leave it for the Supplementary material.

Proposition 4 Suppose that U (c) = ac1/a for a > 1 and Assumption 2 is satisfied. Then

there exists v+
t < v̄ such that for all v ≥ v+

t , σv reveals full information about each type.

5 Extensions

We discussion two extensions of the baseline analysis.

5.1 Invariant distribution

In the previous sections we used arbitrary distributions of initial lifetime utilities ψ. In this

section we briefly discuss two implications for our analysis if ψ is an invariant distribution.

In this case multipliers β̂, χ and ζ do not depend on t, with β̂ > β, χ > 0 needed to prevent

immiseration.12

12For given β̂, χ, ζ one can follow the arguments of Farhi and Werning (2007) to show that there exists initial
distibution ψ̃ with a property that ψt generated by a solution to (20) is such that ψt = ψ̃ for all t. This
distribution is invariant if feasibility and sustainabilty constraints hold with equalities. We leave it for future
research to explore under which conditions these constraints are satisfied.
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One implication of the invariant distribution is that no agent is stuck forever in the region

in which no information is revealed. To see this, note that equation (29) shows that agent’s

promised utility strictly increases with positive probability if vt < v∗ and strictly decreases with

positive probability if vt > v∗, where v∗ is given by k′ (v∗) = 0. Suppose there is no information

revelation for all v ≤ v∗ + a where a ≥ 0. Then the invariant distribution must assign all

the mass to v∗ and, moreover, no information about agents is revealed. But in this case the

sustainability constraint is slack, which is a contradiction. Therefore the “no information”

region lies strictly below v∗.

Another implication of Theorem 1 and bounds (29) in this case is that there must exists

an endogenous lower bound beyond which agents’lifetime utility never falls. Once an agent’s

utility reaches that bound, he bounces from it with a positive probability. This dynamics

resembles that of Atkeson and Lucas (1995), except that in their case the utility bound was set

exogenously. Near the endogenous lower bound agent may reveal no information and receive

no insurance against that period’s shocks.

5.2 Persistent shocks

We chose to focus on iid shocks in our benchmark analysis. Most of our key results extend

with few modifications to Markov shocks. When the shocks are Markov, let π
(
θ|θ−

)
denote

the probability of realization of shock θ conditional on shock θ− in the previous period. We

assume that π
(
θ|θ−

)
> 0 for all θ, θ−. Let πt

(
θ|θ−

)
be the probability of realization of θ

conditional on shock θ− being realized t periods ago.

Many arguments in the persistent case are straightforward extentions of our previous analy-

sis. We briefly sketch them in this section leaving the details for the Supplementary material.

Following the same steps as before, we can show that in the worst equilibrium there is no

information revelation for the government. The payoff in that equilibrium, unlike the iid case,

depends on the prior beliefs that the government has. The maximum payoff that the govern-

ment can achieve in any period t is given by

W̃t (µt) = sup
{ut+s(h)}h∈Ht,s≥0

∫
Ht

∞∑
s=0

βsEpt+s [θ|h]ut+s (h) dµt

subject to the feasibility constraint (8) holding for all t+ s and

pt+s
(
θ|ht

)
=

∫
Θ
πs
(
θ|θ−

)
pt
(
dθ−|ht

)
for s > 0.

Similarly to the iid case, we can bound W̃t (µt) with a function that is linear in µt−1. Define
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the analogue of (13) as

Wt (σ, p) =

max
{ut+s(m)}s≥0

∫
Mt×Θ×Θ

∞∑
s=0

βs

∫
Θ

πs (dθs|θ) θsut+s (m)− λwt,t+s (C (ut+s (m))− e)

σ (dm|θ)π
(
dθ|θ−

)
p
(
dθ−

)
,

then Lemma 2, and in particular bound (14), can be extended to Wt (σt, pt) . It is straightfor-

ward then to obtain the analogue of Lagrangian (17). This Lagrangian can then be rewrit-

ten recursively using the techniques of Fernandes and Phelan (2000), who studied an econ-

omy with persistent shocks and commitment. In their formulation the state is a vector

v =
(
v
(
θ−1
)
, ..., v

(
θ−|Θ|

))
of promised utilities and the realization of the shock in the previous

period, θ−. In our environment v remains a state variable with an analogue of the promise

keeping constraints (21) holding for each type,

v
(
θ−i
)

=

∫
[θu (m, z) + βw (m, z, θ)]σ (dm|z, θ) dzπ

(
dθ|θ−i

)
≡ Eσ

[
θu+ βw|θ−i

]
. (34)

In the environments with commitment each agent plays a pure reporting strategy and θ−

is known along the equilibrium path. In our settings θ− is not known, but the planner forms

posterior beliefs about θ−. Therefore, the only difference from the commitment environment

is that the posterior belief p replaces θ− as the state variable.

The recursive formulation is given by

kt (v, p) = max
(u,w,σ)

σ(·|θ)∈∆(MΘ),p′∈∆(Θ)

∑
θ−∈Θ

p
(
θ−
)
Eσ
[
θu− ζtC (u) + β̂t+1kt+1

(
w, p′

)
|θ−
]
−χt

∫
Wtdz

(35)

subject to (34), the incentive constraint

Eσ [θu+ βw (·, ·, θ) |θ, z] ≥ Eσ′ [θu+ βw (·, ·, θ) |θ, z] for all z, θ, σ′,

and the Bayes rule condition that requires p′ to satisfy, whenever defined,13

p′ (θ|m, z) =
σ (m|θ)

∑
θ−∈Θ π

(
θ|θ−

)
p
(
θ−
)∑

(θ,θ−)∈Θ2 σ (m|θ)π
(
θ|θ−

)
p
(
θ−
) .

The analysis of dynamic mechanism design problems with persistent shocks is more involved

since the recursive problem with additional state variables is more complicated. The broad

lessons about desirability of information revelation for high and low promised values (now

in the sense of increasing each element of vector v) still holds. First of all, the example in

13Strictly speaking m should be replaces with any Borel set A of ∆ (Mt) analogously to definition (3).
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Section 4.1 remains virtually unchanged. More specifically, in the Supplementary material we

follow similar steps as in the iid case and define functions κ1 (v, p) and κ0 (v;σ) . We show

that both these functions are homogenous in v: for any x > 0, κ1 (xv) = xaκ1 (v, p) and

κ0 (xv;σ) = xaκ0 (v;σ). Note that v ≥ 0 if 1/a ∈ (0, 1) and v < 0 if 1/a < 0. We can

then conclude that no information revelation is optimal for low values of xv (i.e. x → 0 if

1/a ∈ [0, 1) and x → ∞ if 1/a < 0) and, when no bunching is desirable with commitment,

full information is optimal for high values of xv. We can also generalize Theorem 1 to the

persistent case (see the Supplementary material for details).

Proposition 5 Suppose that utility is bounded. Let σv,p be a solution to (35) and σ̄ an uninfor-

mative strategy. If the sustainability constraint (10) binds in periods t, then Pr (σv,p → σ̄)→ 1

as v→ 0 for all p.

6 Final remarks

In this paper we took a step towards developing of theory of social insurance in a setting in

which the principal cannot commit. We focused on the simplest version of no commitment

that involves a direct, one-shot communication between the principal and agents, and showed

how such model can be incorporated into the standard recursive contracting framework with

relatively few modifications. Our approach can be extended to other types of communica-

tion. For example, a literature starting with a seminar work of Myerson (1982) considered

communication protocols that involve a mediator. Such protocols may further increase wel-

fare (see, e.g. Bester and Strausz (2007)) but they require some ability to commit by the

policy maker to use the mediating device. The key difference is that, after sending any mes-

sage m, the agent receives a stochastic allocation, so that the incentive constraint (25) holds

in expectation rather than message-by-message. Two main insights of the paper —recursive

characterization and Theorems 1 and Theorems 2 —depend little on the detailed structure of

the incentive constraints. We believe that our analysis can be extended to such settings in a

relatively straightforward way and leave it to future research.

Another important direction that needs to be explored in future work is how the allocations

in best equilibria can be decentralized through a system of taxes and transfers. Some of the

most fruitful way to proceed may be to extend our basic set up to incorporate such margins as

labor supply or job search effort, and consider decentralizations along the lines of labor taxation

in Albanesi and Sleet (2006) and unemployment insurance in Atkeson and Lucas (1995).

26



7 Appendix

7.1 Proof of Lemma 2

First we show that sequences {λwt }t is uniformly bounded away from 0. The objective function
in (7) is concave and the constraint set is convex, therefore there exists λwt ≥ 0 such that the

solution to (7),
{
uw
(
ht
)}

ht∈Ht , satisfies C ′
(
uw
(
ht
))

= 1
λwt
Eσt

[
θ|ht

]
. The Lagrange multiplier

λwt is given by ∫
Ht

C

(
C ′−1

(
1

λwt
Eσt [θ|h]

))
dµt = e. (36)

Since Eσt [θ|h] ∈
[
θ1, θ|Θ|

]
, the left hand side of (36) is continuous in λwt and goes to 0 and

infinity as λwt goes infinity and 0 respectively. Therefore λ
w
t is bounded away from 0 from below

and bounded above, and these bounds can be chosen independently of t. This also implies that

the supremum to (7) is obtained. The same arguments applied to (13) establish that Wt is

well defined, uw (m) satisfies

C ′ (uw (m)) =
1

λwt
Eσ [θ|m] ∈

[
θ1

λwt
,
θ|Θ|
λwt

]
, (37)

and family {Wt}t is uniformly bounded. Continuity of Wt then follows from the Theorem of

Maximum since (37) implies that we can restrict {u (m)}m∈Mt
in maximization problem (13)

to a compact set.

To see that Wt is convex, for any σ′, σ′′ and α ∈ [0, 1] ,

Wt

(
ασ′ + (1− α)σ′′

)
= max

{u(m)}m∈Mt

{
α

∫
Mt×Θ

[θu (m)− λwt C (u(m))]σ′ (m|θ)π (dθ)

+ (1− α)

∫
Mt×Θ

[θu (m)− λwt C (u(m))]σ′′ (dm|θ)π (dθ)

}
+ λwt e

≤ α max
{u(m)}m∈Mt

{∫
Mt×Θ

[θu (m)− λwt C (u(m))]σ′ (dm|θ)π (dθ)

}
+ (1− α) max

{u(m)}m∈Mt

{∫
Mt×Θ

[θu (m)− λwt C (u(m))]σ′′ (dm|θ)π (dθ)

}
+ λwt e

= αWt

(
σ′
)

+ (1− α)Wt

(
σ′′
)
.

To see that Wt is minimized if and only if a strategy is uninformative, consider any unin-

formative σ̄. From (37), the solution to (13) given σ̄ satisfies C ′ (ūw (m)) = 1
λwt
a.s. and hence

Wt (σ̄) = C ′−1
(

1
λwt

)
− λwt C

(
C ′−1

(
1
λwt

))
. Let µ (A) =

∫
Θ σ (A|θ)π (dθ) for any Borel A of
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message set M and note that for any σ

Wt (σ)−Wt (σ̄)

= max
{u(m)}m∈Mt

∫
Mt×Θ

[(θu (m)− λwt C (u (m)))− (θūw − λwt C (ūw))]σ (dm|θ)π (dθ)

= max
{u(m)}m∈Mt

∫
Mt

{(Eσ [θ|m]u (m)− λwt C (u (m)))− (Eσ [θ|m] ūw − λwt C (ūw))}µ (dm) .

The expression in curly bracket is non-negative, which implies that Wt (σ) ≥ Wt (σ̄) for

all σ. Moreover for informative σ, there is a set of messages A with µ (A) > 0 such that

|Eσ [θ|A]− 1| > 0. For all such messages the expression in curly brackets is strictly positive

since ūw does not satisfy the optimality condition (37) for m ∈ A. Since µ (A) > 0, the

expression above is strictly positive therefore any informative σ cannot be a minimum.

We prove (15) by using Theorem 3 in Milgrom and Segal (2002). For completeness, we

state it here adapted to our set up

Theorem 3 Let V (t) = supx∈X f (x, t) where t ∈ [0, 1] , and let x∗ (t) be a solution to this

problem given t and ft be the derivative of f with respect to t. Suppose that (i) for any t

a solution x∗(t) exists, (ii) {ft (x, ·)}x∈X is equicontinuous, (iii) supx∈X |f (x, t) | < ∞ at

t = t0, and (iv) ft (x∗ (t) , t0) is continuous in t at t = t0. Then V ′ (t0) exists and V ′ (t0) =

ft (x∗ (t0) , t0) .

In our case u = {u (m)}m∈Mt
can be restricted to a compact set and∫

Mt×Θ
(θu (m)− λwt C (u (m)))

[
(1− α)σ (m|θ) + ασ′ (m|θ)

]
dmπ (dθ)

is continuous in {u (m)}m∈Mt
, hence conditions (i) and (iii) of this theorem are satisfied. The

derivative with respect to α is

fα ({u} , α) ≡
∫
Mt×Θ

(θu (m)− λwt C (u (m)))
[
σ′ (m|θ)− σ (m|θ)

]
dmπ (dθ) ,

and it does not depend on α, therefore {fα ({u} , ·)}{u} is equicontinuous. For any α ∈ [0, 1] ,

the solution to (13), uw (α) , given (1− α)σ + ασ′ is unique and, by the Theorem of Maxi-

mum, continuous in α. Therefore, fα ({u (α)} , α0) is continuous in α at α = α0, which verifies

condition (iv).

Since sequence {λt}t is uniformly bounded (away from zero from below), equation (37)

implies that uw (m) is bounded and those bound do not depend on t. Therefore all families of

directional derivatives {∂Wt (σ) /∂σ′}t are uniformly bounded.
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We prove (14) next. By Lagrange Duality theorem (Luenberger (1969), Theorem 1, p.

224), W̃t (µt) can be written as a minmax problem

W̃t (µt) = min
λ≥0

max
{u(h)}h∈Ht

∫
Ht

(Eσt [θ|h]u (h)− λC (u (h))) dµt + λe

≤ max
{u(h)}h∈Ht

∫
Ht

(Eσt [θ|h]u (h)− λwt C (u (h))) dµt + λwt e

= max
{u(h)}h∈Ht

∫
H̆t−1

[∫
Mt×Θ

{
θu
(
h̆t−1,m

)
− λwt C

(
u(h̆t−1,m)

)}
σt

(
dm|h̆t−1, θ

)
π (dθ)

]
dzdµt−1

=

∫
H̆t−1

Wt

(
σt

(
·|h̆t−1, ·

))
dzdµt−1.

where the inequality follows from the fact that λwt may not be a minimizer for an arbitrary µt.

By definition of λwt this inequality becomes equality at µ
∗
t , which establishes (14).

7.2 Proof of Proposition 3

First we prove some preliminary results. Fix z and consider any incentive compatible allocation

that satisfies (22). Let Mt (θ) be as defined in the text. For any i let M−t (θi) = Mt (θi) ∩

Mt (θi−1), M+
t (θi) = Mt (θi) ∩Mt (θi+1) and M excl

t (θi) = Mt (θi) \ (∪j 6=iMt (θj)) .

Lemma 3 For all i, Mt (θi) = M−t (θi) ∪M excl
t (θi) ∪M+

t (θi) .

Proof. Suppose m ∈ Mt (θi) \M excl
t (θi) . Then there exists j such that m ∈ Mt (θj) .

Without loss of generality let θj > θi. For any m′ ∈Mt (θi+1)

θi+1u
(
m′
)

+ βw
(
m′
)
≥ θi+1u (m) + βw (m)

and

θiu (m) + βw (m) ≥ θiu
(
m′
)

+ βw
(
m′
)
,

θju (m) + βw (m) ≥ θju
(
m′
)

+ βw
(
m′
)
.

The sum of the first the second inequalities implies u (m′) ≥ u (m), the sum of the first and

the third inequalities implies u (m′) ≤ u (m) , therefore u (m′) = u (m) and m ∈Mt (θi+1) .

Lemma 4 Let (u∗, w∗, σ∗) be a solution to (20) for a given z. Then (u∗ (m′) , w∗ (m′)) =

(u∗ (m′′) , w∗ (m′′)) for all m′,m′′ ∈M−t (θt) , for all m′,m′′ ∈M+
t (θt) and for almost all (with

respect to measure σ∗) m′,m′′ ∈M excl
t (θi) .
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Proof. The first part of the lemma follows immediately from the discussion in the text, so

we prove the second part. Let û = Eσ
[
u∗ (m) |m ∈M excl

t (θ)
]
, ŵ = Eσ

[
w∗ (m) |m ∈M excl

t (θ)
]

and consider an alternative (u′, w′, σ∗) defined as (u′ (m) , w′ (m)) = (u∗ (m) , w∗ (m)) if m /∈
M excl
t (θ) , and (u′ (m) , w′ (m)) = (û, ŵ) if m ∈M excl

t (θ) . For any θ′ 6= θ, m′ ∈Mt

(
θ′
)

θ′u∗
(
m′
)

+ βw∗
(
m′
)
> θ′u∗ (m) + βw∗ (m) for all m ∈M excl

t (θ) ,

therefore θ′u∗ (m′) + βw∗ (m′) > θ′û + βŵ, which implies that (u′, w′, σ∗) satisfies (22). It

also satisfies (21) by construction, since θ gets the same utility from reporting any message

m ∈ M excl
t (θ) . The objective function Eσ∗

[
θu− ζtC (u) + β̂t+1kt+1 (w)

]
is strictly convex in

(u,w) , and would take a strictly higher value at (u′, w′) than at (u∗, w∗) unless (u∗, w∗) is

constant on M excl
t (θi) a.s.

Lemma 5 Let (u∗, w∗, σ∗) be a solution to (20) for a given z. Suppose there exists a set

M̃ ⊂ Mt s.t.
∑

θ σ
∗
(
M̃ |θ

)
π (θ) > 0 and u∗ (m′) = u∗ (m′′) for almost all (with respect to

measure σ∗) m′,m′′ ∈ M̃ . If χt > 0 then Eσ∗ [θ|m′] = Eσ∗ [θ|m′′] a.s.

Proof. Fix any m̂ ∈ M̃ and consider an alternative strategy σ′ defined as σ′ (m|θ) =

σ∗ (m|θ) if m /∈ M̃ and σ′ (m̂|θ) = σ∗
(
M̃ |θ

)
for all θ. Any agent reports any subset of

messages with a positive probability with reporting strategy σ′ only if he reports that subset

with a positive probability with σ∗. Therefore the strategy profile σα = (1− α)σ∗+ασ′ satisfies

(21) and (22) for any α ∈ [0, 1]. Let

fm̂ (α) ≡ Eσα
[
θu∗ − ζtC (u∗) + β̂t+1kt+1 (w∗)

]
− χtWt (σα) .

Since u∗ (m′) = u∗ (m′′) , w∗ (m′) = w∗ (m′′) ,

f ′m̂(α)|α=0 = −χt
∂Wt(σ

∗)

∂α

= −χt{(Eσ′ [θ|m̂]uw(m̂)− λwt C(uw(m̂))) Pr(m ∈ M̃)

−
∫
M̃×Θ

(θuw(m)− λwt C(uw(m)))σ∗(m|θ)dmπ(dθ)}.

Optimality of σ∗ = σ0 implies that f ′m̂(α)|α=0 ≤ 0 for all m̂, so that it can be written as

Eσ∗
[
θ|M̃

]
uw(m̂)− λwt C (uw(m̂)) ≥ Eσ∗

[
Eσ∗ [θ|m]uw(m)− λwt C(uw(m))|M̃

]
all m̂.

Taking expectations conditional on M̃ of both sides, we obtain Eσ∗
[
θ|M̃

]
Eσ∗

[
uw(m̂)|M̃

]
≥

Eσ∗
[
Eσ∗ [θ|m]uw(m)|M̃

]
which implies that cov (Eσ∗ [θ|m] , uw(m)) ≤ 0. On the other hand,

optimality (37) implies that uw (m) is monotonically increasing in Eσ∗ [θ|m] , and therefore
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cov (Eσ∗ [θ|m] , uw(m)) ≥ 0. The two conditions can be satisfied only if Eσ∗ [θ|m′] = Eσ∗ [θ|m′′]
a.s.

Proof of Proposition 3 and Corollary 1. Lemmas 4 and 5 show that for a given z,

any solution to (20) can take at most 2|Θ| − 1 distinct values of (u∗ (m) , w∗ (m) ,Eσ∗ [θ|m])

except for possible values that occur with probability 0 under reporting strategy σ∗ (Lemma

5 is stated for the case χt > 0, but when χt = 0 the problem is isomorphic to the standard

mechanism design problem and usual arguments apply to show that |Θ| distinct allocations
represent a solution). The outcomes that occur with probability zero can be replaced with any

outcome from that set of 2|Θ| − 1 distinct values. Therefore without loss of generality the set

M can be restricted to at most 2|Θ| − 1 messages in (20), and hence, by Proposition 2, to M

in the modified problem (17).

It remains to verify that it is a best equilibrium since not every solution to (17) needs to be

a PBE. Let (σ∗,σ∗G,p
∗) be a best PBE that generates (u∗,M∗) along the equilibrium path. By

the arguments leading to construction of problem (17), (u∗,σ∗) is a solution to that problem

given M∗. It is easy to show that any equilibrium is payoff-equivalent to one in which the al-

locations in period t depends only on the expected utility w∗t
(
ht−1

)
≡ Eσ

[∑∞
s=t β

s−tu∗s|ht−1
]

but not on the particular realizations of shocks in the previous t − 1 periods (Lemma 9 in

the Supplementary materials) and so we assume that (u∗,σ∗) satisfies this property. Pre-

vious arguments imply that after any history h̆t there can be at most 2|Θ| − 1 distinct

values of
{(
u∗t

(
h̆t,mt

)
, w∗t

(
h̆t,mt

)
,Eσ∗

[
θ|h̆t,mt

])}
mt
that occur with probability 1 given{

σ∗t

(
·|h̆t, θ

)}
θ∈Θ

. Therefore it is possible to construct another strategy σ′ which is incentive

compatible and delivers the same payoff to the agents as σ∗. The pair (σ′, σ∗G) generates a dis-

tribution of histories µ′ with a property that Prµ′ ((ut,Eσθt) ∈ A) = Prµ∗ ((ut,Eσθt) ∈ A) for

any Borel set A of ∆ ([(1− β) v, (1− β) v̄]×Θ) . Therefore W̃t (µ′t) = W̃t (µ∗t ) and Eσ′C (ut) =

Eσ∗C (ut) , which verifies that (σ′,σ∗G,p
∗) is a best PBE and proves Proposition 3.

If removing all non-distinct messages leaves fewer than |MΘ| messages, extra messages can
be added and agents strategies extended to keep posterior probabilities for such messages the

same as for some of the original messages. By appropriately choosing which messages to add it

is possible construct strategies that satisfy (25). This argument extends for all histories, and

hence any value that k0 (v) achieves given any M, can also be achieved given Mt = MΘ for all

t. This completes the proof of Corollary 1.
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7.3 Proofs for Section 4

First, we use Proposition 3 to simplify our problem. We drop explicit dependence of all

variables on z and throughout this section all the results are understood to hold for all z. By

Proposition 3 we can restrict attention to messages in a set Mv of cardinality no greater than

2|Θ| − 1 such that no two distinct reports give the agent the same allocation. We use Nv to

denote cardinality of Mv and Mv (θ) to denote the set of messages in Mv that maximize agent

θ’s utility. The incentive constraints (22) can be written as

θu (mθ) + βw (mθ) ≥ θu
(
m′
)

+ βw
(
m′
)
, (38)

σ
(
m′|θ

) [
(θu (mθ) + βw (mθ))−

(
θu
(
m′
)

+ βw
(
m′
))]

= 0 ∀ θ ∈ Θ,mθ ∈Mv (θ) ,m′ ∈Mv.

The triple (uv, wv, σv) is a solution to

max
u,w,σ

Eσ
[
(1− γv) θu− ζtC (u) + β̂t+1kt+1 (w)− γvβw

]
− χtWt (σ) (39)

subject to (38) where γv = k′t (v) .14 Without loss of generality we arrange messages in Mv

so that uv (m1) < ... < uv (mNv) , which also implies that wv (m1) > ... > wv (mNv) . Let

ξ′ (θ,mθ,m
′) and ξ′′ (θ,mθ,m

′) be Lagrange multipliers on the first and second constraint

(38). We set ξ (θ,m,m′) = 0 for all m /∈Mv (θ) and ξ (θ,m,m) = 0 for all m, so that ξ′, ξ′′ are

well defined for all (θ,m,m′) .

The next lemma establishes bounds on optimal allocations that are important for estab-

lishing our main results in this section.

Lemma 6 (uv, wv, σv) satisfies (26). For all v such that k′t (v) ≤ 1, equations (27), (28) and

(29) hold, with %̄ = β

β̂t+1

1+θ|Θ|−θ1

θ1
, % = β

β̂t+1

θ1−θ|Θ|+1

θ|Θ|
.

Proof. The first order conditions for wv (m) are

∑
θ∈Θ

[
β̂t+1

β
k′t+1 (wv (m))− γv

]
σv (m|θ)π (θ)+

∑
(θ,m′)∈Θ×Mv

[
ξ′
(
θ,m,m′

)
+ σv (m|θ) ξ′′

(
θ,m,m′

)]
−

∑
(θ,m′)∈Θ×Mv

[
ξ′
(
θ,m′,m

)
+ σv

(
m′|θ

)
ξ′
(
θ,m′,m

)]
= 0. (40)

Sum over m to obtain∑
(θ,m)∈Θ×Mv

[
β̂t+1

β
k′t+1 (wv (m))

]
σv (m|θ)π (θ) = γv = k′ (v) ,

14To see this, let γv be the Lagrange multiplier on the promise keeping constraint in the original, convexified
Bellman equation. By Proposition 1 and the envelope theorem it satisfies γv = k′t (v) . Form a Lagrangian with
γv and observe that it can be maximized for each z separately, which yields (39).
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which is expression (26).

For what follows, it is useful to establish bounds on the Lagrange multipliers. Consider

a message m1. If Nv = 1, then trivially ξ′ and ξ′′ are two scalars equal to zero. Suppose

Nv > 1 and let θ′ be the largest θ such that m1 ∈ Mv (θ) . Since sending message m1 is

strictly suboptimal for any θ > θ′, ξ′ (θ,m′,m1) = σv (m1|θ) ξ′′ (θ,m′,m1) = 0 for all (θ,m′)

with θ > θ′. Moreover, θ′uv (m1) + βwv (m1) ≥ θ′uv (m) + βwv (m) and uv (m1) < uv (m) for

all m 6= m1, which implies θu (m1) + βw (m1) > θu (m) + βw (m) for all m 6= m1 if θ < θ′.

Therefore, ξ′ (θ,m1,m
′) = σv (m′|θ) ξ′′ (θ,m1,m

′) = 0 for all (θ,m′) with θ < θ′. Thus we can

write (40) for m1 as

−
(
β̂t+1

β
k′t+1 (wv (m1))− γv

)
= ϑ (m1) , (41)

where

ϑ (m1) =

∑
m′∈Mv

[
ξ′
(
θ′,m1,m

′)+ σv
(
m′|θ′

)
ξ′′
(
θ′,m1,m

′)]− [ξ′ (θ′,m′,m1

)
+ σv

(
m1|θ′

)
ξ′′
(
θ′,m′,m1

)]∑
θ∈Θ σv (m1|θ)π (θ)

.

Since w is decreasing in m and kt+1 is concave,
β̂t+1

β k′t+1 (wv (m1)) ≤ β̂t+1

β Eσv
[
k′t+1 (wv)

]
=

γv, which implies that

ϑ (m1) ≥ 0. (42)

Similar steps for mNv establish ϑ (mNv) ≤ 0.

The first order conditions for uv (m) are

∑
θ∈Θ

[
(1− γv) θ − ζtC ′ (uv (m))

]
σv (m|θ)π (θ)+

∑
(θ,m′)∈Θ×Mv

[
ξ′
(
θ,m,m′

)
+ σv (m|θ) ξ′′

(
θ,m,m′

)]
θ

−
∑

(θ,m′)∈Θ×Mv

[
ξ′
(
θ,m′,m

)
+ σv

(
m′|θ

)
ξ′′
(
θ,m′,m

)]
θ = −ν (m) , (43)

where ν (m) ≥ 0 is the Lagrange multipliers on the constraint u (m) ≥ U (0) . It is zero if utility

is unbounded below. Moreover, since we assumed uv (m1) < ... < uv (mNv) , it can only be

strictly positive for m1 even in the case when utility is bounded below.

We guess and verify that if k′t (v) = γv ≤ 1, then ν (m1) = 0.15 Suppose v (m1) = 0. Then

the first order condition for uv (m1) becomes

−
∑
θ∈Θ

[
(1− γv) θ − ζtC ′ (uv (m1))

]
σv (m1|θ)π (θ) = ϑ (m1)

(∑
θ∈Θ

σv (m1|θ)π (θ)

)
θ′. (44)

15More precisely, for a fixed σv, maximization problem (39) is convex and thus necessary conditions are also
suffi cient.
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Combining it with (42), it implies that

ζtC
′ (uv (m1)) ≥ (1− γv)Eσv [θ|m1] ≥ 0

and verifies that the lower bound for uv (m1) does not bind. Analogous arguments establish

(1− γv)Eσv [θ|mNv ] ≥ ζtC ′ (uv (mNv)) ,

which, together with the monotonicity assumption on uv (m) , gives (28).

For the rest of the proof consider v that satisfies k′t (v) ≤ 1. Summing (43) over m when

ν (m) = 0 implies (27). Finally, combining (41) with (44) we obtain

β̂t+1

β
k′t+1 (wv (m1)) = γv +

1− γv
θ′

Eσv [θ|m1]− 1

θ′
+

1

θ′
(
1− ζtC ′ (uv (m1))

)
≥ γv +

1− γv
θ′

Eσv [θ|m1]− 1

θ′
+

1

θ′
γv

≥ 1− γv
θ′

(θ1 − 1) + γv,

where we used ζtC
′ (uv (m1)) ≤ ζtEσv [C ′ (uv)] = 1 − γv to get the second inequality. Re-

arrange it to get

1− k′t+1 (wv (m1)) ≤ β

β̂t+1

θ′ − θ1 + 1

θ′
(1− γv) +

(
1− β

β̂t+1

)

≤ β

β̂t+1

θ|Θ| − θ1 + 1

θ1
(1− γv) +

(
1− β

β̂t+1

)
.

This, together with monotonicity of wv (m) , establishes the upper bound in (29). Analogous

manipulation of the first order condition for mNv establishes the lower bound in (29).

We use this lemma to establish bounds that we use to characterize information revelation

for low v.

Lemma 7 (a) If utility is unbounded below and constraint (10) binds in period t+1, then there

are scalars Au,t > 0, Aw,t > 0 and v−t such that for all v ≤ v−t any solution to (39) satisfies

0 ≤
∣∣uv (m)− uv

(
m′
)∣∣ ≤ Au,t for all m,m′,

0 ≤
∣∣wv (m)− wv

(
m′
)∣∣ ≤ Aw,t for all m,m′.

(b) If utility is bounded below, without loss of generality by zero, then limv→v uv (m) = 0

and limv→v wv (m) = 0 for all m.
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Proof. (a) When (10) binds in t+1, β̂t+1 > β and therefore
(

1− β

β̂t+1

)
> 0.When utility

is unbounded below, limv→−∞ k′t (v) = 1 and therefore expression (29) implies that there exists

v−t such that

1

2

(
1− β

β̂t+1

)
≤ 1− k′t+1 (wv (m)) ≤ 3

2

(
1− β

β̂t+1

)
for all m, v ≤ v−t .

This establishes bounds for wv (m) . The incentive constraint

θ1uv (m1) + βwv (m1) ≥ θ1uv (mNv) + βwv (mNv)

together with monotonicity wv (m1) > ... > wv (mNv) , uv (m1) < ... < uv (mNv) imply that

β

θ1
(wv (m1)− w (mNv)) ≥ uv (mNv)− uv (m1) ≥ 0

establishing bounds for uv.

(b) When utility is bounded, Proposition 1 shows that limv→v k′t (v) = ∞. For any κ find
the largest v− that satisfy k′t (v−) ≥ κ. By choosing arbitrarily high κ we can set v− arbitrarily
close to v = 0. Let ṽ = Eσv [θuv + βwv] . Due to the possibility of randomization, in general

ṽ 6= v but k′t (v) = k′t (ṽ) . Therefore ṽ ≤ v− if v ≤ v−. Then

v− ≥ ṽ = Eσv [θuv + βwv] (45)

≥ Eσv [θ1uv + βwv]

≥ π (θ1)
∑

m∈Mv(θ1)

σ (m|θ1) [θ1uv (m) + βwv (m)]

≥ π (θ1) [θ1uv (m1) + βwv (m1)]

≥ π (θ1)βwv (m1) ≥ 0.

Here the second, third and fifth lines follows from nonnegativity of u and w, and the fourth

line follows from the fact that if σ (m|θ1) > 0, then (uv (m) , wv (m)) gives the same utility to

θ1 as (uv (m1) , wv (m1)) . Since v− can be chosen to be arbitrarily close to 0, this implies that

limv→v wv (m1) = 0. Since wv (m1) ≥ wv (m) , this implies that limv→v wv (m) = 0 for all m.

Analogous arguments show that limv→v uv (m) = 0.

7.3.1 Proofs for low v

We now can prove the first limiting result about optimal information revelation.

Lemma 8 Suppose that sustainability constraint (10) binds in periods t and t + 1. Then σv

converges to an uninformed strategy as v → v.
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Proof. Let σ̄ be any uninformative strategy. Let ūv (m) = Eσvθuv, w̄v (m) = Eσvwv for
all m. Note that since uv (m) is increasing in m

uv (m1) = uv (m1)Eσvθ ≤ ūv (m) ≤ uv
(
m|Θ|

)
Eσvθ = uv

(
m|Θ|

)
,

and an analogues relationship holds for w̄v.

Profile (ūv, w̄v, σ̄) is incentive compatible and satisfies

Eσv [θuv + βwv] = Eσ̄ [θūv + βw̄v] . (46)

The value of the objective function (39) evaluated as (uv, wv, σv) should be higher than eval-

uated at (ūv, w̄v, σ̄) ,

Eσv
[
θuv − ζtC (uv) + β̂t+1kt+1 (wv)− χtWt (σv)

]
(47)

≥ ūv − ζtC (ūv) + β̂t+1kt+1 (w̄v)− χtWt (σ̄) .

First, suppose that utility is bounded below, without loss of generality by zero. From

Lemma 7, uv (m) → 0 and wv (m) → 0 for any m as v → 0, and therefore ūv and w̄v also

converge to zero. Hence in the limit equation (47) becomes

lim sup
v→v

χt (Wt (σ̄)−Wt (σv)) ≥ 0. (48)

Since Wt (σv) ≥ Wt (σ̄) by Lemma 2 and χt > 0 when (10) binds in periods t, limv→vWt (σv)

exists and satisfies limv→vWt (σv) = Wt (σ̄) . Wt (σ) is continuous in σ and achieves its mini-

mum only at uninformative reporting strategies by Lemma 2, therefore σv must converge to

some uninformative strategy.

Now suppose that utility is unbounded below. By the mean value theorem

ζt (C (uv (m))− C (ūv)) = ζtC
′ (ũv (m)) (uv (m)− ūv) ,

β̂t+1 (kt+1 (wv)− kt+1 (w̄v)) = β̂t+1k
′
t+1 (w̃v (m)) (wv (m)− w̄v) ,

for some ũv (m) that takes values between uv (m) and ūv and for some w̃v (m) that takes

values between wv (m) and w̄v. By construction, uv (m1) ≤ ūv ≤ uv (mNv) and wv (m1) ≥
w̄v ≥ wv (mNv), therefore, uv (m1) ≤ w̃v (m) ≤ uv (mNv) and wv (m1) ≥ w̃v (m) ≥ wv (mNv).

From (28) and (29) limv→−∞C ′ (ũv (m)) = 0 and limv→−∞ k′t+1 (w̃v (m)) = β/β̂t+1 for all m.

We have

lim
v→−∞

Eσv
[
θ (uv − ūv)− ζt (C (uv)− C (ūv)) + β̂t+1 (kt+1 (wv)− kt+1 (w̄v))

]
= lim

v→−∞
Eσv

[
−ζtC ′ (ũv) (uv − ūv) +

(
β̂t+1k

′
t+1 (w̃v)− β

)
(wv − w̄v)

]
= 0,
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where the second line uses the mean value theorem and (46), and the last line uses the fact

that (uv (m)− ūv) and (wv (m)− w̄v) are bounded for low v by Lemma 7. This implies that

(48) holds when utility is unbounded and that σv converges to an uninformative strategy.

We now can prove Theorem 1.

Proof of Theorem 1. Suppose Nv > 1 for some realization of z and consider (uv, wv, σv)

that solve (39) for such z. Let θ′v be the largest θ such thatm1 ∈Mv

(
θ′v
)
. Let ūw be the optimal

allocation when priors σ̄ are uninformative. Then

Wt (σv)−Wt (σ̄)

= max
{u(m)}m∈Mv

∑
m,θ∈Mv×Θ

[(θu (m)− λwt C (u (m)))− (θūw − λwt C (ūw))]σv (m|θ)π (θ)

= max
{u(m)}m∈Mv

[Eσv [θ|m1]u (m1)− λwt C (u (m1))− (Eσv [θ|m1] ūw − λwt C (ūw))]

∑
θ≤θ′v

σv (m1|θ)π (θ)


+
∑
m≥m2

[Eσv [θ|m]u (m)− λwt C (u (m))− (Eσv [θ|m] ūw − λwt C (ūw))]

∑
θ≥θ′v

σv (m|θ)π (θ)


All terms in square brackets are non-negative since the choice u (m) = ūw is feasible. They

are strictly positive if Eσv [θ|m] 6= 1, since ūw is the optimal allocation for E [θ|m] = 1. From

Lemma 8 the left hand side of this expression goes to zero as v → v, therefore the right hand side

should also go to zero. This is possible either if (a) Eσv [θ|m1]→ 1 (and hence θ′v → θ|Θ|) and(∑
θ≥θ′v σv (m|θ)π (θ)

)
→ 0 for all m > m1, or (b)

(∑
θ≤θ′v σv (m1|θ)π (θ)

)
→ 0, Eσv [θ|m2]→

1 and
(∑

θ≥θ′v σv (m|θ)π (θ)
)
→ 0 for all m > m2 (and hence θ′v → θ1 and m2 ∈Mv (θ1)). The

other possibilities are ruled out since if Eσv [θ|m]→ 1 and
(∑

θ≥θ′v σv (m|θ)π (θ)
)
9 0 for some

m > m2, then for some m′ ≤ m2 we would have
(∑

θ≥θ′v σv (m′|θ)π (θ)
)
9 0 and Eσv [θ|m′] 9

1.16 Since it is impossible to have θ|Θ| and θ1 to be indifferent between more than two distinct

allocations in the optimum, for any ε > 0 there must be some v−t such that for all v ≤ v−t the
solution has Nv = 2 and either (a) m1 ∈Mv

(
θ|Θ|
)
, σv

(
m2|θ|Θ|

)
≤ ε, Eσv [θ|m2] = θ|Θ| > 1 and

Eσv [θ|m1] arbitrarily close to 1, or (b) m2 ∈Mv (θ1) , σv (m1|θ1) ≤ ε, Eσv [θ|m1] = θ1 < 1 and

Eσv [θ|m2] arbitrarily close to 1. In case (a) (37) implies that uwv (m2) = C ′−1
(
θ|Θ|/λ

w
t

)
and

uwv (m1)→ C ′−1 (1/λwt ) , and in case (b) uwv (m1) = C ′−1 (θ1/λ
w
t ) and uwv (m2)→ C ′−1 (1/λwt ) .

We can now rule cases (a) and (b) for v low enough. Consider case (b), case (a) is ruled

out analogously. In this case σv (m1|θ1) < 1 for v low enough and the optimality condition

16Note that θ1 can be indiffererent between at most two distict allocations and therefore σv (m|θ1) = 0 for
all m > m2.
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(30) is

θ1 (uv (m2)− uv (m1))− ζt (C (uv (m2))− C (uv (m1))) (49)

+β̂t+1 [kt+1 (wv (m2))− kt+1 (wv (m1))]

= [(θ1u
w
v (m2)− λwt C (uwv (m2)))− (θ1u

w
v (m1)− λwt C (uwv (m1)))] .

Function θ1u−λwt C (u) is strictly convex and achieves its maximum û at û = C ′−1 (θ1/λ
w
t ) =

uwv (m1) . Since uwv (m2) is bounded away from uwv (m1) , the right hand side of (49) is strictly

negative and bounded away from 0.

When utility is bounded below, Lemma 7 established that all terms on the left hand side of

(49) go to zero as v → v, yielding a contradiction. When utility is unbounded below, substitute

the indifference condition θ1 (uv (m2)− uv (m1)) = β (wv (m1)− wv (m2)) into (49) and apply

the mean value theorem

ζt (C (uv (m2))− C (uv (m1))) = ζtC
′ (ũ) (uv (m2)− uv (m1))

and

β̂t+1 (kt+1 (wv (m2))− kt+1 (wv (m1)))− β (wv (m2)− wv (m1))

=
(
β̂t+1k

′
t+1 (w̃)− β

)
(wv (m2)− wv (m1))

for some ũ ∈ (uv (m1) , uv (m2)) and w̃ ∈ (wv (m2) , wv (m1)) . The terms (uv (m2)− uv (m1))

and (wv (m2)− wv (m1)) are bounded for small v by Lemma 7 and limv→−∞ ζtC
′ (ũ) = 0,

limv→−∞
(
β̂t+1k

′
t+1 (w̃)− β

)
= 0 by Lemma 6. Therefore, the left hand side of (49) converges

to zero for utilities unbounded below, yielding a contradiction. This proves that Nv = 1

and σv is uninformative for all suffi ciently low v independently of the realization of z. For

uninformative σv, there is a unique (uv, wv) that solves (39) by strict convexity of u− ζtC (u) .

7.3.2 Proofs for high v

We prove Corollary 2, since Theorem 2 is a special case of it.

Corollary 2. Suppose v is suffi ciently high so that γv = k′t (v) < 1. We first rule out the

case that θ1 and θ2 send the same message with probability 1 for high v. From (41) and (44)

we have that there is ϑv ≥ 0 such that

β̂t+1

β
k′t+1 (wv (m1)) = γv − ϑv,
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and

ζtC
′ (uv (m1)) = (1− γv)Eσv [θ|m1] + ϑv ≥ (1− γv) θ̃ + ϑv,

where θ̃ = (π1θ1 + π2θ2) / (π1 + π2) > θ1. The last inequality follows from the fact that types

θ1 and θ2 play message m1 with probability 1.

Define function f as

f (x) ≡ θ1 (uv (m1)− x)− ζtC (uv (m1)− x) + β̂t+1kt+1

(
wv (m1) +

θ1

β
x

)
.

This function is concave with

f ′ (0) = −
(
θ1 − ζtC ′ (uv (m1))

)
+ θ1

(
β̂t+1

β
k′t+1 (wv (m1))

)
> (1− γv)

(
θ̃ − θ1

)
.

Let x̂v be a solution to f ′ (x̂v) = (1− γv)
(
θ̃ − θ1

)
/2 and let (ûv, ŵv) =

(
uv (m1)− x̂v, wv (m1) + θ1

β x̂v

)
.

Since f is concave, x̂v > 0 and ûv < uv (m1) , ŵv > wv (m1) .

Claim 1. Allocation (ûv, ŵv) satisfies bounds (28) and (29).

Let x∗v be a solution to f
′ (x∗v) = 0. By concavity, 0 < x̂v < x∗v, so we establish the claim

by proving the stronger statement that uv (m1) − x∗v and wv (m1) + θ1
β x
∗
v satisfy bounds (28)

and (29). By definition,

θ1

[
1−

β̂t+1

β
k′t+1

(
wv (m1) +

θ1

β
x∗v

)]
= ζtC

′ (uv (m1)− x∗v)

and by x∗v > 0

ζtC
′ (uv (m1)− x∗v) < ζtC

′ (uv (m1)) ,

β̂t+1

β
k′t+1

(
wv (m1) +

θ1

β
x∗v

)
≤

β̂t+1

β
k′t+1 (wv (m1)) .

These conditions imply that

θ1 (1− γv) ≤ ζtC
′ (uv (m1)− x∗v) < θ|Θ| (1− γv) ,

θ1 (1− γv) ≤ θ1

[
1−

β̂t+1

β
k′t+1

(
wv (m1) +

θ1

β
x∗v

)]
< (1− γv) θ|Θ|,

establishing the bounds (28) and (29).

Claim 2. (1− γv) x̂v →∞ as v → v̄.

In Supplementary material we showed (Lemma 12) that Assumption 1 implies that there

are numbers Bv and B̂v such that

C ′ (uv (m1))− C ′ (ûv) ≤
Bv

[C ′ (uv (m1))]2
[
C ′ (uv (m1))

]2
x̂v, (50)

k′t+1 (wv (m1))− k′t+1 (ŵv) ≤
B̂v[

1− k′t+1 (ŵv)
]2 [1− k′t+1 (ŵv)

]2
x̂v,
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and if ûv → (1− β) v̄, wv (m1)→ v̄ then Bv/ [C ′ (uv (m1))]2 → 0 and B̂v/
[
1− k′t+1 (ŵv)

]2 → 0.

The bounds from Claim 1 establish that ûv → (1− β) v̄ as v → v̄. Since by (27) k′t (v) =
β̂t+1

β Eσvk′t+1 (wv) ≥
β̂t+1

β k′t+1 (wv (m1)) , this implies that wv (m1)→ v̄ as v → v̄. Therefore by

Lemma 12 the first terms on the right hand side of these expression go to zero as v → v̄.17

We have

θ̃ − θ1

2
≤ 1

1− γv
[
f ′ (0)− f ′ (x̂v)

]
=

1

1− γv

[
ζt
{
C ′ (uv (m1))− ζtC ′ (ûv)

}
+ θ1

β̂t+1

β

{
k′t+1 (wv (m1))− k′t+1 (ŵv)

}]

≤
{

Bv

[C ′ (uv (m1))]2

[
C ′ (uv (m1))

1− γv

]2

+
B̂v[

1− k′t+1 (ŵv)
]2 [1− k′t+1 (ŵv)

1− γv

]2
}

(1− γv) x̂v.

From Claim 1, both C ′ (uv (m1)) / (1− γv) and
(
1− k′t+1 (ŵv)

)
/ (1− γv) are finite, therefore

the expression in curly brackets goes to 0 as v → v̄. Therefore (1− γv) x̂v →∞.
Claim 3. f (x̂v)− f (0)→∞ as v → v̄.

Applying the mean value theorem,

f (x̂v)− f (0) =
f ′ (x̃v)

1− γv
(1− γv) x̂v

for some x̃v ∈ (0, x̂v) . Since f is concave, f ′ (0) > f ′ (x̃v) > f ′ (x̂v) . Therefore
f(x̃v)
1−γv

∈[
1
2

(
θ̃ − θ1

)
,
(
θ̃ − θ1

)]
. The result follows from Claim 2.

We are now ready to show that it is not optimal for types θ1 and θ2 to send the same message

with probability 1 for high enough v. Suppose it is. Consider an alternative strategy σ̂v, where

σ̂v (m̂|θ1) = 1 for some message m̂ that gives allocation (ûv, ŵv) , and σ̂v (m|θ) = σv (m|θ) for
all θ 6= θ1,m. Since û < uv (m1) , ŵ > wv (m1) and θ1uv (m1) + βwv (m1) = θ1ûv + βŵv, this

allocation is incentive compatible and delivers utility v to the agent. Then{
Eσ̂v

[
θu− ζtC (u) + β̂kt+1 (w)

]
− χtWt (σ̂v)

}
−
{
Eσv

[
θu− ζtC (u) + β̂kt+1 (w)

]
− χtWt (σv)

}
= π (θ1) {f (x̂v)− f (0)}+ χt {Wt (σv)−Wt (σ̂v)} .

The second term is finite sinceWt is bounded by Lemma 2, therefore this expression is positive

for high v from Claim 3. This contradicts the optimality of (uv, wv, σv) .

Using these arguments we can also rule out type θ1 sending the same message as θ2 with

any positive probability. Then the optimality condition (30) implies that{
θ1uv (m1)− ζtC (uv (m1)) + β̂kt+1 (wv (m1))

}
−
{
θ1uv (m2)− ζtC (uv (m2)) + β̂kt+1 (wv (m2))

}
17When kt is twice differentiable, this result can be established without using Lemma 12. In this case k′′t (v) ≤
−ζtC′′ (uv) , and condition (31) implies that limu→(1−β)v̄ C

′′ (u) / [C′ (u)]
2

= 0 and limv→v̄ k
′′
t (v) / [1− k′t (v)]

2
=

0. Claim 2 can then be established by appling the mean value theorem to the left hand side of (50).
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is bounded because the expression on the right hand side of (30) is bounded for all σ. Therefore

the value of this strategy can exceed the value of strategy when θ1 and θ2 send message m2

with probability 1 by only a finite amount. But then the arguments of the previous paragraph

lead to a contradiction.

Part 2 of Corollary 2 is proven using analogous arguments. Here we consider function

F (x) ≡ θ|Θ|
(
uv
(
m|Mv |

)
+ x
)
− ζtC

(
uv
(
m|Mv |

)
+ x
)

+ β̂t+1kt+1

(
wv
(
m|Mv |

)
−
θ|Θ|−1

β
x

)
.

When π
(
θ|Θ|−1

) (
θ|Θ| − θ|Θ|−1

)
>
(
π
(
θ|Θ|−1

)
+ π

(
θ|Θ|
)) (

θ|Θ|−1 − θ|Θ|−2

)
holds, we can show

that F ′ (0) = const · (1− γv) and % ≥ 0 ensures the boundary conditions. Previous arguments

establish that F (x̂v) − F (0) → ∞. Note that the perturbation we consider leaves the same
allocation for type θ|Θ|−1, and gives an allocation

(
uv
(
m|Mv |

)
+ x̂v, wv

(
m|Mv |

)
− θ|Θ|−1

β x̂v

)
to

type θ|Θ|. This is incentive compatible but gives a higher value than v. The contradiction then

follows from the fact that kt(v) is a decreasing function for high enough v.
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8 Supplementary material

8.1 Proofs for Section 3

Lemma 9 (a) Any PBE (σ,σG,p) is payoff-equivalent to a PBE (σ′,σ′G,p
′) where σ′ satisfies

σ′t

(
·
∣∣∣St−1,Mt, h̆

t,
(
θ̃
t−1

, θt

))
= σ′t

(
·
∣∣∣St−1,Mt, h̆

t,
(
θ̂
t−1

, θt

))
for all θ̃

t−1
, θ̂
t−1

, θt.

(b) Suppose (σ,σG,p) is a PBE and suppose that for some
(
St−1,Mt

)
and personal histo-

ries ĥt, h̃t ∈ Ht

E(σ,σG)

[ ∞∑
s=t+1

βs−t−1θsus

∣∣∣∣∣St−1,Mt, ĥ
t

]
= E(σ,σG)

[ ∞∑
s=t+1

βs−t−1θsus

∣∣∣∣∣St−1,Mt, h̃
t

]
. (51)

Then there exists a PBE (σ′,σ′G,p
′) payoff equivalent to (σ,σG,p) with a property that

for all (zt+1,mt+1, ..., zt+s) , all St+s ⊃
(
St−1,Mt

)
, Mt+s

σ′t+s

(
·|St+s−1,Mt+s, ĥ

t, zt+1,mt+1, ..., zt+s

)
= σ′t+s

(
·|St+s−1,Mt+s, h̃

t, zt+1,mt+1, ..., zt+s

)
,

u′t+s

(
St+s−1,Mt+s, ĥ

t, zt+1,mt+1, ..., zt+s,mt+s

)
= u′t+s

(
St+s−1,Mt+s, h̃

t, zt+1,mt+1, ..., zt+s,mt+s

)
.

Proof. (part a). Define η̆t : St−1 × M → ∆
(
H̆t ×Θt

)
analogously to the definition

of ηt : St → ∆
(
Ht ×Θt

)
in the text. Let B be a Borel set of H̆t. For all B such that∫

Θt−1 η̆t
(
B,
(
dθt−1, θt

)
|St−1,Mt

)
> 0 define strategy σ′ by

σ′t

(
·
∣∣∣St−1,Mt, B,

(
θ̂
t−1

, θt

))
=

∫
Θt−1 σt

(
·
∣∣St−1,Mt, B,

(
θt−1, θt

))
η̆t
(
B,
(
dθt−1, θt

)
|St−1,Mt

)∫
Θt−1 η̆t

(
B,
(
dθt−1, θt

)
|St−1,Mt

) all θ̂
t−1

.

For B such that
∫

Θt−1 η̆t
(
B,
(
dθt−1, θt

)
|St−1,Mt

)
= 0, set σ′t

(
·
∣∣∣St−1,Mt, A,

(
θ̂
t−1

, θt

))
=

σ′t

(
·
∣∣∣St−1,Mt, A,

(
θ̃
t−1

, θt

))
for any θ̃

t−1
.

By construction, σ′t
(
·
∣∣∣St−1,Mt, h̆

t,
(
θ̃
t−1

, θt

))
= σ′t

(
·
∣∣∣St−1,Mt, h̆

t,
(
θ̂
t−1

, θt

))
for all

θ̃
t−1

, θ̂
t−1

. For any Borel set A of Θt, σ′t
(
A
∣∣·, (θt−1, θt

))
> 0 only if σt

(
A
∣∣∣·,(θ̂t−1

, θt

))
> 0

for some θ̂
t−1

. Since any agent with a history
(
h̆t,
(
θ̃
t−1

, θt

))
can replicate the strategy of

the agent with a history
(
h̆t,
(
θ̂
t−1

, θt

))
and achieve the same payoff as that agent, and

σt

(
A
∣∣∣·,(θ̂t−1

, θt

))
is the optimal choice of agent

(
h̆t,
(
θ̂
t−1

, θt

))
, the new strategy σ′ satis-

fies agents’best response constraint (4).

Strategies σ′ induce distribution µ′ which satisfies µ′t = µt for all
(
St−1,Mt

)
, hence the

government strategy σG satisfies feasibility (2) if agents play σ′. Any posterior belief p′ that

i



satisfies (3) also satisfies
∫

Θt−1 p
′
t

((
θt−1, θ

)
|·
)
dθt−1 =

∫
Θt−1 pt

((
θt−1, θ

)
|·
)
dθt−1.Government’s

payoff is

E(σ′,σG)

[
θtut|St

]
=

∫
Ht

[∫
Θ
p′t
(
θ|St, ht

)
θdθ

]
ut
(
ht
)
µ′t
(
dht|St

)
=

∫
Ht

[∫
Θ
pt
(
θ|St, ht

)
θdθ

]
ut
(
ht
)
dµt

(
dht|St

)
= E(σ,σG)

[
θtut|St

]
,

and therefore (σ′,σ′G,p
′) achieves the same payoff as (σ,σG,p) . No strategy σ′G gives a

higher payoff to the government that strategy σG when agents play σ′ because otherwise σ′G
would give a higher payoff to the government that strategy σG when agents play σ. Therefore

(σ′,σ′G,p
′) is a PBE that is payoff equivalent to (σ,σG,p) .

(part b). For simplicity we drop explicit dependence on
(
St,Mt+1

)
and assume that

µt

(
h̃t
)
, µt

(
ĥt
)
> 0. Let α = µt

(
h̃t
)
/
(
µt

(
h̃t
)

+ µt

(
ĥt
))

and define φ′ : [0, α] → [0, 1]

by φ′ (z) = z/α and φ′′ : (α, 1]→ [0, 1] by φ′′ (z) = (z − α) / (1− α) . Define strategies (σ′,σ′G)

for all s ≥ 1, ht ∈
{
ĥt, h̃t

}
, θt+s as

u′t+s
(
ht, zt+1,mt+1, ...,mt+s

)
= u∗t+s

(
h̃t, φ′ (zt+1) ,mt+1, ...,mt+s

)
,

σ′t+s
(
·|ht, zt+1,mt+1, ..., zt+s; θ

t+s
)

= σ∗t+s

(
·|h̃t, φ′ (zt+1) ,mt+1, ..., zt+s; θ

t+s
)

if zt+1 ≤ α and

u′t+s
(
ht, zt+1,mt+1, ...,mt+s

)
= u∗t+s

(
ĥt, φ′′ (zt+1) ,mt+1, ...,mt+s

)
,

σ′t+s
(
·|ht, zt+1,mt+1, ..., zt+s; θ

t+s
)

= σ∗t+s

(
·|ĥt, φ′′ (zt+1) ,mt+1, ..., zt+s; θ

t+s
)

if zt+1 > α and u′s = us, σ
′
s = us for all other histories and periods s.

Agents with histories h̃t, ĥt could have replicated each other strategies after period t in

PBE (σ,σG,p), so they must have been indifferent between them. Profile σ′ gives them the

same utility for all histories following
{
ĥt, h̃t

}
leaving all other histories unchanged, therefore

it is incentive compatible, i.e. satisfies (4). Strategy profile σ′ induces µ′. It assigns the same

probability for any realization of ut as µ, therefore feasibility constraint (2) is satisfied. For

any p′ consistent with Bayes’rule, Eσ
[
θt|ht

]
= Eσ′

[
θt|ht

]
for all ht ∈ Ht hence (5) is satisfied.

Therefore (σ′,σ′G,p
′) is a PBE which is payoff equivalent to (σ,σG,p) .

8.2 Arguments for maximization problem (17) and recursive formulation

We first discuss convexity assumptions in problem (17). We have σt : H̆t × Θ → ∆ (Mt) ,

ut : Ht → [(1− β) v, (1− β) v̄] . Let Υt be a space of all such (σt, ut), and let υt be a

ii



probability measure on Υt. For any υt and random variable x : Υt × Θ → R we can de-

fine Eυtx =
∫

Υt×Mt×Θ x (ut (m) , σt, θ)σt (dm|θ) dπdυ and for an arbitrary σ′t let Eυt◦σ′tx =∫
Υt×Mt×Θ x (ut (m) , σt, θ)σ

′
t (dm|θ) dπdυ. As before let υ to denotes the infinite sequence

{υt}∞t=0 and extend the definition of expectation Eυ◦σ to V × Υ∞ ×M∞ × Θ∞. With this

notation, the modified problem (9) can be written as

max
υ
Eυ

∞∑
t=0

βtθu

subject to

EυC (u) ≤ e (52)

Eυ
∞∑
s=t

βs−tθu ≥ EυWt +
β

1− βU (e) for all t, (53)

Eυ
∞∑
t=0

βtθu ≥ Eυ◦σ′
∞∑
t=0

βtθu for all σ′ (54)

and

Eυ

[ ∞∑
t=0

βtθu

∣∣∣∣∣ v
]
≥ v. (55)

Note that we wrote the promise keeping constraint (55) as inequality. We do this more general

version to prove some technical results on properties of the Lagrange multipliers. We still

maintain the assumption that distribution ψ is such that in the optimum it holds with equality.

The objective function and constraints are linear in υ and therefore convex. Let
{
βtζ∗t

}
t

and
{
βtχ∗t

}
t
be the Lagrange multipliers on (52) and (53). Then the constrained maximization

problem can be written as

max
υ
Eυ

∞∑
t=0

βt

[(
1 +

t∑
s=0

χ∗s

)
θu− ζ∗tC (u)

]
− Eυ

∞∑
t=0

βtχ∗tWt (56)

subject to (54), (55). Redefining variables β̄t = βt
(
1 +

∑t
s=0 χ

∗
s

)
, β̂t = β̄t/β̄t−1, ζt =

ζ∗t /
(
1 +

∑t
s=0 χ

∗
s

)
and χt = χ∗t /

(
1 +

∑t
s=0 χ

∗
s

)
≥ 0 we obtain (17) in a more general form.

From the definitions of these variables, χ∗t > 0 implies β̂t > β and χt > 0. If lim supt→∞ χ
∗
t >

0 then
∑t

s=0 χ
∗
s → ∞ (Theorem 3.23 in Rudin (1976)) and β̄t/β

t → ∞. The arguments of
Sleet and Yeltekin (2008) establish that

∑∞
t=0 β̄t,

∑∞
t=0 β

tζ∗t and
∑∞

t=0 β
tχ∗t are all finite, and

therefore
∑∞

t=0 β̄tζt and
∑∞

t=0 βtχt are also finite.

The Lagrange multiplier ζt > 0 in any finite t. If it is not the case, then it is possible to give

lifetime utility v̄ to all families, which violates feasibility. The technical arguments simplify if,

in addition, lim inf ζt > 0. Suffi cient conditions for this result are given in the following lemma
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Lemma 10 Let υ∗ be the best PBE. Suppose either that υ∗t converges to an invariant distrib-

ution or that U is unbounded above and lim infu→∞
C(u)
C′(u) > 0. Then lim inf ζt > 0.

Proof. We first observe that it is incentive compatible to increase utility allocation for all

histories by δ > 0 and that this increase satisfies (55). First, suppose that U is unbounded

above. For δ > 0 define υδt by υ
δ
t (σt, ut + δ) = υ∗t (σt, ut) for all (σt, ut) . Since υ∗t is optimal

and perturbation (1− α) υδt + αυ∗t is feasible, this perturbation cannot increase the value of

(56) evaluated at υ∗t , i.e.[∫ [(
1 +

t∑
s=0

χ∗s

)
θu− ζ∗tC (u)

]
σ (dm|θ) dπ

]
d
[
υδt − υ∗t

]
≤ 0

From the definition of υδt ,(
1 +

t∑
s=0

χ∗s

)
δ − ζ∗t

∫
[C (u+ δ)− C (u)] dυ∗t ≤ 0.

Since it should be true for all δ, it implies that

Eυ∗tC
′ (u) ≥ 1

ζt
.

Suppose lim infu→∞
C(u)
C′(u) > 0, which implies that there is ũ and κ > 0 such that C(u)

C′(u) ≥ κ for
all u ≥ ũ. Feasibility implies

e ≥ Eυ∗tC (u) = Eυ∗t [C (u) |u < ũ]Pυ∗t (u < ũ) + Eυ∗t

[
C (u)

C ′ (u)
C ′ (u) |u ≥ ũ

]
Pυ∗t (u ≥ ũ)

≥ Eυ∗t

[
C (u)

C ′ (u)
C ′ (u) |u ≥ ũ

]
Pυ∗t (u ≥ ũ) ≥ κEυ∗t

[
C ′ (u) |u ≥ ũ

]
Pυ∗t (u ≥ ũ) .

Therefore,

Eυ∗tC
′ (u) = Eυ∗t

[
C ′ (u) |u < ũ

]
Pυ∗t (u < ũ) + Eυ∗t

[
C ′ (u) |u ≥ ũ

]
Pυ∗t (u ≥ ũ)

≤
(

max
u∈[0,ũ]

C ′ (u)

)
Pυ∗t (u < ũ) +

e

κ

≤ max
u∈[0,ũ]

C ′ (u) +
e

κ

From strict convexity of C, C ′ (ũ) = maxu∈[0,ũ]C
′ (u), therefore,

ζt ≥
(
C ′ (ũ) +

e

κ

)−1
> 0.

This proves the second part of the lemma. Analogous arguments establish our result for

invariant distribution since in the invariant distribution Eυ∗C ′ (u) must be finite.
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If assumption lim supχt > 0 is not satisfied, economy converges to that of Atkeson and

Lucas (1992), who showed that for a wide range of cost functions C (including those satisfying

conditions of Lemma 10) all the mass of the lifetime utilities eventually gets concentrated

arbitrarily close to the lower bound v, the result known as the immiseration. Immiseration

violates constraint (16) and therefore lim supχt > 0 in all specifications considered by Atkeson

and Lucas (1992).

8.2.1 Sketch of proofs of Propositions 1 and 2

We now adapt the arguments of Farhi and Werning (2007) to write problem (17) recursively.

When ζt is strictly positive with lim inf ζt > 0, the series {ζt}t are bounded away from zero

uniformly in t. The arguments of Lemma A2 of Farhi and Werning (2007) extend with minimal

modifications to problem (17) to show that it can be written in a recursive form

kt (v) = max
υ∈Υt

Eυ
[
θu− ζtC (u) + β̂t+1kt+1 (w)− χtWt

]
subject to

v = Eσ [θu+ βw]

Eυ [θu+ βw] ≥ Eυ◦σ′ [θu+ βw] for all σ′,

where kt (v) is convex. To achieve convexity of this problem, it is suffi cient to randomize be-

tween only two points in Υt (the arguments are identical to the proof of Lemma 3 in Acemoglu,

Golosov and Tsyvinski (2008)), and hence this problem can be written as

kt (v) = max
(u′,w′,σ′),

(u′′,w′′,σ′′),
z̄∈[0,1]

z̄

{∫
Mt×Θ

[
θu′ − ζtC

(
u′
)

+ β̂t+1kt+1

(
w′
)]
σ′ (dm|θ) dπ (θ)− χtWt

(
σ′
)}

+ (1− z̄)
{∫

Mt×Θ

[
θu′′ − ζtC

(
u′′
)

+ β̂t+1kt+1

(
w′′
)]
σ′′ (dm|θ) dπ (θ)− χtWt

(
σ′′
)}

subject to

v = z̄

{∫
Mt×Θ

[
θu′ + βw′

]
σ′ (dm|θ) dπ (θ)

}
+ (1− z̄)

{∫
Mt×Θ

[
θu′′ + βw′′

]
σ′′ (dm|θ) dπ (θ)

}
and ∫

Mt×Θ

[
θu′ + βw′

]
σ′ (dm|θ) dπ (θ) ≥

∫
Mt×Θ

[
θu′ + βw′

]
σ̃ (dm|θ) dπ (θ) for all σ̃∫

Mt×Θ

[
θu′′ + βw′′

]
σ′′ (dm|θ) dπ (θ) ≥

∫
Mt×Θ

[
θu′′ + βw′′

]
σ̃ (dm|θ) dπ (θ) for all σ̃
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This is the Bellman equation (20). Then Proposition 1 and 2 can be established by direct

adaptation of arguments in Farhi and Werning (2007). We show all the results for k0, for

all other kt the arguments are identical. For brevity we drop explicit conditioning of all

expectations on v.

Continuity

Since k0 (v) is concave, it is continuous on (v, v̄) . To show that it is also continuous on the

boundaries, define the value function

k∗0 (v) =
1

β̄0

max
σ,u

Eσ
∞∑
t=0

β̄t [θtut − ζtC (ut)] + max
σ

(
−
∞∑
t=0

β̄tχtWt

)
subject to

v = Eσ
∞∑
t=0

βtθtut.

We have k∗0 (v) ≥ k0 (v) and k∗0 (v) is continuous. If utility is bounded below, then at v = v,

the solution to k∗0 sets ut = U (0) for all t and σ to minimize Wt. This allocation is incentive

compatible, therefore, k∗0 (v) = k0 (v) . Then continuity of k∗0 (v) at v implies continuity of k0 (v)

at v. If utility is bounded above, then C (ut)→ +∞ as v → v̄. Therefore limv→v̄ k∗0 (v) = −∞,
which implies limv→v̄ k0 (v) = −∞.

Differentiability

The proof is an application of the Benveniste and Scheinkman theorem (Benveniste and

Scheinkman (1979)). First, suppose that utility is unbounded. Fix any interior v0 and let

(u∗,σ∗) be the optimal allocation for that v. For any v, let ũ0 = u∗0 + (v − v0) , ũt = u∗t for all

t > 0. Since utility is unbounded, this perturbation is feasible. Then (ũ,σ∗) satisfies (11) and

(12) for v. Let

V (v) =
1

β̄0

Eσ∗
∞∑
t=0

β̄t [θtũt − ζtC (ũt)− χtWt] (57)

= Eσ∗ [θ0 (u∗0 + (v − v0))− ζ0C (u∗0 + (v − v0))− χ0W0]

+
1

β̄0

Eσ∗
∞∑
t=1

β̄t [θtu
∗
t − ζtC (u∗t )− χtWt]

We have k0(v) ≥ V (v) . Function V is differentiable with V ′ (v0) = 1− ζ0Eσ∗C ′ (u∗0) . Since

k0 is concave, by Benveniste-Scheinkman theorem (see Theorem 4.10 in Stokey, Lucas and

Prescott (1989)), k′0 (v) exists and satisfies k′0 (v) = 1− ζ0Eσ∗C ′ (u∗0) ≤ 1.

To find the values of k′0 (v) in the limit as v approaches ±∞, define a function

K̄ (v) = max
u,σ

Eσ
∞∑
t=0

βt [θtut − ζtC (ut)]
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subject to (12). It it easy to show that K̄ (v) is concave and limv→−∞ K̄ ′ (v) = 1 and

limv→∞ K̄ ′ (v) = −∞.
Let υt = maxθ∈Θ,c≥0 [θU (c)− ζtc] and ω̄t = χt minσWt (σ) . Then

k0 (v)− 1

β̄0

∞∑
t=0

β̄tυt =
1

β̄0

Eσ∗
∞∑
t=0

β̄t [θtu
∗
t − ζtC (u∗t )− υt]− Eσ∗

∞∑
t=0

β̄tχtWt

≤ Eσ∗
∞∑
t=0

βt [θtu
∗
t − ζtC (u∗t )− υt]−

∞∑
t=0

β̄tω̄t

≤ K̄ (v)−
∞∑
t=0

βtυt −
∞∑
t=0

β̄tω̄t,

where the first inequality follows from the fact that the expression in square brackets is neg-

ative and β̄t/β̄0 ≥ βt and the second inequality follows from the fact that K̄ (v) maximizes

Eσ
∑∞

t=0 β
t [θtut − ζtC (ut)] without incentive constraints.

Since k0 (v) ≤ K̄ (v)+const and K̄ (v) is concave, limv→∞ K̄ ′ (v) = −∞ implies limv→∞ k′0 (v) =

−∞. Since k′0 (v) ≤ 1 and limv→−∞ K̄ ′ (v) = 1, limv→−∞ k′0 (v) = 1.

Now suppose that utility is bounded below but unbounded above. Without loss of general-

ity, assume that U (c) ≥ 0. Then for any v0, the allocation
(
v
v0

u∗,σ∗
)
is feasible (since v

v0
u∗t > 0

is feasible), incentive compatible and attains v. Let V (v) = 1
β̄0
Eσ∗

∑∞
t=0 β̄t

[
θt

v
v0
u∗t − ζtC

(
v
v0
u∗t

)
− χtWt

]
.

V (v) is concave, differentiable and satisfies k0 (v0) = V (v0) , therefore, k0 (v) is differentiable at

v0 by the Benveniste-Scheinkman theorem. A symmetric argument works if utility is bounded

above (without loss of generality by 0) but not below. If utility is bounded above and below,

a function V can be constructed separately for v ≤ v0 and v > v0. This shows that k0 (v) is

differentiable.

To establish the value of the derivatives in the limits, note that when utility is bounded,

function K̄ (v) still provides an upper bound to k0 (v) and limv→v̄ K̄ ′ (v) = −∞, which implies
that limv→v̄ k′0 (v) = −∞. When utility is unbounded below, we can define V as in (57) for

v ≤ v0, which shows that k′0 (v0) ≤ limv↑v0 V (v0) = 1 − ζ0Eσ∗C ′ (u∗0) ≤ 1. Then the same

arguments as for unbounded utility establish that limv→−∞ k′0 (v) = 1.

It remains to show the value of limv→v k′0 (v) when utility is bounded below, without loss

of generality by 0. Let

K (v) =
1

β̄0

max
ut∈R+

∞∑
t=0

β̄t

[(∑
θ∈Θ

π (θ) θ

)
ut − ζtC (ut)

]
− 1

β̄0

∞∑
t=0

β̄tω̄t

subject to (12). Let γv be a Lagrange multiplier on (12) for a given v. The first order condition

for ut is

1− ζtC ′ (ut) ≤
βt

β̄t/β̄0

γv, (58)
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where the inequality sign is due to the non-negativity constraint on ut. This expression implies

that γv ≥ 1. Therefore for the utilities bounded below, limv→v k′0 (v) ≥ 1. If lim supχt > 0,

then βt

β̄t/β̄0
→ 0 and there is some T such that 1 − βT

β̄T /β̄0
γv > 0. For such T the optimality

condition (58) is satisfied only for uv,T > 0. This is impossible since limv→v uv,t = 0 for all t,

therefore if lim supχt > 0, then limv→v γv =∞. From the envelope theorem, K ′ (v) = γv.

Since the solution to this problem is incentive compatible, k0 (v) ≥ K (v) and k0 (v) =

K (v) . Therefore limv→v k′0 (v) ≥ lim′v→vK
′ (v) ≥ 1 with limv→v k′0 (v) =∞ if lim supχt > 0.

The arguments for the proof of Proposition 2 mirror the proof of Theorem 2 in Farhi and

Werning (2007).

8.3 Intermediate steps used in the proof of Theorem 2 and Corollary 2

We start with preliminary results.

Lemma 11 Suppose that f is continuous on some interval [a, b] and one of its Dini derivatives

is bounded. Then f is Lipschitz continuous on [a, b] .

Proof. Without loss of generality suppose that D+f (t) , defined as

D+f (t) ≡ lim sup
h→0+

f (t+ h)− f (t)

h
,

is bounded by D̄. Let Ψ1(t) = f(t) + D̄t. It is continuous since f is continuous and D+Ψ1(t) =

D+f (t)+D̄ ≥ 0. By Proposition 5.2 in Royden (1988)Ψ1 is nondecreasing, and therefore t′′ > t′

implies f(t′′)−f(t′) ≥ −D̄ (t′′ − t′) . Applying the same arguments to Ψ2 (t) = −f(t) + D̄t and

combining with the previous result, we establish |f(t′′)− f(t′)| ≤ D̄ |t′′ − t′| for all t′′, t′ ∈ [a, b] .

Lemma 12 If Assumption 1 is satisfied, then

lim
u→(1−β)v̄

C ′′ (u)

[C ′ (u)]2
= 0. (59)

In particular, for any v (1− β) < a < b < v̄ (1− β) there exists a real number Ba,b such that∣∣C ′ (û)− C ′ (ũ)
∣∣ ≤ Ba,b|û− ũ| for all û, ũ ∈ [a, b] . (60)

Moreover, for any ε > 0, there is ā such that Ba,b/ (C ′ (b))2 < ε for all b > a ≥ ā.
For any v < a < b < v̄ such that k′t (a) < 1, function k′t is Lipschitz continuous on [a, b]

and there exist a real number B̂a,b such that∣∣k′t (v̂)− k′t (ṽ)
∣∣ ≤ B̂a,b|v̂ − ṽ| for all v̂, ṽ ∈ [a, b] .

Moreover, for any ε > 0, there is ā such that B̂a,b/ (1− k′t (b))2 < ε for all b > a ≥ ā.
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Proof. By definition C (U (c)) = c for all c. Differentiate twice

C ′ (U (c))U ′ (c) = 1

and

C ′′ (U (c))
[
U ′ (c)

]2
+ C ′ (U (c))U ′′ (c) = 0. (61)

Substitute the first expression into the second and regroup

C ′′ (U (c))

[C ′ (U (c))]2
= −U

′′ (c)

U ′ (c)
.

If Assumption 1 is satisfied, we obtain (59). Since U ′′ is continuous, so is C ′′ from (61).

For any û, ũ ∈ [a, b] with ũ < û,

C ′ (û)− C ′ (ũ) =

∫ û

ũ
C ′′ (u) du ≤ (û− ũ) max

u∈[a,b]
C ′′ (u) ,

where maximum is well defined since C ′′ is continuous. Let ûa,b = arg maxu∈[a,b]C
′′ (u) and

Ba,b = C ′′ (ûa,b) . Since C ′′ (ûa,b) / [C ′ (ûa,b)]
2 ≥ C ′′ (ûa,b) / [C ′ (b)]2 and ûa,b → (1− β) v̄ as

a→ (1− β) v̄, condition (59) establishes (60).

Since function kt is concave and differentiable, k′t is continuous on [a, b] (Corollary 25.5.1

in Rockafellar (1972)). Let D+ be the right upper Dini derivative of k′t, defined at each v0 as

D+k′t (v0) ≡ lim sup
v→v+

0

k′t (v)− k′t (v0)

v − v0
.

Claim 1. D+k′t (v0) satisfies

0 ≥ D+k′t (v0) ≥ V ′′(v0),

where V (v) is defined in (57).

Note that by construction V is twice differentiable with V ′′(v0) = −ζtEσv0 [C ′′ (uv0)],

V (v) ≤ kt (v) for all v with equality for v = v0 and V ′ (v0) = k′t (v0) . Since k′t is decreas-

ing, 0 ≥ D+k′t (v0) by definition. Suppose D+k′t (v0) < V ′′(v0). Then there exists v̂ > v0, such

that for all v ∈ (v0, v̂) , k′t (v) < V ′ (v) . If this is not the case, there must exist a sequence vn,

with vn → v+
0 , such that k

′
t (vn) ≥ V ′ (vn) or

k′t (vn)− k′t (v0)

vn − v0
≥ V ′ (vn)− V ′ (v0)

vn − v0
for all vn.

Taking limits and invoking twice differentiability of V,

D+k′t (v0) ≥ lim sup
n→∞

k′t (vn)− k′t (v0)

vn − v0
≥ V ′′ (v0) ,
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which contradicts the assumption.

If k′t (v) < V ′ (v) for all v ∈ (v0, v̂) , then∫ v̂

v0

k′t (v) dv <

∫ v̂

v0

V ′ (v) dv,

where the integrals are well defined since kt and V are concave and hence absolutely continuous

by Proposition 5.17 in Royden (1988). Integrating and using the fact that kt (v0) = V (v0) , we

obtain kt(v̂) < V (v̂) , establishing the contradiction. Therefore D+k′t (v0) ≥ V ′′(v0).

Claim 2. k′t is Lipschitz continuous on [a, b].

It is suffi cient to show that V ′′(v0) = −ζtEσv0 [C ′′ (uv0)] is bounded on [a, b] and apply

Lemma 11. From (28),(
1− k′t (a)

)
θ1 ≤ ζtC ′ (uv0) ≤

(
1− k′t (b)

)
θ|Θ| for all v0 ∈ [a, b] . (62)

Since k′t (a) < 1, this bounds uv0 . C
′′ achieves a maximum at that set, say at a point ûa,b,

which implies that V ′′(v0) is bounded by B̂a,b = ζtC
′′ (ûa,b) .

Claim 3. Lipschitz bound B̂a,b satisfies the condition that for any ε > 0, there is ā such

that B̂a,b/ (1− k′t (b))2 < ε for all b > a ≥ ā.
As a → v̄, k′t (a) → −∞ and therefore equation (62) implies that ûa,b gets arbitrarily

close to (1− β) v̄ for all a suffi ciently high. By the first part of the lemma, this implies that

C ′′ (ûa,b) / [C ′ (ûa,b)]
2 approaches zero for high a. Hence

B̂a,b

[1− k′t (b)]2
=
ζtC

′′ (ûa,b)

[C ′ (ûa,b)]
2

(
C ′ (ûa,b)

1− k′t (b)

)2

≤ ζtC
′′ (ûa,b)

[C ′ (ûa,b)]
2

(
θ|Θ|
ζt

)2

also approaches 0 as a→ v̄.

8.4 Proof of Proposition 4

Suppose C satisfies

C (u) =
1

a
ua for a > 1. (63)

For all x > 0, define a function

kt (v, x) =
1

β̄t
max
u,σ

Eσ

[ ∞∑
s=0

β̄s+t
(
θsusx

a−1 − ζs+tC (us)− xaχs+tWs

)]
subject to (11) and (12). For x = 0 we set

kt (v, 0) =
1

β̄t
max
u,σ

Eσ

[ ∞∑
s=0

β̄s+t
(
−ζs+tC (us)

)]
.

We prove several preliminary result first.
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Lemma 13 Suppose C satisfies (63). Then kt (v, x) is continuous in (v, x) .

Proof. For interior (v, x) it is immediate, so we show our result for boundary: if (vn, xn)→
(v, 0) then kt (vn, xn) → kt (v, 0) . Since |kt (vn, xn) − kt (v, 0) | ≤ |kt (vn, xn) − kt (v, xn) | +
|kt (v, xn)− kt (v, 0) |, and kt (v, x) is continuous in v for all x ≥ 0 by standard arguments, it is

suffi cient to establish that kt (v, xn)→ kt (v, 0) as xn → 0.

We show our result for k0 (v, x) , the arguments are analogous for other periods. Let

K̄ (v, x) = max
u,σ

Eσ
∞∑
t=0

βt
[
xa−1θtut − ζtC (ut)

]
subject to (12). Analogously with the proof of Proposition 1, K̄ (v, x) is finite for all x ≥ 0 and

k0 (v, x) ≤ K̄ (v, x) + xa · const, therefore k0 (v, x) is bounded from above, and that bound can

be chosen to be uniform for all x in the neighborhood of x = 0. Function k0 (v, x) is bounded

below because u ≥ 0, C (u) ≥ 0 and Wt is bounded. Moreover, that bound can be chosen to

be uniform for all x in the neighborhood of x = 0.

Let (ux,σx) be a solution to k0 (v, x) for a given x.We show next that
∑∞

t=0 β̄tu
x
t is bounded

for all x in the neighborhood of x = 0. Since ζtC (u) is convex, there are reals b′t and b
′′
t > 0

such that −ζtC (u) ≤ b′t− θ|Θ|b′′t u for all u. Since ζt is bounded away from zero, we can pick b′

and b′′ to be independent of t. Then

β̄0k0 (v, x) = Eσx
∞∑
t=0

β̄t
(
xa−1θuxt − ζtC (uxt )

)
− xaEσx

∞∑
t=0

β̄tχtWt

≤ b′
∞∑
t=0

β̄t + Eσx
∞∑
t=0

β̄t
(
xa−1θuxt − θ|Θ|b′′uxt

)
− xaEσx

∞∑
t=0

β̄tχtWt

≤ b′
∞∑
t=0

β̄t + Eσx
∞∑
t=0

β̄t
(
xa−1 − b′′

)
θuxt − xaEσx

∞∑
t=0

β̄tχtWt.

For xa−1 < b′′ this yields

0 ≤ Eσx
∞∑
t=0

β̄tθu
x
t ≤

b′

b′′ − xa−1

∞∑
t=0

β̄t − xaEσx
∞∑
t=0

β̄tχtWt − β̄0k0 (v, x) .

Since (ux,σx) are optimal for x, incentive compatible and provide utility v to agent,

Eσ0

[ ∞∑
t=0

β̄t
(
−ζtC

(
u0
t

))]
≥ Eσx

[ ∞∑
t=0

β̄t (−ζtC (uxt ))

]
,

where the right hand side expression is well defined since k0 (v, x) and Eσx
∑∞

t=0 β̄tθu
x
t are

finite, which implies that k0 (v, 0) ≥ lim supx→0 Eσx
[∑∞

t=0 β̄t (−ζtC (uxt ))
]
. At the same time

k (v, x) = Eσx
[ ∞∑
t=0

β̄t
(
θtu

x
t x

a−1 − ζtC (uxt )− xaχtWt

)]
≥ Eσ0

[ ∞∑
t=0

β̄t
(
θtu

0
tx
a−1 − ζtC

(
u0
t

)
− xaχtWt

)]
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which implies that

lim inf
x→0

k0 (v, x) = lim inf
x→0

Eσx
[ ∞∑
t=0

β̄t (−ζtC (uxt ))

]
≥ k (v, 0) ,

where again we used boundedness of Eσx
∑∞

t=0 β̄tθu
x
t . Therefore limx→0 k0 (v, x) = k0 (v, 0) for

all v.

First, we analyze the limiting case of x = 0. It has a recursive structure

kt (v, 0) = max
u,w,σ

Eσ
[
−ζtC (u, 0) + β̂t+1kt+1 (w, 0)

]
subject to (22) and (21). Any conditioning on z is redundant since C (·, u) is strictly convex

and then the Revelation principle implies strict convexity of kt (·, 0). One can also easily show

that kt (·, 0) is differentiable and decreasing.

Let
{
u0
v (m) , w0

v (m) , σ0
v (m|θ)

}
θ,m

be a solution to this problem.

Lemma 14 Suppose that
(
u0
v (m′) , w0

v (m′)
)
6=
(
u0
v (m′′) , w0

v (m′′)
)
for somem′,m′′, σ0

v (m′|θ) >
0 and

θu0
v

(
m′
)

+ βw0
v

(
m′
)

= θu0
v

(
m′′
)

+ βw0
v

(
m′′
)
.

Then

−ζtC
(
u0
v

(
m′
))

+ β̂t+1kt+1

(
w0
v

(
m′
))
> −ζtC

(
u0
v

(
m′′
))

+ β̂t+1kt+1

(
w0
v

(
m′′
))

(64)

and σ0
v (m′′|θ) = 0.

Proof. Suppose

−ζtC
(
u0
v

(
m′
))

+ β̂t+1kt+1

(
w0
v

(
m′
))
< −ζtC

(
u0
v

(
m′′
))

+ β̂t+1kt+1

(
w0
v

(
m′′
))
.

Then setting σ̃0
v (m′′|θ) = σ0

v (m′′|θ) + σ0
v (m′|θ) , σ̃0

v (m′|θ) = 0 and leaving all other re-

porting strategies unchanged satisfies (22) and (21) and delivers a strictly higher value of

Eσ
[
−ζtC (u) + β̂t+1kt+1 (w, 0)

]
, contradicting optimality of σ0

v (m′|θ) > 0.

Suppose (64) holds with equality. Defined as ũα = αu0
v (m′) + (1− α)u0

v (m′′) and w̃α =

αw0
v (m′) + (1− α)w0

v (m′′) for some α ∈ (0, 1) . The new allocation satisfies (21) since θ is

indifferent between
(
u0
v (m′) , w0

v (m′)
)
and

(
u0
v (m′′) , w0

v (m′′)
)
. It also satisfies (22) since for

any θ̂ 6= θ and m̂ that θ̂ sends with a positive probability,

θ̂u0
v (m̂) + βw0

v (m̂) ≥ θ̂u0
v

(
m′
)

+ βw0
v

(
m′
)
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and

θ̂u0
v (m̂) + βw0

v (m̂) ≥ θ̂u0
v

(
m′′
)

+ βw0
v

(
m′′
)

and therefore

θ̂u0
v (m̂) + βw0

v (m̂) ≥ θ̂ũα + βw̃α.

For any α, by strict concavity of −C and kt+1

−ζtC (uα) + β̂t+1kt+1 (wα) > −ζtC
(
u0
v

(
m′
))

+ β̂t+1kt+1

(
w0
v

(
m′
))

(65)

= −ζtC
(
u0
v

(
m′′
))

+ β̂t+1kt+1

(
w0
v

(
m′′
))
.

Augment the message space Mv with a message m∅. Define σ̃ (m∅|θ) = σ0
v (m′|θ) +

σ0
v (m′′|θ) and σ̃

(
m∅|θ̂

)
= 0 for all θ̂ 6= θ, and σ̃ (m|θ) = σ0

v (m|θ) for m /∈ {m′,m′′,m∅},

σ̃
(
m|θ̂

)
= σ0

v

(
m|θ̂

)
for all θ̂ 6= θ and all m 6= m∅. Similarly let (ũ (m∅) , w̃ (m∅)) = (uα, wα)

for any α ∈ (0, 1) and (ũ (m) , w̃ (m)) =
(
u0
v (m) , w0

v (m)
)
for all m 6= m∅. That is we consider

an augmented state space and a strategy in which type θ reports m∅ and receives (uα, wα) in

all states in which she reported m′,m′′ leaving all other strategies and allocations unchanged.

The 3-tuple (ũ, w̃, σ̃) is incentive compatible and delivers the same payoff v to the agent, but

by (65) and the fact that σ̃ (m∅|θ) > 0 delivers strictly higher value to the planner. Therefore(
u0
v, w

0
v, σ

0
v

)
cannot be optimal, leading to a contradiction.

This lemma shows that each type can receive only one distinct allocation. Under some

additional conditions requiring types to be suffi ciently spread out, we can also show that each

θ receives a distinct allocation from other types.

Lemma 15 Suppose condition (33) is satisfied. Then if σ0
v (mi|θ) > 0 for some θ, then

σ0
v

(
mi|θ′

)
= 0 for all θ′ 6= θ.

Proof. Previous lemma established that types can receive at most |Θ| distinct allocations,
so we restrict attention to only |Θ| messages. Without loss of generality u0

v (m1) ≤ ... ≤
u0
v

(
m|Θ|

)
. Suppose that there is an allocation

(
u0
v (mn) , w0

v (mn)
)
that two types receive with

a positive probability. Due to the previous lemma, they must receive it with probability 1.

Pick the highest type that receives an allocation which is also received by some lower type.

To simplify notation, call that type θn and the single crossing property implies that θn−1 also

receives
(
u0
v (mn−1) , w0

v (mn−1)
)

=
(
u0
v (mn) , w0

v (mn)
)
. For now assume that u0

v (mn−2) <

u0
v (mn−1) .

First, observe that it must be true that

θn+1u
0
v (mn+1) + βw0

v (mn+1) > θn+1u
0
v (mn) + βw0

v (mn) .
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Otherwise, if this inequality is weak, the fact that
(
u0
v (mn+1) , w0

v (mn+1)
)
6=
(
u0
v (mn) , w0

v (mn)
)

implies

θnu
0
v (mn) + βw0

v (mn) > θnu
0
v (mn+1) + βw0

v (mn+1) .

But then w0
v (mn+1) can be decreased and w0

v (mn) increased while keeping π (θn)w0
v (mn) +

π (θn+1)w0
v (mn+1) constant. For small changes that will be incentive compatible, and strict

concavity of kt+1 (·, 0) will imply that the perturbed allocation gives a higher value, contra-

dicting optimality.

Choose ε > 0 small enough so that

θn+1u
0
v (mn+1) + βw0

v (mn+1) > θn+1u
0
v (mn) + βw0

v (mn) + θn+1
π (θn)

π (θn−1)
ε.

Let δ2 (ε) = θn−1

β ε, δ3 (ε) = θn−1−θn−2

β ε and

δ1 (ε) =
1

β
π (θn−1) [θn − θn−1] ε+

θn−1 − θn−2

β

n−2∑
i=1

π (θi) ε.

By construction, all δ are positive and O (ε) , and

δ1 (ε)− δ3 (ε) =
1

β

π (θn−1) [θn − θn−1]− (θn−1 − θn−2)

|Θ|∑
i=n−1

π (θi)

 ε ≥ 0

if condition (33) is satisfied.

Consider an allocation (ũ, w̃) defined as

ũ (mn) = u0
v (mn) +

π (θn−1)

π (θn)
ε,

ũ (mn−1) = u0
v (mn−1)− ε,

ũ (mi) = u0
v (mi) for i /∈ {n− 1, n} ,

and

w̃ (θi) = w0
v (θi) + δ3 (ε)− δ1 (ε) for i ≤ n− 2,

w̃ (θi) = w0
v (θi)− δ1 (ε) for i > n,

w̃ (θn) = w0
v (θn)− π (θn−1)

π (θn)
δ2 (ε)− δ1 (ε) ,

w̃ (θn−1) = w0
v (θn−1) + δ2 (ε)− δ1 (ε) .
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First, observe that (ũ, w̃) satisfy (21) since

|Θ|∑
i=1

π (θi) [θiũ (mi) + βw̃ (mi)]−
|Θ|∑
i=1

π (θi)
[
θiu

0
v (mi) + βw0

v (mi)
]

= π (θn−1) (θn − θn−1) ε+ βδ3 (ε)

n−2∑
i=1

π (θi)− βδ1 (ε)

= π (θn−1) (θn − θn−1) ε+ (θn−1 − θn−2) ε

n−2∑
i=1

π (θi)−
(
π (θn−1) [θn − θn−1] ε+ (θn−1 − θn−2)

n−2∑
i=1

π (θi) ε

)
= 0.

It also satisfies incentive compatibility. Note that for small ε we have ũ (m1) ≤ ... ≤
ũ
(
m|Θ|

)
and it suffi ces to check local downward incentive compatibility. We have

θn−1ũ (mn−1) + βw̃ (mn−1)− θn−1ũ (mn)− βw̃ (mn)

= −θn−1

(
1 +

π (θn−1)

π (θn)

)
ε+

(
1 +

π (θn−1)

π (θn)

)
βδ2 (ε) = 0,

so the incentive constraint for type θn−1 is satisfied. Also

θn−2ũ (mn−2) + βw̃ (mn−2)− θn−2ũ (mn−1)− βw̃ (mn−1)

= θn−2ε+ (θn−1 − θn−2) ε− θn−1ε = 0,

so the incentive for type θn−2 is satisfied. Similar arguments hold for all the other incentive

constraints. Finally

|Θ|∑
i=0

π (θi)
[
−ζtC (ũ (mi)) + β̂t+1kt+1 (w̃ (mi))

]
−
|Θ|∑
i=0

π (θi)
[
−ζtC

(
u0
v (mi)

)
+ β̂t+1kt+1

(
w0
v (mi)

)]

=

n−2∑
i=0

π (θi) k
′
t+1 (w̃ (mi)) (δ3 (ε)− δ1 (ε)) +

|Θ|∑
i=n+1

π (θi) k
′
t+1 (w̃ (mi)) (−δ1 (ε)) + o (ε) .

Since k′t+1 < 0 and under condition (33) (δ3 (ε)− δ1 (ε)) ≤ 0, the expression above is strictly

positive for ε small enough. This shows that
(
u0
v, w

0
v

)
cannot be optimal.

If u0
v (mn−2) = u0

v (mn−1) , then the same steps as before go through if u0
v (mi) is reduced

by ε for all i such that u0
v (mi) = u0

v (mn−1) and δ are adjusted accordingly.

We are now ready to prove Proposition 4.

Proof of Proposition 4. The solution to Bellman equation (20) may involve random-

ization over several ṽv (z) that in expectations deliver v, but ṽv (z) → ∞ for all z as v → ∞.
Consider maximization problem for a given z and assume that agents send reports over the

message set MΘ for all v. Using homogeneity properties of kt (v) , if (u′v, w
′, σv) is a solution
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to kt (v), then (ux, wx, σx) ≡
(
v−1 · u′v, v−1 · w′v, σv

)
is a solution to the following problem for

x = v−1

max
u,w,σ

Eσ
[
xa−1θu− ζtC (u) + β̂t+1kt+1 (w, x)

]
− xaχtWt (σ)

subject to (22) and

1 = Eσ [θu+ βw] .

Since u,w are bounded from below by 0, arguments analogous to (45) establish that

wx (m) ∈
[
0, (π (θ1)β)−1

]
and that ux (m) lies in a compact set. Since Lemma 13 estab-

lished that kt+1 (w, x) is continuous in x, the Theorem of Maximum applies and solution

correspondence (ux, wx, σx) is u.h.c. in x.

We show that there cannot be several types θ that send the same message m with a positive

probability for low x, which establishes the result of the Proposition. First, observe that there

must be some threshold x̄, such that for all x ≤ x̄ no two types send the same message with

probability 1. If this is not the case, we can choose a sequence xn → 0 with solution σxn

satisfying such property, which by u.h.c. of σxn would imply that σ0 satisfies this property,

violating Lemma 15.

Next we rule out that several types send the same message with positive probability. Sup-

pose that for any x̄ we can find some x < x̄ with this properties. There must be some type

θ who is indifferent between messages m′ and m′′. In this case condition (30) holds and takes

the form [
xa−1θux

(
m′
)
− ζtC

(
ux
(
m′
))

+ β̂t+1kt+1

(
wx
(
m′
))]

−
[
xa−1θux

(
m′′
)
− ζtC

(
ux
(
m′′
))

+ β̂t+1kt+1

(
wx
(
m′′
))]

= xaχt
{[
θuw

(
m′′
)
− λwt C

(
uw
(
m′′
))]
−
[
θuw

(
m′
)
− λwt C

(
uw
(
m′
))]}

.

Since ux, uw lie in a compact set, taking sequence xn → 0 we get, invoking upper-hemicontinuity

again,[
−ζtC

(
u0
(
m′
))

+ β̂t+1kt+1

(
w0
(
m′
))]
−
[
−ζtC

(
u0
(
m′′
))

+ β̂t+1kt+1

(
w0
(
m′′
))]

= 0,

which violates Lemma 14.

8.5 Arguments for case with persistent types

In the following proofs we assume that the set of feasible utility is bounded and, without loss

of generality, we set the lower bound to 0. Also, we assume that the message set Mt chosen by

the planner is finite for all t. The proof that in the worst equilibrium there is no information
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revelation to the government is the same as in the iid case. The payoff of this equilibrium

depends on the government’s information that dissipates slowly due to the persistence of the

shocks. Thus, the best payoff for a government that deviates at time t is

W̃t (µt) = sup
{ut+s(h)}h∈Ht,s≥0

∫
Ht

∞∑
s=0

βsEpt+s [θ|h]ut+s (h) dµt (66)

subject to the feasibility constraint (8) holding for all t+ s and

pt+s
(
θ|ht

)
=

∫
Θ
πs
(
θ|θ−

)
pt
(
dθ−|ht

)
for s > 0.

This payoff is a generalization of (7) in the iid case. Similarly to that case, we can bound

W̃t (µt) with a function that is linear in µt−1. Given p ∈ ∆ (Θ), define the analogue of (13) as

Wt (σ, p) = sup
{ut+s(m)}s≥0

∫
Mt×Θ×Θ

σ (dm|θ)π
(
dθ|θ−

)
p
(
dθ−

) ∞∑
s=0

βs

( ∫
Θ

πs (dθs|θ) θsut+s (m)

−λwt,t+s (C (ut+s (m))− e)

)
.

(67)

As in the iid case, let uwt+s (m) denote the solution to (67), which is given by equation

Ept+s [θ|m] = λwt,t+sC
(
uwt+s (m)

)
.

By Langrange duality we can prove the analogue of Lemma 2 in the iid case.

Lemma 16 The multiplier λwt,t+s is uniformly bounded away from 0 and belongs to a com-

pact set for all t and s. Therefore, uwt+s (m) belongs to a compact set in the interior of

[(1− β) v, (1− β) v̄] for all m,σ, t, s.

FunctionWt is well defined, continuous, convex in σt, uniformly bounded in t, and is minimized

if and only if σ is uninformative. For any
(
σt, pt, µt−1

)
,

W̃t (µt) ≤
∫
H̆t×Z

Wt

(
σt

(
·|h̆t, ·

)
, pt
(
ht−1

))
dµt−1dz, (68)

with equality if
(
σt, pt, µt−1

)
=
(
σ∗t , p̂

∗
t , µ
∗
t−1

)
.

Proof. The objective function (66) is concave and the constraint set is convex and we can

use the Lagrange duality and rewrite W̃t (µt) as

W̃t (µt) = min
{λt,s≥0}s≥0

sup
{ut+s(h)}h∈Ht,s≥0

{ ∫
Ht×Z

∑∞
s=0 β

sEpt+s [θ|h]ut+s (h) dµtdz

−
∑∞

s=0 β
sλt,t+s

(∫
Ht×Z C (ut+s (h)) dµtdz − e

) } .
(69)

Let λwt,t+s be the solution to the minimization problem. Since after deviating, the government

doesn’t provide incentives, we can maximize W̃t period by period.

sup
{ut+s(h)}h∈Ht,s≥0

∫
Ht×Z

βs
(
Ept+s [θ|h]ut+s (h)− λwt,t+sC (ut+s (h)) + λwt,t+se

)
dµtdz.
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By using the same argument as in the iid case we can show that λwt,t+s is uniformly bounded

away from 0 and uniformly bounded above for all s. This also proves that supremum in (69)

is achieved. Also,

W̃t (µt) = min
{λt,s≥0}s≥0

max
{ut+s(h)}h∈Ht,s≥0

{ ∫
Ht×Z

∑∞
s=0 β

sEpt+s [θ|h]ut+s (h) dµtdz

−
∑∞

s=0 β
sλt,t+s

(∫
Ht×Z C (ut+s (h)) dµtdz − e

) }

≤ max
{ut+s(h)}h∈Ht,s≥0

∫
Ht×Z

∞∑
s=0

βs
(
Ept+s [θ|h]ut+s (h)− λwt,t+s (C (ut+s (h))− e)

)
dµtdz

where the inequality follows from the fact that {λwt,t+s} may not be a minimizer for an arbitrary(
σt, pt, µt−1

)
. Since

max
{ut+s(h)}h∈Ht,s≥0

∫
Ht×Z

∞∑
s=0

βs
(
Ept+s [θ|h]ut+s (h)− λwt,t+s (C (ut+s (h))− e)

)
dµtdz

=

∫
Ht−1×Z

max
{ut+s(m)}s≥0

∫
Mt×Θ×Θ

σt (dm|θ)π
(
dθ|θ−

)
pt
(
dθ−

) ∞∑
s=0

βs


(∫

Θ

πs (dθs|θ) θs
)
ut+s (m)

−λwt,t+s (C (ut+s (m))− e)

 dµt−1dz

equation (68) must hold.

The same arguments show that we can maximize (67) period by period, thus, if we let

Ŵt+s (σt, pt) = max
{ut+s(m)}

∫
Mt×Θ×Θ

σt (dm|θ)π
(
dθ|θ−

)
pt
(
dθ−

)( ∫
Θ

πs (dθs|θ) θsut+s (m)

−λwt,t+s (C (ut+s (m))− e)

)
,

the optimal uwt+s (m) satisfies

C ′ (ut+s (m)) =
1

λwt,t+s

∫
Θ
p
(
dθ−

)
Eσ
[
θ|m, θ−

]
∈
[

θ1

λwt,t+s
,
θ|Θ|
λwt,t+s

]
,

which implies that Ŵt+s is uniformly bounded in t + s, σt, and pt and that we can re-

strict ut+s (m) to a compact set. The latter implies continuity of Ŵt+s by the Theorem

of the Maximum. Finally, since Ŵt+s is uniformly bounded, we have that Wt (σt, pt) =∑∞
s=0 β

sŴt+s (σt, pt) is also bounded and continuous.

The proof that Wt is convex in σt follows exactly the same steps as the in the iid case.

To see that Wt is minimized at an uninformative signal, let σ̄ be uninformative and note

that for any σ

Wt (σt, pt) = max
{ut+s(m)}s≥0

∫
Mt×Θ×Θ

σt (dm|θ)π
(
dθ|θ−

)
pt
(
dθ−

) ∞∑
s=0

βs


(∫

Θ

πs (dθs|θ) θs
)
ut+s (m)

−λwt,t+s (C (ut+s (m))− e)


≥ max

{ūt+s}s≥0

∫
Θ×Θ

π
(
dθ|θ−

)
pt
(
dθ−

) ∞∑
s=0

βs
[
θsūt+s − λwt,t+s (C (ūt+s)− e)

]
= Wt (σ̄t, pt)
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Let µ (A) =
∫

Θ σ (A|θ)π (dθ) for any Borel A of message set Mt and let ūwt+s be the optimal

solution when the strategy is uninformative, then

Wt (σt, pt)−Wt (σ̄t, pt)

= max
{ut+s(m)}s≥0

∫
Mt×Θ×Θ

σt (dm|θ)π
(
dθ|θ−

)
pt
(
dθ−

)
∞∑
s=0

βs

∫
Θ

πs (dθs|θ) θs

ut+s (m)− λwt,t+s (C (ut+s (m))− e)−
(
ūwt+s − λwt,t+s

(
C
(
ūwt+s

)
− e
))

The expression in square bracket is non-negative. Moreover, if σt is informative, then there

is a set of messages A with µ (A) > 0 such that |Eσ [θ|A]− 1| > 0. For all such messages

the expression in square brackets is strictly positive since ūwt does not satisfy the optimality

condition

C ′ (ut (m)) =
1

λwt,t
Eσ [θ|A]

for m ∈ A. Since µ (A) > 0, Wt (σt, pt) −Wt (σ̄t, pt) is strictly positive and, hence, any infor-

mative σ cannot be a minimum.

Similarly to the iid case, we replace the incentive constraint for the government Eσ
∑∞

t=s β
t−sθtut ≥

W̃t (µt) with

Eσ
∞∑
t=s

βt−sθtut ≥
∫
H̆t×Z

Wt

(
σt

(
·|h̆t, ·

)
, pt
(
ht−1

))
dµt−1dz (70)

and use standard techniques to derive the analogue of the Langrangian (17) for the persistent

case. The problem becomes

L = max
u,σ

Eσ
∞∑
t=0

β̄t [θtut − ζtC (ut)− χtWt] (71)

subject to

pt
(
θ|ht

)
=

∫
Θ σt

(
m|h̆t, θ

)
π
(
θ|θ−

)
pt−1

(
dθ−|ht−1

)
∫

Θ×Θ σt

(
m|h̆t, θ

)
π
(
dθ|θ−

)
pt−1

(
dθ−|ht−1

) ,
for all ht−1, h̆t and m, whenever defined, the incentive constraint

Eσ

[ ∞∑
t=0

βtθu

∣∣∣∣∣ θ−
]
≥ Eσ′

[ ∞∑
t=0

βtθu

∣∣∣∣∣ θ−
]
for all σ′, θ−, (72)

and

Eσ

[ ∞∑
t=0

βtθu

∣∣∣∣∣ v
]

= v, (73)
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for some non-negative sequences of Lagrange multipliers
{
β̄t, χt, ζt

}∞
t=0

with the property that

β̂t ≡ β̄t/β̄t−1 ≥ β with strict inequality if and only if (70) binds in period t.
Finally, we adapt the arguments in Fernandes and Phelan (2000) with minor modifications

and obtain a recursive representation of (71). In particular, we first rewrite the constranit

set in a recursive form by adding the promise-keeping constraint (34) for each type θ−. Since

it is no longer optimal for agents to always report their types truthfully, unlike in the case

studied in Fernandes and Phelan (2000), the agent’previous type, θ−, cannot be used as a

state variable. Instead, the recursive formulation keeps track of the planner’s posterion beliefs

about θ−. Therefore,

kt (v, p) = max
{u,w,σ}

σ(·|θ)∈∆(MΘ),p′∈∆(Θ)

∫
Θ
p
(
dθ−

)
Eσ
[
θu− ζtC (u) + β̂t+1kt+1

(
w, p′

)
|θ−
]
−χt

∫
Wtdz

(74)

subject to (34),

p′ (θ|m, z) =

∫
Θ σ (m|θ, z)π

(
θ|θ−

)
p
(
dθ−

)∫
Θ×Θ σ (m|θ, z)π

(
dθ|θ−

)
p
(
dθ−

)
whenever defined, the incentive constraint

Eσ [θu+ βw (·, ·, θ) |θ, z] ≥ Eσ′ [θu+ βw (·, ·, θ) |θ, z] for all z, θ, σ′. (75)

We now extend the arguments of the simple example in Section 4.1 to the persistent case.

As in the iid case, the assumption that the government can deviate at time t ≥ 1 only if it

deviates at t = 0 implies that the Lagrangian (71) can be written as

L = max
u,σ

Eσ

{
−
∞∑
t=0

βtζtC (ut)− χ0W0

}

subject to (72) and (73). Consider the subgame starting from t = 1. From past reports, the

planner has beliefs p ∈ ∆ (Θ). Also, as in the iid case, since the sustainability constraint does

not bind at t ≥ 1, the standard Revelation principle applies and the agent will report his type

truthfully (let mθ denote the message corresponding to type θ.) Thus, as in Fernandes and

Phelan (2000), from time t ≥ 2 we can replace the posterior of the planner with the agent’s

type. At time 1, let κ1 (v, p) be defined as

κ1 (v, p) = max
{u(m),w(m,θ)}m∈M1,θ∈Θ

∑
i

p
(
θ−i
)
E
[
−ζ1C (u) + βκ2 (w; θ) |θ−i

]
subject to

v
(
θ−i
)

=
∑
m,θ

π
(
θ|θ−i

) [
θu (mθ) + βw (mθ, θ) |θ−i

]
, ∀i
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and

θu (mθ) + βw (mθ, θ) ≥ θu
(
m′θ
)

+ βw
(
m′θ, θ

)
, ∀mθ,m

′
θ, θ.

The constraints are linear in (u,w), hence, if (u,w), κ2 (w; θ), and κ1 (v, p) solve the Bellman

equation for some (v, p), it is immediate to see that (x u, x w), xaκ2 (w, θ), and xaκ1 (v, p)

also solve the Bellman equation for (x v, p) , x > 0. Thus, κ1 (v, p) is homogenous in v. Also,

since the objective function is linear in p and the constraints are independent of p, κ1 (v, p) is

convex in p.

At time 0, for any reporting strategy σ ∈ ∆ (M0) , let κ0 (v;σ) be defined as

κ0 (v;σ) = max
{u(m),w(m,θ)}m∈M0,θ∈Θ

Eσ [−ζ0C (u) + βκ1 (w, p)]

subject to

p (θ|m) =
σ (m|θ)

∑
θ−∈Θ π

(
θ|θ−

)
π̄
(
θ−
)∑

(θ,θ−)∈Θ2 σ (m|θ)π
(
θ|θ−

)
π̄
(
θ−
)

whenever defined, (34), and (75), where π̄ is the planner’s initial prior. Again, constraints are

linear in (u,w) and κ1 (v, p) is homogenous in v, thus, κ0 (v;σ) will also be homogenous in v.

If σ = σun is uninformative and Pr (m) =
∑

θ∈Θ σ
un (m|θ)

∑
θ−∈Θ π

(
θ|θ−

)
π̄
(
θ−
)
> 0, then

p (θ|m) = σun (m|θ)
∑

θ−∈Θ π
(
θ|θ−

)
π̄
(
θ−
)

Pr (m)
=
∑
θ−∈Θ

π
(
θ|θ−

)
π̄
(
θ−
)
.

and the optimal allocation (uun,wun) is uun (m) = ū and wun (m, θ) = w̄ (θ) for all θ. Suppose

instead that σ is informative, then there exist m′, m′′, and θ such that pin (θ|m′) 6= pin (θ|m′′).
By convexity of κ1 in p,

Eσ
[
κ1

(
wun, pin

)]
≥ Eσ [κ1 (wun, pun)] .

Finally, if the distribution of types is such that no bunching is desirable under commitment,

the latter implies κ0 (v;σ) > κ0 (v;σun).

To prove Proposition 5 we need the following Lemma.

Lemma 17 Pr (uv,p (m, z)→ 0) → 1 and Pr (wv,p (m, z, θ)→ 0) → 1 as v → 0, for all m, θ,

and p.
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Proof. From (34) for all p we have

v
(
θ−
)

=

∫
Θ×Mt×Z

σv,p (dm|θ)π
(
dθ|θ−

)
[θuv,p (m, z) + βwv,p (m, z, θ)] dz

=

∫
Θ×Z

π
(
dθ|θ−

)
[θuv,p (m, z) + βwv,p (m, z, θ)] dz, m ∈ Supp (σv,p (·|θ))

≥
∫

Θ×Z
π
(
dθ|θ−

)
[θuv,p (m̃, z) + βwv,p (m̃, z, θ)] dz, ∀m̃

≥
∫
Z

[θuv,p (m̃, z) + βwv,p (m̃, z, θ)] dz, ∀m̃, θ.

≥ β

∫
Z
wv,p (m, z, θ) dz, ∀m, θ.

Here the fourth and fifth lines follow from nonnegativity of u and w, and the third line follows

from (75). Thus, limv→0
∫
Z wv,p (m, z, θ) dz = 0, ∀m, θ, p. Analogous arguments prove that

limv→0

∫
Z uv,p (m, z) dz = 0, ∀m, p. Since uv,p and wv,p are bounded below by 0, the latter

implies that Pr (uv,p (m, z)→ 0)→ 1 and Pr (wv,p (m, z, θ)→ 0)→ 1 for all m, θ, and p.

Proof of Proposition 5. Let σ̄ be any uninformative strategy. Let

ūv,p (m, z) =

∫
Θ×Mt

π
(
dθ|θ−

)
π̄
(
dθ−

)
σv,p (dm|θ) θuv,p (m, z)

and

w̄v,p (m, z, θ) =
1

β

∫
Mt

σv,p (dm|θ) [θuv,p (m, z) + βwv,p (m, z, θ)]− 1

β
θūv,p (m, z) .

Profile (ūv,p, w̄v,,p, σ̄) is incentive compatible and satisfies∫
Θ×Mt×Z

σv,p (dm|θ)π
(
dθ|θ−

)
[θūv,p (m, z) + βw̄v,p (m, z, θ)] dz

=

∫
Θ×Z

π
(
dθ|θ−

)
[θūv,p (m, z) + βw̄v,p (m, z, θ)] dz

=

∫
Θ×Z

π
(
dθ|θ−

)(
θūv,p (m, z) +

∫
Mt

σv,p (dm|θ) [θuv,p (m, z) + βwv,p (m, z, θ)]− θūv,p (m, z)

)
dz

=

∫
Θ×Mt×Z

σv,p (dm|θ)π
(
dθ|θ−

)
[θuv,p (m, z) + βwv,p (m, z, θ)] dz = v

(
θ−
)

Therefore the value of the objective function (74) evaluated at (uv,p,wv,p, σv,p) should be

higher than evaluated at (ūv,p, w̄v,p, σ̄) ,∫
Θ×Z

p
(
dθ−

)
Eσv,p

[
θuv,p − ζtC (uv,p) + β̂t+1kt+1 (wv,p, p

′)
−χtWt (σv,p, p)

∣∣∣∣ θ−] dz (76)

≥
∫

Θ×Z
p
(
dθ−

)
Eσv,p

[
θūv,p − ζtC (ūv,p) + β̂t+1kt+1

(
w̄v,p, p

′)− χtWt (σ̄, p) |θ−
]
dz
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From Lemma 17, Pr (uv,p (m, z)→ 0) → 1 and Pr (wv,p (m, z, θ)→ 0) → 1 for all m, θ, and p

and, thus, Pr (ūv,p (m, z)→ 0) → 1 and Pr (w̄v,p (m, z, θ)→ 0) → 1 for all m, θ, and p. Also,

similarly to the iid case, Lemma 3 in Acemoglu, Golosov and Tsyvinski (2008) implies that it

is suffi cient to randomize among only a finite number of points {uv,p, wv,p, σv,p}. Therefore,
for each p∫

Θ×Mt×Z
σv,p (dm|θ)π

(
dθ|θ−

)
p
(
dθ−

) [ θ (uv,p (m)− ūv,p (m))− ζt (C (uv,p (m))− C (ūv,p (m)))

+β̂t+1 (kt+1 (wv,p, p
′)− kt+1 (wv,p, p

′))

]
dz

−χt
∫
Z

(Wt (σv,p, p)−Wt (σ̄, p)) dz

converges to −χt
∫
Z (Wt (σv,p, p)−Wt (σ̄, p)) dz. Hence, in the limit equation (76) becomes

lim sup
v→0

χt

∫
Z

(Wt (σ̄, p)−Wt (σv,p, p)) dz ≥ 0,

for all p. Since Wt (σv,p, p) ≥Wt (σ̄, p) by Lemma 16 and χt > 0 by assumption,

Pr (Wt (σv,p, p)→Wt (σ̄, p)) → 1 as v → 0 for all p. By Lemma 16, Wt (σ, p) is contin-

uous in σ and achieves its minimum only at uninformative reporting strategies, therefore

Pr (σv,p → σ̄)→ 1 for all p.
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