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1 Introduction

This paper solves a version of the problem faced by a financial benchmark administrator. The

benchmark administrator constructs a “fixing,” meaning an estimator of a market value or

reference rate that is based on transactions or other submission data. The data are often

generated by agents whose profits depend on the realization of the fixing. Agents may there-

fore misreport or trade at distorted prices in order to manipulate the fixing. We characterize

optimal transactions weights for benchmark fixings, assuming that the benchmark adminis-

trator cannot use transfers. If the benchmark administrator is also unable to detect or deter

the strategic splitting of trades, we show the best linear unbiased fixing is the commonly used

volume-weighted average price (VWAP).

The London Interbank Offered Rate (LIBOR) is arguably the single most important

benchmark used in financial markets. Literally millions of different financial contracts, in-

cluding interest rate swaps, futures, options, variable rate bank loans, and mortgages, have

payments that are contractually linked to LIBOR. The aggregate outstanding amount of

LIBOR-linked contracts has been estimated by the Alternative Reference Rate Committee

(2018) at $200 trillion. LIBOR and related reference rates such as EURIBOR and TIBOR

also serve an important price discovery function,1 as benchmarks for evaluating investment

performance and as indicators of current conditions in credit and interest-rate markets. Sim-

ilar concerns have been raised over the manipulation of foreign exchange and commodity

benchmarks.2 Given the important role of benchmarks in financial markets, reports that they

have been systematically manipulated have triggered regulatory reforms. Among other juris-

dictions, the European Union (2016) introduced legislation3 in support of robust benchmarks,

which came into force on January 1, 2018.

LIBOR is an estimate of the interest rate at which large banks can borrow short-term

wholesale funds on an unsecured basis in the interbank market. Each day, in each major

currency and for each of a range of key maturities, LIBOR is currently reported as a trimmed

average of the rates reported by a panel of banks to the benchmark administrator.4 Investiga-

tions have revealed purposeful misreporting of these rates. Two rather different incentives for

manipulation have been identified. The first, dramatically exacerbated by the financial crisis

1The transparency role of benchmarks is explained in Duffie, Dworczak and Zhu (2017).
2See Financial Stability Board (2014).
3Financial Conduct Authority (2016) explains how the EU regulation “aims to ensure benchmarks

are robust and reliable, and to minimise conflicts of interest in benchmark-setting processes.”
4For details, see, for example, Hou and Skeie (2013). The reports of each individually named

bank are revealed to the market. See also Financial Conduct Authority, 2012; BIS, 2013; Market
Participants Group on Reference Rate Reform, 2014. In order to weaken the incentive to under report
funding costs it has been suggested that the bank-level reports be made public with a three-month
lag.
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of 2007-2009, was to improve market perceptions of a submitting bank’s creditworthiness, by

understating the rate at which the bank could borrow. The second incentive was to profit

from LIBOR-linked positions held by the bank. For example, in a typical email uncovered by

investigators, a trader at a reporting bank wrote to the LIBOR rate submitter: “For Monday

we are very long 3m cash here in NY and would like setting to be as low as possible...thanks.”5

This second form of manipulation, revealed by investigators to have been active over many

years, is the main subject of this paper.

Manipulation has been reported across a range of financial market benchmarks. By Febru-

ary 2017, the Commodity Futures Trading Commission, alone, had fined dealers6 $5.29 billion

for manipulation of LIBOR, Euribor, foreign exchange benchmarks and the swap rate bench-

mark known as ISDAFIX. Benchmark manipulation has also been a recent concern for the

equity volatility benchmark known as VIX,7 and in the markets for various commodities,8

precious metals such as gold,9 and manufactured goods such as pharmaceuticals.10

The Financial Stability Board is leading an ongoing global process to overhaul key ref-

erence rate and foreign currency benchmarks with a view to improving their robustness to

manipulation. A key principle of International Organization of Securities Commissions (2013)

is that fixings of key benchmarks should be “anchored” in actual market transactions or exe-

cutable quotations.

This paper has a theoretical focus. Under restrictive conditions, we focus on the optimal

design of a transactions-based weighting scheme. In order to illustrate the problem that we

study, we ask the reader to imagine the following abstract situation. An econometrician is

choosing an efficient estimator of an unknown parameter. Data are generated by strategic

agents whose utilities depend on the realized outcome of the estimator. Thus, the chosen

estimator influences the data generating process. This game-theoretic component must be

5December 14, 2006, Trader in New York to Submitter; source: Malloch and Mamorsky (2013).
Another example: “We have another big fixing tom[orrow] and with the market move I was hoping we
could set the 1M and 3M Libors as high as possible.”

6See “CFTC Orders The Royal Bank of Scotland to Pay $85 Million Penalty for Attempted Ma-
nipulation of U.S. Dollar ISDAFIX Benchmark Swap Rates.”

7See Griffin and Shams (2017).
8For cases of oil, natural gas, and propane benchmark manipulation, see “Federal Court Orders $13

Million Fine in CFTC Crude Oil Manipulation Action against Parnon Energy Inc., Arcadia Petroleum
Ltd., and Arcadia Energy (Suisse) SA, and Crude Oil Traders James Dyer and Nicholas Wildgoose,”
CFTC, August 4, 2014; “CFTC Files and Settles Charges against Total Gas & Power North America,
Inc. and Therese Tran for Attempted Manipulation of Natural Gas Monthly Index Settlement Prices,”
CFTC, December 7, 2015; and “CFTC Finds Statoil ASA Attempted to Manipulate the Argus Far East
Index, a Propane Benchmark, to Benefit Statoil’s NYMEX-cleared Swaps Position,” CFTC, November
14, 2017.

9See Vaughn (2014) and “How a Barclays’ options trader manipulated the gold price fix,” Reuters,
May 23, 2014.

10See Gencarelli (2002).

http://www.cftc.gov/PressRoom/PressReleases/pr7527-17
http://www.cftc.gov/PressRoom/PressReleases/pr7527-17
http://www.cftc.gov/PressRoom/PressReleases/pr6971-14
http://www.cftc.gov/PressRoom/PressReleases/pr6971-14
http://www.cftc.gov/PressRoom/PressReleases/pr6971-14
http://www.cftc.gov/PressRoom/PressReleases/pr7289-15
http://www.cftc.gov/PressRoom/PressReleases/pr7289-15
http://www.cftc.gov/PressRoom/PressReleases/pr7643-17
http://www.cftc.gov/PressRoom/PressReleases/pr7643-17
https://www.reuters.com/article/us-barclays-regulation-gold-trader/how-a-barclays-options-trader-manipulated-the-gold-price-fix-idUSBREA4M0KU20140523
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considered in the design of the estimator.

Our model features a benchmark administrator who acts as a mechanism designer. The

agents that might manipulate the benchmark could be banks, broker-dealers, asset-management

firms, or individual traders within any of these types of firms. The mechanism designer ob-

serves the transactions generated by the anonymous agents. The data generated by each trans-

action consist only of the price and size (the notional amount) of the transaction. Whether

or not manipulated, the transactions prices are noisy signals of the fundamental value. For

non-manipulated transactions, noise arises from market microstructure effects, as explained

by Aı̈t-Sahalia and Yu (2009), and also from asynchronous reporting. For example, the

WM/Reuters benchmarks for major foreign exchange rates are fixed each day based on trans-

actions that occur within 5 minutes of 4:00pm London time. In an over-the-counter market,

moreover, each pair of transacting counterparties is generally unaware of the prices at which

other pairs of counterparties are negotiating trades at around the same time.

In our model, the benchmark administrator is restricted to a fixing that is linear with

respect to transactions prices, with weighting coefficients that can depend on the size of the

transaction. A common method of benchmark fixing is the “volume weighted average price”

(VWAP), for which the weight on a given transaction price is proportional to the size of the

transaction. The VWAP benchmark is approximated, with a large number of transactions,

within the family of fixing designs that our modeled benchmark administrator can consider.

Agents have private information about their exposures to the benchmark, and observe

private signals of the fundamental value of the benchmark asset. If an agent decides to trade

according to the signal received, there is no manipulation. However, the agent can choose to

manipulate by generating a transaction with an artificially inflated or reduced price in order

to gain from the associated distortion of the benchmark. Manipulation is assumed to be costly

for agents. For example, in order to cause an upward distortion in the benchmark, a trader

would need to buy the underlying asset at a price above its fair market value. In order to

manipulate the price downward, the agent would need to sell the asset at a price below its

true value. Either way, by trading at a distorted price, the agent suffers a loss. On the other

hand, the agent has pre-existing contracts (for example swaps) that can be settled at market

values linked to the benchmark. On a large pre-existing swap position, the agent may be able

to distort the benchmark enough to generate a profit that exceeds the cost of creating the

distortion.

This suggests the benefit of avoiding benchmarks whose underlying asset market is thinly

traded relative to the market for financial instruments that are contractually linked to the

benchmark. In the case of LIBOR, unfortunately, the volume of transactions in the underlying

market for interbank loans that determines LIBOR is tiny by comparison with the volume of

swap contracts that are contractually settled on LIBOR. As emphasized by Duffie and Stein
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(2015), this situation dramatically magnifies the incentive to manipulate LIBOR.

Our model implies that manipulation is unavoidable when the potential benefits from

manipulation, measured by the monetary gain from changing the fixing by one unit, are large

relative to (i) the cost of manipulation, (ii) the average size of the transaction, and (iii) the

number of transactions in the market for the benchmark asset.

Our main findings are the following. First, even if a benchmark can be found that induces

only honest (unmanipulated) transactions, this is not necessarily optimal from the viewpoint of

the efficiency of the estimator. This is because the transaction weights required for statistical

efficiency can be quite different from those minimizing the incentive to manipulate. Typically,

a statistically optimal benchmark fixing allows for a nonzero probability of manipulation.

Second, a robust benchmark must put nearly zero weight on small transactions. This is

intuitive, and stems from the fact that it is cheap for agents to make small manipulated

transactions. For instance, Scheck and Gross (2013) describe a strategy said to be used

by oil traders to manipulate the daily oil price benchmark published by Platts: “Offer to

sell a small amount at a loss to drive down published oil prices, then snap up shiploads at

the lower price.” Third, although the optimal transaction weight is always non-decreasing

in the size of a transaction, the optimal benchmark assigns nearly equal weight to all large

transactions. This follows from the fact that the optimal weighting function is concave in size,

with a slope that goes goes to zero as trade sizes become large. In many cases, the optimal

weight is actually constant above some threshold transaction size. This avoids overweighting

transactions made by agents with particularly strong incentives to manipulate. Fourth, our

main result characterizes the exact shape of the optimal weighting function, as a solution

to a certain second-order differential equation. In the examples that we study, this optimal

shape is well approximated by a weighting function that is linear in size up to a threshold,

and constant afterwards.

In our baseline model, we assume that each trader’s transactions are aggregated into

a single composite transaction before it enters into the fixing, so that there is effectively

one transaction per agent. In Section 5, we relax this and allow traders to split their total

desired transaction into smaller trades. If the benchmark administrator cannot detect or deter

order splitting, we show the optimal fixing is the volume-weighted average price (VWAP).

VWAP fixings are popular, for example, for the settlement of futures contracts on the Chicago

Mercantile Exchange.11

In addition to choice of the benchmark asset and the fixing design, regulators can im-

11See Quick Facts on Settlements at CME Group, CME Group, October, 2014. For the NYMEX
crude oil futures contract, “If a trade(s) occurs on Globex between 14:28:00 and 14:30:00 ET, the
active month settles to the volume-weighted average price (VWAP), rounded to the nearest tradable
tick.”

https://www.cmegroup.com/trading/agricultural/files/settlement-price-fact-sheet.pdf
https://www.cmegroup.com/confluence/display/EPICSANDBOX/NYMEX+Crude+Oil
https://www.cmegroup.com/confluence/display/EPICSANDBOX/NYMEX+Crude+Oil
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plement a range of governance and compliance safeguards, raising the cost of manipulation,

consistent with the suggestions of Financial Conduct Authority (2012) and the International

Organization of Securities Commissions (2013). Our setting allows for an extra cost for trad-

ing at a price away from the fair value, associated with the risk of detection of manipulation

by the authorities, and resulting penalties or loss of reputation.

For our theoretical analysis, we assume that the mechanism designer cannot use transfers.

In particular, fines or litigation damages, forms of negative transfer, may affect the cost of

manipulation exogenously but cannot be actively controlled by a benchmark administrator.

Building on our framework, Coulter, Shapiro and Zimmerman (2017) address the optimal

design of fines in a “revealed preference mechanism” that directly elicits private information

from the agents. Because Coulter et al. (2017) do not study the problem of designing an

optimal fixing, our approaches are complementary.

Our work falls into a growing literature on mechanism design without transfers. This

body of research, however, typically focuses on allocation problems.12 The techniques we

use are reminiscent of those used to study direct revelation mechanisms and, to some degree,

principal-agent models. There are, however, essential differences. Because of the restriction on

the class of mechanisms (linear estimators), we cannot rely on the Revelation Principle. The

objective function is not typical. Our mechanism designer is minimizing the mean squared

error of the estimator (benchmark). Agents face a cost of misreporting their type which is

proportional to the deviation from the true type.13 Overall, we are forced to develop new

techniques that draw on tools from optimal control theory.

We do not analyze estimators that assign different weights to transactions based on the

transactions prices themselves (that is, nonlinear estimators). This extension is an obvious

next step. For example, some benchmarks such as LIBOR dampen or eliminate the influence of

prices that are outliers. Eisl, Jankowitsch and Subrahmanyam (2014) and Youle (2014) argue

that the median estimator can significantly reduce the incentive to manipulate. However,

the net effect on the statistical efficiency of a median-based fixing as an estimator of the

underlying market value is unknown in a setting such as ours with strategic data generation.

The remainder of the paper is organized as follows. Section 2 introduces the primitives

of the model and the solution concept. Section 3 offers some preliminary analysis in prepa-

ration for a treatment of the main problem in Section 4. Section 5 treats fixings that are

robust to order splitting. In Section 6, we introduce two specific models of manipulation that

micro-found our reduced-form baseline framework. Section 7 concludes and discusses some

12See for example Ben-Porath, Dekel and Lipman (2014) and Mylovanov and Zapechelnyuk (2017).
13Lacker and Weinberg (1989) analyze a model of an exchange economy where an agent may falsify

public information at a cost; Kartik (2009) studies a cheap talk game in which the Sender pays a cost
for deviating from the truth; Kephart and Conitzer (2016) formulate a Revelation Principle for a class
of models in which the agent faces a reporting cost.
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extensions and future research directions. Most proofs are relegated to the appendix.

2 The baseline model

A mechanism designer (benchmark administrator) will estimate an uncertain variable Y, which

can be viewed as the “true” market value of an asset. To this end, she designs a benchmark

fixing, which is an estimator Ŷ that can depend on the transaction data
{

(X̂i, ŝi)
}n
i=1

gen-

erated by a fixed set {1, 2, . . . , n} of agents. Here, X̂i is the price and ŝi is the quantity of

the transaction of agent i. The size ŝi of each transaction is restricted to [0, s̄], a technical

simplification that could be motivated as a risk limit imposed by a market regulator or by an

agent’s available capital. The price X̂i is a noisy or manipulated signal of Y , in a sense to

be defined. Agents are strategic: they have preferences, to be explained, over their respective

transactions and over the benchmark Ŷ . The sensitivity of a given agent’s utility to Ŷ is

known only to that agent. The agents do not collude.

We describe in detail the problem of the benchmark administrator and the agents. Further

interpretation of our assumptions is postponed to the end of the section.

2.1 The problem of the benchmark administrator

The benchmark administrator minimizes the mean squared error E
[
(Y − Ŷ )2

]
of the bench-

mark fixing Ŷ , which is restricted to a linear estimator of the form

Ŷ =
n∑
i=1

f(ŝi)X̂i,

where f : [0, s̄] → R+ is a transaction weighting function to be chosen. In particular, the

weight placed on a given transaction depends only on its size, and not on its price or on the

identities of the agents. We do not require that the weights sum to one, but we do require the

estimator to be unbiased. We will provide distributional conditions under which unbiasedness

is equivalent to the condition that the weights sum to one in expectation, that is,

E

[
n∑
i=1

f(ŝi)

]
= 1.

Later, we will discuss the restriction to fixing weights that are based only on transactions sizes,

as opposed to weights that could depend jointly on both the sizes and prices of transactions.

We impose a mild regularity condition that is needed to ensure the existence of a solution

to the administrator’s problem. Let CK,M be the set of upper semi-continuous f : [0, s̄]→ R+



2 The baseline model 8

with the property that there exist at most K points 0 = s1 < s2 < ... < sK−1 < sK = s̄ such

that f is Lipshitz continuous with Lipshitz constant M in each (si, si+1). The constants K

and M are assumed to be finite but large.14 This regularity allows the weighting function f

to have finitely many jump discontinuities and points of non-differentiability.

We summarize the problem of the benchmark administrator as

inf
f ∈CK,M

E

(Y − n∑
i=1

f(ŝi)X̂i

)2
 subject to E

[
n∑
i=1

f(ŝi)

]
= 1. (P)

2.2 The problem of the agents

We now explain how the transaction data
{

(X̂i, ŝi)
}n
i=1

are generated by strategic agents.

We assume that an agent can conduct a manipulated transaction at some reduced-form net

benefit, without explicitly modeling the market in which the transaction takes place. In

Section 6, we propose two alternative stylized models of market trading that endogenize the

reduced-form costs and benefits of a manipulator.

Agent i privately observes her type Ri, which is interpreted as the agent’s profit exposure

to the benchmark. Specifically, the agent’s payoff includes a profit component RiŶ . This

type Ri can be negative, corresponding to cases when the agent holds a short position in the

asset whose value is positively correlated with the benchmark.

Having observed Ri, the agent chooses a pair (ẑi, ŝi) ∈ {−zi, 0, zi} × [0, s̄], where ẑi is a

price distortion and ŝi is a trade size. The absolute magnitude zi > 0 of the price distortion

is assumed to be exogenous, and can be a random variable, as discussed in Section 6. If

agent i chooses not to manipulate, in that ẑi = 0, the benchmark administrator observes

(X̂i, ŝi) = (Xi, si), where (Xi, si) can be thought of the transaction (price and quantity)

of agent i that would be naturally preferred in the absence of manipulation incentives. The

transaction (Xi, si) is determined by hedging or speculative motives that we do not model.

That is, we take the distribution of (Xi, si) as given. This is further discussed in the next

subsection. On the other hand, if agent i chooses to manipulate, in that ẑi 6= 0, then the

benchmark administrator observes the transaction (X̂i, ŝi) = (Xi + ẑi, ŝi).

Intuitively, the agent can trade some quantity ŝi at a distorted price to manipulate the

benchmark fixing. This substitution, however, induces a cost γŝi|Xi− X̂i| to the agent that is

proportional to the size of the transaction and to the deviation of the price from the market

level Xi, where γ > 0 is a fixed parameter.

We assume that the agent does not observe Xi at the time of making the report to the

14Formally, all our results hold for large enough M and K.
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benchmark administrator. That is, the agent cannot predict the market price when deciding

whether to manipulate or not. This assumption is motivated by tractability but is also realistic

in some settings, an example of which is discussed in Section 6.

Without loss of generality, we normalize to zero the payoff to the agent associated with the

truthful reporting choice (X̂i, ŝi) = (Xi, si). Given the additivity of the benchmark across

transactions, each agent can ignore the contribution of any of the other transactions to the

distortion-related profit RiŶ . We can thus summarize the problem of agent i as

max
ẑi∈{−zi, 0, zi}, ŝi∈[0, s̄]

[
RiE

[
∆ẑi Ŷ

]
− γŝi|ẑi|

]
1{ẑi 6=0}, (A)

where E
[
∆ẑi Ŷ

]
is the expected change in the benchmark fixing relative to choosing ẑi = 0.

(Thus, ∆0Ŷ = 0.) We will later provide an explicit calculation of this expected change. Exis-

tence of solutions to the agent’s problem is guaranteed by the assumption that the weighting

function is upper semi-continuous. We assume that the agent chooses not to manipulate when

she is indifferent. If, conditional on manipulation, there are multiple optimal ŝi, then we as-

sume that the agent chooses the largest of these transaction sizes. (This tie breaker does not

affect our subsequent results.)

2.3 The distribution of transactions data

The unmanipulated transactions {(Xi, si)}ni=1 are generated as follows. First, Y is drawn from

some probability distribution with mean normalized to zero, and with some finite variance

σ2
Y . Then, a pair (εi, si) is drawn for every agent, i.i.d. across agents and independently of

Y . We assume that E (εi | si) = 0, and that var (εi| si) = σ2
ε for some σ2

ε > 0. The size si has a

cumulative distribution function (cdf) G with a continuous density g that is strictly positive

on [0, s̄]. The unmanipulated price is Xi = Y + εi, which is therefore a noisy and unbiased

signal of Y , with variance σ2
U ≡ σ2

Y +σ2
ε . The subscript U is a mnemonic for “unmanipulated.”

The exposure types R1, . . . , Rn are i.i.d. and independent of all other primitive random

variables in the model. The cdf H̃ of Ri has support contained by some interval [−R̄, R̄]. We

allow the case of R̄ = ∞. We assume that the probability distribution of Ri is symmetric

around zero, and that bigger incentives to manipulate are relatively less likely to occur than

smaller incentives. That is, H̃ has a finite variance and a density h̃ that is symmetric around

zero and strictly decreasing on (0, R̄). Examples include the normal and Laplace (“double

exponential”) distributions. Given the symmetry of H̃, we can define a cdf H on [0, R̄] such

that

H̃(R) =

1
2 −

1
2H(−R) if R < 0,

1
2 + 1

2H(R) if R ≥ 0.
.



2 The baseline model 10

That is, H is the distribution of Ri conditional on Ri ≥ 0. We let h denote the density of H,

and we assume that h is twice continuously differentiable.

The agents’ respective price-distortion magnitudes z1, . . . , zn are i.i.d., and are indepen-

dent of all other primitive model variables. The variance σ2
z of zi is finite and strictly positive.

We let σ2
M ≡ σ2

U +σ2
z > σ2

U denote the variance of the reported price Xi+ ẑi conditional on the

event {ẑi 6= 0} of a manipulation. The subscript M is thus a mnemonic for “manipulated.”

2.4 Comments on assumptions

For tractability, we have restricted attention to estimators that are linear with respect to

price, with weights depending only on the sizes of the respective transactions. The common

volume-weighted-average-price (VWAP) form of benchmark has relative size weights

ŝi∑n
j=1 ŝj

.

For the case of a large number n of underlying transactions, the VWAP is therefore approx-

imately of the form that we study. Our assumption that the weight f(ŝi) on transaction i

does not depend on the sizes of other transactions could be justified by the desire of the ad-

ministrator to avoid strategic interactions between agents’ decisions. This is similar in spirit

to motivations for strategy-proofness in mechanism-design problems. An implication of this

assumption is that the benchmark that we study is robust to some forms of collusion. For

example, agents cannot benefit by sharing information about their exposure types with each

other, nor from attempting to coordinate their decisions.

We have assumed that variance of the price noise εi associated with an unmanipulated

transaction has a variance that does not depend on the size of the transaction. It would be

more realistic to allow the price precision to be increasing with the size of the transaction, as

implicitly supported by volume-weighted-average-price (VWAP) schemes often used to report

representative prices in financial markets.15 Let κ(si) = var (Xi | si)−1 denote the precision of

the unmanipulated price Xi conditional on the transaction size si. Focusing on the case of a

constant κ(s) allows us to greatly simplify our arguments and sharpen the results. However,

as shown in a preliminary version of this paper (Duffie and Dworczak, 2014), our qualitative

conclusions remain valid provided that κ(s) is a non-decreasing and concave function, and that

σ2
z is large enough that a manipulated transaction has more price noise than an unmanipulated

transaction, regardless of its size.

The problem faced by each agent is stylized. We aim to capture some of a manipulator’s

key incentives. The agent’s type (Xi, si) can be interpreted as the transaction that the agent

15See, for example, Berkowitz et al. (1988).
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would make, given current market conditions, to fulfill her usual “legitimate” business needs.

For example, such a trade could be the result of a natural speculative, market making, or

hedging motive. The assumption that each agent can make only one transaction is relaxed

in Section 5. Formally, this assumption is justified if all of the transactions of a given agent

are first aggregated and only then provided as a single input to the estimator. This is the

method currently used in the fixing of LIBOR by ICE Benchmark Administrator. Section 5

considers the problem of a benchmark administrator when such an aggregation is infeasible

or undesirable.

For simplicity, we have also assumed that the size of a price manipulation is bounded by

zi. Alternatively, we could assume that there there is an increasing cost ψ(|z|) of manipula-

tion, based for instance on an increasing probability of detection. Formally, in our setting,

ψ(|z|) = c1{z /∈[−zi, zi]}, for some large c > 0. The results depend mainly, in this regard, on the

assumption that the manipulation levels chosen by agents are high enough that manipulated

transactions are less precise signals of price than unmanipulated transactions. This property

would hold across many plausible alternative model specifications.

The cost of manipulation reflects the losses that the agent incurs when trading away

from market prices in order to manipulate the fixing. We take a partial-equilibrium approach,

relegating an endogenous model of trading and payoffs to Section 6. Our particular functional

form for the cost of manipulation, chosen in large part for its tractability, can be further

justified by an alternative interpretation of the nature of manipulations. Namely, imagine that

agents can submit “shill trades,” in the form of fictitious transactions at distorted prices, with

reimbursements,“kickbacks,” arranged through side payments. Then ŝi|Xi − X̂i| is precisely

the kickback cost of manipulation.16 Assuming that the cost of manipulation is linear, rather

than strictly convex, with respect to size and price distortion is a conservative approach in

that it allows for relatively higher profits associated with larger manipulations.

Finally, Ri can be thought of as the position that the agent holds in contracts whose set-

tlement price is tied to the administered benchmark fixing. For example, many manipulators

of LIBOR were motivated by the fact that they held interest rate derivatives whose settlement

payments are contractually based on the fixing of LIBOR. For positions such as options whose

market values are nonlinear with respect to a benchmark, one can view Ri as the so-called

“delta” (first-order) sensitivity of the position value to the benchmark. The assumption that

Ri is symmetric around zero is, in effect, a belief by the benchmark administrator that upward

and downward manipulative incentives are similar, other than with respect to their signs.

16This assumption is that the cost is linear in size. We can view γ as a per-dollar cost of using an
illegal transfer channel, for example resulting from the possibility of detection and punishment.
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3 Using the fixing to deter manipulations

In this section we provide some basic properties of an optimal benchmark, and present solu-

tions to some preliminary cases that provide intuition as well as elements on which to build

when solving the general case.

3.1 Solution without manipulation

For comparison purposes, we first solve the problem assuming that agents do not manipulate.

The law of iterated expectation implies that

E [Ŷ |Y ] =

[
E

n∑
i=1

f(si)

]
Y. (3.1)

Thus, Ŷ is unbiased if and only if E
∑n

i=1 f(si) = 1. It follows that

E
[
(Y − Ŷ )2

]
= −

σ2
Y

n
+

n∑
i=1

E
[
f2(si)σ

2
U

]
.

Using the symmetry assumption, we can formulate the problem of the benchmark adminis-

trator as

inf
f∈CK,M

σ2
U

ˆ s̄

0
f2(s)g(s) ds subject to

ˆ s̄

0
f(s)g(s) ds =

1

n
.

Proposition 1 Absent manipulation, the weighting function that solves problem P is given

by f?(s) = 1/n.

The proof is skipped. This problem can be viewed as a simple case of ordinary-least-

squares estimation. The benchmark administrator’s optimal weights are proportional to the

precision of each price observation. Because the precisions are assumed to be identical and

in particular invariant to the sizes of transactions, the optimal weights are equal. There is an

obvious generalized-least-squares extension to the case of a general covariance structure for

the observation “noises” ε1, . . . , εn.

3.2 Incentives to manipulate

We now turn to the manipulation problem A facing an agent. By symmetry, we may con-

centrate on the event of a positive manipulation incentive, Ri ≥ 0. Using the assumptions of
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Subsections 2.2 and 2.3, we can express the problem A of agent i as

max
ẑi∈{0, zi}, ŝi∈[0, s̄]

[Rif(ŝi)− γŝi] ẑi1{ẑi 6=0}. (3.2)

An agent with type Ri manipulates if and only if there is some s ∈ [0, s̄] such that Rif(s) > γs,

that is, if there is a size for the manipulated trade at which the impact on the benchmark

fixing is high enough to cover the associated manipulation cost.

If an agent with type Ri chooses to manipulate, then all agents with types higher than Ri

also manipulate. Similarly, if an agent with type Ri chooses not to manipulate, all agents with

types below Ri also choose not to manipulate. It follows that with any weighting function f

we may associate a unique threshold Rf defined by

Rf = sup{R ≤ R̄ : Rf(s) ≤ γs, s ∈ [0, s̄]}.

That is, given f , the types above Rf manipulate and the types below Rf do not. This easy

observation leads to the following result.

Proposition 2 The benchmark administrator can ensure that there are no manipulations if

and only if R̄ ≤ nγE[s1]. If the benchmark administrator is further constrained to implement

non-manipulation, then the optimal weighting function f? is given by f?(s) = γR̄−1s on [0, s0]

and f?(s) = f?(s0) on [s0, s̄], where s0 is chosen to satisfy the constraint

ˆ s̄

0
f?(s)g(s) ds =

1

n
.

Proof: We sketch the proof. The remaining details are easy. By the above characterization, it

is possible to implement no-manipulation (truthful reporting) if and only if, for every s ∈ [0, s̄],

we have R̄f(s) ≤ γs. Because the administrator is constrained by
´ s̄

0 f(s)g(s) ds = 1/n, it is

necessary that
1

n
≤ γ

R̄

ˆ s̄

0
sg(s) ds.

This condition is also sufficient. If this condition holds, we can obtain the optimal weighting

function by applying standard techniques from optimal control theory. �

The result states that implementing truthful reporting may sometimes be possible. How-

ever, the condition R̄ ≤ nγE[s1] is likely to be violated in practice, especially when the

underlying asset market for the benchmark is thinly traded relative to the market for instru-

ments that determine the incentives to manipulate, as is the case for LIBOR. A thinly traded

underlying market corresponds to the case in which R̄ is large relative to E[s1], the expected



3 Using the fixing to deter manipulations 14

size of a typical transaction in the benchmark market. This condition is even less likely to be

satisfied when manipulation is relatively cheap (γ is small) or when there are few transactions

(n is small). The latter case is indeed a practical concern because banks are increasingly

reluctant to support benchmarks in the face of potential regulatory penalties and the risk

of private litigation, as documented by Brundsen, 2014 for the case of EURIBOR. The head

of the U.K. Financial Conduct Authority, Andrew Bailey, has similarly announced17 that

LIBOR may be discontinued because the number of reporting banks may become too small

once the agreement of the banks to continue reporting expires at the end of 2021.

The following example shows that it need not be optimal for the benchmark administrator

to induce truthful reporting with certainty, even in the case when it is possible.

Example 1 Suppose that γ = 1, n = 10, R̄ = 5, σ2
Y = σ2

ε = σ2
z = 1, g is the uniform density

on [0, 1], and h̃ is the uniform density18 on [−5, 5]. Then, f is feasible and implements

truthful reporting if and only if f(s) = s/5. The value of the benchmark administrator’s

objective function is 1/6. Consider an alternative weighting function fα that is linear up to a

threshold and then flat, in that

fα(s) = αmax{s, sα0 },

where α ≥ 1/5 and sα0 is chosen such that the constraint in problem P holds. If |Ri| > 1/α

then agent i manipulates, choosing ŝi = sα0 . The value of the administrator’s objective function

is in this case strictly below 1/6 for all α between 1/5 and 2/5. Thus, it is optimal to allow

manipulation. At the optimal choice of 1/4 for α?, the objective function is approximately

equal to 0.16, and the unconditional probability of manipulation is 1/5.

A consequence of Proposition 2 is that the benchmark administrator should not restrict

attention to weighting functions that fully deter manipulation. The optimal weighting func-

tion instead influences the degree to which agents manipulate. For clarity of exposition, we

henceforth assume that R̄ =∞, so that implementing truthful reporting is not possible.19

17On November 24, 2017, a press release of the Financial Conduct Authority stated: “Andrew
Bailey, FCA Chief Executive, set out in a speech earlier this year that, whilst significant improvements
have been made to LIBOR since April 2013, the absence of active underlying markets means that
the future sustainability of LIBOR cannot be guaranteed. The support of the panels for LIBOR is
needed until the end of 2021, by when a transition can be made to alternative rates. The FCA has
been working with the panel banks to finalise an agreement for the banks to remain on the panels they
currently submit to until the end of 2021.”

18The uniform density is not strictly decreasing, as assumed in Section 2, but this property is not
needed for this example.

19This is practically without loss of generality because we can specify the cdf H of Ri to place
arbitrarily small probability mass above some finite R̄.

https://www.fca.org.uk/news/statements/fca-statement-libor-panels
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3.3 Administrator’s problem under manipulation

We now derive a concise mathematical formulation of the problem P faced by the benchmark

administrator under the assumptions of Subsections 2.2 and 2.3.

First, we use our symmetry assumptions to simplify the problem. From the viewpoint of

the benchmark administrator, the events ẑi = zi and ẑi = −zi are equally likely, even after

conditioning on ŝi. Therefore, equation (3.1) still holds if we replace si by ŝi. That is, forcing

the estimator Ŷ to be unbiased is equivalent to the requirement that E [
∑n

i=1 f(ŝi)] = 1. We

denote by Ψf ( · ) the cdf of the transaction size ŝi, conditional on its manipulation. That is,

Ψf (s) = PRi∼H(argmaxŝRif(ŝ)− γŝ ≤ s|Ri > Rf ). (3.3)

By the law of iterated expectations and because of arguments presented in Subsection 3.2,

E
[
(Y − Ŷ )2

]
=

n∑
i=1

ˆ s̄

0
f2(ŝi)

[
σ2
UH(Rf )g(ŝi) dŝi + σ2

M (1−H(Rf )) dΨf (ŝi)
]
−
σ2
Y

n
.

The displayed equation states that if |Ri| ≤ Rf (which happens with probability H(Rf )),

then the transaction of agent i is unmanipulated, ŝi = si, X̂i has variance σ2
U , and ŝi has

probability density g. On the other hand, if the transaction is manipulated, which happens

with probability (1−H(Rf )), then X̂i has variance σ2
M from the viewpoint of the benchmark

administrator.

Similarly, we can express the constraint in problem P as

1 = E

[
n∑
i=1

f(ŝi)

]
=

n∑
i=1

ˆ s̄

0
f(ŝi) [H(Rf )g(ŝi) dŝi + (1−H(Rf )) dΨf (ŝi)] .

To characterize the optimal benchmark, we use an approach familiar from principal-agent

models. We address the best way, given some target manipulation threshold R, for the

administrator to implement an outcome in which an agent with |Ri| ≤ R chooses not to

manipulate. As we saw before, this requires that the benchmark weight function satisfies the

additional constraint f(s) ≤ (γ/R)s. Solving this auxiliary problem is a key step towards

solving the original problem P. This auxiliary problem is illuminating in its own right.

For example, the benchmark administrator may have exogenous preferences for deterring

manipulation, which could be modeled by setting a high manipulation threshold R. Formally,

using the assumption that agents are symmetric, we can formulate the auxiliary problem as

inf
f ∈CK,M

ˆ s̄

0
f2(s)

[
σ2
UH(R)g(s) ds+ σ2

M (1−H(R)) dΨf (s)
]

(P(R))
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subject to20

f(s) ≤ γ

R
s, s ∈ [0, s̄], (3.4)

ˆ s̄

0
f(s) [H(R)g(s) ds+ (1−H(R)) dΨf (s)] =

1

n
. (3.5)

If the target manipulation threshold R is too high, then no function f inducing that threshold

(that is, satisfying constraint (3.4)) will satisfy constraint (3.5). Among all weighting functions

f satisfying (3.4), f(s) = (γ/R)s maximizes the left hand side of (3.5). In particular, under

this transaction weighting all manipulators choose the maximal transaction size s̄. Therefore,

if we define

R̂ = max

{
R ≥ 0 :

γH(R)

R
E (s1) +

γ(1−H(R))

R
s̄ ≥ 1

n

}
,

then the condition R ≤ R̂ is both necessary and sufficient for the set of feasible f to be

non-empty for the problem P(R).

4 The optimal benchmark

In this section we present the solution to the problem faced by the benchmark administrator.

Theorem 1a lists the main properties of the optimal benchmark. Theorem 1b describes the

exact shape of the optimal fixing under a technical assumption. When this technical assump-

tion fails, the optimal fixing can still be described as a solution to a parameterized differential

equation. The full description of this solution is relegated to Appendix A. Following the

statement of the main result, we discuss the intuition and sketch its proof. The remaining

details can be found in Appendix B.

Theorem 1a For any R ∈ (0, R̂), there exists a unique solution f? to problem P(R). More-

over, f? is non-decreasing, concave, continuously differentiable, and satisfies (f?)′(s̄) = 0.

There is some s0 > 0 such that f?(s) coincides with (γ/R)s whenever s ≤ s0.

The following ordinary differential equation (ODE), which will play a key role in de-

termining the shape of the optimal fixing, is indexed by two parameters: s0 and s1, with

0 < s0 < s1 < s̄. Consider

f ′′(s) = −
[f(s1)− f(s)]H(R)g(s) +

σ2
M

σ2
U
γh
(

γ
f ′(s)

)
[
σ2
M

σ2
U
f(s)− f(s1)

] (
−h′

(
γ

f ′(s)

))
γ2

(f ′(s))3

, (4.1)

20We abuse notation slightly by treating Ψf (s) as being defined by (3.3) with Rf replaced by R.
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with boundary conditions

f(s0) = (γ/R)s0, f ′(s0) = (γ/R).

Theorem 1b Suppose that there exist s0 < s1 < s̄ such that f?, defined by

f?(s) =


γ
Rs, s ∈ [0, s0]

solves (4.1), s ∈ (s0, s1)

f?(s1), s ∈ [s1, s̄],

is continuously differentiable and satisfies (3.5). Then, for any R ∈ (0, R̂), f? is the unique

solution to the optimal fixing problem P(R).

When no s0 and s1 satisfying the condition of Theorem 1b can be found, the solution to the

optimal fixing problem P(R) satisfies a generalization of (4.1) on the interval [s0, s̄] that is

provided in Appendix A.

Intuitively, in Theorem 1b, for any given s0, the point s1 is chosen so that f ′(s1) = 0.

(This is called the “shooting method.”) This construction guarantees that f? is continuously

differentiable. Then s0 can be chosen to satisfy (3.5). However, especially when s̄ is relatively

small, suitable choices for s0 and s1 might not exist. In such a case, the optimal f? asymptotes

to a constant function without being constant on any interval; f? satisfies a generalized version

of (4.1) given in Appendix A, which depends on an additional parameter chosen to satisfy

the boundary condition (f?)′(s̄) = 0.

Because there is no explicit solution to the differential equation (4.1), a closed-form solu-

tion for the optimal fixing-weight function f? is not available. However, Theorem 1a provides

a number of economic predictions about the form of the optimal benchmark.

One robust finding is that the optimal weighting function becomes flat as the transaction

size increases, as captured by the property (f?)′(s̄) = 0. The optimal f? is typically flat

after some threshold transaction size s1 < s̄, as predicted by Theorem 1b and as illustrated

in Example 2, to follow. Intuitively, assigning too much weight to very large transactions

is suboptimal because it induces agents with high manipulation incentives to choose large

transaction sizes, resulting in overweighting such large transactions in the estimator.

Another general feature of the optimal benchmark is that f?(s) coincides with (γ/R)s

for a sufficiently small transaction size s. In particular, f? attaches small weight to small

transactions. The shape of the optimal fixing for small transactions is pinned down by the

binding constraint that an agent with the cutoff type R prefers to avoid manipulation. This

is intuitive. If a benchmark fixing places small weight on small transactions, then unmanip-

ulated transactions are underweighted compared to the weight that they would receive in a
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statistically efficient estimator. Therefore, it is optimal to place the maximal weight on small

transactions that is consistent with deterring manipulation by types above R.

Fig. 4.1: Optimal weighting function for Example 2 (The dotted line depicts the optimal
solution in the absence of manipulations)

Finally, Theorem 1a indicates that the optimal benchmark provides an incentive for

“smoothing out” manipulations, preventing them from “bunching” around a given trans-

action size. This is perhaps somewhat surprising. The manipulated transactions have the

same precisions as signals of Y , and yet it is optimal to attach different weights to them. In

particular this shows that the functions considered in Example 1 are not optimal. As added

intuition, we note that local behavior of f ′ has only second-order effects on the incremental

variance term σ2
Uf

2(s)H(R) dG(s) associated with unmanipulated transactions. In contrast,

the incremental variance term σ2
Mf

2(s)(1 − H(R)) dΨf (s) for manipulated transactions is

sensitive to the local behavior of f ′. This follows from from the influence of f ′ on the distri-

bution Ψf , in that relatively small changes in the slope of f can lead to large changes in the

optimal transaction volume chosen by a manipulator. Under our assumptions, this variance

term is convex in f ′. Thus, minimizing the variance term requires minimizing the variation

of f ′ (subject to meeting other criteria). As a result, f ′ changes continuously rather than

exhibiting discrete jumps.

When the fixing function f? is that given by Theorem 1b, all manipulators choose a trans-

action size in [s0, s1], and the distribution of sizes has full support in that interval. However,

as shown in Figure 4.2, the distribution of manipulated transaction sizes is typically concen-

trated around s0. Under these conditions, the optimal benchmark can be well-approximated

by a simple fixing that is linear up to a threshold, and constant afterwards. We comment

further on this point in Example 4.

To illustrate the above discussion we consider the following numerical example.
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Example 2 We take the parameters of Example 1, with the exception that h(x) = exp(−x/2)/2.

The given density h implies that, on average, the exposure to the benchmark asset is equal to

2. We set the manipulation threshold to be twice the mean, R = 4. The type threshold R = 4

corresponds to a probability of manipulation of around 14%. The optimal weighting function

is depicted in Figure 4.1. This function is smooth (C1), but its first derivative changes rapidly

close to s0 ≈ 0.40. All of the manipulated transactions are in the interval [s0, s1]. As can be

seen in Figure 4.2, manipulations are in fact highly concentrated around s0.

While the qualitative properties of the optimal weighting function are intuitive, the par-

ticular form of the ODE (4.1) is less clear. To gain intuition, we can rewrite (4.1) as

[
f(s)σ2

M − f(s1)σ2
U

]
dH

(
γ

f ′(s)

)
︸ ︷︷ ︸

IM

+ [f(s)− f(s1)]σ2
UH(R)g(s)︸ ︷︷ ︸

IU

=

d

ds

[(
f(s)σ2

M − f(s1)σ2
U

)
h

(
γ

f ′(s)

)
γ

f ′(s)

]
︸ ︷︷ ︸

IA

.

In the above formula, one may think of f(s1) as the optimal constant weight that would

be assigned to unmanipulated transactions for the efficient estimator (fixing) that would be

chosen in the absence of manipulation incentives. The term IU is zero, that is f(s) = f(s1),

when the weight is chosen optimally from the point of view of unmanipulated transactions.

This term is proportional to the density of sizes corresponding to unmanipulated transactions.

On the other hand, the term IM is zero, that is f(s)σ2
M = f(s1)σ2

U , when the weight is chosen

optimally from the point of view of manipulated transactions. This term is proportional

to the density of sizes that arises from manipulated transactions. In both of these cases,

individually, the term IA is also zero because h (γ/f ′(s)) (γ/f ′(s)) = 0 when f is constant.21

Ideally the benchmark administrator would like to set both of the terms IM and IU to zero,

but this is impossible when σ2
M > σ2

U . Thus, the administrator faces a trade-off. She either

puts insufficient weight on unmanipulated transactions, which are relatively precise signals of

the fundamental value, or she puts too much weight on manipulated transactions, which are

relatively noisy signals of the fundamental value Y .

In balancing these two effects, the administrator takes into account the term IA. By

assumption, types in [R, ∞) manipulate. By controlling f ′, the administrator controls the

sizes of transactions chosen by types Ri in [R, ∞). Because the optimal fixing is concave and

differentiable, the optimal size of a manipulation is pinned down by the first-order condition

for the manipulator’s problem (3.2). Thus, an agent with type Ri = γ/f ′(s) chooses size

21While this seems to present some issues associated with division by zero, the result follows from
integrability of h, and is formally stated in Lemma 7 of Appendix B.
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Fig. 4.2: Density of manipulations

s. The term γ/f ′(s) starts at R when s = 0, and ends at ∞ when s = s̄. It follows that

dH(γ/f ′(s)) describes the density of manipulated transactions. The term IA accounts for the

fact that when the benchmark administrator chooses f(s) at s, she considers the effect of the

speed with which the slope changes on the distribution of the remaining mass of manipulated

transactions.

To complete the characterization of the optimal fixing function f?, we observe that for

the case R = 0 (at which every type manipulates), the optimal solution is f?(s) = 1/n. This

is analogous to Proposition 1, replacing σ2
U with σ2

M . For the case R = R̂, there is only one

feasible fixing function, that with f(s) = (γ/R)s, which is thus trivially optimal.

4.1 Choosing the optimal manipulation threshold R

Having characterized the solution to problem P(R) for a fixed manipulation threshold R,

one can solve the original problem P by choosing an optimal threshold R?. This involves

computing the optimal weighting function f? for every R ∈ [0, R̂], evaluating the objective

function, and finding the maximum over all R, achieved at some R?. This optimum is attained,

by Berge’s Theorem. While analytic solutions are infeasible, this step can be done numerically.

We show below that the optimal R? is interior, and thus deters some manipulation but does

not minimize the probability of manipulation among all feasible weighting functions.

Proposition 3 The optimal manipulation threshold for problem P is interior: R? ∈ (0, R̂).

A consequence of Proposition 3 is that the predictions of Theorem 1a about the shape of

the fixing hold at the optimal R?.

Example 3 With the parametric assumptions of Example 2, it turns out that R? ≈ 2.58

achieves the minimum for the benchmark administrator’s problem P. Figure 4.3 presents the
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Fig. 4.3: Optimal weighting functions for Example 3

optimal weighting function for R = 0.5, R = 2.58, and R = 5. The ex-ante probabilities of

manipulation under these target levels are approximately 0.78, 0.28, and 0.08, respectively.22

4.2 Derivation of the optimal benchmark

In this section, we sketch the proof of Theorems 1a and 1b. The remaining details are

presented in the Appendix.

To solve the problem P(R), we must first determine Ψf ( · ) for each admissible f ∈ CK,M .

This is complicated by the fact that f need not be well behaved. For example, f is not

necessarily differentiable or even concave. However, we can use the structure of the manipu-

lation problem faced by agents to overcome this difficulty. We do this in a series of Lemmas

which establish that the optimal benchmark exists, and the weighting function f must be

continuous, non-decreasing, and concave.

Lemma 1 The problem P(R) admits a solution for any R ≤ R̂.

Our proof of this lemma is relatively involved because the standard argument (exploit-

ing upper semi-continuity of the objective function on a compact domain) does not apply

directly. The weighting functions are allowed to have jump discontinuities, which can lead to

discontinuities in the objective function (especially if a small change in the weighting function

induces a large change in the behavior of manipulators) and failure of compactness. We deal

22Although Figure 4.3 may suggest otherwise, the function corresponding to R = 5 has a zero
derivative at s = s̄. The second derivative gets large close to s = s̄, so the first derivative changes
rapidly in a small neighborhood of s̄. This is the case in which Theorem 1b does not apply and the
solution is described by Theorem 1 in Appendix A. Figure 4.3 shows that it is possible for two feasible
weighting functions to never cross. If the distribution of sizes ŝi were fixed, this would clearly be
impossible because any two such functions could not have the same expectation with respect to the
distribution of ŝi. However, this is possible when the distribution of ŝi depends on the shape of f .
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with these difficulties by exploiting the special structure of the problem and the regularity

conditions imposed on feasible f . For unmanipulated transactions, due to the continuous dis-

tribution of trade sizes, the properties of f on a measure-zero set (in particular at the finitely

many points of discontinuity) are irrelevant. For manipulated transactions, we observe that

discontinuities in the choice of the optimal size ŝi can occur only in cases for which the ma-

nipulator is indifferent between several transaction sizes. However, such cases are non-generic

with respect to Ri. Because Ri has a continuous distribution, any such cases can be ignored

when computing the expected payoff.

A simple corollary of Lemma 1 is that the full problem P also admits a solution. This fol-

lows from the Maximum Theorem (also known as Berge’s Theorem) which implies continuity

of the value of the problem P(R) in the threshold type R.

Having established existence, we can derive a series of restrictions on the shape of the

optimal weighting function.

Lemma 2 If f is a solution to problem P(R), then f is non-decreasing.

The proof of this lemma is technical and thus relegated to the Appendix, but the intu-

ition behind this result is straightforward and instructive. Suppose that a feasible weighting

function f is not non-decreasing. Then we can find an interval [s0, s1] ⊂ [0, s̄] such that no

manipulator chooses a transaction size in this interval. Intuitively, manipulators never choose

transactions that give them the same influence on the benchmark as some smaller (hence less

costly) transaction. Absent manipulation, however, we saw in Proposition 1 that the optimal

weight is constant. Thus, we can modify f in such an interval so as to retain feasibility but

improve the value of the program P. This rules out the optimality of f .

Lemma 3 If f is a solution to problem P(R), then f is continuous.

By Lemma 2 and the regularity conditions imposed on any weighting function, we can

prove Lemma 3 merely by ruling out cases in which f jumps up at some s0. If there is a jump

at s0, then there are no manipulations in (s0− ε, s0) for small ε > 0 because the manipulator

can discretely increase the influence on the benchmark by choosing s0 instead, at a negligibly

higher cost. Absent manipulations, the jump in f is suboptimal because the optimal weight

for unmanipulated transactions is constant. So, we can improve on a discontinuous f by

“smoothing it out” in the neighborhood of s0.

Lemma 4 If f is a solution to problem P(R), then f is concave.

To prove Lemma 4, we use the fact that there can be no manipulations in intervals over

which the weighting function f fails to be concave, that is, where f lies below some affine
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function. This follows from the linearity of costs. In such cases, we can modify f in such an

interval without inducing manipulation, so as to improve the weighting of the non-manipulated

transactions.

Given Lemmas 1-4, it is without loss of generality that we consider only weighting functions

in the set

F = {f ∈ CK,M : f is continuous, nondecreasing, and concave}.

The concavity of f implies that we can use first-order conditions to solve the agent’s manip-

ulation problem. However, f is not necessarily differentiable, so we use “superdifferential”

calculus.23 We denote by ∂f(s) the superdifferential of f at the point s. A function f ∈ F
is superdifferentiable at any point s ∈ (0, s̄) because f is concave, and the existence of a

superdifferential at 0 and s̄ follows from Rif(s) ≤ γs, and the fact that f is non-decreasing.

Moreover, ∂f(s) is a non-decreasing correspondence in the strong set order that is singleton-

valued for almost all s. A transaction size ŝi is a global maximum of Rif(s) − γs if and

only if 0 ∈ ∂(Rif(ŝi)− γŝi), or simply γ/Ri ∈ ∂f(ŝi). If f is actually differentiable at s, the

condition for optimality boils down to the usual first-order condition Rif
′(s) = γ.

We can now characterize Ψf ( · ) for any f ∈ F . For some s ∈ [0, s̄] and some manipulation

threshold R,

Ψf (s) = P
(
ŝi ≤ s

∣∣ |Ri| ≥ R)
= P

(
∂f(ŝi) ≥ ∂f(s)

∣∣ Ri ≥ R)
= P

(
γ

Ri
≥ f ′(s+)

∣∣ Ri ≥ R)

=
H
(

γ
f ′(s+)

)
−H(R)

1−H(R)
.

Here, f ′(s+) denotes the right derivative of f at s and (when applied to sets) the inequality

≥ is the strong set order.24 Because the right derivative of a concave function is a right-

continuous and non-increasing function, Ψf ( · ) is a well defined cdf. Discontinuities in f ′

correspond to atoms in the distribution of manipulated transaction sizes.

The concavity of f implies that the derivative of f , whenever it exists, lies below γ/R.

Indeed, the derivative is non-increasing and the constraint f(s) ≤ (γ/R)s implies that

f ′(0+) ≤ γ/R. Because f is non-decreasing, we also know that f ′(s) ≥ 0. The inequal-

ity f(s) ≤ (γ/R)s implies that f(0) = 0. Once these properties are imposed, the constraint

23See Rockafellar (1970) for the definitions of the subderivative and subdifferential of a convex func-
tion. The superderivative and superdifferential have the analogous definitions for a concave function.

24That is, for subsets X and Y of the real line, X ≥ Y if for any x in X and y in Y , we have
max{x, y} ∈ X and min{x, y} ∈ Y .
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f(s) ≤ (γ/R)s is redundant. We will study a relaxed problem in which we do not impose

concavity of f , and instead apply the weaker conditions listed above. We will then verify that

the solution to the relaxed problem is concave, validating our approach.

The relaxed problem can be phrased as an optimal control problem in which the control

variable is the derivative of f . This approach is valid because our assumptions and previous

analysis imply that f is absolutely continuous. So, we have

min
u:u(s)∈ [0, γ/R]

ˆ s̄

0
f2(s)

[
σ2
UH(R) g(s) ds+ σ2

M dH

(
γ

u(s)

)]
(4.2)

subject to

f(0) = 0, f ′(s) = u(s),

ˆ s̄

0
f(s)

[
H(R) dG(s) + dH

(
γ

u(s)

)]
=

1

n
. (4.3)

To solve this problem, we apply a theorem that gives sufficient conditions for a control variable

and the associated state variable to be optimal. Because the objective function is quadratic

in the state variable f and the constraint (4.3) is linear in f , the Hamiltonian is convex in

the state variable, implying a unique minimizer.

Lemma 5 There exists a unique solution to problem (4.2)-(4.3). The solution is non-decreasing,

concave, continuously differentiable everywhere, and coincides with (γ/R)s for small s. More-

over, the solution is given by the function f? described by Theorem 1b whenever such a function

exists.

Because f? solves the relaxed problem (4.2)-(4.3) and is feasible for the original problem

P(R), f? is also optimal for the original problem. Thus, the proof of Lemma 5 concludes the

proof of Theorem 1a-1b.

5 Robustness to order splitting

A practical concern related to the design of benchmarks based on transaction data is that

agents intending to trade total quantity s of the asset may split the order into several smaller

“chunks” in order to influence the benchmark fixing. So far, we have ruled out this possibility

by assuming that each agent conducts exactly one transaction. If we relax this assumption,

and in particular assume that the benchmark administrator is not able to aggregate all of

the transactions of a single agent, it turns out that the optimal benchmark from Section 4 is

susceptible to this type of manipulation. To see this, imagine that agent i, with a positive

manipulation incentive Ri, intends to trade the quantity s1. (See Figure 4.1.) Beyond merely

distorting the price of this transaction, the agent can additionally influence the benchmark
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fixing by submitting two smaller transactions, each with quantity s1/2. Such a manipulation

is costless, given our linear cost function, and yields the agent a benefit of

Ri(2f
?(s1/2)− f?(s1)) > 0.

because of the concavity of the weighting function f?.

By an extension of this argument, if the designer chooses a benchmark fixing f , the

effective weighting function that will arise under optimal order-splitting takes the form

f̄(s) = sup{f(q1) + · · ·+ f(qk) : qi ∈ [0, s̄], q1 + · · ·+ qk = s}.

Therefore, if order-splitting is allowed and costless,25 it is without loss of generality to require

that the benchmark administrator chooses a weighting function f that leaves no incentive for

this type of order-splitting manipulation. This property is easily seen to be equivalent to the

condition that f is superadditive. In particular, for any positive integer k,

f(ks) ≥ kf(s), s ≤ s̄

k
. (5.1)

Superadditivity is a cumbersome constraint in optimal control problems because it is a global

property, ruling out characterizations based on local behavior. Therefore, for tractability, we

will assume a slightly stronger mathematical condition by requiring (5.1) to hold for all real

k ≥ 1, and not only for integer k.

Condition 1 A benchmark weighting function f is robust to order-splitting if

f(ks) ≥ kf(s),

for all k ∈ [1,∞) and all s such that ks ≤ s̄.

It is clear that the optimal weighting function found in Theorem 1a-1b is not robust to

order splitting. In fact, if f is concave but not linear, it cannot satisfy Condition 1.

Theorem 2 For any R ≤ R̂, the optimal solution f? to problem P(R), subject to robustness

to order splitting, is given by f?(s) = (γ/R̂)s. Thus, the optimal manipulation threshold R?

is equal to R̂, and the associated benchmark is the volume-weighted average price (VWAP).

The proof can be found in Appendix B.7. Theorem 2 states that if the benchmark ad-

ministrator cannot deter or detect order-splitting, then the optimal benchmark is the volume-

weighted average price. The intuition for this result is relatively straightforward. When agents

25Costless order splitting amounts to assumption that agents have no price impact in the underlying
market. With price impact, submitting smaller orders might actually improve the price received by
the agent, which further encourages order-splitting.
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Fig. 5.1: Optimal weighting functions for Example 4

engage in strategic order splitting, the optimal weighting function cannot be concave unless it

is linear. At the same time, it is not optimal for the weighting function to be strictly convex

in any interval, for the reasons explained in the discussion of Lemma 4. Thus, it is optimal

to choose a linear weighting function. Under a linear weighting function, all manipulators

choose the largest feasible transaction size, which hence receives the highest possible weight.

Therefore, the optimal benchmark that is unbiased and robust to order splitting minimizes

the probability of manipulation.

Example 4 We adopt the parameters of Examples 2 and 3.26 The optimal benchmark fixing

in the baseline model leads to the threshold R? ≈ 2.58 which induces 28% of agents to manipu-

late. The optimal benchmark that deters order splitting is that which minimizes the probability

of manipulation subject to unbiasedness. This yields a manipulation incentive threshold R̂ of

about 5.35, leading to manipulation with a probability of about 7%. The minimized objective

function (mean squared error of the estimator) is 0.142 in the baseline case, and 0.19 when

restricted to Condition 1, robustness to order splitting. This sharp increase in benchmark

noise is caused by attaching a higher weight to manipulated transactions and inefficiently

small weight to small unmanipulated transactions.

To put this in context, consider the optimal benchmark fixing in the class of capped-volume

weighted average price (CVWAP) fixings, those with a weighting function that in linear in

transaction size s up to some maximal transaction size, after which the weight remains con-

stant. The best such fixing has a mean squared error of 0.149 and induces manipulation by

an agent in the event that the agent’s manipulation incentive R exceeds 2.81, which has a

probability of about 24%. These three weighting functions are depicted in Figure 5.1.

26Because we solve the example numerically, all numerical results reported in this and subsequent
examples are approximate.
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6 Models of manipulation

This section presents two stylized models of trading and manipulation that give rise to the

functional forms for costs and incentives assumed in Section 2. Apart from providing a

microeconomic foundation for our assumptions, these models give more precise meanings to

some model parameters.

6.1 Committed quotes and costly search

We first consider a framework in which manipulation is costly because agents are committed

to offering execution at the price quotes they submit to the benchmark administrator. In

this framework, as is common in some actual benchmark settings, the submitting agents are

dealers whose quotes are used to fix the benchmark. This was the case for the main industry

benchmark for interest rate swaps known as ISDAFIX, whose manipulation27 triggered more

than $600 million in fines for several dealers, Deutsche Bank, Goldman Sachs, Royal Bank

of Scotland, Citibank, and Barclays, and to a more robust benchmark design, as outlined by

Aquilina, Ibikunle, Mollica, Pirrone and Steffen (2018).

Manipulation consists in quoting a price that is an overestimate or underestimate of the

true value of the asset to the dealer. If the values for the asset are highly correlated among

market participants, then a mispriced quote is likely to be executed by a different investor,

yielding a loss to the quoting bank. In an instance of manipulation of ISDAFIX by Deutsche

Bank Securities Inc., the CFTC found28 that “DBSI Swap traders would tell the Swaps Broker

their need for a certain swap level at 11:00 a.m. or their need to have the level moved up

or down. On at least one occasion, the Swaps Broker expressed the need to know how much

‘ammo’ certain DBSI traders had to use in order to move the screen at 11:00 a.m.” The

“ammo” presumably refers to losses that the DBSI would incur from trades at manipulated

quotes.

The probability of an execution at a distorted quote depends both on the degree of dis-

tortion and also on the transparency of the market. If quotes are public (as would be the case

in a centralized limit order book), a significantly distorted quote would be executed with a

probability close to one. If the market is more opaque or less active, and especially if quotes

are revealed to traders only upon request (as in bilateral over-the-counter markets and on

multilateral request-for-quote platforms), then the probability of incurring a loss by offering

a distorted quote would be lower.

27See “CFTC Orders The Royal Bank of Scotland to Pay $85 Million Penalty for Attempted Ma-
nipulation of U.S. Dollar ISDAFIX Benchmark Swap Rates.”

28See CFTC Orders Deutsche Bank Securities Inc. to Pay $70 Million Penalty for Attempted
Manipulation of U.S. Dollar ISDAFIX Benchmark Swap Rates, CFTC, February 1, 2018.

http://www.cftc.gov/PressRoom/PressReleases/pr7527-17
http://www.cftc.gov/PressRoom/PressReleases/pr7527-17
http://www.cftc.gov/PressRoom/PressReleases/pr7692-18
http://www.cftc.gov/PressRoom/PressReleases/pr7692-18
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In our model, dealer i chooses ŝi ∈ [0, s̄] and ẑi ∈ {−z̄, 0, z̄}, for some constant z̄ > 0

which we could set to σz to match the notation from the baseline model. The variable Xi

is interpreted as the actual per-unit value of the asset to dealer i. The dealer commits to

trade up to ŝi units at a price X̂i = Xi + ẑi, where the pair (X̂i, ŝi) is used as a benchmark

submission. For simplicity, we set the bid-ask spread to zero, that is, X̂i is both a bid and an

ask. We assume that Y has unbounded support, while εi has a symmetric distribution on an

interval [−ε̄, ε̄], for some ε̄ ≤ z̄/2. This captures the idea that the distortion in prices due to

manipulation is larger than the distortion due to idiosyncratic differences in the value of the

asset to different traders.

We adopt a stylized search protocol to determine the probability that a committed quote

is executed. Before observing its manipulation incentive type Ri, dealer i chooses a search

intensity λi ∈ [0, 1], paying a cost c(λi) = 1
2 c̄λ

2
i . Here, λi is the probability that the dealer will

be allowed to trade at the committed quotes of some other (randomly chosen) dealer j. We

assume that each dealer is contacted at most once.29 Upon contacting j, dealer i maximizes

the value of its chosen transaction. Because Xi is the unit value of the asset to dealer i, the

resulting payoff of dealer i is

max

{
max
s≤ŝj

(
Xi − X̂j

)
s, max

s≤ŝj

(
X̂j −Xi

)
s

}
.

Here, dealer i buys or sells the maximum quantity ŝj to which dealer j has committed, due

to linearity in value. The difference between the value Xi and the quote X̂j determines the

direction of trade.

6.1.1 Solution

We focus on symmetric Nash equilibria. Dealer i makes two choices, the search intensity

λi and the manipulation levels (ẑi, ŝi). Regarding the first choice, the expected payoff to a

dealer conditional on a successful search depends on the probability that other banks choose

to manipulate. If pM denotes the equilibrium probability of manipulation, then that expected

payoff is

E
(

(1− pM )|Xi −Xj |+
1

2
pM |Xi − z̄ −Xj |+

1

2
pM |Xi + z̄ −Xj |

)
E(ŝj)

= [(1− pM )E (|εi − εj |) + pM z̄]E(ŝj) ≡ φ.

29Formally, imagine the following iterative procedure. Dealer 1 contacts one of the in dealer N \{1}
with probability λ1. If dealer 1 contacts dealer j, then dealer 2 contacts one of the dealers in N \{2, j}
with probability λ2, and so on.
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The optimal choice of search intensity is thus λ? = min
{

1, φc̄−1
}
.

As for the choice of manipulation, the dealer can always guarantee a zero payoff by quoting

a price equal to the true value Xi, regardless of the size ŝi, by choosing ẑi = 0. On the other

hand, choosing ẑi ∈ {−z̄, z̄} yields a payoff −z̄ŝi in the event of being contacted by another

dealer. The probability of being contacted is

n−1∑
k=1

(
n− 1

k

)
(λ?)k (1− λ?)n−1−k k

n− 1
= λ?.

Taking into account the payoff generated by influencing the benchmark, and normalizing the

payoff from not manipulating to zero, we see that the payoff from choosing (ŝi, ẑi) is equal to

(Rif(ŝi)− λ?ŝi) ẑi

which is exactly the expression assumed in Section 2, when taking γ = λ?.

6.1.2 Discussion

Based on the simple model of the previous subsection, the parameter γ can be interpreted as

the probability of execution of a manipulated quote. If trade takes place on an active limit

order book, then it is natural to assume that the cost c̄ of search is nearly zero, and hence

that γ = λ? is close to 1. That is, manipulation would almost always yield a trading loss.

On the other hand, in an opaque over-the-counter markets, c̄ may be relatively large, and

hence manipulation is less costly – a manipulated quote might not always be executed. As

a consequence, holding the benchmark fixed, the probability of manipulation is higher in an

opaque market.

Is λ? is less than one, there is an additional feedback effect between the benchmark fixing

and the probability of manipulation. The ex-ante probability pM of manipulation by any

dealer is 1 −H(Rf ), which is the probability that the dealer’s exposure type R exceeds the

threshold Rf determined by the weighting function f used in the fixing. If f is changed to

reduce manipulation, then Rf goes up and pM goes down. This, however, implies that the

incentive to search is reduced, because the probability of encountering a profitable distorted

quote gets smaller. As a consequence, λ? decreases, and manipulation becomes cheaper.

In a sense, the benchmark fixing and the market forces act as substitutes in preventing

manipulation when the market is relatively opaque.

This discussion suggests that moving from a centralized to an opaque market may have an

ambiguous influence on the shape of the optimal benchmark. On one hand, because a given

manipulation of the price is less costly in an opaque market, the fixing that should be chosen

in an opaque market would place a relatively smaller weight on small transactions. On the
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other hand, a fixing that deters manipulation lowers the cost of manipulating through the

equilibrium effect on the search intensity of other market participants.

6.2 An auction model

In this subsection, we consider an alternative trading model. When a liquidity shock hits a

dealer, it may request quotes from other dealers, as is typical on electronic request-for-quote

(RFQ) platforms. We model this as a sealed-bid auction. Absent incentives to manipulate,

the dealer will accept the most attractive quote, for example, the lowest ask when it needs to

buy the asset. The execution price, along with the corresponding trade volume, is then used

to calculate the benchmark fixing. If, however, the dealer wants to inflate the fixing in order

to take advantage of a long position in benchmark-linked assets, the dealer has an incentive

to trade at the highest ask offered in the auction. This induces a tradeoff between the loss

incurred in the auction and the gain associated with distorting the benchmark fixing.

We build a stylized model that aims to capture the main incentives. Dealer i is hit by

a liquidity shock δi that takes one of the values {−∆, ∆} with equal probability, for some

∆ > 0. Dealer i then values each unit of the asset at Y + δi, for quantities up to si. Whenever

a dealer is hit by a shock, it requests quotes from two other dealers who have access to an

unlimited supply of the asset at the common-value price Y. (The restriction to only two other

dealers is not essential for the qualitative results but will yield explicit analytic solutions.)

We model the competition between the two quoting dealers as a first-price auction (Bertrand

competition). Absent incentives to manipulate, the dealer requesting the quote chooses the

more attractive of the quotes, and thus Bertrand forces push the price to Y. However, when

the quote-requesting dealer is a manipulator, it chooses the least attractive of the quotes,

creating an incentive for dealers to provide quotes further away from the value Y.

6.2.1 Solution

For concreteness, consider the case in which dealer i requests quotes to buy the asset (the

opposite case is symmetric). Let pM be the equilibrium probability that dealer i manipulates

by accepting the higher of the quotes, corresponding to the case of a positive exposure Ri.

In the unique symmetric equilibrium of the auction, the two dealers that provide quotes

randomize their offers according to a continuous distribution function F with support [Y +

λ∆, Y + ∆], where λ is determined in equilibrium. Following the line of argument in Stahl

(1989), this requires each of the two dealers to be indifferent between all per-unit quotes q in

the support of F, so that

[(1− pM )(1− F (q)) + pMF (q)] (q − Y ) = pM∆.
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Solving, we obtain

F (q) = 1− pM
1− 2pM

Y + ∆− q
q − Y

which is a well defined cdf when pM < 1/2. Moreover, we have λ = pM/(1 − pM ). If pM

is small, the quotes are close to Y . When pM is relatively high (but below 1/2), the quotes

are close30 to Y + ∆. With the above description, we can calculate equilibrium payoffs, and

the distribution of transaction data. Let εki , for k = 1, 2, and i = 1, 2, ..., n, be the profit

margin charged by dealer k in the auction requested by dealer i. That is, Y + ε1
i and Y + ε2

i

are the quotes received by dealer i. Normalizing the payoff from not manipulating to zero,

we take the cost of manipulation to be equal to the extra profit margin conceded by dealer

i through choosing the less attractive quote for ŝi units of the asset. This concession is

ŝiE
[
max{ε1

i , ε
2
i } −min{ε1

i , ε
2
i }
]
. Taking into account the benefit from influencing the fixing,

the net expected payoff from manipulation is equal to

(Rif(ŝi)− ŝi)Ezi,

where the random variable zi is defined by zi =
[
max{ε1

i , ε
2
i } −min{ε1

i , ε
2
i }
]
. This setting

can therefore be viewed as a version of our basic model for the case γ = 1.

6.2.2 Discussion

The model of this section endogenizes the noise structure assumed in Section 2. The noise

term εi reflects the dispersion in bids and asks quoted in the auction requested by dealer

i. Manipulated transactions are more noisy than unmanipulated transactions because the

worst price is further away from the mean Y than the best price. The noise term εi is

±min{ε1
i , ε

2
i }, with symmetric probability. Manipulated transactions contain an additional

noise term zi = max{ε1
i , ε

2
i } − min{ε1

i , ε
2
i }. Thus, we provided a game-theoretic foundation

for our assumption that manipulation reduces the signal-to-noise ratio of a benchmark.

In the framework modeled in this section, there is an additional distortionary channel

for manipulation, through its impact on the probability distribution of unmanipulated data.

When it is more likely that a counterparty in a transaction is a manipulator, a trader might

provide a noisy quote, hoping that it will be accepted when the price distortion happens to

be of the sign preferred by the manipulator. As a result, even when the quote requester is

not a manipulator, and would take the most attractive quote, the distribution of quotes is

more dispersed. As the probability pM of manipulation rises, the probability distribution F

of quotes shifts towards quotes further away from the true value Y . Hence the variance of εi

30We leave out a description of the equilibrium for the case pM ≥ 1/2 which is less relevant for our
application. In that case, we would observe bids above Y + ∆.
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rises, in that |εi| is distributed according to the CDF 1− (1− Fε(ε))2, where

Fε(ε) = 1− pM
1− 2pM

∆− ε
ε

,

implying that

σ2
ε = 2∆2

(
pM

1− 2pM

)2 [
− log

(
1 +

2pM − 1

1− pM

)
+

2pM − 1

1− pM

]
.

The noise level σ2
ε is increasing in ∆ and pM . In particular, limpM→1/2 σ

2
ε = ∆2.

In this auction setting, because manipulation adversely impacts the precision of unmanip-

ulated price signals, the slope of the optimal benchmark weighting function f is lowered in

order to mitigate the risk of manipulation. The benchmark designer can affect the distribution

of εi by choosing f so that pM = 1−H(Rf ) is relatively low. As a result, the probability of

manipulation is smaller than in the baseline model in which the distribution of unmanipulated

transaction data is exogenous.

7 Conclusions and future research

We developed a simple model for the design of robust benchmark fixings in settings for which

incentives to manipulate the benchmark arise from a profit motive related to investment

positions that are valued according to the benchmark. We have restricted attention to fixings

that are given by a size-dependent weighted average price, an important limitation. We

characterize the optimal weight for each size of transaction. We showed that an optimal

benchmark fixing must in general allow some amount of manipulation, puts very small weight

on small transactions, and nearly equal weight on large transactions. When order-splitting

cannot be detected or otherwise deterred, the volume-weighted average price (VWAP) emerges

as the optimal design within the class of benchmark fixing methods that we consider.

An important advance would be to allow weights that depend on the prices of transactions.

A simple example is the exclusion of “outlier” prices, as in the design of the LIBOR fixings,

which discards the highest and lowest quartiles of the panel of reports. A more sophisticated

approach would be to compute, for every transaction, the posterior probability that the

transaction is manipulated, and to use this information to construct weights.

We have ignored collusion throughout.31

31For a given benchmark design, a collusive model of manipulation is suggested by Osler (2016).
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A The generalized statement of Theorem 1a-1b

We first define a generalization of ODE (4.1). The differential equation is indexed by two

parameters: the starting point s0 and a constant η > 0:

f ′′(s) = −

[
η − 2f(s)σ2

U

]
H(R)g(s) + 2γσ2

Mh
(

γ
f ′(s)

)
[
2f(s)σ2

M − η
] (
−h′

(
γ

f ′(s)

))
γ2

(f ′(s))3

(A.1)

with boundary conditions f(s0) = (γ/R)s0, f
′(s0) = γ/R.

Theorem 1 For any R ∈ (0, R̂), there exists a unique optimal solution f? to problem P(R).

The optimal weighting function f? is non-decreasing, concave, continuously differentiable ev-

erywhere, and given by

f?(s) =


γ
Rs s ∈ [0, s0]

solution to (A.1) s ∈ (s0, s1)

f?(s1) s ∈ [s1, s̄]

.

The parameter η in (A.1) and the cutoff point s1 are chosen so that (f?)′(s̄) = 0: either s1 < s̄

in which case η = 2f?(s1)σ2
U , or s1 = s̄ in which case η ∈ [2f?(s1)σ2

U , 2f?(s0)σ2
M ) is chosen

so that the solution to (A.1) on [s0, s̄] satisfies f ′(s̄) = 0. Finally, the cutoff point s0 ∈ (0, s̄)

is chosen to satisfy the constraint (3.5).32

Clearly, Theorem 1 implies Theorem 1a. To see that it also implies Theorem 1b, note that

f? described by Theorem 1b corresponds exactly to the first case described by Theorem 1:

s1 < s̄ and η = 2f?(s1)σ2
U . Because the solution is unique, when f? described by Theorem 1b

exists, it must be optimal. In this case, the ODE (4.1) is obtained from (A.1) by plugging in

the above expression for η, and dividing the numerator and the denominator by 2σ2
U .

The derivation of the optimal benchmark in Section 4.2 along with the proofs found in

Appendix B establish the generalized version of Theorem 1a-1b described above.

32The existence of such η, s0, s1 and the existence of a solution to (A.1) will be proven.

http://www.bloomberg.com/news/2014-02-28/gold-fix-study-shows-signs-of-decade-of-bank-manipulation.html
 http://www.econ.vt.edu/seminars/Seminar%20Papers/2015/02-06-15youlepaper.pdf
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B Proofs

B.1 Proof of Lemma 1

Let V (f) be the value of the problem for a feasible function f , and let V ? be the value

of the infimum in P(R) (it exists because the objective function is bounded by zero from

below). By definition of an infimum, there exists a sequence of feasible functions fn such that

limn V (fn)→ V ?. We have to prove that a subsequence of fn converges to a well-defined and

feasible limit f , and that V (f) = V ?.

First, we define the limiting function f . Because each fn ∈ CK,M , we can define 0 = sn1 <

sn2 < ... < snKn−1
< snKn = s̄ such that fn is Lipshitz with constant M on each (sni , s

n
i+1).

Because Kn ≤ K, and K is finite, there exists a subsequence (which we still denote by fn) such

that Kn = L ≤ K for all n, and sni → si. For any i, take a compact subset Ai ⊂ (si, si+1).

Then, for large enough n, the sequence is uniformly bounded and equi-continuous on Ai, by

assumption. By the Arzelá-Ascoli Theorem, we can find a subsequence that converges point-

wise to some function f̃ i on (si, si+1), and convergence is uniform on every compact subset.

The limiting function f̃ i preserves the Lipshitz constant M . Because the function is bounded

and Lipshitz continuous, we can extend the function to [si, si+1] in such a way that f̃ i is

continuous. Because there are finitely many i, we can find a subsequence of fn such that the

above properties hold for every interval (si, si+1). Finally, we define f to be a function that

coincides with f̃ i on every (si, si+1), and is equal to max{f̃ i−1(si), f̃
i(si)} for each si. The

definition guarantees that f is upper semi-continuous, and thus belongs to the class CK,M .

The chosen subsequence of fn (which we will again denote by fn) converges to f uniformly

on every compact A ⊂ [0, s̄] \ {s1, ..., sL}.
Second, we look at the properties of dΨf (s) – the distribution of manipulated trade sizes.

In this paragraph, we use Ri to denote a generic positive exposure type. Let

Sf (Ri) = argmaxs∈[0, s̄]{Rif(s)− γs} ≡ argmaxs∈[0, s̄]

{
f(s)− γ

Ri
s

}
be the set of maximizers in the manipulator’s problem. The function f(s)− (γ/Ri)s, defined

on a lattice [0, R̄]× [0, s̄], is quasi-supermodular in s, and has a strict single crossing property

in (s, Ri). It follows from Milgrom and Shannon (1994) that the set Sf (Ri) is a complete

sublattice, and any selection sf (Ri) ∈ Sf (Ri) is non-decreasing in Ri. In particular, this

means that Sf (Ri) is a singleton for almost all Ri. Define s̄f (Ri) = maxSf (Ri). Then,

Ψf (s) = PRi∼H(s̄f (Ri) ≤ s).
Third, we argue that limn V (fn) = V (f), and that f satisfies the constraints of the problem
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P(R). It is enough to prove that

lim
n

ˆ s̄

0
fkn(s)g(s)ds =

ˆ s̄

0
fk(s)g(s)ds, k ∈ {1, 2}, (B.1)

and

lim
n

ˆ s̄

0
fkn(s)dΨfn(s) =

ˆ s̄

0
fk(s)dΨf (s), k ∈ {1, 2}, (B.2)

Showing (B.1) is straightforward – it follows from the Lebesgue dominated convergence the-

orem and the fact that fn converges to f almost surely. We prove that (B.2) holds as well.

Recalling that we are looking at the problem where agents with Ri ≥ R manipulate, we can

write ˆ s̄

0
fk(s)dΨf (s) =

ˆ R̄

R
(f(s̄f (Ri))

k dH(Ri)

1−H(R)
.

It is therefore enough to prove that fn(s̄fn(Ri)) → f(s̄f (Ri)) for almost all Ri. Intuitively,

we have to show that the weight chosen by manipulators changes continuously with the

weighting function, for almost all Ri. For some Ri, it is clear that the optimal choice can be

discontinuous when the manipulator is indifferent between two transaction sizes, but as we

saw in the second step of the proof, such situations are non-generic. It is enough to prove that

s̄fn(Ri) converges to s̄f (Ri) for almost all Ri. Indeed, if this is true, then the only scenario

in which fn(s̄fn(Ri)) might fail to converge to f(s̄f (Ri)) is when s̄fn(Ri) approaches some si

at which f has a jump, and convergence to si is from the side where f is lower – however,

this would contradict the optimality of s̄fn(Ri). To show convergence of s̄fn(Ri) to s̄f (Ri)

for almost all Ri, it is enough to prove that the limit of s̄fn(Ri) is a solution to the agent’s

problem at f . Then, the conclusion follows from the fact that, by step 2 of the proof, the set

of solutions is a singleton for almost all Ri.

Let v(f) = maxs∈[0, s̄](Rif(s) − γs), for a fixed Ri. Because the function Rif(s) − γs is

upper semi-continuous in s, it is enough to prove that v(fn) → v(f). Let Sn be defined as

[0, s̄] \
(⋃L

i=1[si − 1
n , si + 1

n ]
)

– we removed each si with some small neighborhood from the

domain. Then, fn converges uniformly to f on Sn. We have, for large enough n,

|v(fn)− v(f)| =
∣∣∣∣ max
s∈[0, s̄]

(Rifn(s)− γs)− max
s∈[0, s̄]

(Rif(s)− γs)
∣∣∣∣

≤ O(1)

n
+

∣∣∣∣max
s∈Sn

(Rifn(s)− γs)−max
s∈Sn

(Rif(s)− γs)
∣∣∣∣ ≤ O(1)

n
+Ri max

s∈Sn
|fn(s)− f(s)| ,

and the last expression goes to 0 by uniform convergence. Here, the term O(1) denotes a

constant, and the first inequality follows from the fact that all fn are uniformly bounded and

equi-continuous on each (sni , s
n
i+1) (intuitively, removing a small part of the domain cannot

change the value of the optimization problem too much). This concludes the proof.
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B.2 Proof of Lemma 2

Take a feasible function f and suppose it is not nondecreasing. We will prove the result

by constructing a different feasible function f̄ that improves the objective function (hence, f

cannot be optimal). By assumption, there exist s0 and s1 such that s0 < s1, but f(s0) > f(s1).

Without loss of generality we can assume (making the interval smaller if necessary and using

the regularity conditions on f) that either (i) f is strictly decreasing in [s0, s1] or (ii) f has

a jump discontinuity at s0 and f(s) is lower than f(s0) on (s0, s1].33

Consider case (i). By the choice of s0 and s1, there are no manipulations in (s0, s1), and

this will continue to be true for any function f that is non-increasing in this interval. We

can construct a non-increasing, Lipshitz continuous function f̂ on [s0, s1] with the following

properties: f̂(s0) = f(s0), f̂(s1) = f(s1),
´ s1
s0
f̂(s)g(s) ds =

´ s1
s0
f(s)g(s) ds and there exists

s2 ∈ (s0, s1) such that f̂(s) < f(s) for s ∈ (s0, s2) and f̂(s) > f(s) for s ∈ (s2, s1). We then

define

f̄(s) =

f̂(s) if s ∈ [s0, s1]

f(s) otherwise.

By construction, f̄ is feasible (in particular it satisfies the constraint that guarantees an

unbiased estimator). The difference in the value of the administrator’s objective function P
under f̄ and f is (using the fact that there are no manipulations in [s0, s1] under f̄),

ˆ s1

s0

(
f̄2(s)− f2(s)

)
σ2
Ug(s) ds =

ˆ s1

s0

(
f̄(s)− f(s)

)
φ(s)g(s) ds,

where φ(s) ≡
(
f̄(s) + f(s)

)
σ2
U is a strictly decreasing function. By the mean value theorem,

there exists x ∈ (s0, s1) such that

ˆ s1

s0

(
f̄(s)− f(s)

)
φ(s)g(s) ds = φ(s0)

ˆ x

s0

(
f̄(s)− f(s)

)
g(s) ds.

But
´ x
s0

(
f̄(s)− f(s)

)
g(s) ds < 0 because the integrand is (strictly) negative on [s0, s2),

(strictly) positive on (s2, s1] and
´ s1
s0

(
f̄(s)− f(s)

)
g(s) ds = 0.

Therefore, f̄ is feasible and yields a smaller value of the objective function than does f .

Now, consider case (ii). We can choose s1 so that f(s) < f(s0) for all s ∈ (s0, s1)

but not on any larger interval. By the choice of s1, there cannot be any manipulations

in (s0, s1) – this is because a manipulator would strictly prefer to choose s0 over any s

in that interval. Suppose that f is not (almost everywhere) constant on (s0, s1). Then,

there is a way to improve on f by replacing it in this interval by a constant f̄(s) = α with

α(G(s1) − G(s0)) =
´ s1
s0
f̄(s)g(s)ds =

´ s1
s0
f(s)g(s)ds. Indeed, under both f and f̄ , there are

33We assume here that s0 < s̄. The opposite case is very easy to rule out.
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only unmanipulated transactions in the interval (s0, s1), so the objective function changes by

σ2
U

ˆ s1

s0

(f̄2(s)− f2(s))g(s)ds < σ2
U [G(s1)−G(s0)]

α2 −

(´ s1
s0
f(s)g(s)ds

G(s1)−G(s0)

)2
 = 0,

where the (strict) inequality follows from Jensen’s Inequality and the fact that f is not (almost

everywhere) constant. Thus, f could not be optimal.

Finally, consider the opposite case in which f is constant (almost everywhere) on (s0, s1).

By definition of s1, we must in fact have s1 = s̄, and it is without loss of generality to assume

that f(s) = β for all s > s0 for some β (in the opposite case there is a simple way to improve

on f). Because the construction of f̄ is similar to the previous cases, we only discuss it

informally and omit a formal calculation. For ε > 0 small enough, β+ ε < f(s0), so if we raise

f(s) from β to β+ε on (s0, s̄], this has no influence on the distribution of manipulated trades.

To preserve constraint (3.5), we can now lower f by δ on [s0 − ∆, s0]. This might change

the distribution of manipulated trades but only in the direction desired by the administrator

– the manipulators are guaranteed to choose lower weights after the modification because,

for small enough ε, trade sizes above s0 are suboptimal. Define f̄ as a function obtained by

modifying f in a way described above with ε, δ, and ∆ such that constraint (3.5) is preserved.

Then, for small enough ε and δ, f̄ achieves a strictly lower value of the objective function

than does f . Hence, f could not be optimal.

B.3 Proof of Lemma 3

Take a feasible candidate solution f and suppose that it is not continuous. By the regularity

condition and Lemma 2, it is enough to consider the case when f jumps up at some s0 ∈ (0, s̄).

Consider lowering f by ε > 0 in the interval [s0, s̄], where ε is small. Note that after this

modification, the distribution of manipulated transactions conditional on ŝ ∈ [s0, s̄] does not

change, but it is possible that some manipulators switch to choosing a size ŝ < s0. However,

we can ignore this in the calculations because, by Lemma 2, the function f is lower on [0, s0)

than it is on [s0, s̄] (and continues to be lower if ε is small enough) – hence, this can only

improve the objective function. Next, notice that for small enough ∆ and ε, there cannot be

any manipulations in (s0−∆, s0) because the choice of any s in this interval is dominated by

the choice of s0. Let us define f̄ in the following way

f̄(s) =


f(s) s ≤ s0 −∆

f(s) + δ s ∈ (s0 −∆, s0)

f(s)− ε s ≥ s0

,
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where δ is chosen so that the constraint (3.5) holds (as noted before, we can ignore the

manipulated transactions): ˆ s0

s0−∆
δg(s)ds =

ˆ s̄

s0

εg(s)ds. (B.3)

Because of (B.3), the function f̄ is feasible, so we only have to prove that f̄ achieves a lower

value of the objective function. We have

ˆ s̄

0
σ2
U f̄

2(s)g(s)ds−
ˆ s̄

0
σ2
Uf

2(s)g(s)ds

= σ2
U

(
δ2

ˆ s0

s0−∆
g(s)ds+ 2δ

ˆ s0

s0−∆
f(s)g(s)ds+ ε2

ˆ s̄

s0

g(s)ds− 2ε

ˆ s̄

s0

f(s)g(s)ds

)
.

The terms multiplied by ε2 and δ2 can be ignored because they are negligibly small compared

to other terms once ε and δ are small enough (they cannot reverse a strict inequality). Using

equality (B.3), it is enough to prove that

ε
1−G(s0)

G(s0)−G(s0 −∆)

ˆ s0

s0−∆
f(s)g(s)ds− ε

ˆ s̄

s0

f(s)g(s)ds < 0.

or equivalently, ´ s0
s0−∆ f(s)g(s)ds

G(s0)−G(s0 −∆)
<

´ s̄
s0
f(s)g(s)ds

1−G(s0)
.

This means that we are done because

´ s0
s0−∆ f(s)g(s)ds

G(s0)−G(s0 −∆)
<
f(s−0 ) + f(s0)

2
<

´ s̄
s0
f(s)g(s)ds

1−G(s0)
,

where f(s−0 ) is the left limit of f at s0, and the inequality follows from the fact that f is

globally non-decreasing, and that there is a jump at s0.

B.4 Proof of Lemma 4

Take a feasible f and suppose it is not concave. By Lemma 2 and Lemma 3, we can assume

that f is continuous and non-decreasing. This means that we can find an affine increasing

function ϕ(s) = a + bs and an interval [s0, s1] such that ϕ(s0) = f(s0), ϕ(s1) = f(s1) and

ϕ(s) ≥ f(s) for all s ∈ (s0, s1), with a strict inequality for at least some s̃ ∈ (s0, s1). We first

prove that there can be no manipulations34 in (s0, s1). It’s enough to show that for generic

34Strictly speaking, the measure of manipulations is zero.
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R, and for all s ∈ (s0, s1),

Rf(s)− γs < max {Rf(s0)− γs0, Rf(s1)− γs1} .

We have

max {Rf(s0)− γs0, Rf(s1)− γs1} =

Ra+ (Rb− γ) s1 if Rb > γ,

Ra+ (Rb− γ) s0 if Rb < γ.

Take the case Rb > γ. Then we have, for all s ∈ (s0, s1),

Rf(s)− γs ≤ Ra+ (Rb− γ) s < Ra+ (Rb− γ) s1.

Similarly, for Rb < γ and for all s ∈ (s0, s1),

Rf(s)− γs ≤ Ra+ (Rb− γ) s < Ra+ (Rb− γ) s0.

This conclusion depended only on the fact that f lies below the affine function ϕ. Thus, if f

cannot be improved upon by another feasible function f̄ , it must be the case that f restricted

to the interval [s0, s1] arises as a solution to the following optimal control problem:

min
u≥0

ˆ s1

s0

f̃2(s)g(s) ds (B.4)

subject to ˆ s1

s0

f̃(s)g(s) ds =

ˆ s1

s0

f(s)g(s) ds,

f̃ ′(s) = u(s),

f̃(s0) = f(s0),

f̃(s1) ≤ f(s1),

f̃(s) ≤ ϕ(s).

Here, the first derivative plays the role of the control variable, and the weighting function is

the state variable. Notice that this is a problem mathematically equivalent to that considered

in Proposition 2. A standard application of optimal control techniques (see, for example, the

Arrow’s Theorem on page 107 of Seierstad and Sydsaeter, 1987) yields the conclusion that

the optimal f̃(s) is equal to ϕ(s) up to some s2 ∈ (s0, s1), and is constant equal to f̃(s2) on

(s2, s1], where s2 is chosen to satisfy the constraint
´ s1
s0
f̃(s)g(s) ds =

´ s1
s0
f(s)g(s) ds. Note

that s2 < s1 because, by assumption, f lies strictly below ϕ for at least some points. Define
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the function f̄ that coincides with f outside of the interval (s0, s1) and is equal to the optimal

f̃ otherwise. Then, f̄ achieves a weakly lower value of the objective function than f , and has

a jump discontinuity at s1. By Lemma 3, f̄ can be (strictly) improved upon, and hence f

cannot be optimal either.

B.5 Proof of Lemma 5

We will first find a solution to the relaxed problem (4.2) - (4.3), and then prove that it satisfies

the properties listed in Theorem 1, a generalization of Theorem 1a-1b found in Appendix A.

This will establish Theorem 1, and thus Lemma 5 and Theorem 1a-1b as a special case.

We fix an R ∈ (0, R̂) which guarantees that the set of functions f ∈ F that satisfy the

constraints of problem (4.2) - (4.3) is non-empty.

We can simplify the objective function (4.2): Applying integration by parts for the

Riemann-Stieltjes Integral, and using the fact that f is absolutely continuous, we obtain

ˆ s̄

0
f2(s) dH

(
γ

f ′(s)

)
= f2(s̄)− 2

ˆ s̄

0
f(s)f ′(s)H

(
γ

f ′(s)

)
ds

= 2

ˆ s̄

0
f(s)f ′(s)

(
1−H

(
γ

f ′(s)

))
ds.

Therefore, the objective function (4.2) becomes

ˆ s̄

0

[
f2(s)σ2

UH(R)g(s) + 2f(s)f ′(s)σ2
M

(
1−H

(
γ

f ′(s)

))]
ds.

Applying the same method, we get

ˆ s̄

0
f(s) dH

(
γ

f ′(s)

)
=

ˆ s̄

0
f ′(s)

(
1−H

(
γ

f ′(s)

))
ds,

which allows us to express the constraint (4.3) as

ˆ s̄

0

[
f(s)H(R)g(s) + f ′(s)

(
1−H

(
γ

f ′(s)

))]
ds =

1

n
.

Moreover, we can transform the problem into an unconstrained one by defining an auxiliary

state variable Γ by

Γ(s) =

ˆ s

0

[
f(t)H(R)g(t) + f ′(t)

(
1−H

(
γ

f ′(t)

))]
dt, s ∈ [0, s̄].
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This means that

Γ′(s) = f(s)H(R)g(s) + f ′(s)

(
1−H

(
γ

f ′(s)

))
with Γ(0) = 0 and Γ(s̄) = 1/n.

We thus have the following optimal control problem:

max
u:u(s)∈[0, γ/R]

−
ˆ s̄

0

[
f2(s)σ2

UH(R)g(s) + 2f(s)u(s)σ2
M

(
1−H

(
γ

u(s)

))]
ds (B.5)

subject to

f ′(s) = u(s), f(0) = 0, f(s̄) − free, (B.6)

Γ′(s) = f(s)H(R)g(s) + u(s)

(
1−H

(
γ

u(s)

))
, Γ(0) = 0, Γ(s̄) =

1

n
. (B.7)

The Hamiltonian corresponding to the problem is

H(f(s), u(s), s) = −
[
f2(s)σ2

UH(R)g(s) + 2f(s)u(s)σ2
M

(
1−H

(
γ

u(s)

))]
+ p1(s)u(s) + p2(s)

[
f(s)H(R)g(s) + u(s)

(
1−H

(
γ

u(s)

))]
, (B.8)

where pi(s), for i = 1, 2, are the multipliers on the two state variables f and Γ.

The lemma below gives sufficient conditions for optimality and uniqueness of a candidate

solution.

Lemma 6 Let (f(s), u(s)) be a feasible pair for the problem (B.5) - (B.7). If there exists a

continuous and piecewise continuously differentiable function p(s) = (p1(s), p2(s)) such that

the following conditions are satisfied

1. p′1(s) =
[
2f(s)σ2

U − η
]
H(R)g(s) + 2u(s)σ2

M

(
1−H

(
γ
u(s)

))
;

2. p′2(s) = 0;

3. u(s) maximizes H(f(s), u, s) over u ∈ [0, γ/R] for all s ∈ [0, s̄];

4. p1(s̄) = 0;

5. Ĥ(f, s) = maxu∈[0, γ/R]H(f, u, s) exists and is concave in f for all s,

then (f(s), u(s)) solve the problem (B.5) - (B.7). If Ĥ(f, s) is strictly concave in f for all s,

then f is the unique solution.

Proof: By direct application of the Arrow Sufficiency Theorem (Theorem 5 on page 107 of

Seierstad and Sydsaeter, 1987). �
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Before we proceed, we state a simple lemma that will be used throughout.

Lemma 7 Suppose X is a nonnegative random variable with a finite variance and a continuously

differentiable decreasing density h on (0, ∞). Then limx→∞ h(x)x2 = limx→∞ h
′(x)x3 = 0.

Proof: The first claim follows directly from the definition of variance, and the second can be

obtained by applying integration by parts. �

We will construct the functions p1, p2, and show that the conditions of Lemma 6 all

hold with (f, f ′) as described in Theorem 1. (We omit the superscript in f? and write

f throughout.) We let η = p2(s) for all s, for some constant η > 0. We conjecture that

η ∈ [2f(s0)σ2
U , 2f(s0)σ2

M ) (we will verify that conjecture later). This definition of p2(s)

satisfies condition 2 of Lemma 6.

Consider the interval [0, s0], where f(s) = (γ/R)s, and u(s) = f ′(s) = γ/R. We want to

make sure that condition 3 of Lemma 6 is satisfied:

γ

R
∈ argmax

u∈[0, γ
R

]

{
−
[
2f(s)σ2

M − η
]
u
(

1−H
(γ
u

))
+ p1(s)u

}
.

It is enough to show that the derivative of the objective function with respect to u is non-

negative, for all u ∈ [0, γ/R]:[
η − 2

γ

R
sσ2

M

] [
1−H

(γ
u

)
+
γ

u
h
(γ
u

)]
+ p1(s) ≥ 0. (B.9)

Notice that the second derivative with respect to u is given by

[
η − 2

γ

R
sσ2

M

] [γ2

u3

(
−h′

(γ
u

))]
which, by the assumption that h is decreasing, is non-negative if and only if η ≥ 2(γ/R)sσ2

M .

Thus, the Hamiltonian is convex in the control variable u (implying a boundary solution) for

all s such that η ≥ 2(γ/R)sσ2
M , and is concave otherwise. In either case, it is enough to show

that (B.9) holds for u = γ/R, i.e., that[
η − 2

γ

R
sσ2

M

]
[1−H(R) +Rh(R)] + p1(s) ≥ 0. (B.10)

To satisfy condition 2 of Lemma 6, we set

p′1(s) =
[
2
γ

R
sσ2

U − η
]
H(R)g(s)︸ ︷︷ ︸

≤0

+2
γ

R
σ2
M (1−H(R))
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in the interval s ∈ [0, s0], using the assumption that η ≥ 2f(s0)σ2
U . Thus, we can write

p1(s) = p1(0) + 2
γ

R
sσ2

M (1−H(R)) +

ˆ s

0

[
2
γ

R
τσ2

U − η
]
H(R)g(τ)dτ.

To show (B.10), we need to prove that[
η − 2

γ

R
sσ2

M

]
[1−H(R) +Rh(R)]+p1(0)+2

γ

R
sσ2

M (1−H(R))+

ˆ s

0

[
2
γ

R
τσ2

U − η
]
H(R)g(τ)dτ ≥ 0.

This is equivalent to

η [1−H(R)] +
[
η − 2

γ

R
sσ2

M

]
[Rh(R)] + p1(0) +

ˆ s

0

[
2
γ

R
τσ2

U − η
]
H(R)g(τ)dτ ≥ 0.

The derivative of the left hand side is equal to

−2
γ

R
σ2
MRh(R) +

(
2
γ

R
sσ2

U − η
)
H(R)g(s) ≤ 0,

as long as 2(γ/R)sσ2
U ≤ η which is true by conjecture when s ≤ s0. Thus, we can choose

p1(0) to satisfy the inequality (B.10) at s = s0, and then it will hold on the entire interval

[0, s0]. We can define p1(0) so that the inequality binds at s0 which gives us

p1(s) =
[
2
γ

R
sσ2

M − η
]

[1−H(R)]−
[
η − 2

γ

R
s0σ

2
M

]
[Rh(R)]−

ˆ s0

s

[
2
γ

R
τσ2

U − η
]
H(R)g(τ)dτ.

We have thus shown that conditions 1-3 of Lemma 6 all hold in the interval [0, s0].

Next, consider the interval [s0, s̄]. In this interval, we want to have an interior maximizer

u(s) of the Hamiltonian (B.8). Because η ≤ 2f(s0)σ2
M , the Hamiltonian is concave in u, and

thus it is enough that the first-order condition holds at u = u(s) :

−
[
2f(s)σ2

M − η
] [

1−H
(

γ

u(s)

)
+

γ

u(s)
h

(
γ

u(s)

)]
+ p1(s) = 0. (B.11)

Taking the derivative over s, and using the fact that the equality holds at s = s0, this is

equivalent to

−2f ′(s)σ2
M

[
1−H

(
γ

u(s)

)
+

γ

u(s)
h

(
γ

u(s)

)]
+
[
2f(s)σ2

M − η
] γ2

u3(s)
h′
(

γ

u(s)

)
u′(s)+p′1(s) = 0.

(B.12)

Using the fact that u(s) = f ′(s), so that u′(s) = f ′′(s), and combining (B.12) with the
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differential equation from condition 1 of Lemma 6 for p1, we obtain

[
2f(s)σ2

M − η
] γ2

u3(s)
h′
(

γ

u(s)

)
f ′′(s) =

[
η − 2f(s)σ2

U

]
H(R)g(s) + 2γσ2

Mh

(
γ

u(s)

)
.

This means that it is enough to show that ODE (A.1) holds whenever u(s) > 0, and that

η = 2f(s)σ2
U whenever u(s) = 0.

Notice that from the first-order condition (B.11), we have

p1(s) =
[
2f(s)σ2

M − η
] [

1−H
(

γ

u(s)

)
+

γ

u(s)
h

(
γ

u(s)

)]
,

and thus condition 4 of Lemma 6 will hold as long as u(s̄) = 0. Moreover, to show that

p1(s) is continuous and piecewise continuously differentiable, it is enough to prove that u(s)

is continuous. All of that is accomplished by the following lemma.

Lemma 8 There exists η ∈ [2f(s0)σ2
U , 2f(s0)σ2

M ), and a non-decreasing, concave solution f

of class C1 to the ODE

f ′′(s) = φ(s, f, (s) f ′(s)) ≡


−

[η−2f(s)σ2
U ]H(R)g(s)+2γσ2

Mh( γ
f ′(s) )

[2f(s)σ2
M−η]

(
−h′( γ

f ′(s) )
)

γ2

[f ′(s)]3
if f ′(s) > 0

0 if f ′(s) ≤ 0

(B.13)

on an interval [s0, s̄] with boundary conditions f(s0) = γ
Rs0 and f ′(s0) = γ

R such that f ′(s̄) =

0. Moreover, if f ′(s1) = 0 for some s1 < s̄, then η = 2f(s1)σ2
U (in the opposite case, η ≥

2f(s̄)σ2
U ).

Proof: In the proof, we will rely on Lemma 7 which implies that the denominator of the ODE

(B.13) goes to 0 as f ′(s)→ 0. Fix a small ε > 0. We will work with a modified ODE

f ′′(s) = φε(s, f, (s), f
′(s)) ≡ min

{
0, φ(s, f, (s), min{ε, f ′(s))}

}
. (B.14)

With this modification, the function φε is uniformly Lipshitz continuous in f and f ′ (using the

assumption that the density h is twice continuously differentiable). By the Picard-Lindelöf

Theorem, there exists a unique solution of class C1 which we will denote by fη, ε(s); moreover,

the solution depends on η in a continuous way. Because the second derivative of fη, ε(s) is

non-positive by definition of φε, we know that fη, ε(s) is concave.

Next, we will choose η such that f ′η, ε(s̄) = 0. When ε is small enough, and we take η to

be close enough to 2(γ/R)s0σ
2
M , we have f ′′η, ε(s0)→ −∞, so the function f ′η, ε(s) will hit zero

for some s < s̄, and we will have f ′η, ε(s̄) < 0. On the other hand, if we take η low enough,

in particular η < 2(γ/R)s0σ
2
U , then φε(s, fη, ε(s), f

′
η, ε(s)) = 0, and hence fη, ε(s) will coincide
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with (γ/R)s. In this case f ′η, ε(s̄) > 0. Thus, there exists an intermediate value η such that

f ′η, ε(s̄) = 0: Let fε = fη, ε for this η. Thus, we have found a solution fε to the modified ODE

(B.14) with the property that f ′ε(s̄) = 0.

Moreover, by the boundary conditions, we can write fε(s) = γ
Rs0 +

´ s
s0
f ′ε(t)dt, and we

know that η ≥ 2fε(s)σ
2
U for all s ≥ s0, for ε small enough. Indeed, if this last claim was not

true, then by the properties of the function φε, we could show that as f ′ε goes to 0, φ becomes

positive, and thus φε becomes 0. This, however, contradicts the fact that f ′ε(s̄) = 0. When

η ≥ 2fε(s)σ
2
U for all s ≥ s0, and η < 2fε(s0)σ2

M , then φ(s, fε(s), f
′
ε(s)) ≤ 0, so fε is a solution

to the ODE

f ′′(s) = φ(s, f, (s), min{ε, f ′(s))}. (B.15)

This means that we can write f ′ε(s) as a fixed point of the following operator

f ′ε(s) = Λε(f
′
ε(s)) ≡ max

{
0,

γ

R
−
ˆ s

s0

φε

(
t,
γ

R
s0 +

ˆ t

s0

f ′ε(τ)dτ, f ′ε(t)

)
dt

}
.

We want to prove that f ′(s) = limε→0 f
′
ε(s) exists, and that f ′ is a fixed point of the limit

operator Λ = limε→0 Λε. By Tychonoff’s Theorem, we can obtain f ′(s) which is a pointwise

limit of a subsequence of f ′ε(s) because f ′ε ∈ [0, γ/R]. We prove that the limiting function f ′ is

in fact continuous. The only point at which continuity of f ′ might fail is a point s1 at which

f ′′ diverges to −∞ (at such a point, f ′ could have a jump discontinuity from a positive level

to 0). Because h ∈ C2, we can find a number B > 0 such that f ′′ε (s) ≥ −B/f ′ε(s) uniformly

in ε and s. Intuitively, f ′′ε (s) cannot be highly negative unless f ′ε(s) is close to 0. But this

means that f ′ε(s) ≤ −B/f ′′(s) and in particular f ′ε(s) → 0 when f ′′ε (s) → −∞. Therefore,

f ′(s1) = 0 if f ′′ diverges to −∞ at s1, and hence f ′ is continuous at s1. When a sequence

of non-decreasing continuous functions converges pointwise to a continuous (non-decreasing)

function, the convergence is uniform. Therefore, we have proven that f ′ε ⇒ f ′. Because the

convergence is uniform, f ′ is also a fixed point of the limiting functional Λ. Thus, we have

obtained a continuous f ′ such that

f ′(s) ≡ max

{
0,

γ

R
−
ˆ s

s0

φ

(
t,
γ

R
s0 +

ˆ t

s0

f ′(τ)dτ, f ′(t)

)
dt

}
,

and f ′(s̄) = 0. In particular, this means that whenever f ′ > 0, f is a solution to the ODE

(B.13) (and hence (A.1)).

To finish the proof, we argue that η ≥ 2f(s̄)σ2
U , and if f ′(s1) = 0 for some s1 < s̄, then

2f(s1)σ2
U = η. The first claim is a consequence of the inequality η ≥ 2fε(s)σ

2
U for every ε > 0

(proven earlier). Suppose that the second claim is not true. Then, because we proved uniform
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convergence of f ′ε to f ′, for any δ > 0, we can find ε̄ > 0 such that for all ε < ε̄,

max
s∈[s1, s̄]

|f ′ε(s)| < δ. (B.16)

However, when 2f(s1)σ2
U > η, (so that 2fε(s)σ

2
U is bounded away from η on [s1, s̄]), this

implies that −f ′′ε gets arbitrarily large as δ gets small. This is a contradiction with f ′ε being

a solution to ODE (B.15) that at the same time satisfies (B.16). �

Given Lemma 8, the proof of Lemma 5 is immediate. By taking η whose existence is

guaranteed by Lemma 8, we satisfy conditions 1-4 of Lemma 6. The functions p1(s) and

p2(s) are continuous and continuously differentaible by construction (and Lemma 8 which

guarantees that u(s) is continuous everywhere). The function Ĥ(f, s) is strictly concave in

f for all s because the Hamiltonian H is a quadratic (strictly concave) function of f. Finally,

we can choose s0 such that the corresponding f is feasible, that is, satisfies constraint (B.7),

or equivalently, (3.5). Indeed, (i) f depends on s0 in a continuous way, (ii) choosing s0 = s̄

yields f(s) = (γ/R)s which gives Γ(s̄) > 1/n because R < R̂, and (iii) when s0 → 0, the

corresponding f(s) also converges to zero pointwise, so Γ(s̄) < 1/n. By the intermediate value

theorem, there exists s0 ∈ (0, s̄) such that Γ(s̄) = 1/n, that is, constraint (3.5) holds.

This implies that the constructed f is the unique solution to the problem (B.5) - (B.7).

Because this function is feasible for the original problem P(R), it is also the unique solution

to P(R).

B.6 Proof of Proposition 3

We will show that the optimal benchmark fixing with R ∈ {0, R̂} is dominated by choosing

a weighting function of the form

fβ(s) =
γ

R(β)
max{s, β},

for some β ∈ [0, s̄], where R(β) is chosen to make fβ feasible, that is, to satisfy (3.5):

H(R(β))

R(β)

(ˆ β

0
γτg(τ)dτ + γβ(1−G(β))

)
+

1−H(R(β))

R(β)
γβ =

1

n
.

As noted in the discussion of Theorem 1a-1b, the optimal weighting function for R = 0 is

f(s) = 1/n, and the optimal weighting function for R = R̂ is f(s) = (γ/R̂)s. Importantly,

these two functions are the limits of the family fβ as β varies from 0 to s̄.35 Moreover,

35Formally, we have fs̄(s) = (γ/R̂)s and limβ→0 fβ(s)→ 1/n for all s > 0.
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R(β) ∈ (0, R̂) for all β ∈ (0, s̄). Let

V (β) =
H(R(β))

R2(β)

[ˆ β

0
γ2τ2g(τ)dτ + γ2β2(1−G(β))

]
σ2
U +

1−H(R(β))

R2(β)
γ2β2σ2

M

denote the value of the objective function (4.2) at fβ. Then, V (0) corresponds to the value

attained by the optimal weighting function with R = 0, and V (s̄) corresponds to the value

attained by the optimal weighting function with R = R̂. Because V is continuous and differ-

entiable, to prove Proposition 3, it is enough to show that V ′(0) < 0, and V ′(s̄) > 0.

Using the implicit function theorem, we can write R(β) as a function of β with

lim
β→0

R(β)

β
= γn,

and

R′(β) =
R(1−H(R(β))G(β))

β − (H(R(β))− h(R(β))R(β))
(
βG(β)−

´ β
0 τg(τ)dτ

) .
We can calculate the derivative of V (β) at β = s̄ directly:

V ′(s̄) =
h(R̂)R̂2 − 2H(R̂)R̂

R̂3

1−H(R̂)

s̄−
(
H(R̂)− h(R̂)R̂

)(
s̄−
´ s̄

0 τg(τ)dτ
) [ˆ s̄

0
τ2g(τ)dτσ2

U − s̄2σ2
M

]

−

2H(R̂)

R̂2
s̄− 2

R̂2
s̄2 1−H(R̂)

s̄−
(
H(R̂)− h(R̂)R̂

)(
s̄−
´ s̄

0 τg(τ)dτ
) +

2

R̂2
s̄

σ2
M .

If we let λ = σ2
M/σ

2
U , then V ′(s̄) > 0 is equivalent, after some simplifications, to

[
2H(R̂)− h(R̂)R̂

] [ˆ s̄

0

(τ
s̄

)2
g(τ)dτ

]
< λ

[
h(R̂)R̂+ 2

(
H(R̂)− h(R̂)R̂

)ˆ s̄

0

(τ
s̄

)
g(τ)dτ

]
.

We know that the density h is decreasing, and because a density is integrable, we must have

limR→0 h(R)R = 0. It follows that H(R) > h(R)R for all R > 0 because

d

dR
[H(R)− h(R)R] = h(R)− h(R)− h′(R)R > 0.

Therefore, V ′(s̄) > 0 is equivalent to

λ >

[
2H(R̂)− h(R̂)R̂

]
Es21
s̄2

h(R̂)R̂+ 2
(
H(R̂)− h(R̂)R̂

)
Es1
s̄

. (B.17)
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Next, we have [
2H(R̂)− h(R̂)R̂

]
Es21
s̄2

h(R̂)R̂+ 2
(
H(R̂)− h(R̂)R̂

)
Es1
s̄

≤

[
2H(R̂)− h(R̂)R̂

]
Es1
s̄

h(R̂)R̂+ 2
(
H(R̂)− h(R̂)R̂

)
Es1
s̄

≤ 1,

where the last inequality follows from the fact that, by direct calculation of the derivative,

the middle expression is increasing in Es1/s̄. This proves that (B.17) always holds because its

left hand side is strictly greater than 1, while the right hand side is less than 1.

Now, we will show that V ′(0) < 0. We have

V ′(0) = lim
β→0

V ′(β) =
[
σ2
U − σ2

M

] γ2h(0)

n
< 0.

This ends the proof.

B.7 Proof of Theorem 2

We will first show that f?(s) = (γ/R̂)s solves problem P. It follows that f? solves problem

P(R) for any R ≤ R̂, because f? is feasible for P(R) for any R ≤ R̂.

By arguments analogous to the ones used in the proof of Lemma 2 and Lemma 3, the

optimal function f is continuous and non-decreasing. By Bruckner and Ostrow (1962), As-

sumption 1 is equivalent to the following condition when f(0) = 0, and f is non-decreasing

and continuous:

f ′(s−) ≥ f(s)

s
, for all s ∈ (0, s̄],

where f ′(s−) denotes the left Dini derivative of f at s. Because f ∈ CK,M together with

continuity of f implies that f is absolutely continuous, we can write that condition as

f ′(s) ≥ f(s)

s
, for a.e. s ∈ (0, s̄). (B.18)

We first prove that under Assumption 1, all manipulators (Ri ≥ R) choose ŝi = s̄. We have

d

ds
(Rf(s)− γs) = Rf ′(s)− γ ≥ Rf(s)

s
− γ = s(Rf(s)− γs).

This implies that if there exists any s > 0 at which a manipulator can make positive profits,

then that manipulator maximizes profits by choosing ŝi = s̄. This implies that the problem

to solve is

inf
f∈CK,M

ˆ s̄

0
f2(s)σ2

UH(Rf )g(s)ds+ f2(s̄)σ2
M (1−H(Rf )) (B.19)
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subject to (B.18), and

f(s) ≤ γ

Rf
s, ∀s ∈ [0, s̄], (B.20)

ˆ s̄

0
f(s)H(Rf )g(s)ds+ f(s̄)(1−H(Rf )) =

1

n
. (B.21)

Similarly as for the baseline model, we will parameterize the above problem by R = Rf , and

solve it first for any fixed R ≤ R̂.

To simplify the objective function, note that

f2(s̄) = 2

ˆ s̄

0
f(s)f ′(s)ds.

Similarly, we can express condition (B.21) with R = Rf as

H(R)

ˆ s̄

0
f(s)g(s)ds+ (1−H(R))

ˆ s̄

0
f ′(s)ds =

1

n
.

To incorporate condition (B.18) into the problem, we will redefine the control variable u(s)

relative to the baseline model. Instead of f ′(s) = u(s), we let u(s) = f ′(s)−f(s)/s. Constraint

(B.18) can now be expressed as u(s) ≥ 0. Thus, the full problem can be written as

min
u≥0

ˆ s̄

0

[
f2(s)σ2

Ug(s) + 2f(s)σ2
M

(
u(s) +

f(s)

s

)]
ds (B.22)

subject to

f ′(s) = u(s) +
f(s)

s
, f(0) = 0, f(s̄)− free (B.23)

Γ′(s) = H(R)f(s)g(s) + (1−H(R))

(
u(s) +

f(s)

s

)
, Γ(0) = 0, Γ(s̄) =

1

n
(B.24)

f(s) ≤ γ

R
s. (B.25)

We conjecture that the constraint f(s) ≤ (γ/R)s is slack. We want to prove that the optimal

f is linear: f(s) = αs for some α ≤ γ/R. There exists a unique α under which a linear f

satisfies the constraint (B.21) (or B.24), namely, α = γ/R̂. Such f satisfies constraint (B.25),

and thus if it solves the relaxed problem, it also solves the original problem.

The Hamiltonian corresponding to the relaxed problem (B.22) - (B.24) is

H(f(s), u(s), s) = −
[
f2(s)σ2

Ug(s) + 2σ2
Mf(s)

(
u(s) +

f(s)

s

)]
+ p1(s)

(
u(s) +

f(s)

s

)
+ p2(s)

(
H(R)f(s)g(s) + (1−H(R))

(
u(s) +

f(s)

s

))
. (B.26)
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We state sufficient conditions for a function f to be optimal, using Arrow’s Theorem.

Lemma 9 Let (f(s), u(s)) be a feasible pair for the problem (B.22) - (B.24). If there exists a

continuous and piecewise continuously differentiable function p(s) = (p1(s), p2(s)) such that

the following conditions are satisfied

1. p′1(s) = 2f(s)σ2
Ug(s)+2σ2

M

(
u(s) + 2f(s)

s

)
−p1(s)1

s −p2(s)
(
H(R)g(s) + (1−H(R))1

s

)
;

2. p′2(s) = 0;

3. u(s) maximizes H(f(s), u, s) over u ≥ 0 for all s ∈ [0, s̄];

4. p1(s̄) = 0;

5. Ĥ(f, s) = maxu∈[0, γ/R]H(f, u, s) exists and is concave in f for all s,

then (f(s), u(s)) solve the problem (B.22) - (B.24). If Ĥ(f, s) is strictly concave in f for all

s, then f is the unique solution.

Proof: By direct application of the Arrow Sufficiency Theorem (Theorem 5 on page 107 of

Seierstad and Sydsaeter, 1987). �

Since we want to prove that f(s) = αs is optimal, we have u(s) = 0 for all s ∈ [0, s̄]. The

Hamiltonian is maximized at u = 0 across feasible u ≥ 0 when

−2σ2
Mf(s) + p1(s) + p2(s)(1−H(R)) ≤ 0.

We can set p2(s) = η for some constant η for all s (this will satisfy condition 2 of Lemma

9). The Hamiltonian is strictly concave in f . Thus, to satisfy all conditions of Lemma 9,

it is enough to prove that there exists a continuously differentiable p(s) (we abuse notation

slightly by dropping the subscript from p1(s)) and a constant η such that

p(s) + η(1−H(R)) ≤ 2σ2
Mαs, (B.27)

p(s̄) = 0, (B.28)

p′(s) + p(s)
1

s
= 2αsσ2

Ug(s) + 4σ2
Mα− ηH(R)g(s)− η(1−H(R))

1

s
, (B.29)

for all s ∈ [0, s̄]. Solving the ODE (B.29), we obtain

p(s) =
1

s

(
κ+

ˆ s

0

[
2ατ2σ2

Ug(τ) + 4σ2
Mατ − ηH(R)g(τ)τ − η(1−H(R))

]
dτ

)
,
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for all s > 0, and some constant κ. With the final condition (B.28), we obtain

p(s) = −1

s

ˆ s̄

s

[
2ατ2σ2

Ug(τ) + 4σ2
Mατ − ηH(R)g(τ)τ − η(1−H(R))

]
dτ.

This means in particular that p(s) is well defined and continuously differentiable for all s ∈
(0, s̄]. To guarantee that we can define p(0) so that p(s) is continuous at s = 0, we need

ˆ s̄

0

[
2ατ2σ2

Ug(τ) + 4σ2
Mατ − ηH(R)g(τ)τ − η(1−H(R))

]
dτ = 0. (B.30)

Condition (B.30) is also sufficient: By d’Hosptial rule, if (B.30) holds, then the limit lims↘0 p(s)

exists and is finite. Condition (B.30) pins down a unique candidate for η:

η =

´ s̄
0

[
2ατ2σ2

Ug(τ) + 4σ2
Mατ

]
dτ´ s̄

0 [H(R)g(τ)τ + (1−H(R))] dτ
.

With η defined this way, and after simplifying the expressions, (B.27) becomes equivalent to

´ s̄
0

[
τ2σ2

Ug(τ) + 2σ2
Mτ
]
dτ´ s̄

0 [H(R)g(τ)τ + (1−H(R))] dτ

[ˆ s̄

s
τH(R)g(τ)dτ + (1−H(R))s̄

]
≤ σ2

M s̄
2 +

ˆ s̄

s
τ2σ2

Ug(τ)dτ,

for all s ∈ [0, s̄]. Equivalently, after some simplifications,

H(R)

(ˆ s̄

0
τg(τ)dτ

)(ˆ s

0
τ2σ2

Ug(τ)dτ

)
+ (1−H(R))s̄

ˆ s

0
τ2σ2

Ug(τ)dτ

≤ σ2
M (1−H(R))s̄2

ˆ s

0
τg(τ)dτ +H(R)

(ˆ s̄

0
τ2σ2

Ug(τ)dτ

)(ˆ s

0
τg(τ)dτ

)
,

for all s ∈ [0, s̄]. Because the above expression is linear in H(R), and R does not appear

anywhere else in the expression, it is enough to show that it holds for both H(R) = 0 and

H(R) = 1. That is, it is enough to show that

´ s̄
0 τg(τ)dτ´ s̄

0 τ
2σ2
Ug(τ)dτ

≤
´ s

0 τg(τ)dτ´ s
0 τ

2σ2
Ug(τ)dτ

, (B.31)

and ˆ s

0
τ2σ2

Ug(τ)dτ ≤ s̄
ˆ s

0
τσ2

Mg(τ)dτ, (B.32)

for all s ∈ [0, s̄]. Inequality (B.32) is clearly true because σ2
U < σ2

M by assumption. To prove
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inequality (B.31), it is enough to show that

´ s
0 τg(τ)dτ´ s

0 τ
2σ2
Ug(τ)dτ

is decreasing in s. By calculating the derivative, we can show that a sufficient condition is´ s
0 [τ − s] τg(τ)dτ ≤ 0 for all s, which is clearly satisfied. This ends the proof that conditions

(B.27) – (B.29) all hold.

Therefore, all conditions of Lemma 9 also hold, and thus we have proven that f(s) =

(γ/R̂)s is the unique solution to the relaxed problem (B.22) - (B.24) for any R ≤ R̂, and

hence also the problem (B.22) - (B.25). It follows that the same f solves the problem P and

P(R) for any R ≤ R̂.
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