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1 Introduction

How should government debt maturity be structured? Two seminal papers by Angeletos (2002)

and Buera and Nicolini (2004) argue that the maturity of government debt can be optimally

structured so as to completely hedge the economy against fiscal shocks. This research concludes

that optimal debt maturity is tilted long, with the government purchasing short-term assets and

selling long-term debt. These debt positions allow the market value of outstanding government

liabilities to decline when spending needs and short-term interest rates increase. Moreover,

quantitative exercises imply that optimal government debt positions, both short and long, are

large (in absolute value) relative to GDP. Finally, these positions are constant and do not need

to be actively managed since the combination of constant positions and fluctuating bond prices

delivers full insurance.

In this paper, we show that these conclusions are sensitive to the assumption that the

government can fully commit to fiscal policy. In practice, a government chooses taxes, spending,

and debt sequentially, taking into account its outstanding debt portfolio, as well as the behavior

of future governments. Thus, a government can always pursue a fiscal policy which reduces

(increases) the market value of its outstanding (newly-issued) liabilities ex-post, even though

it would not have preferred such a policy ex-ante. Moreover, the government’s future behavior

is anticipated by households lending to the government, which affects its ex-ante borrowing

costs. We show that once the lack of commitment by the government is taken into account, it

becomes costly for the government to use the maturity structure of debt to completely hedge

the economy against shocks; there is a tradeoff between the cost of funding and the benefit of

hedging.1 Our main result is that, under lack of commitment, the optimal maturity structure

of government debt is quantitatively nearly flat, so that the government owes the same amount

to the households at all future dates. Moreover, debt is actively managed by the government.

We present these findings in the dynamic fiscal policy model of Lucas and Stokey (1983).

This is an economy with public spending shocks and no capital in which the government chooses

linear taxes on labor and issues public debt to finance government spending. Our model features

two important frictions. First, as in Angeletos (2002) and Buera and Nicolini (2004), we assume

that state-contingent bonds are unavailable, and that the government can only issue real non-

contingent bonds of all maturities. Second, and in contrast to Angeletos (2002) and Buera and

Nicolini (2004), we assume that the government lacks commitment to policy.

The combinations of these two frictions leads to an inefficiency. The work of Angeletos

(2002) and Buera and Nicolini (2004) shows that, even in the absence of contingent bonds, an

optimally structured portfolio of non-contingent bonds can perfectly insulate the government

from all shocks to the economy. Moreover, the work of Lucas and Stokey (1983) shows that, even

if the government cannot commit to a path of fiscal policy, an optimally structured portfolio

1Our framework is consistent with an environment in which the legislature sequentially chooses a primary
deficit and the debt management office sequentially minimizes the cost of financing subject to future risks, which
is what is done in practice (see the IMF report, 2001).
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of contingent bonds can perfectly induce a government without commitment to pursue the ex-

ante optimally chosen policy ex-post.2 Even though each friction by itself does not lead to an

inefficiency, the combination of the two frictions leads to a non-trivial tradeoff between market

completeness and commitment in the government’s choice of maturity.

To get a sense of this tradeoff, consider the optimal policy under commitment. This policy

uses debt to smooth fiscal policy distortions in the presence of shocks. If fully contingent claims

were available, there would be many maturity structures which would support the optimal

policy. However, if the government only has access to non-contingent claims, then there is a

unique maturity structure which replicates full insurance. As has been shown in Angeletos

(2002) and Buera and Nicolini (2004), such a maturity structure is tilted in a manner which

guarantees that the market value of outstanding government liabilities declines when the net

present value of future government spending rises. If this occurs when short-term interest rates

rise—as is the case in quantitative examples with Markovian fiscal shocks—then the optimal

maturity structure requires that the government purchases short-term assets and sells long-term

debt. Because interest rate movements are small quantitatively, the tilted debt positions required

for hedging are large.

Under lack of commitment, such large and tilted positions are very costly to finance ex-

ante if the government cannot commit to policy ex-post. The larger and more tilted the debt

position, the greater a future government’s benefit from pursuing policies ex-post which change

bond prices to relax the government’s budget constraint. To relax its budget constraint, the

government can either reduce the market value of its outstanding liabilities by choosing policies

which increase short-term interest rates, or it can increase the market value of its newly issued

short-term liabilities by choosing policies which reduce short-term interest rates. Households

purchasing government bonds internalize ex-ante the fact that the government will pursue such

policies ex-post, and they therefore require higher interest rates to lend to the government, which

raises the cost of hedging for the government.

Our main result is that the problem of lack of commitment dominates that of lack of insur-

ance. As such, the optimal maturity structure is not tilted and is instead nearly flat so as to

ensure that the government will choose policies guaranteeing similar ex-post short-term interest

rates as it would prefer ex-ante. We present this result in a Markov Perfect Competitive Equi-

librium in which the government dynamically chooses its policies at every date as a function of

payoff relevant variables: the fiscal shock and its outstanding debt position at various maturi-

ties. Because a complete analysis of such an equilibrium in an infinite horizon economy with an

infinite choice of debt maturities is infeasible, we present our main result in three exercises.

In our first exercise, we show that optimal debt maturity is exactly flat in a three-period

example as the volatility of shocks goes to zero or as the persistence of shocks goes to one. In both

of these cases, a government under commitment financing a deficit in the initial date chooses a

2This result requires the government to lack commitment to taxes or to spending but not to both. See Rogers
(1989) for more discussion.
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negative short-term debt position and a positive long-term debt position. These positions are

large; for instance, as persistence goes to one, both positions approach infinity in absolute value.

However, a government under lack of commitment chooses an exactly flat debt maturity with

positive short-term and long-term debt position which equal each other. Even though a flat debt

maturity reduces hedging, it guarantees that the government ex-post will choose the same smooth

fiscal policy with constant consumption in the middle and final date which the government ex-

ante would prefer. If instead all debt were long-term, then a government in the middle date would

deviate from a smooth policy by reducing short-term consumption and increasing long-term

consumption, which raises short-term interest rates and benefits the government by reducing

the market value of its outstanding liabilities.3 If all debt were short-term, the government’s

deviation reduces short-term interest rates and benefits the government by increasing the market

value of its newly issued debt. Thus, only a flat debt maturity guarantees that ex-post short-term

interest rates coincide with the ex-ante preferred interest rates.

In our second exercise, we show that the insights of the three-period example hold approx-

imately in a quantitative finite horizon economy under fiscal shocks with empirically plausible

volatility and persistence. We consider a finite horizon economy since this allows the govern-

ment’s debt maturity choices to also be finite. We find that, despite having the ability to choose

from a flexible set of debt maturity structures, the optimal debt maturity is nearly flat, and

the main component of the government’s debt can be represented by a consol with a fixed

non-decaying payment at all future dates.

The intuition for this result is that a flatter debt maturity maximizes commitment and lowers

the funding costs of the government. For example, if households are primarily buying long-term

bonds ex-ante, then they appropriately anticipate that the government lacking commitment

will pursue future policies which increase future short-term interest rates, thereby diluting their

claims. In this case, households require a higher ex-ante interest rate (relative to commitment)

to induce them to lend long-term to the government. An analogous reasoning holds if households

are primarily buying short-term bonds ex-ante. It is clear that a flat debt maturity comes at a

cost of lower hedging. However, as has been shown in Angeletos (2002) and Buera and Nicolini

(2004), substantial hedging requires massive tilted debt positions. Due to their size, financing

these positions can be very expensive in terms of average fiscal policy distortions because of

the lack of commitment by the government. Moreover, under empirically plausible levels of

volatility of public spending, the cost of lack of insurance under a flat maturity structure is

small. Therefore, the optimal policy pushes in the direction of reducing average fiscal policy

distortions versus reducing the volatility of distortions, and the result is a nearly flat maturity

structure.4

3Our observation that long-term debt positions lead to lower fiscal discipline is consistent with other arguments
in the literature on debt maturity (see Missale and Blanchard, 1994; Missale et al., 2002; Chatterjee and Eyigungor,
2012; and Broner et al., 2013).

4It should be mentioned that the conclusion that the welfare benefit of smoothing economic shocks is small
relative to that of raising economic levels is more generally tied to the insight in Lucas (1987).
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In our final exercise, we consider an infinite horizon economy, and we show that optimal policy

under lack of commitment can be quantitatively approximated with active consol management,

so that the optimal debt maturity is again nearly flat. An infinite horizon analysis allows

us to more suitably capture quantitative features of optimal policy and to characterize policy

dynamics, but it also comes at a cost of not being able to consider the entire range of feasible

debt maturity policies by the government. We consider a setting in which the government has

access to two debt instruments: a non-decaying consol and a decaying perpetuity. Under full

commitment, the government holds a highly tilted debt maturity, where each position is large

in absolute value and constant. In contrast, under lack of commitment, the government holds a

negligible and approximately constant position in the decaying perpetuity, and it holds a positive

position in the consol which it actively manages in response to fiscal shocks. We additionally

show that our conclusion that optimal debt maturity is approximately flat is robust to the choice

of volatility and persistence of fiscal shocks, to the choice of household preferences, and to the

introduction of productivity and discount factor shocks.

We recognize that our policy prescription differs from current practice in advanced economies.

However, we note that the use of consols has been pursued historically, most notably by the

British government in the Industrial Revolution, when consols were the largest component of

the British government’s debt (see Mokyr (2011)). Moreover, the reintroduction of consols has

received some support in the press and in policymaking circles (e.g. Cochrane (2015), Leitner

and Shapiro (2013) and Yglesias (2013)). Our analysis provides an argument for consols based

on the limited commitment of the government to the future path of fiscal policy.

Related Literature

This paper is connected to several literatures. As discussed, we build on the work of Angeletos

(2002) and Buera and Nicolini (2004) by introducing lack of commitment.5 Our model is most

applicable to economies in which the risks of default and surprise in inflation are not salient, but

the government is still not committed to a path of deficits and debt maturity issuance. Arellano

et al. (2013) study a similar setting to ours but with nominal frictions and lack of commitment to

monetary policy.6 In contrast to Aguiar et al. (2015), Arellano and Ramanarayanan (2012), and

Fernandez and Martin (2015)—who consider small-open economy models with the possibility of

default—we focus on lack of commitment to taxation and debt issuance, which affects the path

of risk-free interest rates. This difference implies that, in contrast to their work, short-term debt

does not dominate long-term debt in minimizing the government’s lack of commitment problem.

5Additional work explores government debt maturity while continuing to maintain the assumption of full
commitment. Shin (2007) explores optimal debt maturity when there are fewer debt instruments than states.
Faraglia et al. (2010) explore optimal debt maturity in environments with habits, productivity shocks, and capital.
Lustig et al. (2008) explore the optimal maturity structure of government debt in an economy with nominal
rigidities. Guibaud et al. (2013) explore optimal maturity structure in a preferred habitat model.

6In addition, Alvarez et al. (2004) and Persson et al. (2006) consider problems of lack of commitment in an
environment with real and nominal bonds of varying maturity where the possibility of surprise inflation arises.
Alvarez et al. (2004) find that to minimize incentives for surprise inflation, the government should only issue real
bonds.
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In our setting, even if the government were to only issue short-term debt, the government ex-

post would deviate from the ex-ante optimal policy by pursuing policies which reduce short-term

interest rates below the ex-ante optimal level.7 ,8

More broadly, our paper is also tied to the literature on optimal fiscal policy which explores

the role of non-contingent debt and lack of commitment. A number of papers have studied opti-

mal policy under full commitment but non-contingent debt, such as Barro (1979) and Aiyagari

et al. (2002).9 As in this work, we find that optimal taxes respond persistently to economic

shocks, though in contrast to this work, this persistence is due to the lack of commitment by

the government as opposed to the ruling out of long-term government bonds. Other work has

studied optimal policy in settings with lack of commitment, but with full insurance (e.g., Krusell

et al., 2006 and Debortoli and Nunes, 2013). We depart from this work by introducing long-term

debt, which in a setting with full insurance can imply that the lack of commitment friction no

longer introduces any inefficiencies.

Our paper proceeds as follows. In Section 2, we describe the model. In Section 3, we define

the equilibrium and characterize it recursively. In Section 4, we show that the optimal debt

maturity is exactly flat in a three-period example. In Section 5, we show that the optimal debt

maturity is nearly flat in a finite horizon economy with unlimited debt instruments and in an

infinite horizon economy with limited debt instruments. Section 6 concludes and the Appendix

provides all of the proofs and additional results not included in the text.

2 Model

2.1 Environment

We consider an economy identical to that of Lucas and Stokey (1983) with two modifications.

First, we rule out state-contingent bonds. Second, we assume that the government cannot

commit to fiscal policy. There are discrete time periods t = {1, ...,∞} and a stochastic state

st ∈ S which follows a first-order Markov process. s0 is given. Let st = {s0, ..., st} ∈ St represent

a history, and let π
(

st+k|st
)

represent the probability of st+k conditional on st for t+ k ≥ t.

The resource constraint of the economy is

ct + gt = nt, (1)

where ct is consumption, nt is labor, and gt is government spending.

7In a small open economy with default, the risk-free rate is exogenous and the government’s ex-post incentives
are always to issue more debt, increasing short-term interest rates (which include the default premium) above the
ex-ante optimal level. For this reason, short-term debt issuance ex-ante can align the incentives of the government
ex-ante with those of the government ex-post.

8Niepelt (2014), Chari and Kehoe (1993a,b), and Sleet and Yeltekin (2006) also consider the lack of commitment
under full insurance, though they focus on settings which allow for default.

9See also Farhi (2010).
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There is a continuum of mass 1 of identical households that derive the following utility:

E

∞
∑

t=0

βt (u (ct, nt) + θt (st) v (gt)) , β ∈ (0, 1) . (2)

u (·) is strictly increasing in consumption and strictly decreasing in labor, globally concave, and

continuously differentiable. v (·) is strictly increasing, concave, and continuously differentiable.

Under this representation, θt (st) is high (low) when public spending is more (less) valuable.

In contrast to the model of Lucas and Stokey (1983), we have allowed gt in this framework

to be chosen by the government, as opposed to being exogenously determined. We allow for

this possibility to also consider that the government may not be able to commit to the ex-ante

optimal level of public spending. In our analysis, we also consider the Lucas and Stokey (1983)

environment in which there is no discretion over government spending, and we show that all of

our results hold.

Household wages equal the marginal product of labor (which is 1 unit of consumption),

and are taxed at a linear tax rate τt. bt+k
t R 0 represents government debt purchased by a

representative household at t, which is a promise to repay 1 unit of consumption at t + k > t,

and qt+k
t is its price at t. At every t, the household’s allocation

{

ct, nt,
{

bt+k
t

}∞

k=1

}

must satisfy

the household’s dynamic budget constraint

ct +
∞
∑

k=1

qt+k
t

(

bt+k
t − bt+k

t−1

)

= (1 − τt)nt + btt−1. (3)

Bt+k
t R 0 represents debt issued by the government at t with a promise to repay 1 unit of

consumption at t+ k > t. At every t, government policies
{

τt, gt,
{

Bt+k
t

}∞

k=1

}

must satisfy the

government’s dynamic budget constraint

gt +Bt
t−1 = τtnt +

∞
∑

k=1

qt+k
t

(

Bt+k
t −Bt+k

t−1

)

.10 (4)

The economy is closed and bonds are in zero net supply:

bt+k
t = Bt+k

t ∀t, k. (5)

Initial debt
{

Bk−1
−1

}∞

k=1
is exogenous.11 We assume that there exist debt limits to prevent

10We follow the same exposition as in Angeletos (2002) in which the government restructures its debt in every
period by buying back all outstanding debt and then issuing fresh debt at all maturities. This is without loss of
generality. For example, if the government at t − k issues debt due at date t of size Bt

t−k which it then holds to
maturity, then all future governments at date t − k + l for l = 1, ..., k − 1 will choose Bt

t−k+l = Bt
t−k, implying

that Bt
t−k = Bt

t−1.
11Our model implicitly allows the government to buy back the long-term bonds from the private sector. While

ruling out bond buybacks is interesting, 85 percent of countries conduct some form of bond buyback and 32
percent of countries conduct them on a regular basis (see the OECD report by Blommestein et al., 2012). Note
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Ponzi schemes:

Bt+k
t ∈

[

B,B
]

. (6)

We let B be sufficiently low and B be sufficiently high so that (6) does not bind in our theoretical

and quantitative exercises.

A key friction in this environment is the absence of state-contingent debt, since the value

of outstanding debt Bt+k
t is independent of the realization of the state st+k. If state-contingent

bonds were available, then at any date t, the government would own a portfolio of bonds
{{

Bt+k
t−1 |s

t+k
}

st+k∈St+k

}∞

k=0
, where the value of each bond payout at date t+ k would depend

on the realization of a history of shocks st+k ∈ St+k. In our discussion, we will refer back to

this complete market case.

The government is benevolent and shares the same preferences as the households in (2). We

assume that the government cannot commit to policy and therefore chooses taxes, spending,

and debt sequentially.

3 Markov Perfect Competitive Equilibrium

3.1 Definition of Equilibrium

We consider a Markov Perfect Competitive Equilibrium (MPCE) in which the government must

optimally choose its preferred policy at every date as a function of current payoff-relevant vari-

ables. The government takes into account that its choice affects future debt and thus affects

the policies of future governments. Households rationally anticipate these future policies, and

their expectations are in turn reflected in current bond prices. Thus, in choosing policy today,

a government anticipates that it may affect current bond prices by impacting expectations over

policy in the future.

Formally, let Bt ≡
{

Bt+k
t

}∞

k=1
and qt ≡

{

qt+k
t

}∞

k=1
. In every period t, the government

enters the period and chooses a policy {τt, gt,Bt} given {st,Bt−1}. Households then choose

an allocation
{

ct, nt,
{

bt+k
t

}∞

k=1

}

. An MPCE consists of: a government strategy ρ (st,Bt−1)

which is a function of (st,Bt−1); a household allocation strategy ω ((st,Bt−1) , ρt,qt) which is a

function of (st,Bt−1), the government policy ρt = ρ (st,Bt−1), and bond prices qt; and a set of

bond pricing functions
{

ϕk (st,Bt−1, ρt)
}∞

k=1
with qt+k

t = ϕk (st,Bt−1, ρt) ∀k ≥ 1 which depend

on (st,Bt−1) and the government policy ρt = ρ (st,Bt−1). In an MPCE, these objects must

satisfy the following conditions ∀t:

1. The government strategy ρ (·) maximizes (2) given ω (·), ϕk (·) ∀k ≥ 1, and the government

budget constraint (4),

furthermore, that even if bond buyback is not allowed in our environment, a government can replicate the buyback
of a long-term bond by purchasing an asset with a payout on the same date (see Angeletos, 2002).
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2. The household allocation strategy ω (·) maximizes (2) given ρ (·), ϕk (·) ∀k ≥ 1, and the

household budget constraint (3), and

3. The set of bond pricing functions ϕk (·) ∀k ≥ 1 satisfy (5) given ρ (·) and ω (·).

While we have assumed for generality that the government can freely choose taxes, spending,

and debt in every period, we also consider cases throughout the draft in which the government

does not have discretion in either setting spending or in setting taxes. These special cases

highlight how the right choice of government debt maturity can induce future governments to

choose the commitment policy.

3.2 Primal Approach

Any MPCE must be a competitive equilibrium. We follow Lucas and Stokey (1983) by taking

the primal approach to the characterization of competitive equilibria since this allows us to

abstract away from bond prices and taxes. Let

{

{

ct
(

st
)

, nt

(

st
)

, gt

(

st
)}

st∈St

}∞

t=0
(7)

represent a stochastic sequence, where the resource constraint (1) implies

ct
(

st
)

+ gt

(

st
)

= nt

(

st
)

. (8)

We can establish necessary and sufficient conditions for (7) to constitute a competitive equilib-

rium. The household’s optimization problem implies the following intratemporal and intertem-

poral conditions, respectively:

1 − τt
(

st
)

= −
un,t

(

st
)

uc,t (st)
and qt+k

t

(

st
)

=

∑

st+k∈St+k

βkπ
(

st+k|st
)

uc,t+k

(

st+k
)

uc,t (st)
. (9)

Substitution of these conditions into the household’s dynamic budget constraint implies the

following condition:

uc,t

(

st
)

ct
(

st
)

+ un,t

(

st
)

nt

(

st
)

+

∞
∑

k=1

∑

st+k∈St+k

βkπ
(

st+k|st
)

uc,t+k

(

st+k
)

Bt+k
t

(

st
)

= (10)

∞
∑

k=0

∑

st+k∈St+k

βkπ
(

st+k|st
)

uc,t+k

(

st+k
)

Bt+k
t−1

(

st−1
)

.
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Forward substitution into the above equation taking into account the absence of Ponzi schemes

implies the following implementability condition:

∞
∑

k=0

∑

st+k∈St+k

βkπ
(

st+k|st
)(

uc,t+k

(

st+k
)

ct+k

(

st+k
)

+ un,t+k

(

st+k
)

nt+k

(

st+k
))

= (11)

∞
∑

k=0

∑

st+k∈St+k

βkπ
(

st+k|st
)

uc,t+k

(

st+k
)

Bt+k
t−1

(

st−1
)

.

By this reasoning, if a stochastic sequence in (7) is generated by a competitive equilibrium, then

it necessarily satisfies (8) and (11). We prove in the Appendix that the converse is also true,

which leads to the below proposition that is useful for the rest of our analysis.

Proposition 1 (competitive equilibrium) A stochastic sequence (7) is a competitive equilib-

rium if and only if it satisfies (8) ∀st and ∃

{

{{

Bt+k
t−1

(

st−1
)

}∞

k=0

}

st−1∈St−1

}∞

t=0

which satisfy

(11) ∀st.

A useful corollary to this proposition concerns the relevant implementability condition in the

presence of state-contingent bonds, Bt+k
t |st+k, which provide payment at t + k conditional on

the realization of a history st+k.

Corollary 1 In the presence of state-contingent debt, a stochastic sequence (7) is a competitive

equilibrium if and only if it satisfies (8) ∀st and (11) for st = s0 given initial liabilities.

If state-contingent debt is available, then the satisfaction of (11) at s0 guarantees the satis-

faction of (11) for all other histories st, since state-contingent payments can be freely chosen so

as to satisfy (11) at all future histories st.

3.3 Recursive Representation of MPCE

We can use the primal approach to represent an MPCE recursively. Recall that ρ (st,Bt−1)

is a policy which depends on (st,Bt−1), and that ω ((st,Bt−1) , ρt,qt) is a household allo-

cation strategy which depends on (st,Bt−1), government policy ρt = ρ (st,Bt−1), and bond

prices qt, where these bond prices depend on (st,Bt−1) and government policy. As such, an

MPCE in equilibrium is characterized by a stochastic sequence in (7) and a debt sequence
{

{{

Bt+k
t

(

st
)

}∞

k=1

}

st∈St

}∞

t=0

, where each element depends only on st through (st,Bt−1), the

payoff relevant variables. Given this observation, in an MPCE, one can define a function hk (·)

hk (st,Bt) = βk
E [uc,t+k|st,Bt] (12)

for k ≥ 1, which equals the discounted expected marginal utility of consumption at t+ k given

(st,Bt) at t. This function is useful since, in choosing Bt at date t, the government must take
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into account how it affects future expectations of policy which in turn affect current bond prices

through expected future marginal utility of consumption.

Note furthermore that choosing {τt, gt,Bt} at date t is equivalent to choosing {ct, nt, gt,Bt}

from the perspective of the government, and this follows from the primal approach delineated

in the previous section. Thus, we can write the government’s problem recursively as

V (st,Bt−1) = max
ct,nt,gt,Bt







u (ct, nt) + θt (st) v (gt) + β
∑

st+1∈S

π (st+1|st)V (st+1,Bt)







(13)

s.t.

ct + gt = nt, (14)

uc,t

(

ct −Bt
t−1

)

+ un,tnt +

∞
∑

k=1

hk (st,Bt)
(

Bt+k
t −Bt+k

t−1

)

= 0, (15)

where (15) is a recursive representation of (10). Let f (st,Bt−1) correspond to the solution to

(13) − (15) given V (·) and hk (·). It therefore follows that the function f (·) necessarily implies

a function hk (·) which satisfies (12). An MPCE is therefore composed of functions V (·), f (·),

and hk (·) which are consistent with one another and satisfy (12) − (15).

4 Three-Period Example

We turn to a simple three-period example to provide intuition for our quantitative results.

This example allows us to explicitly characterize government policy both with and without

commitment, making it possible to highlight how dramatically different optimal debt maturity

is under the two scenarios.

Let t = 0, 1, 2 and define θL and θH with θH = 1 + δ and θL = 1 − δ for δ ∈ [0, 1). Suppose

that θ0 > θH , θ1 = θH with probability 1/2 and θ1 = θL with probability 1/2. In addition,

let θ2 = αθH + (1 − α) θL if θ1 = θH and θ2 = αθL + (1 − α) θH if θ1 = θL for α ∈ [0.5, 1).

Therefore, all of uncertainty is realized at date 1, with δ capturing the volatility of the shock

and α capturing the persistence of the shock between dates 1 and 2.

Suppose that the government lacks commitment to spending and that taxes and labor are

exogenously fixed to some τ and n, respectively, so that the government collects a constant

revenue in all dates.12 Assume that the government’s welfare can be represented by

E

∑

t=0,1,2

βt ((1 − ψ) log ct + ψθtgt) (16)

for ψ ∈ [0, 1]. We consider the limiting case in which ψ → 1 and we let β = 1 for simplicity.

There is zero initial debt and all debt is repaid in the final period.

12Such a situation would prevail for example if taxes are constant and the underlying preferences satisfy those
of Greenwood et al. (1988).
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In this environment, the government does not have any discretion over tax policy, and any

ex-post deviation by the government is driven by a desire to increase spending since the marginal

benefit of additional spending always exceeds the marginal benefit of consumption.

4.1 Full Commitment

This section shows analytically that a government with commitment chooses highly tilted and

large debt positions to fully insulate the economy from shocks.

The necessary and sufficient conditions for a competitive equilibrium in an economy with

non-contingent debt are expressed in Proposition 1. These conditions are more stringent from

those prevailing in an economy with state-contingent debt, which are expressed in Corollary

1. The key result in Theorem 1 of Angeletos (2002) proves that any allocation under state-

contingent debt can be approximately implemented with non-contingent debt. This implies that

there is no inefficiency stemming from the absence of contingent debt. Our example explicitly

characterizes these allocations to provide a theoretical comparison with those under lack of

commitment.

The analog of the implementability condition at date 0 in (10) can be written as a weak

inequality constraint (since it binds in the optimum):

c0 − n (1 − τ)

c0
+ E

(

B1
0

c1
+
B2

0

c2

)

≥ 0 (17)

which after substitution yields the analog of (11) (which also binds in the optimum):

c0 − n (1 − τ)

c0
+ E

(

c1 − n (1 − τ)

c1
+
c2 − n (1 − τ)

c2

)

≥ 0. (18)

Moreover, the date 1 implementability condition (11), which can also be written as a weak

inequality constraint, is:

c1 − n (1 − τ)

c1
+
c2 − n (1 − τ)

c2
≥
B1

0

c1
+
B2

0

c2
. (19)

Now let us consider an economy under complete markets. From Corollary 1, the only relevant

constraints on the planner in a complete market economy are the resource constraints and the

date 0 implementability constraint (18). It can be shown that the maximization of social welfare

under these constraints leads to the following optimality condition

ct =
1

θ
1/2
t

n (1 − τ)

3
E





∑

k=0,1,2

θ
1/2
k



 ∀t. (20)

Equation (20) implies that in the presence of full insurance, spending is independent of history

and depends only on the state θt, which takes on two possible realizations at t = 1, 2.
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The main result in Angeletos (2002) is that this allocation can be sustained even if state-

contingent bonds are not available. To see this, note that from Proposition 1, the absence of

state-contingent bonds leads to an additional constraint (19), which binds in the optimum. It

can be shown that this constraint does not impose any additional inefficiency. Namely, the

optimal solution under complete markets in (20) can be implemented under incomplete markets

by choosing appropriate values of B1
0 and B2

0 which simultaneously satisfy (19) (which holds

with equality) and (20). This implies that

(

θH
)1/2 (

n (1 − τ) +B1
0

)

+
(

αθH + (1 − α) θL
)1/2 (

n (1 − τ) +B2
0

)

= (21)
(

θL
)1/2 (

n (1 − τ) +B1
0

)

+
(

αθL + (1 − α) θH
)1/2 (

n (1 − τ) +B2
0

)

By some algebra, it can be shown that

B1
0 < 0 and B2

0 > 0.

Why does such a maturity structure provide full insurance? Consider the allocation at t = 1

and t = 2 under full insurance defined in (20). This allocation implies that the net present value

of the government’s primary surpluses is lower if the high shock is realized. This follows from

the fact that the left hand side of the government budget constraint (19) is lower if θ1 = θH

and is higher if θ1 = θL. In a complete market economy with state-contingent bonds, the

government is able to offset this increase in the deficit during the high shock with a state-

contingent payment it receives from households. In an economy without state-contingent debt,

such a state-contingent payment can be replicated with a capital gain on the government’s bond

portfolio. More specifically, the market value of the government’s outstanding bond portfolio at

t = 1 is represented by

B1
0 +

c1
c2
B2

0 , (22)

where we have substituted (9) for the one-period bond price. Since the shock is mean-reverting,

it follows from (20) that the one-period bond price at t = 1, c1/c2, is lower if the shock is high.

As such, if the government issued long-term debt at date 0 (B2
0 > 0), then the market value

of government bonds in (22) declines during the high shock. The reason that the government

purchases short-term assets at date 0 (B1
0 < 0) is to be able to buy back some of outstanding

long-term debt at date 1. If the date 1 fiscal shock is high and the government needs resources,

it will be able to buy this debt back at a lower price.

How large are the debt positions required to achieve full insurance? The below proposition

shows that these positions can be very high.

Proposition 2 (full commitment) The following characterizes the unique solution under full

commitment:
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1. (deterministic limit) As δ → 0,

B1
0 = −n (1 − τ)

θ
1/2
0 + 2

3
(2α− 1) + (1 − α)

1 − α
< 0 and (23)

B2
0 = n (1 − τ)

θ
1/2
0 + 2

3
− (1 − α)

1 − α
> 0. (24)

2. (full persistence limit) As α→ 1,

B1
0 → −∞ and B2

0 → ∞.

The first part of Proposition 2 characterizes the optimal value of the short-term debt B1
0

and the long-term debt B2
0 as the variance of the shock δ goes to zero. There are a few points

to note regarding this result. First, it should be highlighted that this is a limiting result. At

δ = 0, the optimal values of B1
0 and B2

0 are indeterminate. This is because there is no hedging

motive, and any combination of B1
0 and B2

0 which satisfies

B1
0 +B2

0 = 2n (1 − τ)
θ
1/2
0 − 1

3
(25)

is optimal, since the market value of total debt—which is what matters in a deterministic

economy—is constant across these combinations. Therefore, the first part of the proposition

characterizes the solution for δ arbitrarily small, in which case the hedging motive still exists,

leading to a unique maturity structure. Second, in the limit, the debt positions do not go to zero,

and the government maintains a positive short-term asset position and a negative long-term debt

position. This happens since, even though the need of hedging goes to zero as volatility goes

to zero, the volatility in short-term interest rates goes to zero as well. The size of a hedging

position depends in part on the variation in the short-term interest rate at date 1 captured by

the variation in c1/c2 in the complete market equilibrium. The smaller this variation, the larger

is the required position to generate a given variation in the market value of debt to generate

insurance. This fact implies that the positions required for hedging need not go to zero as

volatility goes to zero. As a final point, note that the debt positions can be large in absolute

value. For example, since θ0 > 1 and α ≥ 0.5, B1
0 < −n (1 − τ) and B2

0 > n (1 − τ), so that the

absolute value of each debt position strictly exceeds the disposable income of households.

The second part of the proposition states that as the persistence of the shock between dates

1 and 2 goes to 1, the magnitude of the debt positions chosen by the government explodes

to infinity, so that the government holds an infinite short-term asset position and an infinite

long-term debt position. As we discussed, the size of a hedging position depends in part on

the variation in the short-term interest rate at date 1 captured by the variation in c1/c2 in the

13



complete market equilibrium. As the persistence of the shock goes to 1, the variation in the

short-term interest rate at date 1 goes to zero, and since the need for hedging does not go to

zero, this leads to the optimality of infinite debt positions. Under these debt positions, the

government can fully insulate the economy from shocks since (20) continues to hold.

The two parts of Proposition 2 are fairly general and do not depend on the details of our

particular example. These results are a consequence of the fact that in any application of our

environment, fluctuations in short-term interest rates should go to zero as the volatility of

shocks goes to 0 or the persistence of shocks goes to 1. To the extent that completing the market

using maturities is possible, the reduced volatility in short-term interest rates is a force which

increases the magnitude of optimal debt positions required for hedging. In addition, note that

our theoretical result is consistent with the quantitative results of Angeletos (2002) and Buera

and Nicolini (2004). These authors present a number of examples in which volatility is not equal

to 0 and persistence is not equal to 1, yet the variation in short-term interest rates is very small,

and optimal debt positions are very large in magnitude relative to GDP.

4.2 Lack of Commitment

We now show that optimal policy changes dramatically once we introduce lack of commitment.

We solve for the equilibrium under lack of commitment by using backward induction. At date 2,

the government has no discretion in its choice of fiscal policy, and it chooses c2 = n (1 − τ)+B2
1 .

Now consider government policy at date 1. The government maximizes its continuation wel-

fare given B1
0 and B2

0 , the resource constraint, and the implementability condition (19). Note

that if n (1 − τ) +Bt
0 ≤ 0 for t = 1, 2, then no allocation can satisfy (19) with equality. There-

fore, such a policy is infeasible at date 0 and is never chosen. The lemma below characterizes

government policy for all other values of
{

B1
0 , B

2
0

}

.

Lemma 1 If n (1 − τ) +Bt
0 > 0 for t = 1, 2, the date 1 government under lack of commitment

chooses:

ct =
1

2

(

n (1 − τ) +Bt
0

θt

)1/2




∑

t=1,2

θ
1/2
t

(

n (1 − τ) +Bt
0

)1/2



 for t = 1, 2. (26)

If n (1 − τ) + Bt
0 ≤ 0 for either t = 1 or t = 2, the date 1 government can maximize welfare by

choosing ct arbitrarily close to 0 for t = 1, 2.

Given this policy function at dates 1 and 2, the government at date 0 chooses a value of c0

and
{

B1
0 , B

2
0

}

given the resource constraint and given (17) so as to maximize social welfare.

It is straightforward to see that the government never chooses n (1 − τ) + Bt
0 ≤ 0 for either

t = 1 or t = 2. In that case, ct is arbitrarily close to 0 for t = 1, 2, which implies that (18) is

violated since a positive value of c0 cannot satisfy that equation. Therefore, date 0 policy always

satisfies n (1 − τ) +Bt
0 > 0 for t = 1, 2 and (26) applies.
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We proceed by deriving the analog of Proposition 2 but removing the commitment assump-

tion. We conclude by discussing optimal debt maturity away from the limiting cases considered

therein.

4.2.1 Deterministic Limit

If we substitute (26) into the social welfare function (16) and date 0 implementability condition

(17), we can write the government’s problem at date 0 as:

max
c0,B1

0
,B2

0







−θ0c0 −
1

2
E





∑

t=1,2

θ
1/2
t

(

n (1 − τ) +Bt
0

)1/2





2




(27)

s.t.

c0 =
n (1 − τ)

3 − 2n (1 − τ) E





∑

t=1,2 θ
1/2
t

(

n (1 − τ) +Bt
0

)−1/2

∑

t=1,2 θ
1/2
t (n (1 − τ) +Bt

0)
1/2





. (28)

We can simplify the problem by substituting (28) into (27) and defining

κ =
(

n (1 − τ) +B2
0

)

/
(

n (1 − τ) +B1
0

)

, (29)

so that (27) can be rewritten as:

max
B1

0
,κ























−θ0
n(1−τ)

3−2n(1−τ)(n(1−τ)+B1
0)

−1
E

0

B

@

θ
1/2
1 + θ

1/2
2 κ−1/2

θ
1/2
1 + θ

1/2
2 κ1/2

1

C

A

−1
2

(

n (1 − τ) +B1
0

)

E

(

θ
1/2
1 + θ

1/2
2 κ1/2

)2























. (30)

Optimality of a Flat Maturity Structure Proposition 3 states that as the volatility of

the shock δ goes to zero, the unique optimal solution under lack of commitment admits a flat

maturity structure with B1
0 = B2

0 . It implies that for arbitrarily low levels of volatility, the

government will choose a nearly flat maturity structure, which is in stark contrast to the case of

full commitment described in Proposition 2. In that case, debt positions take on opposing signs

and are bounded away from zero for arbitrarily low values of volatility.

Proposition 3 (lack of commitment, deterministic limit) The unique solution under lack

of commitment as δ → 0 satisfies

B1
0 = B2

0 = n (1 − τ)
θ
1/2
0 − 1

3
=

1

2
B > 0 (31)
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When δ goes to 0, the cost of lack of commitment also goes to zero. The reason is that, as

in Lucas and Stokey (1983), the government utilizes the maturity structure of debt in order to

achieve the same allocation as under full commitment characterized in (20). More specifically,

while the program under commitment admits a unique solution for δ > 0, when δ = 0, any

combination of B1
0 and B2

0 satisfying

B1
0 +B2

0 = B

is optimal. Whereas the government with commitment can choose any such maturity, the

government under lack of commitment must by necessity choose a flat maturity in order to

achieve the same welfare.

Why is a flat maturity structure optimal as volatility goes to zero? To see this, let δ = 0,

and consider the incentives of the date 1 government. This government—which cares only about

raising spending—would like to reduce the market value of what it owes to the private sector

which from the intertemporal condition can be represented by

B1
0 +

c1
c2
B2

0 . (32)

Moreover, the government would also like to increase the market value of newly issued debt

which can be represented by
c1
c2
B2

1 . (33)

If debt maturity were tilted toward the long end, then the date 1 government would deviate

from a smooth policy so as to reduce the value of what it owes. For example, suppose that

B1
0 = 0 and B2

0 = B. Under commitment, it would be possible to achieve the optimum under

this debt arrangement. However, under lack of commitment, (26) implies that the government

deviates from the smooth ex-ante optimal policy by choosing c1 < c2. This deviation, which is

achieved by issuing higher levels of debt B2
1 relative to commitment, serves to reduce the value

of what the government owes in (32), therefore freeing up resources to be utilized for additional

spending at date 1.

Analogously, if debt maturity were tilted toward the short end, then the government would

deviate from a smooth policy so as to increase the value of what it issues. For example, suppose

that B1
0 = B and B2

0 = 0. As in the previous case, this debt arrangement would implement the

optimum under commitment. However, rather than choosing the ex-ante optimal smooth policy,

the date 1 government lacking commitment chooses policy according to (26) with c1 > c2. This

deviation, which is achieved by issuing lower levels of debt B2
1 relative to commitment, serves

to increase the value of what the government issues in (32), therefore freeing up resources to be

utilized for additional spending at t = 2.

It is only when B1
0 = B2

0 = B/2 that there are no gains from deviation. In this case, it

follows from (26) that B2
1 = B2

0 , and therefore any deviation’s marginal effect on the market
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value of outstanding debt is perfectly outweighed by its effect on the market value of newly

issued debt. For this reason, a flat debt maturity structure induces commitment.

Tradeoff between Commitment and Insurance More generally, what this example illus-

trates is that, whatever the value of δ, the government always faces a tradeoff between using the

maturity structure to fix its problem of lack of commitment and using the maturity structure

to insulate the economy from shocks. To see this, note that under lack of commitment, the date

1 short-term interest rate captured by c2/c1 is rising in B2
0 and declining in B1

0 and this follows

from (26). The intuition for this observation is related to our discussion above. As B2
0 rises, the

date 1 government’s incentives to reduce the market value of what it owes rises, which leads to

an increase in the date 1 short-term interest rate. As B1
0 rises, the date government’s incentives

to increase the market value of newly issued debt rises, which leads to a reduction in the date

1 short-term interest rate.13

To see how a flat maturity structure minimizes the cost of lack of commitment, it is useful to

consider how the value of c1/c2 differs under commitment relative to under lack of commitment.

Equation (20) implies that the solution under full commitment requires c1/c2 = (θ2/θ1)
1/2.

From (26), this can only be true under lack of commitment if B1
0 = B2

0 since in that case,

c1/c2 = (θ2/θ1)
1/2 ((n (1 − τ) +B1

0

)

/
(

n (1 − τ) +B2
0

))1/2
. Therefore, the short-term interest

rate at date 1 under lack of commitment can only coincide with that under full commitment

if the chosen debt maturity is flat under lack of commitment. This observation more generally

reflects the fact that, conditional on B1
0 = B2

0 , the government under full commitment and the

government under lack of commitment always choose the same policy at date 1. In this sense,

a flat debt maturity structure minimizes the cost of lack of commitment.

To see how a tilted maturity structure minimizes the cost of incomplete markets, let cHt and

cLt correspond to the values of c at date t conditional on θ1 = θH and θ1 = θL, respectively, under

full commitment. From (20), under full commitment it is the case that cH1 /c
L
1 =

(

θL/θH
)1/2

and cH2 /c
L
2 =

((

αθL + (1 − α) θH
)

/
(

αθH + (1 − α) θL
))1/2

. From (26), this can only be true

under lack of commitment if (21) is satisfied, requiring B1
0 6= B2

0 . In other words, the variance

in consumption at date 1 under lack of commitment can only coincide with that under full

commitment if the chosen debt maturity under lack of commitment is tilted in a similar fashion.

Thus, the government at date 0 faces a tradeoff. On the one hand, it can choose a flat

maturity structure to match the short-term interest rate between dates 1 and 2 which it would

prefer ex-ante under full commitment. On the other hand, it can choose a tilted maturity

structure to match the variance in consumption at dates 1 and 2 which it would prefer ex-ante

under full commitment. This is the key tradeoff between insurance and commitment that the

government considers at date 0.

13One natural implication of this observation is that the slope of the yield curve at date 0 is increasing in the
maturity of debt issued at date 0. Formally, starting from a given policy, if we perturb B1

0 and B2
0 so as to keep

the primary deficit fixed at date 0, one can show that q1
0/q2

0 is strictly increasing in B2
0 . This result is in line with

the empirical results of Guibaud et al. (2013) and Greenwood and Vayanos (2014).
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In Appendix A-2 we formally analyze this trade-off, through a second-order approximation

to welfare (30), in a neighborhood of the deterministic case (δ = 0). We find that, up to

this approximation, for any value of the variance δ > 0 the cost of lack of commitment is of

higher order importance than the cost of lack of insurance. Thus, the debt maturity should be

structured to fix the problem of lack of commitment, and should therefore be flat.

4.2.2 Full Persistence Limit

In the previous section, we considered an economy in which the volatility of the shock is arbi-

trarily low, and we showed that optimal policy is a flat debt maturity which minimizes the cost

of lack of commitment. In this section, we allow the volatility of the shock to take on any value,

and we consider optimal policy as the persistence of the shock α goes to 1.

Proposition 4 (lack of commitment, full persistence limit) The unique solution under

lack of commitment as α→ 1 satisfies

B1
0 = B2

0 = n (1 − τ)
θ
1/2
0 − 1

3
=

1

2
B > 0 (34)

This proposition states that as the persistence of the shock α goes to 1, the unique optimal

solution under lack of commitment admits a flat maturity structure with B1
0 = B2

0 . This means

that for arbitrarily high values of persistence, the government will choose a nearly flat maturity

structure, which is in stark contrast to the case of full commitment described in Proposition

2. In that case, debt positions are tilted and arbitrarily large in magnitude, since B1
0 diverges

to minus infinity and B2
0 diverges to plus infinity as α approaches 1. Given (20) which holds

under full commitment and (26) which holds under lack of commitment, this proposition implies

that under lack of commitment, the government no longer insulates the economy from shocks,

since the level of public spending at dates 1 and 2 is no longer responsive to the realization

of uncertainty at date 1. Therefore, as α goes to 1, the cost of lack of commitment remains

positive.

The reasoning behind this proposition is as follows. As persistence in the shock between

dates 1 and 2 goes to 1, the government at date 0 would prefer to smooth consumption as much

as possible between dates 1 and 2. From (26), the only way to do this given the incentives of

the government at date 1 is to choose a flat debt maturity with B1
0 = B2

0 . Clearly, choosing

B1
0 = B2

0 reduces hedging, since from (26) it implies that consumption, and therefore public

spending, is unresponsive to the shock. If the government were to attempt some hedging as under

commitment with B1
0 < 0 and B2

0 > 0, it would need to choose debt positions of arbitrarily large

magnitude, since the variation in the short-term interest rate at date 1 across states diminishes

as persistence goes to 1. From Lemma 1, such offsetting debt positions lead to very non-smooth

consumption and an increasing short-term interest rate between dates 1 and 2. Moreover, if

B1
0 ≤ −n (1 − τ), this leads the date 1 government to choose c1 and c2 arbitrarily close to 0,
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which violates (18) since a solution for c0 does not exist.

Since any hedging has an infinite cost in the limit, the date 0 government chooses to forgo

hedging altogether, and chooses a flat debt maturity which induces the date 1 government to

implement a smooth consumption path. While such a smooth consumption path could be im-

plemented with a number of maturity structures under commitment, under lack of commitment,

it can only be implemented with a flat debt position. In doing so, the government minimizes

the welfare cost due to lack of commitment.14

4.2.3 Discussion

The two limiting cases which we have described provide examples in which the optimal debt ma-

turity under lack of commitment is flat. This is because large and tilted debt maturities—which

would be optimal under full commitment—are very costly to finance under lack of commitment.

More generally, away from these limiting cases, any attempt to hedge by the government will

be costly in terms of commitment. To illustrate this insight, recall that at t = 1, the government

pursues policies which reduce the market value of outstanding debt and increase the market

value of newly issued debt. More specifically, the date 1 government is interested in relaxing

the implementability condition (19) by reducing the right hand side of (19) as much as possible.

This is why if B1
0 < (>)B2

0 , it chooses to set c1 < (>) c2. If B1
0 and B2

0 are very different, then

there is a greater scope for a deviation from a smooth policy at t = 1. For example, suppose

that B1
0 < B2

0 with c1 < c2 chosen according to (26). Clearly, if B1
0 were to be reduced by some

ǫ > 0 and B2
0 increased by ǫ, then (19) could be relaxed even further, and the date 1 government

would choose a policy which further reduces the right hand side of (19).

The greater scope for deviation ex-post is very costly from an ex-ante perspective. This is

because if the right hand side of (19) is lower, then the left hand side of (17) is also lower. There-

fore, by relaxing the implementability condition at date 1, the date 1 government is tightening

the implementability condition at date 0, which directly reduces the ex-ante welfare at date 0.

In both of the limiting cases we considered, the date 0 government is principally concerned

about the date 1 government’s lack of commitment to fiscal policy and it chooses a flat debt

maturity. In the case where the volatility of the shock goes to zero, the benefit of hedging goes

to zero, and for this reason, the government chooses a flat maturity structure to minimize the

cost of lack of commitment. A similar reasoning applies in the case where the persistence of the

shock goes to one, since the cost of any hedging becomes arbitrarily large. The optimal maturity

under lack of commitment is thus in stark contrast to the case of full commitment. In that case,

the government continues to hedge in the limit by choosing large and tilted debt positions.

14One can easily show using numerical methods that the results in Propositions 3 and 4 do not depend on the
details of our particular example. In any application of our environment, a smooth policy between dates 1 and
2 can only be guaranteed with a flat maturity structure. Moreover, as persistence goes to 1, any hedging has an
infinite cost in the limit. Our example allows us to show the optimality of a flat maturity theoretically since we
are able to solve for the date 1 policy in closed form using Lemma 1.
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A natural question concerns what happens to the optimal debt maturity under lack of com-

mitment once we move away from these limiting cases. This is a quantitative question which we

explore in detail in the following section. What our examples make clear is that the smaller the

volatility of the shock and the greater the persistence of the shock, the more likely it is to be

the case that optimal policy under lack of commitment admits a flat debt maturity structure.

This is because in those circumstances, utilizing the debt maturity to fix the problem of lack of

commitment is more important than utilizing the debt maturity to fix the problem of lack of

insurance.

5 Quantitative Exercise

We first consider a finite horizon economy. The advantage of a finite horizon over an infinite

horizon is that it is computationally feasible to allow the government to choose any arbitrary

maturity structure of debt. We then move to consider an infinite horizon economy with limited

debt instruments which allows us to more suitably capture the quantitative features of optimal

policy and to characterize policy dynamics. We show in these exercises that the optimal debt

maturity is nearly flat.

We use the same parameterization as in Chari et al. (1994). More specifically, we set the per

period payoff of households to

c1−σc
t − 1

1 − σc
+ η

(1 − nt)
1−σl − 1

1 − σl
+ θt

g
1−σg

t − 1

1 − σg
(35)

with σc = σl = σg = 1. η = 3.33 since this value implies that hours worked n = 0.23 under

full commitment. Each period is a year, and hence β = 0.9644 such that the riskless rate is 4

percent. We consider an economy with two shocks θL and θH following a symmetric first order

Markov process. The levels and persistence of the shocks imply that, under full commitment,

the average spending to output ratio is 0.18, the standard deviation of spending equals 7 percent

of average spending, and the autocorrelation of spending is 0.89. All these values match the

statistics and steady state values in Chari et al. (1994). We set θ0 = θH .

5.1 Finite Horizon Analysis

We begin our quantitative analysis in a finite horizon economy with t = 0, ..., T , where the

set of available maturities is unrestricted. In order to compare our results with those of the

three-period example of Section 4 in which a flat debt maturity (i.e., B1
0 = B2

0) is optimal, we

allow the government at every date t to issue a consol BL
t R 0 which represents a promise by the

government to pay a constant amount BL
t at each date t+ k for k = {1, ..., T − t}. In addition,

the government can issue a set of zero-coupon bonds {Bt+k
t }T−t−1

k=1 . It follows that the dynamic

budget constraint of the government (4) for t < T − 1 can be rewritten as:
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gt +Bt
t−1 +BL

t−1 = τtnt +

T−t−1
∑

k=1

qt+k
t

(

Bt+k
t −Bt+k

t−1

)

+ qL
t

(

BL
t −BL

t−1

)

,

where qL
t corresponds to the price of the consol. This budget constraint takes into account that,

at date t, the government: i) makes a flow payoff to households equal to Bt
t−1 +BL

t−1 according

to their holdings of one-period bonds and consols, ii) exchanges old zero-coupon bonds Bt+k
t−1 for

new zero-coupon bonds Bt+k
t at price qt+k

t , and iii) exchanges old consols BL
t−1 for new consols

BL
t at price qL

t . In this environment, a flat debt maturity—which we found to be optimal in the

theoretical example of Section 4—corresponds to one in which Bt+k
t = 0 ∀k.15

We choose initial conditions such that, under full commitment, the value of debt equals 2.1

percent of the net present value of output, out of which 28 percent has a maturity of less than

one year, and the rest is equally distributed across the remaining maturities.16 Our main results

are unaffected by our choice of initial conditions, as we show below. All debt must be repaid

in the terminal date. As in the theoretical example of Section 4, we let θT be deterministic

from the point of view of the government at T − 1, and it equals its expected value conditional

on the realization of θT−1. This modification implies that full hedging is possible under full

commitment, so that any inefficiencies in our setting arise purely from the lack of commitment.

All of our results continue to hold if θT is instead stochastically determined.

Table 1 summarizes the main results. Panel A describes our results in a three-period economy,

and Panel B describes our results in a four-period economy. In all cases, we display bond

positions as a fraction of GDP, and with some abuse of notation in the text the bond positions

B represent B normalized by GDP. Panel A describes the benchmark simulation under full

commitment. In this case, B1
0 = −10057 and BL

0 = 5120 (percent of GDP). These large

magnitudes are consistent with the analysis of Angeletos (2002) and Buera and Nicolini (2004).

In the case of lack of commitment, B1
0 = 0.07 and BL

0 = 2.32, so that optimal debt maturity is

nearly flat. This characterization is consistent with that of our theoretical three-period model

in Section 4 in which the optimal debt maturity is exactly flat.

In Panel B, we find similar results if the horizon is extended to a four-period economy. In

this circumstance, the optimal maturity structure at date 0 under commitment is indeterminate

since there are more maturities than shocks. If confined to a one-period bond and a consol, the

government chooses a one-period bond equal to -7317 percent of GDP and a consol equal to 2529

15At t = T − 1, the dynamic budget constraint is

gt + Bt
t−1 + BL

t−1 = τtnt + qL
t

“

BL
t − BL

t−1

”

(36)

since there are no zero-coupon bonds that can be issued. We can exclude T -period zero-coupon bonds BT
t because

these securities are redundant given the presence of the consol BL
t .

16These values are consistent with our parameterization of the infinite-horizon economy which matches the U.S.
data from 1988 to 2007 described in the next section. Given a discount factor β = 0.9644, a debt equal to 2.1
percent of the net present value of output corresponds to a debt to GDP ratio of roughly 60 percent in an infinite
horizon economy.
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percent of GDP. In contrast, under lack of commitment, B1
0 = −0.04, B2

0 = 0.00, and BL
0 = 2.41,

so that the optimal maturity structure is nearly flat. Moreover, the optimal government debt

maturity is even more flat at date 1, since B2
1 = 0.00 and BL

1 = 2.44.

In the second, third, and fourth columns of Table 1, we consider the robustness of our results

as we increase the volatility and decrease the persistence of shocks, since this moves us further

away from the limiting cases considered in Section 4. We find that the optimal debt maturity

under lack of commitment remains nearly flat if the standard deviation of shocks is 2 and 4

times larger than in the benchmark simulation. We find the same result if shocks have zero

persistence and are i.i.d.

In the last two columns of Table 1, we explore whether our results depend on the initial

tilt of the maturity structure. We consider an extreme case where the majority of the debt

consists of one-period bonds, so that these are 72 percent versus 28 percent of liabilities, and

the total amount of debt is unchanged. We find that under lack of commitment, the optimal

debt maturity at date 0 remains nearly flat both in the three-period and four-period models,

though it is less flat than the benchmark case since the one-period bond B1
0 is larger in absolute

value. This is in part because the initial debt position is itself highly tilted and there is a large

flattening out which occurs during the initial period. In the four-period model, the optimal debt

maturity becomes even more flat with time (date 1 policies involve a nearly flat maturity with

B2
1 = 0.05 and BL

1 = 2.59). In the last column, we consider the consequences of having initial

debt be exactly flat, and we find that the optimal maturity structure under lack of commitment

is nearly flat in all cases.

In the bottom of Panel B, we consider the consequences of restricting the set of maturities

to a one-year bond and a consol. We find that our main results continue to hold in this case and

that the optimal debt maturity is nearly flat even under these restricted set of debt instruments.

Our quantitative result from the finite horizon environment are in line with our theoretical

results. The optimality of a flat debt maturity emerges because of the combination of two

forces. First, substantial hedging requires massive tilted debt positions, as has been shown in

Angeletos (2002) and Buera and Nicolini (2004). Due to their size, financing these positions

can be very expensive in terms of average tax distortions because of the lack of commitment by

the government. Second, under empirically plausible levels of volatility of public spending, the

cost of lack of insurance under a flat maturity structure is small. Therefore, the optimal policy

pushes in the direction of reducing average tax distortions versus reducing the volatility of tax

distortions, and the result is a nearly flat maturity structure.

5.2 Infinite Horizon Analysis

The previous section suggested that quantitatively, a government lacking commitment should

principally issue consols in a finite horizon economy. We now consider the robustness of this

result in an infinite horizon. In an infinite horizon economy, the set of tradeable bonds is infinite,
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Table 1: Debt Positions in Finite-Horizon Economies
Benchmark Std. Dev. Std. Dev. i.i.d. Initial Debt Initial Debt

(x2) (x4) Tilted Short Flat

Panel A: Three-period model

Commitment
One-year Bond -10057.38 -9879.06 -9500.32 -597.68 -9941.93 -10039.59
Consol 5120.42 5030.48 4839.23 304.32 5063.44 5111.64

Lack of Commitment
One-year Bond 0.07 0.06 0.02 -0.10 -0.41 -0.02
Consol 2.32 2.37 2.47 2.68 2.78 2.40

Panel B: Four-period model

Commitment
One-year Bond -7317.73 -7189.12 -6914.89 -447.65 -7230.17 -7320.67
Consol 2529.06 2485.42 2392.17 154.97 2500.39 2530.03

Lack of Commitment (All Maturities)
Date 0 Policies

One-year Bond -0.04 -0.08 -0.10 -0.16 -0.45 -0.02
Two-year Bond 0.00 0.00 0.00 0.00 -0.01 0.00
Consol 2.41 2.47 2.55 2.65 2.73 2.40

Date 1 Policies
One-year Bond 0.00 -0.03 -0.10 -0.06 0.05 0.00
Consol 2.44 2.54 2.73 2.63 2.59 2.43

Lack of Commitment (One-year and Consol)
Date 0 Policies

One-year Bond -0.04 -0.08 -0.09 -0.16 -0.45 -0.02
Consol 2.41 2.47 2.55 2.64 2.72 2.40

Date 1 Policies
One-year Bond -0.02 -0.04 -0.10 -0.07 0.06 -0.02
Consol 2.45 2.55 2.73 2.63 2.59 2.45

Notes: The table reports the debt positions (% of GDP) in three-period (Panel A) and four-period (Panel B)

economies with and without commitment.
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and to facilitate computation, we reduce the set of tradeable bonds in a manner analogous to the

work of Woodford (2001) and Arellano et al. (2013). Namely, we consider an economy with two

types of bonds: a decaying perpetuity and a non-decaying consol. We allow for a non-decaying

consol since our analysis of the previous sections suggests that the optimal debt maturity is

nearly flat. We then consider whether or not the government makes use of the non-decaying

perpetuity in its financing strategy.

Let BS
t−1 R 0 denote the value of the coupon associated with the decaying perpetuity issued

by the government at t− 1. Moreover, let BL
t−1 R 0 denote the value of the coupon associated

with the non-decaying consol issued by the government at t − 1. It follows that the dynamic

budget constraint of the government becomes:

gt +BS
t−1 +BL

t−1 = τtnt + qS
t

(

BS
t − γBS

t−1

)

+ qL
t

(

BL
t −BL

t−1

)

. (37)

The only difference relative to (36) relates to the decaying perpetuity. Besides the consol, the

government exchanges non-decayed perpetuities γBS
t−1 for new perpetuities BS

t at price qS
t ,

where γ ∈ [0, 1).

We focus on an MPCE in which the value and policy functions are differentiable. We cannot

prove that this MPCE is unique, but we have verified that our computational algorithm converges

to the same policy when starting from a large grid of many different initial guesses.17 In our

benchmark simulation we let γ = 0, so that BS represents a one-year bond. We choose initial

debt positions to match the U.S. statistics for the period 1988-2007, with an average market

value of total debt of 60 percent of GDP, out of which 28 percent has maturity of less than one

year.18

5.2.1 Benchmark Simulation

Figure 1 displays the path of the one-year bond and the consol relative to GDP. The left panel

shows the path of these quantities under full commitment. From t ≥ 1 onward, the value of

BS is -2789 percent of GDP and the value of BL is 102 percent of GDP. The price of the

consol is significantly higher than that of the one-year bond, which explains why the position is

significantly lower; in fact, the market value of the consol is 2858 percent of GDP. These large

and highly tilted quantities are consistent with previous results under commitment. These debt

positions are not actively managed and are constant over time.

The right panel considers the economy under lack of commitment, and in this scenario debt

is actively managed from t ≥ 1 onward. Since it is actively managed, we plot the average value

of debt for each time period taken from 1000 simulations. Between t = 1 and t = 100, the

average value of BS is -0.01 percent of GDP and the average value of BL is 2.22 percent of

17Further details regarding our computational method are available in the Appendix Section A-3.
18This calculation ignores off-balance sheet liabilities, such as unfunded mandatory spending obligations which

are significantly more long-term. Taking this additional debt into account and changing initial conditions would
not change our main conclusion that the optimal debt maturity under lack of commitment is nearly flat.
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Figure 1: Debt Positions with and without Commitment

0 20 40 60 80
−3000

−2500

−2000

−1500

−1000

−500

0

500
Commitment

%
 o

f G
D

P

0 20 40 60 80
−1

−0.5

0

0.5

1

1.5

2

2.5

3
Lack of Commitment 

%
 o

f G
D

P

 

 

Consol One−year Bond

Notes: The figure shows the optimal debt positions over time with commitment (left panel)

and without commitment (right panel). For the case with lack of commitment we report

averages across 1000 simulations.

GDP.19 Therefore, the maturity structure of debt is approximately flat. Also, total amount of

debt maturing in one period (i.e. the value one-period bond plus the coupon payment of the

consol) is positive and equals 2.21 percent of GDP. At the same horizon, a government with

commitment would instead hold assets for a value of about 26 times the GDP.

Figure 2 considers an equilibrium sequence of shocks and it shows that BS is approximately

zero and constant in response to shocks, whereas BL is actively managed. More specifically,

the level of the consol rises (declines) during high (low) spending shocks. This pattern occurs

because the government runs larger deficits (surpluses) when spending is high (low). Therefore,

in contrast to the case of full commitment, the government actively manages its debt which

primarily consists of consols.

Figure 3 presents the path of policy under this sequence of shocks. Whereas taxes are nearly

constant under full commitment—which is consistent with the complete market results of Chari

et al. (1994)—they are volatile and respond persistently to shocks under lack of commitment.

More specifically, during periods of high (low) expenditure, taxes jump up (down) and continue

to increase (decrease) the longer the fiscal shock persists. Periods of high (low) expenditure

are periods with lower (higher) primary surpluses in the case of full commitment and lack of

commitment, but in contrast to the case of full commitment, under lack of commitment the

surplus responds persistently to shocks. This persistence is reflected in the total market value

of debt, which contrasts with the transitory response of the market value of debt in the case of

19We calculate the average starting from t = 1 rather than t = 0 since the simulation suggests that debt quickly
jumps towards its long-run average between t = 0 and t = 1.
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Figure 2: Active Debt Management
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The shaded areas indicate periods in which the fiscal shock is low.
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full commitment.20

We can calculate the welfare cost of lack of commitment in this setting. In particular,

we compare welfare under full commitment to that under lack of commitment and report the

welfare difference in consumption equivalent terms. We find that this welfare cost is 0.0038

percent. As a comparison, the welfare cost of imposing a balanced budget on a government

with full commitment is 0.04 percent, more than ten times larger.21 These numbers mean that

the welfare cost of lack of commitment is very low—as long as the maturity is chosen optimally

which implies a nearly flat maturity.

In addition, we can compute the welfare cost of imposing a completely flat maturity. To

do this, we compare welfare under lack of commitment when the government can freely choose

BS to that when BS is constrained to zero in all periods (so that debt issuance is exactly flat).

We find that the difference in welfare is less than 0.00001 percent. This negligible welfare cost

implies that optimal policy under lack of commitment can be approximated by constraining

debt issuance to consols.

5.2.2 Robustness: Alternative Debt Maturities

One limitation of our infinite horizon analysis is that we have restricted the horizon of the short-

term debt instrument. We now show that the optimal maturity structure is flat even if alternative

horizons are considered. Figure 4 displays the average values of BS and BL under commitment

and under lack of commitment for different values of γ (the decay rate of the perpetuity BS).22

Under full commitment, the optimal value of BL is positive and nearly unchanged by different

values of γ, whereas the optimal value of BS is negative, large, and decreasing in magnitude as

γ rises. The reason is that the higher is γ, the lower is the decay rate of BS and the higher

its price, implying that a smaller position is required for hedging. In contrast, under lack of

commitment, the average value of the perpetuity BS is zero regardless of the value of γ, and the

value of the consol BL is large and unaffected by γ. As such, the optimal debt maturity remains

flat, even when considering alternative debt maturities.

5.2.3 Robustness: Variance and Persistence of Fiscal Shocks

The quantitative results are consistent with the theoretical results from the three-period model

which considered the limiting cases as volatility declined to zero and persistence increased to one.

A natural question concerns the degree to which our results depend on the parameterization of

20Shin (2007) considers a model under full commitment and shows that if there are N possible states of the shock
but at any moment only N1 < N can be reached, then N1 bonds of different maturities can provide full insurance.
Such a model would require active management of debt positions. Our model under lack of commitment also
captures the active management of debt. This result, however, is not achieved by limiting the maturities available;
instead it follows from the tradeoff between hedging and the cost of borrowing.

21This corresponds to the cost of forcing a government to set BS
t = BS

−1 and BL
t = BL

−1 ∀t.
22For this exercise, the initial conditions are calculated for each γ so as to keep fixed the market value of initial

debt.
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Figure 3: Fiscal Policy without Commitment
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Figure 4: Debt Positions with Different Debt Maturities
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Notes: The figure shows the optimal debt positions with commitment (left column) and

without commitment (right column) under alternative values for the decay rate of the per-

petuity. For the case with lack of commitment we report averages across 1000 simulations

of 200 periods.

public spending shocks. To explore this question, we return to the benchmark environment with

γ = 0 and choose different values of volatility and persistence for the public spending shock.

Figure 5 displays the average values of BS and BL under different assumptions for shocks’

process. In the case of full commitment, debt positions are large and tilted independently of the

volatility and persistence of the shocks. Moreover, consistent with our three-period example,

debt positions become arbitrarily large as the autocorrelation of the shock goes to 1. In contrast,

the optimal maturity structure under lack of commitment is nearly flat for all volatilities and

persistence levels of public spending. We additionally find that the debt positions decrease

in size as volatility increases, and this occurs because the volatility of the marginal utility of

consumption increases, which facilitates hedging through the consol with a smaller position. As

such, our result is robust to changes in the stochastic characteristics of fiscal shocks.

5.2.4 Robustness: Additional Shocks

We have thus far considered an economy in which the shocks to the economy are fiscal. In

Table 2, we show that our main result—that the optimal debt maturity is flat—is robust to the

introduction of productivity and discount factor shocks. We consider each shock in isolation in

the first two columns. We then increase the number of realization of shocks in the third column

(so that the number of shock realizations exceeds the number of debt instruments), and in the

last two columns we consider combinations of different shocks.
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Figure 5: Debt Positions under Alternative Variances and Persistences of Fiscal Shocks
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commitment we report averages across 1000 simulations of 200 periods.
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Table 2: Debt Positions with Alternate Shocks
Commitment Lack of Commitment

Benchmark Benchmark 20 Shocks w/Fiscal Shock w/Prod. Shock

Panel A: Fiscal Shocks

One-year bond -2789.46 -0.005 -0.005 – –
Consol 101.76 2.22 2.23 – –

Panel B: Productivity Shocks

One-year bond -13.49 -0.007 -0.007 -0.028 –
Consol 2.71 2.21 2.24 2.15 –

Panel C: Discount Factor Shocks

One-year bond 0.00 0.000 0.000 0.062 -0.014
Consol 2.26 2.26 2.36 2.24 2.15

Notes: The table reports the average debt position (% of GDP) over 1000 simulations of 200 periods. The shock

processes follow discrete Markov-chains with 2 states (columns 1 and 2), 20 states (column 3), and 4 states (last

2 columns).

Panel A reports the debt position in our benchmark model with fiscal shocks θt and replicates

our results described in the previous sections. Panel B introduces a productivity shock in an

environment in which θt is constant and equal to its average value. More specifically, we replace

nt in the resource constraint (1) with Atnt, where At captures the productivity of labor and

therefore equals the wage. Let At =
{

AL, AH
}

follow a symmetric first-order Markov process

with unconditional mean equal to 1. We choose AL, AH , and the persistence of the process so

that, as in Chari et al. (1994), the standard deviation of At equals 0.04 and the autocorrelation

equals 0.81. The first column of Panel B shows that, consistently with the results in Buera and

Nicolini (2004), under commitment the average debt positions are tilted, though the magnitudes

of debt are smaller than those under fiscal shocks. In the second column, it is clear that optimal

debt positions under lack of commitment are nearly flat.

Panel C of Table 2 introduces a discount factor shock in an economy in which θt and At are

constant and equal to the average value. We replace the utility function in (35) with

ζt

(

c1−σc
t − 1

1 − σc
+ η

(1 − nt)
1−σl − 1

1 − σl
+ θt

g
1−σg

t − 1

1 − σg

)

for some ζt =
{

ζL, ζH
}

which follows a first-order Markov process. ζt represents a discount

factor shock which can impact the variance of short term interest rates without affecting the

time series properties of other variables in the model. As discussed in Angeletos (2002) and Buera

and Nicolini (2004), the large size of the debt positions required for hedging under commitment is

driven in part by the fact that fluctuations in short-term interest rates are small in the benchmark

economic environment. The introduction of the discount factor shock allows us to increase the
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volatility of interest rates and determine whether the optimality of a flat debt maturity in our

setting depends on the presence of low interest rate volatility.

To that end, we choose the stochastic properties of ζt so that under commitment, the mean

of the one-year interest rate is 4 percent, its standard deviation is 0.73 percent of the mean,

and its persistence is 0.78, which matches the properties of the real one-year interest rate in the

United States from 1988 to 2007.23 The first column of Panel C shows that, in this situation,

the maturity structure is exactly flat under commitment, and this is because optimal policy is

smooth from date 1 onward. As such, a flat debt maturity allows the market value of the consol

to fluctuate one-to-one with the present value of future surpluses. Analogous logic implies that

optimal debt maturity is flat under lack of commitment, where a flat maturity also mitigates

the commitment problem.24

In the third column of Table 2, we increase the number of shocks so that these exceed

the number of debt instruments. In each panel, we extend the environment by allowing the

shocks to take on 20 realizations that approximate a Gaussian AR(1) process. This exercise is

performed while preserving the mean, standard deviation, and persistence of the shocks. We

find that our results are unchanged, and that the optimal debt maturity remains flat under lack

of commitment.

The last two columns of Table 2 consider our results in environments with two types of

shocks, where we take all combinations of the shocks previously analyzed. This allows us to

analyze situations where the government may have greater incentives to hedging, even under

lack of commitment. For instance, the combination of discount factor shocks with either fiscal

or productivity shocks means that the fluctuations in the government’s financing needs come

hand in hand with larger fluctuations in short-term interest rates. These larger interest rate

fluctuations imply that hedging does not require very large debt positions and is therefore less

expensive. In fact, in all the situations considered, we find that the maturity is slightly more

tilted, but it remains nearly flat.

In Panel B, we consider an environment with fiscal and productivity shocks, where we set

Corr(θt, At) = −0.33 so that our simulation matches the correlation between TFP and primary

deficits in the U.S from 1988 to 2007.25 We find that the optimal debt maturity continues to

be approximately flat, though it is a little more tilted in comparison to the case in which the

impact of each shock is assessed separately.

In Panel C, we consider an environment with fiscal shocks and discount factor shocks. We

set Corr(θt, ζt) = −0.51 so that our simulation matches the correlation between real interest

rates and primary deficits in the U.S. from 1988 to 2007. In this case, the maturity structure is

23The real interest rate is calculated as the difference between the nominal one-year rate and realized inflation
(GDP deflator).

24Note that because the government lacks commitment to both spending and taxes, a flat debt maturity does
not completely solve the government’s lack of commitment problem in this case (as it would if there was lack of
commitment to taxes only).

25The series of the TFP shock and the primary deficit are taken from the World Penn Table and the U.S. Office
of Management and Budget, respectively.
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Table 3: Debt Positions with Commitment to Spending (Lucas and Stokey (1983) model)

Commitment Lack of Commitment

Benchmark Benchmark 20 Shocks

Panel A: Fiscal Shocks

One-year bond -2789.32 -0.006 -0.008
Consol 101.76 2.22 2.21

Panel B: Productivity Shocks

One-year bond -90.06 -0.062 -0.060
Consol 5.54 2.24 2.31

Panel C: Discount Factor Shocks

One-year bond 0 0 0
Consol 2.27 2.27 2.37

Notes: The table reports the average debt position (% of GDP) over 1000 simulations

of 200 periods, for a model with exogenous public expenditure. The shock processes

follow discrete Markov-chain with 2 states (columns 1 and 2) or 20 states (column 3).

In the model with fiscal shocks (Panel A), public expenditure takes the same values as

in the model with endogenous spending of Table 2 under commitment. With different

shocks (Panels B and C), public expenditure is fixed at the average of the values taken

in the corresponding endogenous spending models under commitment.

slightly more tilted than in the case which excludes the discount factor shock (the one-year bond

is 0.068 percent of GDP), but the optimal debt maturity remains essentially flat.26 In the final

column of Panel C, we consider an environment with a productivity and discount factor shocks,

and we set Corr(At, ζt) = −0.43, so that our simulation matches the correlation between total

factor productivity and real interest rates. We find that the maturity is slightly more tilted than

in the case which excludes the discount factor shock, but it remains approximately flat.

5.2.5 Robustness: Commitment to Spending

We have so far considered an economy in which the government lacks commitment to taxes,

spending, and debt issuance. Instead, in the economy of Lucas and Stokey (1983), public

spending is exogenous and can therefore not be chosen by the government. Table 3 shows that

our results hold, even if the government is able to commit to the level of spending, as is the case

in their model. Under commitment the optimal maturity structure is tilted, and the optimal

tilt is extremely sensitive to the particular type of shocks affecting the economy. Instead, with

lack of commitment the maturity remains nearly flat under all types of shocks considered.

26The optimal debt maturity is tilted to the short end in this case since there is a negative correlation between
interest rates and the government’s financing needs. We have also explored the extent to which one can put an
upper bound on the degree of tilt in the government’s debt maturity. For example, in the case when interest rates
and fiscal shocks are perfectly positively correlated, the value of the one-year bond is -0.23 and the consol is 2.14
percent of GDP, so that even in this extreme case, the bulk of public debt is in the consol.
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5.2.6 Robustness: Alternate Preferences

We now consider the robustness of our results to other preference specifications. The top panel

in Figure 6 considers the consequences of altering the coefficient of relative risk aversion σc. In

the case of full commitment, lower values of σc generate larger and more tilted debt positions.

A lower value of σc reduces the volatility in the marginal utility of consumption and therefore

makes it more difficult to achieve significant hedging with smaller positions. In the case of

lack of commitment, a similar force emerges since both the tilt and size of debt positions rise.

Note however that, quantitatively, the maturity structure remains nearly flat as σc declines. The

reason is that even though more tilted positions are useful for hedging, more tilted positions also

exacerbate the problem of lack of commitment, so that the best way to deal with this problem

is to still choose a nearly flat maturity structure.

The exercise in the bottom panel considers the equilibrium under different values of σl, which

relates to the curvature of the utility function with respect to leisure. We find that for all values

of σl below 2, the optimal debt maturity under lack of commitment is essentially flat. The

effect of higher value of σl is two-fold. On the one hand, higher values of σl imply that it is

socially costly to have volatility in labor supply, and consequently, oscillations in consumption

play a greater role in absorbing public spending shocks. This force increases the volatility in the

marginal utility of consumption and implies that smaller debt positions are required to generate

hedging. On the other hand, higher values of σl also imply that it is more beneficial to engage

in hedging as a way of smoothing out labor market distortions. This force implies larger debt

positions since the value of hedging increases. In the case of full commitment, we find that,

quantitatively, the first force dominates since debt positions become less tilted as σl increases.

In the case of lack of commitment, we find that the second force dominates since the consol

position become larger as σl increases, which facilitates hedging. It continues to be the case

throughout, however, that the debt maturity is nearly flat under lack of commitment.

6 Conclusion

The current literature on optimal government debt maturity concludes that the government

should fully insulate itself from economic shocks. This full insulation is accomplished by choosing

a maturity heavily tilted towards the long end, with a constant short-term asset position and

long-term debt position, both positions extremely large relative to GDP. In this paper, we show

that these conclusions strongly rely on the assumption of full commitment by the government.

Once lack of commitment is taken into account, then full insulation from economic shocks

becomes impossible; the government faces a tradeoff between the benefit of hedging and the

cost of funding. Borrowing long-term provides the government with a hedging benefit since the

value of outstanding government liabilities declines when short-term interest rates rise. However,

borrowing long-term lowers fiscal discipline for future governments unable to commit to policy,
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Figure 6: Debt Positions under Alternative Preferences
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Notes: The figure shows the optimal debt positions with commitment (left column) and

without commitment (right column) under alternative values for the risk aversion (first row)

and curvature of leisure (second row). For the case with lack of commitment we report

averages across 1000 simulations of 200 periods.
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which leads to higher future short-term interest rates. We show through a series of exercises

that the optimal debt maturity structure under lack of commitment is nearly flat, with the

government actively managing its debt in response to economic shocks. Thus, optimal policy

can be approximately achieved by confining government debt instruments to consols.

Our analysis leaves several interesting avenues for future research. First, our framework

follows Angeletos (2002) and Buera and Nicolini (2004) and therefore ignores nominal bonds and

the risk of surprise inflation. Taking this issue into account is important since it incorporates

a monetary authority’s ability to change the value of outstanding debt in response to shocks,

and it also brings forward the issues of dual commitment to monetary and fiscal policy. We

believe that our work is a first step in studying this more complicated problem. Second, our

framework does not incorporate investment and financing frictions which can be affected by

the supply of public debt. It has been suggested that short-term government debt is useful in

alleviating financial frictions (see e.g. Greenwood et al., 2015), and an open question regards how

important this friction is quantitatively relative to the lack of commitment. Finally, our analysis

ignores heterogeneity and the redistributive motive for fiscal policy (see e.g. Werning, 2007 and

Bhandari et al., 2013). An interesting question for future research involves how incentives for

redistribution can affect the maturity structure of public debt.
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Appendix

A-1 Proofs

Proof of Proposition 1

The necessity of these conditions is proved in the text. To prove sufficiency, let the gov-

ernment choose the associated level of debt

{

{{

Bt+k
t

(

st
)

}∞

k=1

}

st∈St

}∞

t=0

and a tax sequence
{

{

τt
(

st
)}

st∈St

}∞

t=0
which satisfies (9). Let bond prices satisfy (9). From (11), (10) is satisfied,

which given (8) implies that (3) and (4) are satisfied. Therefore household optimality holds and

all dynamic budget constraints are satisfied along with the market clearing, so the equilibrium

is competitive.�

Proof of Corollary 1

Let us consider an environment with state-contingent debt. Specifically, let Bt+k
t |st+k

(

st
)

correspond to a state-contingent bond purchased at date t and history st with a payment con-

tingent on the realization of history st+k at t + k. The analog in this case to condition (9)

is

1 − τt
(

st
)

= −
un,t

(

st
)

uc,t (st)
and qt+k

t |st+k
(

st
)

=
βπ
(

st+k|st
)

uc,t+k

(

st+k
)

uc,t (st)
, (A-1)

and the analog to (11) is:

∞
∑

k=0

∑

st+k∈St+k

βkπ
(

st+k|st
)(

uc,t+k

(

st+k
)

ct+k

(

st+k
)

+ un,t+k

(

st+k
)

nt+k

(

st+k
))

= (A-2)

∞
∑

k=0

∑

st+k∈St+k

βkπ
(

st+k|st
)

uc,t+k

(

st+k
)

Bt+k
t−1 |s

t+k
(

st−1
)

.

It is therefore necessary that (7) satisfy (8) ∀st and (11) for st = s0, where the last condition is

identical to (A-2) for st = s0. To prove sufficiency, let the government choose one-period state

contingent debt Bt
t−1|s

t
(

st−1
)

so that the right hand side of (A-2) equals uc,t

(

st
)

Bt
t−1|s

t
(

st−1
)

and choose
{

{

Bt
t−1|s

t
(

st−1
)}

st∈St

}∞

t=0
so as to satisfy (A-2) ∀st. Let τt

(

st
)

and qt+k
t |st+k

(

st
)

satisfy (A-1). Analogous arguments to those in the proof of Proposition 1 imply that the

equilibrium is competitive.�

Proof of Proposition 2.

The debt positions are derived from the combination of (19) and (20). Let cHt and cLt

correspond to the values of c at date t conditional on θ1 = θH and θ1 = θL, respectively. Using
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this notation, (19) implies

B1
0 =

2
(

cH2 − cL2
)

− n (1 − τ)

(

cH2
cH1

−
cL2
cL1

)

cH2
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, and
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)

− n (1 − τ)

(
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cH2

−
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cL2

)

cH1
cH2

−
cL1
cL2

which after substitution of (20) yields:
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(A-3)
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where we have appealed to the fact that θH > θL and 2E





1
3

∑

k=0,1,2

θ
1/2
k



 > θH . To prove the

first part, note that all of the terms in the numerator and in the denominator of A-3) and (A-4)

go to zero as δ goes to zero. Application of L’Hopital’s implies (23) and (24). To prove the

second part, consider the value of the two terms in (A-3) and (A-4) as α→ 1. The denominator

in (A-3) and (A-4) approaches 0. In contrast, the numerator in (A-3) and (A-4) approaches

2
(

1 −
(

θH/θL
)1/2

)

< 0. Therefore, B1
0 → −∞ and B2

0 → ∞.�

Proof of Lemma 1

Equation (26) follows from the government’s first order conditions and (19). If n (1 − τ) +

B1
0 ≤ 0 and n (1 − τ) + B2

0 > 0, then (19) can be satisfied with equality by choosing c1 and c2

arbitrarily close to 0. The same argument holds if n (1 − τ) +B1
0 > 0 and n (1 − τ) +B2

0 ≤ 0.�

Proof of Proposition 3

From our discussion following Lemma 1, the optimal values of Bt
0 satisfy Bt

0 > −n (1 − τ)
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for t = 1, 2 and this is true ∀δ ∈ [0, 1). Moreover, given (18), which binds, and (26), the optimal

values of Bt
0 satisfy Bt

0 < ∞ for t = 1, 2, since otherwise c1 and c2 are arbitrarily large and the

government achieves arbitrarily low welfare. This is also true ∀δ ∈ [0, 1). This implies that the

solution to (30) must admit an interior solution.

Consider the optimum characterized by the first order conditions to (30) with respect to

B1
0 and κ. By some algebra, combination of these first order conditions implies the following

optimality condition:

d

dκ
log E

(

θ
1/2
1 + θ

1/2
2 κ−1/2

θ
1/2
1 + θ

1/2
2 κ1/2

)

+
d

dκ
log E

(

θ
1/2
1 + θ

1/2
2 κ1/2

)2
= 0. (A-5)

Let Ω (δ) correspond to the set of κ satisfying (A-5) given δ. Because the left hand side of (A-5)

is continuous in κ ∈ [0,∞] and δ ∈ [0, 1), Ω (δ) is closed and the set must contain all of its limit

points. Therefore, limδ→0 Ω (δ) = Ω (0). Consider the solution to (A-5) if δ = 0. In that case,

(A-5) can be rewritten as

d

dκ
log

(

1 + κ−1/2

1 + κ1/2

)

+
d

dκ
log
(

1 + κ1/2
)2

= 0

which simplifies to
κ−3/2

1 + κ−1/2
=

κ−1/2

1 + κ1/2

which holds if and only if κ = 1. Therefore, if δ = 0, the unique κ under lack of commitment

satisfies κ = 1. By continuity, this coincides with the solution as δ → 0. To complete the

proof, note that the value of B1
0 and B2

0 satisfying (31) implies from (26) that (20) is satisfied.

Therefore, the same welfare as under full commitment is achieved, which must be optimal since

the welfare under lack of commitment is weakly bounded from above by welfare under full

commitment. Moreover, there cannot exist any other policy with B1
0 = B2

0 which yields higher

welfare, since from (26), such a policy cannot satisfy (20).

To complete the proof consider the first order condition to (30) with respect to B1
0 given

κ = 1
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(A-6)

By some algebra (A-6) yields (31).�

Proof of Proposition 4

Analogous steps to those of the proof of Proposition 3 can be utilized to show that (34) must

hold as α→ 1.�
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A-2 Welfare Cost of Lack of Commitment and Insurance

The analytical example in Section 4 also allows us to compare the welfare cost of lack of com-

mitment to the welfare cost of lack of insurance. In particular, it is useful to consider the welfare

cost of a suboptimal maturity structure in settings with and without lack of commitment, and

to see whether the maturity structure matters more in one setting relative to another.

Formally, let us compare the problem of the government under full commitment—where the

government is only concerned with hedging—to the problem of the government under lack of

commitment—where the government is concerned with both hedging and lack of commitment.

In these two environments, let us consider how important it is to choose the optimal debt

maturity. We can show that, for low values of volatility, choosing the right maturity structure

to address the lack of commitment is an order of magnitude more important than choosing the

maturity to address lack of insurance.

Formally, note that (10) implies that government welfare in our model (16) can be written as

a function of four variables: B1
0 , B2

0 , B2
1 conditional on θ1 = θH , and B2

1 conditional on θ1 = θL.

Now suppose that a government were forced to choosing some B1
0 and B2

0 , but it could freely

choose B2
1 conditional on the shock. A government under full commitment would choose the

optimal stochastic value of B2
1 to maximize ex-ante (date 0) welfare. In contrast, a government

under lack of commitment would choose the optimal stochastic value of B2
1 to maximize ex-post

(date 1) welfare. With this observation in mind, let

WC (x) for x =
{

B1
0 +B2

0 , B
2
0 −B1

0 , δ
}

(A-7)

correspond to the value of government welfare under commitment conditional on specific values

of B1
0 + B2

0 , B2
0 − B1

0 , and δ, where B2
1 is optimally chosen by a fully committed government.

This representation is feasible since B1
0 +B2

0 and B2
0 −B

1
0 uniquely pin down B1

0 and B2
0 . Define

WN (x) analogously for the case of lack of commitment, where B2
1 is now optimally chosen by

a government without commitment. Given our discussion in the text, WC (x) = WN (x) if

B2
0 − B1

0 = 0. In other words, a flat debt maturity minimizes the cost of lack of commitment

since both governments choose the same values of B2
1 .

Let

xC =

{

B, 2n (1 − τ)

(

θ
1/2
0 + 2

3

α

1 − α
+ 1

)

, 0

}

and xN =
{

B, 0, 0
}

for B = 2n (1 − τ)
(

θ
1/2
0 − 1

)

/3. Embedded within xC and xN are the optimal values of B1
0

and B2
0 conditional on δ → 0 under commitment and lack of commitment, and this follows from

Propositions 2 and 3. Therefore, WC
(

xC
)

and WN
(

xN
)

represent welfare under the optimal

choices of B1
0 and B2

0 given δ → 0 in the cases of full commitment and lack of commitment,

respectively.

Using this notation, we can evaluate the sensitivity of welfare to debt maturity B2
0 − B1

0
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in the cases of full commitment and lack of commitment. We can show that welfare is much

less sensitive to debt maturity under full commitment than under lack of commitment. Letting

j = C,N , it follows that we can achieve the following second-order approximation of welfare

around xj :

W j
(

xj+∆x
)

≈W j
(

xj
)

+
1

2
∆xTHj

(

xj
)

∆x, (A-8)

where Hj
(

xj
)

is the Hessian matrix of W j (·) evaluated at xj, and ∆x =
[

∆B1
0
+B2

0
,∆B2

0
−B1

0
,∆δ

]

corresponds to the perturbations in the vector x. Equation (A-8) takes into account that first

order terms are all equal to zero, and this follows from the fact that the objective in each case

is evaluated at the optimum at zero volatility with δ = 0.

Now consider the sensitivity of W j (·) with respect to debt maturity by evaluating the term

in (A-8) for some ∆x. The elements of (A-8) which depend on ∆B2
0
−B1

0
are

W j
12

(

xj
)

∆B1
0
+B2

0
∆B2

0
−B1

0
+W j

22

(

xj
)

∆2
B2

0
−B1

0

+W j
23

(

xj
)

∆B2
0
−B1

0
∆δ

2
. (A-9)

Note that W j
23

(

xj
)

= 0 for j = C,N , and this follows from the fact that the derivative is

evaluated at the optimum at zero volatility.

Now let us consider the value of (A-9) in the case of full commitment with j = C. By some

algebra, it can be shown that WC
12

(

xC
)

= WC
22

(

xC
)

= 0. This result is consistent with our

previous discussion that in the knife edge case with δ = 0, optimal debt maturity is indetermi-

nate. Since these terms are zero, under full commitment, welfare is insensitive to debt maturity

B2
0 −B1

0 to a second order approximation. Clearly, welfare is sensitive to the total value of debt

B1
0 +B2

0 , but it is not, however, sensitive to the maturity of this debt. Note that this does not

mean that welfare does not depend on debt maturity; it just means that it does not do so to

a second order approximation around zero volatility. A higher order approximation of welfare

around zero volatility does yield that welfare depends on the maturity of debt B2
0 − B1

0 , and it

does so through the interaction of debt maturity with the volatility of the shock δ.

In comparison, let us consider the value of (A-9) in the case of lack of commitment with

j = N . By some algebra, it can be shown that WC
22

(

xC
)

< 0. This result is consistent with our

previous discussion that the optimal values of B1
0 and B2

0 are uniquely determined in the case of

δ = 0 in this case. More specifically, any deviation from a flat maturity structure with B1
0 = B2

0

strictly reduces welfare, and welfare is strictly concave at the optimum with W j
22

(

xj
)

< 0.

Therefore, under lack of commitment, welfare is sensitive to debt maturity B2
0 −B1

0 to a second

order approximation.

Thus, choosing a suboptimal debt maturity under full commitment is less costly than choos-

ing a suboptimal debt maturity under lack of commitment. In this regard, the cost of lack of

commitment is of higher order importance than the cost of lack of insurance, and, when variance

is low, debt maturity should be structured to fix the problem of lack of commitment.
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A-3 Numerical Algorithm for Solving Infinite Horizon Economy

In the numerical algorithm, we use a collocation method on the first order conditions of the

recursive problem. We solve for an MPCE in which the policy functions are differentiable and

we approximate directly the set of policy functions {c, n, g,BS , BL, qL}.27 The solution approach

finds a fixed point in the policy function space using an iteration approach. We cannot prove

that this MPCE is unique, though our iterative procedure always generates the same policy

functions independently of our initial guesses.

The stochastic shock processes are discretized using the procedure described in Adda and

Cooper (2003). The functions are approximated on a coarse grid, where the market value of

debt ranges from -500 percent to 500 percent of GDP. The results are very similar whether we

use a different amplitude of the grid, and different types of functional approximation (splines,

complete, or Chebyshev polynomials).

27In the cases in which there is commitment to taxes or spending, we either impose the additional constraint
or, equivalently, approximate a smaller set of policy functions.
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