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1 Introduction

Whether and how dispersed information enters into market prices is one of the central questions of

information economics. A key obstacle to full information revelation and aggregation in markets is

the strategic behavior of informed traders. A trader who has private information about the value of

an asset has an incentive to trade in the direction of that information. However, the more he trades,

the more he reveals his information, and the more he moves the prices closer to the true value of

an asset. Thus, to maximize his profits, an informed trader may stop short of fully revealing his

information, and so the informational efficiency of market prices may fail.

Thus, an important and natural question is when we should expect market prices to in fact

reflect all information available to market participants. One stream of literature considers trading

in dynamic environments, with informed traders having multiple opportunities for trading.1 In

these settings, in each period, traders may have an incentive to withhold some of their information

in order not to eliminate their profits. However, over time, traders will gradually reveal all of their

information, and in many (although not all) cases, by the end of trading, market prices will in fact

aggregate all available information.

One issue with the case of dynamic trading is that while at the end, market prices accurately

reflect all available information, that is generally not the case during most of the time the market

is in operation—and thus much of the trading may happen at prices that are far away from the

ones that would prevail if all private information was publicly available to all market participants.

Therefore, another important stream of research abstracts away from the time dimension and

repeated trading in markets, and considers instead an alternative intuition for when market prices

may accurately reflect information: when the number of informed traders is large, and each one

of them is informationally small. In that case, each of the informed traders has limited impact on

market prices, but their aggregate behavior does in fact reflect the aggregate information available

in the market. As a result, market prices are close to those that would prevail if all private

information were publicly available, and all trades happen at those prices.

Non-strategic explorations of this intuition go back to Hayek (1945), Grossman (1976), and

Radner (1979).2 Subsequently, a line of research (which we discuss in more detail in Section 2) has

considered strategic foundations for this intuition, studying strategic behavior of informed agents in

finite markets, and then considering the properties of prices as the number of these agents becomes

large. This stream of work, however, imposes very strict assumptions on how information is dis-

tributed among the agents, typically assuming that the signals of informed agents are symmetrically

1See, e.g., Hellwig (1982), Kyle (1985), Dubey et al. (1987), Wolinsky (1990), Foster and Viswanathan (1996),
Back et al. (2000), Ostrovsky (2012), and Golosov et al. (2014), among others.

2Other foundational papers in the rich literature on Rational Expectations Equilibrium and related non-strategic
solution concepts include Kreps (1977), Hellwig (1980), Allen (1981), and Anderson and Sonnenschein (1982); for
surveys of the literature, see Jordan and Radner (1982), Allen and Jordan (1998), and Glycopantis and Yannelis
(2005). These papers focus on equilibrium existence and the amount of information aggregated and communicated
by prices in equilibrium, but only consider environments with either an infinite number of infinitesimally small
traders, or with a finite number of traders who essentially ignore the impact they have on market prices and behave
non-strategically.
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distributed, or satisfy other related restrictions so that in equilibrium, the strategies of all informed

traders are identical (see Section 2). In practice, however, the distribution of information in the

economy can be much more complex. Some agents may be strictly more informed than others.

Groups of agents may have access to different sources of information, so that the correlations of

signals within a group are very different from correlations across groups (and the sizes of the groups

may be different, and the correlations of signals between different groups may be different as well).

Some agents may be informed about the fundamental value of the security, while others may be

uninformed about the fundamentals but possess some “technical” information about the market or

other traders. And of course all such possibilities may be present in a market at the same time.

Our paper makes two main contributions.

First, we present an analytically tractable framework that makes it possible to study trading in

such informationally complex environments. Our model is based on the single-period version of the

model of Kyle (1985). As in that paper, an important assumption that makes our model analytically

tractable is the assumption of joint normality of random variables involved in the setting: the true

value of the traded asset, the signals of strategic traders, the signals of competitive market makers,

and the demand coming from liquidity traders. Beyond that assumption, however, we impose

essentially no restrictions on the joint distribution of these variables, making it possible to model

informationally rich situations such as those described above. In this framework, we show that

there always exists a unique linear equilibrium, which can be computed analytically.

Second, we explore the informational properties of equilibrium prices as the number of informed

agents becomes large. We assume that there are several types of agents, with each agent of a given

type receiving the same information, and fix the matrix of correlations of signals across the types

(and other random variables in the model). We then allow the numbers of agents of every type to

grow (without restricting the rates of growth in any way; e.g., the number of agents of one type

may grow much faster than the number of agents of another type). We find that the informational

properties of prices in these large markets depend on the informativeness of the demand from

liquidity traders. If the demand from liquidity traders is uncorrelated with the true value of the

asset or is positively correlated with it (conditional on other signals), then prices in large markets

aggregate all available information. If, however, the demand from liquidity traders is negatively

correlated with the true value of the asset, then prices in large markets aggregate all available

information except that contained in liquidity demand.

We also illustrate our model with several applications. One example shows that under fairly

simple (but, crucially, asymmetric) information structures, an informed trader may choose to trade

“against” his information, i.e., sell the asset when his signal implies that the expected value of the

asset is positive, and vice versa. Two examples explore the profitability of “technical” trading,

and show that a trader may be able to make substantial positive expected profit even if he has

no information about the value of the asset, provided there is at least one other (“fundamental”)

trader who does, and provided that the technical trader has information about the demand from

liquidity traders or about the mistakes of the fundamental trader. Our last set of examples shows
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how equilibrium trading and outcomes depend on the amount of private information available to

the market maker (beyond the aggregate market demand), and in particular shows that having a

market maker observe a particular signal is not equivalent to having that signal observed publicly.

This distinction plays an important role for the last result of the paper, which characterizes

the informational properties of prices in a “hybrid” case: some information is available only to

a small number of traders (“scarce” information), while some other information is available to a

large number of traders (“abundant” information). As the number of traders having access to

“abundant” information becomes large, the equilibrium converges to the one that would obtain if

these traders were not present in the market at all, and instead their information was observed by

the market maker (but not by the remaining strategic traders, who continue to observe “scarce”

information).

The remainder of this paper is organized as follows. In Section 2, we discuss related literature.

In Section 3, we present the model. In Section 4, we state and prove our first main result, on the

existence and uniqueness of linear equilibrium, and characterize this equilibrium analytically. In

Section 5, we illustrate our result with several applications in informationally complex settings.

In Section 6, we present our second main result, on information aggregation in large markets.

In Section 7, we explore the “hybrid” case in which some information is “scarce” and some is

“abundant.” Section 8 concludes.

2 Related Literature

The literature on strategic foundations of information aggregation and revelation in markets goes

back to Wilson (1977), who considers an auction-based model in which multiple partially informed

agents bid on a single object. Other work in this tradition includes Milgrom (1981), Pesendorfer

and Swinkels (1997), Kremer (2002), and Reny and Perry (2006). These papers find that under

various suitable conditions, information does get aggregated (and revealed in winning bids) when

the number of bidders becomes large. However, these results depend critically on strong symmetry

assumptions on the bidders’ signals and strategies.

Another related stream of literature, going back to Kyle (1989), considers equilibria in de-

mand and supply functions, where bidders specify how many units of an asset they demand or

supply for each possible price level, and then the market maker picks the price that clears the

market.3 The papers in this tradition also assume a very high degree of symmetry among the

trading agents, typically assuming that these agents are ex ante identical, receive symmetrically

distributed information, and employ identical strategies in equilibrium. A recent paper by Rostek

and Weretka (2012) partially relaxes this symmetry assumption, and replaces it with a somewhat

weaker “equicommonality” assumption on the matrix of correlations among the agents’ values. This

assumption states that the sum of correlations in each column (or, equivalently, each row) of the

correlation matrix is the same, and that the variances of all traders’ values are also the same. While

3See Vives (2008) for a textbook treatment of that literature.
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this assumption is more general than full symmetry among the agents, it is still quite restrictive: for

example, the equilibrium in this model is still symmetric, with all traders using identical strategies.

Finally, a closely related stream of literature is the work building on Kyle’s (1985) model. In

that literature, as in our paper, one or more strategic traders, fully or partially informed about the

value of the traded asset, are present in the market. These strategic traders submit market orders

to centralized market makers. There are also liquidity traders who submit exogenously determined

market orders. The market makers set the price of the asset equal to their Bayesian estimate

of its value, given their prior information, the knowledge of strategic traders’ strategies, and the

observed order flow. Our paper borrows much of its analytical framework from this literature.

The key difference is that while many of the papers in this area consider both static and dynamic

models of trading but place restrictive assumptions on the information structure, our paper places

virtually no restrictions on the information structure (beyond joint normality), and focuses on the

one-period model of trading and on the informational properties of prices as the number of strategic

traders becomes large.

In the original model of Kyle (1985), there is only one informed trader, who knows the value of

the asset. Holden and Subrahmanyam (1992) study a generalization with multiple fully informed

traders. Foster and Viswanathan (1996) further extend the model by allowing these traders to

observe imperfect signals about the value of the asset. Different traders may observe different

signals, but the distribution of these signals across the traders has to be symmetric, as are the

traders’ strategies. Back et al. (2000) consider a continuous-time analog of the model of Foster

and Viswanathan (1996). Caballé and Krishnan (1994) and Pasquariello (2007) consider multi-

asset versions of the one-period model with multiple traders, but still maintain the assumption of

symmetry of information among the traders.

Several papers go beyond the fully symmetric case. Foster and Viswanathan (1994) consider

a model with two strategic traders in which one trader is strictly more informed than the other.

Colla and Mele (2010) consider a model in which informed traders are located on a circle, with

the correlations of signals being stronger for traders who are closer to each other (in this model,

as in the Rostek and Weretka (2012) model discussed above, all traders use identical strategies

in equilibrium). Bernhardt and Miao (2004) consider a model with a very general information

structure, allowing, as our paper does, for an asymmetric covariance matrix of traders’ signals.4

However, while Bernhardt and Miao (2004) characterize necessary and sufficient conditions for

linear equilibria, and use these conditions to study the properties of such equilibria analytically

and numerically in some specific examples, they do not provide any general results on equilibrium

existence or uniqueness and do not provide general closed-form equilibrium characterizations.

Finally, there are several papers building on the Kyle (1985) framework in which the information

4There are several differences between the models. Unlike Bernhardt and Miao (2004), we allow liquidity demand
to be correlated with the value of the asset and/or the signals of informed traders. We also allow the market maker
to observe signals correlated with the value of the security, the demand from noise traders, and/or the signals of
informed traders. Finally, we do not impose any special structure on how the informed traders’ signals are related
to the value of the asset (and other random variables in the model), beyond joint normality. On the other hand,
Bernhardt and Miao (2004) consider a model with multiple trading periods, while we restrict attention to one period.

5



structure is not limited to strategic traders observing signals about the value of the asset. In Jain

and Mirman (1999), the market maker receives a separate informative signal about the value of

the asset, in addition to simply observing the aggregate order flow. In Rochet and Vila (1994)

and Foucault and Lescourret (2003), some of the strategic traders observe informative signals

about the amount of liquidity demand.5 These features of the information structure are naturally

incorporated in our general model. Hence, our equilibrium existence and uniqueness result, as well

as the characterization we derive, provide a unified approach with closed-form solutions to various

models that include these features. In Section 5, we provide a number of applications illustrating

the flexibility of our general model, and its ability to naturally incorporate such features as the

market maker receiving a signal about the value of the asset and the strategic traders observing

signals about liquidity demand, among others.

3 Model

There is a security traded in the market, whose value v is not initially known to market participants.

There are n strategic traders, i = 1, . . . , n. Prior to trading, each strategic trader i (he) privately

observes a multidimensional signal θi ∈ Rki , where ki ≥ 1 is the dimensionality of the signal.

For convenience, we will denote by θ = (θ1; θ2; · · · ; θn) the vector6 summarizing the signals of all

strategic traders. The dimensionality of vector θ is K =
∑n

i=1 ki. There is also a market maker

(she), who privately observes signal θM ∈ RkM , kM ≥ 0 (when kM = 0, the market maker does not

receive any signals, as in the standard Kyle (1985) model).7,8 Finally, there are liquidity traders,

whose exogenously given random demand, denoted by u, is in general not directly observed by

either the strategic traders or the market maker.

The key assumption that makes the model analytically tractable is that all of the random vari-

ables mentioned above—v, θ, θM , and u—are jointly normally distributed. Specifically, we assume

that the vector µ = (v; θ; θM ;u) is drawn randomly from the multivariate normal distribution with

expected value 0 and variance-covariance matrix Ω. The assumption that the expected value of

vector µ is equal to zero is simply a normalization that allows us to simplify the notation. We

will also assume that every variance-covariance matrix for signal θi of strategic trader i and the

variance-covariance matrix of the marker maker’s signal θM are full rank. This assumption is with-

out loss of generality; it simply eliminates redundancies in each trader’s signals. Note that we do

not place a full rank restriction on matrix Ω itself: for instance, two different strategic traders are

5Röell (1990), Sarkar (1995), and Madrigal (1996) also consider related models in which some agents observe
signals about liquidity demand.

6We denote the row vector with elements x1, . . . , xk by (x1, . . . , xk), and the column vector with the same elements
by (x1; . . . ;xk). All vectors are column vectors unless specified otherwise.

7Strictly speaking, θi and θM are random variables whose realizations are in Rki and RkM .
8The multidimensionality of the traders’ and the market maker’s signals allows our model to incorporate complex

relationships among their information sets: for example, one trader can observe strictly more information than
another trader; one trader can observe the union of two other traders’ signals; some information may be common to
several players while some other information is not; and so forth. We illustrate the richness of the model with several
applications in Section 5.
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allowed to have perfectly correlated signals. The only substantive restrictions that we place on

matrix Ω are as follows.

Assumption 1 At least one strategic trader receives at least some information about the value

of the security, beyond that contained in the market maker’s signal. Formally:

Cov(v, θ|θM ) 6= 0. (1)

Assumption 2 The market maker does not perfectly observe the demand from liquidity traders.

Formally:

V ar(u|θM ) > 0. (2)

3.1 Trading and Payoffs

After observing his signal θi, each strategic trader i submits his demand di(θi) to the market. In

addition, the realized demand from liquidity traders, u, is also submitted to the market. The market

maker observes her signal θM and the total demand D =
∑n

i=1 di(θi) + u, and subsequently sets

the price of the security, P (θM , D), based on these observations. Securities are traded at this price

P (θM , D) (with each strategic trader getting his demand di(θi), liquidity traders getting u, and the

market maker taking the position of size −D to clear the market). At a later time, the true value

of the security is realized, and each strategic trader i obtains profit πi = di(θi) · (v − P (θM , D)).

3.2 Linear Equilibrium

Our solution concept is essentially the same as that in Kyle (1985). We say that a profile of demand

functions di(·) and pricing rule P (·, ·) form an equilibrium if

(i) on the equilibrium path, the price P set by the market maker is equal to the expected value

of the security conditional on θM and D, given the primitives and the demand functions di(·);
and

(ii) for every player i, for every realization of signal θi, the expected payoff from submitting

demand di(θi) is at least as high as the expected payoff from submitting any alternative

demand d′i, given the realization of signal θi, the pricing rule P (·, ·) and the profile of strategies

of other players (dj(·))j 6=i.9

9Note that condition (i) is required to hold only on the equilibrium path. In the standard Kyle (1985) model and
many of its generalizations, every observation of the market maker can be rationalized as being on the equilibrium
path, and thus this qualifier is not needed. In our case, it is in general possible that for some strategy profiles di(·),
only some realizations of aggregate demand D can be observed by the market maker if the strategic traders follow
those strategies. In such cases, by analogy with perfect Bayesian equilibrium, our definition restricts the beliefs of
the market maker on the equilibrium path, where they are pinned down by Bayes rule, and does not restrict them off
the equilibrium path. For an example in which not all realizations of aggregate demand are observed in equilibrium,
consider the following market. Value v ∼ N(0, 1). There is one strategic trader with signal θ1 who observes the value
perfectly: θ1 = v. The demand of liquidity traders is u = −v. Then in the unique linear equilibrium, the demand of
the strategic trader is equal to the value of the security, and the aggregate demand is thus always equal to zero.
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The equilibrium is linear if functions di (for all i) and pricing rule P are linear functions of their

arguments, i.e., di(θi) = αTi θi for some αi ∈ Rki and P (θM , D) = βTMθM +βDD for some βM ∈ RkM

and βD ∈ R.10

4 Equilibrium Existence and Uniqueness

We can now state and prove our first main result.

Theorem 1 There exists a unique linear equilibrium.

The proof of Theorem 1 is in Appendix A. The notation used in the proof, as well as in some of

the subsequent sections, is given in Section 4.1 below.

The proof consists of five steps. The first two steps are fairly standard, and are essentially the

same as in the earlier literature on linear-normal equilibria: they show that if all strategic traders

follow linear strategies, then the pricing rule resulting from Bayesian updating is also linear; and

that if all strategic traders other than trader i follow linear strategies, and the market maker is

also using a linear pricing rule (with a positive coefficient βD on aggregate demand D), then the

best response of trader i is also linear and is uniquely determined by the other traders’ strategies

and the pricing rule. The substantively novel parts of the proof are the next three steps. First,

we show that the conditions derived in the first two steps allow us to express all parameters of the

pricing rule and the traders’ strategies as functions of “market depth” γ = 1/βD. Next, using that

derivation, we show that the entire system of equations from the first two steps collapses into one

quadratic equation in γ. Finally, we prove that this quadratic equation has exactly one positive

root, which concludes the proof.

4.1 Notation

We decompose the covariance matrix Ω of the vector (v; θ1; . . . ; θn; θM ;u) as follows:

σvv Σv1 · · · Σvn ΣvM σvu

Σ1v Σ11 · · · Σ1n Σ1M Σ1u

...
...

. . .
...

...
...

Σnv Σn1 · · · Σnn ΣnM Σnu

ΣMv ΣM1 · · · ΣMn ΣMM ΣMu

σuv Σu1 · · · Σun ΣuM σuu


.

In this matrix, every σ represents a (scalar) variance or covariance of the asset value and/or the

demand of liquidity traders, and every Σ represents a (generally non-scalar) covariance matrix of

an element of vector (v; θ1; . . . ; θn; θM ;u) with another element. We also introduce notation for the

10In principle, we could consider a more general definition of linear equilibrium and allow the strategies and the
pricing rule to potentially have nonzero intercepts. However, one can show that in our setting, linear equilibria with
nonzero intercepts do not exist. The proof of this statement is available upon request.
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covariance matrices of the entire vector of strategic traders’ signals, θ = (θ1; . . . ; θn), with itself and

with other elements of vector µ. Specifically:

Σθθ = V ar (θ) =


Σ11 · · · Σ1n

...
. . .

...

Σn1 · · · Σnn

 , ΣθM = Cov (θ, θM ) =


Σ1M

...

ΣnM

 ,

Σθv = Cov (θ, v) =


Σ1v

...

Σnv

 , Σθu = Cov (θ, u) =


Σ1u

...

Σnu

 .

In addition, we will use the following matrices:

Σdiag =


Σ11 0 0 0

0 Σ22 0 0

0 0
. . . 0

0 0 0 Σnn

 ,

Λ = Σdiag + Σθθ − ΣθMΣ−1
MMΣT

θM ,

Au = Λ−1(Σθu − ΣθMΣ−1
MMΣMu),

Av = Λ−1(Σθv − ΣθMΣ−1
MMΣMv).

(We will show in the proof of Theorem 1 that matrix Λ is invertible).

4.2 Closed-Form Solution

The proof of Theorem 1 is constructive, producing the following expressions for the parameters of

interest.

Depth γ = −
(
b+
√
b2 − 4ac

)
/2a, where

a = −ATv ΣdiagAv,

b = ATv (2Σdiag + Λ)Au + ΣuMΣ−1
MMΣMv − σuv,

c = V ar(ATu θ − u|θM ).

(The proof shows that a < 0, c > 0, and thus γ > 0.) Equilibrium pricing rule and strategies are

then as follows:

βD =
1

γ
,

βM = Σ−1
MM

(
ΣMv − ΣT

θMAv
)
− βDΣ−1

MM

(
ΣMu − ΣT

θMAu
)

;

α =
1

βD
Av −Au.

These expressions are simplified in the case kM = 0, when the market maker does not observe
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any private signals (other than the aggregate demand D).11 In that case,

a = −ATv ΣdiagAv,

b = ATv (2Σdiag + Λ)Au − σuv,

c = V ar(ATu θ − u),

where

Λ = Σθθ + Σdiag,

Au = Λ−1Σθu,

Av = Λ−1Σθv.

These expressions are further simplified if, in addition, the demand from liquidity traders, u, is

uncorrelated with the other random variables in the model. Then b = 0 and γ =
√

σuu
AT

v ΣdiagAv
, and

so

βD =

√
ATv ΣdiagAv

σuu
and α =

√
σuu

ATv ΣdiagAv
Av.

5 Applications and Examples

In this section, we illustrate the general framework presented above with several specific applica-

tions. We first present a simple yet seemingly counterintuitive example in which a trader informed

about the value of the security trades in the direction opposite to that value. Next, we study what

happens when one of the strategic traders is informed about the demand of liquidity traders. We

conclude by analyzing several examples in which the market maker possesses private information

about the value of the security and study how this information gets incorporated into the price

of the security and how it affects equilibrium trading strategies and the sensitivity of equilibrium

prices to market demand.

5.1 Trading “Against” Own Signal

In this section, we present an example of information structure under which a trader who receives

a signal about the value of the security trades in the opposite direction: i.e., when based on his

information the value of the security is positive, he shorts the security, and when it is negative, he

buys it. Note that since our model is a one-shot game, there cannot be any incentives to do that

of the form “I will try to mislead others first, and then take advantage of the mispricing.”

Example 1 The value of the security is distributed as v ∼ N(0, 1). There are two strategic traders.

Trader 1 observes a noisy estimate of v: θ1 = v + ρ1ξ, where ξ ∼ N(0, 1) is a random variable

11Strictly speaking, our proof does not apply directly to the case kM = 0 since, for example, it uses the inverse of
the covariance matrix of θM . However, one can drop all terms related to θM from the proof and immediately obtain
the proof for that case. Alternatively, one can consider a model in which the market maker observes a signal that is
independent of all other random variables. The equilibrium in that model will be equivalent to one in which kM = 0.
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independent of v, and ρ1 is a parameter that determines how accurate trader 1’s signal is (e.g., if

ρ1 = 0, then trader 1 observes v exactly, and if ρ1 is very large, then trader 1’s signal is not very

accurate). Trader 2 also observes a noisy estimate of v: θ2 = v + ρ2ξ, with the same “driver” of

noise, ξ, as in trader 1’s signal, but with a potentially different magnitude of noise, ρ2. Finally,

there is demand from liquidity traders, u ∼ N(0, 1), which is independent of all other random

variables. Formally, the resulting correlation matrix is

Ω =


1 1 1 0

1 1 + ρ2
1 1 + ρ1ρ2 0

1 1 + ρ1ρ2 1 + ρ2
2 0

0 0 0 1

 .

From the analysis and closed-form characterization in the preceding section, we know that in the

unique linear equilibrium the pricing rule is characterized by some βD > 0, and the strategies of

traders 1 and 2 are characterized by:(
α1

α2

)
=

1

βD
Λ−1

(
1

1

)
, (3)

where Λ =

(
2 + 2ρ2

1 1 + ρ1ρ2

1 + ρ1ρ2 2 + 2ρ2
2

)
.

Using the matrix inversion formula and setting δ = 1
βD·det(Λ) (which is positive, since Λ is

positive definite), we get(
α1

α2

)
= δ

(
2 + 2ρ2

2 −1− ρ1ρ2

−1− ρ1ρ2 2 + 2ρ2
1

)(
1

1

)
= δ

(
1 + 2ρ2

2 − ρ1ρ2

1 + 2ρ2
1 − ρ1ρ2

)
. (4)

Thus, if ρ1 = 2ρ2 + 1
ρ2

, trader 1 never trades, despite θ1 being informative about the value of the

security, and for ρ1 > 2ρ2 + 1
ρ2
> 0, trader 1 always trades in the direction opposite to his signal θ1,

despite θ1 being positively correlated with the value of the security, v. Similarly, if ρ2 is equal to or

greater than 2ρ1 + 1
ρ2

, then trader 2 does not trade or trades in the direction opposite to his signal.

To get the intuition behind this seemingly puzzling behavior, consider a slight variation of

Example 1.

Example 2 The value of the security is v ∼ N(0, 1). There are two strategic traders. Trader 1

observes a noisy estimate of v: θ1 = v+ ξ, where ξ ∼ N(0, 1), independent of v. Trader 2 observes

ξ: θ2 = ξ. The demand from liquidity traders, u ∼ N(0, 1), is independent of all other random

variables. The resulting correlation matrix is

Ω =


1 1 0 0

1 2 1 0

0 1 1 0

0 0 0 1

 .
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In this case, Λ =

(
4 1

1 2

)
and

(
α1

α2

)
=

1

βD
Λ−1

(
1

0

)
= δ

(
2 −1

−1 4

)(
1

0

)
= δ

(
2

−1

)
(5)

for some δ > 0, and thus trader 2 trades in the direction opposite to his signal. Note that in this

example, trader 2 is not informed about the value of the security: his signal ξ is independent of v.

However, he is informed about the bias in trader 1’s signal, and thus knows in which direction trader

1 is likely to “err” when submitting his demand. Thus, trader 2, by partly “undoing” this error

(i.e., trading against it), can in expectation make a positive profit, despite not having any direct

information about the value of the security. In a sense, while trader 1 trades on “fundamental”

information, trader 2 trades on “technical” information: trader 1 would be able to make money

even without having trader 2 around, but trader 2’s ability to make a profit depends critically on

having trader 1 around and on exploiting that trader’s mistake.

In Example 1, the intuition is similar. If ρ2 is large relative to 2ρ1 + 1
ρ1

, then the main “chunk”

of trader 2’s information is about the mistake that trader 1 makes, and not about the fundamental

value of the security. This causes trader 2 to want to “undo” that mistake and trade “against” his

signal, while trader 1 continues to trade in a natural direction. When ρ2 = 2ρ1 + 1
ρ1

, the incentives

of trader 2 to trade on “fundamental” information (the positive correlation of his signal with the

value of the security) and on the “technical” information (the positive correlation of his signal with

the mistake of trader 1) cancel out, and trader 2 ends up not trading.

5.2 Information about Liquidity Demand

In this section, we study what happens when one of the strategic traders does not know anything

about the value of the security, but is informed about the amount of liquidity trading, and compare

the equilibrium to that of the standard model without such a trader.

Example 3 The value of the security is distributed as v ∼ N(0, σvv), and the demand from liquidity

traders is distributed as u ∼ N(0, σuu), independently of v. There are two strategic traders. Trader

1’s signal is equal to v: θ1 = v. He is fully informed about the value of the security, just like in

the standard Kyle model. Trader 2 is uninformed about the value of the security, but has insider

information about the demand from liquidity traders: θ2 = u. Formally, the correlation matrix is

Ω =


σvv σvv 0 0

σvv σvv 0 0

0 0 σuu σuu

0 0 σuu σuu

 .

The auxiliary matrices in this example are:

Λ =

(
2σvv 0

0 2σuu

)
, Au =

(
0
1
2

)
, and Av =

(
1
2

0

)
.
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Coefficient b in the quadratic equation is equal to zero, and therefore

γ =

√
− c
a

=

√
σuu
σvv

;

α1 =
1

2
γ =

1

2

√
σuu
σvv

;

α2 = −1

2
.

For comparison, if the second strategic trader was not present, the model would reduce to the

standard model of Kyle (1985), and the equilibrium would be characterized by

γ = 2

√
σuu
σvv

;

α1 =

√
σuu
σvv

.

In other words, when the second strategic trader (who is informed about the demand from liquidity

traders) is present in the market, that trader “takes away” one half of that “liquidity” demand. As

a result, the first strategic trader, who knows the value of the security, trades half as much as he

would in the absence of that second trader, and the market maker’s pricing rule is twice as sensitive.

Therefore, for any realization of v and u, the price in the market with the second strategic trader

will be exactly the same as that in the market without that trader—and thus the informativeness of

prices is not affected in either direction by whether there is a trader in that market who observes the

trading flow from liquidity traders. Likewise, the expected loss of liquidity traders is also unaffected

by the presence of a trader who observes their demand. Since, by construction, the market maker

in expectation breaks even, it has to be the case that the profit of the second strategic trader comes

out of the first trader’s pocket. In fact, the second trader takes away exactly one half of the first

trader’s profit.12 Also, as in Example 2, the second trader is trading on “technical” information,

and is only able to make a profit because a “fundamental” trader is also present in the market.

5.3 Informed Market Maker

In the preceding examples, as in much of the literature, the market maker does not receive any

information other than the aggregate demand coming from strategic and liquidity traders. In

this subsection, we turn to examples in which the market maker does possess some additional

information. We show how this information affects the strategies of other traders and illustrate

the interplay between the weight the market maker places on this additional information and the

weight she places on market demand.

Our first two examples show that the equilibrium obtained when the market maker has private

information is generally not the same as when that information is publicly available (i.e., known

both to the market maker and to all strategic traders). This difference will turn out to be important

12To see this, note that the prices in the two markets are always the same, realization by realization, while the
demand of the first strategic trader, in the presence of the second one, is exactly one half of what it would be in the
absence of that trader.
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later in the paper, in Section 7, where we study the informativeness of prices as the sizes of some

(but not all) groups of strategic traders become large.

Example 4 The value of the security is v ∼ N(0, 1). There is one strategic trader, who observes

signal θ = v+ε1. The market maker observes signal θM = v+ε2. Variables ε1 and ε2 are distributed

normally with mean 0 and variance 1, independently of each other and of all other variables. The

demand from liquidity traders is also independently distributed as u ∼ N(0, 1). Formally, the

covariance matrix that describes this information structure is

Ω =


1 1 1 0

1 2 1 0

1 1 2 0

0 0 0 1

 .

Applying the formulas derived in Section 4, we get Σdiag = Σθθ = ΣMM = 2 and ΣθM = Σθv =

ΣMv = 1. Thus, Λ = 2 + 2− 1/2 = 7/2, Au = 0, and Av = 2/7(1− 1/2) = 1/7. The coefficients in

the quadratic equation for γ are a = −2/49, b = 0, and c = 1, and thus

βD =
1

γ
=

√
2

7
.

Hence, the strategic trader’s behavior is given by

α =
1

βD
Av =

1

2

√
2,

and the market maker’s sensitivity to her own signal is

βM = Σ−1
MM

(
ΣMv − ΣT

θMAv
)

=
3

7
.

Consider now a variation of Example 4, in which the market maker’s signal is public information

(i.e., known to both the market maker and the strategic trader).

Example 5 The value of the security is v ∼ N(0, 1). The market maker observes signal θM =

v + ε2. The strategic trader now observes two signals, θ1 = v + ε1 and θ2 = v + ε2. Both ε1 and ε2

are normally distributed with mean 0 and variance 1, independently of each other and of all other

variables. The demand from liquidity traders is independently distributed as u ∼ N(0, 1). The

covariance matrix that describes this information structure is now

Ω =


1 1 1 1 0

1 2 1 1 0

1 1 2 2 0

1 1 2 2 0

0 0 0 0 1

 .

We now have Σdiag = Σθθ =

(
2 1

1 2

)
, ΣMM = 2, ΣθM =

(
1

2

)
, Σθv =

(
1

1

)
, and ΣMv = 1.
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Thus, Λ =

(
7/2 1

1 2

)
, Λ−1 = 1/6

(
2 −1

−1 7/2

)
, Au =

(
0

0

)
, andAv = Λ−1

((
1

1

)
−

(
1

2

)
· 1/2

)
=

1/6

(
1

−1/2

)
.

The coefficients of the quadratic equation on γ are now a = −1/36

(
1

−1/2

)T (
2 1

1 2

)(
1

−1/2

)
=

−1/24, b = 0, and c = 1, and thus

βD =
1

γ
=

√
6

12
,

the strategic trader’s behavior is given by

α =
1

βD
Av =

( √
6

3

−
√

6
6

)
,

and the market maker’s sensitivity to her own signal is now given by

βM = Σ−1
MM

(
ΣMv − ΣT

θMAv
)

=
1

2
.

The equilibria in these two examples are substantively different: the sensitivities of the market

maker to the aggregate demand and to her own signal are different, and the sensitivity of the

strategic trader’s demand to signal θ1 is different as well. We can also compute the expected profits

that the strategic trader makes in these two markets (and thus the losses of liquidity traders): in

the first example, the expected profit is
√

2/7, while in the second one it is greater:
√

6/12. These

differences illustrate the point that having the market maker observe a signal is substantively

different from having that signal observed publicly.

Our next example considers the case in which a strategic trader’s information is strictly worse

than the information available to the market maker.

Example 6 Let ν1, ν2, ε1, ε2, and u be independent random variables, each distributed normally

with mean 0 and variance 1. The value of the security is v = ν1 + ν2. The demand from liquidity

traders is u. There are two partially informed strategic traders and a partially informed market

maker. Trader 1’s signal is θ1 = ν1 + ε1. Trader 2’s signal is θ2 = ν2 + ε2. Market maker’s signal

is θM = ν2. Note that while trader 1 possesses some “exclusive” information about the value of

the security, trader 2 does not (because ν2 is observed by the market maker, and ε2 is pure noise).

Formally, the correlation matrix is

Ω =


2 1 1 1 0

1 2 0 0 0

1 0 2 1 0

1 0 1 1 0

0 0 0 0 1

 .
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The auxiliary matrices in this example are:

Λ =

(
4 0

0 3

)
, Au =

(
0

0

)
, and Av =

(
1
4

0

)
.

Therefore, in this case, we have (
α1

α2

)
=

1

βD

(
1
4

0

)
,

and so α2 = 0. Thus, trader 2 does not trade in equilibrium. This illustrates a more general

phenomenon: in equilibrium, a strategic trader cannot make a positive profit (and does not trade)

if his information is the same as or worse than (in the information-theoretic sense) that of the

market maker.13

Our final example considers a sequence of markets, indexed by the number of strategic traders,

m. All traders receive the same information, which is imperfectly correlated with both the value

of the asset and the market maker’s information.

Example 7 The value of the security, v, the demand from liquidity traders, u, and two information

shocks, ε1 and ε2, are all distributed normally with mean 0 and variance 1, independently of each

other. There are m identically informed strategic traders and a partially informed market maker.

Each strategic trader observes a signal θ1 = v+ε1. The market maker observes a signal θM = v+ε2 .

Formally (indexing all matrices by the number of strategic traders in the market, m), the correlation

matrix is

Ωm =



1 1 1 · · · 1 1 0

1 2 2 · · · 2 1 0

1 2 2 · · · 2 1 0
...

...
...

. . .
...

...
...

1 2 2 · · · 2 1 0

1 1 1 · · · 1 2 0

0 0 0 · · · 0 0 1


.

The auxiliary matrices are:

Λm =



31
2 11

2 · · · 11
2 11

2

11
2 31

2 · · · 11
2 11

2
...

...
. . .

...
...

11
2 11

2 · · · 31
2 11

2

11
2 11

2 · · · 11
2 31

2


, so that (Λm)−1 =



3m+1
6m+8

−3
6m+8 · · · −3

6m+8
−3

6m+8
−3

6m+8
3m+1
6m+8 · · · −3

6m+8
−3

6m+8
...

...
. . .

...
...

−3
6m+8

−3
6m+8 · · · 3m+1

6m+8
−3

6m+8
−3

6m+8
−3

6m+8 · · · −3
6m+8

3m+1
6m+8


;

Amu =


0
...

0

 ; and Amv =


1

3m+4
...
1

3m+4

 .

13We omit the proof of this statement; it is available upon request.
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Coefficient b in the quadratic equation is equal to zero, and so

γm =

√
− c
a

=
3m+ 4√

2m
;

αmi = γmAmvi =
1√
2m

;

βmM =
1

2

(
1− m

3m+ 4

)
=

2m+ 4

6m+ 8
=

m+ 2

3m+ 4
.

Note that the weight βM that the market maker places on her own signal is not constant in m.

If there were no strategic traders at all, and only noise traders, it would be equal to 1
2 = Cov(v,θM )

V ar(θM ) .

As m grows, this weight is monotonically decreasing (converging to 1
3 in the limit). Thus, it is

not the case that the market maker simply combines the information contained in her own signal

and the additional information contained in the aggregate demand D “additively”—the interplay

between the two sources of information is more intricate, and the weight that the market maker

places on her own signal depends on the overall information structure.

The second observation concerns the informativeness of prices. Take any m, and consider a

realization of θ1, θM , and u. In this realization, demand D is equal to mαmi θ1 +u = m√
2m
θ1 +u, and

the market price P set by the market maker is equal to βmDD+βmMθM = m
3m+4θ1 + m+2

3m+4θM +
√

2m
3m+4u.

Now, fix the realization of random variables, and let the number of strategic traders, m, grow

to infinity. Then price P converges to 1
3θ1 + 1

3θM . But notice that this expression is precisely

the expected value of the asset, v, conditional on the information available in the market: u is

uninformative, because it is independent of all other random variables, and

E[v|θ1, θM ] = Cov

(
v,

(
θ1

θM

))T
V ar

((
θ1

θM

))−1(
θ1

θM

)

=
(

1 1
)( 2 1

1 2

)−1(
θ1

θM

)
=

1

3
θ1 +

1

3
θM .

Hence, as the number of strategic traders becomes large, their information and the information of

the market maker get incorporated into the market price with precisely the weights that a Bayesian

observer with access to all information available in the market would assign. In other words, as

the number of strategic traders becomes large, all information available in the market is aggregated

and revealed by the market price. In the next section, we show that this is not a coincidence: the

information aggregation result holds very generally.

6 Information Aggregation in Large Markets

We now turn to the second main result of our paper: the aggregation of dispersed information when

the number of traders becomes large.

Consider a sequence of markets, indexed by m = 1, 2, . . . . Every market is in the general
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framework of Section 3. In every market, there are n groups of strategic traders, with at least

one trader in each group. Index i, 1 ≤ i ≤ n, now denotes a group of traders. The size of

group i in market m is denoted by `
(m)
i . All traders in the same group i receive the same signal

θi ∈ Rki . The notation from the preceding sections carries over, except that θi now denotes the

signal common to all the traders in group i.

The covariance matrix, Ω, of vector µ = (v; θ; θM ;u) is the same for allm. The number of traders

in each group, however, changes with m: specifically, we assume that for every i, limm→∞ `
(m)
i =∞,

i.e., all groups become large as m becomes large. We do not impose any restrictions on the rates

of growth of those groups: e.g., the sizes of some groups may grow much faster than those of other

groups.

We slightly strengthen one of the two conditions on matrix Ω made in Section 3, replacing

Assumption 2 with the following:14

Assumption 2L V ar(u|θ, θM ) > 0.

It follows from Theorem 1 that for each m, there exists a unique linear equilibrium in the

corresponding market. Let p(m) denote the random variable that is equal to the resulting price in

the unique linear equilibrium of market m.

We can now state and prove our main result on information aggregation in large markets. If the

demand from liquidity traders is positively correlated with the true value of the asset (conditional

on other signals), then prices in large markets aggregate all available information: p(m) converges

to E[v|θ, θM , u]. If the demand from liquidity traders is negatively correlated with the true value of

the asset, then prices in large markets aggregate all available information except that contained in

liquidity demand: p(m) converges to E[v|θ, θM ]. If the demand from liquidity traders is uncorrelated

with the true value of the asset, then both statements are true: p(m) converges to E[v|θ, θM , u] =

E[v|θ, θM ].

Theorem 2

• If Cov(u, v|θ, θM ) ≥ 0, then limm→∞E
[(
p(m) − E[v|θ, θM , u]

)2]
= 0.

• If Cov(u, v|θ, θM ) ≤ 0, then limm→∞E
[(
p(m) − E[v|θ, θM ]

)2]
= 0.

In Appendix B, we prove Theorem 2 in the special case when the covariance matrix of random

vector (θ; θM ;u) is full rank. This additional assumption guarantees that certain matrices remain

invertible in the limit as m becomes large, which in turn allows us to give a direct proof of the

theorem without technical complications. However, this special case rules out some interesting

14Under the original Assumptions 1 and 2, the information aggregation result may not hold. To see that, consider
a modification of the example introduced in footnote 9. Value v ∼ N(0, 1). There are m strategic traders with the
same signal θ1 = v. The demand of liquidity traders is u = −v. Then in the unique linear equilibrium, the demand
of each strategic trader is equal to θ1/m, the aggregate demand of all strategic trader is equal to θ1 = v = −u, the
aggregate demand of all traders is equal to zero, and thus the equilibrium price is also always equal to zero, for any
m. Thus, there is no information aggregation of any kind in the limit as m becomes large.
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possibilities (e.g., one type of traders knowing strictly more than another type of traders), so in the

Online Appendix we provide the full proof of Theorem 2, which does not rely on this simplifying

assumption.

The intuition for the information aggregation result is that when the number of informed traders

of each type is large, the information of each strategic “type” has to be (almost) fully incorporated

into the market price, since otherwise each trader of that type would be able to make a non-negligible

profit, which cannot happen in equilibrium. The signal of the market maker gets incorporated into

the market price by construction. Finally, with liquidity demand, the situation is more subtle.

When liquidity demand is positively correlated with the asset value (Cov(u, v|θ, θM ) > 0), equi-

librium strategies and market depth adjust precisely in a way that makes liquidity demand get

incorporated into the market price “correctly,” i.e., with the same weight as it would be incorpo-

rated into the market price by a Bayesian observer who was fully informed about all the random

variables in the model (except value v). As a result, price p(m) converges to E[v|θ, θM , u], and so all

information available in the market is incorporated into the market price. However, when liquid-

ity demand is negatively correlated with the value of the asset (Cov(u, v|θ, θM ) < 0), this cannot

happen. In equilibrium, aggregate demand always enters the market price with a positive sign (sen-

sitivity βD is positive). Thus, liquidity demand also enters the market price with a positive sign.

However, a fully informed Bayesian observer would put a negative weight on liquidity demand—

which cannot happen in any linear equilibrium, for any parameter values. So what happens instead

as m becomes large is that the variance of the aggregate demand from informed traders grows to

infinity (in contrast to the case Cov(u, v|θ, θM ) > 0, in which it converges to a finite value). And

thus as m grows, liquidity demand u has less and less impact on the market price, and in the

limit it has no impact at all: price p(m) converges to E[v|θ, θM ]. The same happens in the case

Cov(u, v|θ, θM ) = 0, for the same reason, but in that case E[v|θ, θM ] is equal to E[v|θ, θM , u], and

so price p(m) does converge to the expected value of the asset given all the information available in

the market.

7 Information in “Hybrid” Markets

In many situations, some “scarce” information about the value of a security is known by only a small

number of traders, perhaps just one, while some other information, while not publicly available,

may be more “abundant,” and may be observed by a large number of traders. In this section, we

explore how these two types of information get incorporated into market prices in equilibrium.

It is intuitive that due to market impact and the resulting strategic considerations, “scarce”

information will not be fully incorporated into market prices, and the traders possessing this infor-

mation will make positive profits, while “abundant” information will be almost fully incorporated

into market prices (and the traders possessing it will make vanishingly small profits). What is

less immediate is the interplay between these two types of information, and how they get com-

bined with the information observed directly by the market maker and the information contained
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in liquidity demand. In particular, a seemingly natural conjecture is that “abundant” information

will enter the price essentially as a public signal, observed by everyone in the economy. Our last

result shows that this is not the case: instead, “abundant” information, in the limit, enters into

market prices in the same way as if it were directly observed by the market maker—but not by

the strategic traders observing “scarce” information. As Examples 4 and 5 in Section 5 illustrate,

this is substantively different from the case in which “abundant” information is observed by all the

agents in the economy.

Formally, using the notation introduced in Section 6, suppose that for some s ≥ 1, the sizes

of the groups i = 1, . . . , s < n remain constant as m varies, i.e., `
(m)
i = `i for some `i, while for

i = s + 1, . . . , n, the size of group i grows to infinity, i.e., `
(m)
i → ∞. We will refer to groups

i = 1, . . . , s as “small groups,” and to groups i = s+ 1, . . . , n as “large groups.”

Let θS be the vector of signals of the small groups, i.e., θS = (θ1; . . . ; θs), and let θL be the

vector of signals of the large groups, i.e., θL = (θs+1; . . . ; θn). We make two assumptions:

Assumption 1H Cov(v, θS |θL, θM ) 6= 0.

Assumption 2H Matrix V ar((θS ; θL; θM ;u)) is positive definite.

The first assumption states that at least one of the small groups has some information about the

value of the asset that is not included in the information of the large groups or in the information

observed by the market maker. This assumption is substantive: if the information available to the

small groups was fully subsumed by the information available to the large groups and the market

maker, then instead of the result below, the information aggregation results of the Section 6 would

hold. The second assumption is for simplicity of exposition; it is analogous to the simplifying

assumption made in the special case of Theorem 2 in Appendix B, and serves the same purpose.

Our last result shows that under Assumptions 1H and 2H, equilibrium prices in the above

sequence of markets converge to the equilibrium price that would obtain in an alternative market,

in which only the small groups of traders are present (with the same information as in the original

markets, θS), and in which the market maker observes both her original signal θM and the signals

observed by the large groups of traders in the original markets, θL. Let p(alt) denote the random

variable that corresponds to the equilibrium price obtained in this alternative market.

Theorem 3 limm→∞E
[(
p(m)((θS ; θL), θM , u)− p(alt)(θS , (θM ; θL), u)

)2]
= 0.

The proof of Theorem 3 is in Appendix C. The techniques used in the proof are similar to those

used in the proofs of Theorem 2 in the special and general cases, except that the presence of small

groups requires a separate treatment, since for the traders in those groups, strategic incentives do

not vanish in the limit. Also, note that unlike in Theorem 2, the statement of Theorem 3 does not

depend on the sign of the covariance of liquidity demand with the other random variables in the

model.
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We conclude this section with a final observation. As we saw in Examples 4 and 5 in Section 5,

the expected profit of an informed agent is higher when he also observes the signal of the market

maker than when he does not. Since in the case of “hybrid” markets, equilibria converge to those

that would obtain if the information of “large” groups was observed by the market maker, but

not publicly, and since individual agents in these “large” groups make vanishingly small profits,

there will be strong incentives for trading information: by buying information from one of the

agents in a large group (say, j), a trader in a small group (say, i) can substantively increase his

expected profit, while the resulting decrease in the profit of agent j is vanishingly small, simply

because his original, “pre-trade” profit was small. Thus, “abundant” information may in fact end

up being essentially publicly observed, but only via “external” trade in information rather than via

the trading mechanism itself. We leave the formal analysis of this intuition to future research.

8 Conclusion

This paper studies trading behavior and the properties of prices in informationally complex mar-

kets. Our framework generalizes the single-period version of the linear-normal model of Kyle (1985),

allowing for multiple differentially informed strategic traders and for essentially arbitrary correla-

tions among the random variables involved in the model: the value of the traded asset, the signals

of the strategic traders and competitive market makers, and the demand from liquidity traders.

In this framework, we establish two main results.

First, we show that there always exists a unique linear equilibrium. We characterize the equilib-

rium analytically, with the agents’ equilibrium behavior expressed in closed form. This characteri-

zation makes the framework very convenient for modeling various applied issues in informationally

complex settings. We illustrate the result and the equilibrium characterization in a series of exam-

ples.

Second, we explore the informational properties of equilibrium prices as the number of informed

agents becomes large. Our general framework allows us to avoid imposing the usual symmetry

restrictions that are typically made in the literature on the strategic foundations of information

aggregation in large markets. Instead, we assume that there are several distinct types of agents, with

agents of the same type receiving the same information, and fix the matrix of correlations of signals

across the types (and other random variables in the model), imposing essentially no restrictions

on this matrix. We then allow the numbers of agents of every type to grow (without restricting

the rates of growth in any way). We find that the informational properties of prices in these large

markets depend on the informativeness of the demand from liquidity traders. If the demand from

liquidity traders is uncorrelated with the true value of the asset or is positively correlated with it

(conditional on other signals), then prices in large markets aggregate all available information. If,

however, the demand from liquidity traders is negatively correlated with the true value of the asset,

then prices in large markets aggregate all available information except that contained in liquidity

demand. Finally, in the “hybrid” case, in which only some groups of traders become large, the
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information of these large groups also gets fully incorporated into market prices: in the limit, the

equilibrium in the “hybrid” case is equivalent to the equilibrium of an alternative market in which

there are no traders of these large types, and instead all their information is observed directly by

the market maker.

Appendix A: Proof of Theorem 1

The proof of Theorem 1 is constructive. For convenience, it is broken into several steps. Step 1

expresses the linear relationship implied by condition (i) of the definition of equilibrium, that price

must be equal to the expected value of the security conditional on the information available to

the market maker. Step 2 derives the best response of a strategic trader to a linear pricing rule

and linear strategies of other strategic traders, and shows that this best response is linear. It also

establishes that in equilibrium, coefficient βD has to be positive. Step 3 summarizes the equations

in Steps 1 and 2 and reorganizes them in a system of three “almost” linear equations (they are all

linear if one scalar variable, γ = 1/βD, is fixed). Step 4 reduces this system of equations to one

quadratic equation in γ. Step 5 shows that this quadratic equation has exactly one positive root,

thus completing the proof.

Step 1. Let α = (α1; . . . ;αn) be a profile of linear strategies for the strategic traders. Each αi in

this profile is a vector (α1
i ; . . . ;α

ki
i ) ∈ Rki , corresponding to linear strategy

di(θi) = α1
i θ

1
i + · · ·+ αkii θ

ki
i ,

where θ1
i , . . . , θ

ki
i are the elements of vector θi ∈ Rki .

Take any linear pricing rule (βM ;βD), βM ∈ RkM , βD ∈ R. For convenience, let vector β =

(βM ;βD) summarize the pricing rule and let random vector η = (θM ;D = αT θ + u) denote the

information available to the market maker when she sets the price. Then for this pricing rule to be

consistent with profile α, condition (i) of the definition of equilibrium requires that

βT η = E[v|η],

which is equivalent to the following condition:15

Cov(v, η) = βTV ar(η).

Expressing Cov(v, η) and V ar(η) using the notation introduced in Section 4.1, we thus get the

following equivalent characterization of condition (i) of the definition of equilibrium:(
βTM , βD

)( ΣMM ΣT
θMα+ ΣMu

αTΣθM + ΣT
Mu αTΣθθα+ 2ΣT

θuα+ σuu

)
=
(
ΣvM ,Σ

T
θvα+ σvu

)
. (6)

15To see the equivalence, note first that βT η = E[v|η] =⇒ Cov(v, η) = Cov(E[v|η], η) = Cov(βT η, η) = βTV ar(η).
To go in the opposite direction, note that Cov(v, η) = βTV ar(η) = Cov(βT η, η) =⇒ Cov(v − βT η, η) = 0. Since
variables v−βT η and η are jointly normal, Cov(v−βT η, η) = 0 implies that they are independent, and thus for every
realization η̃ of random variable η, E[v − βT η|η = η̃] = E[v − βT η] = 0, which implies that for every realization η̃,
E[v|η = η̃] = E[βT η|η = η̃] = βT η̃.
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Step 2. We now consider the optimization problem of a strategic trader i. Suppose he observes

signal realization θ̃i of signal θi, and subsequently submits demand d. Assuming that other traders

j 6= i follow linear strategies αj , and that the market maker follows a linear pricing rule (βM ;βD),

the expected profit of trader i from submitting demand d when observing realization θ̃i is equal to

E

d
v − βTMθM − βD

d+
∑
j 6=i

αTj θj + u

∣∣∣∣∣∣ θi = θ̃i

 . (7)

Using the fact that d is a choice variable, and thus d and d2 are constants from the point of

view of taking expectations, we can rewrite equation (7) as

d · E

v − βTMθM − βD
∑
j 6=i

α̂Tj θj + u

∣∣∣∣∣∣ θi = θ̃i

− d2 · βD. (8)

Now, if βD < 0, trader i can make an arbitrarily large expected profit, and no single d maximizes

it—hence, βD cannot be negative in equilibrium.

If βD = 0, and E
[
v − βTMθM |θi = θ̃i

]
6= 0, then again trader i can make an arbitrarily large

expected profit, and no single d maximizes it. But it follows from Assumption 1 in the model16

that for at least one trader i, for at least some (in fact, for almost all) realizations θ̃i, we have

E
[
v − βTMθM |θi = θ̃i

]
6= 0—hence, βD cannot be equal to zero in equilibrium.

Finally, if βD > 0, then there is a unique d maximizing the expected profit:

d∗ =
1

2βD
E

v − βTMθM − βD
∑
j 6=i

αTj θj + u

∣∣∣∣∣∣ θi = θ̃i

 (9)

=
1

2βD

ΣT
iv − βTMΣT

iM − βD

∑
j 6=i

αTj ΣT
ij + ΣT

iu

Σ−1
ii θ̃i, (10)

where equation (10) is the standard projection/signal extraction formula, which can be used because

of the joint normality of the relevant variables. Note that d∗ is a linear function of θ̃i, and vector

αi is uniquely determined by pricing rule (βM ;βD) and strategies αj for j 6= i.

Step 3. It therefore follows from the arguments in Steps 1 and 2 that profile of strategies α

and pricing rule (βM ;βD) form a linear equilibrium if and only if βD > 0 and the following two

conditions hold:

(i)
(
βTM , βD

)( ΣMM ΣT
θMα+ ΣMu

αTΣθM + ΣT
Mu αTΣθθα+ 2ΣT

θuα+ σuu

)
=
(
ΣvM ,Σ

T
θvα+ σvu

)
;

(ii) for all i, αi = 1
2βD

(
ΣT
iv − βTMΣT

iM − βD
(∑

j 6=i α
T
j ΣT

ij + ΣT
iu

))
Σ−1
ii .

We will now show that there is a unique profile (α, β) satisfying these conditions, thus proving

the existence and uniqueness of linear equilibrium.

16Assumption 1 says that at least one strategic trader i has some useful information beyond that contained in the
market maker’s signal: Cov(v, θ|θM ) 6= 0.
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First, we re-write condition (ii), for all i, as:

2Σiiαi =
1

βD
(Σiv − ΣiMβM )−

∑
j 6=i

Σijαj − Σiu

or equivalently

Σiiαi +
∑
j

Σijαj =
1

βD
(Σiv − ΣiMβM )− Σiu. (11)

“Stacking” equations (11) for all i one under another, and rewriting the resulting system of equa-

tions in matrix form using the notation defined in Section 4.1, we obtain the following condition

(equivalent to condition (ii)):

(Σdiag + Σθθ)α = γΣθv − ΣθMβ
′
M − Σθu, (12)

where for convenience we define γ = 1/βD, β′M = βM/βD.

Next, using this notation, and transposing the matrix equation in condition (i), that condition

can be written as a system of two equations:

ΣMMβ
′
M + ΣT

θMα+ ΣMu = γΣMv, (13)

αTΣθMβ
′
M + ΣuMβ

′
M + αTΣθθα+ 2ΣT

θuα+ σuu = γ(ΣT
θvα+ σvu). (14)

Step 4. We will now solve the system of equations (12), (13), and (14). Equation (13) allows us

to express β′M as a function of α and γ:

β′M = Σ−1
MM

(
γΣMv − ΣT

θMα− ΣMu

)
. (15)

We then plug this expression of β′M into equation (12):

(Σdiag + Σθθ)α = γΣθv − ΣθMΣ−1
MM

(
γΣMv − ΣT

θMα− ΣMu

)
− Σθu,

or, isolating α on the left-hand side and collecting the terms with γ,(
Σdiag + Σθθ − ΣθMΣ−1

MMΣT
θM

)
α =

(
Σθv − ΣθMΣ−1

MMΣMv

)
γ −

(
Σθu − ΣθMΣ−1

MMΣMu

)
.

Note that

Σθθ − ΣθMΣ−1
MMΣT

θM = V ar(θ)− Cov(θ, θM )V ar(θM )−1Cov(θM , θ)

= V ar(θ|θM ),

where the last equation follows from the standard projection formula for multivariate normal dis-

tributions. Thus, matrix Σθθ − ΣθMΣ−1
MMΣT

θM is positive semidefinite, and matrix Σdiag + Σθθ −
ΣθMΣ−1

MMΣT
θM is positive definite (and thus invertible). Letting

Λ = Σdiag + Σθθ − ΣθMΣ−1
MMΣT

θM ,

Au = Λ−1
(
Σθu − ΣθMΣ−1

MMΣMu

)
,

Av = Λ−1
(
Σθv − ΣθMΣ−1

MMΣMv

)
,
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we can express α as a linear function of γ:

α = γAv −Au.

Plugging this expression into equation (15), we can also express β′M as a linear function of γ:

β′M = Σ−1
MM

(
γΣMv − ΣT

θM (γAv −Au)− ΣMu

)
= γΣ−1

MM

(
ΣMv − ΣT

θMAv
)
− Σ−1

MM

(
ΣMu − ΣT

θMAu
)
.

Using these expressions, we can now rewrite equation (14) as a quadratic equation of just one

scalar variable, γ:

aγ2 + bγ + c = 0, (16)

where

a = ATv ΣθMΣ−1
MM

(
ΣMv − ΣT

θMAv
)

+ATv ΣθθAv − ΣT
θvAv,

b = −ATv ΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
−ATuΣθMΣ−1

MM

(
ΣMv − ΣT

θMAv
)

+ΣuMΣ−1
MM

(
ΣMv − ΣT

θMAv
)
− 2ATv ΣθθAu + 2ΣT

θuAv + ΣT
θvAu − σvu,

c = ATuΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
− ΣuMΣ−1

MM

(
ΣMu − ΣT

θMAu
)

+ATuΣθθAu − 2ΣT
θuAu + σuu.

Therefore, finding a linear equilibrium is equivalent to finding a positive root of equation (16).

To prove that this equation has a unique such root, we first simplify the expressions for a, b, and c.

(For the proof, it is sufficient to simplify a and c, but getting a simplified expression for b is useful

for deriving an explicit analytic characterization of the equilibrium.) Starting with a:

a = ATv ΣθMΣ−1
MM

(
ΣMv − ΣT

θMAv
)

+ATv ΣθθAv − ΣT
θvAv,

= ATv
[(

ΣθMΣ−1
MMΣMv − Σθv

)
+
(
Σθθ − ΣθMΣ−1

MMΣT
θM

)
Av
]

= ATv [(−ΛAv) + (Λ− Σdiag)Av]

= −ATv ΣdiagAv.

Next,

b = −ATv ΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
−ATuΣθMΣ−1

MM

(
ΣMv − ΣT

θMAv
)

+ΣuMΣ−1
MM

(
ΣMv − ΣT

θMAv
)
− 2ATv ΣθθAu + 2ΣT

θuAv + ΣT
θvAu − σvu,

= 2ATv
(
Σθu − ΣθMΣ−1

MMΣMu

)
+ATu

(
Σθv − ΣθMΣ−1

MMΣMv

)
+2ATv

(
ΣθMΣ−1

MMΣT
θM − Σθθ

)
Au + ΣuMΣ−1

MMΣMv − σuv
= 2ATv ΛAu +ATuΛAv

+2ATv
(
ΣθMΣ−1

MMΣT
θM − Σθθ

)
Au + ΣuMΣ−1

MMΣMv − σuv
= ATv (2Σdiag + Λ)Au + ΣuMΣ−1

MMΣMv − σuv.
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Finally,

c = ATuΣθMΣ−1
MM

(
ΣMu − ΣT

θMAu
)
− ΣuMΣ−1

MM

(
ΣMu − ΣT

θMAu
)

+ATuΣθθAu − 2ΣT
θuAu + σuu

= −
(
ΣuM −ATuΣθM

)T
Σ−1
MM

(
ΣMu − ΣT

θMAu
)

+ATuΣθθAu − 2ΣT
θuAu + σuu

=

(
Au

−1

)T
C

(
Au

−1

)
,

where

C =

(
Σθθ Σθu

ΣT
θu σuu

)
−

(
ΣθM

ΣuM

)
Σ−1
MM

(
ΣθM

ΣuM

)T
= V ar ((θ;u))− Cov ((θ;u) , θM )V ar (θM )−1Cov (θM , (θ;u))

= V ar ((θ;u) |θM ) .

Thus,

c = V ar(ATu θ − u|θM ).

Step 5. We will now determine the signs of coefficients a and c.

Matrix Σdiag is positive definite, by construction. Vector Av is not equal to zero: matrix

Λ−1 is positive definite, and vector Σθv − ΣθMΣ−1
MMΣMv = Cov(θ, v|θM ) is not equal to zero

(by Assumption 1 of the model). Thus, a = −ATv ΣdiagAv < 0.

To determine the sign of coefficient c, recall that we have shown in Step 4 that c = V ar(ATu θ−
u|θM ). So if we show that c 6= 0, it will immediately follow that c > 0.

If Au = 0, then c 6= 0 follows from Assumption 2 of the model (which says that the market

maker does not perfectly observe liquidity demand: V ar(u|θM ) > 0).

Suppose Au 6= 0. It is convenient to introduce an auxiliary random variable, φ, drawn randomly

from the normal distribution with mean zero and covariance matrix Σdiag, independent of all other

random variables in the model. Note that matrix Au now has a simple interpretation:

Au = V ar(θ + φ|θM )−1Cov(θ, u|θM ) = V ar(θ + φ|θM )−1Cov(θ + φ, u|θM ).

Let ε = u−ATu (θ+ φ). Then c = V ar(ε+ATuφ|θM ). To show that c 6= 0, it is thus sufficient to

show that ε+ATuφ is not constant, conditional on θM . To show that, consider Cov(ε+ATuφ,A
T
u (θ+

φ)|θM ) = Cov(ε, ATu (θ + φ)|θM ) + Cov(ATuφ,A
T
u (θ + φ)|θM ).

First, Cov(ε, ATu (θ + φ)|θM ) = Cov(u − ATu (θ + φ), ATu (θ + φ)|θM ) = Cov(u, θ + φ|θM )Au −
ATuV ar(θ + φ|θM )Au = 0.

Second, Cov(ATuφ,A
T
u (θ + φ)|θM ) = V ar(ATuφ|θM ) = ATuΣdiagAu, which is not equal to zero,

because Au 6= 0 and Σdiag is positive definite. Therefore, Cov(ε + ATuφ,A
T
u (θ + φ)|θM ) 6= 0, and

thus ε+ATuφ is not constant conditional on θM , and so c > 0.

Thus, a < 0, c > 0, and hence equation (16) has exactly one positive root. Therefore, there
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exists a unique linear equilibrium.

Appendix B: Proof of Theorem 2 (Special Case)

In this Appendix, we prove Theorem 2 in the special case in which the covariance matrix of random

vector (θ; θM ;u) is full rank. In the Online Appendix, we provide the full proof of Theorem 2,

without making this simplifying assumption.

Step 1. Consider first a specific market m, and, for convenience, drop superscript (m). We know

there exists a unique linear equilibrium. It then has to be the case that in this equilibrium, any

two strategic traders in the same group have the same linear strategy (otherwise, by swapping the

strategies of these two traders, we would be able to obtain a different linear equilibrium). Denote

by αi the aggregate demand multiplier, in equilibrium, of group i; i.e., given signal θi, each trader

in the group submits demand 1
`i
αTi θi.

With this notation, note that the expression for condition (i) in Step 3 of the proof of Theo-

rem 1—the market maker’s inference given her information—remains unchanged, and equations (13)

and (14) remain unchanged as well. The expression for condition (ii)—the best response of a strate-

gic trader—is now slightly different. In this new notation, it becomes: for all i,

1

` i
αi =

1

2βD

ΣT
iv − βTMΣT

iM − βD

∑
j 6=i

αTj ΣT
ij +

`i − 1

`i
αiΣ

T
ii + ΣT

iu

Σ−1
ii .

As in equation (12) in the proof of Theorem 1, this condition can be rewritten as

(Σ̂diag + Σθθ)α = γΣθv − ΣθMβ
′
M − Σθu, (17)

where γ and β′M are defined as before, and instead of Σdiag we now have

Σ̂diag =


1
` 1

Σ11 0 . . . . . .

0 1
` 2

Σ22 0 . . .
... 0

. . . 0

0 . . . 0 1
` n

Σnn

 .

Next, again by analogy with the proof of Theorem 1, we define

Λ̂ = Σ̂diag + Σθθ − ΣθMΣ−1
MMΣT

θM ,

Âu = Λ̂−1
(
Σθu − ΣθMΣ−1

MMΣMu

)
,

Âv = Λ̂−1
(
Σθv − ΣθMΣ−1

MMΣMv

)
,

and then finding a linear equilibrium is equivalent to solving the quadratic equation

aγ2 + bγ + c = 0,
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where

a = −ÂTv Σ̂diagÂv,

b = ÂTv

(
2Σ̂diag + Λ̂

)
Âu + ΣuMΣ−1

MMΣMv − σuv,

c = V ar(ÂTu θ − u|θM ).

Since by definition γ = 1/βD, solving the above quadratic equation is equivalent to solving the

quadratic equation

cβ2
D + bβD + a = 0,

which turns out to be a more convenient characterization that we will proceed with. Similarly to

the proof of Theorem 1, we also have a simple expression for the vector of strategies α:

α = Âv/βD − Âu.

Step 2. Let us now consider the entire sequence of markets, and restore superscript (m) for the

variables. From the simplifying assumption that V ar(θ; θM ;u) is full rank, it follows that both

V ar(θ|θM ) and V ar(θM |θ) are full rank, and thus invertible.

As m→∞, Σ̂
(m)
diag → 0. Thus,

Λ̂(m) → Σθθ − ΣθMΣ−1
MMΣT

θM = V ar(θ|θM ),

Â(m)
u → V ar(θ|θM )−1

(
Σθu − ΣθMΣ−1

MMΣMu

)
= V ar(θ|θM )−1Cov(θ, u|θM ),

Â(m)
v → V ar(θ|θM )−1

(
Σθv − ΣθMΣ−1

MMΣMv

)
= V ar(θ|θM )−1Cov(θ, v|θM ).

Therefore,

a(m) → 0,

b(m) → Cov(v, θ|θM )V ar(θ|θM )−1V ar(θ|θM )V ar(θ|θM )−1Cov(θ, u|θM ) + ΣuMΣ−1
MMΣMv − σuv

= Cov(v, θ|θM )V ar(θ|θM )−1Cov(θ, u|θM )− Cov(u, v|θM )

= −Cov(u, v|θ, θM ),

c(m) → V ar
(
Cov(u, θ|θM )V ar(θ|θM )−1θ − u|θM

)
= V ar (E[u|θ, θM ]− u|θM )

= V ar (u|θ, θM ) .

Note that these convergence results imply that β
(m)
D converges to some finite value, since

limm→∞ c
(m) = V ar(u|θ, θM ) > 0 (where the last inequality is due to Assumption 2L). If Cov(u, v|θ, θM ) >

0, then limm→∞ β
(m)
D = V ar(u|θ, θM )−1Cov(u, v|θ, θM ). If Cov(u, v|θ, θM ) ≤ 0, then limm→∞ β

(m)
D =

0. We now consider the limiting behavior of price p(m) in these two cases separately.
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Step 3, Case Cov(u, v|θ, θM) > 0. Note first that

E[v|θ, θM , u] = E[v|θM ]

+ Cov(v, θ|θM )V ar(θ|θM )−1 (θ − E[θ|θM ])

+ Cov(v, u|θ, θM )V ar(u|θ, θM )−1 (u− E[u|θ, θM ])

= E[v|θM ]

+ Cov(v, θ|θM )V ar(θ|θM )−1 (θ − E[θ|θM ])

+ Cov(v, u|θ, θM )V ar(u|θ, θM )−1

×
(
u− E[u|θM ]− Cov(u, θ|θM )V ar(θ|θM )−1(θ − E[θ|θM ])

)
,

where the second equality follows from E[u|θ, θM ] = E[u|θM ] + Cov(u, θ|θM )V ar(θ|θM )−1(θ −
E[θ|θM ]). Thus, E[v|θ, θM , u] is a linear function of θ, θM , and u:

E[v|θ, θM , u] = wTMθM + wTθ θ + wuu,

where weights w are as follows:

wTM = Cov(v, θM )V ar(θM )−1

− Cov(v, θ|θM )V ar(θ|θM )−1Cov(θ, θM )V ar(θM )−1

− Cov(v, u|θ, θM )V ar(u|θ, θM )−1Cov(u, θM )V ar(θM )−1

+ Cov(v, u|θ, θM )V ar(u|θ, θM )−1Cov(u, θ|θM )V ar(θ|θM )−1Cov(θ, θM )V ar(θM )−1;

wTθ = Cov(v, θ|θM )V ar(θ|θM )−1

− Cov(v, u|θ, θM )V ar(u|θ, θM )−1Cov(u, θ|θM )V ar(θ|θM )−1;

wu = Cov(v, u|θ, θM )V ar(u|θ, θM )−1.

Next, price p(m)(θ, θM , u) in market m can be expressed as

p(m)(θ, θM , u) = β
(m)T
M θM + β

(m)
D

(
α(m)T θ + u

)
= β

(m)T
M θM + β

(m)
D α(m)T θ + β

(m)
D u.

To prove the statement of the theorem for this case, note that

E

[(
p(m)(θ, θM , u)− E[v|θ, θM , u]

)2
]

=

 β
(m)
M − wM

β
(m)
D α(m) − wθ
β

(m)
D − wu


T

V ar


 θM

θ

u



 β

(m)
M − wM

β
(m)
D α(m) − wθ
β

(m)
D − wu

 .

Thus, it is sufficient to show that as m grows, β
(m)
D → wu, β

(m)
D α(m) → wθ, and β

(m)
M → wM .

The first convergence result is immediate:

lim
m→∞

β
(m)
D = V ar(u|θ, θM )−1Cov(u, v|θ, θM ) = wu.
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Next:

lim
m→∞

β
(m)
D α(m) = lim

m→∞
Âv − β(m)

D Âu

= V ar(θ|θM )−1Cov(θ, v|θM )

−V ar(u|θ, θM )−1Cov(u, v|θ, θM )V ar(θ|θM )−1Cov(θ, u|θM )

= wθ.

Finally:

lim
m→∞

β
(m)
M = lim

m→∞
Σ−1
MM

(
ΣMv − ΣT

θM Â
(m)
v

)
− β(m)

D Σ−1
MM

(
ΣMu − ΣT

θM Â
(m)
u

)
= Σ−1

MM

(
ΣMv − ΣT

θMV ar(θ|θM )−1Cov(θ, v|θM )
)

− V ar(u|θ, θM )−1Cov(u, v|θ, θM )Σ−1
MM

(
ΣMu − ΣT

θMV ar(θ|θM )−1Cov(θ, u|θM )
)

= V ar(θM )−1Cov(θM , v)

− V ar(θM )−1Cov(θ, θM )TV ar(θ|θM )−1Cov(θ, v|θM )

− V ar(u|θ, θM )−1Cov(u, v|θ, θM )V ar(θM )−1Cov(θM , u)

+ V ar(u|θ, θM )−1Cov(u, v|θ, θM )V ar(θM )−1Cov(θ, θM )TV ar(θ|θM )−1Cov(θ, u|θM )

= wM .

Step 3, Case Cov(u, v|θ, θM) ≤ 0. In this case, note that

E[v|θ, θM ] = E[v|θM ]

+ Cov(v, θ|θM )V ar(θ|θM )−1 (θ − E[θ|θM ]) .

Thus, E[v|θ, θM ] is a linear function of θ and θM :

E[v|θ, θM ] = wTMθM + wTθ θ,

where weights w are as follows:

wTM = Cov(v, θM )V ar(θM )−1

− Cov(v, θ|θM )V ar(θ|θM )−1Cov(θ, θM )V ar(θM )−1;

wTθ = Cov(v, θ|θM )V ar(θ|θM )−1.

As before, price p(m)(θ, θM , u) in market m can be expressed as

p(m)(θ, θM , u) = β
(m)T
M θM + β

(m)
D

(
α(m)T θ + u

)
= β

(m)T
M θM + β

(m)
D α(m)T θ + β

(m)
D u.

To prove the statement of the theorem for this case, it is thus sufficient to show that as m

grows, β
(m)
D → 0, β

(m)
D α(m) → wθ, and β

(m)
M → wM .

The first convergence result, β
(m)
D → 0, was proven at the end of Step 2 above.
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Next,

lim
m→∞

β
(m)
D α(m) = lim

m→∞
Âv − β(m)

D Âu

= V ar(θ|θM )−1Cov(θ, v|θM )

−
[

lim
m→∞

β
(m)
D

]
V ar(θ|θM )−1Cov(θ, u|θM )

= V ar(θ|θM )−1Cov(θ, v|θM )

= wθ.

Finally,

lim
m→∞

β
(m)
M = lim

m→∞
Σ−1
MM

(
ΣMv − ΣT

θM Â
(m)
v

)
− β(m)

D Σ−1
MM

(
ΣMu − ΣT

θM Â
(m)
u

)
= lim

m→∞
Σ−1
MM

(
ΣMv − ΣT

θM Â
(m)
v

)
= V ar(θM )−1Cov(θM , v)

− V ar(θM )−1Cov(θ, θM )TV ar(θ|θM )−1Cov(θ, v|θM )

= wM .

Appendix C: Proof of Theorem 3

Step 1. In addition to the markets indexed m = 1, 2, . . . , we consider the alternative market

which includes s groups of traders i = 1, . . . , s. The size of group i is `i and each trader of group

i receives signal θi. In this alternative market, the market maker receives signal (θL; θM ). We use

superscript (m) to refer to the variables in the market (m), and superscript (alt) for the variables

in the alternative market. We know from Theorem 1 that unique linear equilibria exist, both in

the the sequence of markets, and in the alternative market.

As before,

Σ̂
(alt)
diag =


1
`1

Σ11 0 · · · 0

0 1
`2

Σ22 0
...

... 0
. . . 0

0 · · · 0 1
`s

Σss


and

Σ̂
(m)
diag =



1

`
(m)
1

Σ11 0 · · · 0

0 1

`
(m)
2

Σ22 0
...

... 0
. . . 0

0 · · · 0 1

`
(m)
n

Σnn


.

Note that

Σ̂
(m)
diag → Σ̂

(∞)
diag :=

(
Σ̂

(alt)
diag 0

0 0

)
.
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We could proceed by showing various convergence results directly, by matrix manipulation, as

in the proof of the special case of Theorem 2 in Appendix B. However, it turns out that the proof

becomes simpler and more intuitive if instead we follow the methodology of the proof of the general

case of Theorem 2 in the online appendix, introduce auxiliary random variables, and interpret

various matrices in the proof as covariance matrices of various combinations of these auxiliary

random variables and the random variables in the model.

Specifically, for each market m, we introduce a random vector θ̂(m), which is independent of

the other random variables in the model, and is distributed normally with mean 0 and covariance

matrix Σ̂
(m)
diag. We also introduce a random vector θ̂S , which is independent of the other random

variables in the model, and is distributed normally with mean 0 and covariance matrix Σ̂
(alt)
diag .

Finally, we introduce a random vector θ̂(∞), which is defined as θ̂(∞) = (θ̂S ; 0), and is therefore

distributed normally with mean 0 and covariance matrix Σ̂
(∞)
diag.

First let us focus on the linear equilibrium in market (m). We have

Λ̂(m) = Σ̂
(m)
diag + V ar(θ|θM ) = V ar(θ + θ̂(m)|θM ),

Â(m)
u = (Λ̂(m))−1Cov(θ, u|θM ),

Â(m)
v = (Λ̂(m))−1Cov(θ, v|θM ).

Finding the linear equilibrium is equivalent to solving the quadratic equation

c(m)(β
(m)
D )2 + b(m)β

(m)
D + a(m) = 0,

where

a(m) = −(Â(m)
v )T Σ̂

(m)
diagÂ

(m)
v ,

b(m) = (Â(m)
v )T

(
2Σ̂

(m)
diag + Λ̂(m)

)
Â(m)
u − Cov(u, v|θM ),

c(m) = V ar((Â(m))Tu θ − u|θM ).

Similarly, there exists a unique linear equilibrium of the alternative market. Let

Λ̂(alt) = Σ̂
(alt)
diag + V ar(θS |θM , θL) = V ar(θS + θ̂S |θM , θL),

Â(alt)
u = (Λ̂(alt))−1Cov(θS , u|θM , θL),

Â(alt)
v = (Λ̂(alt))−1Cov(θS , v|θM , θL).

Finding the linear equilibrium is equivalent to solving the quadratic equation

c(alt)(β
(alt)
D )2 + b(alt)β

(alt)
D + a(alt) = 0,

where

a(alt) = −(Â(alt)
v )T Σ̂

(alt)
diag Â

(alt)
v ,

b(alt) = (Â(alt)
v )T

(
2Σ̂

(alt)
diag + Λ̂(alt)

)
Â(alt)
u − Cov(u, v|θM , θL),

c(alt) = V ar((Â(alt))Tu θ − u|θM , θL).
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The equilibrium price in the market (m) is

p(m) = (β
(m)
M )T θM + β

(m)
D

(
(α(m))T θ(m) + u

)
= (β

(m)
M )T θM + β

(m)
D

(
(α

(m)
S )T θ

(m)
S + (α

(m)
L )T θ

(m)
L + u

)
,

where we “decompose” the vector of coefficients α(m) as α(m) =
(
α

(m)
S ;α

(m)
L

)
.

The equilibrium price in the alternative market is

p(alt) = (β
(alt)
M )T θ

(alt)
M + β

(alt)
D

(
(α(alt))T θS + u

)
= (β

(alt)
M,M )T θM + (β

(alt)
M,L)T θL + β

(alt)
D

(
(α(alt))T θS + u

)
,

where θ
(alt)
M = (θM ; θL) and β

(alt)
M is “decomposed” as β

(alt)
M = (β

(alt)
M,M ;β

(alt)
M,L).

We will show in Step 2 that β
(m)
D → β

(alt)
D , and then in Step 3 we will show that β

(m)
M → β

(alt)
M,M ,

β
(m)
D α

(m)
L → β

(alt)
M,L , and β

(m)
D α

(m)
S → β

(alt)
D α(alt). By the same argument as in Step 3 of the proof of

the special case of Theorem 2 in Appendix B, showing these four convergence results is sufficient

to prove the statement of Theorem 3.

Step 2. First, we show that the coefficients of the quadratic equation that β
(m)
D satisfies converge

to those of the quadratic equation that β
(alt)
D satisfies. As the coefficient on (β

(alt)
D )2 in the latter

equation is positive (as shown in Step 5 on the proof of Theorem 1 in Appendix A), this convergence

implies that β
(m)
D converges to β

(alt)
D .

Step 2(a). We first show that a(m) → a(alt). We have

Σ̂
(m)
diag → Σ̂

(∞)
diag := V ar((θ̂S ; 0)),

thus

Λ̂(m) → Λ̂(∞) := V ar((θS + θ̂S ; θL)|θM ),

and, as Λ̂(∞) is positive definite (which follows from Assumption 2H),

Â(m)
v → Â(∞)

v := (Λ̂(∞))−1Cov(θ, v|θM )

= V ar((θS + θ̂S ; θL)|θM )−1Cov((θS + θ̂S ; θL), v|θM ).

This identity implies that for any (fixed) vectors θ̃S (of the same dimension as random vectors θS

and θ̂S) and θ̃L (of the same dimension as random vector θL), we have

(Â(∞)
v )T (θ̃S ; θ̃L) = E[v|θM = 0, θS + θ̂S = θ̃S , θL = θ̃L]. (18)

Now, note that

a(m) → a(∞) := −(Â(∞)
v )T Σ̂

(∞)
diagÂ

(∞)
v

= −(Â(∞)
v )TV ar((θ̂S ; 0))Â(∞)

v

= −V ar
(

(Â(∞)
v )T (θ̂S ; 0)

)
.
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Likewise, for any (fixed) vector θ̃S (of the same dimension as θS and θ̂S), we have

(Â(alt)
v )T θ̃S = E[v|θM = 0, θS + θ̂S = θ̃S , θL = 0]. (19)

Also,

a(alt) = −(Â(alt)
v )T Σ̂

(alt)
diag Â

(alt)
v

= −(Â(alt)
v )TV ar(θ̂S)Â(alt)

v

= −V ar
(

(Â(alt)
v )T θ̂S

)
.

Equations (18) and (19) imply that for every realization θ̃S of random vector θ̂S ,

(Â(∞)
v )T (θ̃S ; 0) = E[v|θM = 0, θS + θ̂S = θ̃S , θL = 0]

= (Â(alt)
v )T θ̃S ,

and thus

V ar
(

(Â(∞)
v )T (θ̂S ; 0)

)
= V ar

(
(Â(alt)

v )T θ̂S

)
and so a(m) → a(∞) = a(alt).

Step 2(b). Next, we show that b(m) → b(alt). In the limit,

b(m) → b(∞) := (Â(∞)
v )T

(
2Σ̂

(∞)
diag + Λ̂(∞)

)
Â(∞)
u − Cov(u, v|θM ),

where

Â(∞)
u := lim

m→∞
Â(m)
u = (Λ̂(∞))−1Cov(θ, u|θM ).

Similarly to equations (18) and (19) above, for any fixed vectors θ̃S and θ̃L, we have

(Â(∞)
u )T (θ̃S ; θ̃L) = E[u|θM = 0, θS + θ̂S = θ̃S , θL = θ̃L]; (20)

(Â(alt)
u )T θ̃S = E[u|θM = 0, θS + θ̂S = θ̃S , θL = 0]. (21)

Note that

(Â(∞)
v )T Σ̂

(∞)
diagÂ

(∞)
u = (Â(∞)

v )TV ar((θ̂S ; 0))Â(∞)
u

= Cov
(

(Â(∞)
v )T (θ̂S ; 0), (Â(∞)

u )T (θ̂S ; 0)
)

and

(Â(alt)
v )T Σ̂

(alt)
diag Â

(alt)
u = (Â(alt)

v )TV ar(θ̂S)Â(alt)
u

= Cov
(

(Â(alt)
v )T θ̂S , (Â

(alt)
u )T θ̂S

)
.

By equations (18)–(21), for any realization θ̃S of random vector θ̂S ,

(Â(∞)
v )T (θ̃S ; 0) = (Â(alt)

v )T θ̃S and

(Â(∞)
u )T (θ̃S ; 0) = (Â(alt)

u )T θ̃S ,
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and so

(Â(∞)
v )T Σ̂

(∞)
diagÂ

(∞)
u = (Â(alt)

v )T Σ̂
(alt)
diag Â

(alt)
u .

Next, note that

(Â(∞)
v )T Λ̂(∞)Â(∞)

u = Cov(v, (θS + θ̂S ; θL)|θM )[V ar((θS + θ̂S ; θL)|θM )]−1Cov((θS + θ̂S ; θL), u|θM )

and so

(Â(∞)
v )T Λ̂(∞)Â(∞)

u − Cov(u, v|θM ) = −Cov(u, v|θM , θL, θS + θ̂S).

Similarly,

(Â(alt)
v )T Λ̂(alt)Â(alt)

u = Cov(v, θS + θ̂S |θM , θL)[V ar(θS + θ̂S |θM , θL)]−1Cov(θS + θ̂S , u|θM , θL),

and so

(Â(alt)
v )T Λ̂(alt)Â(alt)

u − Cov(u, v|θM , θL) = −Cov(u, v|θM , θL, θS + θ̂S).

Therefore, we have

b(m) → b(∞) = 2(Â(∞)
v )T Σ̂

(∞)
diagÂ

(∞)
u +

(
(Â(∞)

v )T Λ̂(∞)Â(∞)
u − Cov(u, v|θM )

)
= 2(Â(alt)

v )T Σ̂
(alt)
diag Â

(alt)
u − Cov(u, v|θM , θL, θS + θ̂S)

= b(alt).

Step 2(c). Finally, we show that c(m) → c(alt). We have

c(m) → c(∞) := V ar((Â(∞)
u )T θ − u|θM )

and

c(alt) = V ar((Â(alt)
u )T θS − u|θM , θL).

Let random variable χ be the residual from the projection of u on (θS + θ̂S ; θL; θM ). By

construction, χ is orthogonal to θL and θM and thus, by the properties of the normal distribution,

is independent of those two random variables. Recall that θ̂S was also chosen to be independent of

θL and θM .

Next,

V ar((Â(∞)
u )T θ − u|θM ) = V ar

(
u− (Â(∞)

u )T (θS + θ̂S ; θL) + (Â(∞)
u )T (θ̂S ; 0)|θM

)
= V ar

(
χ+ (Â(∞)

u )T (θ̂S ; 0)|θM
)

and

V ar((Â(alt)
u )T θS − u|θM , θL) = V ar

(
u− (Â(alt)

u )T (θS + θ̂S) + (Â(alt)
u )T θ̂S |θM , θL

)
= V ar

(
χ+ (Â(alt)

u )T θ̂S |θM , θL
)
.
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Since χ and θ̂S are both independent of θM and θL, we have

V ar
(
χ+ (Â(∞)

u )T (θ̂S ; 0)|θM
)

= V ar
(
χ+ (Â(∞)

u )T (θ̂S ; 0)
)

and

V ar
(
χ+ (Â(alt)

u )T θ̂S |θM , θL
)

= V ar
(
χ+ (Â(alt)

u )T θ̂S

)
.

Take any realizations χ̃ and θ̃S of random variables χ and θ̂S . From equations (20) and (21) in

Step 2(b), we have

χ̃+ (Â(∞)
u )T (θ̃S ; 0) = χ̃+ E[u|θM = 0, θS + θ̂S = θ̃S , θL = 0]

= χ̃+ (Â(alt)
u )T θ̃S ,

and so

V ar
(
χ+ (Â(∞)

u )T (θ̂S ; 0)
)

= V ar
(
χ+ (Â(alt)

u )T θ̂S

)
and thus

c(m) → c(∞) = c(alt).

Step 3. We now show that β
(m)
M → β

(alt)
M,M , β

(m)
D α

(m)
L → β

(alt)
M,L , and β

(m)
D α

(m)
S → β

(alt)
D α(alt). The

arguments below rely on Assumption 2H, which implies that various conditional expectations that

we compute below are guaranteed to be well-defined. They also rely on the result we showed in

the previous step, β
(∞)
D = β

(alt)
D .

First, note that for any θ̃S , (α
(m)
S )T θ̃S = (α(m))T (θ̃S ; 0), and so

lim
m→∞

β
(m)
D (α(m))T (θ̃S ; 0) = β

(∞)
D

(
(Â(∞)

v )T /β
(∞)
D − (Â(∞)

u )T
)

(θ̃S ; 0)

= E[v − β(∞)
D u|θM = 0, θS + θ̂S = θ̃S , θL = 0]

= β
(alt)
D (α

(alt)
S )T θ̃S .

Thus, β
(m)
D α

(m)
S → β

(alt)
D α(alt).

Next, we have

β
(m)
M → β

(∞)
M := Σ−1

MM

(
ΣMv − ΣT

θMA
(∞)
v

)
− β(∞)

D Σ−1
MM

(
ΣMu − ΣT

θMA
(∞)
u

)
,

and so for any θ̃M , we have

(β
(∞)
M )T θ̃M = E[v − β(∞)

D u|θM = θ̃M , θS + θ̂S = 0, θL = 0].

Also, similarly to the above expression for β
(∞)
D α

(∞)
S , for any θ̃L, we have

β
(∞)
D (α

(∞)
L )T θ̃L = E[v − β(∞)

D u|θM = 0, θS + θ̂S = 0, θL = θ̃L].

Thus,

(β
(∞)
M ;β

(∞)
D α

(∞)
L )T (θ̃M ; θ̃L) = E[v − β(∞)

D u|θM = θ̃M , θS + θ̂S = 0, θL = θ̃L].
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Analogously to the expression for (β
(∞)
M )T θ̃M , we also have

(β
(alt)
M )T (θ̃M ; θ̃L) = E[v − β(alt)

D u|θS + θ̂S = 0, (θM ; θL) = (θ̃M ; θ̃L)].

= (β
(∞)
M ;β

(∞)
D α

(∞)
L )T (θ̃M ; θ̃L).

Thus, β
(m)
M → β

(alt)
M,M and β

(m)
D α

(m)
L → β

(alt)
M,L , and combining all the convergence results above and

using the same argument as in Step 3 of the proof of the special case of Theorem 2 in Appendix B,

we conclude the proof of Theorem 3.
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