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1.0 Introduction 

 In his provocative paper, “The Health of Nations,” Yale University economist William Nordhaus 

(1999) argues that the advances in human welfare generated by better medical science over the past half 

century have been equal in value to the consumption increases from all other sources put together.1 Victor 

Fuchs (1982) has suggested that most of the real improvement in human health generated over this period 

stems from modern medicine’s expanding arsenal of pharmaceutical products. While documenting these 

claims in a way that meets modern evidentiary standards is challenging, the work of scholars such as 

Frank Lichtenberg (e.g., 2007) supports the view that the gains from pharmaceutical innovation have been 

very large. In the long run, global investments in pharmaceutical research have proven to be good ones. 

 These benefits have come with significant costs; pharmaceutical innovation is risky and 

expensive.2 These costs are passed on to consumers in the form of higher prices for branded 

pharmaceuticals.3 However, in recent years generic products have accounted for an increasing share of 

prescription drug consumption, collectively accounting for 88 percent of prescription drug sales by 

volume in 2014 (Aiken et al, 2016). While the rise in generic competition has brought benefits to 

consumers (Branstetter et al., 2016), it may have also induced pharmaceutical companies to direct their 

R&D efforts into therapeutic markets or product categories where competition with generics is less 

intense (Higgins and Graham, 2009). Changes in the degree of generic competition across therapeutic 

markets could have strong implications even for non-U.S. drug companies because the global industry 

relies disproportionately on the U.S. market as a source of its profits. Thus, a natural question becomes, 

has the increase in generic entry affected pharmaceutical innovation? Our study attempts to address this 

question and quantify, for the first time, the impact of generic entry on early-stage pharmaceutical 

innovation.   

 
1 Nordhaus’s claim is backed up by evidence documenting the extensive gains in longevity and other dimensions of 
human health over the period; multiplying these gains by even conservative estimates of the value of a “statistical 
life” result in very large numbers. Efforts to infer the welfare impact of pharmaceutical innovation using modern 
models of demand for differentiated products, such as Ellickson et al. (2001), Cleanthous (2002), and Dunn (2012), 
have also yielded large estimates. Acemoglu and Johnson (2007) have documented the role of enhanced life 
expectancy on population and economic performance. 
2 Recent estimates by DiMasi et al (2016) suggest that the costs of developing a drug have risen to almost $2.6 
billion. These new cost estimates, along with previous estimates generated through a similar methodology (DiMasi 
and Grabowski, 2012) have been subjected to considerable criticism and controversy. What we can say with 
certainty, however, is that costs are high and they continue to increase (Berndt et al, 2015). 
3  In 2012, prescription drug spending in the U.S. exceeded $300 billion and accounted for approximately 12 percent 
of total health care spending (GAO, 2012). Accounting for drugs dispensed in hospitals raises this fraction slightly; 
more recent data including these expenditures suggest a range of 15-18 percent. We thank an anonymous referee for 
pointing this out. 
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 We start by constructing a new dataset that allows us to analyze this issue at a disaggregate level 

over the years 1998 through 2010. Instead of relying on patents as measures of innovation, we focus on 

early-stage drug development.  While patenting is certainly important in the pharmaceutical industry (e.g., 

Pisano, 2006), it can occur anytime throughout the drug development process, and it often occurs long 

before the actual therapeutic value of a compound has been demonstrated. As a consequence, patent 

counts can be imperfect indicators of the real innovative success of pharmaceutical firms, in terms of 

bringing new drugs to market. Our outcome variable, on the other hand, allows us to measure what is 

actually happening in the early stages of the drug development process. We also utilize comprehensive 

data on branded and generic drug sales across all therapeutic categories in the U.S. market, obtained at the 

firm-product-year level, such that we can measure the differential exposure of individual firms to generic 

competition across these different therapeutic markets.4 This paper considers several potential inference 

challenges, including the possibility that a decline in research productivity within firms and markets could 

lower innovative output and raise measured generic penetration. These challenges are met with a range of 

empirical strategies, including the use of instrumental variables.   

 We find that the aggregate level of new drug development has not declined as generic 

competition in the U.S. market has risen (Appendix Figure A1 and A2); instead, the total number of new 

compounds (including both small and large molecules) in early-stage development has risen over our 

sample period (Appendix Figure A3 and A4). However, rising generic competition appears to have had a 

statistically and economically significant impact on how pharmaceutical product development is 

conducted, where those efforts are focused, and by which firms those efforts are undertaken. Our baseline 

specifications imply that a 10 percent increase in generic competition in a particular market will lower 

early-stage innovations, in that same market, by 6 to 7 percent. The interpretation that an increase in 

generic competition within a market lowers early-stage innovation is strengthened by a series of 

alternative specifications, placebo tests and robustness checks. We find interesting evidence of 

heterogeneity of response across firms. The firms with the most productive R&D operations appear to be 

more resistant to this challenge, so that the measured decline is disproportionately driven by firms 

ratcheting down their less productive research programs. This is all consistent with the view that rising 

generic competition is inducing firms to refocus drug development efforts in ways that may benefit social 

welfare, although a full welfare analysis is beyond the scope of the current paper. 

 
4 We use the phrases therapeutic area, therapeutic market, therapeutic category and markets interchangeably in this 
paper. In our empirical work, they correspond to 2-digit categories within the World Health Organization's 
Anatomical Therapeutic Chemical (ATC) classification system 
(http://www.whocc.no/atc/structure_and_principles/). 
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 Next, we consider the possibility that, within therapeutic markets, a shift is occurring out of 

chemical-based (small molecule) products and into biologic-based (large molecule) products. The 

regulatory mechanisms that have accelerated generic entry in chemical-based drugs did not extend to 

biologics during our sample period; biologic-based generics (known in the industry as ‘biosimilars’) did 

not enter the U.S. market until 2015.5 Exploiting this regulatory difference between chemical- and 

biologic-based innovations, we find a positive relationship between generic entry and a shift towards 

biologic-based products within therapeutic categories. As conjectured by Golec et al (2010), this 

movement suggests that the nature of innovation taking place in the pharmaceutical industry is changing 

in response to rising generic competition.  

The paper proceeds as follows. Section 2 provides a brief discussion of the U.S. regulatory 

environment in which pharmaceutical firms operate and a description of the rise in generic competition. 

Section 3 reviews important features of the drug development process and discusses prior work on the 

potential impact of rising generic competition on the nature and direction of pharmaceutical innovation. 

Our empirical specification and data are outlined in Section 4. Results are presented in Section 5, and we 

conclude in Section 6, with a discussion of the social and policy implications of our results. 

2.0 The U.S. regulatory environment and the rise of generic competition 

The current regulatory environment faced by pharmaceutical companies in the U.S. can be traced 

to the passage of the Drug Price Competition and Patent Term Restoration Act in 1984, informally known 

as the “Hatch-Waxman” Act. When a pharmaceutical company submits a New Drug Application (NDA) 

to the FDA for approval, the law requires the company to identify all relevant patented technologies 

necessary to create the drug; these patents are subsequently listed in the FDA Orange Book.6 Upon 

approval, the FDA will grant each new approved product regulatory protection lasting for five years 

(“data exclusivity”) that runs concurrently with patent protection.7 During this data exclusivity period, 

 
5 The Affordable Care Act created a legal pathway for biosimilars to enter the U.S. market, but it took several years 
for the FDA to finalize implementing regulations. The first biosimilar (ZarxioTM) entered the U.S. market in March 
2015 (http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm436648.htm). Large-molecule drugs 
have a much longer period of data exclusivity than small-molecule drugs, and their complexity makes them more 
difficult to copy even after patents expire. These differences could affect the economic incentives for developing 
generic versions of biologics, even in the long run.  
6 For biologics the initial application is a Biologics License Application. For biologics there is the Purple Book but 
during our sample period the same patent reporting requirements that are required under Hatch-Waxman for 
chemical-based drugs did not apply to biologics. In 2019, the Biologic Patent Transparency Act (BPTA) was 
introduced in the U.S. Senate. Under the BPTA, the Purple Book would become the main source for information on 
biosimiliarity, interchangeability, approved indications and exclusivities.  
7 There are exceptions; drugs targeting small patient populations (i.e., orphan drugs) receive seven years of data 
exclusivity. Reformulations of existing drugs receive three years of data exclusivity. New drugs that treat pediatric 
illnesses receive an additional six months of data exclusivity while GAIN Act antibiotics are eligible for an 
additional five years of data exclusivity.     
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regardless of the status of the underlying patent(s), no generic entry may occur. At the conclusion of data 

exclusivity only patents protect branded products. This period running from the cessation of data 

exclusivity to the expiration of the patent(s) is commonly referred to as “market exclusivity.” At the end 

of this period, generic manufacturers may enter the market by demonstrating bioequivalence with the 

branded product. 

Throughout our sample period there was no legal mechanism in the U.S. market through which 

the manufacturer of a biosimilar could demonstrate that its substance was equivalent to the original drug. 

With no way to establish bioequivalence, any generic version of a biologic-based drug would have to 

undergo separate clinical trials to receive FDA approval. Under the Obama Administration, passage of the 

Affordable Care Act (2010) provided the legal basis for biosimilar entry, but that legislation guarantees 

biologic-based drugs 12 years of data exclusivity - a period of legal monopoly 2.4 times longer than that 

afforded to chemical-based drugs.8 Enabling regulations, finalized by the FDA in 2013, generally require 

limited clinical trials to confirm bioequivalence and similar clinical effects prior to approval. These 

requirements raise the cost of generic entry relative to what obtains in the case of small molecule drugs. 

The longer European experience with biosimilars suggests that entry will be much less frequent, occur at 

a later point in the product lifecycle, and offer a much smaller price discount, relative to the innovator 

drug, than has been the case for generic entry in chemistry-based drug markets.   

While a starkly different statutory treatment of chemical-based and biologic-based drugs has been 

established in U.S. law since the passage of Hatch-Waxman, the practical impact of these very different 

regulatory regimes has significantly strengthened in recent years. Generic competition at the end of the 

1980s and in the early 1990s was constrained by an FDA scandal that temporarily slowed down the 

processing of new generic drug applications, and by an unusually productive era of new drug 

introductions by the branded drug companies (Berndt et al, 2015).9 Since then, however, generic 

competition has intensified sharply (e.g., Palermo et al., 2019; Higgins and Graham, 2009; Berndt et al., 

2007). An important driver of this rise in generic competition has been the growing frequency of so-called 

Paragraph-IV (Para-IV) challenges, a procedure laid out by Hatch-Waxman whereby a generic company 

 
8 The section of the Affordable Care Act that details entry provisions for biologics is referred to as the Biologics 
Products Competition and Innovation Act (BPCIA). 
9 The FDA scandal was widely covered in the media at the time (New York Times, Oct. 2 1989). Cockburn (2006) 
discusses shifts in the measured research productivity of the pharmaceutical industry. A large cohort of new and 
successful branded products entered in the marketplace in the 1980s and 1990s, limiting the market importance of 
generic competition. As this wave of products lost patent protection, or was challenged under Paragraph IV, and was 
not fully replaced by newly introduced branded products, the financial pressure generated by generic competition 
increased. 
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could enter the market prior to branded patent expiration.10 By the end of the 2000s, these challenges 

accounted for more than 40 percent of generic entry (Higgins and Graham, 2009; Berndt et al., 2007).  

Generic entrants discovered that these shifts had rendered a whole set of pharmaceutical patents 

susceptible to legal challenges. Since the Hatch-Waxman Act rewarded successful Para-IV challengers 

with a half-year period of duopoly with the branded incumbent, prospective generic entrants tended to 

pursue these challenges whether the protected drugs were blockbusters or not (Grabowski and Kyle, 

2007). In this way, both the timing of the resulting rise in generic competition and the identity of the 

patents being targeted were evolving in ways that were plausibly exogenous to the wishes and actions of 

our sample branded drug firms. We return to this line of argument later in the paper. 

3.0 Pharmaceutical innovation and generic competition 

  After rising significantly in the first half of the 1990s and peaking in 1996, the number of new 

drug approvals began to decline gradually over the next few years, falling more sharply in the early 

2000s, even as R&D expenditures continued to increase. This led to an intense debate about the industry's 

research “productivity crisis” (Cockburn, 2006; Scherer, 2010). The relatively low level of new product 

approvals persisted throughout our sample period and beyond. Experts disagree as to the causes or future 

persistence of this productivity slowdown. Nevertheless, it created a rising level of concern within the 

industry. We do not believe generic entry is causally related to measured declines in research 

productivity. However, changes in research productivity across firms and markets are among the many 

factors that could lead firms to divert their research efforts away from some therapeutic markets and 

product categories and toward others. In seeking to quantity the impact of generic competition on the 

allocation of research effort, we need to control, as best we can, for these other factors.11 

 A number of recent studies have studied the intensification of generic competition in recent years 

and the impact of this shift on branded drug companies. We lack the space here to offer a comprehensive 

review of all the work in this domain, and, instead, cite selectively the work that is most relevant to our 

own analysis. Caves et al. (1991) offered an influential look at the early impact of Hatch-Waxman. More 

recent work includes Reiffen and Ward (2005), Saha et al (2006), Grabowski and Kyle (2007), and 

Berndt and Aitken (2011). Efforts to calculate the welfare impact of generic entry include Bokhari and 

 
10 The interested reader can see Voet (2013) for a complete discussion of the Paragraph IV challenge process. 
11 Berndt et al (2015) identifies other demand side factors that have impacted the profitability of new drugs 
including: downward pressures on price due to consolidation among payers, wholesalers, and pharmaceutical 
benefits management firms; increased experience with cost containment; and increased focus on incremental value 
in coverage decisions. We seek to control for these potential unobserved market-time or time-varying factors in our 
models using an extensive array of fixed effects.  
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Fournier (2013) and Branstetter et al (2016). The latter study shows that the rising incidence of Para-IV 

challenges has increased gains to consumers. Hemphill and Sampat (2011, 2012) also focus on Para-IV 

challenges, analyzing, among other things, which incumbent firms’ patents tend to be challenged. 

 The possibility that rising generic competition could impact the incentives to undertake new drug 

development has been recognized in prior work. For example, Hughes et al (2002) show in a theoretical 

model that providing greater access to a current stock of branded prescription drugs yields large benefits 

to existing customers. However, this access comes at a cost in terms of lost consumer benefits from 

reductions in the flow of future drugs.12 Other papers have also discussed this possibility, including 

Grabowski and Kyle (2007), Higgins and Graham (2009), and Knowles (2010). This research stream has 

provided (mostly indirect or anecdotal) evidence suggesting that an intensification of generic competition 

has undermined incentives for R&D. However, to the best of our knowledge, no published study has yet 

provided direct econometric evidence demonstrating that generic entry has induced a change in the nature 

or direction of new drug development.13 The extent to which this occurs in practice remains an open 

question. 

4.0 Empirical methodology and data 

Previous research in this area has struggled with data limitations. We are fortunate to have access 

to a range of unique and comprehensive data sets that provide us with a useful degree of leverage over 

some of the econometric and measurement challenges we confront. The dissagregate nature of our data 

allow us to track both variables by firm i, therapeutic market j, and year t. Over the past decade, other 

economists have used datasets with firm-market-year dimensions to develop and test formal theories of 

multiproduct firm behavior (Bernard et al, 2006, 2011; Eckel and Neary, 2010; Nocke and Yeaple, 2014; 

Eckel et al, 2015).14 These models predict (and empirical work finds) striking heterogeneity in firm-level 

responses to market-level demand shocks, such as those arising from trade liberalization. For example, in 

response to a more competitive environment, firms tend to cut back on or eliminate product categories in 

 
12 Goldman et al (2011) report results consistent with the view that extending small-molecule data exclusivity to 
twelve years, matching large-molecule drugs, would lead to an additional 228 new drugs over a 40-year period. 
13 In related work, Budish et al (2015) provide evidence that variation in effective patent life distorts incentives for 
investment in cancer drugs. This study does not consider the impact of rising generic competition. Cook et al. (2010) 
finds evidence consistent with the idea that rising generic competition has reduced pharmaceutical R&D, but this 
research is undertaken at the economy-wide level; a key variable is the pharmaceutical price index for the entire 
U.S. economy. This level of aggregation limits the ability of the authors to control for other broad changes in the 
economy. As we were revising our paper, we became aware of the work of Stephen Murphy (2019), which overlaps 
with and confirms some of the work presented here. 
14 Given space constraints, we do not replicate the theoretical derivations presented in these papers. A short 
summary of these models that explains its connection to our empirical specification is provided in Appendix A1. 



9 

 

which they are relatively weak, but expand production in the domains where they are relatively strong. 

This implies that different firms will respond differently to market-level shocks, depending on their 

specific capabilities in those markets – a reality that will be completely missed if one adopts a market-

year level approach in our context. We find robust evidence of this firm-level heterogeneity in the work 

presented below.   

4.1 Modeling and measuring pharmaceutical innovation 

We model early-stage pharmaceutical innovation as a function of generic competition, branded 

drug competition, scientific opportunity and challenges, firm innovative capability, and a vector of 

additional controls and fixed effects. Our baseline empirical specification is given below: 

𝐼𝑛𝑛!"# = 𝛼! + 𝛼" + 𝛼# + 𝛽$𝐺𝑒𝑛𝑒𝑟𝑖𝑐!"#%$ + 𝛽&𝑃𝑟𝑖𝑐𝑒!"#%$ + 𝛽'𝑇𝑒𝑐ℎ	𝑂𝑝𝑝"#%$ 

+𝛽(𝑇𝑒𝑐ℎ	𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒!"#%$ + 𝛽)𝑃𝑟𝑜𝑑𝑢𝑐𝑡!"#%$ + 𝛽*𝐿𝑎𝑡𝑒𝑃𝑖𝑝𝑒!"#%$ + 

𝛽+𝐹𝑖𝑟𝑚𝑆𝑖𝑧𝑒!# + 𝜀!"#            (1) 

Our first empirical challenge is to come up with a practical measure of early-stage innovation.  

Our dependent variable, Innijt, measures early-stage innovations by firm i in ATC 2-digit (ATC2) market j 

in time t.15 These data come from the Pharmaprojects database and depend on that source’s classification 

of drug candidates into the various therapeutic market categories. Unfortunately, this is consistently 

reported only at the 2-digit level. Therefore, in our firm-market-year (ijt) level of analysis, discussed 

above, our markets will be constrained to the ATC2 market level.16  

Firms are included in our sample if they have at least one approved product and at least one early-

stage innovation. This limitation necessarily excludes some smaller, research-intensive firms that have yet 

to market their own products. We impose this exclusion because we seek to quantify the effect of generic 

competition in the product market on early-stage drug discovery at the firm-market level, and our 

methods for measuring this effect only work for firms with products in the market place. This exclusion 

therefore limits what we can say about the impact of generic competition on the research activities of 

firms without products. However, if these smaller firms license their compounds to larger ones at an early 

stage of the development process (a strategy frequently employed by smaller firms), we will still capture 

 
15 Innijt counts new compounds only once and that is the first time they appear in either the preclinical stage or the 
Phase 1 clinical trials stage. 
16 There are 126 different ATC 2-digit level markets which are themselves contained within 14 different ATC 1-
digit level markets. The ATC 1-digit market classification “C” represents drugs related to the cardiovascular system. 
It contains nine ATC 2-digit categories: (1) C01 Cardiac therapy; (2) C02 Antihypertensives; (3) C03 Diuretics; (4) 
C04 Peripheral vasodilators; (5) C05 Vasoprotectives; (6) C07 Beta blockig agents; (7) C08 Calcium channel 
blockers; (8) C09 Renin-angiotensin system; and (9) C10 Lipid modifying agents.  
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that product in our empirical work, effectively assigning it to the firm that develops the drug rather than 

the one initially identifies the candidate therapy. We argue below that the bias introduced by the sample 

selection in our source data, to the extent that it exists, may actually weaken our estimated results relative 

to what holds in reality.17 The current measure of Innijt counts new compounds in the year they first 

appear in preclinical or Phase 1 clinical trials. Importantly, compounds are not double-counted; if a 

compound first appears in preclinical it is not counted again as it transitions to Phase 1; thus Innijt can be 

viewed as a flow rather than a stock.18 This treatment of the data vastly increases the number of firm-

market-year observations for which our count of early-stage innovations is zero, and therefore subjects 

our main hypothesis to a more stringent empirical test than if we relied on the corresponding stock 

measure. 

We define early-stage innovations as the count of individual compounds in preclinical 

development or in Phase 1 clinical trials. If firms are responding to changes in the intensity of generic 

competition, changes in perceived scientific opportunity, or changes in expected market opportunity, we 

would expect a measurable impact to show up at this stage. In contrast, for drugs that have already 

successfully moved on to Phase 2 or Phase 3 trials, firms may be more likely to move them through the 

development process to the end, even if the firm plans to limit future research in that area in response to 

rising competition or diminished technological opportunity.19 Because the outcome variable is a count 

variable, at least some of the statistical models employed in our regression should be ones designed to 

handle count data. As such, we use fixed effects Poisson and negative binomial estimators (Hausman et 

al., 1984; Woolridge, 1999).  

4.2   Measuring generic competition (Genericijt-1) 

 Our next empirical challenge is to measure the incidence of generic competition. This incidence 

is quite uneven across firms, therapeutic categories and time. Fortunately, we are able to employ 

disaggregated data from the IQVIA MIDAS™ database that tracks the sales (in quantity terms) of nearly 

every pharmaceutical product sold in the U.S. by firm, product, and quarter, mapped to ATC categories. 

 
17 This is particularly true for the results based on Equation 7, described below. 
18 If a compound is licensed, it could appear in Phase 1 clinical trials without ever having appeared as a compound 
under preclinical investigation by our sample firms. 
19 We present empirical results later in the paper that are consistent with this view. We are not suggesting here that 
firms would never cancel a compound in Phase 2 or Phase 3 clinical trials. For example, as a result of branded 
competition from Gilead in the Hepatitis C market, both Vertex and Merck ended their products in development. 
This example, however, is due to branded competition and not due to generic competition, which is the focus of this 
paper. Rather, we are suggesting that, given the success of the compound in progressing through risky and expensive 
later phases of the drug development process, firms may be less likely to discontinue development just because the 
downstream market has become more competitive due to an increase in generic competition. 
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We note that IQVIA creates a ‘standard unit’ of quantity that equates capsules, tablets and liquid dosages; 

this is the measure of quantity used in our analysis. Our data are limited to the years 1998-2010, and this 

data restriction determines the time dimension of our study. However, this window covers a period of 

intensifying generic competition.20 Within this period, we are able to determine the extent of generic 

competition that firm i faces in therapeutic area j in time t-1. We define our measure of generic 

competition, Genericijt-1, as the sum of generic sales (in quantities) in therapeutic area j at time t-1 divided 

by the sum of generic and firm i branded sales in therapeutic area j at time t-1.21 A negative coefficient 

implies that as generic competition faced by firm i, in therapeutic market j increases, the flow of early-

stage innovation decreases.22   

The time subscript on our generic competition variable is t-1; this effectively imposes an 

assumption about the timing of a pharmaceutical firm’s response to observed changes in the exposure of a 

firm to generic competition. While we note that the estimated impact of generic competition is robust to 

alternative lags, we believe the timing assumption implied by Equation (1) is a reasonable one. Recall that 

our dependent variable measures early-stage innovations by firm i in ATC2 market j in time t. 

Compounds tend to progress through these earlier stages of the development process relatively quickly, 

and substances that fail early tests can be discarded at low cost. It is the later, larger scale clinical trials 

that tend to be more time-consuming, expensive, and therefore risky. Precisely because of the costs that 

are born at these later stages, however, compounds that survive Phase 2 and 3 clinical trials are likely to 

be introduced into the market place, even if rising generic competition is judged likely to crowd the 

market and limit future sales. In private conversations, pharmaceutical executives strongly asserted that a 

significant increase in generic competition in a particular therapeutic area often leads to a rapid response, 

in terms of a reduction in early-stage drug development in that domain and a redirection of research 

resources that would have been required to support the progress of those early-stage compounds through 

more stringent and expensive clinical trials to other therapeutic areas.23 On the other hand, compounds 

 
20 In 1996, generics accounted for only 43 percent of U.S. prescriptions. By 2002, this share had increased to 53 
percent, and by 2008 it had grown to 72 percent (IQVIA, Inc). 
21 As a robustness check, we defined a second measure of generic competition, Gjt-1Mijt-1, as the ratio of generic sales 
to total sales in therapeutic area j in time t-1 multiplied by the ratio of branded sales by firm i in therapeutic area j in 
year t-1 divided by total branded sales of firm i in year t-1. Our earlier working paper (Branstetter et al., 2014) 
demonstrates that this alternative measure yields results qualitatively similar to the ones obtained with Genericijt-1. 
For that reason, we focus on the latter measure in this version of the paper. 
22 To be precise, Genericijt-1 was constructed at the ATC 4-digit market level for each firm-year and then aggregated 
to the ATC 2-digit market level for each firm-year. Hence, two firms, A and B, both operating within the same ATC 
2-digit market could face different degrees of measured generic competition, depending on the degree to which each 
firms’ sales within a 2-digit aggregate in a given year is distributed across 4-digit markets within that same year. 
23 Once physicians, insurance companies, and pharmaceutical benefits managers become aware of low-cost, 
effective generic drugs in a particular domain, this “raises the bar” for new branded drugs – they are likely to secure 
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that are already in the later stages of development are less sensitive to these changes. Later in the paper, 

we test this assertion with data, and find strong empirical evidence supporting it, confirming our 

presumption that the response of drug development efforts to rising generic competition is concentrated in 

the early stages of the process.   

To the extent that pharmaceutical executives take sources of information (unknown to the 

econometrician) other than current generic competition into account in forming their expectations of what 

generic competition would be at the time drugs currently in the early stages of development might be 

introduced, our current specification measures the variable of interest with error. If that measurement 

error takes the classical form, then it is likely to yield a downward bias in our regression estimates. If we 

nevertheless find large effects, we do so in the presence of statistical biases against such a finding, giving 

us some assurance regarding the validity of our inference.24   

4.3 The impact of generic competition on subsequent innovation25 

 As generic competition rises within a particular drug market, the number of effective therapies 

currently available at low cost to treat the prevalent diseases in a given market expands. Branded 

companies contemplating further (expensive and risky) drug development in this market confront a 

growing array of established, low-cost competing therapies that would be attractive substitutes for any 

new drug which did not possess clear therapeutic advantages over existing drugs. Rising generic 

competition therefore “raises the bar” for future branded entry, both because average drug prices are 

declining and because the degree of unmet medical need a new branded drug could address is logically 

dimishing as the number of available generic therapies grows. Obviously, it would be useful and 

interesting if we could separate out these two effects of generic competition on subsequent branded 

innovation, because the theoretical possibility exists that a relatively crowded product space full of low-

cost generics could deter entry when the potential exists for a new, different drug to raise consumer 

welfare even if it were only available at a high price. 

 Unfortunately, there appears to be no practical way to separately measure “unmet medical need” 

in a consistent way within and across pharmaceutical markets, and it seems likely that both unmet 

medical need and average price will decline sharply as generic competition rises. Therefore, we will not 

 
a high market share only if they are dramatically better than previously introduced branded drugs in terms of 
efficacy, more limited side effects, or ease of use. 
24 Of course, our current analysis also takes seriously the possibility that our measure of generic competition is 
highly correlated with unmeasured research productivity, leading to a more pernicious kind of bias. 
25 We thank an anonymous referee for raising questions that prompted the writing of this section. 
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interpret a negative, statistically significant coefficient on our measure of generic competition as 

representing a social loss, a decline in welfare, or any convincing evidence of unmet medical need. The 

results we will present are perfectly consistent with a view in which the Hatch-Waxman rules are working 

as their architects might have intended – market forces are redirecting new drug development efforts 

away from markets where many effective generic therapies already exist and toward new domains where 

the stock of effective generic therapies is less developed. The measured negative effect associated with 

generic competition could very well reflect an efficient (even socially optimal) allocation of research 

effort across markets. Given these inferential and measurement challenges, we will have little to say about 

about the welfare implications of the branded firm reactions we quantify, nor will we devote much 

attention to the normative of question how branded firms should be responding to rising generic 

competition in order to maximize welfare. 

 Instead, we will focus on the positive questions of how branded firms are responding to rising 

generic competition and whether the estimated relationship can be viewed as being at least partly causal. 

We view this agenda as interesting in its own right, and we think it constitutes an important first step 

towards addressing the welfare/normative questions noted in the previous paragraph. The rest of Section 4 

presents a range of empirical strategies designed to resolve the more straightforward positive questions to 

the extent that our data will allow. 

4.4   Measuring competition among branded drugs (Pricejt-1, HHIjt-1, and Brandijt) 

Generic competition is not the only form of competition faced by our firms. Branded firms also 

compete with one another, and the intensity of this competition varies substantially across markets and 

over time.26 Excluding this from our estimating equation could lead to a bias in estimates of the impact of 

generic competition, 𝛽$. To be clear, if we denote our sample estimate of 𝛽$ as 𝑏,-.-/!0∗ , and a more 

inclusive measure of competition that includes branded firms as Brandijt-1, then: 

𝑏,-.-/!0∗ = 𝛽$ + 𝛽2/3.4
5678 	(,-.-/!0!"#$%,2/3.4!"#$%)

=3/8 (,-.-/!0!"#$%)
       (2) 

In this formulation, 𝛽2/3.4 	could be negative (since a crowding of the product space with other branded 

products could reduce the private benefits of innovation for firm i), and 𝐶𝑜𝑣B 	(𝐺𝑒𝑛𝑒𝑟𝑖𝑐!"#%$, 𝐵𝑟𝑎𝑛𝑑!"#%$) 

is plausibly positive, since branded competition will typically emerge in response to an innovative therapy 

within an ATC2 market prior to the onset of generic competition, and both variables may be serially 

correlated within firms and markets. Therefore, omission of a measure that includes branded competition 

 
26 Authors have long recognized the importance of market competition for innovative activity (e.g., Utterback and 
Suarez, 1993; Tang, 2006). 
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could plausibly bias our estimate of  𝛽$ downward, leading to a more negative and perhaps more 

statistically significant coefficient.   

 We took several approaches to the empirical measurement of the competition from branded drug 

makers facing firm i in product market j at time t, focusing first on standard measures of competition at 

the market level. Pricejt-1 is the average price (per dose) of all drugs in market j at time t-1, and this is the 

control variable featured in the paper’s main regression tables.27  Note that we have constructed our price 

measure to reflect all drug sales, branded and generic. Inclusion of this variable in our specifications helps 

us isolate the impact of generic competition – and that impact will remain negative and statistically 

significant in our baseline specifications. In regressions not shown in the main table, but included in the 

Appendix, we also include HHIjt-1, the conventionally defined Herfindahl-Hirschman index of drug sales 

in market j at time t-1, as an alternative measure of “total” (generic plus branded) competition. Inclusion 

of this alternative control does not qualitatively change our results, as the results in our Appendix show.   

Finally, we constructed a more direct measure of branded competition that is conceptually similar 

to our measure of generic competition, and varies by firm, market, and year. Brandijt measures the 

branded sales of firm i in market j in year t divided by total branded sales in market j at time t. If firm i is 

the only branded seller, this measure equals 1. As other branded firms enter, the ratio falls below one. A 

positive coefficient would imply a negative effect of branded competition on early stage innovation 

efforts. As the results included in our Appendix indicate, the measured negative impact of generic 

competition is not qualitatively altered by the inclusion of this variable. Given the complex issues raised 

by a thorough investigation of the impact of branded competition on early-stage drug development 

(perhaps better explored in a separate study), we have chosen to relegate the details of these results to the 

Appendix, and instead emphasize in our main text the result that our measures of generic competition are 

robust to all of these controls.   

 

4.5 The econometric challenges created by unmeasured research capabilities 

Now, it would be convenient to presume that, once Pricejt-1  or other appropriate measures of 

branded competition are included in our specifications, the error term in Equation (1) is independently 

and identically distributed across firm-market-year observations. However, one can imagine that the error 

term is potentially more complicated than that.28 To fix ideas and illustrate the inferential challenges that 

arise, we presume that the error term takes on the following form: 

 
27 We acknowledge that our measure of price is per (standard) dose, rather than a price that reflects the full cost of 
the standard treatment regimen and that our price data do not reflect branded manufacturer rebates. 
28 This section was inspired, in part, by Olley and Pakes (1996) and Pavcnik (2002) and the notation used here 
reflects that influence. 
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     (3) 

The second term on the right-hand side of Equation (3) is presumed to be identically and 

independently distributed, and causes no econometric problems. The first term on the right-hand side, 

, is a research productivity parameter that determines the effectiveness with which firm i translates 

research resources into new drugs in market j at time t. It is not fixed – instead, it evolves over time across 

firms and markets, and is therefore not accounted for by the usual fixed effects.  

We think of  as the innovative capabilities of the part of firm i’s drug development team that 

is focusing on therapies in market j at time t. These capabilities will reflect the skills and creativity of the 

individuals in this firm-specific R&D unit. These skills and levels of creativity will vary over time, as 

incumbent researchers retire or resign, new researchers join the team, and current researchers pursue 

research paths that lead to a string of valuable discoveries or a series of dead ends. Since the composition 

of the research team evolves over time, through arrivals and departures, and the research productivity of 

individual members is likely to be characterized by periods of especially fruitful work that stretch out 

across years, it is natural to think that could exhibit some temporal dependence such that:29  

   (4) 

where 𝜏 is the usual well-behaved error term and:  

 

   (5) 

 To the extent that the firm is aware of its , it will invest more in markets where  is high 

and less where it is low, inducing a positive correlation between early-stage drug development activity 

and . Of course, if  declines significantly, and remains low, then the flow of new drugs from firm 

i in market j will decline and perhaps cease altogether. Measured generic competition may therefore rise 

as existing products loose patent protection and are not replaced by new patent-protected products, 

inducing a negative correlation between our measure of generic competition and our measure of early-

stage innovation, Innjit.30  

 
29 It is obviously uncertain exactly how many lags are relevant in predicting current ω, and our empirical strategies 
are not contingent for their success upon our guessing this with perfect accuracy. 
30 Of course, this line of argument raises the possibility of serial correlation in the error term. Interestingly, the 
standard Breusch-Godfrey test fails to reject the null of no serial correlation in our data (prob > F: 0.6483). The 
Breusch–Godfrey serial correlation LM test is a test for autocorrelation in the errors in a regression model. It makes 
use of the residuals from the model being considered in a regression analysis, and a test statistic is derived from 
these. The null hypothesis is that there is no serial correlation of any order up to p. The test is more general than 
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To summarize these concerns in more mathematical language, let 𝐶𝑜𝑣H𝜔!"# , 𝜔!"#%.J > 0, such 

that there is substantial correlation in ω within firms and markets over time up to lags of length n.    

Further, let  𝐶𝑜𝑣H𝐼𝑛𝑛!"# , 𝜔!"#%.J > 0, reflecting the fact that early stage innovation will tend to be high in 

markets where firm i’s past research productivity has been high and low where it has been low, reflecting 

the presumed temporal dependence in ω. Then, let C𝑜𝑣H𝜔!"#%., 𝐺𝑒𝑛𝑒𝑟𝑖𝑐!"#%$J < 0, reflecting the fact 

that the level of generic competition encountered by firms will tend to be high in markets where their 

measured research productivity has been low in the past, meaning that the patents of previously 

introduced products have had time to expire. Given this, it is possible that 𝐶𝑜𝑣H𝐼𝑛𝑛!"# , 𝐺𝑒𝑛𝑒𝑟𝑖𝑐!"#%$J <

0, but the latter relationship could emerge purely as an artifact of omitted variable bias. In other words, 

our estimated coefficient on Genericijt-1 could significantly exaggerate the degree to which a negative 

relationship truly exists between innovation and generic competition.31   

Note that it is not contemporaneous realizations of ω that induce this inference problem; 

movements in Genericijt-1 will reflect past realizations of ω, because it takes time for new products to 

move through the development and approval pipeline. A sudden rise in ω that yields an increase in the 

number of early-stage drug candidates will only effect branded sales, and, by extension, our measure of 

generic competition, with a relatively long lag, because of the time required for clinical trials and FDA 

approval. Likewise, a sudden decline in ω that generates a fall in the number of early-stage drug 

candidates would not have an immediate effect on Genericijt-1 instead, that variable would be evolving in 

response to the loss of market exclusivity of previously introduced products, resulting from either patent 

expirations or successful generic challenges. This highlights the need to somehow control for lagged 

values of ω in our empirical specifications. We will return to this idea later in the paper. 

 
the Durbin–Watson statistic (or Durbin's h statistic), which is only valid for non-stochastic regressors and for testing 
the possibility of a first-order autoregressive model (e.g., AR(1)) for the regression errors. The BG test has none of 
these restrictions, and is statistically more powerful than Durbin's h statistic. The standard references are Breusch 
(1978) and Godfrey (1978). However, this finding does not necessarily invalidate our conceptual approach. Recall 
from Equation (2) that our error term consists of two components: , which is subject to first order serial 
correlation by assumption, and 𝜇!"#, which is not. We know that our outcome variable, which is an integer count of 
early stage drug candidates, is discrete, highly variable, and frequently zero, suggesting the variance of 𝜇!"#, and its 
realized magnitude in many observations, could be sufficiently great as to obscure the serial correlation presumed in 

. 

31 Of course, the possibility that 𝐶𝑜𝑣%𝐼𝑛𝑛!"# , 𝐺𝑒𝑛𝑒𝑟𝑖𝑐!"#$%. < 0 is not directly implied by our prior assumptions; the 
point here is that it is a possible outcome which could complicate our inference. We thank an anonymous referee for 
pointing this out. 
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In mathematical notation, this line of reasoning implies that we would have omitted variable bias 

in our sample estimate of the impact of generic competition on innovation, which we again denote 

𝑏,-.-/!0∗ : 

𝑏,-.-/!0∗ = 𝛽$ + 𝛽>
5678 	(,-.-/!0!"#$%,>!"#$&)

=3/8 (,-.-/!0!"#$%)
 (6) 

  

Here, 𝛽> is positive and potentially large because current innovative capacity is correlated with lagged 

values of ω, while 𝐶𝑜𝑣B 	(𝐺𝑒𝑛𝑒𝑟𝑖𝑐!"#%$, 𝜔!"#%.) is negative, and potentially large. Even if the true effect of 

generic competition on innovation, 𝛽$,  is only modestly negative or close to zero, the omitted variable 

bias could be large enough to render a spurious finding of a large, negative, statistically significant 

𝑏,-.-/!0∗ . How can we contend with this plausible bias? 

4.6 Controlling (indirectly) for  

Unfortunately, in the context of our study,  is unobservable.32 We cannot incorporate direct 

measures of  into our estimating equation, thereby eliminating the omitted variable bias directly.  

Instead, the only way forward is for us to make (plausible) assumptions about the form, structure, and 

determinants of , and then show that our key results are robust to a portfolio of empirical strategies 

that would yield unbiased estimates of 𝛽$ (or, at least, less biased estimates), contingent on our 

assumptions being true. This section is devoted to an explication of these empirical strategies. While no 

single strategy provides perfect leverage around this challenge, the robustness and consistency of our 

results across all of them significantly strengthens our inference.   

a. Controlling for elements of  that are correlated across firms within a market through 

inclusion of a direct measure of technological opportunity 

 We begin our efforts by focusing on elements of that are likely to be correlated across firms 

within a market at any point in time and over time. All firms active in a given market are drawing upon a 

common reservoir of basic medical knowledge that is yielding greater or lesser applied research 

opportunities over time (Evenson and Kislev, 1976; Kortum, 1997; Cockburn, 2006). Our measure of 

scientific/technological opportunity, Tech Oppjt-1, is meant to control for this, at least in part, by 

constructing a citation-weighted, depreciated stock of potentially relevant science that varies across ATC2 

 
32 If pharmaceutical companies reported R&D expenditure by ATC2 markets, this could constitute a reasonable 
proxy for ω, but such data are not publicly available.   
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markets and over time. Prior research has demonstrated a link between academic research and industrial 

R&D (e.g., Mansfield, 1995; Gittelman and Kogut, 2003); these linkages are particularly strong in 

pharmaceuticals (Iaria et al., 2017). Similar to Furman et al (2005), we construct a bibliographic measure 

that captures publicly available academic research in the life sciences.  

We start by merging data from IQVIA MIDAS™ with the IQVIA NDTI™ database, which 

captures physician prescription behavior. This latter database identifies the diseases for which physicians 

are actually prescribing the drugs in IQVIA MIDAS™, including off-label uses. IQVIA MIDAS™ is 

categorized by ATC codes and the IQVIA NDTI™ database is categorized by ATC codes and 

International Statistical Classification of Disease (ICD-9) diagnostic codes. IQVIA NDTI™ provides us 

with a concordance between ICD-9 diagnostic codes and ATC product codes (at the 4-digit level).33 Next, 

we extracted the top 10 ICD-9 diagnostic codes for each ATC 4-digit (ATC4) market. These ICD-9 codes 

have unified keywords associated with them that were used as search terms in the National Library of 

Medicine’s PUBMED database. This search yielded journal articles published between 1950 and 2010 

relating to our various keywords that we were then able to map back to disaggregate ATC4 markets. 

Ultimately, we identified a unique sample of 6.5 million journal articles. However, some journal articles 

were mapped to multiple ATC4 markets, thereby yielding 20.9 million raw article counts.  

Next, we used the unique PMID identifiers for these articles to gather their forward citations from 

the year of publication to the end of 2010 in the SCOPUS Sciverse database (e.g., Catalini, 2017). Our 

sample of 20.9 million articles generated over 345 million forward citations. Since our unit of observation 

in a therapeutic market is at the ATC2 level, we aggregate our annual, citation-weighted counts of journal 

articles up from the ATC4 level to the ATC2 level. Older science is likely to be less relevant for current 

drug development than more recent science. For this reason, we apply a 15 percent “knowledge 

depreciation” rate (Griliches, 1984), take natural logs, and lag the log of the stock by one year to create 

our control variable, Tech Oppjt-1.34 By construction, “technology opportunity” is presumed to be the same 

for all firms active within a market at a point in time, and it evolves over time as the relevant scientific 

literature accumulates and depreciates. 

 
33 IQVIA NDTI™ is a dataset built from a physician survey that asks physicians which ICD-9 codes they actually 
prescribe drugs. This creates a physician-based mapping of ICD-9 codes to ATC 4-digit therapeutic markets. The 
match between IQVIA NDTI™ and IQVIA MIDAS™ can thus be made via ATC codes. 
34 A 15 percent depreciation rate is a standard assumption in the R&D and innovation literature (Griliches, 1984). 
Results are not sensitive to alternative assumptions regarding the depreciation rate. Newer science is likely to be 
more relevant to biologic-based drug development, and any depreciation rate will weight this newer science more 
heavily. 
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b. Controlling for elements of  that are correlated across firms through the inclusion of 

market-year interacted fixed effects 

A large body of empirical evidence suggests that a common base of technological opportunity 

could drive movements in that are correlated across firms within markets and vary over time. Given 

our data resources, we believe we have created a plausible empirical proxy for this common technological 

opportunity, thereby extracting at least one component of out of the error term. Empirical results 

shown later confirm that our measure of technological opportunity is significantly correlated with 

innovation outcomes. However, technological opportunity is only one among many market-level 

variables that could impact , and not all of them can be measured, even approximately, with available 

data. 

That inconvenient truth suggests a more “brute force” approach to the inference problem. If  

is correlated across all firms active in a particular market, j, for any reason, but it varies widely across 

different markets and different time periods, then we may be able to largely control for it by including 

interacted market-year fixed effects. Inclusion of these interacted fixed effects could yield other 

advantages for our inference. Many characteristics of ATC2 markets other than research productivity 

have shifted in ways that could influence the allocation of innovative effort across markets. These effects 

could be broadly common across firms. For instance, economists have long understood that changes in 

expected future market size could influence the distribution of R&D investment across product markets, 

and recent research has shown this to be true in the pharmaceutical industry (e.g., Acemoglu and Linn, 

2004; Finkelstein, 2004; Dubois et al, 2015; Murphy, 2019). Changes in expected market size across 

ATC categories over time can be controlled for by a market-year interacted fixed effect.35 Finally, to the 

extent that the demand-side factors impacting drug profitability described by Berndt et al (2015) also vary 

across therapeutic markets and time, these effects should also be controlled for by including the same 

interaction terms.36  

c.  Controlling for elements of  that vary across firms within markets 

 
35 In an earlier version of this paper (Branstetter et al, 2014) we controlled for the expected future market size for 
new drugs in a particular therapeutic class by averaging total sales from IQVIA MIDAS™ in therapeutic area j over 
year t, year t+1, and year t+2, measured in inflation-adjusted dollars. The sign and significance of the coefficients 
on our measures of generic competition are not sensitive to the inclusion or exclusion of this variable, so it is 
omitted from the current specification and we rely instead on the market-year interacted fixed effects to control for 
changes in expected market size.   
36 See Walsh (1984) for a broader discussion on demand-pull factors and their influence on innovation.  
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We have outlined two separate empirical strategies for dealing with elements of  (and other 

factors) that are common across firms within markets but vary over time. However, pharmaceutical 

companies – even ones active in the same therapeutic markets - differ sharply in the drug development 

capabilities they have built over time. These differences are likely to evolve over time in ways that will 

vary across firms within markets. As already noted, persistence in the firm-specific components of these 

unmeasured capabilities could still induce a spurious negative correlation between our measures of 

innovation and our measures of generic competition, even in the presence of direct controls for 

technological opportunity or market-year interacted fixed effects. However, this very persistence also 

suggests proxy variables that could be introduced into our specification to help us control for the lagged 

realizations of ω that constitute our main inference challenge.  

A given firm is more likely to introduce a new compound in a therapeutic category in which it 

already has substantial research expertise, as evidenced by its past research performance. To employ our 

earlier notation, if a firm i had high values of ω in a particular market j in the recent past, this should be 

evidenced by larger numbers of compounds in the more advanced Phase 2 and Phase 3 stages of the 

clinical trials process. To control for this, we use data from Pharmaprojects to define Late Pipeijt-1 as the 

number of compounds under development by firm i that are in Phase 2 or Phase 3 clinical trials in 

therapeutic market j at time t-1. This additional control is likely to be correlated with the lagged values of 

ω that are generating our central inference challenge.   

Continuing with this chain of logic, we can control for even longer lags of ω by using data from 

Pharmaprojects to create a three-year moving average of past drug introductions, Productijt-1, by firm i in 

the same therapeutic market j. This three-year moving average is lagged one period, (t-1). Larger firms 

are likely to have larger R&D budgets and more early-stage innovative effort, so we control for overall 

firm size by measuring total pharmaceutical sales by firm i in year t, Firm Sizeit, taking the natural log of 

sales data from IQVIA MIDAS™. All financial variables are converted into real dollars using a base year 

2000 GDP deflator.37   

In the same way that we are attempting to control for past realizations of ω by using measures of 

past R&D success, we can also incorporate an interesting measure of past R&D failure. Utilizing data 

from Pharmaprojects, we identify all suspended, discontinued and withdrawn products across the entire 

research pipeline from pre-clinical candidates to approved products. Development can be ended and 

products pulled for a multitude of reasons many of which, at their most fundamental level, are due to 

 
37  In earlier versions of the paper, we included the ratio of firm i’s marketing expenditures to product sales in 
market j at time t as an additional control, given the likelihood that firms will concentrate their research activities in 
domains where they have a strong brand. The inclusion of this additional control did not qualitatively change our 
results.   
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some type of scientific challenge. For example, Merck pulled Vioxx® from the market due to negative 

side-effects, while the Alzheimer disease drug candidate semagacestat was discontinued by Eli Lilly in 

Phase III clinical trials after disappointing results. The failure of one or more leading products within a 

broader drug development program could indicate the presence of common or related flaws in the 

products that are still under development. In other words, this could be indicative of a negative shock to 

that persists over several periods. This, in turn, could lead the firm to scale back, terminate, or redirect 

research and development efforts in response. Seeking to control for this, we define our proxy for the 

scientific challenges faced by the firm, Tech Challengeijt-1, as the number of products suspended, 

discontinued or withdrawn by firm i, in therapeutic market j at time t-1, and we include this in our 

specification. 

By explicitly including multiple covariates in Equation (1) that reflect past realizations of , 

both positive and negative, we significantly reduce the possibility that our inference is driven by omitted 

variables bias. Recall that our earlier concerns rested on the idea that lagged values of ω were positively 

correlated, at least to some extent, with current innovation (that is, early-stage drug development), and 

also negatively correlated, to some extent, with our measures of generic competition. A lengthy period of 

low draws of ω could induce firms to cut back on investment in new products and, as patents on existing 

products expire, generate an increase in measured generic competition. Inclusion of the covariates 

described in this section mitigates this problem of omitted variable bias. It is clear from the preceding 

paragraphs that these variables are included as controls, and we are not attributing a causal or structural 

interpretation to the regression coefficients estimated.  

 

4.7  Using an instrumental variables approach 

 The next element of our empirical strategy involves the use of instrumental variables. Recall that 

our inference problem stems from the fact that fluctuations in firm-market-period specific measures of 

research productivity ( ) can affect both our measures of innovation and our measures of generic 

competition. The ideal instrument or instrument set would feature variables which are correlated with 

generic competition but are not correlated with the firm’s underlying research productivity. If all generic 

entry resulted from the expiration of patents, this could reflect, with a lag, the declining research 

productivity of branded drug companies in a particular market. 

 Fortunately, a growing fraction of generic entry is not driven by patent expiration, but instead by 

successful challenges to existing patents. Drawing upon related research (Palermo et al., 2019; Branstetter 

et al., 2016; Hemphill and Sampat, 2011, 2012), we focus on Para-IV challenges to patent-protected 
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branded drugs. The Hatch-Waxman Act contained a pathway through which generics companies could 

compete with branded drugs under patent. To utilize this pathway, generics companies had to demonstrate 

that the patents were invalid or that the generic product did not actually infringe them. If generics 

companies successfully challenged the patent or evaded infringement charges, then they were rewarded 

with a half-year of duopoly, after which any generic entrant could seek permission to enter the market. As 

described in detail in Branstetter et al.  (2016), this feature of the legislation created a potential pathway 

by which generics companies could challenge branded drugs under patent protection, but the number of 

challenges remained low until the late 1990s. The acceleration of challenges since then can be tied to a 

series of court decisions, changes in FDA policy, and passage of the Medicare Act of 2003. These shifts 

in legislation, in regulatory practice, and in the courts’ views of patent validity and patent boundaries had 

the effect of rapidly increasing generic competition in ways that were arguably not highly correlated with 

changes across fields in the research productivity of branded firms and were also plausibly exogenous to 

the actions or desires of any one branded firm. The effects were large - the number of Para-IV challenges 

surged from just one in 1994 to 44 in 2007 and to 230 in 2010. By the end of the 2000s, Para-IV 

challenges accounted for more than 40 percent of all generic entry (Higgins and Graham, 2009; Berndt et 

al., 2007).   

 We therefore utilize an instrument set based on Para-IV challenges and Para-IV litigation 

outcomes. For each firm i, we count the number of Para-IV market challenges made against the firm’s 

products in market j at time t. We also count the number of Para-IV legal successes – that is, first court 

judgments favorable to the generic challenger – in market j at time t. We instrument for Genericijt-1 using 

these two instruments, while retaining our other variables to control for movement in ω. Finally, as an 

extension of our IV models, we estimate a System GMM version of Equation (1) that incorporates a 

lagged dependent variable, continues to instrument for generic competition, and allows for serial 

correlation in the error terms. When we do so, we incorporate into our specification, via the lagged the 

dependent variable, an additional control that is plausibly correlated with very recent realizations of ω, 

expanding the degree to which we can potentially extract these recent realizations from our error term. 

   

4.8 An exploration of firm-level heterogeneity in response to generic competition 

 

The firm-product literature referenced earlier in our text generally finds that firms respond very 

differently to rising competition in the domains where they have a “core competence” than in domains 

where their market-specific capabilities are less developed. When faced with rising competition, the 

dominant models imply that firms should diminish their investment in domains where they are weak, but 
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increase their investment in domains where they are strong. This logic suggests an additional empirical 

test. The negative affect of generic competition on innovation should be significantly attenuated in 

markets where the firm in question has strong drug development capabilities. We can therefore estimate 

an alternative specification of (1) along the lines of: 

  

𝐼𝑛𝑛!"# = 𝛼! + 𝛼" + 𝛼# + 𝛽$𝐺𝑒𝑛𝑒𝑟𝑖𝑐!"#%$ + 𝛽&(𝐺𝑒𝑛𝑒𝑟𝑖𝑐!"#%$ ∗ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡!"#%$) + 𝛽'𝑃𝑟𝑖𝑐𝑒!"#%$ +

𝛽(𝑇𝑒𝑐ℎ	𝑂𝑝𝑝"#%$ + 𝛽)𝑇𝑒𝑐ℎ	𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒!"#%$ + 𝛽*𝑃𝑟𝑜𝑑𝑢𝑐𝑡!"#%$ + 𝛽+𝐿𝑎𝑡𝑒	𝑃𝑖𝑝𝑒!"#%$ + 𝛽?𝐹𝑖𝑟𝑚	𝑆𝑖𝑧𝑒!# +

𝜀!"#               (7) 

 

where we interact our measure of generic competition with a measure of firm-market-specific research 

competence – in this case, our moving average of past product introductions (Productijt-1). If the theory 

upon which we draw is correct, and if our interpretation of the results of preceding specifications is valid, 

then the coefficient 𝛽& should be positive and statistically significant, confirming that firms with 

relatively strong drug capabilities in a particular market are less likely to reduce their development efforts 

as generic competition rises. On the other hand, if the negative regression coefficient we estimate for 𝛽$ is 

purely spurious, then it is not clear why 𝛽& should be positive and significant. 

 

4.9 Empirical specification for measuring the shift into biologic-based drugs  

Finally, current regulation suggests an alternative approach to estimating the impact of generics 

on innovation. Chemical-based pharmaceutical products become susceptible to generic entry after patent 

expiration (i.e., end of market exclusivity). They also become susceptible to early generic entry via Para-

IV challenges only five years after approval (i.e., end of data exclusivity). As discussed above, biologic-

based drugs face a different regulatory regime. During our sample period, there was no legal pathway 

through which biosimilars could enter the U.S. market, nor was (or is) there the equivalent of a Para-IV 

challenge to biologic-based drugs. This suggests that the difference in regulation during our sample 

period created an incentive for pharmaceutical companies to favor biologic-based therapies over 

chemical-based therapies, even if the latter was more effective in a purely therapeutic sense. Even as 

biosimilars begin to enter the U.S. market, for reasons discussed previously, those incentives are likely to 

remain in the longer run. This suggests an alternative specification: 

𝐶𝐼!"# − 𝐵𝐼!"# 	= 𝛼! + 𝛼" + 𝛼# + 𝛽$𝐺𝑒𝑛𝑒𝑟𝑖𝑐!"#%$ + 𝛽&(𝑇𝑒𝑐ℎ	𝑂𝑝𝑝"#%$) + 𝛽'(𝐶𝑇𝑒𝑐ℎ	𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒!"#%$ −

𝐵𝑇𝑒𝑐ℎ	𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒!"#%$) +	𝛽((𝐶𝑃𝑟𝑜𝑑𝑢𝑐𝑡!"#%$ − 	𝐵𝑃𝑟𝑜𝑑𝑢𝑐𝑡!"#%$) +	𝛽)(𝐶𝐿𝑎𝑡𝑒	𝑃𝑖𝑝𝑒!"#%$ −

𝐵𝐿𝑎𝑡𝑒	𝑃𝑖𝑝𝑒!"#%$) +	𝛽*𝐹𝑖𝑟𝑚𝑆𝑖𝑧𝑒!# + 𝜀!"#		                (8) 
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Here, the dependent variable measures the difference between chemistry-based innovations (CIijt) and 

biologic-based (BIijt) innovations. Likewise, our controls for firm-specific development capability and 

market presence are redefined to reflect relative capability in chemistry-based versus biologic-based 

development. Given these controls, we would not expect generic competition (Genericijt-1) to have an 

impact on the choice of technology – unless firms’ research choices are being affected by the prospect of 

generic competition. 

 If current regulation is causing biologic-based innovation to be preferred to chemical-based 

innovation, then we need to modify our innovation measure in order to capture this change. Using the 

Origin of Material field within Pharmaprojects we are able to sort early-stage innovation (Innijt) into 

either biologic-based (BIijt) or chemical-based (CIijt) innovation. In operationalizing Equation (8), the 

dependent variable is the difference between these two types of innovation, CIijt – BIijt. A negative 

coefficient on a right-hand side variable would imply that as that variable increased the difference (CIijt – 

BIijt) would decline. In other words, BIijt is greater than CIijt or the flow of biologic-based innovations 

exceeds the flow of chemical-based innovations.38 

 It is possible for firm i to have more biologic-based innovations than chemical-based innovations 

in therapeutic market j at time t. In this case, our difference variable (CIijt – BIijt) will become negative, 

preventing us from using count data models. We therefore create a new variable, cat(CIijt – BIijt), that 

equals 1, 2 and 3 if (CIijt – BIijt) is negative, zero or positive, respectively. This reclassification allows us 

to use ordered logit and ordered probit specifications. Again, a negative coefficient on an independent 

variable would imply that as that variable increased, the dependent variable, cat(CIijt – BIijt), declines. In 

this case the difference, (CIijt – BIijt), will become negative and the interpretation is the same as above.  

For our specification in Equation (8), we use the Origin of Material field within Pharmaprojects 

to decompose our measure of late-stage innovations, Late Pipeijt-1, past drug introductions, Productijt-1, 

and our measure of scientific challenges, Tech Challengeijt-1, faced by firm i in therapeutic market j, into 

their chemical-based and biologics-based components.  Empirically, we create the variables diff(Late 

Pipeijt-1), diff(Productijt-1), and diff(Tech Challengeijt-1), defined as the difference between the chemical- 

and biologic-based components, respectively.39 

 
38 As a robustness check for this specification we also employ a seemingly unrelated regression (SUR) specification 
where firms simultaneously decide their innovation decisions in chemicals and biologics (Tables 8 and 9). Results 
are consistent between our various specifications and will be discussed more fully in Section 5.5. We thank Ivan Png 
for this suggestion. 
39 Unfortunately, we have not found a credible way to split Tech Oppjt-1 into chemical-based and biologic-based 
components. It is extremely difficult to identify all facets of biologic-based research from PubMed. Even after 
utilizing experts within these respective fields and experts at the U.S. National Library of Medicine (PubMed) to 
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5.0  Empirical results 

5.1  Descriptive statistics and baseline market and firm-market results 
  

Descriptive statistics for our variables are presented in Panels A and B, Table 1, depending on 

whether they vary at the firm-market-year level (Panel A) or the market-year level (Panel B). In Table 2, 

we present regression results aggregated up to the ATC 2-digit market year level, as a benchmark against 

which to compare our firm-market-year level results. In these regressions, standard errors are clustered at 

the market level. Models 1 through 5 present the results of fixed effects negative binomial regressions 

(Hausman, Hall, and Griliches, 1984). Model 1 introduces our main variable of interest, and Models 2 

through 4 add our main control variables, all aggregated up to the market-year level. The pattern of results 

suggests a statistically and economically significant negative relationship between generic competition 

and early-stage innovation, but the magnitude of that relationship and its statistical significance drop 

sharply as we add the additional controls, suggesting that the omitted variable bias problem discussed 

earlier in the paper is a real one. The signs of the estimated coefficients for the control variables are 

generally as expected except for Tech Challengesjt-1, which is positive rather than negative. This turns out 

to be robust feature of econometric results, and we discuss how to interpret this finding later in this 

section. The coefficient on Genericjt-1 in Model 4 is significant at the 10 percent level and has an implied 

elasticity of about 11 percent. Thus, an increase in generic competition of 10 percent implies a decline in 

early-stage drug development of about 1.1 percent. Model 4 includes year and ATC 1-digit (ATC1) 

market fixed effects. If we add (ATC1*Year) interacted fixed effects, as in Model 5, the results do not 

qualitatively change. For comparative purposes, Model 6 provides the results of a Poisson regression. The 

coefficient on Genericjt-1 and its implied elasticity do not change much with this alternative specification.   

In Table 3, we present our baseline firm-market-year level results, again employing the fixed-

effects negative binomial and Poisson estimators pioneered by Hausman et al. (1984).40 The dependent 

variable in all specifications is Innijt, or the count of firm i early-stage innovations in therapeutic market j 

at time t, as described in Section 4.2. Model 1 presents results of a regression including only our measure 

of generic competition and firm, year, and market fixed effects (estimated at the ATC1 market level). The 

estimated impact of generic competition is negative and statistically significant; the implied elasticity 

suggests that a 10 percent increase in generic competition lowers early stage innovation by approximately 

 
help construct keywords, we still found examples where our biologic-based measure would be undercounted. Such 
an undercount is problematic since we are trying to control for biologic-based scientific opportunities. Our 
alternative solution is to discount Tech Oppjt-1 in order to deemphasize older research and emphasize more recent 
research that would be more relevant (and consistent) with the focus on biologic-based products. The removal of 
Tech Oppjt-1 does not change our core findings. 
40 As indicated in the regression tables, standard errors are now clustered at the firm level. 
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6.5 percent. Model 1 omits any consideration of competition between branded drugs. Model 2 rectifies 

this omission by incorporating our measure of average price, which reflects the impact of branded and 

generic drugs. The coefficient on Pricejt-1 is negative but not statistically significant; its inclusion does not 

qualitatively change the significance or magnitude of our measure of generic competition, strengthening 

our view that generic competition has a significant and strong impact on early-stage innovation.41 In 

Model 3, we incorporate our measure of technological opportunity, Tech Oppjt-1; the estimated coefficient 

is positive and statistically significant, but the measured impact of generic competition remains robust.   

In Model 4, we incorporate additional firm-market-year controls designed to reflect past research 

success and failure – Productijt-1 (a three-year moving average of new product introductions), Late Pipeijt-1 

(a count of compounds in Phase 2 and 3 clinical trials), and Firm Sizeit (total sales of firm i in year t). The 

estimated coefficient for generic competition declines slightly in magnitude relative to Model 3, 

suggesting that the omitted variable bias problem discussed earlier exists, at least to some extent. 

However, the estimated effect of generic competition remains strongly negative and highly significant. As 

expected, Productijt-1 and Late Pipeijt-1 have positive coefficients, although only the former is consistently 

significant; Firm Sizeit is also positive but not consistently significant. In Model 5, which serves as our 

base specification, we add Tech Challengeijt-1 and (ATC1*Year) interacted fixed effects. Contrary to 

expectations, Tech Challengeijt-1 is positive and statistically significant – we suspect this reflects the fact 

that firms with more products in their development pipelines will encounter more challenges. It is also 

possible that failures can serve as a learning mechanism for future endeavors (Chiou et al, 2012). Statin 

drugs, which today are one of the largest selling therapeutic areas, had a difficult beginning in 1978, with 

the unsuccessful launch of Mevacor®. Over time, however, the industry worked through these difficulties 

as new technologies led to the five types of statin-molecules currently sold in U.S.42  

Across all specifications, we find negative and statistically significant coefficient estimates for 

our measure of generic competition. This negative relationship suggests that, at the firm level, increases in 

generic competition are related to decreases in the flow of early-stage innovation in that therapeutic 

market. Taking the coefficient from our complete negative binomial specification (Table 3, Model 5) as 

our baseline estimate, we calculate an elasticity equal to -0.674. In other words, a 10 percent increase in 

 
41 Robustness checks included in our Appendix incorporate HHI and Brand. Appendix Tables B1 to B8 replicate 
Tables 2 to Table 9 including HHI and Brand while Appendix Tables C1 to C4 replicate Appendix Tables A1, A2, 
A4, and A5 with HHI and Brand. Inclusion of this additional control does not qualitatively change the estimated 
impact of generic competition.   
42 In Model 6, we run a linear version of Model 5 for comparative purposes and in Model 7 we employ a fixed 
effects Poisson model as an additional robustness check. Additional fixed effects Poisson models are reported in 
Appendix Table A1. 
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generic competition experienced by a firm in a particular market corresponds to a roughly 6.74 percent 

decrease in early-stage innovation by that firm in that market. To our knowledge this is the first empirical 

evidence that documents the effect of generic competition in the U.S. market on early-stage 

pharmaceutical innovation. Other things equal, if fewer candidates are entering a given therapeutic 

pipeline within a given firm, then fewer approved drugs will eventually come out. The implied elasticity 

of the Poisson specification (Model 7) is quite similar to the negative binomial baseline (Model 5). The 

linear specification in Model 6 suggests a somewhat smaller effect - a 3.34 percent decline in innovation 

in response to a 10% increase in generic competition - but one that is still quite economically, as well as 

statistically, significant.   

Generic competition into a market is clearly harmful for branded producers. From a social 

welfare perspective, however, we cannot necessarily infer any negative impact. If the presence of viable 

generics in a market rises, our results indicate that innovation will decrease in that market. However, the 

rising level of early-stage drug development effort at the aggregate level suggests that the decline in 

innovation within markets facing a high degree of generic competition is more than offset by increased 

innovative effort elsewhere. Indeed, Pammolli et al. (2011) argues that one of the reasons overall 

pharmaceutical R&D productivity has declined is a shift of R&D resources into areas with unmet 

therapeutic needs, which also have higher risks of failure. Our results are consistent with this view and 

provide one possible explanation for why this shift is occurring. In essence, Hatch-Waxman, by providing 

mechanisms of entry for generics, creates conditions under which the pharmaceutical industry redirects 

R&D efforts to markets less served by generics.  

If R&D efforts are shifting across therapeutic areas, this can have significant future 

consequences, with a net impact on social welfare that is difficult to calculate. On the one hand, if the 

therapeutic category that is seeing research expenditures leave has a different success probability than the 

therapeutic category to which expenditures are flowing, this could have consequences for the net flow of 

innovation (either increasing or decreasing). On the other hand, new product development in a domain 

with few (or no) existing effective therapies may have greater social value than similar development in an 

area with a broad range of existing effective therapies, even if the R&D success probabilities are lower in 

the domain with few therapies. In this paper, we do not take a stand on the ultimate welfare consequences 

of this shift. Instead, we seek to document the existence and magnitude of this shift. The welfare 

consequences of the shift remain the focus of ongoing research.   

5.2 ATC market-year interacted fixed effects, instrumental variables, and GMM specifications 
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In Table 4, we submit our baseline results to a number of alternative specifications designed to 

significantly sharpen our causal inference and address problems of potential endogeneity or omitted 

variable bias impacting our measures of generic competition. We begin in Model 1 by incorporating 

ATC2 market fixed effects and the interaction between ATC2 market and year fixed effects into the 

specification. This is not feasible in our fixed effects negative binomial models; attempts to estimate these 

nonlinear specifications with so many fixed effects fail to reach convergence. However it is possible to 

incorporate firm, year, ATC2 market fixed effects along with the interaction between ATC2 market and 

year fixed effects into a linear regression specification of Equation (1). We view this an especially strong 

test of the hypothesis that an increase in generic competition is associated with a decline in innovative 

activity, because all of the factors associated with an ATC2 market that vary over time in a common way 

across firms are swept out with the interaction terms. For example, recent research by Dubois et at (2015) 

has documented the existence of a strong relationship between the expected future growth of demand in a 

therapeutic area and new drug introductions. To the extent that expectations of future demand growth are 

correlated across firms active in a given market, inclusion of this fixed effect will control for that.  

 Despite the imperfect fit between the count data in our dependent variable and the statistical 

assumptions undergirding our linear specification, we still find that generic competition is still negatively 

associated with early-stage drug development, and this effect is statistically significant at conventional 

levels. The elasticity from Model 1 implies that a 10 percent increase in generic competition in a 

particular market will lower early-stage innovations, in that same market, by about 4 percent – an 

elasticity broadly comparable in magnitude to our baseline estimates from the previous table. Recall that 

our unit of observation is the firm-market-year level, where market j is defined at the ATC2 market level. 

When we include ATC2 market fixed effects and the interacted fixed effect between ATC2 market and 

year, Pricejt-1, and Tech Oppjt-1 are no longer informative. So, we omit them from Model 1, and we do so 

in every specification that follows where we include interacted fixed effects between ATC2 market and 

year dummies.43 

In Models 2 to 5, we take yet another approach to testing the robustness of our results: the use of 

instrumental variables. Here, we drop the interacted fixed effects and utilize the instruments described 

previously. Model 2 presents the results of a two-stage least squares linear regression with firm, year, and 

ATC1 market fixed effects, along with an interaction between ATC1 market and year fixed effects. The 

effect of rising generic competition is still negative and statistically significant at conventional levels. The 

 
43 In one further robustness check we split the sample in order to determine whether results are driven by 
observations either early or late in the sample period. In short, they are not. Results are reported in Appendix Table 
A2.  



29 

 

estimated magnitude of the coefficient rises significantly, compared to the coefficient in Mode1, and that 

estimated coefficient implies that a 10 percent increase in generic competition leads to a 12.5 percent 

decline in early-stage innovation.  

Model 3 incorporates the more disaggregate ATC2 market fixed effects and the interaction 

between ATC2 market and year fixed effects into our two-stage least squares linear specification; the 

measured impact of rising generic competition remains negative and statistically significant. The new 

estimated coefficient implies that a 10 percent increase in generic competition leads to a 13.9 percent 

decline in early-stage innovative activity. Model 4 drops the interacted fixed effects and employs an 

Arellano-Bond System GMM linear specification, in which we instrument for generic competition, 

incorporate a lagged dependent variable, and allow for serial correlation in the error terms.44 The 

magnitude of the key coefficient remains negative and statistically significant here as well, implying an 

elasticity of -0.296. Finally, Model 5 retains the System GMM specification, but drops the additional 

controls Productijt-1 and Late Pipeijt-1. Yet again, the key coefficient remains negative and significant; in 

Model 5, it implies an elasticity of -0.363.45 

5.3 Additional robustness checks 

 In Table 5, we return to our negative binomial specifications and subject these results to an 

additional series of robustness tests, starting with an alternative dependent variable. Our baseline measure 

of innovation, Innijt, which is the count of products in early-stage development, does not discriminate 

between “breakthrough” pharmaceutical products and those that come much later in the history of a 

therapeutic area. This reflects, in part, the difficulty of drawing a clear or meaningful line between “truly 

innovative” drugs and “me-too” drugs. The history of the industry provides several examples in which the 

first products in a class had significant shortcomings or side effects - and the real breakthroughs in terms 

of therapeutic efficacy came several product introductions later.46 Even when new products are merely 

recombinations or reformulations of existing active ingredients, the new products can often provide 

significant therapeutic benefits to certain categories of patients.     

 
44 This was implemented using the STATA procedure based on the work of Arellano and Bond (1991) and Bond and 
Blundell (1998), who devised the more robust System GMM variant used here, which tends to have better small 
sample properties. The basic approach is to first-difference data as a way of extracting fixed effects, then use lags as 
instruments for potentially endogenous realizations of the lagged dependent variable.   
45 Appendix Table A3 presents results of an additional robustness check. We report results from an OLS model with 
Genericijt-1 along with firm, year, ATC2 market fixed effects, interactions between ATC2 market and year fixed 
effects, and interactions between firm and year fixed effects. The main effect remains negative and statistically 
significant.    
46 See Arcidiacono et al (2013). 
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 Despite these realities, critics of the pharmaceutical industry have accused branded firms of 

responding to generic entry or the threat of generic entry by coming up with branded “innovations” that 

are not true innovations, but merely minor modifications of earlier branded products. If the negative 

impact of rising generic entry on early-stage innovation, identified in our regressions, were limited to 

incremental innovations with little or no therapeutic value, then that would have different policy 

implications from an effect that extended to the most novel compounds and drugs. 

 The Pharmaprojects database includes a variable that grades each product under development in 

terms of its novelty - the most novel compounds are ones that are first in their class. We can therefore 

present the results of an alternative specification of Equation (1) in which we replace our comprehensive 

count of drugs in early-stage development with a count of only novel drugs in early-stage development, 

Novel Innijt. The elasticity from Model 1 implies that a 10 percent increase in generic competition in a 

particular market will lower early-stage novel innovations, in that same market, by 5.99 percent. Put 

another way, our results are not driven by a crowding out of purely incremental inventions or 

reformulations.     

 Next, we can test the robustness of our results and the correctness of our interpretation by 

applying a series of placebo tests. In our previous regressions, we carefully defined innovation as early-

stage product development. As compounds move through the costly, expensive, and risky clinical trials 

process, they require ever-higher levels of investment by the firm. A drug that has survived Phase 2 and 

Phase 3 clinical trials is likely to be introduced, even if generic competition is rising sharply in a way that 

might lead to a throttling back of early-stage research in that therapeutic area. Drugs at these later stages 

of the development process should be significantly less responsive to our measures of generic competition 

than our measures of earlier stage innovations.47 We can directly test this proposition by replacing our 

current early-stage innovation variable, Innijt, with an alternative late-stage innovation variable and see 

whether our empirical results remain unaffected. 

Following this logic, in Table 5, Model 2, we define a new dependent variable, Late-stage Innijt, 

as a count of firm i’s products in Phase 2 or Phase 3 trials in market j at time t. In this specification, we 

find that our measure of generic competition is not significantly correlated with late-stage product 

 
47 We thank Jeff Macher for suggesting this robustness check. Conversations with pharmaceutical executives 
confirm that later stage drug development should be less responsive to changes in generic competition. 
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innovation.48 This is in line with our expectations, and strengthens our interpretation of the results using 

measures of early-stage product development. 

Our third regression is a different sort of placebo test. In many therapeutic markets, practicing 

physicians have long regarded different drugs, based on different molecules and utilizing different 

biochemical pathways to attack the disease, as equally effective therapies for the underlying illness. In 

such cases, when insurance companies incentivize their customers to choose newly available generics, 

physicians will often willingly switch their customers from a molecule without a generic equivalent to 

one that has a generic equivalent, especially if it saves their patients money. Where this so-called cross-

molecular substitution is high, the implications for branded products can be quite profound. In such 

markets, the emergence of a generic equivalent to any branded product can affect the revenue streams of 

all branded products, leading to wide-ranging declines in revenues and profits.  

However, the degree of cross-molecular substitution varies substantially across markets. For 

example, based on conversations with practicing physicians, we would expect higher substitution in 

therapeutic areas such as anti-infectives, hypertension and allergies and lower substitution in markets such 

as depression and epilepsy. In general, the complexity and sensitivity of the human brain and the 

complicated nature of neurological disorders work to strictly limit the degree of cross-molecular 

substitution in drugs that treat neurological and psychiatric disorders. They even limit the degree to which 

practitioners are willing to use (bioequivalent) generic versions of the branded drug. When practitioners 

find a good match between a drug treatment and a patient in these domains, they are often reluctant to 

switch to a cheaper generic. 

Economic intuition suggests that if a class of branded drugs was less susceptible to cross-

molecular substitution and generic competition, then we might expect to see a muted innovation response 

to rising generic competition in that particular market. Focusing on the markets that include anti-

epileptics, anti-depressants, and anti-psychotics, we indeed see this in our results in Table 3, Model 3. 

Increases in generic competition do not appear to have any statistically significant effect on early-stage 

innovation in these therapeutic areas.49 This suggests that there are markets for which direct substitution 

 
48 In these regressions, our dependent variable is identical to Late Pipeijt-1, so we omit this variable from our set of 
control variables. 
49 Given the limited number of markets we are able to get convergence with a model that includes firm, year, ATC 
2-digit market and an interaction between ATC 2-digit and year fixed effects.  
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to a generic may be problematic, cross-molecular substitution is low, and as a result the effect on early-

stage innovation is less of a concern.50,51 

5.4 Exploring heterogeneity in firm responses to generic competition 

Firms with different levels of R&D capability in a given market could vary substantially in their 

response to a similar rise in the level of generic competition in that market. A firm with strong R&D 

capabilities could continue to invest in new product development in this domain, expecting that it can 

deliver new products with sufficient advantages over existing therapies that it can recoup the cost of 

product development from future sales, even as the number of effective generic medicines in the space 

rises. Conversely, a firm with limited (or declining) research capabilities in the same space could respond 

to rising generic competition by lowering its R&D efforts or diverting them to other markets where 

competition was less intense or the firms underlying R&D capabilities were stronger.   

Table 6 implements several empirical tests based on this logic. Model 1 repeats our baseline 

negative binomial specification but with the inclusion of an interaction term, (Generic*Product)ijt-1, which 

is defined as the product of Genericijt-1 and Productijt-1. The interaction term is highly significant and 

positive, indicating that that the impact of generic competition weakens significantly when the firm has 

better developed innovative capabilities in the therapeutic market in question. Model 2 returns to our 

linear two-stage least squares specification and inserts the same interaction term, finding broadly similar 

results. Model 3 modifies the interaction term by creating a dummy variable equal to one if Productijt-1 is 

greater than the median value, zero otherwise, and multiplying Genericijt-1 by this dummy variable. 

Inserting this new interaction term (Generic*Product2)ijt-1 into the baseline negative binomial 

specification generates a qualitatively similar, but stronger result. The magnitude and significance level of 

the interaction term suggests that, for the firms with the most developed R&D capabilities, the usual 

negative impact of generic competition is dramatically reduced. Similar results are obtained in Model 4 

when we insert the same interaction term into our two-stage least squares specification, suggesting that 

essentially all of the decline in new product introduction comes from firms with less developed R&D 

capabilities in those markets.   

 
50 As a further robustness check, through consultations with practicing physicians we identified markets that they 
deemed high cross-molecular substitution, namely the anti-infective markets J01-J04. Two additional markets, PPIs 
(A02) and statins (C10), were added on recommendation by an anonymous referee. When we replicate the findings 
in Model 3, Table 4 for these high CMS markets the coefficients on Genericijt-1 are negative and significant at the 1 
percent level. Results available on request are consistent with our intuition about high CMS markets.  
51 Appendix Table A4 replicates the models in Table 5 excluding Productijt-1, and Late Pipeijt-1. Results remain 
robust.  
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These results continue to hold in Models 5 and 6. Here, we employ yet another variant of the 

interaction term. We create a dummy variable equal to one if the firm has a measured R&D capability (as 

evidenced by our Productijt-1 variable) that is in the top quartile, and interact this new dummy with our 

measure of generic competition, (Generic*Product)ijt-1. In both the baseline negative binomial 

specification (Model 5) and the linear two-stage least squares specification (Model 6), our results suggest 

that the decline in early-stage innovation in response to greater generic competition is driven by firms 

with weaker R&D capabilities. For the most capable firms, the negative impact appears to be negligible.   

5.5 Are generics driving a switch to biologics-based drug development? 

Researchers have conjectured that declining revenues associated with small-molecule (chemical-

based) products are increasingly motivating firms to switch to large-molecule (biologic-based) products 

(Wong, 2009; Golec et al, 2010). As we have noted above, such a shift could have mixed consequences 

for future drug development. Biologics are more expensive than chemical-based products, on average 

(Aitken et al., 2009), and biologics are likely to experience far less generic competition than chemical-

based drugs for the foreseeable future. If consumer uptake across the two types of products over their 

entire product lifecycle remains similar, then a shift from chemical-based to biologic-based drugs could 

imply that, all else equal, the percent of overall health care expenditures spent on pharmaceuticals will 

increase. 

In order to consider whether a shift to biologic-based products may be occurring as a 

consequence of rising generic competition, we estimate the specification described in Equation (8). The 

dependent variable in this specification is the difference between early-stage chemical-based innovations 

and early-stage biologic-based innovations. As constructed, this variable can now take on negative values, 

which prevents us from using count data models. Instead, we create a variable, cat(CIijt-BIijt), that equals 

1, 2 and 3 if the difference (CIijt – BIijt) is negative, zero, or positive, respectively, and we estimate 

Equation (8) using IV and OLS specifications (Table 7, Models 1-3) and for comparative purposes, 

ordered logit and ordered probit models (Table 7, Models 4-6).  Model 1 presents the results from a two-

stage least squares linear regression utilizing the same instrument set as before, along with firm, year and 

ATC1 market fixed effects, including the interacted ATC1 market and year fixed effects. Model 2 retains 

the two-stage least squares approach, but includes firm, year, and ATC2 market fixed effects, including 

the interacted ATC2 market and year fixed effects. Model 3 adopts a linear specification without 

instruments, but retains the interacted ATC2 market and year fixed effects. Across all specifications our 

measure of generic competition is negatively and significantly related to the difference in types of early-

stage innovations. This suggests that as generic competition increases, our dependent variable, cat(CIijt-
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BIijt), declines which, in turn, implies that the difference, (CIijt – BIijt) is decreasing (or becoming more 

negative). In other words, as generic competition increases, the flow of biologic-based innovations rises 

relative to the flow of chemical-based innovations for firm i, in market j, at time t. Controlling for other 

factors, it appears that pharmaceutical firms are responding to generic competition by shifting to 

biologics, where they do not face similar competition. 

Model 4 employs an ordered logit regression specification with firm, year, and ATC1 market 

fixed effects. Model 5 adds interacted ATC1 market-year fixed effects. Finally, Model 6 employs an 

ordered probit specification. All three specifications incorporate the full set of baseline control variables. 

Not surprisingly, use of nonlinear models results in larger coefficients. In all cases, however, the 

estimated effects are negative, statistically significant, and of reasonably large magnitude.  All results 

continue to suggest that higher levels of generic competition push firms in the direction of more biologic-

based (large molecule) drug development relative to chemical-based (small molecule) drug 

development.52 

Table 8 provides results from an alternative approach - one in which two separate linear models 

predicting chemical-based product innovations and biologic-based production innovations, respectively, 

are run as a system, using the seemingly unrelated regressions (SUR) approach. In all specifications, we 

can see that generic competition is negatively associated with chemical-based innovation, but positively 

associated with biologic-based innovation, and both relationships are statistically significant at the 

conventional threshold levels. We noted earlier in the paper that our sample is limited to firms with at 

least one approved product and at least one candidate drug in early-stage development. This sampling 

restriction excludes some small, research-intensive firms. However, over our sample period, these smaller 

entities tended to be more focused on biologic drug development. Hence, we believe their inclusion in our 

empirical analysis would, if anything, significantly strengthen the general tenor of our findings, especially 

those concerning the shift out of chemical-based drugs and into biologic-based drugs.   

As a final robustness check we consider markets where there is particularly robust biologic-based 

early-stage innovation. It should be the case that once we restrict the sample, using the same methodology 

as Table 8, results should strengthen. That is, we should see a greater negative effect on CIijt and a greater 

positive effect on BIijt in markets where biologic-based innovation is especially well developed, frequent, 

 
52 In Appendix Table A5 we replicate Models 1, 2, and 3 from Table 7 with an alternate definition of the dependent 
variable. In these models the dependent variable, diff(CIijt – Bijt), is the difference between CIijt and BIijt. This allows 
diff(CIijt – Bijt) to be positive, negative or zero. Results remain robust to this alternative definition. 
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and, perhaps, easier for firms with the requisite knowledge capital.53 Table 9 shows that when we restrict 

the sample to the top three ATC1 markets (F, J and T) with the largest number of early-stage biologic-

based innovations, using a SUR approach, we find a greater negative effect on CIijt and a greater positive 

effect on BIijt.    

6.0  Conclusion 

 For many years, researchers and industry observers have conjectured that rising generic 

competition might have an impact on the rate and direction of pharmaceutical innovation. Using a new 

combination of data sets, we are able to estimate the effects of rising generic competition on early-stage 

pharmaceutical innovation. While the overall level of early-stage drug development has continued to 

increase, generics have had a statistically and economically significant impact on where that development 

activity is concentrated, how it is done, and by which firms it is undertaken. In the full sample, we find 

that, as our baseline measure of generic competition increases by 10 percent within a therapeutic market, 

we observe a decrease of 6.74 percent in early-stage innovation in that market. This implies that drug 

development activity is moving out of markets where generic competition is increasing and into domains 

where it is relatively less intense.   

 These results were subjected to a broad range of robustness tests and alternative specifications, 

with particular attention paid to the possibility of omitted variable bias arising from variation in 

(unmeasured) research productivity across firms, markets, and time. Our results remained robust to 

inclusion of a number of firm-market-time covariates designed to control for changes in (lags of) firm 

research productivity. Our results were also robust to multiple alternative definitions of the dependent 

variable, including the use of only novel, first-in-class drug candidates. Alternatively, as expected, the 

results fade into insignificance when we redefined innovation as late-stage or when we limited the scope 

of our analysis to markets where cross-molecular substitution is low. In linear specifications, we found 

that the negative relationship between drug development and rising generic competition remains robust to 

the inclusion of a full set of ATC2 market fixed effects and the interaction between ATC2 market and 

year fixed effects. Finally, an instrumental variables approach reflecting the rapid rise of Para-IV entry 

confirmed the robustness of the negative estimated relationship between generic competition and early-

stage innovation. 

 Our rich data allow us to examine the heterogeneity of firm responses to generic competition, in a 

manner informed by recent theories of competition at the firm-product level. Consistent with these 

 
53 We thank Ariel Stern for making this suggestion. 
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theories, we find pronounced asymmetries. Firms with high levels of research productivity, as evidenced 

by past product introductions in a particular market, show much less decline in their early-stage drug 

development activity as generic competition rises. In fact, the strongest firms appear to show little to no 

response in markets where they have the greatest strength. We might be tempted to conclude that the rise 

in generic competition may have had a mostly benign impact, with the induced decline in in early-stage 

development largely taking the form of firms reducing their development activities in domains where they 

have been marginal players, and concentrating their efforts in the domains where they have the most 

strength. 

However, we also probed the economic incentives created by regulation to shift, within 

therapeutic markets, from chemical-based to biologic-based products — and these results suggest a more 

nuanced conclusion. Increases in generic competition in market j appear to lead to an increase in the 

relative amount of biologic-based drug development. As generic competition in market j rises, firms are 

not entirely abandoning market j, but rather changing the nature of the innovation they pursue. Our results 

are drawn from a period of industry in which there was no practical way for generics to compete with 

biologic-based drugs. That has changed, but data exclusivity is still longer for biologic-based products, 

and the regulatory pathway to market biosimilars is likely to be far more challenging than the pathway for 

small molecule generic drugs. We conjecture that as chemical-based products are pressured by generics, 

pharmaceutical firms will continue to shift toward biologic-based drugs.  

 We have shown that the rise of generic competition is reshaping the locus of drug development 

activity. Is this a good thing? In this paper, we have refrained from taking a strong stand on the welfare 

impact of this shift. The data we would need to determine this are not yet available, and, at this point, we 

can only speculate on the sign of the ultimate welfare impact. On the positive side, one can argue that 

social welfare is enhanced when pharmaceutical firms are induced to shift development efforts away from 

markets where a broad range of effective and cheap generic therapies already exist to ones with far fewer 

treatment options. This can be true even if the probabilities of research success are lower in the domains 

into which research effort is being pushed, because the social returns to expanding the range of treatment 

options is relatively high. Even an increasing shift to more expensive biologic-based drugs may be 

beneficial in the long run if further innovation in chemical-based drugs brings little social value.  

 However, it is equally plausible to imagine a less positive outcome. Rising generic competition 

could be weakening incentives for the development of new chemical-based (small-molecule) drugs that 

have all the benefits of existing therapies without the side effects. Such new drugs would have social 

value, even in markets with an extensive range of existing therapies. The less explored domains into 
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which the pharmaceutical industry's small-molecule developments are being pushed may yield little or no 

success. Such pessimism would be consistent with much of the discussion of the pharmaceutical 

industry's longstanding productivity crisis. Finally, by tilting the regulatory playing field so heavily 

against chemical-based drug development and in favor of biologic-based drugs, we may be inducing the 

global industry to give up on the former domain that has done so much to advance global health through 

the provision of cheap, relatively simple, effective drugs long before the potential benefits of further 

research have been exhausted.54   

 While we can only speculate on welfare in this paper, we believe the effort to quantify it is not 

just worthwhile, but necessary. Whether the effect was intended or not, the rise of generics in the U.S. 

market is significantly reshaping the pattern of global drug development efforts. We need to know if this 

is pushing that pattern closer to or further away from the social optimum. As is usually the case in 

research, much remains to be done. 

 

 
54 In fact, many industry insiders believe that there are hundreds of small molecule compounds with as yet 
undiscovered therapeutic benefits. Because the patents on these compounds expired long ago, there is no mechanism 
by which a branded pharmaceutical company could appropriate the returns from R&D into these new therapeutic 
benefits. See Higgins et al. (2014) and Roin (2013) for an explication of this idea and potential policy solutions. 
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Table 1. Variable definition and descriptive statistics. This table provides definitions, data sources along 
with descriptive statistics for our variables of interest. 

Panel A: Firm - Market - Year (ijt)         
Variables Definition Source N Mean σ Min Max 

        

Innijt 
Early stage innovations: Count of early 
stage pipeline (pre-clinical + phase 1) at i, 
j, t level. 

Pharmaprojects 29,514 0.41 0.52 0 12 

Genericijt-1 
Generic competition: Ratio of generic 
sales to sum of focal firm and generic 
sales at i, j, t-1 level.  

IQVIA MIDAS 29,514 0.54 0.46 0 1 

Tech Challengeijt-1 

Technological challenges: Counts of 
suspended or discontinued pipeline 
projects and withdrawn approved 
products at i, j, t-1 level. 

Pharmaprojects 29,514 0.05 0.26 0 6 

Productijt-1 
Firm innovative capability I: Moving 
average of product introductions in t-1, t-
2, t-3 at the i, j, t-1 level. 

Pharmaprojects 29,514 0.24 1.01 0 25.67 

Late Pipeijt-1 
Firm innovative capability II: Count of 
Phase II and Phase III products at the i, j, 
t-1 level. 

Pharmaprojects 29,514 0.09 0.35 0 6 

Firm Sizeit Firm size: Logarithm of total 
pharmaceutical sales at the i, t level. IQVIA MIDAS 29,514 12.71 4.44 0 17.23 

        
Panel B: Market - Year (jt) 

        
Variables Definition Source N Mean σ Min Max 

        

Innjt 
Early stage innovations: Count of early 
stage pipeline (pre-clinical + phase 1) at j, 
t level. 

Pharmaprojects 1,500 2.84 6.05 0 66 

Genericjt-1 
Generic competition, baseline measure: 
Ratio of generic sales to sum of focal firm 
and generic sales at j, t-1 level. 

IQVIA MIDAS 1,500 0.12 0.21 0 1 

Pricejt-1 Price: Average price of drugs in market j 
in year t-1. IQVIA MIDAS 1,500 11.80 69 0.04 1856.50 

Tech Oppjt-1 

Technological opportunity: Logarithm of 
stock of citation-weighted articles in year 
t-1 for jth therapeutic market. Depreciated 
15 percent per year. 

IQVIA NDTI, 
IQVIA MIDAS, 

PubMed & 
SCOPUS 

1,500 8.04 7.30 0 17.74 

Tech Challengejt-1 

Technological challenges: Counts of 
suspended or discontinued pipeline 
projects and withdrawn approved 
products at j, t-1 level. 

Pharmaprojects 1,500 1.04 2.58 0 23 

Productjt-1 
Firm innovative capability I: Moving 
average of product introductions in t-1, t-
2, t-3 at the j, t-1 level. 

Pharmaprojects 1,500 5.42 11.20 0 51 

Late Pipejt-1 
Firm innovative capability II: Count of 
Phase II and Phase III products at the j, t-
1 level. 

Pharmaprojects 1,500 3.89 4.55 0 43 
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Table 2. Flow of innovation (Market level). This table presents results from negative binomial and poisson models 
over our full sample. The unit of observation is at the ATC2 market and year (t). Model 5 serves as our base 
specification as it contains our full array of fixed effects, including an interaction between ATC1 market and time 
(Year). The dependent variable, Innjt, is defined as the count early-stage innovations in market j at time t. Standard 
errors are clustered at the market level and are in parentheses. *** p<0.01, ** p<0.05, *p<0.10. 
 
 
 

  (1) (2) (3) (4) (5) (6) 
 NEGBIN NEGBIN NEGBIN NEGBIN NEGBIN POISSON 

VARIABLES Innjt Innjt Innjt Innjt Innjt Innjt 

       
Genericjt-1 -2.258*** -2.324*** -1.573*** -0.968* -1.016* -1.109* 

 (0.595) (0.589) (0.545) (0.547) (0.526) (0.645) 

Pricejt-1  -0.004 -0.002 -0.002 -0.003* -0.002 
  (0.003) (0.002) (0.002) (0.001) (0.002) 

Tech Oppjt-1   0.043* 0.051** 0.049** 0.061*** 
   (0.022) (0.020) (0.020) (0.017) 

Tech Challengejt-1   0.216*** 0.138*** 0.147*** 0.104*** 
   (0.027) (0.025) (0.030) (0.018) 

Productjt-1    -0.021 -0.018 -0.028 
    (0.021) (0.022) (0.018) 

Late Pipejt-1    0.036*** 0.033*** 0.019*** 
    (0.011) (0.010) (0.006) 
       
Constant Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y 

ATC1 FE Y Y Y Y Y Y 
ATC1 x Year FE N N N N Y Y 

Log likelihood -2,753.55 -2,737.57 -2,583.84 -2,466.80 -2,398.11 -2,792.58 
Observations 1,500 1,500 1,500 1,500 1,500 1,500 
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Table 3. Flow of innovation (Firm level). This table presents results from negative binomial and poisson models 
over our full sample. Model 5 serves as our base specification as it contains our full array of fixed effects, including 
an interaction between ATC1 market and time (Year). The dependent variable, Innijt, is defined as the count of early-
stage innovations for firm i, in market j at time t. Standard errors are clustered at the firm level and are in 
parentheses. *** p<0.01, ** p<0.05, *p<0.10. 
 
 
 
  (1) (2)  (3) (4) (5) (6) (7) 

 NEGBIN NEGBIN NEGBIN NEGBIN NEGBIN OLS POISSON 

VARIABLES Innijt Innijt Innijt Innijt Innijt Innijt Innjt 

        
Genericijt-1 -1.194*** -1.229*** -1.429*** -1.254*** -1.241*** -0.090*** -1.189*** 

 (0.181) (0.183) (0.186) (0.181) (0.181) (0.019) (0.196) 

Pricejt-1  -0.006 -0.005 -0.005 -0.006 -0.000*** -0.009 
  (0.005) (0.004) (0.006) (0.006) (0.000) (0.012) 

Tech Oppjt-1   0.035*** 0.034*** 0.033*** 0.003* 0.033*** 
   (0.013) (0.012) (0.012) (0.002) (0.013) 

Tech Challengeijt-1     0.520*** 0.359*** 0.379*** 
     (0.090) (0.037) (0.094) 

Productijt-1    0.174*** 0.174*** 0.086*** 0.138*** 
    (0.037) (0.035) (0.013) (0.021) 

Late Pipeijt-1    0.096 0.104* 0.104 0.085 
    (0.065) (0.062) (0.064) (0.055) 

Firm Sizeit   0.005 0.013* 0.013* 0.002 0.018** 
   (0.007) (0.008) (0.008) (0.001) (0.007) 
        
Constant Y Y Y Y Y Y Y 
Firm FE Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y 

ATC1 FE Y Y Y Y Y Y Y 
ATC1 x Year FE N N N N Y Y Y 

Log likelihood/R2 -10,042.36 -9,993.81 -9,944.25 -9,703.03 -9,602.54 0.19 -9,895.47 
Observations 29,514 29,514 29,514 29,514 29,514 29,514 29,514 
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Table 4. Flow of innovation (Firm level, alternative specifications). Model 1 presents our base specification with 
our full array of fixed effects, including an interaction between market and time. The market fixed effects are at the 
ATC2 level as is the interaction between ATC2 and time (Year). As such, Tech Oppjt-1 and Pricejt-1 are omitted 
because they are constructed at the ATC 2-digit market level. Models 2 and 3 present results from two-stage least 
square regressions where we instrument for Genericijt-1. Both models include our full array of fixed effects, 
including the interaction between market and time. Model 2 uses the ATC1 market level while Model 3 uses the 
ATC2 market level. Models 4 and 5 implement an Arellano and Bond system GMM where we also instrument for 
Gijt-1 and incorporate a lagged dependent variable. In all specifications, the dependent variable is defined as a count 
of early-stage innovation, Innijt. Standard errors are clustered at the firm level in Models 1 to 3 and are in 
parentheses. Robust standard errors in parentheses in Model 4 and 5. *** p<0.01, ** p<0.05, * p<0.10.    
 
 

  (1) (2) (3)  (4) (5) 
 OLS IV IV GMM GMM 

VARIABLES Innijt Innijt Innijt Innijt Innijt 

      
Genericijt-1 -0.097*** -0.333** -0.370* -0.364*** -0.449*** 

 (0.018) (0.170) (0.196) (0.136) (0.134) 

Innijt-1    0.552*** 0.655*** 
    (0.100) (0.0922) 

Pricejt-1  -0.000***  0.000 0.000715 
  (0.000)  (0.001) (0.00135) 

Tech Oppjt-1  0.007**  0.001 0.000413 
  (0.003)  (0.002) (0.00228) 

Tech Challengeijt-1 0.317*** 0.350*** 0.333*** 0.613 0.593 
 (0.037) (0.079) (0.068) (0.528) (0.539) 

Productijt-1 0.085*** 0.081*** 0.092*** 0.307**  
 (0.015) (0.015) (0.015) (0.138)  

Late Pipeijt-1 0.073 0.100*** 0.102*** 0.450  
 (0.060) (0.026) (0.023) (0.370)  

Firm Sizeit 0.002 0.008*** 0.010*** 0.000* 0.000** 
 (0.001) (0.002) (0.002) (0.000) (0.000) 
      

Constant Y Y Y Y Y 
Firm FE Y Y Y Y Y 
Year FE Y Y Y Y Y 

ATC1 FE N Y Y N N 
ATC1 x Year FE N Y N N N 

ATC2 FE Y N Y Y Y 
ATC2 x Year Y N Y N N 
First-stage F  125.88 43.12   
R2/Wald Χ2 0.263 0.155 0.207 1,817.72 1,745.58 

Observations 29,514 29,514 29,514 21,089 21,089 
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Table 5. Flow of innovation (Robustness checks). This table presents three placebo tests based on a negative 
binomial specification. Model 1 redefines the dependent variable as novel early-stage innovation, Novel Innijt while 
Model 2 redefines the dependent variable as late-stage innovation, Late-stage Innijt. The sample is restricted in 
Model 3 to markets where we anticipate low cross-molecular substitution, Low CMS Innijt. These include: anti-
epileptics, anti-depressants, and anti-psychotics. Standard errors are clustered at the firm level in parentheses. *** 
p<0.01, ** p<0.05, * p<0.10. 
 
 
 

  (1) (2) (3)  
 NEGBIN NEGBIN NEGBIN 

VARIABLES Novel Innijt Late-stage Innijt Low CMS Innijt 

    
Genericijt-1 -1.103*** 0.033 -0.234 

 (0.221) (0.068) (0.307) 

Pricejt-1 -0.002 -0.003 -0.098 
 (0.002) (0.002) (0.090) 

Tech Oppjt-1 0.024** 0.032*** 0.389*** 
 (0.012) (0.009) (0.123) 

Tech Challengeijt-1 0.381*** 0.562*** 0.167 
 (0.076) (0.048) (0.120) 

Productijt-1 0.081** 0.177*** 0.221*** 
 (0.036) (0.035) (0.061) 

Late Pipeijt-1 0.063  0.041 
 (0.079)  (0.209) 

Firm Sizeit 0.008 0.010* 0.001 
 (0.011) (0.005) (0.048) 
    

Constant Y Y Y 
Firm FE Y Y Y 
Year FE Y Y Y 

ATC1 FE Y Y Y 
ATC1 x Year FE Y Y N 

Log likelihood -5,637.78 -23,913.59 -542.40 
Observations 29,514 29,514 1,577 
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Table 6. Flow of innovation (Firm heterogeneity). Three sets of specifications are presented based on our base 
specification with the inclusion of an interaction between Genericijt-1 and Productijt-1. Each set includes both negative 
binomial and two-stage least square regressions. In Models 1 and 2, Productijt-1 is defined as a three-year moving 
average of product introductions. In Models 3 and 4, Product2ijt-1 is defined as a dummy variable equal to one if the 
three-year moving average of product introductions is above the median, zero otherwise. Finally, in Models 5 and 6, 
Product3ijt-1 is defined as a dummy variable equal to one if the three-year moving average of product introductions is 
in the top quartile, zero otherwise. Standard errors are clustered at the firm level in parentheses. *** p<0.01, ** 
p<0.05, * p<0.10. 
 

  (1) (2) (3)  (4) (5) (6) 
 NEGBIN IV NEGBIN IV NEGBIN IV 

VARIABLES Innijt Innijt Innijt Innijt Innijt Innijt 

       
Genericijt-1 -1.463*** -0.293* -1.667*** -0.272* -1.710*** -0.272* 

 (0.139) (0.164) (0.148) (0.156) (0.153) (0.157) 

(Generic*Product)ijt-1 0.473*** 0.102**     
 (0.0918) (0.047)     

(Generic*Product2)ijt-1   1.809*** 0.265***   
   (0.204) (0.085)   

(Generic*Product3)ijt-1     1.874*** 0.267*** 
     (0.199) (0.079) 

Pricejt-1 -0.005** -0.000*** -0.005** -0.000*** -0.006** -0.000*** 
 (0.002) (0.000) (0.002) (0.000) (0.003) (0.000) 

Tech Oppjt-1 0.029*** 0.005* 0.026*** 0.005* 0.026*** 0.005 
 (0.004) (0.003) (0.004) (0.003) (0.004) (0.003) 

Tech Challengeijt-1 0.492*** 0.349*** 0.479*** 0.350*** 0.475*** 0.349*** 
 (0.040) (0.078) (0.037) (0.077) (0.037) (0.077) 

Productijt-1 0.124*** 0.069*** 0.129*** 0.073*** 0.129*** 0.073*** 
 (0.015) (0.017) (0.015) (0.016) (0.015) (0.016) 

Late Pipeijt-1 0.118*** 0.104*** 0.123*** 0.104*** 0.121*** 0.103*** 
 (0.046) (0.025) (0.045) (0.025) (0.045) (0.025) 

Firm Sizeit 0.007 0.008*** 0.007 0.008*** 0.006 0.008*** 
 (0.011) (0.002) (0.011) (0.002) (0.011) (0.002) 
       

Constant Y Y Y Y Y Y 
Firm FE Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y 

ATC1 FE Y Y Y Y Y Y 
ATC1 x Year FE Y Y Y Y Y Y 

First-stage F  52.31  60.88  62.01 
Log likelihood/R2 -9,529.36 0.165 -9,457.17 0.169 -9,440.62 0.169 

Observations 29,514 29,514 29,514 29,514 29,514 29,514 
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Table 7. Change in innovation. Across all six specifications the dependent variable cat(CIijt-BIijt), equals 1, 2 and 3 
if the difference (CIijt – BIijt) is negative, zero, or positive, respectively. CIijt is defined as chemical-based early-stage 
innovation while BIijt is defined as biologic-based early-stage innovation. Models 1 and 2 present results from two-
stage least square regressions with a full array of fixed effects. Model 1 includes market fixed effects at the ATC1 
market level while Model 2 includes market fixed effects at the ATC2 market level along with an interaction with 
time (Year). Model 3 presents results from OLS with market fixed effects at the ATC2 level along with an 
interaction with time. Models 4 and 5 ordered logit models, with Model 5 including a full set of fixed effects, 
including the interaction between market and time, at the ATC1 level. As a robustness check, Model 6 replicates 
Model 5 using an ordered probit model. In Models 2 and 3, Tech Oppjt-1 and Pricejt-1 are omitted because they are 
constructed at the ATC 2-digit level. Standard errors are clustered at the firm level in parentheses. *** p<0.01, ** 
p<0.05, * p<0.10. 
 

  (1) (2) (3) (4) (5) (6) 
 IV IV OLS OLOGIT OLOGIT OPROBIT 

VARIABLES cat(CIijt-BIijt) cat(CIijt-BIijt) cat(CIijt-BIijt) cat(CIijt-BIijt) cat(CIijt-BIijt) cat(CIijt-BIijt) 

       
Genericijt-1 -0.445** -0.478** -0.328*** -2.084*** -2.098*** -1.038*** 

 (0.217) (0.192) (0.025) (0.117) (0.119) (0.062) 

Pricejt-1 -0.000***   -0.002*** -0.002*** -0.001*** 
 (0.000)   (0.000) (0.000) (0.000) 

Tech Oppjt-1 0.006   0.025*** 0.025*** 0.014*** 
 (0.004)   (0.006) (0.006) (0.003) 

diff(Tech 
Challengeijt-1) 0.164*** 0.134*** 0.138*** 2.988*** 3.014*** 1.533*** 

 (0.026) (0.022) (0.024) (0.277) (0.275) (0.135) 

diff(Productijt-1) 0.056*** 0.031*** 0.032*** 1.160*** 1.159*** 0.511*** 
 (0.009) (0.007) (0.008) (0.111) (0.110) (0.048) 

diff(Late Pipeijt-1) 0.226*** 0.177*** 0.183*** -1.004*** -0.996*** -0.430*** 
 (0.021) (0.019) (0.018) (0.155) (0.155) (0.070) 

Firm Sizeit 0.002 0.003 0.003 0.015 0.018 0.007 
 (0.002) (0.002) (0.002) (0.013) (0.013) (0.007) 
       
Constant Y Y Y Y Y Y 
Firm FE Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y 

ATC1 FE Y N N Y Y Y 
ATC1 x Year FE Y N N N Y Y 

ATC2 FE N Y Y N N N 
ATC2 x Year FE N Y Y N N N 

First-stage F 29.65 29.47     
R2/Pseudo R2 0.443 0.542 0.546 0.366 0.369 0.332 
Observations 29,514 29,514 29,514 29,514 29,514 29,514 
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Table 8. Robustness: Change in innovation (SUR). This table presents results from three SUR specifications. CIijt 
is defined as chemical-based early-stage innovation while BIijt is defined as biologic-based early-stage innovation. 
The specifications differ in the mix of fixed effects included. Model 1 includes firm, year and ATC1 market level 
fixed effects. Model 2 includes firm, year, ATC1 fixed effects along with the interaction between year and ATC1. 
Model 3 includes firm, year and ATC2 market level fixed effects. Standard errors are clustered at the firm level in 
parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
 
 
 

  (1)   (2)   (3) 
 SUR  SUR  SUR 
      

VARIABLES CIijt BIijt   CIijt BIijt   CIijt BIijt 

         
Genericijt-1 -0.519*** 0.037**  -0.518*** 0.039**  -0.533*** 0.049** 

 (0.018) (0.017)  (0.017) (0.017)  (0.021) (0.021) 

Pricejt-1 -0.000*** -0.000  -0.001*** -0.000  0.194 -0.136 
 (0.000) (0.000)  (0.000) (0.000)  (2.164) (2.110) 

Tech Oppjt-1 0.012*** -0.004***  0.012*** -0.004***  -0.248*** 0.2944 
 (0.001) (0.001)  (0.001) (0.001)  (0.087) (0.846) 

Tech Challengeijt-1 1.062*** 0.373***  1.065*** 0.375***  0.907*** 0.360*** 
 (0.024) (0.022)  (0.024) (0.023)  (0.022) (0.022) 

Productijt-1 0.160*** 0.162***  0.161*** 0.162***  0.171*** 0.145*** 
 (0.006) (0.006)  (0.006) (0.006)  (0.006) (0.006) 

Late Pipeijt-1 0.103*** 0.483***  0.102*** 0.485***  0.054*** 0.409*** 
 (0.019) (0.018)  (0.019) (0.018)  (0.017) (0.017) 

Firm Sizeit 0.008** -0.000  0.008** -0.000  0.001*** -0.002 
 (0.004) (0.003)  (0.004) (0.003)  (0.003) (0.003) 
         

Constant Y Y  Y Y  Y Y 
Firm FE Y Y  Y Y  Y Y 
Year FE Y Y  Y Y  Y Y 

ATC1 FE Y Y  Y Y  N N 
ATC1 x Year FE N N  Y Y  N N 

ATC2 FE N N  N N  Y Y 
R2 0.310 0.367  0.314 0.370  0.447 0.472 

Observations 29,514 29,514   29,514 29,514   29,514 29,514 
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Table 9. Robustness: Change in innovation (SUR). In these two SUR specifications we limit the sample to those 
markets where biologic-based innovation is most active. Based on data from Pharmaprojects, these include ATC1 
markets: F, J and T. The intuition behind this approach is simple, if a rotation is taking place from chemical-based to 
biologic-based innovation, the effects should be amplified in markets where the rotation is easier for firms to 
undertake. Results are consistent with this intuition. CIijt is defined as chemical-based early-stage innovation while 
BIijt is defined as biologic-based early-stage innovation. Standard errors are clustered at the firm level in 
parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
 
 
 

  (1)   (2) 
 SUR  SUR 
    

VARIABLES CIijt BIijt   CIijt BIijt 

      
Genericijt-1 -0.988*** 0.190  -0.892*** 0.337** 

 (0.065) (0.140)  (0.069) (0.145) 

Pricejt-1 -0.001*** -0.001*  0.000 -0.000 
 (0.000) (0.000)  (0.000) (0.001) 

Tech Oppjt-1 0.072*** -0.051***  0.240 -0.069 
 (0.004) (0.009)  (0.179) (0.376) 

Tech Challengeijt-1 0.456*** 1.153***  0.432*** 1.013*** 
 (0.041) (0.087)  (0.039) (0.081) 

Productijt-1 0.041*** 0.191***  0.066*** 0.174*** 
 (0.008) (0.018)  (0.008) (0.017) 

Late Pipeijt-1 -0.139*** 0.732***  -0.111*** 0.588*** 
 (0.026) (0.055)  (0.025) (0.052) 

Firm Sizeit 0.005 -0.003  0.009 -0.008 
 (0.007) (0.016)  (0.007) (0.015) 
      

Constant Y Y  Y Y 
Firm FE Y Y  Y Y 
Year FE Y Y  Y Y 

ATC1 FE Y Y  N N 
ATC1 x Year FE Y Y  N N 

ATC2 FE N N  Y Y 
R2 0.276 0.428  0.344 0.508 

Observations 4,958 4,958   4,958 4,958 
 
 



ONLINE APPENDIX 
 
Appendix A1. Sketch derivation of firm-product models and discussion of the connection 
between this theory and our empirical results. 
 

 As noted in the text of the paper, our empirical approach examines the impact of rising 

generic competition on innovation at the firm-market-year level rather than the market-year 

level. Our choice is partly data-driven – we are only able to track new drugs in the relatively 

early stages of development consistently at the ATC2 market level, which provides us with only 

126 cross-sectional units. By contrast, there are 178 firms with sufficient data to be incorporated 

in our data set over our sample period; the presence of larger firms in many product markets 

substantially expands the cross-sectional dimension of our data set. Adoption of a firm-market-

year approach quickly demonstrates that our firms are quite heterogeneous in terms of their 

overall scope and in terms of their research capabilities within particular pharmaceutical markets. 

No firm is capable of investing in all 126 ATC2 markets; conversely, some relatively small firms 

are able to consistently generate new drug candidates in their domains of strength at rates that 

exceeds that of larger competitors. These dimensions of heterogeneity are certainly not unique to 

the pharmaceutical industry.   

 Over the past decade, other economists have used datasets with firm-market-year 

dimensions to develop and test formal theories of multiproduct firm behavior (Bernard, Redding, 

and Schott, 2006a, 2006b, 2011; Feenstra and Ma, 2009; Dhingra, 2013; Mayer, Melitz, and 

Ottaviano, 2014; Arkokakis and Muendler, 2010; Eckel and Neary, 2010; Nocke and Yeaple, 

2014; Eckel et al., 2015; Manova and Yu, 2017). This stream of literature is motivated, in part, 

by empirical research documenting statistical regularities that appear to exist across industries, 

firms, and time periods. This empirical research finds that firms vary enormously in scope (the 

number of products they produce), they vary in terms of their relative productivity within 

specific product categories, and these productivity differentials tend to persist over long periods 

of time (Bernard, Redding, and Schott, 2006a). These patterns are rationalized by a family of 

models which assume a “management quality” parameter that varies across firms but can apply 

to all products in a given firm’s portfolio, and a separate set of “product productivity” parameters 

that are unique to every firm-product pair. The paragraphs below provide a brief “sketch 

derivation” which summarizes the essential mathematical insights presented in Bernard, 



Redding, and Schott (2011) and borrows the notation in that highly influential paper. For a full 

derivation, the reader is directed to the original paper and to the comprehensive NBER working 

paper (Bernard, Redding, and Schott, 2006b) from which it evolved.  Following our sketch 

derivation, we relate the central concepts in this emerging literature to our main empirical 

specification. 

 While Bernard, Redding, and Schott (2011) is focused on multiproduct firms in a global 

economy, with firms selling in multiple national markets, for expositional simplicity, we focus 

here solely on sales in a single market, as in Section 3 of their 2006 NBER working paper, 

hereafter referred to as “B-R-S”.  Demand structure is standard and a representative consumer 

derives utility from consumption of a continuum of products normalized to the interval [0,1]. 

There is a constant elasticity of substitution across product markets, and within each product 

market, there is a (higher) constant elasticity of substitution across varieties. The structure of 

demand assumed by B-R-S creates what amounts to a downward-sloping demand curve – firms 

can only increase sales of an existing variety by cutting its price (and therefore marginal 

revenue). The assumption of a downward-sloping demand curve is analytically useful, but the 

assumed demand structure clearly does not conform well to the empirical realities of the 

pharmaceutical industry, where all products are not equally good substitutes for one another. In 

the pharmaceutical context, we have branded drugs that are differentiated from one another to 

varying degrees, along both vertical and horizontal dimensions, competing (at least in the small 

molecule side of the product market) with much less expensive generic drugs that are, by 

assumption, perfect substitutes for at least one of the branded products. That being said, this 

theoretical literature considers shocks to the competitive equilibrium (like trade liberalization) 

that significantly raise the competitive intensity faced by some firms; this is analogous, in some 

ways, to the rising generic penetration that, we have already noted, characterizes the U.S. market 

for pharmaceuticals over our sample period. 

 The technology of production follows Melitz (2003), but introduces some new elements 

to allow for multiproduct firms. There is a competitive fringe of potential firms who are ex ante 

identical prior to entry; in order to enter, firms must incur a sunk cost. Upon payment of this 

cost, firms draw two productivity parameters –a “managerial ability” parameter 𝜑	𝜖	(0,∞) that is 

common to all products produced by the firm and what B-R-S call an “expertise” parameter 

𝜆!𝜖(0,∞), drawn from a separate distribution, that is unique to each firm-product pair. B-R-S 



make assumptions regarding the distributions of “ability” and “expertise” that ensure that no one 

firm makes all products and all active firms make some. When a firm pays its sunk cost and 

realizes its productivity draws, then the realizations of these productivity draws essentially 

determine whether the firm remains in business, how many products it produces, and which 

products those are. By assumption, each firm must pay a fixed cost to set up a “headquarters” 

and a separate fixed cost to commence production of a variety. In the context of our paper, these 

product-specific fixed costs can be naturally interpreted as R&D costs. 

 B-R-S assume that any firm active in a product market manufactures one of a continuum 

of varieties, and so is unable to influence the price index for the product or induce a competitive 

pricing response from other firms – thus, the equilibrium price of a product variety is a constant 

mark-up over marginal cost:   

 pi (φ, λi) = "
#
	 $
%&!

  

Where the wage is chosen as the numeraire, so w=1. Equilibrium revenue and profits from a firm 

variety thus become: 

ri (φ, λi) = Ri (ρPiφλi) σ-1,            πi (φ, λi) = '!(%,&!)
+

 - fp 

where R denotes aggregate expenditure on product i. From this equation, the ratio of revenues of 

two varieties of the same product depends solely on their relative productivities: 
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A firm with a particular ability draw 𝜑 and expertise draw 𝜆! decides whether or not to produce a 

product based on a comparison of revenue and fixed production costs for the product. For each 

firm with ability 𝜑, there is a zero-profit cutoff for product expertise 𝜆∗!(𝜑) such that the firm 

will enter the product market if it draws a value of 𝜆! equal to or greater than this cutoff value. 

Expressed mathematically, this zero-profit condition is: 

𝑟! 	(𝜑, 𝜆!
∗(𝜑)) = σfp 

There will be a related zero-profit cutoff for firm ability, 𝜑∗, that defines the minimum level of 

ability required to set up a headquarters; the zero-profit cutoff of expertise for a firm with this 

level of ability is: 

𝑟! 	(𝜑∗, 𝜆!
∗(𝜑∗)) = σfp 



This implies that only firms with ability equal to or greater than 𝜑∗	will enter the market. 

Combining these equations, B-R-S obtain: 

𝜆!
∗(𝜑) = 	,

𝜑∗

𝜑 -𝜆!
∗(𝜑∗)	 

This expression highlights the interaction between firm ability and product expertise, even 

though both are drawn from separate and independent distributions. A higher ability raises the 

zero-profit cutoff for expertise, because higher ability raises productivity in each product, 

ensuring that sufficient revenue is generated to cover fixed costs at a lower level of expertise. In 

contrast, an increase in the zero-profit cutoff for ability raises a firm’s zero-profit cutoff for 

expertise, because it raises the average productivity of a rival firm’s products, intensifies product 

competition, and increases the value of expertise at which sufficient revenue is generated to 

cover fixed costs.     

 While B-R-S assume that draws of product expertise are strictly independent across 

products and firms, Eckel et al (2016) presume that firms possess a “core competence,” and that 

draws of expertise fall as one moves away from that core competence in the product space. 

Inspection of our raw data on pharmaceutical sales suggest a distribution of outcomes closer to 

the “core competence” idea, although larger firms appear to have more than one such domain. 

For analytical convenience, essentially all the theoretical models in this literature assume that 

firm ability and product expertise are one-time draws that do not vary over time within a product 

or firm. In the real world, there is every reason to believe that firm ability and product expertise 

evolve over time.   

 So long as firms face a downward sloping demand curve for each product (which, as 

noted above, is true by assumption in B-R-S), this limits expansion along the intensive margin 

for each product. This creates an incentive to expand along the extensive margin, into new 

categories of products in which the firm may have lower productivity. The firm must derive 

sufficient revenue from each product to cover the costs of development and production, and that 

constrains a firm’s incentives to expand along the extensive margin. The interaction of the 

overall management quality and product-specific productivity parameters ensure substantial 

heterogeneity across firms in terms of overall scope and the distribution of firm “core 

competencies” within the product space, replicating important features of real world micro-data.   



 These models predict (and empirical work finds) striking heterogeneity in firm-level 

responses to market-level demand shocks, such as those arising from trade liberalization: in 

response to a more competitive environment, firms tend to cut back on or eliminate product 

categories in which they are relatively weak, but expand production in the domains where they 

are relatively strong. The logic behind this shift is clear given the equations reproduced above. In 

a more competitive environment, fewer firms will meet their zero-profit conditions for particular 

products, and so, marginal products “drop out.” As this happens, the product space becomes less 

crowded with competing varieties. That allows for an expansion of sales of existing varieties. 

This implies that different firms will respond differently to market-level shocks, depending on 

their specific capabilities in those markets – a reality that will be completely missed if one adopts 

a market-year level approach. Empirical work in this stream also finds that adjustment within 

firms (i.e., increasing production in some markets and exiting others) can account for very large 

fractions of industry-level shifts in output, productivity, and exports.   

 Inspired by these recent theoretical developments and by the features of our data set that 

accord so strongly with it, we adopt an empirical model specified at the firm-market-year level. 

We are interested in how firms are responding to generic competition, and firms differ 

significantly from one another in terms of their research capabilities and marketing investments 

in different therapeutic categories. A firm with strong research capabilities in and heavy financial 

reliance on a particular drug market may respond to generic competition in that market in a very 

different way than firms with limited research capacity in that domain and limited economic 

commitments to it. We want to be able to control for these differences, so we choose to utilize all 

the dimensions of our data – firm, market, and year. Whereas the existing literature treats a 

firm’s productivity in a particular market as time-invariant, our specification will allow this 

productivity measure to vary over time, and that flexibility informs the empirical strategy 

described in the paper to contend with some obvious concerns of econometric identification.    

If we reference our main empirical specification: 

𝐼𝑛𝑛!"# = 𝛼! + 𝛼" + 𝛼# + 𝛽$𝐺𝑒𝑛𝑒𝑟𝑖𝑐!"#%$ + 𝛽&𝑇𝑒𝑐ℎ𝑂𝑝𝑝"#%$ + 𝛽'𝑇𝑒𝑐ℎ	𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒!"#%$ + 

𝛽(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠!"#%$ + 𝛽)𝐿𝑎𝑡𝑒	𝑃𝑖𝑝𝑒!"#%$ + 𝛽*𝐷𝑜𝑤𝑛	𝐴𝑠𝑠𝑒𝑡!"# + 𝛽+𝐹𝑖𝑟𝑚	𝑆𝑖𝑧𝑒!# + 𝜀!"#    (1) 
 

 We can relate several of the variables contained therein to the ideas in the emerging firm-

market literature. As noted in our text, it is likely that firm-market “expertise” varies across 



firms, markets, and time, in ways that are evidenced by late-stage drug development activity 

(LatePipe), successful product launches in the recent past (Products), and perhaps, expenditure 

on marketing recently released (or about-to-be-released) drugs (DownAsset). Inclusion of these 

variables helps control for firm-market expertise, especially if the realizations of this variable are 

highly correlated within markets, as is presumed by the classes of models featuring “core 

competence.” A firm-level ability measure is likely to be correlated with overall firm size 

(conditioning on the firm’s presence in particular product markets), so inclusion of the variable 

FirmSize helps control for this productivity realization. Theory would suggest that firm’s with a 

high degree of product market expertise would be less likely to reduce their presence in the 

market through the abandonment of new product introductions – additional regressions run in the 

main body of our text show that the negative impact of generic competition on new product 

introductions is significantly attenuated in product markets where the firm in question has a high 

revealed level of expertise. On the other hand, the impact is especially strong in domains where 

the firm is relatively weak.   
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Appendix Figure A1. Percent of generic sales, 1997 to 2011. This figure tracks the growth of generic sales in the 
U.S., on a quarterly basis, from Q2:1997 to Q1:2011 utilizing proprietary data from IQVIA MIDAS. Sales are 
measured in standard units (SU) that equate capsules, tablets and liquids. Slightly over 50% of all drugs sold (on a 
quantity basis) in Q2:1997 were generics, growing to almost 75% of all drugs sold by Q1:2011. 
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Appendix Figure A2. Percent of generic sales, 1997 to 2011. This figure tracks the growth of generic sales in the 
U.S., on a quarterly basis, from Q2:1997 to Q1:2011 utilizing proprietary data from IQVIA MIDAS for eleven 
different ATC 2-digit categories. The figure demonstrates the heterogeneity in generic penetration across therapeutic 
categories. The eleven categories are: (1) A1 Stomatological preparations; (2) B1 Antithrombotic agents; (3) C1 
Cardiac therapy; (4) D1 Antifungals (dermatological); (5) G1 Gynecological anti-infectives and antiseptics; (6) J1 
Antibacterials for systemic use; (7) L1 Antineoplastic agents; (8) M1 Anti-inflammatory and antirheumatic 
products; (9) N1 Anesthetics; (10) R1 Nasal preparations; and (11) S1 Ophthalmologicals. Sales are measured in 
standard units (SU) that equate capsules, tablets and liquids.  
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Appendix Figure A3. Early-stage innovations, 1998-2010. This figure tracks the aggregate flow of early-stage 
pharmaceutical innovations, defined as the annual count of compounds at the preclinical stage or in Phase 1 clinical 
trials. We provide annual aggregate counts for our sample firms (solid line) and for the entire population (dotted 
line) of compounds contained in the Pharmaprojects database. Over our time period, 1998-2010, the number of 
early-stage innovations, including both small- and large-molecules, has increased. Our sample closely tracks the 
population, with differences being explained by our sample restrictions. Recall, firms must have at least one 
approved product and one early-stage innovation in order to be incorporated into our sample. 
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Appendix Figure A4. Relative contribution to total innovations across therapeutic categories. This 
figure plots the relative contribution of each therapeutic class at the ATC1 market level based on 
Pharmaprojects data. Data includes all products for which Pharmaprojects identifies a therapeutic category. 
The figure demonstrates that while the number of overall early-stage innovations has increased (Appendix 
Figure A3), the relative contributions within each broad therapeutic market has remained relatively stable 
over time. 
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Appendix Table A1. Flow of innovation (Poisson). This table presents results from Poisson models across four 
specifications over our full sample. Model 4 serves as our base specification as it contains our full array of fixed 
effects, including an interaction between ATC1 market and time (Year). Note, Model 4 is the same as Model 7, Table 
3 and is included here for reference. The dependent variable, Innijt, is defined as early-stage innovation. Standard 
errors are clustered at the firm level and are in parentheses. *** p<0.01, ** p<0.05, *p<0.10. 
  
 

  (1) (2) (3) (4) 
 POISSON POISSON POISSON POISSON 

VARIABLES Innijt Innijt Innijt Innijt 

     
Genericijt-1   -1.200*** -1.183*** 

   (0.261) (0.260) 

Pricejt-1 -0.010** -0.008* -0.008* -0.008* 
 (0.005) (0.005) (0.004) (0.004) 

Tech Oppjt-1  0.021 0.041*** 0.041*** 
  (0.019) (0.014) (0.015) 

Tech Challengeijt-1  0.399*** 0.372*** 0.373*** 
  (0.107) (0.093) (0.094) 

Productijt-1 0.141*** 0.152*** 0.139*** 0.144*** 
 (0.020) (0.021) (0.020) (0.022) 

Late Pipeijt-1 0.194*** 0.082 0.076 0.083 
 (0.066) (0.061) (0.059) (0.057) 

Firm Sizeit 0.011 0.014 0.012** 0.018** 
 (0.010) (0.010) (0.009) (0.008) 
     

Constant Y Y Y Y 
Firm FE Y Y Y Y 
Year FE Y Y Y Y 

ATC1 FE Y Y Y Y 
ATC1 x Year FE N N N Y 

Pseudo log likelihood -10,405.77 -10,254.88 -10,016.04 -9,884.69 
Observations 29,514 29,514 29,514 29,514 
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Appendix Table A2. Robustness checks (Split sample). We split the sample at the mean and median 
observation, which occur in 2004. Models 1 and 4 replicate Table 3, Model 5. Models 2 and 5 replicate these 
models without the inclusion of Pricejt-1. Models 3 and 6 replicate Table 4, Model 1. The dependent variable 
across all specifications is defined as the count of early-stage innovation, Innijt. Standard errors are clustered at 
the firm level and are in parentheses. *** p<0.01, ** p<0.05, *p<0.10. 
 
  

 
  (1) (2) (3)  (4) (5) (6) 

 NegBin NegBin OLS NegBin NegBin OLS 
 1999-2004 1999-2004 1999-2004 2005 - 2010 2005 - 2010 2005 - 2010 

VARIABLES Innijt Innijt Innijt Innijt Innijt Innijt 

        
Genericijt-1 -1.342*** -1.338*** -0.109*** -1.136*** -1.116*** -0.088*** 

 (0.178) (0.178) (0.019) (0.149) (0.152) (0.018) 

Pricejt-1 -0.004**    -0.018***   
 (0.002)    (0.004)   

Tech Oppjt-1 0.036*** 0.039***   0.031*** 0.034***  
 (0.005) (0.005)   (0.005) (0.005)  

Tech Challengeijt-1 0.466*** 0.464*** 0.212*** 0.528*** 0.545*** 0.035*** 
 (0.058) (0.057) (0.035) (0.038) (0.035) (0.005) 

Productijt-1 0.227*** 0.229*** 0.100*** 0.149*** 0.143*** 0.075*** 
 (0.030) (0.031) (0.014) (0.025) (0.028) (0.014) 

Late Pipeijt-1 0.101** 0.111** 0.081** 0.101 0.119 0.069 
 (0.050) (0.053) (0.036) (0.101) (0.103) (0.050) 

Firm Sizeit 0.023 0.023 0.003 0.021 0.019 0.007 
 (0.030) (0.030) (0.004) (0.016) (0.017 (0.005) 
        
Constant Y Y Y Y Y Y 
Firm FE Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y 

ATC1 FE Y Y N Y Y N 
ATC1 x Year FE Y Y N Y Y N 

ATC2 FE N N Y N N Y 
ATC2 x Year N N Y N N Y 

Log likelihood/R2 -4,763.37 -4,781.26 0.247 -4,728.28 -4,757.80 0.289 
Observations 14,870 14,870 14,870 14,644 14,644 14,644 
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Appendix Table A3. Robustness checks (Flow of innovation). Model 1 presents results from OLS model with 
Genericijt-1 along with firm, year, ATC2 market fixed effects, interactions between ATC2 market and year fixed 
effects, and interactions between firm and year fixed effects. The dependent variable is unchanged and defined as a 
count of early-stage innovation, Innijt. Standard errors are clustered at the firm level in parentheses. *** p<0.01, ** 
p<0.05, * p<0.10. 
 
 
 

  (1) 
 OLS 

VARIABLES Innijt 

  
Genericijt-1 -0.138*** 

 (0.014) 
  

Constant Y 
Firm FE Y 
Year FE Y 

Firm  x Year FE Y 
ATC2 FE Y 

ATC2 x Year Y 
R2 0.252 

Observations 29,514 
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Appendix Table A4. Flow of innovation (Robustness checks). This table replicates Table 5 and presents three 
placebo tests based on a negative binomial specification. Model 1 redefines the dependent variable as novel early-
stage innovation, Novel Innijt while Model 2 redefines the dependent variable as late-stage innovation, Late-stage 
Innijt. The sample is restricted in Model 3 to markets where we anticipate low cross-molecular substitution, Low 
CMS Innijt. These include: anti-epileptics, anti-depressants, and anti-psychotics. Excluded from these three 
specifications are Productijt-1, LatePipeijt-1, and Down Assetijt. Standard errors are clustered at the firm level in 
parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
 
 
 
 

  (1) (2) (3)  
 NEGBIN NEGBIN NEGBIN 

VARIABLES Novel Innijt Late-stage Innijt Low CMS Innijt 

    
Genericijt-1 -1.140*** 0.149 -0.246 

 (0.223) (0.132) (0.533) 

Pricejt-1 -0.001 -0.002 0.037 
 (0.001) (0.001) (0.058) 

Tech Oppjt-1 0.023** 0.030*** 0.371*** 
 (0.011) (0.009) (0.121) 

Tech Challengeijt-1 0.423*** 0.627*** 0.272** 
 (0.066) (0.053) (0.112) 

Firm Sizeit 0.006 0.007 0.044 
 (0.011) (0.006) (0.053) 
    

Constant Y Y Y 
Firm FE Y Y Y 
Year FE Y Y Y 

ATC1 FE Y Y Y 
ATC1 x Year FE Y Y N 

Log likelihood -5,653.21 -24,384.63 -554.30 
Observations 29,514 29,514 1,577 
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Appendix Table A5. Change in innovation (SUR). This table replicates Models 1, 2, 3 in Table 7 with an alternate 
definition of the dependent variable. In these models the dependent variable diff(CIijt-BIijt), is the difference between  
CIijt and BIijt. This allows diff(CIijt-BIijt) to be positive, negative or zero. CIijt is defined as chemical-based early-stage 
innovation while BIijt is defined as biologic-based early-stage innovation. In Models 2 and 3, Tech Oppjt-1 and 
Pricejt-1 are omitted because they are constructed at the ATC2 market level. Standard errors are clustered at the firm 
level in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 

 
 
 

  (1) (2) (3) 
 IV IV OLS 

VARIABLES diff(CIijt-BIijt) diff(CIijt-BIijt) diff(CIijt-BIijt) 

    
Genericijt-1 -1.152** -1.132** -0.301*** 

 (0.533) (0.514) (0.055) 

Pricejt-1 -0.001***   
 (0.000)   

Tech Oppjt-1 0.021**   
 (0.008)   

diff(Tech Challengeijt-1) 1.109*** 1.014*** 1.039*** 
 (0.106) (0.094) (0.093) 

diff(Productijt-1) 0.255*** 0.249*** 0.255*** 
 (0.021) (0.022) (0.037) 

diff(Late Pipeijt-1) 0.969*** 0.879*** 0.912*** 
 (0.053) (0.048) (0.089) 

Firm Sizeit 0.012*** 0.014*** 0.014*** 
 (0.004) (0.004) (0.005) 
    

Constant Y Y Y 
Firm FE Y Y Y 
Year FE Y Y Y 

ATC1 FE Y N N 
ATC1 x Year FE Y N N 

ATC2 FE N Y Y 
ATC2 x Year FE N Y Y 

First-stage F 85.81 97.06  
R2 0.464 0.554 0.568 

Observations 29,514 29,514 29,514 
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Appendix B1. Flow of innovation (Market level). This table replicates Table 2 with the inclusion of HHIjt-1 and 
Brandijt. The unit of observation is at the ATC2 market and year (t). Model 5 serves as our base specification as it 
contains our full array of fixed effects, including an interaction between ATC1 market and time (Year). The 
dependent variable, Innjt, is defined as the count early-stage innovations in market j at time t. Standard errors are 
clustered at the market level and are in parentheses. *** p<0.01, ** p<0.05, *p<0.10.  
 
 
 
 

  (1) (2) (3) (4) (5) (6) 
 NEGBIN NEGBIN NEGBIN NEGBIN NEGBIN POISSON 

VARIABLES Innjt Innjt Innjt Innjt Innjt Innjt 

       
Genericjt-1 -2.258*** -2.331*** -1.628*** -0.987* -1.013* -1.090* 

 (0.595) (0.678) (0.579) (0.559) (0.542) (0.662) 

HHIjt-1  -2.211*** -0.839 -0.376 -0.337 -0.415 
  (0.623) (0.525) (0.469) (0.480) (0.406) 

Brandijt  0.794*** 0.440** 0.549*** 0.642*** 0.531** 
  (0.288) (0.220) (0.200) (0.214) (0.221) 

Pricejt-1  -0.003 -0.002 -0.002 -0.002* -0.002 
  (0.004) (0.002) (0.002) (0.001) (0.002) 

Tech Oppjt-1   0.037* 0.049** 0.047** 0.057*** 
   (0.022) (0.020) (0.020) (0.017) 

Tech Challengejt-1   0.205*** 0.132*** 0.142*** 0.098*** 
   (0.029) (0.026) (0.029) (0.017) 

Productjt-1    -0.037 -0.039 -0.041* 
    (0.024) (0.025) (0.022) 

Late Pipejt-1    0.036*** 0.034*** 0.020*** 
    (0.012) (0.010) (0.006) 
       
Constant Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y 

ATC1 FE Y Y Y Y Y Y 
ATC1 x Year FE N N N N Y Y 

Log likelihood -2,753.55 -2,708.83 -2,578.32 -2,465.46 -2,396.66 -2,773.45 
Observations 1,500 1,500 1,500 1,500 1,500 1,500 
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Appendix B2. Flow of innovation (Firm level). This table replicates Table 3 with the inclusion of HHIjt-1 and 
Brandijt. Model 5 serves as our base specification as it contains our full array of fixed effects, including an 
interaction between ATC1 market and time (Year). The dependent variable, Innijt, is defined as the count of early-
stage innovations for firm i, in market j at time t. Standard errors are clustered at the firm level and are in 
parentheses. *** p<0.01, ** p<0.05, *p<0.10. 
 
 

  (1) (2)  (3) (4) (5) (6) (7) 
 NEGBIN NEGBIN NEGBIN NEGBIN NEGBIN OLS POISSON 

VARIABLES Innijt Innijt Innijt Innijt Innijt Innijt Innjt 

        
Genericijt-1 -1.194*** -1.231*** -1.470*** -1.359*** -1.298*** -0.099*** -1.248*** 

 (0.181) (0.184) (0.192) (0.185) (0.183) (0.021) (0.195) 

HHIjt-1  -1.288*** -1.344*** -1.246*** -1.249*** -0.225** -1.360*** 
  (0.339) (0.352) (0.351) (0.329) (0.107) (0.346) 

Brandijt  1.616*** 2.072*** 2.553*** 2.663*** 0.400*** 2.349*** 
  (0.465) (0.488) (0.497) (0.461) (0.117) (0.458) 

Pricejt-1  -0.004 -0.004 -0.004 -0.004 -0.000* -0.004 
  (0.004) (0.003) (0.004) (0.003) (0.000) (0.004) 

Tech Oppjt-1   0.040*** 0.042*** 0.040*** 0.003 0.041*** 
   (0.013) (0.013) (0.012) (0.002) (0.012) 

Tech Challengeijt-1     0.506*** 0.354*** 0.365*** 
     (0.093) (0.038) (0.095) 

Productijt-1    0.186*** 0.176*** 0.086*** 0.143*** 
    (0.039) (0.034) (0.013) (0.020) 

Late Pipeijt-1    0.150** 0.095 0.100 0.068 
    (0.072) (0.066) (0.063) (0.064) 

Firm Sizeit   0.007 0.013 0.015* 0.002 0.019** 
   (0.008) (0.008) (0.008) (0.001) (0.008) 
        
Constant Y Y Y Y Y Y Y 
Firm FE Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y 

ATC1 FE Y Y Y Y Y Y Y 
ATC1 x Year FE N N N N Y Y Y 

Log likelihood/R2 -10,042.368 -9,926.77 -9,865.31 -9,702.16 -9,515.73 0.20  -9,769.97 
Observations 29,514 29,514 29,514 29,514 29,514 29,514 29,514 
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Appendix B3. Flow of innovation (Firm level, alternative specifications). This table replicates Table 4 with the 
inclusion of HHIjt-1 and Brandijt. Model 1 presents our base specification with our full array of fixed effects, 
including an interaction between market and time. The market fixed effects are at the ATC2 market level as is the 
interaction between ATC2 and time (Year). Models 2 and 3 present results from two-stage least square regressions 
where we instrument for Genericijt-1. Both models include our full array of fixed effects, including the interaction 
between market and time. Model 2 uses the ATC1 market level while Model 3 uses the ATC2 market level. Models 
4 and 5 implement an Arellano and Bond system GMM where we also instrument for Gijt-1 and incorporate a lagged 
dependent variable. In all specifications, the dependent variable is defined as a count of early-stage innovation, Innijt. 
Standard errors are clustered at the firm level in Models 1 to 3 and are in parentheses. Robust standard errors in 
parentheses in Model 4 and 5. *** p<0.01, ** p<0.05, * p<0.10.    
 

  (1) (2) (3)  (4) (5) 
 OLS IV IV GMM GMM 

VARIABLES Innijt Innijt Innijt Innijt Innijt 

      
Genericijt-1 -0.113*** -0.865** -0.631* -0.527*** -0.517*** 

 (0.018) (0.364) (0.374) (0.148) (0.154) 

Innijt-1    0.397*** 0.574*** 
    (0.129) (0.116) 

HHIjt-1  -0.130**  -0.020 0.057 
  (0.065)  (0.087) (0.089) 

Brandijt 0.192** 0.938*** 0.520* 1.464 0.939 
 (0.078) (0.300) (0.304) (1.075) (0.855) 

Pricejt-1  
-

0.000*** -0.008 0.000 0.001 
  (0.000) (0.006) (0.001) (0.001) 

Tech Oppjt-1  0.016**  0.001 -0.001 
  (0.007)  (0.003) (0.003) 

Tech Challengeijt-1 0.317*** 0.281*** 0.300*** 0.452 0.565 
 (0.038) (0.089) (0.077) (0.431) (0.491) 

Productijt-1 0.086*** 0.065*** 0.085*** 0.393**  
 (0.015) (0.019) (0.015) (0.180)  

Late Pipeijt-1 0.072 0.052 0.056** 0.450  
 (0.060) (0.038) (0.027) (0.427)  

Firm Sizeit 0.002 0.015*** 0.012*** 0.000*** 0.000*** 
 (0.001) (0.004) (0.003) (0.000) (0.000) 
      

Constant Y Y Y Y Y 
Firm FE Y Y Y Y Y 
Year FE Y Y Y Y Y 

ATC1 FE N Y Y N N 
ATC1 x Year FE N Y N N N 

ATC2 FE Y N Y Y Y 
ATC2 x Year Y N Y N N 
First-stage F  19.86 16.95   
R2/Wald Χ2 0.263 0.546 0.479 871.34  1,274.96  

Observations 29,514 29,514 29,514 21,089 21,089 
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Appendix B4. Flow of innovation (Robustness checks). This table replicates Table 5 with the inclusion of HHIjt-1 
and and Brandijt and presents three placebo tests based on a negative binomial specification. Model 1 redefines the 
dependent variable as novel early-stage innovation, Novel Innijt while Model 2 redefines the dependent variable as 
late-stage innovation, Late-stage Innijt. The sample is restricted in Model 3 to markets where we anticipate low 
cross-molecular substitution, Low CMS Innijt. These include: anti-epileptics, anti-depressants, and anti-psychotics. 
Standard errors are clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 

 

  (1) (2) (3)  
 NEGBIN NEGBIN NEGBIN 

VARIABLES 
Novel 
Innijt 

Late-stage 
Innijt Low CMS Innijt 

    
Genericijt-1 -1.154*** -1.528*** -0.448 

 (0.219) (0.169) (0.458) 

HHIjt-1 -1.117*** -0.966*** 0.114 
 (0.417) (0.297) (6.590) 

Brandijt 3.383*** 2.721*** 1.594 
 (0.883) (0.469) (1.842) 

Pricejt-1 -0.001 -0.002 -0.099 
 (0.001) (0.002) (0.091) 

Tech Oppjt-1 0.033*** 0.038*** 0.374*** 
 (0.012) (0.009) (0.111) 

Tech Challengeijt-1 0.347*** 0.536*** 0.167 
 (0.084) (0.049) (0.126) 

Productijt-1 0.088*** 0.179*** 0.223*** 
 (0.033) (0.033) (0.064) 

Late Pipeijt-1 0.025  0.041 
 (0.082)  (0.212) 

Firm Sizeit 0.012 0.013** 0.014 
 (0.012) (0.006) (0.051) 
    

Constant Y Y Y 
Firm FE Y Y Y 
Year FE Y Y Y 

ATC1 FE Y Y Y 
ATC1 x Year FE Y Y N 

Log likelihood -5,615.76 -23,839.27 -542.04 
Observations 29,514 29,514 1,577 
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Appendix B5. Flow of innovation (Firm heterogeneity). This table replicates Table 6 with the inclusion of HHIjt-1 

and Brandijt. In Models 1 and 2, Productijt-1 is defined as a three-year moving average of product introductions. In 
Models 3 and 4, Product2ijt-1 is defined as a dummy variable equal to one if the three-year moving average of 
product introductions is above the median, zero otherwise. Finally, in Models 5 and 6, Product3ijt-1 is defined as a 
dummy variable equal to one if the three-year moving average of product introductions is in the top quartile, zero 
otherwise. Standard errors are clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
 

  (1) (2) (3)  (4) (5) (6) 
 NEGBIN IV NEGBIN IV NEGBIN IV 

VARIABLES Innijt Innijt Innijt Innijt Innijt Innijt 

       
Genericijt-1 -1.515*** -0.733** -1.712*** -0.673** -1.755*** -0.676** 

 (0.129) (0.319) (0.140) (0.303) (0.146) (0.311) 

(Generic*Product)ijt-1 0.455*** 0.155**     
 (0.087) (0.064)     

(Generic*Product2)ijt-1   1.752*** 0.375***   
   (0.197) (0.124)   

(Generic*Product3)ijt-1     1.820*** 0.373*** 
     (0.192) (0.118) 

HHIjt-1 -1.218*** -0.143** -1.195*** -0.148** -1.195*** -0.148** 
 (0.139) (0.061) (0.138) (0.0598) (0.138) (0.060) 

Brandijt 2.636*** 0.834*** 2.508*** 0.782*** 2.507*** 0.785*** 
 (0.325) (0.262) (0.348) (0.248) (0.349) (0.254) 

Pricejt-1 -0.003*** -0.000*** -0.003*** -0.000*** -0.003*** -0.000*** 
 (0.001) (0.000) (0.001) (0.000) (0.001) (0.000) 

Tech Oppjt-1 0.036*** 0.013** 0.033*** 0.012** 0.032*** 0.012** 
 (0.004) (0.006) (0.005) (0.006) (0.004) (0.006) 

Tech Challengeijt-1 0.480*** 0.289*** 0.467*** 0.295*** 0.464*** 0.293*** 
 (0.039) (0.088) (0.037) (0.085) (0.037) (0.085) 

Productijt-1 0.129*** 0.049** 0.133*** 0.057*** 0.134*** 0.057*** 
 (0.015) (0.023) (0.015) (0.021) (0.015) (0.021) 

Late Pipeijt-1 0.107** 0.067** 0.113** 0.069** 0.111** 0.068** 
 (0.047) (0.033) (0.047) (0.033) (0.047) (0.033) 

Firm Sizeit 0.009 0.013*** 0.009 0.012*** 0.008 0.012*** 
 (0.011) (0.004) (0.011) (0.003) (0.011) (0.003) 
       

Constant Y Y Y Y Y Y 
Firm FE Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y 

ATC1 FE Y Y Y Y Y Y 
ATC1 x Year FE Y Y Y Y Y Y 

First-stage F  23.92  26.71  26.58 
Log likelihood/R2 -9,444.02 0.248 -9,375.31 0.253 -9,358.73 0.255 

Observations 29,514 29,514 29,514 29,514 29,514 29,514 
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Appendix B6. Change in innovation (SUR). This table replicates Table 7 with the inclusion of HHIjt-1 and Brandijt. 
Across all six specifications the dependent variable cat(CIijt-BIijt), equals 1, 2 and 3 if the difference (CIijt – BIijt) is 
negative, zero, or positive, respectively. CIijt is defined as chemical-based early-stage innovation while BIijt is 
defined as biologic-based early-stage innovation. Models 1 and 2 present results from two-stage least square 
regressions with a full array of fixed effects. Model 1 includes market fixed effects at the ATC1 market level while 
Model 2 includes market fixed effects at the ATC2 market level along with an interaction with time (Year). Model 3 
presents results from OLS with market fixed effects at the ATC2 level along with an interaction with time. Models 4 
and 5 ordered logit models, with Model 5 including a full set of fixed effects, including the interaction between 
market and time, at the ATC1 level. As a robustness check, Model 6 replicates Model 5 using an ordered probit 
model. In Models 2 and 3, Tech Oppjt-1 and Pricejt-1 are omitted because they are constructed at the ATC2 market 
level. Standard errors are clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 
 

  (1) (2) (3) (4) (5) (6) 
 IV IV OLS OLOGIT OLOGIT OPROBIT 

VARIABLES cat(CIijt-BIijt) cat(CIijt-BIijt) cat(CIijt-BIijt) cat(CIijt-BIijt) cat(CIijt-BIijt) cat(CIijt-BIijt) 

       
Genericijt-1 -1.410*** -0.478** -0.328*** -2.240*** -2.256*** -1.104*** 

 (0.540) (0.192) (0.025) (0.117) (0.120) (0.064) 

HHIjt-1 0.004   -0.707*** -0.723*** -0.438*** 
 (0.068)   (0.182) (0.185) (0.103) 

Brandijt 1.241***   4.009*** 4.056*** 1.893*** 
 (0.367)   (0.388) (0.387) (0.197) 

Pricejt-1 -0.001***   -0.002*** -0.002*** -0.001*** 
 (0.000)   (0.000) (0.000) (0.000) 

Tech Oppjt-1 0.021**   0.028*** 0.028*** 0.014*** 
 (0.009)   (0.005) (0.005) (0.003) 

diff(Tech 
Challengeijt-1) 0.113*** 0.134*** 0.138*** 2.990*** 3.016*** 1.531*** 

 (0.034) (0.022) (0.024) (0.281) (0.281) (0.135) 

diff(Productijt-1) 0.057*** 0.031*** 0.032*** 1.161*** 1.159*** 0.509*** 
 (0.010) (0.007) (0.008) (0.117) (0.116) (0.048) 

diff(Late Pipeijt-1) 0.161*** 0.177*** 0.183*** -1.055*** -1.049*** -0.448*** 
 (0.039) (0.019) (0.018) (0.158) (0.158) (0.072) 

Firm Sizeit 0.005 0.003 0.003 0.021 0.023* 0.009 
 (0.005) (0.002) (0.002) (0.013) (0.013) (0.007) 
Constant Y Y Y Y Y Y 
Firm FE Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y 

ATC1 FE Y N N Y Y Y 
ATC1 x Year FE Y N N N Y Y 

ATC2 FE N Y Y N N N 
ATC2 x Year FE N Y Y N N N 

First-stage F 14.73 26.47     
R2/Pseudo R2 0.490 0.542 0.546 0.366 0.369 0.331 
Observations 29,514 29,514 29,514 29,514 29,514 29,514 
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Appendix B7. Robustness: Change in innovation (SUR). This table replicates Table 8 with the inclusion of HHIjt-

1 and Brandijt. This table presents results from three SUR specifications. CIijt is defined as chemical-based early-
stage innovation while BIijt is defined as biologic-based early-stage innovation. The specifications differ in the mix 
of fixed effects included. Model 1 includes firm, year and ATC1 market level fixed effects. Model 2 includes firm, 
year, ATC1 fixed effects along with the interaction between year and ATC1. Model 3 includes firm, year and ATC2 
market level fixed effects. Standard errors are clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * 
p<0.10. 

 

  (1)   (2)   (3) 
 SUR  SUR  SUR 
      

VARIABLES CIijt BIijt   CIijt BIijt   CIijt BIijt 

         
Genericijt-1 -0.550*** 0.017  -0.549*** 0.019  -0.595*** 0.026 

 (0.018) (0.017)  (0.018) (0.017)  (0.022) (0.021) 

HHIjt-1 -0.981*** 0.261***  -1.007*** 0.281***  0.406*** -0.326 
 (0.038) (0.014)  (0.039) (0.039)  (0.097) (5.764) 

Brandijt 1.610*** 0.423***  1.630*** 0.423***  0.419*** 0.286*** 
 (0.073) (0.069)  (0.073) (0.069)  (0.097) (0.067) 

Pricejt-1 -0.000*** -0.000*  -0.000*** -0.000*  -0.113 -0.052 
 (0.000) (0.000)  (0.000) (0.000)  (2.164) (3.186) 

Tech Oppjt-1 0.012*** -0.003***  0.010*** -0.003***  -0.248 0.294 
 (0.001) (0.001)  (0.001) (0.000)  (0.868) (0.846) 

Tech Challengeijt-1 1.044*** 0.373***  1.048*** 0.376***  0.903*** 0.359*** 
 (0.024) (0.023)  (0.0237) (0.023)  (0.022) (0.022) 

Productijt-1 0.157*** 0.164***  0.158*** 0.164***  0.176*** 0.146*** 
 (0.006) (0.006)  (0.006) (0.006)  (0.006) (0.006) 

Late Pipeijt-1 0.091*** 0.483***  0.089*** 0.485***  0.050*** 0.408*** 
 (0.018) (0.018)  (0.018) (0.018)  (0.017) (0.017) 

Firm Sizeit 0.008** 0.000  0.009** 0.002  0.012*** -0.001 
 (0.003) (0.003)  (0.003) (0.003)  (0.003) (0.003) 
         

Constant Y Y  Y Y  Y Y 
Firm FE Y Y  Y Y  Y Y 
Year FE Y Y  Y Y  Y Y 

ATC1 FE Y Y  Y Y  N N 
ATC1 x Year FE N N  Y Y  N N 

ATC2 FE N N  N N  Y Y 
R2 0.330 0.369  0.334 0.372  0.450 0.472 

Observations 29,514 29,514   29,514 29,514   29,514 29,514 
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Appendix B8. Robustness: Change in innovation (SUR). This table replicates Table 9 with the inclusion of HHIjt-

1 and Brandijt. In these two SUR specifications we limit the sample to those markets where biologic-based 
innovation is most active. Based on data from Pharmaprojects, these include ATC1 markets: F, J and T. The 
intuition behind this approach is simple, if a rotation is taking place from chemical-based to biologic-based 
innovation, the effects should be amplified in markets where the rotation is easier for firms to undertake. Results are 
consistent with this intuition. CIijt is defined as chemical-based early-stage innovation while BIijt is defined as 
biologic-based early-stage innovation. Standard errors are clustered at the firm level in parentheses. *** p<0.01, ** 
p<0.05, * p<0.10. 

 

  (1)   (2) 
 SUR  SUR 
    

VARIABLES CIijt BIijt   CIijt BIijt 

      
Genericijt-1 -1.024*** 0.264*  -0.895*** 0.320** 

 (0.065) (0.140)  (0.069) (0.145) 

HHIjt-1 -0.633*** 1.925***  -0.088 -1.133* 
 (0.145) (0.326)  (0.229) (0.584) 

Brandijt 0.428* 1.642***  0.109 0.408 
 (0.238) (0.461)  (0.281) (0.437) 

Pricejt-1 -0.002*** -0.000  0.000 -0.000 
 (0.000) (0.000)  (0.000) (0.001) 

Tech Oppjt-1 0.064*** -0.028***  0.240 -0.059 
 (0.005) (0.009)  (0.179) (0.375) 

Tech Challengeijt-1 0.461*** 1.139***  0.432*** 1.016*** 
 (0.040) (0.087)  (0.038) (0.081) 

Productijt-1 0.037*** 0.204***  0.066*** 0.176*** 
 (0.008) (0.018)  (0.008) (0.017) 

Late Pipeijt-1 -0.136*** 0.717***  -0.111*** 0.587*** 
 (0.026) (0.055)  (0.025) (0.052) 

Firm Sizeit 0.004 -0.003  0.008 -0.008 
 (0.007) (0.016)  (0.007) (0.015) 
      

Constant Y Y  Y Y 
Firm FE Y Y  Y Y 
Year FE Y Y  Y Y 

ATC1 FE Y Y  N N 
ATC1 x Year FE Y Y  N N 

ATC2 FE N N  Y Y 
R2 0.279 0.433  0.344 0.509 

Observations 4,958 4,958   4,958 4,958 
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Appendix C1. Flow of innovation (Poisson). This table replicates Appendix Table A1 with the inclusion of HHIjt-1 

and Brandijt. This table presents results from Poisson models across four specifications over our full sample. Model 
4 serves as our base specification as it contains our full array of fixed effects, including an interaction between 
ATC1 market and time (Year). The dependent variable, Innijt, is defined as early-stage innovation. Standard errors 
are clustered at the firm level and are in parentheses. *** p<0.01, ** p<0.05, *p<0.10. 

 

 

  (1) (2) (3) (4) 
 POISSON POISSON POISSON POISSON 

VARIABLES Innijt Innijt Innijt Innijt 

     
Genericijt-1   -1.532*** -1.253*** 

   (0.307) (0.267) 

HHIjt-1 -1.393*** -1.352*** -0.808* -1.352*** 
 (0.540) (0.484) (0.489) (0.484) 

Brandijt 1.539*** 1.671*** 2.493*** 2.259*** 
 (0.566) (0.505) (0.531) (0.465) 

Pricejt-1 -0.005 -0.004 -0.008 -0.004 
 (0.005) (0.004) (0.007) (0.004) 

Tech Oppjt-1  0.024 0.012 0.047*** 
  (0.018) (0.015) (0.014) 

Tech Challengeijt-1  0.379*** 0.445*** 0.354*** 
  (0.112) (0.095) (0.099) 

Productijt-1 0.140*** 0.154*** 0.130*** 0.143*** 
 (0.018) (0.020) (0.021) (0.020) 

Late Pipeijt-1 0.178*** 0.070 0.167* 0.061 
 (0.067) (0.062) (0.090) (0.064) 

Firm Sizeit 0.009 0.012 0.023** 0.020** 
 (0.009) (0.010) (0.010) (0.008) 

Constant Y Y Y Y 
Firm FE Y Y Y Y 
Year FE Y Y Y Y 

ATC1 FE Y Y Y Y 
ATC1 x Year FE N N N Y 

Pseudo log likelihood -10,295.61 -10,149.39 -10,435.36 -9,891.41 
Observations 29,514 29,514 29,514 29,514 
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Appendix C2. Robustness checks (Split sample). This table replicates Appendix Table A2 with the inclusion of 
HHIjt-1 and Brandijt. We split the sample at the mean and median observation, which occur in 2004. Models 1 and 4 
replicate Table 3, Model 5. Models 2 and 5 replicate these models without the inclusion of Pricejt-1. Models 3 and 6 
replicate Table 4, Model 1. The dependent variable across all specifications is defined as the count of early-stage 
innovation, Innijt. Standard errors are clustered at the firm level and are in parentheses. *** p<0.01, ** p<0.05, 
*p<0.10. 

  (1) (2) (3)  (4) (5) (6) 
 NegBin NegBin OLS NegBin NegBin OLS 
 1999-2004 1999-2004 1999-2004 2005 - 2010 2005 - 2010 2005 - 2010 

VARIABLES Innijt Innijt Innijt Innijt Innijt Innijt 

        
Genericijt-1 -1.397*** -1.338*** -0.109*** -1.198*** -1.116*** -0.088*** 

 (0.168) (0.178) (0.018) (0.134) (0.152) (0.018) 

HHIjt-1 -1.273***    -1.192***   
 (0.175)    (0.215)   

Brandijt 2.237***    3.232***   
 (0.458)    (0.461)   

Pricejt-1 -0.002*    -0.009***   
 (0.001)    (0.003)   

Tech Oppjt-1 0.043*** 0.039***   0.037*** 0.035***  
 (0.005) (0.005)   (0.006) (0.005)  

Tech Challengeijt-1 0.443*** 0.464*** 0.212*** 0.530*** 0.545*** 0.413*** 
 (0.054) (0.057) (0.035) (0.038) (0.035) (0.098) 

Productijt-1 0.227*** 0.229*** 0.099*** 0.148*** 0.143*** 0.075*** 
 (0.030) (0.031) (0.014) (0.026) (0.028) (0.014) 

Late Pipeijt-1 0.112** 0.111** 0.081** 0.076 0.119 0.069 
 (0.046) (0.053) (0.036) (0.103) (0.103) (0.050) 

Firm Sizeit 0.021 0.023 0.003 0.024 0.019 0.007 
 (0.029) (0.030) (0.004) (0.016) (0.017) (0.005) 
        
Constant Y Y Y Y Y Y 
Firm FE Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y 

ATC1 FE Y Y N Y Y N 
ATC1 x Year FE Y Y N Y Y N 

ATC2 FE N N Y N N Y 
ATC2 x Year N N Y N N Y 

Log likelihood/R2 -4,721.07 -4,781.26 0.247 -4,686.17 -4,757.80 0.289 
Observations 14,870 14,870 14,870 14,644 14,644 14,644 
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Appendix C3. Flow of innovation (Robustness checks). This table replicates Appendix Table A4 with the 
inclusion of HHIjt-1 and Brandijt. Model 1 redefines the dependent variable as novel early-stage innovation, Novel 
Innijt while Model 2 redefines the dependent variable as late-stage innovation, Late-stage Innijt. The sample is 
restricted in Model 3 to markets where we anticipate low cross-molecular substitution, Low CMS Innijt. These 
include: anti-epileptics, anti-depressants, and anti-psychotics. Excluded from these three specifications are Productijt-

1, LatePipeijt-1, and Down Assetijt. Standard errors are clustered at the firm level in parentheses. *** p<0.01, ** 
p<0.05, * p<0.10. 

 

  (1) (2) (3)  
 NEGBIN NEGBIN NEGBIN 

VARIABLES 
Novel 
Innijt 

Late-stage 
Innijt 

Low CMS 
Innijt 

    
Genericijt-1 -1.187*** -1.602*** -0.776 

 (0.222) (0.175) (0.529) 

HHIjt-1 -1.144*** -1.044*** -1.445 
 (0.412) (0.294) (3.609) 

Brandijt 3.186*** 2.250*** 2.250 
 (0.839) (0.468) (2.426) 

Pricejt-1 -0.001 -0.002 0.048 
 (0.001) (0.002) (0.062) 

Tech Oppjt-1 0.032*** 0.035***  
 (0.012) (0.009)  

Tech Challengeijt-1 0.382*** 0.603*** 0.267** 
 (0.076) (0.059) (0.112) 

Firm Sizeit 0.010 0.009 0.051 
 (0.012) (0.007) (0.053) 
    

Constant Y Y Y 
Firm FE Y Y Y 
Year FE Y Y Y 

ATC1 FE Y Y Y 
ATC1 x Year FE Y Y N 

Log likelihood -5,584.34 -24,101.26 -553.62 
Observations 29,514 29,514 1,577 
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Appendix C4. This table replicates Appendix Table A5 with the inclusion of HHIj-1 and Brandijt and also replicates 
Models 1, 2, 3 in Table 7 with an alternate definition of the dependent variable. In these models the dependent 
variable diff(CIijt-BIijt), is the difference between CIijt and BIijt. This allows diff(CIijt-BIijt) to be positive, negative or 
zero. CIijt is defined as chemical-based early-stage innovation while BIijt is defined as biologic-based early-stage 
innovation. In Models 2 and 3, Tech Oppjt-1 and Pricejt-1 are omitted because they are constructed at the ATC market 
level. Standard errors are clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.10. 

 

  (1) (2) (3) 
 IV IV OLS 

VARIABLES diff(CIijt-BIijt) diff(CIijt-BIijt) diff(CIijt-BIijt) 

    
Genericijt-1 -0.559*** -0.410*** -0.313*** 

 (0.101) (0.079) (0.056) 

HHIjt-1 -0.636**   
 (0.262)   

Brandijt 0.236* 0.223* 0.144 
 (0.130) (0.133) (0.129) 

Pricejt-1 -0.001   
 (0.001)   

Tech Oppjt-1 0.043   
 (0.032)   

diff(Tech Challengeijt-1) 1.030*** 1.037*** 1.040*** 
 (0.193) (0.091) (0.094) 

diff(Productijt-1) 0.256*** 0.255*** 0.255*** 
 (0.043) (0.036) (0.037) 

diff(Late Pipeijt-1) 0.864*** 0.907*** 0.911*** 
 (0.190) (0.086) (0.089) 

Firm Sizeit 0.017 0.014*** 0.014*** 
 (0.016) (0.005) (0.005) 

Constant Y Y Y 
Firm FE Y Y Y 
Year FE Y Y Y 

ATC1 FE Y N N 
ATC1 x Year FE Y N N 

ATC2 FE N Y Y 
ATC2 x Year FE N Y Y 

First-stage F 47.03 57.77  
R2 0.320 0.568 0.568 

Observations 29,514 29,514 29,514 
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