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1 Introduction

Financial markets have become highly institutionalized. For example, individual investors were

holding directly 47.9% of U.S. stocks in 1980, but only 21.5% in 2007, with most of the remain-

der held by financial institutions such as mutual funds and pension funds (French (2008)). The

portfolios of these institutions are chosen by professional asset managers.

The institutionalization of financial markets has stimulated research on the performance of

professional managers and their effects on equilibrium asset prices and market efficiency. A vast

literature examines whether actively-managed funds outperform passively-managed ones. A related

literature investigates whether the growth of passive funds has made markets less efficient, and

whether efficiency increases in the ratio of active to passive.1

Drawing a sharp distinction between passive funds constrained to hold specific portfolios, and

active funds investing without constraints, is in some ways misleading. This is because much of

active management is done around benchmark portfolios, with managers being constrained in how

much they can deviate from them. The constraints can bound a manager’s tracking error (standard

deviation of the difference between the manager’s portfolio’s return and the return of a benchmark

portfolio), or the difference between the weight that the manager allocates to each asset class,

geographical area, or industry sector, and the corresponding benchmark weight.2 Viewing asset

management as a continuum between active and passive, depending on the tightness of managers’

constraints, seems a better description of reality. In this paper we adopt that alternative view and

show that its implications for equilibrium asset prices and market efficiency differ significantly from

the conventional view.

A simple example helps motivate our analysis. Suppose that some asset managers must keep

their portfolio weight in each industry sector within 5% of the sector’s weight in a benchmark

portfolio. Suppose also that a sector that these managers view as overvalued has 10% weight in

the benchmark, while the managers give it 5% weight. If the sector doubles in value, reaching 20%

weight in the benchmark, then its weight in the managers’ portfolio doubles to 10%, but must rise

1See, for example, Elton and Gruber (2013) for a survey of the literature on mutual-fund performance, and
Franzoni, Ben-David, and Moussawi (2017) for a survey of exchange-traded funds (ETFs) and their effects on market
performance.

2For a discussion of tracking-error constraints and their implications for financial markets, see the 2003 report by
the Committee on the Global Financial System (BIS (2003)). According to that report, bounds on tracking error
are on average 1% for actively-managed bond portfolios and between 2-6% for actively-managed stock portfolios
(p.20). The Norwegian Sovereign Wealth Fund (NBIM), one of the largest institutional investors globally, reports
the following regarding its tracking-error constraint: “The Ministry of Finance has set limits for how much risk
NBIM may take in its active management of the fund. The most important limit is expressed as expected relative
volatility (tracking error) and puts a ceiling on how much the return on the fund may be expected to deviate
from the return on the benchmark portfolio. The expected tracking error limit is 125 basis points, or 1.25%.”
(https://www.nbim.no/en/investments/investment-risk/)
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further to 15% so that the constraint is met. Buying pressure by the managers amplifies the sector’s

appreciation, raising its volatility. Overvalued sectors thus have high volatility, in addition to their

low expected return, causing the risk-return relationship to become weak or inverted, consistent

with empirical evidence.3 Amplification does not arise when managers are constrained to hold the

benchmark portfolio, or when they are fully unconstrained. The example implies additionally that

overvaluation is harder to correct than undervaluation. Indeed, managers must stick closer to the

benchmark in overvalued sectors: a 5% difference in weight allows less leeway in relative terms when

the sector’s benchmark weight is large. The links between portfolio constraints of asset managers

and amplification or overvaluation have been recognized by policy-makers.4

In our model’s basic version, described in Section 2, investors can invest in a riskless and a risky

asset over an infinite horizon and continuous time. The riskless rate is constant, and the dividend

flow per share of the risky asset follows a square-root process. Investors maximize a mean-variance

objective over instantaneous changes in wealth. Some investors are unconstrained, while others

face a constraint limiting the volatility or the dollar value of the deviation between their risky-asset

position and a benchmark position. Investors may want to deviate from the benchmark position

to exploit price distortions caused by noise traders.

Section 3 derives the equilibrium price of the risky asset taking the constraint as exogenous

and not distinguishing between investors and the asset managers they employ. Two polar cases

are analyzed first: no constraint, in which case all investors are fully active; and an infinitely tight

constraint, in which case constrained investors must hold the benchmark position and hence are

fully passive. In both cases, we derive a novel closed-form solution for the price and show that it

is affine in the dividend flow. An increase in noise-trader demand raises the price and lowers the

asset’s expected return. It does not affect, however, the asset’s return volatility: the price becomes

more sensitive to the dividend flow, but the effect is proportional to the increase in the price level.

Moving from no constraint (all investors fully active) to an infinitely tight constraint (constrained

investors fully passive) exacerbates the price distortions created by noise traders. This is because

the constraint prevents constrained investors from absorbing noise-trader demand. The constraint

does not affect return volatility, however, because volatility is independent of demand.

Section 3 next analyzes the general case. The equilibrium involves a region where the constraint

3References to the empirical literature are in Section 3.4.
4For example, the BIS (2003) report notes: “Overvalued assets/stocks tend to find their way into major indices,

which are generally capitalization-weighted and therefore will more likely include overvalued securities than under-
valued securities. Asset managers may therefore need to buy these assets even if they regard them as overvalued;
otherwise they risk violating agreed tracking errors.” (p.19). In a similar spirit, a 2015 IMF working paper (Jones
(2015)) notes: “Another source of friction capable of amplifying bubbles stems from the captive buying of securities
in momentum-biased market capitalization-weighted financial benchmarks. Underlying constituents that rise most
in price will see their benchmark weights increase irrespective of fundamentals, inducing additional purchases from
fund managers seeking to minimize benchmark tracking error.”
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does not bind, and a region where it binds. The constraint binds for high values of the asset’s div-

idend flow because the asset’s price and volatility per share are high. The price in each region

is characterized by a second-order ordinary differential equation (ODE), with smooth-pasting be-

tween regions. While the solution to the ODE system is not linear and not closed-form, we show

analytically that it exists under general conditions and has a number of key properties.

One property of the price function is that it is convex in the dividend flow when noise-trader

demand is high, and concave when demand is low. The convexity reflects the amplification effect.

The concavity reflects the opposite dampening effect: since constrained investors give higher weight

to an undervalued sector relative to the sector’s benchmark weight, they need to sell the sector when

it appreciates, dampening the appreciation. Amplification and dampening generate an inverted

risk-return relationship, which we interpret as a cross-sectional one by extending our model to

multiple risky assets: assets with high noise-trader demand have high volatility and low expected

return, while assets with low demand have low volatility and high expected return. Moving from

no constraint (all investors fully active) to intermediate levels of the constraint raises the volatility

of high-demand assets and lowers that of low-demand assets. The same occurs when moving from

an infinitely tight constraint (constrained investors fully passive) to an intermediate one.

A second property of the price function is that it is convex in noise-trader demand: high demand

raises the price more than low demand lowers it. Intuitively, since high-demand assets have higher

volatility per share than low-demand assets, investors are less willing to trade against the former

assets’ overvaluation than against the latter assets’ undervaluation. The asymmetry arises even

without the constraint, but becomes significantly more pronounced with the constraint. Because

of the asymmetry, portfolios with more heterogeneous noise-trader demand across their component

assets earn lower expected returns than portfolios with less heterogeneity and same average demand.

Section 4 endogenizes the constraint in a contracting model and revisits the asset-pricing anal-

ysis. We interpret the unconstrained investors as observing noise-trader demand and the dividend

flow, and the constrained investors as being uninformed. Each uninformed investor can employ

an asset manager, who may be skilled and observe these variables, or unskilled and observe an

uninformative signal that she wrongly treats as informative. A contract consists of a fee that can

depend on the investor’s wealth, and a set in which the manager’s deviation from a benchmark

position must lie. We consider contracting over two periods, interpreting investors and managers

as overlapping generations, and take the limit when the time between periods becomes small.

The optimal fee aligns the manager’s risk preferences with those of the investor. The investor

must guard, however, against the possibility that the manager is unskilled, and does so by restricting

the manager’s deviation from the benchmark position. The optimal set in which the deviation must

lie is an interval ranging from zero to a positive bound. This yields the constraint assumed in Section
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3. The optimal bound is infinite (no constraint) when the probability that the manager is skilled

is one, and converges to zero (infinitely tight constraint) when that probability goes to zero.

The asset-pricing analysis of Section 3 carries through to an endogenous constraint. Endogeniz-

ing the constraint’s parameters imposes tighter structure and allows us to express the asset-pricing

effects in terms of more primitive quantities, such as the fraction of unskilled managers. In a nu-

merical example, we find that the spread in expected return and volatility across assets with high

and low noise-trader demand can be significant even for a moderate fraction of unskilled managers.

An additional advantage of endogenizing the constraint is that we can determine effective cap-

ital. Suppose that ten trillion dollars are invested through asset managers, and the fraction of

unskilled managers is 20%. How much of the ten trillion if invested through skilled managers with-

out any constraints would result in the same degree of market efficiency? That amount is lower

than eight trillion because the presence of unskilled managers imposes constraints on the skilled

ones. We find that the amount is about four trillion. Hence, abstracting away from managers’

constraints can overstate significantly the available capital to correct price distortions.

Our paper relates to several strands of work on asset management and asset pricing. One litera-

ture concerns the performance of active versus passive funds, and their impact on market efficiency.

That literature builds on the seminal paper by Grossman and Stiglitz (1980), in which informed

and uninformed investors trade with noise traders, there is a cost to becoming informed, and price

informativeness increases in the fraction of the informed. In Subrahmanyam (1991), the introduc-

tion of index futures induces noise traders to trade the index rather than the component assets.

This lowers liquidity for the component assets, and has ambiguous effects on market efficiency.

Related mechanisms are at play in Cong and Xu (2016) and Bhattacharya and O’Hara (2018), who

study how ETFs affect market efficiency and liquidity, and Bond and Garcia (2019) who study the

effects of lowering the costs of passive investing. Pastor and Stambaugh (2012) and Stambaugh

(2014) explain the decline in active funds’ expected returns based on the increase in the assets they

manage and the decline in noise trading, respectively.5 In Garleanu and Pedersen (2018), active

funds’ expected returns decline when investors are better able to locate skilled managers. In these

papers, active funds invest without investor-imposed constraints, while constraints are central to

our analysis.

In emphasizing constraints, our paper is related to the literature on the limits of arbitrage

(see Gromb and Vayanos (2010) for a survey). In that literature, distortions are more pronounced

when arbitrageurs perform poorly and become more constrained. Moreover, poor performance is

generally associated with down markets (e.g., He and Krishnamurthy (2012, 2013), Brunnermeier

5Berk and Green (2004) show that decreasing returns to scale at the level of individual funds can explain why
investors flow into funds with good past performance even though performance does not persist.
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and Sannikov (2014)). By contrast, distortions in our model are more pronounced for overvalued

assets and during up markets.

Another related literature studies asset management contracts. Within its strand that takes

asset prices as given, our paper relates most closely to He and Xiong (2013), in which investors

constrain managers’ choice of assets to better incentivize them to acquire information.6 Investors

in our model constrain managers to guard against the possibility that they are unskilled. Our

contracting analysis is in the spirit of the literature on optimal delegation (Alonso and Matouschek

(2008), Amador and Bagwell (2013)). We draw the connections to that literature in Section 4.

Within the strand of the asset-management-contracts literature that endogenizes prices, our

paper relates most closely to papers that examine the effects of compensating managers based on

their performance relative to a benchmark portfolio. A common theme in several papers is that

such compensation raises the price of the benchmark portfolio and of assets covarying highly with it.

Brennan (1993), Basak and Pavlova (2013) and Buffa and Hodor (2018) show this result in settings

where managers derive direct utility from relative performance. Kapur and Timmermann (2005)

and Cuoco and Kaniel (2011) show a similar result in settings where managers receive a linear fee.

The latter paper also finds that the result can reverse when the fee has option-like components.

Kashyap, Kovrijnykh, Li, and Pavlova (2018) explore the result’s implications for real investment.7

Tighter constraints in our model can instead lower the price of the benchmark portfolio.

An alternative explanation for risk-return inversion is based on leverage constraints (Black

(1972), Frazzini and Pedersen (2014)): investors prefer assets with high CAPM beta because they

provide leverage, which investors cannot replicate by investing in low-beta assets and borrowing.

Leverage constraints generate a negative relationship between CAPM beta and alpha, but a positive

one between beta and expected return. In our model both relationships can be negative.

An alternative explanation for why portfolios with more heterogeneous demand across their

component assets earn lower expected returns is based on short-sale constraints and disagreement

between agents (Harrison and Kreps (1978), Scheinkman and Xiong (2003), Hong and Stein (2007)):

short-sale constraints prevent the pessimists’ views from being incorporated into the price. Our

model generates a similar relationship without short-sale constraints. It also predicts that the

relationship is stronger when managers’ constraints are tighter.

6Other papers on managerial moral hazard in aquiring information include Stoughton (1993), Admati and Pflei-
derer (1997), Li and Tiwari (2009), and Dybvig, Farnsworth, and Carpenter (2010). See also Bhattacharya and
Pfleiderer (1985), Starks (1987), Das and Sundaram (2002), Palomino and Prat (2003), Ou-Yang (2003) and Cade-
nillas, Cvitanic, and Zapatero (2007) for other contracting settings.

7Other papers on the equilibrium effects of benchmarking include Qiu (2017) and Cvitanic and Xing (2018). See
also Garcia and Vanden (2009), Gorton, He, and Huang (2010), Kyle, Ou-Yang, and Wei (2011), Malamud and
Petrov (2014), Sato (2016), Huang (2018) and Sockin and Xiaolan (2018) for other models that determine jointly
asset management contracts and equilibrium prices.
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2 Model

Time t is continuous and goes from zero to infinity. The riskless rate is exogenous and equal to

r > 0. A risky asset pays a dividend flow Dt per share and is in supply of θ shares. The price St

per share of the risky asset is determined endogenously in equilibrium.

The risky asset’s return per share in excess of the riskless rate is

dRsht ≡ Dtdt+ dSt − rStdt, (2.1)

and its return per dollar in excess of the riskless rate is

dRt ≡
dRsht
St

=
Dtdt+ dSt

St
− rdt. (2.2)

We refer to dRsht as share return, omitting that it is in excess of the riskless rate. We refer to dRt

as return, omitting that it is per dollar and in excess of the riskless rate.

The dividend flow Dt follows the square-root process

dDt = κ
(
D̄ −Dt

)
dt+ σ

√
DtdBt, (2.3)

where (κ, D̄, σ) are positive constants and Bt is a Brownian motion. The square-root specification

(2.3) allows for closed-form solutions, while also ensuring that dividends remain positive. A property

of the square-root specification that is key for our analysis is that the volatility (standard deviation)

of dividends per share Dt increases with the level of dividends. This property is realistic: if a firm

becomes larger and keeps the number of its shares constant, then its dividends per share become

more uncertain in absolute terms (but not necessarily as fraction of the firm’s size).8

Investors form a continuum with measure one. They are of two types: unconstrained investors

who can invest in the riskless and the risky asset without any limitations, and constrained investors

who are limited in the risk they can take. Unconstrained investors are in measure 1 − x ∈ (0, 1),

and constrained investors are in the complementary measure x. We denote by W1t and W2t the

wealth of an unconstrained and a constrained investor, respectively, and by z1t and z2t the number

of shares of the risky asset that they hold. In Section 3 we derive equilibrium asset prices taking

the constraint as exogenous. In Section 4 we endogenize the constraint in a contracting model,

8Dividends are often assumed to follow a geometric Brownian motion (GBM). Under the GBM specification, the
volatility of dividends per share is proportional to the dividend level. Hence, the volatility of dividends per share
increases with the dividend level, exactly as under the square-root specification. The two specifications have different
implications for the volatility of dividends per share as fraction of the dividend level. Under the GBM specification
that quantity is independent of the dividend level, while under the square-root specification it decreases with the
dividend level. We adopt the square-root over the GBM specification because of tractability.
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and revisit the equilibrium price properties. In the contracting model, constrained investors do not

observe the supply θ of the risky asset, which determines the asset’s expected return. They can

hire an asset manager, but are uncertain about the manager’s skill. Their optimal response to that

uncertainty is to limit the manager’s actions.

One interpretation of the assumption that constrained investors do not observe θ is that θ

includes demand by noise traders, which is unobservable. That is, θ is an observable number of

shares sold by the asset issuer minus an unobservable number of shares bought by noise traders.

We adopt this interpretation from now on. Under this interpretation, θ can take both positive and

negative values. Negative values arise when the demand by noise traders exceeds the supply by the

asset issuer.

At time t, investors choose their position in the risky asset to maximize the mean-variance

objective

Et(dWit)−
ρ

2
Vart(dWit), (2.4)

subject to the budget constraint

dWit = (Wit − zitSt) rdt+ zit(Dtdt+ dSt) = Witrdt+ zitdR
sh
t , (2.5)

where ρ is a risk-aversion coefficient common to all investors, i = 1 for unconstrained investors,

and i = 2 for constrained investors. The mean and variance in the objective (2.4) are computed

over the infinitesimal change in the investors’ wealth. That change is equal to the riskless rate paid

on wealth between t and t+ dt, plus the capital gains from the risky asset in excess of the riskless

rate. The capital gains are equal to the number of shares zit times the share return dRsht .

The constraint restricts the volatility of the constrained investors’ position z2t not to exceed a

bound L ≥ 0. We consider both the case where volatility is measured in absolute terms and the

case where volatility is measured relative to a benchmark position of η > 0 shares. We nest the

two cases in the constraint

1√
dt

√
Vart

[
(z2t − η)dRsht

]
≤ L, (2.6)

where η is non-negative and becomes zero when volatility is measured in absolute terms. In Ap-

pendix B we show that our main results remain the same under the alternative constraint

|z2t − η|St ≤ L, (2.7)
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which restricts the dollar value of the constrained investors’ position z2t not to deviate from the

dollar value of the benchmark position η ≥ 0 by more than L. Equation (2.6) can be interpreted as

a tracking-error constraint that restricts the volatility of portfolio return relative to a benchmark.

Equation (2.7) can be interpreted as a constraint that restricts portfolio weights relative to a

benchmark. We develop these interpretations in Appendix B.

Constrained investors combine elements from active and passive investing. They are active in

the sense that they have some leeway when choosing their position in the risky asset. They are

passive in the sense that they cannot deviate much from their benchmark. In Section 3, where we

derive equilibrium asset prices with the constraint (2.6), we begin with the two polar cases where

constrained investors are either fully active or fully passive. In Section 3.1 we assume L = ∞,

which implies that there is no constraint and that constrained investors are fully active. In Section

3.2 we instead assume L = 0, which implies that the constraint forces constrained investors to hold

η shares of the risky asset and to be fully passive. In Section 3.3 we turn to the general case where

L ∈ (0,∞), and show that there are important qualitative differences with the two polar cases.

Investors with the objective (2.4) can be interpreted as overlapping generations living over

infinitesimal periods. The generation born at time t is endowed with wealth W , invests in the

riskless and the risky asset from t to t + dt, consumes at t + dt and then dies. If preferences over

consumption are described by the Von Neumann-Morgenstern (VNM) utility function U , and if

all uncertainty is Brownian as is the case in equilibrium, utility maximization yields the objective

(2.4) with Wit = W and ρ = −U ′′(W )
U ′(W ) .

We endow investors with the mean-variance objective (2.4) rather than with expected utility over

an infinite stream of consumption because this simplifies the equilibrium analysis of the constraint

in the general case where L ∈ (0,∞). An additional advantage of the objective (2.4) is that it is

compatible with the contracting model of Section 4, which assumes two-period contracts between

overlapping generations of investors and managers, and takes the limit when the time between

periods becomes small. An earlier version of this paper (Buffa, Vayanos, and Woolley (2014))

derives the equilibrium when investors have negative exponential utility over an infinite stream of

consumption and are not subject to a constraint such as (2.6) or (2.7). In the polar cases studied in

Sections 3.1 and 3.2, the infinite-horizon objective yields near-identical closed-form solutions and

comparative statics as the mean-variance objective.
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3 Equilibrium with Exogenous Constraint

3.1 No Constraint

We first derive the equilibrium when L =∞. Constrained investors face no constraint and are iden-

tical to unconstrained investors. In the contracting model of Section 4, no constraint corresponds

to constrained investors having access only to skilled managers.

The equilibrium price St is a function of the dividend flow Dt, which is the only state vari-

able in the model. Denoting this function by S(Dt) and assuming that it is twice continuously

differentiable, we can write the share return dRsht as

dRsht = Dtdt+ dS(Dt)− rS(Dt)dt

=

[
Dt + κ(D̄ −Dt)S

′(Dt) +
1

2
σ2DtS

′′(Dt)− rS(Dt)

]
dt+ σ

√
DtS

′(Dt)dBt, (3.1)

where the second step follows from (2.3) and Ito’s lemma.

Using the budget constraint (2.5), we can write the objective (2.4) as

zitEt(dRsht )− ρ

2
z2
itVart(dR

sh
t ).

The first-order condition with respect to zit is

Et(dRsht ) = ρzitVart(dR
sh
t ). (3.2)

The expected share return Et(dRsht ) is the drift term in (3.1), and the share return variance

Vart(dR
sh
t ) is the square of the diffusion term.

Since unconstrained and constrained investors are identical, the market-clearing condition

(1− x)z1t + xz2t = θ (3.3)

implies z1t = z2t = θ. Each investor’s position is thus equal to the asset supply θ, which coincides

with the supply per investor since investors form a continuum with mass one. Setting zit = θ in

(3.2), we find the following ordinary differential equation (ODE) for the function S(Dt):

Dt + κ(D̄ −Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) = ρθσ2DtS
′(Dt)

2. (3.4)

The ODE (3.4) is second-order and non-linear, and must be solved over (0,∞). We require that

its solution S(Dt) has a derivative that converges to finite limits at zero and infinity. This yields

9



one boundary condition at zero and one at infinity.

We look for an affine solution to the ODE (3.4):

S(Dt) = a0 + a1Dt, (3.5)

where (a0, a1) are constant coefficients. This function satisfies the boundary conditions since its

derivative is constant. Substituting this function into (3.4) and identifying terms, we can compute

(a0, a1).

Proposition 3.1. Suppose L = ∞ and θ > − (r+κ)2

4ρσ2 . An affine solution S(Dt) = a0 + a1Dt to

(3.4) exists, with

a0 =
κ

r
a1D̄, (3.6)

a1 =
2

r + κ+
√

(r + κ)2 + 4ρθσ2
. (3.7)

Both S(Dt) and S′(Dt) are decreasing and convex functions of the supply θ of the risky asset.

The intuition for (3.6) and (3.7) is as follows. The coefficient a1 is the sensitivity S′(Dt) of the

price to changes in the dividend flow Dt. Consider a unit increase in Dt. When the supply θ of

the risky asset is equal to zero, (3.7) implies that the price St increases by a1 = 1
r+κ . This is the

present value of the increase in future expected dividends discounted at the riskless rate r. Indeed,

a unit increase in Dt raises the expected dividend flow Et(Dt′) at time t′ > t by e−κ(t′−t). Hence,

the present value of future expected dividends increases by∫ ∞
t

e−κ(t′−t)e−r(t
′−t)dt′ =

1

r + κ
.

When the supply θ of the risky asset is positive, the price St increases by a1 <
1

r+κ in response

to a unit increase in Dt. This is because the increase in Dt not only raises expected dividends, but

also makes them riskier due to the square-root specification of Dt. Moreover, since investors hold

a long position, the increase in risk makes them more willing to unwind their position and sell the

asset. This results in a smaller price increase than when θ = 0. When instead θ < 0, the investors

hold a short position, and the increase in risk makes them more willing to buy the asset. This

results in a larger price increase than when θ = 0, i.e., a1 >
1

r+κ . Equation (3.7) confirms that a1

decreases in θ.

The effect of θ on a1 is stronger when θ is small, implying that the price sensitivity S′(Dt) is

convex in θ. Convexity is related to a1 being decreasing in θ and bounded below by zero. Indeed,
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these properties imply that the derivative of a1 with respect to θ converges to zero when θ becomes

large (while it is negative for smaller values of θ).

The coefficient a0 is equal to the price level when the dividend flow Dt is zero. If the mean-

reversion parameter κ were equal to zero, and hence the dividend flow were to stay at zero forever,

then a0 would be equal to zero. Because, however, κ is positive, and hence the dividend flow returns

with certainty to positive values, a0 is positive. Moreover, a0 inherits properties of a1 since the

larger a1 is, the more the price increases when the dividend flow becomes positive. In particular,

a0 is decreasing and convex in the supply θ of the risky asset, and so is the price St = a0 + a1Dt.

Corollary 3.1 examines how θ affects the asset’s expected return and the return volatility.

Corollary 3.1. Suppose L = ∞ and θ > − (r+κ)2

4ρσ2 . An increase in the risky asset’s supply θ

raises the asset’s conditional expected return Et(dRt) and leaves the return’s conditional volatility√
Vart(dRt) unaffected. The effects on the unconditional values E(dRt) of expected return and√
Var(dRt) of volatility are the same as on the conditional values.

Recall from (2.2) that the return of the risky asset is

dRt =
Dt

St
dt+

dSt
St
− rdt.

Return volatility is caused by the term dSt
St

, i.e., the capital gains per dollar invested. Since an

increase in θ lowers the sensitivity a1 of the price St to changes in the dividend flow Dt, it makes the

capital gains dSt = a1dDt per share less volatile. At the same time, the share price St = a0 + a1Dt

also decreases. Because θ has the same percentage effect on a0 and a1, the capital gains dSt
St

per

dollar invested do not change, and neither does return volatility
√

Vart(dRt). On the other hand,

expected return E(dRt) increases because of the term Dt
St
dt, i.e., the dividends per dollar invested.

An increase in θ does not affect the dividend flow Dt per share but lowers the share price St.

3.2 Infinitely Tight Constraint

We next derive the equilibrium when L = 0. The constraint is infinitely tight and forces constrained

investors to hold the benchmark position of η shares of the risky asset. In the contracting model

of Section 4, an infinitely tight constraint corresponds to constrained investors having access only

to unskilled managers. The benchmark position η corresponds to the position that constrained

investors require their manager to hold, and is related to their expectation of θ. Hence, comparative

statics with respect to θ holding η constant, such as those performed in this section, should be

interpreted as changes in the unobservable component of θ, which reflects noise-trader demand.

11



Since the constrained investors’ position z2t is equal to the benchmark position η, the market-

clearing condition (3.3) implies z1t = θ−xη
1−x . Substituting z1t into (3.2) for i = 1, we find the

ODE

Dt + κ(D̄ −Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) =
ρ(θ − xη)

1− x
σ2DtS

′(Dt)
2. (3.8)

The ODE (3.8) is identical to (3.4) except that supply θ is replaced by θ−xη
1−x . The solution S(Dt)

of the ODE can be derived from Proposition 3.1 with the same substitution.

Proposition 3.2. Suppose L = 0 and θ > xη − (1−x)(r+κ)2

4ρσ2 . An affine solution S(Dt) = a0 + a1Dt

to (3.8) exists, with a0 given by (3.6) and

a1 =
2

r + κ+
√

(r + κ)2 + 4ρ(θ−xη)
1−x σ2

. (3.9)

Relative to the case L =∞:

• S(Dt) is lower when θ > η, and higher when θ < η.

• S′(Dt) is lower when θ > η, and higher when θ < η.

Under an infinitely tight constraint (L = 0), noise-trader demand has a larger effect on the

price than under no constraint (L = ∞). Recall from Proposition 3.1 that when L = ∞, the

price decreases in the supply θ of the risky asset. In particular, the price is higher when θ < η,

corresponding to high noise-trader demand, than when θ > η, corresponding to low noise-trader

demand. When L = 0, the difference is exacerbated: the price is even higher when θ < η, and is

even lower when θ > η. Intuitively, the constraint exacerbates the effect that noise-trader demand

has on the price because it prevents constrained investors from absorbing that demand. Indeed, if

the constraint is imposed, constrained investors must change their position from θ to η. Therefore,

they must buy the asset when θ < η, which is when noise-trader demand is high, and must sell the

asset when θ > η, which is when noise-trader demand is low.

The constraint exacerbates the effects of noise-trader demand not only on the price level but

also on the price sensitivity to changes in the dividend flow Dt. Recall from Proposition 3.1 that

when L =∞, the price is more sensitive to Dt (i.e., S′(Dt) is larger) when θ < η than when θ > η.

When L = 0, the difference in sensitivities is exacerbated because θ is replaced by θ−xη
1−x : the price

becomes more sensitive to Dt when θ < η because θ−xη
1−x < θ, and it becomes less sensitive to Dt

when θ > η because θ−xη
1−x > θ.
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While an infinitely tight constraint exacerbates the mispricing, it does not affect return volatility.

Indeed, since volatility is independent of θ, it does not change when θ is replaced by θ−xη
1−x .

Corollary 3.2. Suppose L = 0 and θ > xη − (1−x)(r+κ)2

4ρσ2 . The conditional volatility
√

Vart(dRt)

and the unconditional volatility
√

Var(dRt) of the risky asset’s return are independent of the supply

θ and are the same as when L =∞.

3.3 General Case

We next derive the equilibrium for L ∈ (0,∞). The equilibrium is described by an unconstrained

region, where the constraint does not bind, and a constrained region where it binds. Using (3.1)

and assuming that S(Dt) increases in Dt (which we confirm is the case in equilibrium), we can

write the constraint (2.6) as

|z2t − η|σ
√
DtS

′(Dt) ≤ L. (3.10)

In the unconstrained region all investors are identical. Therefore, their positions z1t and z2t are

equal to the supply θ, and the function S(Dt) solves the same ODE (3.4) as when the constraint

never binds. Substituting z2t = θ into (3.10), we find that the unconstrained region is defined by

|θ − η|σ
√
DtS

′(Dt) ≤ L. (3.11)

In the constrained region (3.10) holds as an equality. Using the market-clearing condition to

write z1t as function of z2t, and substituting into (3.2) for i = 1, we find

Dt + κ(D̄ −Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) = ρ
θ − xz2t

1− x
σ2DtS

′(Dt)
2. (3.12)

A binding constraint forces the position of constrained investors closer to η while keeping it on the

same side of η as for unconstrained investors. When, for example, θ < η, unconstrained investors

hold a position z1t < η, and constrained investors hold a position z2t ∈ (z1t, η). Substituting z2t

from (3.10), which holds as an equality in the constrained region, into (3.12), and noting that z2t−η
has the same sign as θ − η, we find the ODE

Dt+κ(D̄−Dt)S
′(Dt)+

1

2
σ2DtS

′′(Dt)−rS(Dt) =
ρ(θ − xη)

1− x
σ2DtS

′(Dt)
2−ρ sgn(θ − η)xL

1− x
σ
√
DtS

′(Dt),

(3.13)

where sgn(θ − η) is the sign function, equal to one if θ > η and to minus one if θ < η. The
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constrained region is defined by the opposite inequality to (3.11), i.e.,

|θ − η|σ
√
DtS

′(Dt) > L. (3.14)

The price function S(Dt) solves the ODE (3.4) in the unconstrained region (3.11), and (3.13) in

the constrained region (3.14). The two ODEs are second-order and non-linear, and must be solved

as a system over (0,∞). As in Sections 3.1 and 3.2, we require that S′(Dt) converges to finite limits

at zero and infinity.

Since S′(Dt) converges to a finite limit at zero, values of Dt close to zero belong to the uncon-

strained region (3.11). Conversely, since S′(Dt) converges to a finite limit at infinity, values of Dt

close to infinity belong to the constrained region (3.14). Hence, the unconstrained and constrained

regions are separated by at least one boundary point and more generally by an odd number of such

points. At a boundary point D∗, the values of S(D∗) implied by the two ODEs must be equal, and

the same is true for the values of S′(D∗). These are the smooth-pasting conditions, and they follow

from S(Dt) being twice continuously differentiable. The boundary points must be solved together

with the ODEs. This makes the problem a free-boundary one.

The ODE (3.4) has the affine solution derived in Proposition 3.1. That solution, however, does

not satisfy the ODE (3.13), and is not the equilibrium price. While a closed-form solution to the

ODEs (3.4) and (3.13) for L ∈ (0,∞) is not available, we can prove existence of a solution and a

number of key properties.9

Theorem 3.1. Suppose L ∈ (0,∞), θ > xη − (1−x)(r+κ)2

4ρσ2 and κD̄ > σ2

4 . A solution S(Dt) to

the system of ODEs (3.4) in the unconstrained region (3.11), and (3.13) in the constrained region

(3.14), with a derivative that converges to finite limits at zero and infinity, exists and has the

following properties:

• It is increasing in Dt.

• It lies between the affine solution derived for L =∞ and that derived for L = 0.

9A key difficulty in proving existence is that a solution must be found over the open interval (0,∞), with a
boundary condition at each end. To address this difficulty, we start with a compact interval [ε,M ] ⊂ (0,∞) and show
that there exists a unique solution to the ODEs with one boundary condition at ε and one at M . The boundary
conditions are derived from the limits of S′(Dt) at zero and infinity. In the case of M , for example, the requirement
that S′(Dt) has a finite limit at infinity determines that limit uniquely, and we set S′(M) equal to that value. To
construct the solution over [ε,M ], we use S′(M) and an arbitrary value for S′′(M) as initial conditions for the ODEs
at M , and show that there exists a unique S′′(M) so that the boundary condition at ε is satisfied. Showing uniqueness
uses continuity of solutions with respect to the initial conditions, as well as a monotonicity property with respect to
the initial conditions that follows from the structure of our ODEs. We next show that when ε converges to zero and
M to infinity, the solution over [ε,M ] converges to a solution over (0,∞). The monotonicity property of solutions
with respect to the initial conditions is key to the convergence proof because it yields monotonicity of the solution
with respect to ε and M .
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• Its derivative S′(Dt) lies between the derivative of the affine solution derived for L =∞ and

that derived for L = 0.

• It is concave when θ > η, and convex when θ < η.

• The unconstrained and constrained regions are separated by only one boundary point D∗.

Theorem 3.1 confirms that an increase in the dividend flow Dt raises the price St. It also shows

that St lies between the values that it takes in the polar cases L = ∞ and L = 0. For given Dt,

the difference in price between θ < η and θ > η is positive when there is no constraint (L = ∞),

higher when there is a constraint (L ∈ (0,∞)), and even higher when the constraint is infinitely

tight (L = 0). The same comparisons hold for the difference in price sensitivity S′(Dt) between

θ < η and θ > η.

A key difference with the polar cases L =∞ and L = 0 is that the price is non-linear in Dt: it

is concave for θ > η and convex for θ < η, while it is affine in the polar cases. The non-linearities

are driven by the trading that the constraint induces, and in turn drive the risk-return inversion.

In the polar cases, there is no constraint-induced trading, either because the constraint never binds

(L =∞) or because constrained investors hold the benchmark position (L = 0).

The intuition for the non-linearities is as follows. Suppose that θ > η andDt is in the constrained

region. Following an increase in Dt, investors’ positions go up in value and their volatility rises.

To continue meeting the constraint, the constrained investors must bring their positions closer

to η. Since θ > η, they must sell some shares of the risky asset to unconstrained investors. This

dampens the price rise. The dampening effect is weaker when Dt is smaller and in the unconstrained

region because it concerns not actual sales but an expectation that sales might occur in the future.

The price increase is thus larger for smaller Dt, resulting in concavity. Conversely, suppose that

θ < η and Dt is in the constrained region. Following an increase in Dt, the constrained investors

must bring their positions closer to η. Since θ < η, they must buy some shares of the asset from

unconstrained investors. This amplifies the price rise. The amplification effect is weaker when Dt

is smaller and in the unconstrained region, resulting in convexity.

To illustrate the results shown in this and subsequent sections, we use a numerical example. We

must choose values for eight parameters: the number of shares η corresponding to the benchmark

position; the supply θ of the risky asset, for which we choose two values that are symmetric around

η; the risk-aversion coefficient ρ of investors; the parameters (κ, D̄, σ) of the dividend process; the

fraction x of constrained investors; and the bound L in the constraint (3.10).

We set ρ = η = 1. The choice of ρ is a normalization since we can redefine the numeraire in

the units of which wealth is expressed. The choice of η is also a normalization provided that η > 0
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since we can redefine one share of the risky asset by changing the dividend flow.

We set r = 0.03. This parameter has a small effect on our main numerical results. We set

(κ, D̄, σ) = (0.05, 0.15, 0.4). We choose these values to generate plausible values for the expected

return and return volatility in the case θ = η. That case can be viewed as an average of the two

cases θ > η and θ < η that we consider. The expected return (in excess of the riskless rate) is

5.5%, and the return volatility is 20%. These are plausible values if we interpret the risky asset

as a segment of the stock market, such as mid-cap value stocks. While we use three parameters

(κ, D̄, σ) to produce two moments, the third degree of freedom has a small effect on our numerical

results.

We set x = 0.8, i.e., 80% of investors are constrained and 20% are unconstrained. We choose the

two values of θ to be 0.8 and 1.2. Thus, if the asset issuer sells 1.2 shares, then noise traders hold

no shares when θ = 1.2, and hold 0.4 shares, i.e., one-third of the issued quantity, when θ = 0.8.

Our numerical results become stronger when x increases or when the spread ∆θ between the high

and the low value of θ increases. We finally set L = 0.05. In subsequent sections we examine the

effects of varying ∆θ and L.

Figure 1 illustrates the results of Theorem 3.1 in our numerical example. The left panel plots the

price as function of Dt. The thick lines represent the price when there is a constraint (L ∈ (0,∞)).

The thin lines represent the price in the two polar cases where there is no constraint (L =∞) and

where the constraint is infinitely tight (L = 0), with the price in the latter case corresponding to

the more extreme values. In all three cases, the dashed red line is drawn for θ = 0.8, corresponding

to high noise-trader demand, and the solid blue line is drawn for θ = 1.2, corresponding to low

noise-trader demand. The area between the price in the two polar cases is shaded. Consistent with

Theorem 3.1, the thick lines lie inside the shaded area. The middle panel of Figure 1 plots the

position of constrained investors using the same conventions. The position when L = 0 coincides

with the horizontal line z2t = 1. The right panel of Figure 1 plots the unconditional distribution of

Dt. Besides confirming the properties shown in Theorem 3.1, Figure 1 shows that the constraint

has a larger effect on prices and positions when θ = 0.8 than when θ = 1.2. We return to this

asymmetry in subsequent sections.

3.4 Risk-Return Inversion

Unlike in the polar cases L = ∞ and L = 0, where supply θ does not affect the asset’s return

volatility, volatility is affected by θ when L ∈ (0,∞). Volatility is higher when θ < η, corresponding

to high noise-trader demand, than when θ > η, corresponding to low noise-trader demand.
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Figure 1: Effect of Constraint on Prices and Positions
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Asset price St (left panel) and position z2t of constrained investors (middle panel) as functions of the dividend
flow Dt, and unconditional distribution of Dt (right panel). The thick lines in the left and middle panels
correspond to the case where there is a constraint (L ∈ (0,∞)). The thin lines correspond to the polar cases
where there is no constraint (L = ∞) and where the constraint is infinitely tight (L = 0). The latter case
corresponds to the more extreme values in the left panel and to the horizontal line z2t = 1 in the middle
panel. In all three cases, the dashed red line is drawn for θ = 0.8 and the solid blue line is drawn for θ = 1.2.
Parameter values are: η = ρ = 1, r = 0.03, κ = 0.05, D̄ = 0.15, σ = 0.4, x = 0.8, L = 0.05.

Proposition 3.3. Under the assumptions in Theorem 3.1, both the conditional volatility
√

Vart(dRt)

and the unconditional volatility
√
Var(dRt) of the asset’s return are:

• Higher when θ < η than when θ > η.

• Higher than under the affine solutions derived for L = ∞ and for L = 0 when θ < η, and

lower when θ > η.

Proposition 3.3 is related to the convexity and concavity results of Theorem 3.1. The amplifica-

tion effect that generates the convexity for θ < η also generates the high volatility. The dampening

effect that generates the concavity for θ > η also generates the low volatility.

Proposition 3.3 implies a negative relationship between volatility and expected return. When

θ < η, expected return is low, so that investors are induced to hold small positions, and volatility

is high. When instead θ > η, expected return is high, so that investors are induced to hold large

positions, and volatility is low. High volatility goes together with overvaluation (low expected

return) because they are both driven by high noise-trader demand. Indeed, to accommodate the

high demand, investors underweight the asset relative to the benchmark position η. When the
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market goes up, the constraint forces them to underweight less, and hence to buy the asset. This

yields amplification and high volatility.

A negative relationship between volatility and expected return has been documented empirically,

and is known as the volatility anomaly because it is at odds with standard theories. Haugen and

Baker (1996) and Ang, Hodrick, Xing, and Zhang (2006) document the volatility anomaly in the

cross-section of U.S. stocks.

The volatility anomaly in our model holds as a comparative-statics rather than as a cross-

sectional result because there is only one risky asset. We can, however, extend our model to

multiple risky assets and derive a cross-sectional result. The simplest way to perform the extension

is to assume that dividend flows are independent across assets, and that the constraint applies

asset-by-asset rather than across an entire portfolio.

The multi-asset version of our model is as follows. There are N risky assets instead of one.

Asset n = 1, .., N pays a dividend flow Dnt per share and is in supply of θn shares. The dividend

flow Dnt follows the square-root process

dDnt = κn
(
D̄n −Dnt

)
dt+ σn

√
DntdBnt, (3.15)

which generalizes (2.3), and the Brownian motions {dBnt}n=1,..,N are independent. Investors can

invest in all N risky assets. Generalizing (3.10), we require that the volatility of the constrained

investors’ position z2nt in risky asset n does not exceed an upper bound

|z2nt − η|σn
√
DntS

′(Dnt) ≤ L. (3.16)

The multi-asset version of our model is a replica of the one-asset version: the price of asset n

is given by Proposition 3.1 when L = ∞, by Proposition 3.2 when L = 0, and by Theorem 3.1

when L ∈ (0,∞). Proposition 3.3 holds as a cross-sectional comparison between assets (n, n′) with

θn < η, θn′ > η and identical other characteristics.

The negative relationship between volatility and expected return holds for assets that differ

in θ. One could alternatively compare, in the spirit of standard theories, assets that differ in

the dividend volatility coefficient σ. That comparison yields a positive relationship: assets with

high σ have higher volatility and expected return than assets with lower σ and identical other

characteristics. The positive relationship weakens when θ varies, and becomes negative when

variation in θ dominates variation in σ.

Figure 2 illustrates risk-return inversion in our numerical example. The left and middle panels

plot expected return and return volatility, respectively, as function of L. In both panels, the dashed
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red line is drawn for an asset n with θn = 0.8, corresponding to high noise-trader demand, and the

solid blue line is drawn for an asset n′ with θn′ = 1.2, corresponding to low noise-trader demand.

Consistent with Propositions 3.1 and 3.2, the difference in expected returns between θn = 0.8 and

θn′ = 1.2 increases when the constraint tightens (L decreases). The increase is from approximately

2% when L exceeds 0.15 to 7% when L is close to zero, with the effect driven primarily by the

asset with high noise-trader demand (θn = 0.8). Consistent with Proposition 3.3, the difference in

return volatilities between θn = 0.8 and θn′ = 1.2 is largest for intermediate values of L. When L

is close to zero or exceeds 0.15, volatility is approximately 20%, for both θn = 0.8 and θn′ = 1.2.

When instead L = 0.05, volatility rises to approximately 24% for θn = 0.8, and drops to 19% for

θn′ = 1.2. The difference in volatilities for intermediate values of L is thus driven primarily by the

amplification effect for the asset with high noise-trader demand (θn = 0.8). This asymmetry, and

the corresponding one for expected return, parallel the asymmetry shown in Figure 1.

The right panel of Figure 2 plots expected return as function of return volatility for L = 0.05.

Each risky asset corresponds to one point. We include the asset pair corresponding to θn = 0.8

and θn′ = 1.2, as well as additional pairs obtained by varying the spread ∆θ between the high and

the low value of θn while holding the average of the two values equal to η = 1. The red triangles

correspond to assets with θn < η = 1, the blue circles to assets with θn > η = 1, and the black

square to an asset with θn = 1. Consistent with Proposition 3.3, variation driven by θn generates

a negative relationship between volatility and expected return.

An additional measure of risk that we can relate to expected return is CAPM beta. The CAPM

predicts a positive relationship between beta and expected return. Empirically, however, a flat

or negative relationship has been documented, and is known as the beta anomaly. Black (1972),

Black, Jensen, and Scholes (1972), and Frazzini and Pedersen (2014) document a flat relationship

in the cross-section of U.S. stocks. Baker, Bradley, and Wurgler (2011) find that the relationship

turns negative in recent decades.

The multi-asset version of our model yields a negative relationship between beta and expected

return. This is because with independent dividend flows, an asset’s beta is proportional to the

asset’s return variance times the asset’s weight in the market portfolio. Assets with θn < η have

high beta because they have both high return volatility (Proposition 3.3) and high market-portfolio

weight because of their high price (Theorem 3.1). Note that the negative relationship between beta

and expected return arises even in the polar cases L = ∞ and L = 0. In these cases, the return

volatility is independent of θn (Corollaries 3.1 and 3.2), but the price is higher for low-θn assets

(Propositions 3.1 and 3.2).

Proposition 3.4. In the multi-asset version of our model, suppose θn > xη − (1−x)(r+κn)2

4ρσ2
n

and
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Figure 2: Risk-Return Inversion
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with θn = 1, the red triangles to assets with θn < η = 1 and the blue circles to assets with θn > η = 1,
where θn = 1± ∆θ

2 and ∆θ ∈ {0, 0.1, 0.2, 0.3, 0.4}. The remaining parameter values are as in Figure 1.

κnD̄n >
σ2
n
4 for all n = 1, .., N , and consider assets (n, n′) with θn < η < θn′ and identical other

characteristics. Asset n has higher conditional and unconditional CAPM beta than asset n′.

3.5 Overvaluation Bias

In this section we show that the effects of noise-trader demand do not cancel out when aggregating

assets into portfolios. We assume that the asset market consists of segments and that each segment

consists of sub-segments. For example, one segment could be mid-cap stocks, and its sub-segments

could be mid-cap value and mid-cap growth stocks. We identify the assets in our model with the

sub-segments, and assume that noise-trader demand differs across them.

Using Propositions 3.1 and 3.2, we can determine the effect of aggregation in the polar cases

L = ∞ and L = 0. The propositions show that the price is a convex function of θ. Hence, a

segment in which θ varies across sub-segments trades at a higher price than a segment with no

such variation and same average θ. Noise-trader demand thus does not cancel out by aggregation,

but introduces an overvaluation bias. Proposition 3.5 shows overvaluation bias in the polar cases

L =∞ and L = 0, assuming for simplicity that each segment consists of two assets.
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Proposition 3.5. In the multi-asset version of our model, suppose L = ∞ or L = 0, and θn >

xη − (1−x)(r+κn)2

4ρσ2
n

for all n = 1, .., N . For a segment consisting of assets (n, n′) and a segment

consisting of assets (n̂, n̂′) with θn < θn̂ ≤ θn̂′ < θn′,
θn+θn′

2 =
θn̂+θn̂′

2 ≡ θ̄, and other characteristics

being identical across assets,

O(Dt) ≡ [Sn(Dt) + Sn′(Dt)]− [Sn̂(Dt) + Sn̂′(Dt)] > 0. (3.17)

Moreover, O(Dt) is larger when L = 0 than when L =∞ under the sufficient condition θ̄ ≤ η.

Proposition 3.5 implies a negative relationship between the variability of noise-trader demand,

or equivalently of expected returns, within a segment, and the segment’s own expected return.

Intuitively, the negative relationship arises because the price sensitivity S′(Dt) to the dividend

flow Dt decreases in θ (Proposition 3.1). When θ is large, volatility per share is low because price

sensitivity is low. Hence, an increase in the number of shares θ causes a small price drop. When

instead θ is small, volatility per share is high, and hence an equal decrease in θ causes a large price

rise. Averaging across the two cases, a segment with more extreme values of θ trades at a higher

price than a segment with less extreme values.

The negative relationship between within-segment variability of noise-trader demand and seg-

ment expected return arises even when there is no constraint (L =∞). Proposition 3.5 shows that

the relationship becomes stronger when the constraint tightens (from L =∞ to L = 0). This is be-

cause the constraint prevents constrained investors from absorbing noise-trader demand, increasing

the demand’s effective variability.

Figure 3 illustrates overvaluation bias in our numerical example. The left panel plots the

unconditional averages of the prices of two segments as function of L: the segment with (θn, θn′) =

(0.8, 1.2), represented by the thick line, and the segment with (θn̂, θn̂′) = (1, 1), represented by the

thin line. Consistent with Proposition 3.5, the former segment trades at a higher price, and the

price difference increases when L decreases. Since the price of the latter segment does not depend

on L (the constraint does not bind for assets (n̂, n̂′) because θn̂ = θn̂′ = η = 1), the price of the

former segment increases when L decreases. This reflects the asymmetry shown in Figure 1: the

constraint raises the price of the asset with θn = 0.8 more than it lowers the price of the asset with

θn′ = 1.2.

The middle and right panels of Figure 3 plot expected return at the segment level as function of

the dispersion in expected returns within the segment. Each segment corresponds to one point. We

include the segment with (θn, θn′) = (0.8, 1.2), as well as additional segments obtained by varying

the spread ∆θ between the high and the low value of θ while holding the average of the two values
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Figure 3: Overvaluation Bias
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)
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within the segment, for fixed L (middle and right panels). Prices and expected returns are unconditional.
Segments are asset pairs (n, n′) with θn = 1 − ∆θ

2 and θn′ = 1 + ∆θ
2 , where ∆θ ∈ {0, 0.4} in the left panel

and ∆θ ∈ {0, 0.1, 0.2, 0.3, 0.4} in the middle and right panels. The remaining parameter values are as in
Figure 1.

equal to η = 1. The middle panel is drawn for L = 0.05, and the right panel for L = 0.15. Both

panels show a negative relationship between within-segment dispersion in expected returns and

segment expected return. The slope of the relationship is steeper (more negative) when L = 0.05,

consistent with the comparison that Proposition 3.5 derives between L =∞ and L = 0.

4 Equilibrium with Endogenous Constraint

4.1 Contracts

We begin with a two-period contracting model with exogenous asset returns. In Section 4.2 we

embed that model into the continuous-time equilibrium model of Section 3. There are two periods,

0 and 1. The riskless rate is exogenous and equal to r. A risky asset has return R in excess of the

riskless rate.

There are two agents, an investor (he) and an asset manager (she). The investor has a prior

distribution Π0 for R. The manager is either skilled or unskilled. A skilled manager forms a

posterior distribution Π(s) for R based on an informative signal s that she observes. An unskilled
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manager observes an uninformative signal but she wrongly treats it as informative. Her signal makes

her either optimistic, with posterior distribution ΠO, or pessimistic, with posterior distribution ΠP .

These two outcomes are equally likely. The probability that the manager is unskilled is λ ∈ [0, 1).

The investor and the manager have negative exponential utility over consumption in period one,

with coefficient of absolute risk aversion equal to ρ for the investor and ρ̄ for the manager. Without

loss of generality, we set the investor’s initial wealth to zero.

The investor offers the manager a contract in period 0. If the manager accepts the contract,

then she observes her private signal and chooses a portfolio for the investor. The portfolio consists

of z shares in the risky asset and −zS dollars in the riskless asset, where S is the risky asset’s price

in period 0. The investor’s wealth W in period 1 is W = zSR, equal to the dollars zS invested in

the risky asset times that asset’s return R in excess of the riskless asset.

The signal s observed by the skilled manager is continuous and takes values in a set Φ with

probability density h(s). The posterior distribution Π(s) gives positive probability to positive and

to negative values of R. As a consequence, the position z∗0 in the risky asset that maximizes the

investor’s unconditional expected utility, and the position z∗(s) that maximizes his expected utility

conditional on s, are finite. We take the range of z∗(s) to be the real line. This is without loss of

generality since we can introduce additional signals that have arbitrarily small probability and fill

any gaps in z∗(s).

In contrast to the skilled manager, the unskilled manager gives positive probability only to

positive values of R under the optimistic posterior distribution ΠO, and only to negative values

under the pessimistic distribution ΠP . Thus, the unskilled manager either believes that the risky

asset has no downside or that it has no upside. Our analysis extends to more moderate beliefs by

the unskilled manager when parametric restrictions are imposed on the asset return distribution.10

The contract consists of a fee, which the investor pays to the manager out of his period 1 wealth

W , and of an investment restriction. The fee can be a general function f(W ), subject to a non-

negativity and a monotonicity constraint. The non-negativity constraint is f(W ) ≥ 0, and arises

because the manager has limited liability. The monotonicity constraint is that f(W ) is increasing,

and could arise from moral hazard in period 1. Indeed, a decreasing fee could incentivize the

manager to engage in wasteful activities that reduce W so to increase her fee. A non-decreasing

fee could also incentivize such activities if they yield an infinitesimally small private benefit to the

manager. An additional reason to assume an increasing fee is to rule out the implausible outcome

that the investor can induce the manager to choose any position Z just by offering her a constant fee

10See, for example, Vayanos (2018), where the asset return can take two values, the skilled and the unskilled manager
give positive probability to each value, and the unskilled manager has more extreme beliefs than the skilled manager.
Beliefs are more extreme in the sense that the unskilled manager’s probability of the high value either exceeds the
skilled manager’s maximum probability across all realizations of s, or is lower than the minimum probability.
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and exploiting her indifference. To ensure that an optimal fee exists, we formulate the monotonicity

constraint as a weak rather than a strict inequality: f ′(W ) ≥ εg′(W ) > 0 where ε is a positive

constant and g(W ) is an increasing and bounded function defined over (−∞,∞). We derive the

optimal fee for each ε, and take the limit when ε goes to zero.

The investment restriction concerns the position z chosen by the manager. In period 0, the

investor observes a statistic F (∆, s) that depends on ∆ ≡ |z − η|S, the dollar deviation between

the manager’s position z and a benchmark position η, and can also depend on the signal s. For

example, the investor could observe the deviation ∆, or the portfolio return volatility
√
Vars [∆R] =

∆
√

Vars(R) relative to the benchmark position. We assume that the statistic F (∆, s) is non-

negative, is continuously differentiable in ∆, and satisfies F (0, s) = 0 and ∂F (∆,s)
∂∆ > 0, as is the

case in the above examples. The investor can choose the benchmark position η and can restrict the

statistic F (∆, s) to lie in a closed set L.

A fee f(W ), benchmark position η and set L constitute a feasible contract. The investor chooses

such a contract to maximize his expected utility. He is subject to the incentive-compatibility (IC)

constraint on the manager’s choice of position Z. He must also ensure that the fee satisfies non-

negativity and monotonicity. Non-negativity ensures that the manager’s individual rationality (IR)

constraint is satisfied.

Our contracting model is in the spirit of the literature on optimal delegation (e.g., Alonso and

Matouschek (2008), Amador and Bagwell (2013)). A key result in that literature is that instead

of taking an action based on information sent by the agent, the principal can equivalently let the

agent take the action within a restricted delegation set. The delegation literature generally precludes

monetary transfers between the principal and the agent. We allow monetary transfers, but in the

spirit of the delegation literature, restrict the fee function f(W ) to not depend on information sent

by the agent. We also restrict the delegation set L to depend only on the statistic F (∆, s) that the

principal observes. The restriction on L could be arising from investors’ limited ability to process

information. For example, investors could observe that their managers deviated significantly from a

benchmark, but might be unable to assess whether the benchmark’s volatility was high to warrant

such a deviation.

Proposition 4.1 determines the optimal fee f(W ), benchmark position η and delegation set L in

the limit when ε goes to zero. The set L takes the form [0, L], with L > 0. We denote by z̄(s) and

¯
z(s), respectively, the maximum and minimum value of z that meet the constraint F (∆, s) ≤ L.

These values are well-defined because F (∆, s) is continuous and increasing in ∆. We denote by Φ̄

the set of signals s such that the investor’s optimal position z∗(s) conditional on s exceeds z̄(s),

and by
¯
Φ the set of signals s such that z∗(s) <

¯
z(s).
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Proposition 4.1. In the limit when ε goes to zero:

• The investor employs the manager.

• The optimal delegation set L has the form [0, L], with L > 0.

• The position zS(s) chosen by the skilled manager is z∗(s) when s ∈ Φ\(Φ̄ ∪
¯
Φ), z̄(s) when

s ∈ Φ̄, and
¯
z(s) when s ∈

¯
Φ.

• The position zU (s) chosen by the unskilled manager is z̄(s) when her posterior is ΠO, and

¯
z(s) when her posterior is ΠP .

• The optimal benchmark position η and bound L solve

max
η,L

{
−(1− λ)

∫
s∈Φ

Es
(
e−ρzS(s)SR

)
h(s)ds− λ

∫
s∈Φ

E0

(
e−ρzU (s)SR

)
h(s)ds

}
. (4.1)

• The optimal fee f(W ) converges to zero for all W .

The optimal delegation set has the same form as under the constraint in Section 2: the investor

restricts the statistic F (∆, s) not to exceed a bound L. The investor does not exclude values in

the interior of [0, L] because they arise only from positions chosen by the skilled manager. Indeed,

since the fee is increasing, the unskilled manager always chooses extreme positions, which render

F (∆, s) equal to L.

The optimal fee f(W ) aligns the manager’s risk preferences with those of the investor. It

ensures, in particular, that the position maximizing the skilled manager’s expected utility given

her signal s coincides with the investor’s optimal position z∗(s). The position z∗(s) is chosen if

it gives rise to a value of F (∆, s) that does not exceed L. If instead F (∆, s) exceeds L, then the

chosen position is the one that renders F (∆, s) equal to L and is closest to z∗(s). Proposition 4.1

shows that a fee converging to zero when ε goes to zero suffices to align risk preferences.

The optimal bound L trades off the cost of restricting the position chosen by the skilled manager

when her signal calls for a large position (i.e., z∗(s) gives rise to a value of F (∆, s) that exceeds L),

and the benefit of restricting the position chosen by the unskilled manager. These cost and benefit

correspond to the first and second term, respectively, in (4.1).

The investor always employs the manager despite the risk that she may be unskilled. Indeed,

when not employing the manager, the investor chooses z∗0 , his optimal position given the prior

distribution Π0. He can replicate that outcome by employing the manager and setting (η, L) =

(z∗0 , 0). He can also do strictly better by raising L slightly, giving the manager some discretion.

Indeed, deviations by the unskilled manager generate a second-order loss for the investor because
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z∗0 is optimal. By contrast, deviations by the skilled manager generate a first-order gain because

they occur when z∗0 is not optimal and bring the investor closer to his optimal position z∗(s). The

manager’s fee is an additional cost for the investor, but it converges to zero when ε goes to zero.

4.2 Equilibrium

We next embed the contracting model of Section 4.1 into the equilibrium model of Section 3.

We interpret investors as overlapping generations living over infinitesimal periods. A measure

1 − x of investors of each generation observe the asset supply θ and the dividend flow Dt. They

correspond to the unconstrained investors of Section 3. The complementary measure x of investors

do not observe (θ,Dt) and can employ a manager. They correspond to the constrained investors.

Managers can be skilled or unskilled, as described in Section 4.1. Skilled managers observe (θ,Dt).

We set s ≡ (θ,Dt) and take the statistic F (∆, s) to be the portfolio return volatility

F (∆, s) =
1√
dt

√
Vars [(z2t − η)StdRt] =

1√
dt

√
Vars

[
(z2t − η)dRsht

]
= |z2t − η|σ

√
DtS

′(Dt).

Solving for equilibrium with an endogenous constraint involves a fixed-point problem: asset

prices must clear the market given the constraint, and the constraint (i.e., the delegation set) must

be optimal given equilibrium prices. The determination of equilibrium prices given the constraint

is along the same lines as in Section 3. The only change is that the uninformed investors whose

manager turns out to be unskilled do not invest optimally subject to the constraint. Half of them

employ an optimistic manager, who invests the maximum value of z2t that meets the constraint.

The remaining half employ a pessimistic manager, who invests the minimum value. Since the

average of the maximum and the minimum value is η, and the measure of uninformed investors

employing an unskilled manager is λx, the market-clearing condition (3.3) is replaced by

(1− x)z1t + (1− λ)xz2t + λxη = θ. (4.2)

The definition of the unconstrained and the constrained regions is modified similarly. Since in

the unconstrained region z1t = z2t, (4.2) implies z2t = θ−λxη
1−λx . Substituting into the constraint

F (∆, s) ≤ L, we find that the unconstrained region is defined by

|θ − η|
1− λx

σ
√
DtS

′(Dt) ≤ L, (4.3)

which replaces (3.11). The ODE system is modified similarly, as shown in the proof of Proposition

4.2, and the existence and characterization results of Theorem 3.1 hold.

The determination of the constraint given equilibrium prices follows Proposition 4.1. The
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optimal values of (η, L) maximize the continuous-time limit of the objective (4.1). Proposition 4.2

characterizes the solution to this problem.

Proposition 4.2. Suppose that θ takes values in a discrete set with probabilities π(θ). The first-

order conditions with respect to η and L are

∑
θ>η

π(θ)Eθ
[
[z∗(s)− z̄(s)]1{z∗(s)>z̄(s)}σ2DtS

′(Dt)
2
]

+
∑
θ<η

π(θ)Eθ
[
[z∗(s)−

¯
z(s)]1{z∗(s)<

¯
z(s)}σ

2DtS
′(Dt)

2
]

+
λ

1− λ
∑
θ

π(θ)Eθ
[
[z∗(s)− η]σ2DtS

′(Dt)
2
]

= 0, (4.4)

∑
θ>η

π(θ)Eθ
[
[z∗(s)− z̄(s)]1{z∗(s)>z̄(s)}σ

√
DtS

′(Dt)
]
−
∑
θ<η

π(θ)Eθ
[
[z∗(s)−

¯
z(s)]1{z∗(s)<

¯
z(s)}σ

√
DtS

′(Dt)
]

− λ

1− λ
L = 0, (4.5)

respectively, where

z̄(s) = η +
L

σ
√
DtS′(Dt)

,

¯
z(s) = η − L

σ
√
DtS′(Dt)

,

z∗(s) =


θ−λxη
1−λx if |θ−η|

1−λxσ
√
DtS

′(Dt) ≤ L,
θ−xη− sgn(θ−η)(1−λ)xL

σ
√
DtS
′(Dt)

1−x if |θ−η|
1−λxσ

√
DtS

′(Dt) > L.

The optimal benchmark η and bound L have the following properties:

• When θ can take only one value, η = θ and L = 0.

• When θ can take multiple values, η ∈ (θmin, θmax), where θmin is the minimum and θmax

is the maximum value of θ. Moreover, L = ∞ when λ = 0, L ∈ (0,∞) when λ > 0, and

limλ→1 L = 0.

When θ can take only one value, the uninformed investors set the benchmark position η equal

to that value. They also set the bound L in the constraint to zero, hence requiring the manager

to hold θ shares of the risky asset. This is an optimal arrangement since θ is the asset supply and

hence the position that each investor in the mass-one continuum should be holding in equilibrium.

When θ can take multiple values, uninformed investors are generally unable to replicate the

above arrangement because they do not observe θ. The only case where replication is possible is

when all managers are skilled (λ = 0). In that case, uninformed investors set L to infinity, knowing
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that skilled managers will choose θ. When instead some managers are unskilled, investors set L to

a finite value. In the limit where all managers are unskilled, L goes to zero.

The optimal value of η is related to the uninformed investors’ expectation of θ. It is not equal

to that expectation, however, but to a weighted average in which smaller values of θ receive larger

weight. Indeed, since volatility per share is higher for small θ, a constraint in which η is equal to

the expectation of θ would restrict managers more tightly for small θ: it would bind more often for

a position smaller than η, than for a position that deviates from η by an equal number of shares

in the opposite direction. Moreover, the former deviation is more profitable than the latter, and

hence should be less restricted. Indeed, since high noise-trader demand raises the price more than

low demand lowers it (Section 3.5), price distortions are more pronounced for small θ.

Figures 1-3 illustrate the asymmetry that causes the optimal η to be smaller than the investors’

expectation of θ. Suppose that each of θ = 0.8 and θ = 1.2 has probability 0.5, in which case

the investors’ expectation of θ is equal to one, the value of η assumed in the figures. The middle

panel of Figure 1 shows that the constraint binds for a larger set of values of Dt when θ = 0.8 than

when θ = 1.2. The left panel of Figure 2 shows, in addition, that noise-trader demand lowers the

expected return of an asset with θn = 0.8 more than it raises that of an asset with θn = 1.2. Hence,

uninformed investors should set η < 1.

The value η = 1 in Figures 1-3 is optimal in the special case where the probability that unin-

formed investors give to all values of θ 6= 1 goes to zero. When instead that probability remains

positive, uninformed investors set η < 1, moving the set of allowable positions that managers can

take in the risky asset towards lower values. Hence, managers can hold smaller positions in assets

in high noise-trader demand, reducing those assets’ overvaluation, and weakening the amplification

effect that drives up their volatility. Figure 4 shows how the plots in Figures 2 and 3 are modified

when θ = 1 has probability 0.6 and each of θ = 1± ∆θ
2 for ∆θ ∈ {0.1, 0.2, 0.3, 0.4} has probability

0.05. All parameter values except for (η, L), which are chosen optimally, are as in Figures 1-3. We

interpret different realizations of θ as different risky assets, and the probability π(θ) of each realiza-

tion as reflecting the number of assets in supply θ. Thus, there is one asset in supply θn = 1± ∆θ
2

for ∆θ ∈ {0.1, 0.2, 0.3, 0.4}, and twelve assets in supply θn = 1.

The top left and middle panels of Figure 4 plot expected return and return volatility of two

assets as function of the fraction λ of unskilled managers: the asset with θn = 0.8 (dashed red

line), and the asset with θn′ = 1.2 (solid blue line). Consistent with Figure 2, the difference in

expected returns between the two assets increases when λ increases because the constraint tightens.

Moreover, the difference in return volatilities is largest for intermediate values of λ, with most of

the effect coming from the θn = 0.8 asset. The main difference with Figure 2 is that the difference

in volatilities is lower: it is approximately 3% when 20% of managers are unskilled, while the
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maximum difference in Figure 2 is 6%. This reflects the weaker amplification effect.

The top right panel of Figure 4 plots expected return as function of return volatility for λ = 20%.

The negative relationship derived in Section 3 and plotted in Figure 2 carries through.

The bottom left panel of Figure 4 plots the unconditional averages of the prices of two segments

as function of λ: the segment with (θn, θn′) = (0.8, 1.2), represented by the thick line, and the

segment with (θn̂, θn̂′) = (1, 1), represented by the thin line. Noise-trader demand is more variable

within the former segment. Consistent with Figure 3, that segment trades at a higher price, and

its price increases both in absolute terms and relative to the latter segment when λ increases.

The bottom middle panel of Figure 4 plots expected return at the segment level as function

of the dispersion in expected returns within the segment for λ = 20% and for the five segments

corresponding to ∆θ ∈ {0, 0.1, 0.2, 0.3, 0.4}. The relationship is weaker than in Figure 4, and turns

slightly positive for the first three segments. It remains negative for the last three segments, and

is strongly negative for the last two.

The bottom right panel of Figure 4 plots the unconditional average of the price of a market

portfolio in which each asset is in supply of one share. That portfolio is a scaled version of the

benchmark portfolio, in which each asset is in supply of η shares. The price is inversely hump-

shaped in λ, decreasing slightly for small λ and increasing slightly for larger λ. This result differs

from a common finding in previous papers (e.g., Brennan (1993), Kapur and Timmermann (2005),

Cuoco and Kaniel (2011), Basak and Pavlova (2013), Buffa and Hodor (2018)) that benchmark-

based compensation raises the price of the benchmark portfolio.11 The price of the benchmark

portfolio can drop when managers are more constrained to stay close to that portfolio because

of the investors’ endogenous response: investors realize that tighter constraints exacerbate price

distortions, and reduce their overall investment in the risky assets by lowering η. If we suppress

the investors’ endogenous response by keeping η independent of λ, then a tighter constraint would

raise the price of the benchmark portfolio as in the previous papers. Moreover, the cross-sectional

distortions in Figure 4 would become larger and of the same magnitude as those in Figures 2 and

3.

4.3 Effective Capital

Endogenizing the constraint allows us to determine a measure of effective capital. According to the

market-efficiency view, noise-trader induced distortions should be small because institutions such as

mutual funds and pension funds can deploy large pools of capital to trade against them. According

to the limits-of-arbitrage view, that capital can be ineffective because agency problems between the

11The inverse hump shape in Figure 4 does not change if we multiply the price of the market portfolio by η.
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Figure 4: Endogenous Constraint
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and twelve assets in supply θn = 1. The aggregate market price is the unconditional average of the prices of
these assets. The values of (η, L) are chosen optimally, and the remaining parameter values are as in Figure 1.

managers in these institutions and the investors who own the capital limit the managers’ ability

to take risk. The limits-of-arbitrage view emphasizes instead the capital owned by smart-money

investors, who are free of agency problems.

An exercise that can inform the debate between the two views is to compute effective capital.
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Suppose that a given amount of capital is invested with asset managers. Would price distortions

be almost the same as if agency problems between managers and investors did not exist, as per

the market-efficiency view? Or would they be larger and comparable to the distortions that would

exist if the only capital available were that of smart-money investors, as per the limits-of-arbitrage

view? Our model can provide answers to these questions because it incorporates noise traders and

price distortions, as well as a constraint on managers that arises from an agency problem with their

investors.

To compute effective capital, we suppose that out of the uninformed investors in measure x,

only a subset in measure y can invest but do so with skilled managers to whom they (optimally)

impose no constraints. We compute the price distortions under that scenario, and determine the

value of y such that distortions are the same as under the equilibrium derived in Section 4.2. That

value of y is the “smart-money equivalent” of the x uninformed investors. We refer to y and x as

effective and total capital, respectively.

We compute effective capital y in the numerical example of Section 4.2. We measure price

distortions by the average difference between the price of assets in high noise-trader demand and the

price of assets in low demand. Computing that measure amounts to taking the difference between

the price of the asset in supply θn = 1− ∆θ
2 and the price of the asset in supply θn = 1 + ∆θ

2 , and

averaging over ∆θ ∈ {0.1, 0.2, 0.3, 0.4} and Dt.

An increase in the fraction λ of unskilled managers lowers effective capital y through two effects.

The direct effect is that that there are fewer skilled managers. The indirect effect is that tighter

constraints are imposed on skilled managers. If the direct effect were the only one present, then

effective capital would be equal to (1−λ)x, the measure of investors who employ skilled managers.

To compare the direct and indirect effects, we plot in Figure 5 the fraction y
x of effective to total

capital (solid line) and the fraction 1 − λ accounted by the direct effect only (dashed line), as

functions of λ.

Figure 5 shows that the indirect effect is larger than the direct effect. For example, when

λ = 10%, effective capital is approximately 60% of total capital, while it should be 90% with only

the direct effect present. When λ = 20%, effective capital drops to 40%, while under the direct

effect it should drop to only 80%. Thus, the constraints imposed on managers reduce significantly

the available capital to correct price distortions. At the same time, effective capital remains a

non-trivial fraction of total capital.
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Figure 5: Effective Capital
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Fraction y
x of effective to total capital (solid line) and fraction 1 − λ accounted by the direct effect only

(dashed line) as functions of λ. The value of y equates the difference between the price of the asset in supply
θn = 1 − ∆θ

2 and the price of the asset in supply θn = 1 + ∆θ
2 , averaged over ∆θ ∈ {0.1, 0.2, 0.3, 0.4} and

Dt, to its counterpart in the equilibrium derived in Section 4.2. The values of (η, L) are chosen optimally,
and the remaining parameter values are as in Figure 1.

5 Conclusion

We derive equilibrium asset prices when fund managers deviate from benchmark indices to exploit

noise-trader induced distortions but fund investors constrain these deviations. Fund managers in

our model are not passive, in the sense that they are not constrained to hold benchmark portfolios,

nor are they fully active, in the sense that their deviations from these portfolios must lie within

bounds. We argue that this view of asset management is more realistic than the conventional

active/passive dichotomy, and yields different asset-pricing implications. We develop an approach

to endogenize managers’ constraints based on investors’ uncertainty about managers’ skill, and

relate the asset-pricing implications to the fraction of unskilled managers.

Our analysis suggests that tracking-error constraints and other portfolio limitations of asset

managers can have important effects on portfolio policies and equilibrium asset prices. Empirical

research has begun to investigate these effects. For example, Christoffersen and Simutin (2017)

find that mutual-fund managers who manage pension-fund assets, and hence face greater pressure

to meet benchmarks, hold a larger fraction of their portfolios in high-beta stocks and achieve

lower alphas. This is consistent with our result that assets in high noise-trader demand have high

betas, and that more constrained managers hold more shares of these assets than less constrained
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managers. Lines (2016) finds that mutual-fund managers shift their portfolio weights towards the

benchmark when volatility rises, putting downward price pressure on overweight stocks and upward

pressure on underweight stocks. This is consistent with the amplification effect that we derive.

Extending the empirical investigation by bringing in proxies for noise-trader demand could yield

sharper tests of the theoretical mechanisms. Such proxies could include flows into mutual funds,

or restricted mandates by institutional investors not to invest in some industry sectors. Empirical

studies have documented that high demand according to these proxies is associated with low future

returns.12 Our analysis implies additionally that high demand should be associated with high

volatility, and that the trading of managers with tighter constraints should be contributing to this.

A number of extensions are possible on the theoretical front as well. One extension is to make

the contracting model between investors and managers dynamic. In a dynamic model, managers

could build reputations or could be given incentives based on future termination.13 Reputations

could reduce agency problems. At the same time, they might exacerbate some of the asset-pricing

effects that we derive as managers could choose to stay close to their benchmarks to avoid damaging

their reputations.

Another extension concerns the normative and policy implications. While each investor in our

model seeks to limit the risk taken by his manager, the combined effect of these efforts is to raise the

volatility of assets in high noise-trader demand. Would a regulator or a social planner internalize

that effect and impose laxer constraints? More generally, how do privately optimal constraints and

contracts compare to socially optimal ones? Our setting can help address these questions because

it captures the two-way feedback between constraints/contracts and equilibrium asset prices.

12Frazzini and Lamont (2008) argue that noise-trader demand (“dumb money” in their terminology) can be proxied
by flows into mutual funds, as these predict low long-horizon returns for the stocks bought by the funds. In a similar
spirit, Coval and Stafford (2007) find that that stocks sold by mutual funds that experience extreme outflows earn
high long-horizon returns, while stocks bought by funds that experience extreme inflows earn low returns. Hong and
Kacperczyk (2009) find that stocks in “sin industries” (alcohol, gaming and tobacco) are less held by institutions,
presumably because of restricted mandates, and earn higher returns. An alternative proxy for noise-trader demand
could be holdings by controlling shareholders, e.g., in family firms.

13Papers on fund managers’ reputation concerns include Froot, Scharftstein, and Stein (1992), Dasgupta and Prat
(2008), Dasgupta, Prat, and Verardo (2011), and Guerrieri and Kondor (2012).
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Appendix

A Proofs

Proof of Proposition 3.1. Substituting the affine price function (3.5) into the ODE (3.4), we

find

Dt + κ(D̄ −Dt)a1 − r(a0 + a1Dt) = ρθσ2Dta
2
1. (A.1)

Equation (A.1) is affine in Dt. Identifying the terms that are linear in Dt yields the equation

ρθσ2a2
1 + (r + κ)a1 − 1 = 0. (A.2)

Equation (A.2) is quadratic in a1. When θ > 0, the left-hand side is increasing for positive values of

a1, and (A.2) has a unique positive solution, given by (3.7). When θ < 0, the left-hand side is hump-

shaped for positive values of a1, and (A.2) has either two positive solutions, or one positive solution,

or no solution. Condition θ > − (r+κ)2

4ρσ2 in Proposition 3.1 ensures that two positive solutions exist

when θ < 0. Equation (3.7) gives the smaller of the two solutions, which is the continuous extension

of the unique positive solution when θ > 0. Identifying the constant terms yields the equation

κD̄a1 − ra0 = 0,

whose solution is (3.6).

To show that S(Dt) and S′(Dt) are decreasing and convex in θ, we note that a1 takes the form

Ψ(θ) ≡ 1

A+
√
B + Cθ

for positive constants (A,B,C). The function Ψ(θ) is decreasing. It is also convex because its

derivative

Ψ′(θ) = − C

2
√
B + Cθ

1(
A+
√
B + Cθ

)2
is increasing. Hence, a1 is decreasing and convex in θ. These properties extend to a0 from (3.6),

and to S′(Dt) = a1 and S(Dt) = a0 + a1Dt.

Proof of Corollary 3.1. Substituting the price from (3.5) into (3.1), we find that the asset’s
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share return is

dRsht =
[
Dt + κ(D̄ −Dt)a1 − r(a0 + a1Dt)

]
dt+ σ

√
Dta1dBt

= ρθσ2Dta
2
1dt+ σ

√
Dta1dBt, (A.3)

where the second step follows from (A.1). Substituting the share return from (A.3) and the price

from (3.5) into (2.2), we find that the asset’s (dollar) return is

dRt =
ρθσ2Dta

2
1dt+ σ

√
Dta1dBt

a0 + a1Dt

=
ρθσ2Dta1dt+ σ

√
DtdBt

κ
r D̄ +Dt

=

2ρθσ2Dtdt

r+κ+
√

(r+κ)2+4ρθσ2
+ σ
√
DtdBt

κ
r D̄ +Dt

, (A.4)

where the second step follows from (3.6) and the third step follows from (3.7).

The conditional expected return is the drift coefficient in (A.4) times dt,

Et(dRt) =
2ρθσ2Dtdt(

r + κ+
√

(r + κ)2 + 4ρθσ2
) (

κ
r D̄ +Dt

) .
It takes the form Φ(θ)2ρσ2Dtdt

κ
r
D̄+Dt

, where

Φ(θ) ≡ θ

A+
√
B + Cθ

for positive constants (A,B,C). The function Φ(θ) is increasing, and hence the conditional expected

return is increasing in θ. (The derivative of Φ(θ) has the same sign as

A+
√
B + Cθ − C

2
√
B + Cθ

θ = A+
1√

B + Cθ

(
B +

Cθ

2

)
.

This expression is positive for B+Cθ > 0, a condition which is required for the term in the square

root to be positive.) The unconditional expected return is the unconditional expectation of the

conditional expected return,

E(dRt) = E (Et(dRt)) ,

because of the law of iterative expectations. Since Et(dRt) is increasing in θ for any given Dt,

E(dRt) is increasing in θ.
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The return’s conditional volatility is the diffusion coefficient in (A.4) times
√
dt,

√
Vart(dRt) =

σ
√
Dtdt

κ
r D̄ +Dt

. (A.5)

It is independent of θ. The return’s unconditional variance is the unconditional expectation of the

return’s conditional variance,

Var(dRt) = E (Vart(dRt)) . (A.6)

Since Vart(dRt) is independent of θ for any given Dt, Var(dRt) is independent of θ, and so is the

return’s unconditional volatility
√
Var(dRt). Equation (A.6) is implied by the law of total variance

Var(dRt) = E (Vart(dRt)) + Var (Et(dRt)) (A.7)

and because in continuous time the second term in the right-hand side of (A.7) is negligible relative

to the first: the second term is of order dt2 while the first is of order dt.

Proof of Proposition 3.2. Since the ODE (3.8) is identical to (3.4) except that θ is replaced

by θ−xη
1−x , (3.9) can be derived from (3.7) with the same substitution. The comparisons with the

case L =∞ follow because the function Ψ(θ) defined in the proof of Proposition 3.1 is decreasing.

Since θ−xη
1−x > θ when θ > η, (3.7) and (3.9) imply that a1 is smaller in the case L = 0 than in the

case L = ∞. Conversely, since θ−xη
1−x < θ when θ < η, (3.7) and (3.9) imply that a1 is larger in

the case L = 0 than in the case L = ∞. These comparisons of a1 extend to a0, S′(Dt) = a1 and

S(Dt) = a0 + a1Dt.

Proof of Corollary 3.2. The price in the case L = 0 can be derived from the price in the case

L =∞ by replacing θ by θ−xη
1−x . Since the conditional and unconditional volatility in the case L =∞

are independent of θ (Corollary 3.2), they are also independent of θ in the case L = 0, and they

are equal across the two cases.

Proof of Theorem 3.1. We prove the theorem through a series of lemmas. Lemma A.1 shows

existence of a solution to the ODE system in a compact interval and with initial conditions at the

one end of the interval.

Lemma A.1. [Existence in compact interval with conditions at one boundary] Con-

sider ε > 0 and M > ε sufficiently large. A solution S(Dt) to the system of ODEs (3.4) in the

36



unconstrained region (3.11), and (3.13) in the constrained region (3.14), with the initial conditions

S′(M) =
2

r + κ+
√

(r + κ)2 + 4ρ(θ−xη)
1−x σ2

, (A.8)

S(M) =
1

r

(
(κD̄ + rM)S′(M) +

1

2
σ2MΦ +

ρ sgn(θ − η)xL

1− x
σ
√
MS′(M)

)
, (A.9)

exists, either in the entire interval [ε,M ], or in a maximal interval (ε̂,M ] with ε̂ ≥ ε. In the latter

case limDt→ε̂ |S′(Dt)| =∞.

Proof of Lemma A.1. The ODEs (3.4) and (3.13) satisfy the conditions of the Cauchy-Lipschitz

theorem for any Dt > 0. To show this for the ODE (3.4), we write it as a system of two first-order

ODEs:

S′(Dt) = T (Dt),

T ′(Dt) =
2

σ2Dt

(
ρθ

1− λx
σ2DtT (Dt)

2 −Dt − κ(D̄ −Dt)T (Dt) + rS(Dt)

)
.

The function

(Dt, S, T ) −→

(
T

2
σ2Dt

(
ρθ

1−λxσ
2DtT

2 −Dt − κ(D̄ −Dt)T + rS
) )

is continuously differentiable for (Dt, S, T ) ∈ (0,∞) × (−∞,∞) × (−∞,∞). Hence, it is locally

Lipschitz in that set, and the Cauchy-Lipschitz theorem implies that for any (Dt, S, T ) ∈ (0,∞)×
(−∞,∞) × (−∞,∞), the ODE (3.4) has a unique solution in a neighborhood of Dt with initial

conditions S(Dt) = S and S′(Dt) = T . The same argument establishes local existence of a solution

to the ODE (3.13).

Consider the solution to the ODE (3.13) with initial conditions (A.8) and (A.9). The value of

S(M) in (A.9) is implied from the ODE (3.13) by setting S′′(M) = Φ. Indeed, (A.9) is equivalent

to

S(M) =
1

r

(
M + κ(D̄ −M)S′(M) +

1

2
σ2MΦ− ρ(θ − xη)

1− x
σ2MS′(M)2 +

ρ sgn(θ − η)xL

1− x
σ
√
MS′(M)

)
(A.10)

because the value of S′(M) in (A.8) solves the equation

ρ(θ − xη)

1− x
σ2S′(M)2 + (r + κ)S′(M)− 1 = 0. (A.11)
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Equation (A.11) is quadratic in S′(M). When θ > xη, the left-hand side is increasing for

positive values of S′(M), and (A.11) has a unique positive solution, given by (A.8). When θ < xη,

the left-hand side is hump-shaped for positive values of S′(M), and (A.11) has either two positive

solutions, or one positive solution, or no solution. Condition θ > xη − (1−x)(r+κ)2

4ρσ2 in Theorem 3.1

ensures that two positive solutions exist when θ < xη. Equation (A.8) gives the smaller of the two

solutions, which is the continuous extension of the unique positive solution when θ > xη.

Since S′(M) is independent of M , (3.14) is met for M sufficiently large. Continuity then implies

that the solution to the ODE (3.13) with initial conditions (A.8) and (A.9) lies in the constrained

region (3.14) in a neighborhood to the left of M . We extend the solution maximally to the left

of M , up to a point m1 where either the solution explodes (limDt→m1 |S′(Dt)| = ∞) or condition

(3.14) that defines the constrained region is violated in a neighborhood to the left of m1. In the

second case, we extend the solution to the left of m1 by using the ODE (3.4) instead of (3.13). If

the first derivative of
√
DtS

′(Dt) at m1 is non-zero, then it has to be positive because (3.14) is

violated to the left of m1, and the extended solution lies in the unconstrained region (3.11) in a

neighborhood to the left of m1, by continuity. (Extending the solution to the left of m1 by using the

ODE (3.4) instead of (3.13) yields the same first derivative of
√
DtS

′(Dt), i.e., the first derivatives

of
√
DtS

′(Dt) from the left, using (3.4), and the right, using (3.13), coincide. The first derivatives

of S(Dt) from the left and the right coincide because the first derivative from the right is used as

initial condition when extending the solution to the left. The second derivatives of S(Dt) from the

left and the right coincide because the first derivatives coincide and (3.11) holds with equality at

m1. The result, used next in the proof, that higher-order derivatives of
√
DtS

′(Dt) from the left and

the right coincide if all lower-order derivatives are zero uses a similar argument and differentiation

of (3.4) and (3.13).) If the first derivative of
√
DtS

′(Dt) at m1 is zero, then the second derivative

must also be zero because otherwise (3.14) would not be violated to the left of m1. If the third

derivative of
√
DtS

′(Dt) at m1 is non-zero, then it has to be positive because (3.14) is violated to

the left of m1, and the extended solution lies in the unconstrained region (3.11) in a neighborhood

to the left of m1, by continuity. Proceeding in this manner for higher-order derivatives, we conclude

that the extended solution (using the ODE (3.4) instead of (3.13) to the left of m1) may not lie in

the unconstrained region (3.11) in a neighborhood to the left of m1 only if all n-th order derivatives

of
√
DtS

′(Dt) at m1, for n ≥ 1, are zero. Writing, however, the ODE (3.13) in terms of the function

U(Dt) ≡
√
DtS

′(Dt) taking the (n + 1)-th order derivative of the resulting equation at m1, and
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using U(m1) > 0 and dn+1

dDn+1
t

[U(Dt)]Dt=m1
= 0 for all n ≥ 0, we find

dn+1

dDn+1
t

[
Dt + κ(D̄ −Dt)

U(Dt)√
Dt

+
1

2
σ2
√
Dt

(
U ′(Dt)−

1

2Dt
U(Dt)

)
− rS(M)

−r
∫ Dt

M

U(D′t)√
D′t

dD′t

]
Dt=m1

=
dn+1

dDn+1
t

[
ρ(θ − xη)

1− x
σ2U(Dt)

2 − ρ sgn(θ − η)xL

1− x
σU(Dt)

]
Dt=m1

⇒ dn+1

dDn+1
t

[
κ
D̄ −Dt√

Dt
− 1

4
σ2 1√

Dt

]
Dt=m1

− r dn

dDn
t

[
1√
Dt

]
Dt=m1

= 0

for all n ≥ 0, a contradiction. Hence, the extended solution lies in the unconstrained region (3.11)

in a neighborhood to the left of m1. We extend that solution maximally to the left of m1, up to

a point m2 where either the solution explodes (limDt→m2 |S′(Dt)| = ∞) or where condition (3.11)

is violated in a neighborhood to the left of m2. In the second case, we extend the solution to the

left of m1 by using the ODE (3.13) instead of (3.4). Repeating this process yields a solution to

the system of ODEs (3.4) in the unconstrained region (3.11), and (3.13) in the constrained region

(3.14), with initial conditions (A.8) and (A.9), which either is defined in [ε,M ] or explodes at an

ε̂ ≥ ε.

Lemma A.2 shows that the solution derived in Lemma A.1 is either increasing in Dt or is

decreasing and then increasing.

Lemma A.2. [Monotonicity] For the solution derived in Lemma A.1, either S′(Dt) > 0 for all

Dt, or there exists m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m,

and S(m) > 0.

Proof of Lemma A.2. Since S′(M) > 0, S′(Dt) > 0 for Dt smaller than and close to M . Suppose

that there exists Dt < M such that S′(Dt) ≤ 0, and consider the supremum m within that set.

The definition of m implies S′(Dt) > 0 for all Dt in the non-empty set (m,M), S′(m) = 0, and

S′′(m) ≥ 0. If S′′(m) = 0, then differentiation of (3.4) and (3.13) at m yields S′′′(m) < 0, which

contradicts S′(Dt) > S′(m) = 0 for Dt > m. Hence, S′′(m) > 0, which in turn implies S′(Dt) < 0

for Dt smaller than and close to M

Suppose next, by contradiction, that there exists Dt < m such that S′(Dt) ≥ 0, and consider

the supremum m1 within that set. The definition of m1 implies that S′(Dt) < 0 for all Dt in the

non-empty set (m1,m), S′(m1) = 0, and S′′(m1) ≤ 0.

Substituting S′(m) = 0 and S′′(m) > 0 in (3.4) and (3.13), we find that in both cases

m− rS(m) < 0. (A.12)
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Likewise, substituting S′(m1) = 0 and S′′(m1) ≤ 0 in (3.4) and (3.13), we find

m1 − rS(m1) ≥ 0. (A.13)

Equations (A.12) and (A.13) imply

S(m)− S(m1) >
m−m1

r
> 0,

which contradicts S′(Dt) < 0 for all Dt ∈ (m1,m). Hence, either S′(Dt) > 0 for all Dt, or there

exists m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ] and S′(Dt) < 0 for all Dt < m. In the

latter case, (A.12) implies S(m) > m
r > 0.

Lemma A.3 shows a monotonicity property of the solution with respect to the initial conditions.

If a solution S1(Dt) lies below another solution S2(Dt) at M , and their first derivatives are equal

at M , then S1(Dt) lies below S2(Dt) for all Dt < M , while the comparison reverses for the first

derivatives.

Lemma A.3. [Monotonicity over initial conditions] Consider two solutions S1(Dt) and S2(Dt)

derived in Lemma A.1 for Φ1 and Φ2 > Φ1, respectively. For all Dt < M , S1(Dt) < S2(Dt) and

S′1(Dt) > S′2(Dt).

Proof of Lemma A.3. Equation (A.8) implies S′1(M) = S′2(M). Equations (A.10) and Φ1 < Φ2

imply S1(M) < S2(M) and S′′1 (M) < S′′2 (M). Combining the latter inequality with S′1(M) =

S′2(M), we find S′1(Dt) > S′2(Dt) for Dt smaller than and close to M . Moreover, by continuity,

S1(Dt) < S2(Dt) for Dt smaller than and close to M . Suppose, by contradiction, that there exists

Dt < M such that S1(Dt) ≥ S2(Dt) or S′1(Dt) ≤ S′2(Dt), and consider the supremum m within that

set. The definition of m implies S1(Dt) < S2(Dt) and S′1(Dt) > S′2(Dt) for all Dt in the non-empty

set (m,M), and S1(m) = S2(m) or S′1(m) = S′2(m).

Since S1(M) < S2(M) and S′1(Dt) > S′2(Dt) for all Dt ∈ (m,M), S1(m) < S2(m). Hence,

S′1(m) = S′2(m). Equations (3.4) and (3.13) both imply, however, that since S1(m) < S2(m),

S′′1 (m) < S′′2 (m). Hence, S′1(Dt) < S′2(Dt) for Dt close to and larger than m, a contradiction.

Lemma A.4 derives properties of the solution for Φ = 0. For this and subsequent results, we

use the function Z(Dt) defined by

Z(Dt) ≡ (κD̄ + rDt)S
′(Dt)− rS(Dt).

40



Lemma A.4. [Solution for Φ = 0] The solution S(Dt) derived in Lemma A.1 has the following

properties for Φ = 0:

• When θ > η, the solution satisfies Z(ε) < 0 if it can be defined in [ε,M ], and satisfies

limDt→ε̂ S
′(Dt) = −∞ and limDt→ε̂ S(Dt) > 0 if it explodes at ε̂ ≥ ε.

• When θ < η, the solution can be defined in [ε,M ], and satisfies Z(ε) > 0.

Proof of Lemma A.4. We start with the case θ > η. Suppose first that there exists Dt < M

such that S′(Dt) ≤ 0. Lemma A.2 implies that there exists a unique m < M such that S′(Dt) > 0

for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m, and S(m) > 0. Hence, if the solution can be defined

in [ε,M ], it satisfies

(κD̄ + rε)S′(ε) ≤ 0 < rS(m) ≤ rS(ε),

which implies Z(ε) < 0. If instead the solution explodes at ε̂ ≥ ε, it satisfies limDt→ε̂ S
′(Dt) = −∞

and limDt→ε̂ S(Dt) > S(m) > 0.

Suppose next that S′(Dt) > 0 for all Dt ≤M . We will show that the solution is convex, can be

defined in [ε,M ], and satisfies Z(ε) < 0. We first show that S′′′(M) < 0. We write the ODE (3.13)

as

1

2
σ2S′′(Dt) =

ρ(θ − xη)

1− x
σ2S′(Dt)

2−ρ sgn(θ − η)xL

1− x
σ

1√
Dt
S′(Dt)−1+

rS(Dt)− κD̄S′(Dt)

Dt
+κS′(Dt).

(A.14)

Differentiating both sides, we find

1

2
σ2S′′′(Dt) =2

ρ(θ − xη)

1− x
σ2S′(Dt)S

′′(Dt)−
ρ sgn(θ − η)xL

1− x
σ

 1√
Dt
S′′(Dt)−

1

2D
3
2
t

S′(Dt)


+
rS′(Dt)− κD̄S′′(Dt)

Dt
− rS(Dt)− κD̄S′(Dt)

D2
t

+ κS′′(Dt). (A.15)

Setting Dt = M in (A.15) and using S′′(M) = Φ = 0, we find

1

2
σ2S′′′(M) =

ρ sgn(θ − η)xL

1− x
σ

1

2M
3
2

S′(M) +
rS′(M)

M
− rS(M)− κD̄S′(M)

M2

= −ρ sgn(θ − η)xL

1− x
σ

1

2M
3
2

S′(M) < 0, (A.16)

where the second step follows by substituting S(M) from (A.9) and using again Φ = 0.

Since S′′′(M) < 0 and S′′(M) = 0, S′′(Dt) > 0 for Dt smaller than and close to M . Suppose,

41



by contradiction, that there exists Dt < M such that S′′(Dt) ≤ 0, and consider the supremum

m within that set. The definition of m implies that S′′(Dt) > 0 for all Dt in the non-empty set

(m,M), S′′(m) = 0, and S′′′(m) ≥ 0.

Suppose that m lies in the constrained region. Setting Dt = m in (A.15), and using S′′(m) = 0

and S′′′(m) ≥ 0, we find

ρ sgn(θ − η)xL

1− x
σ

1

2m
3
2

S′(m) +
rS′(m)

m
− rS(m)− κD̄S′(m)

m2
≥ 0

⇔ −ρ sgn(θ − η)xL

1− x
σ

1

2m
3
2

S′(m) +
1

m

(
ρ(θ − xη)

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
≥ 0,

(A.17)

where the second step follows by substituting S(m) from (3.13) and using again S′′(m) = 0. The

contradiction follows because both terms in the left-hand side of (A.17) are negative. The first

term is negative because S′(m) > 0. The second term is negative because (i) S′′(Dt) > 0 for all

Dt ∈ (m,M) implies S′(m) < S′(M), and (ii) the latter inequality together with S′(m) > 0 imply

that the left-hand side of (A.11) becomes negative when S′(M) is replaced by S′(m).

Suppose next that m lies in the unconstrained region. The ODE (3.4) yields the following

counterpart of (A.15):

1

2
σ2S′′′(Dt) = 2ρθσ2S′(Dt)S

′′(Dt)+
rS′(Dt)− κD̄S′′(Dt)

Dt
−rS(Dt)− κD̄S′(Dt)

D2
t

+κS′′(Dt). (A.18)

Setting Dt = m in (A.18), and using S′′(m) = 0, S′′′(m) ≥ 0, and (3.4), we find the following

counterpart of (A.17):

1

m

(
ρθσ2S′(m)2 + (r + κ)S′(m)− 1

)
≥ 0. (A.19)

The contradiction follows because (i) S′′(Dt) > 0 for all Dt ∈ (m,M) implies S′(m) < S′(M),

(ii) the latter inequality together with S′(m) > 0 imply that the left-hand side of (A.11) becomes

negative when S′(M) is replaced by S′(m), and (iii) the left-hand side of (A.11) being negative and

θ > η imply that the left-hand side of (A.19) is negative. Since S′′(Dt) > 0 for all Dt < M , S(Dt)

is convex.

If the solution explodes at ε̂ ≥ ε, then convexity implies limDt→ε̂ S
′(Dt) = −∞, contradicting
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S′(Dt) > 0 for all Dt. Hence, the solution can be defined in [ε,M ]. Moreover, convexity implies

rS(ε) ≥ rS(M) + r(ε−M)S′(M)

= (κD̄ + rε)S′(M) +
ρ sgn(θ − η)xL

1− x
σ
√
MS′(M), (A.20)

where the second step follows by substituting S(M) from (A.9) and using Φ = 0. Equation (A.20)

implies Z(ε) < 0 because S′(M) > 0 and S′(M) > S′(ε).

We next consider the case θ < η. We will show that the solution is concave, can be defined

in [ε,M ], and satisfies Z(ε) > 0. Equation (A.16) implies S′′′(M) > 0. Since S′′′(M) > 0 and

S′′(M) = 0, S′′(Dt) < 0 for Dt smaller than and close to M . Suppose, by contradiction, that there

exists Dt < M such that S′′(Dt) ≥ 0, and consider the supremum m within that set. The definition

of m implies that S′′(Dt) < 0 for all Dt in the non-empty set (m,M), S′′(m) = 0, and S′′′(m) ≤ 0.

Suppose that m lies in the unconstrained region. Since S′′(m) = 0 and S′′′(m) ≤ 0, (A.19)

holds as an inequality in the opposite direction, i.e.,

1

m

(
ρθσ2S′(m)2 + (r + κ)S′(m)− 1

)
≤ 0. (A.21)

When η > θ > xη, (A.21) yields a contradiction because (i) S′′(Dt) < 0 for all Dt ∈ (m,M) implies

S′(m) > S′(M), (ii) the latter inequality implies that the left-hand side of (A.11) becomes positive

when S′(M) is replaced by S′(m), and (iii) the left-hand side of (A.11) being positive and θ < η

imply that the left-hand side of (A.21) is positive. When, however, xη > θ, (A.21) does not yield

a contradiction because the left-hand side of (A.11) is hump-shaped for positive values of S′(M),

rather than increasing. It increases until the mid-point between the two positive roots, and then

decreases to −∞.

To derive a contradiction when xη > θ, we examine the behavior of Z(Dt) in (m,M). Since

Z ′(Dt) = (κD̄ + rDt)S
′′(Dt) < 0 (A.22)

for all Dt ∈ (m,M), Z(Dt) is decreasing in (m,M). Moreover, (A.9) and Φ = 0 imply

Z(M) = (κD̄ + rM)S′(M)− rS(M) = −ρ sgn(θ − η)xL

1− x
σ
√
MS′(M), (A.23)

and (3.4) and S′′(m) = 0 imply

Z(m) = (κD̄ + rm)S′(m)− rS(m) = m
(
ρθσ2S′(m)2 + (r + κ)S′(m)− 1

)
. (A.24)
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Since Z(Dt) is decreasing,

Z(m) > Z(M)

⇔ m
(
ρθσ2S′(m)2 + (r + κ)S′(m)− 1

)
> −ρ sgn(θ − η)xL

1− x
σ
√
MS′(M) > 0, (A.25)

where the second step follows from (A.23) and (A.24). Equation (A.25) contradicts (A.21).

Suppose next that m lies in the constrained region. Since S′′(m) = 0 and S′′′(m) ≤ 0, (A.17)

holds as an inequality in the opposite direction, i.e.,

−ρ sgn(θ − η)xL

1− x
σ

1

2m
3
2

S′(m) +
1

m

(
ρ(θ − xη)

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
≤ 0. (A.26)

When η > θ > xη, (A.26) yields a contradiction because both terms in the left-hand side are

positive. The first term is positive because S′(m) > 0. The second term is positive because (i)

S′′(Dt) < 0 for all Dt ∈ (m,M) implies S′(m) > S′(M), and (ii) the latter inequality implies

that the left-hand side of (A.11) becomes positive when S′(M) is replaced by S′(m). To derive a

contradiction when xη > θ, we examine the behavior of Z(Dt) in (m,M). Equations (3.13) and

S′′(m) = 0 imply

Z(m) = (κD̄ + rm)S′(m)− rS(m)

= m

(
ρ(θ − xη)

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
− ρ sgn(θ − η)xL

1− x
σ
√
mS′(m). (A.27)

Equation (A.22) implies

Z(m) = Z(M)−
∫ M

m
(κD̄ + rDt)S

′′(Dt)dDt

⇒ Z(m) ≥ Z(M)−
∫ M

m
rmS′′(Dt)dDt

⇔ Z(m) > Z(M) + rm[S′(m)− S′(M)]

⇔ m

(
ρ(θ − xη)

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
− ρ sgn(θ − η)xL

1− x
σ
√
mS′(m)

> −ρ sgn(θ − η)xL

1− x
σ
√
MS′(M) + rm[S′(m)− S′(M)], (A.28)

where the last step follows from (A.23) and (A.27). Combining (A.26) and (A.28), we find

− ρ sgn(θ − η)xL

1− x
σ

√
m

2
S′(m) > −ρ sgn(θ − η)xL

1− x
σ
√
MS′(M) + rm[S′(m)− S′(M)]

⇔ ρxL

1− x
σ

√
m

2
S′(m)− rm[S′(m)− S′(M)] >

ρxL

1− x
σ
√
MS′(M). (A.29)
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The left-hand side of (A.29) is linear in S′(m). Since S′′(Dt) < 0 for all Dt ∈ (m,M), S′(m) is

bounded below by S′(M). To derive an upper bound for S′(m), we note that since S′(m) > S′(M),

(A.28) implies

ρ(θ − xη)

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1 +

ρxL

1− x
σ

1√
m
S′(m) > 0.

Hence, S′(m) is smaller than the larger positive root of the quadratic equation

ρ(θ − xη)

1− x
σ2S′(m)2 +

(
r + κ+

ρxL

1− x
σ

1√
m

)
S′(m)− 1 = 0,

which is

−

(
r + κ+ ρxL

1−xσ
1√
m

)
+

√(
r + κ+ ρxL

1−xσ
1√
m

)2
+ 4ρ(θ−xη)σ2

1−x

2ρ(θ−xη)σ2

1−x

.

This root is, in turn, smaller than

−

(
r + κ+ ρxL

1−xσ
1√
m

)
+
(
r + κ+ ρxL

1−xσ
1√
m

)√
1 +

4
ρ(θ−xη)σ2

1−x
(r+κ)2

2ρ(θ−xη)σ2

1−x

= S∗ +
B√
m
,

where S∗ is the larger positive root of (A.11) and

B ≡ −
ρxL
1−xσ + ρxL

1−x

√
1 +

4
ρ(θ−xη)σ2

1−x
(r+κ)2

2ρ(θ−xη)σ2

1−x

> 0.

When S′(m) in (A.29) is set to S′(M), the left-hand side is smaller than the right-hand side. When

S′(m) in (A.29) is set to the upper bound S∗ + B√
m

, the left-hand side is a quadratic function

of
√
m, with the coefficient of (

√
m)2 = m being −r[S∗ − S′(M)] < 0. It is, therefore, bounded

above, and smaller than the right-hand side for sufficiently large M . Hence, (A.29) does not hold,

a contradiction. Since S′′(Dt) < 0 for all Dt < M , S(Dt) is concave.

If the solution explodes at ε̂ ≥ ε, then concavity implies limDt→ε̂ S
′(Dt) = ∞. The right-hand

side of (3.4) and (3.13) is of order S′(Dt)
2 for Dt close to ε̂. The left-hand side, however, does not

exceed

Dt + κ(D̄ −Dt)S
′(Dt)− rS(Dt)

≤ Dt + κ(D̄ −Dt)S
′(Dt)− rS(M)− r(Dt −M)S′(Dt),
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where both the first and the second steps follow from concavity. Hence, the left-hand side is

bounded by a term of order S′(Dt), a contradiction. Therefore, the solution does not explode and

can be defined in [ε,M ]. Equation Z(ε) > 0 holds because Z(Dt) is decreasing and Z(M) > 0 from

(A.23).

Lemma A.5 derives properties of the solution for |Φ| large.

Lemma A.5. [Solution for large |Φ|] The solution S(Dt) derived in Lemma A.1 has the following

properties:

• When θ > η and Φ is negative and large, the solution can be defined in [ε,M ], and satisfies

Z(ε) > 0.

• When θ < η and Φ is positive and large, the solution satisfies Z(ε) < 0 if it can be defined in

[ε,M ], and satisfies limDt→ε̂ S
′(Dt) = −∞ and limDt→ε̂ S(Dt) > 0 if it explodes at ε̂ ≥ ε.

Proof of Lemma A.5. We start with the case θ > η. Suppose that Φ is negative and sufficiently

large so that S(M) defined by (A.9) is negative. We will show that S′(Dt) > 0 and S′′(Dt) < 0

for all Dt. Both inequalities hold by continuity for Dt smaller than and close to M . Suppose, by

contradiction, that there exists Dt < M such that S′(Dt) ≤ 0 or S′′(Dt) ≥ 0, and consider the

supremum m within that set. The definition of m implies S′(Dt) > 0 and S′′(Dt) < 0 for all Dt in

the non-empty set (m,M), and S′(m) = 0 or S′′(m) = 0.

Since S′(M) > 0 and S′′(Dt) < 0 for all Dt ∈ (m,M), S′(m) > 0. Hence, S′′(m) = 0. Since, in

addition, S(M) < 0 and S′(Dt) > 0 for all Dt ∈ (m,M), S(m) < 0. Setting Dt = m in (A.15) and

(A.18), and using S(m) < 0, S′(m) > 0 and S′′(m) = 0, we find S′′′(m) > 0. Hence, S′′(Dt) > 0

for Dt close to and larger than m, a contradiction. Therefore, S′(Dt) > 0 and S′′(Dt) < 0 for all

Dt.

Since the solution is concave, we can use the same argument as in the proof of Lemma A.4 in

the case θ < 0, to show that the solution does not explode at ε̂ ≥ ε. Hence, the solution can be

defined in [ε,M ]. It satisfies Z(ε) > 0 because S(ε) < 0 and S′(ε) > 0.

We next consider the case θ < η. We will show, by contradiction, that there exists Dt < M

such that S′(Dt) ≤ 0. Existence of such a Dt will imply, from Lemma A.2, existence of a unique

m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m, and S(m) > 0.

Hence, if the solution can be defined in [ε,M ], it satisfies

(κD̄ + rε)S′(ε) ≤ 0 < rS(m) ≤ rS(ε),
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which implies Z(ε) < 0. If instead the solution explodes at ε̂ ≥ ε, it satisfies limDt→ε̂ S
′(Dt) = −∞

and limDt→ε̂ S(Dt) > S(m) > 0.

To derive the contradiction, we assume that S′(Dt) > 0 for all Dt ≤ M , and will show that

S′′(Dt) is bounded below by Φ
2 . Continuity yields the bound S′′(Dt) ≥ Φ

2 for Dt smaller than

and close to M because S′(M) = Φ. Suppose, by contradiction, that there exists Dt such that

S′′(Dt) <
Φ
2 , and consider the supremum within that set. The definition of m implies S′′(m) > Φ

2

for all Dt in the non-empty set (m,M), and S′′(m) = Φ
2 .

If m lies in the constrained region, (3.13) implies

1

2
σ2S′′(m) =

ρ(θ − xη)

1− x
σ2S′(m)2 − ρ sgn(θ − η)xL

1− x
σ

1√
m
S′(m)− 1 +

rS(m)− κ(D̄ −m)S′(m)

m

≥ ρ(θ − xη)

1− x
σ2S′(m)2 − 1 +

rS(M) + rS′(M)(m−M)− κ(D̄ −m)S′(m)

m

=
ρ(θ − xη)

1− x
σ2S′(m)2 − 1

+
κD̄(S′(M)− S′(m)) + 1

2σ
2MΦ +

ρ sgn(θ−η)xL
1−x σ

√
MS′(M) + rmS′(M) + κmS′(m)

m

>
ρ(θ − xη)

1− x
σ2S′(M)2 − 1 +

1
2σ

2MΦ− ρxL
1−xσ

√
MS′(M)

m
, (A.30)

where the second step follows from S′(m) > 0 and because convexity implies

S(m) ≥ S(M) + S′(M)(m−M),

the third step follows by substituting S(M) from (A.9), and the fourth step follows because S′(M) >

S′(m) > 0. Since for sufficiently large Φ,

1

2
σ2MΦ− ρxL

1− x
σ
√
MS′(M) > 0,

the right-hand side of (A.30) is bounded below by

ρ(θ − xη)

1− x
σ2S′(M)2 − 1 +

1

2
σ2Φ− ρxL

1− x
σ

1√
M
S′(M),

which, in turn, is bounded below by 1
4σ

2Φ for sufficiently large Φ. Hence, (A.30) implies that S′′(m)

exceeds Φ
2 , a contradiction. If m lies in the unconstrained region, we can follow the same steps to

derive a counterpart of (A.30) using (3.4), and then derive a contradiction. Hence, S′′(Dt) ≥ Φ
2 for

all Dt ≤M .

If the solution explodes at ε̂ ≥ ε, then convexity implies limDt→ε̂ S
′(Dt) = −∞. This is ruled

out, however, by S′(Dt) > 0 for all Dt ≤ M . Hence, the solution can be defined in [ε,M ].
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Since, however, S′′(Dt) is bounded below by Φ
2 , and S′(M) is independent of Φ, S′(ε) is negative

for sufficiently large Φ. This contradicts our assumption that S′(Dt) > 0 for all Dt ≤ M , and

establishes that there exists Dt < M such that S′(Dt) ≤ 0.

Taken together, Lemmas A.4 and A.5 show that for two extreme values of Φ (Φ = 0 and |Φ|
large) the solution lies on two different “sides” of the equation Z(ε) = 0, which we use as boundary

condition at ε. Lemma A.6 uses these results and a continuity argument to show that there exists

Φ such that Z(ε) = 0 holds. It also uses the monotonicity property of the solution shown in Lemma

A.3 to establish that this Φ is unique.

Lemma A.6. [Existence in compact interval with conditions at both boundaries] Con-

sider an interval [ε,M ], with ε sufficiently small and M sufficiently large. A solution S(Dt) to

the system of ODEs (3.4) in the unconstrained region (3.11), and (3.13) in the constrained region

(3.14), with the boundary conditions (A.8) and Z(ε) = 0 exists in [ε,M ] and is unique. Moreover,

S′′(M) < 0 when θ > η, and S′′(M) > 0 when θ < η.

Proof of Lemma A.6. We denote by ZΦ(ε) the value of Z(ε) for the solution S(Dt) derived

in Lemma A.1. If limDt→ε̂ S
′(Dt) = −∞ for ε̂ ≥ ε, in which case limDt→ε̂ S(Dt) > 0, we set

ZΦ(ε) = −∞. If limDt→ε̂ S
′(Dt) = ∞ for ε̂ ≥ ε, in which case limDt→ε̂ S(Dt) is finite or −∞, we

set ZΦ(ε) =∞.

Lemma A.3 implies that for Φ1 < Φ2, ZΦ1(ε) > ZΦ2(ε) if ZΦ1(ε) and ZΦ2 are finite, ZΦ2(ε) = −∞
if ZΦ1(ε) = −∞, and ZΦ1(ε) = ∞ if ZΦ2(ε) = ∞. Hence, ZΦ(ε) is equal to ∞ in an interval

(−∞,
¯
Φ], is finite and decreasing in an interval (

¯
Φ, Φ̄), and is equal to −∞ in the remaining interval

[Φ̄,∞). Continuity of the solution with respect to the initial conditions implies that ZΦ(ε) is

continuous in Φ in (
¯
Φ, Φ̄). Moreover, if

¯
Φ is finite, then limΦ→

¯
Φ

Φ>
¯
Φ

ZΦ(ε) =∞, and if Φ̄ is finite, then

limΦ→Φ̄
Φ<Φ̄

ZΦ(ε) = −∞.

When θ > η, Lemma A.4 implies that Z0(ε) is negative and possibly equal to −∞, and Lemma

A.5 implies that ZΦ(ε) is positive and finite for Φ negative and large. Hence,
¯
Φ = −∞. If Φ̄ > 0,

then continuity and monotonicity of ZΦ(ε) in (−∞, 0], limΦ→−∞ ZΦ(ε) > 0, and Z0(ε) < 0 imply

that there exists a unique Φ ∈ (−∞, 0) such that ZΦ(ε) = 0. If Φ̄ ≤ 0, then continuity and

monotonicity of ZΦ(ε) in (−∞, Φ̄), limΦ→−∞ ZΦ(ε) > 0, and limΦ→Φ̄
Φ<Φ̄

ZΦ(ε) = −∞ imply that there

exists a unique Φ ∈ (−∞, Φ̄) such that ZΦ(ε) = 0. In both cases, there exists a unique Φ ∈ (−∞, 0)

such that ZΦ(ε) = 0. The solution S(Dt) derived in Lemma A.1 for this Φ satisfies Z(ε) = 0 and

S′′(M) = Φ < 0.

When θ < η, Lemma A.4 implies that Z0(ε) is positive and finite, and Lemma A.5 implies that

ZΦ(ε) is negative and possibly equal to −∞ for Φ positive and large. Hence,
¯
Φ < 0 and Φ̄ > 0. If
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Φ̄ < ∞, then continuity and monotonicity of ZΦ(ε) in [0, Φ̄), Z0(ε) > 0 and limΦ→Φ̄
Φ<Φ̄

ZΦ(ε) = −∞
imply that there exists a unique Φ ∈ (0, Φ̄) such that ZΦ(ε) = 0. If Φ̄ = ∞, then continuity

and monotonicity of ZΦ(ε) in [0,∞), Z0(ε) > 0 and limΦ→∞ ZΦ(ε) < 0 imply that there exists a

unique Φ ∈ (0,∞) such that ZΦ(ε) = 0. In both cases, there exists a unique Φ ∈ (0,∞) such

that ZΦ(ε) = 0. The solution S(Dt) derived in Lemma A.1 for this Φ satisfies Z(ε) = 0 and

S′′(M) = Φ > 0.

Lemmas A.7-A.11 show properties of the solution derived in Lemma A.6. Lemma A.7 shows

that the solution is increasing in Dt.

Lemma A.7. [Monotonicity and Positivity] For the solution derived in Lemma A.6, S(Dt) > 0

and S′(Dt) > 0 for all Dt ∈ [ε,M ].

Proof of Lemma A.7. The solution derived in Lemma A.6 coincides with that derived in Lemma

A.1 for a specific value of Φ. Hence, Lemma A.2 implies that either S′(Dt) > 0 for all Dt, or there

exists m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m, and S(m) > 0.

In the second case, S′(ε) ≤ 0 and S(ε) > 0, contradicting Z(ε) = 0.

Since S′(ε) > 0, Z(ε) = 0 implies S(ε) > 0. Combining S(ε) > 0 with S′(Dt) > 0 for all Dt, we

find S(Dt) > 0 for all Dt.

Lemma A.8 compares the solution derived in Lemma A.6 to the affine solution derived in

Proposition 3.1 for L =∞. It shows that the former solution lies below the latter when θ > η, and

above it when θ < η.

Lemma A.8. [Comparison with the affine solution for L =∞] Consider the solution derived

in Lemma A.6, and the affine solution a0+a1Dt derived in Proposition 3.1 for L =∞. When θ > η,

S(Dt) < a0 + a1Dt for all Dt ∈ [ε,M ], and when θ < η, S(Dt) > a0 + a1Dt for all Dt ∈ [ε,M ].

Proof of Lemma A.8. We start with the case θ > η, and consider the problem of maximizing

V (Dt) ≡ S(Dt)− (a0 + a1Dt),

over the compact set [ε,M ]. The result in the lemma will follow if we show that the maximum

value Vmax of V (Dt) is negative. Using (3.6), we can write V (Dt) as

V (Dt) = S(Dt)−
a1

r
(κD̄ + rDt).
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Suppose first that V (Dt) is maximized at Dt = M . Using (A.9), we can write V (M) as

V (M) =
1

r

(
(κD̄ + rM)(S′(M)− a1) +

1

2
σ2MΦ +

ρ sgn(θ − η)xL

1− x
σ
√
MS′(M)

)
. (A.31)

Equations (3.7) and (A.8) imply that a1 and S′(M) are independent of M , and that S′(M) < a1.

Since, in addition Φ < 0, (A.31) implies that Vmax = V (M) < 0 for M sufficiently large.

Suppose next that V (Dt) is maximized at an interior point m ∈ (ε,M) that lies in the con-

strained region. The first- and second-order conditions of the maximization problem are S′(m) = a1

and S′′(m) ≤ 0. Setting Dt = m in (3.13) and using S′(m) = a1 and S′′(m) ≤ 0, we find

m+ κ(D̄ −m)a1 − rS(m) ≥ ρ(θ − xη)

1− x
σ2ma2

1 −
ρ sgn(θ − η)xL

1− x
σ
√
ma1

⇒ m+ κ(D̄ −m)a1 − rS(m) >
ρ(θ − xη)

1− x
σ2ma2

1 −
ρ(θ − η)x

1− x
σ2ma2

1

⇔ m+ κ(D̄ −m)a1 − rS(m) > ρθσ2ma2
1

⇔ (κD̄ + rm)a1 − rS(m) > 0

⇔ Vmax = V (m) < 0, (A.32)

where the second step follows from (3.14) and the fourth step follows from (A.2).

Suppose next that V (Dt) is maximized at an interior point m ∈ (ε,M) that lies in the uncon-

strained region. Setting Dt = m in (3.4) and using S′(m) = a1 and S′′(m) ≤ 0, we find

m+ κ(D̄ −m)a1 − rS(m) ≥ ρθσ2ma2
1

⇔ (κD̄ + rm)a1 − rS(m) ≥ 0

⇔ Vmax = V (m) ≤ 0, (A.33)

To show that (A.33) holds as a strict inequality, we proceed by contradiction. If (A.33) holds as an

equality, then S(m) and S′(m) are the same as under the affine solution S(Dt) = a1
r (κD̄ + rDt).

Hence, the solution derived in Lemma A.6 coincides with the affine solution in an interval in the

unconstrained region that includes m and that has a boundary with the constrained region at

an m1 ≥ m. Setting Dt = m1 in (A.15) and using S(m1) = a1
r (κD̄ + rm1), S′(m1) = a1 and

S′′(m1) = 0, we find that the third derivative of S(Dt) from the right at m1 is

1

2
σ2S′′′(m1) =

ρ sgn(θ − η)xL

1− x
σ

1

2m
3
2
1

a1 > 0. (A.34)

Since S′′′(m1) > 0, S′′(Dt) is positive in a neigborhood to the right of m1, and hence S′(Dt) exceeds

a1. This means that V (Dt), which is equal to zero for all Dt ∈ [m,m1] because S(Dt) coincides
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with the affine solution, increases to the right of m1, a contradiction since V (Dt) would then be

maximized in the constrained region.

If V (Dt) is maximized at ε, then S′(ε) ≤ a1 and hence,

Vmax = V (ε) = S(ε)− a1

r
(κD̄ + rε) =

1

r
(κD̄ + rε)(S′(ε)− a1) ≤ 0, (A.35)

where the second step follows from Z(ε) = 0. To show that (A.35) holds as a strict inequality, we

follow the same argument as in the case where V (Dt) is maximized at an interior point m in the

unconstrained region.

The argument in the case θ < η is symmetric. We consider the problem of minimizing V (Dt)

over [ε,M ], and show that the minimum value Vmin of V (Dt) is positive.

Suppose first that V (Dt) is minimized at Dt = M . Equations (3.7) and (A.8) imply that a1

and S′(M) are independent of M , and that S′(M) > a1. Since, in addition, Φ > 0, (A.31) implies

that Vmin = V (M) > 0 for M sufficiently large.

Suppose next that V (Dt) is maximized at an interior point m ∈ (ε,M) that lies in the con-

strained region. The first- and second-order conditions of the maximization problem are S′(m) = a1

and S′′(m) ≥ 0. Setting Dt = m in (3.13), using S′(m) = a1 and S′′(m) ≤ 0, and proceeding as in

the derivation of (A.32), we find Vmax = V (m) > 0.

Suppose next that V (Dt) is maximized at an interior point m ∈ (ε,M) that lies in the uncon-

strained region. Setting Dt = m in (3.4), using S′(m) = a1 and S′′(m) ≥ 0, and proceeding as in

the derivation of (A.33), we find Vmax = V (m) ≥ 0. To show that (A.33) holds as a strict inequality,

we follow the same argument as in the case θ > η and find that (A.34) implies S′′′(m1) < 0. This

implies that V (Dt), which is equal to zero for all Dt ∈ [m,m1], decreases to the right of m1, a

contradiction since V (Dt) would then be minimized in the constrained region.

If V (Dt) is maximized at ε, then S′(ε) ≥ a1, and hence (A.35) implies Vmin = V (ε) ≥ 0. To

show that (A.35) holds as a strict inequality, we follow the same argument as in the case where

V (Dt) is maximized at an interior point m in the unconstrained region.

Note that since Z(ε) = 0 implies

S(ε)− a1

r
(κD̄ + rε) =

1

r
(κD̄ + rε)(S′(ε)− a1),

Lemma A.8 implies that S′(ε) < a1 when θ > η, and S′(ε) > a1 when θ < η.

Lemma A.9 shows that the constrained and the unconstrained regions have a single boundary

and hence do not alternate. Proving this result requires condition κD̄ > σ2

4 of Theorem 3.1. This
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condition is required in all subsequent lemmas as well because they build on Lemma A.9, but is

not used in all previous lemmas.

Lemma A.9. [Single boundary between unconstrained and constrained region] There

exists m ∈ [ε,M ] such that the unconstrained region is [ε,m] and the constrained region is (m,M ].

Proof of Lemma A.9. The constrained region includes a neighborhood to the left of M , for

sufficiently large M , as shown in Lemma A.1. The unconstrained region includes a neighborhood

to the right of ε, for sufficiently small ε. This is because S′(ε) is bounded above uniformly for all

values of ε sufficiently small. When θ > η, the upper bound is a1. When θ < η, Lemma A.5 implies

that Φ is bounded above because otherwise Z(ε) < 0. The upper bound on Φ implies one on S(M)

from (A.9), which in turn implies one on S(ε) from Lemma A.7, which in turn implies one on S′(ε)

from Z(ε) = 0.

Consider the non-empty set of m > ε such that [ε,m] lies in the unconstrained region, and the

supremum m1 of that set. Consider the non-empty set of m > m1 such that (m1,m) lies in the

constrained region, and the supremum m2 of that set. Suppose, by contradiction, that m2 < M ,

in which case the unconstrained region begins again at m2. Consider, in that case, the non-empty

set of m > ε such that [m2,m] lies in the unconstrained region, and the supremum m3 of that set.

Since the constrained region includes a neighborhood to the left of M , m3 < M .

Since (3.11) holds as an equality at mi, i = 1, 2, 3,

√
miS

′(mi) =
L

|θ − η|σ
≡ L̂. (A.36)

Since (3.11) holds to the left of mi, i = 1, 3, and (3.14) holds to the right of mi, the derivative of
√
DtS

′(Dt) is non-negative for Dt = mi, and hence

√
mS′′(mi) +

1

2
√
mi
S′(mi) ≥ 0⇔ miS

′′(mi) ≥ −
S′(mi)

2
= − L̂

2

1
√
mi

for i = 1, 3, (A.37)

where the last step follows from (A.36). Conversely, since (3.14) holds to the left of m2, and (3.11)

holds to the right of m2, the derivative of
√
DtS

′(Dt) is non-positive for Dt = m2, and hence

m2S
′′(m2) ≤ −S

′(m2)

2
= − L̂

2

1
√
m2

. (A.38)

Since (3.14) holds in (m1,m2),

S(m2)− S(m1) =

∫ m2

m1

S′(Dt)dDt >

∫ m2

m1

L

|θ − η|σ
1√
Dt
dDt = 2L̂(

√
m2 −

√
m1). (A.39)
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Conversely, since (3.11) holds in (m2,m3),

S(m3)− S(m2) =

∫ m3

m2

S′(Dt)dDt ≤
∫ m3

m2

L

|θ − η|σ
1√
Dt
dDt = 2L̂(

√
m3 −

√
m2). (A.40)

The points mi, i = 1, 2, 3 satisfy (3.13) (as well as (3.4)). Setting Dt = mi in (3.13) and using

(A.36), we find

mi+κ(D̄−mi)L̂
1
√
mi

+
1

2
σ2miS

′′(mi)− rS(mi) =
ρ(θ − xη)

1− x
σ2L̂2− ρ sgn(θ − η)xL

1− x
σL̂. (A.41)

Subtracting (A.41) for m2 from the same equation for m1, we find

m1 −m2 + L̂

[
κD̄

(
1
√
m1
− 1
√
m2

)
− κ(
√
m1 −

√
m2)

]
+

1

2
σ2
[
m1S

′′(m1)−m2S
′′(m2)

]
− r[S(m1)− S(m2)] = 0,

⇒ m1 −m2 + L̂
m2 −m1√
m1 +

√
m2

(
κD̄

1
√
m1m2

+ κ

)
+ L̂

σ2

4

(
1
√
m2
− 1
√
m1

)
+ 2L̂r(

√
m2 −

√
m1) < 0

⇒ L̂
√
m1 +

√
m2

(
κD̄ − σ2

4√
m1m2

+ κ+ 2r

)
− 1 < 0, (A.42)

where the second step follows from (A.37), (A.38) and (A.39), and the third step follows by dividing

throughout by m2 −m1 > 0. Subtracting (A.41) for m3 from the same equation for m2, and using

(A.37), (A.38) and (A.39), we similarly find

L̂
√
m2 +

√
m3

(
κD̄ − σ2

4√
m2m3

+ κ+ 2r

)
− 1 ≥ 0. (A.43)

Condition κD̄ − σ2

4 > 0 of Theorem 3.1 ensures that because m3 > m1, the left-hand side of

(A.42) is larger than the left-hand side of (A.43). This is a contradiction because the former should

be negative and the latter non-negative. Therefore, m2 = M , and the lemma holds by setting

m = m1.

Lemma A.10 shows that the solution is concave when θ > η, and convex when θ < η.

Lemma A.10. [Concavity/convexity] The solution derived in Lemma A.6 satisfies S′′(Dt) < 0

for all Dt ∈ [ε,M ] when θ > η, and S′′(Dt) > 0 for all Dt ∈ [ε,M ] when θ < η.

Proof of Lemma A.10. We start with the case θ > η. Lemma A.6 shows that S′′(M) < 0.
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Moreover, setting Dt = ε in (3.4) and solving for S′′(ε), we find

1

2
σ2εS′′(ε) = ρθσ2εS′(ε)2 − κ(D̄ − ε)S′(ε) + rS(ε)− ε

= ρθσ2εS′(ε)2 + (r + κ)εS′(ε)− ε

= ε
(
ρθσ2S′(ε)2 + (r + κ)S′(ε)− 1

)
< 0, (A.44)

where the second step follows from Z(ε) = 0, and the last step because S′(ε) < a1.

Suppose, by contradiction, that there exists Dt ∈ (ε,M) such that S′′(Dt) ≥ 0, and consider

the infimum m1 within that set. Since S′′(ε) < 0, m1 > ε. The definition of m1 implies S′′(Dt) < 0

for all Dt ∈ (ε,m1), S′′(m1) = 0 and S′′′(m1) ≥ 0.

Suppose that m1 lies in the unconstrained region. Setting Dt = m1 in (A.18), and using

S′′(m1) = 0, S′′′(m1) ≥ 0 and (3.4), we find (A.19), written for m1 instead of m. The contradiction

follows because (i) S′′(Dt) < 0 for all Dt ∈ (ε,m1) implies S′(m1) < S′(ε) < a1, (ii) the latter

inequality together with S′(m1) > 0 imply that the left-hand side of (A.2) becomes negative when

a1 is replaced by S′(m1).

Suppose next that m1 lies in the constrained region and that S′′′(m1) > 0. Since S′′(m1) = 0,

S′′′(m1) > 0 implies that S′′(Dt) > 0 for Dt close to and larger than m1. We denote by m2 the

supremum of the set of m such that S′′(Dt) > 0 for all Dt ∈ (m1,m). Since S′′(M) < 0, m2 < M .

The definition of m2 implies S′′(Dt) > 0 for all Dt ∈ (m1,m2), S′′(m2) = 0 and S′′′(m2) ≤ 0.

Setting Dt = m1 in (A.15), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and (3.13), we find (A.17), written

for m1 instead of m. Multiplying both sides by m1
S′(m1) > 0, we rewrite that equation as

−ρ sgn(θ − η)xL

1− x
σ

1

2
√
m1

+
ρ(θ − xη)

1− x
σ2S′(m1) + r + κ− 1

S′(m1)
≥ 0. (A.45)

Since m2 exceeds m1, Lemma A.9 implies that it lies in the constrained region. Setting Dt = m2

in (A.15), and using S′′(m1) = 0, S′′′(m1) ≤ 0 and (3.13), we find (A.26), written for m2 instead

of m. Multiplying both sides by m2
S′(m2) > 0, we rewrite that equation as

−ρ sgn(θ − η)xL

1− x
σ

1

2
√
m2

+
ρ(θ − xη)

1− x
σ2S′(m2) + r + κ− 1

S′(m2)
≤ 0. (A.46)

Since m2 > m1 and S′(m2) > S′(m1), the left-hand side of (A.46) is larger than the left-hand

side of (A.45). This is a contradiction because the former should be non-positive and the latter

non-negative.

Suppose finally that m1 lies in the constrained region and that S′′′(m1) = 0. If there exists

Dt > m1 such that S′′(Dt) > 0, then the same argument as in the case where S′′′(m1) > 0 yields
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a contradiction. If S′′(Dt) ≤ 0 for all Dt > m1, then S′′(m1) = S′′′(m1) = 0 implies S′′′′(m1) ≤ 0.

To derive a contradiction, we differentiate twice (3.13) at Dt = m1. Using S′′(m1) = S′′′(m1) = 0,

we find

1

2
σ2m1S

′′′′(m1) =
ρ sgn(θ − η)xL

1− x
σ

1

4m
3
2
1

S′(m1) > 0. (A.47)

Hence, S′′(Dt) < 0 for all Dt ∈ [ε,M ].

We next consider the case θ < η. Lemma A.6 shows that S′′(M) > 0. Moreover, setting Dt = ε

in (3.4), solving for S′′(ε), and using Z(ε) = 0, we find the following counterpart of (A.44)

1

2
σ2εS′′(ε) = ε

(
ρθσ2S′(ε)2 + (r + κ)S′(ε)− 1

)
. (A.48)

When θ > 0, (A.48) and S′(ε) > a1 imply S′′(ε) > 0. We next show the same result when θ < 0.

We rule out the cases S′(ε) < 0 and S′(ε) = 0 by contradiction arguments.

Suppose that S′′(ε) < 0. We denote by m1 the supremum of the set of m such that S′′(Dt) < 0

for all Dt ∈ [ε,m). Since S′′(M) > 0, m1 < M . The definition of m1 implies S′′(Dt) < 0 for all

Dt ∈ [ε,m1), S′′(m1) = 0 and S′′′(m1) ≥ 0. Equations Z(ε) = 0, (A.22) and S′′(Dt) < 0 for all

Dt ∈ [ε,m1) imply Z(m1) < 0.

If m1 lies in the unconstrained region, (3.4) and S′′(m1) = 0 imply (A.24), written for m1

instead of m. Moreover, setting Dt = m1 in (A.18), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and

(3.4), we find (A.19), written for m1 instead of m. The two equations yield a contradiction when

combined with Z(m1) < 0.

If m1 lies in the constrained region, (3.13) and S′′(m1) = 0 imply (A.27), written for m1 instead

of m. Moreover, setting Dt = m1 in (A.15), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and (3.13), we

find (A.17), written for m1 instead of m. The two equations yield a contradiction when combined

with Z(m1) < 0, as can be seen by multiplying the latter equation by −m2
1 and adding it to the

former equation.

Suppose next that S′′(ε) = 0. Since S′(ε) > a1, (A.48) implies that θ < 0 and S′(ε) is equal to

the larger positive root of (A.2), which we denote by a∗1. Hence, S′(ε) is the same as under the affine

solution S(Dt) =
a∗1
r (κD̄+rDt). The same is true for S(ε) because of Z(ε) = 0. Hence, the solution

derived in Lemma A.6 coincides with the affine solution in an interval in the unconstrained region

that includes ε and that has a boundary with the constrained region at an m1 ≥ m. Proceeding

as in the proof of Lemma A.8, we find that the third derivative of S(Dt) from the right at m1 is

negative, and hence S′′(Dt) is negative in a neigborhood to the right of m1. Since Z(m1) = 0, we

can then use the previous argument to derive a contradiction. This establishes that S′′(ε) > 0.
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Suppose, by contradiction, that there exists Dt ∈ (ε,M) such that S′′(Dt) ≤ 0, and consider

the infimum m1 within that set. Since S′′(ε) > 0, m1 > ε. The definition of m1 implies S′′(Dt) > 0

for all Dt ∈ (ε,m1), S′′(m1) = 0 and S′′′(m1) ≤ 0. Equations Z(ε) = 0, (A.22) and S′′(Dt) > 0 for

all Dt ∈ [ε,m1) imply Z(m1) > 0.

Suppose that m1 lies in the unconstrained region. Equations (3.4) and S′′(m1) = 0 imply

(A.24), written for m1 instead of m. Moreover, setting Dt = m1 in (A.18), and using S′′(m1) = 0,

S′′′(m1) ≤ 0 and (3.4), we find (A.21), written for m1 instead of m. The two equations yield a

contradiction when combined with Z(m1) > 0.

Suppose next that m1 lies in the constrained region and that S′′′(m1) < 0. Since S′′(m1) = 0,

S′′′(m1) < 0 implies that S′′(Dt) < 0 for Dt close to and larger than m1. We denote by m2 the

supremum of the set of m such that S′′(Dt) < 0 for all Dt ∈ (m1,m). Since S′′(M) > 0, m2 < M .

The definition of m2 implies S′′(Dt) < 0 for all Dt ∈ (m1,m2), S′′(m2) = 0 and S′′′(m2) ≥ 0.

Setting Dt = m1 in (A.15), and using S′′(m1) = 0, S′′′(m1) ≤ 0 and (3.13), we find (A.26), written

for m1 instead of m. Multiplying both sides by m2
1, we rewrite that equation as

−ρ sgn(θ − η)xL

1− x
σ

√
m1

2
S′(m1) +m1

(
ρ(θ − xη)

1− x
σ2S′(m1)2 + (r + κ)S′(m1)− 1

)
≤ 0. (A.49)

Since m2 exceeds m1, Lemma A.9 implies that it lies in the constrained region. Setting Dt = m2

in (A.15), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and (3.13), we find (A.17), written for m2 instead

of m. Multiplying both sides by m2
2, we rewrite that equation as

−ρ sgn(θ − η)xL

1− x
σ

√
m2

2
S′(m2) +m2

(
ρ(θ − xη)

1− x
σ2S′(m2)2 + (r + κ)2S′(m2)− 1

)
≥ 0. (A.50)

Since S′′(Dt) < 0 for all Dt ∈ (m1,m2), Z(m2) < Z(m1) Using (A.27) to compute Z(m1) and

Z(m2), we find

m1

(
ρ(θ − xη)

1− x
σ2S′(m1)2 + (r + κ)S′(m1)− 1

)
− ρ sgn(θ − η)xL

1− x
σ
√
m1S

′(m1)

> m2

(
ρ(θ − xη)

1− x
σ2S′(m2)2 + (r + κ)S′(m2)− 1

)
− ρ sgn(θ − η)xL

1− x
σ
√
m2S

′(m2). (A.51)

Multiplying (A.49) by −1 and adding to the sum of (A.50) and (A.51), we find

−ρ sgn(θ − η)xL

1− x
σ

√
m1

2
S′(m1) > −ρ sgn(θ − η)xL

1− x
σ

√
m2

2
S′(m2),

and hence
√
m1S

′(m1) >
√
m2S

′(m2). Consider the value m̂ that minimizes the function
√
DtS

′(Dt)

over the compact set [m1,M ]. Since
√
m1S

′(m1) >
√
m2S

′(m2), m̂ > m1. Since S′′(M) > 0, the

function
√
DtS

′(Dt) is increasing for Dt close to and smaller than M , and hence m̂ < M . Since
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m̂ is an interior minimum and not all n-order derivatives of
√
DtS

′(Dt) are zero at m̂ (proof of

Lemma A.1), the smallest n for which the n-order derivative is non-zero is even. Since m̂ is in the

constrained region,
√
m̂S′(m̂) ≥ L

|θ−η|σ . We can hence choose m̂1 < m̂2 < m̂3 in the constrained

region such that (i) m̂2 < m̂ < m̂3, (ii)
√
m̂1S

′(m̂1) =
√
m̂2S

′(m̂2) =
√
m̂3S

′(m̂3) ≡ L̂ > L
|θ−η|σ ,

(iii)
√
DtS

′(Dt) > L̂ for all Dt ∈ (m̂1, m̂2), and (iv)
√
DtS

′(Dt) < L̂ for all Dt ∈ (m̂2, m̂3). We can

then proceed as in the proof of Lemma A.9 to derive a contradiction. (In the proof of Lemma A.9,

L̂ = L
|θ−η|σ , but the proof works for any value of L̂.)

Suppose finally that m1 lies in the constrained region and that S′′′(m1) = 0. If there exists

Dt > m1 such that S′′(Dt) < 0, then the same argument as in the case where S′′′(m1) < 0 yields

a contradiction. If S′′(Dt) ≥ 0 for all Dt > m1, then S′′(m1) = S′′′(m1) = 0 implies S′′′′(m1) ≥ 0.

To derive a contradiction, we differentiate twice (3.13) at Dt = m1. Using S′′(m1) = S′′′(m1) = 0,

we find

1

2
σ2m1S

′′′′(m1) =
ρ sgn(θ − η)xL

1− x
σ

1

4m
3
2
1

S′(m1) < 0. (A.52)

Hence, S′′(Dt) > 0 for all Dt ∈ [ε,M ].

Lemma A.11 completes the comparison of the solution derived in Lemma A.6 to the affine

solution derived in Proposition 3.1 for L =∞. It shows that the derivative of the former solution

lies below the derivative of the latter when θ > η, and above it when θ < η.

Lemma A.11. [Comparison with the derivative of the affine solution] Consider the solution

derived in Lemma A.6, and the affine solution a0 + a1Dt derived in Proposition 3.1 for L = ∞.

When θ > η, S′(Dt) < a1 for all Dt ∈ [ε,M ], and when θ < η, S′(Dt) > a1 for all Dt ∈ [ε,M ].

Proof of Lemma A.11. When θ > η, the result follows because the solution is concave and

S′(ε) < a1. When θ < η, the result follows because the solution is convex and S′(ε) > a1.

Lemma A.12 shows that the comparisons in Lemmas A.8 and A.11 are reversed when they

concern the affine solution derived in Proposition 3.2 for L = 0.

Lemma A.12. [Comparison with the affine solution for L = 0] Consider the solution derived

in Lemma A.6, and the affine solution a0 +a1Dt derived in Proposition 3.2 for L = 0. When θ > η,

S(Dt) > a0 + a1Dt and S′(Dt) > a1 for all Dt ∈ [ε,M). When θ < η, S(Dt) < a0 + a1Dt and

S′(Dt) < a1 for all Dt ∈ [ε,M).
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Proof of Lemma A.12. When θ > η, S′(M) = a1 and concavity of S(Dt) imply S′(Dt) > a1 for

all Dt ∈ [ε,M). Hence, the function

V (Dt) ≡ S(Dt)− (a0 + a1Dt)

is increasing. That function is also positive because

V (ε) = S(ε)− (a0 + a1ε) =
1

r
(κD̄ + rε)(S′(ε)− a1) > 0,

where the second step follows from Z(ε) = 0 and (3.6). Therefore, S(Dt) > a0 + a1Dt for all

Dt ∈ [ε,M ].

When θ < η, S′(M) = a1 and convexity of S(Dt) imply S′(Dt) < a1 for all Dt ∈ [ε,M). Hence,

the function V (Dt) is decreasing. That function is also negative because

V (ε) =
1

r
(κD̄ + rε)(S′(ε)− a1) < 0.

Therefore, S(Dt) < a0 + a1Dt for all Dt ∈ [ε,M ].

Lemma A.13 shows that if a solution to the system of ODEs exists in (0,∞) and its derivative

converges to finite limits at zero and infinity, then these limits are almost uniquely determined.

Lemma A.13. [Limits at zero and infinity] Consider a solution S(Dt) to the system of ODEs

(3.4) in the unconstrained region (3.11), and (3.13) in the constrained region (3.14), defined in

(0,∞). Suppose that S′(Dt) converges to finite limits at zero and infinity, denoted by S′(0) and

S′(∞), respectively. Then S′(∞) is a root of (A.11), and S′(0) satisfies Z(0) ≡ κD̄S′(0)−rS(0) = 0,

where S(0) denotes the limit of S(Dt) at zero.

Proof of Lemma A.13. We start with the limit at zero. Since limDt→0 S
′(Dt) exists and is finite,

the same is true for limDt→0 S(Dt). (The latter limit is S(Dt)−
∫ Dt

0 S′
(
D̂t

)
dD̂t for any given Dt).

Since limDt→0 S
′(Dt) exists and is finite, values of Dt close to zero lie in the unconstrained

region. Moreover, since limDt→0 S
′(Dt) and limDt→0 S(Dt) exist and are finite, taking the limit

of both sides of the ODE (3.4) when Dt goes to zero implies that limDt→0DtS
′′(Dt) exists and is

finite. If the latter limit differs from zero, then |S′′(Dt)| ≥ `
Dt

for ` > 0 and for all Dt smaller than

a sufficiently small η > 0. Since, however, for Dt < η,

S′(Dt) = S′(η) +

∫ Dt

η
S′′(D̂t)dD̂t ⇒ |S′(Dt)− S′(η)| ≥

∫ η

Dt

`

D̂t

dD̂t = ` log

(
η

Dt

)
,
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limDt→0 S
′(Dt) is plus or minus infinity, a contradiction. Hence, limDt→0DtS

′′(Dt) = 0. Taking

the limit of (3.4) when Dt goes to zero, and using limDt→0 S
′(Dt) = S′(0), limDt→0 S

′(Dt) = S(0),

limDt→0DtS
′′(Dt) = 0, and the finiteness of S′(0) and S(0), we find Z(0) = 0.

We next consider the limit at infinity. Since limDt→∞ S
′(Dt) exists and is finite, it is equal to

limDt→∞
S(Dt)
Dt

. This follows by writing S(Dt)
Dt

as

S(Dt)

Dt
=
S(0) +

∫ Dt
0 S′

(
D̂t

)
dD̂t

Dt
,

and noting that limDt→∞
S(0)
Dt

= 0 and limDt→∞

∫Dt
0 S′(D̂t)dD̂t

Dt
= limDt→∞ S

′(Dt).

Since limDt→∞ S
′(Dt) exists and is finite, large values of Dt lie in the constrained region.

Dividing both sides of the ODE (3.13) by Dt, taking the limit when Dt goes to infinity, and using

the existence and finiteness of limDt→∞ S
′(Dt) and limDt→∞

S(Dt)
Dt

, we find that limDt→∞ S
′′(Dt)

exists and is finite. If the latter limit differs from zero, then |S′′(Dt)| ≥ ` > 0 for ` > 0 and for

all Dt sufficiently large, implying that limDt→0 S
′(Dt) is plus or minus infinity, a contradiction.

Taking the limit of (3.13) divided by Dt when Dt goes to infinity, and using limDt→∞ S
′(Dt) =

limDt→0
S(Dt)
Dt

= S′(∞), limDt→0 S
′′(Dt) = 0, and the finiteness of S′(∞), we find that S′(∞) is a

root of (A.11).

Lemma A.14 shows that a solution to the system of ODEs with a derivative that converges to

finite limits at zero and infinity exists in (0,∞), and has the properties in Lemmas A.7-A.11.

Lemma A.14. [Existence in (0,∞)] A solution S(Dt) to the system of ODEs (3.4) in the uncon-

strained region (3.11), and (3.13) in the constrained region (3.14), with a derivative that converges

to finite limits at zero and infinity exists in (0,∞), and has the properties in Lemmas A.7-A.12.

Proof of Lemma A.14. We will construct the solution in (0,∞) as the simple limit of solutions

in compact intervals [ε,M ]. We denote by Sε,M (Dt) the solution derived in Lemma A.6, and by

Φε,M and Zε,M (Dt) the corresponding values of Φ and Z(Dt).

We start with the case θ > η, and first derive the limit when ε goes to zero, holding M constant.

Consider ε1 > ε2 > 0, and suppose, by contradiction, that Φε2,M ≤ Φε1,M . Lemma A.3 then implies

Sε2,M (ε1) ≤ Sε1,M (ε1) and S′ε2,M (ε1) ≥ S′ε1,M (ε1), which in turn imply Zε2,M (ε1) ≥ Zε1,M (ε1) = 0.

This is a contradiction because S′′ε2,M (Dt) < 0 and Zε2,M (ε2) = 0 imply Zε2,M (ε1) < 0. Hence,

Φε2,M > Φε1,M , and Lemma A.3 implies Sε2,M (Dt) > Sε1,M (Dt) and S′ε2,M (Dt) < S′ε1,M (Dt) for all

Dt ∈ (ε1,M).

Since for given Dt ∈ (0,M), the function ε → Sε,M (Dt), defined for ε < Dt, increases as
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ε decreases and is bounded above by the affine solution derived for L = ∞ (Lemma A.8), it

converges to a finite limit SM (Dt) when ε goes to zero. Likewise, since for given Dt, the function

ε→ S′ε,M (Dt), defined for ε < Dt, decreases as ε decreases and is bounded below by zero (Lemma

A.7), it converges to a finite limit ŜM (Dt) when ε goes to zero.

The simple limit SM (Dt) of Sε,M (Dt) is differentiable, and its derivative is the simple limit

ŜM (Dt) of S′ε,M (Dt). To show this result, we use the intermediate value theorem together with

a uniform bound on S′′ε,M (Dt). The function Sε,M (Dt) is bounded above by the affine solution

a1
r (κD̄+ rDt) and below by zero (Lemma A.7). Likewise, the function S′ε,M (Dt) is bounded above

by a1 (Lemma A.11) and below by zero. Hence, for any given Dt and neighborhood N around Dt,

the ODEs (3.4) and (3.13) imply a bound Q on S′′ε,M (m) that is uniform over m ∈ N , ε and M .

The intermediate value theorem implies that for m ∈ N ,∣∣∣∣Sε,M (m)− Sε,M (Dt)

m−Dt
− S′ε,M (Dt)

∣∣∣∣ =
∣∣S′ε,M (m′)− S′ε,M (Dt)

∣∣ =
∣∣S′′ε,M (m′′)

∣∣ |m′−Dt| < Q|m−Dt|,

where m′ is between m and Dt, and m′′ is between m′ and Dt. Taking the limit when ε goes to

zero, we find∣∣∣∣SM (m)− SM (Dt)

m−Dt
− ŜM (Dt)

∣∣∣∣ ≤ Q|m−Dt|,

which establishes that SM (Dt) is differentiable at Dt and its derivative is S′M (Dt) = ŜM (Dt). Since

S′ε,M (Dt) and S′ε,M (Dt) have simple limits, we can use the ODEs (3.4) and (3.13) to construct

a simple limit for S′′ε,M (Dt), which we denote by
ˆ̂
SM (Dt). The same argument that establishes

S′M (Dt) = ŜM (Dt) can be used to establish
ˆ̂
SM (Dt) = S′′M (Dt), and hence that SM (Dt) solves

the system of ODEs in (0,M ]. Since S′ε,M (Dt) is decreasing in Dt and is bounded below by zero,

its limit S′M (Dt) over ε is non-increasing in Dt and has the same lower bound. Hence, S′M (Dt)

converges to a finite limit S′M (0) when Dt goes to zero. Using the same argument as in Lemma

A.13, we can show that ZM (0) ≡ κD̄S′M (0)−rSM (0) = 0, where SM (0) denotes the limit of SM (Dt)

when Dt goes to zero.

Since SM (Dt), S
′
M (Dt) and S′′M (Dt) are the simple limits of Sε,M (Dt), S

′
ε,M (Dt) and S′′ε,M (Dt),

respectively, the properties in Lemmas A.7, A.8, A.10, A.11 and A.12 hold as weak inequalities for

all Dt ∈ (0,M ]. Following similar arguments as in these Lemmas and using ZM (0) = 0, we can

show that the inequalities are strict.

We next derive the limit when M goes to infinity. Consider M2 > M1. Since S′′M2
(Dt) < 0

and S′M2
(M1) = S′M1

(M1), S′M2
(M1) > S′M1

(M1). Suppose, by contradiction, that SM2(M1) ≤
SM1(M1). Equations SM2(M1) ≤ SM1(M1) and S′M2

(M1) > S′M1
(M1) imply SM2(Dt) < SM1(Dt)
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for Dt smaller than and close to M1. The same argument as in Lemma A.3 then implies SM2(Dt) <

SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) for all Dt ∈ (0,M1). Since SM2(M1) ≤ SM1(M1) and S′M2
(Dt) >

S′M1
(Dt) for all Dt ∈ (0,M1), SM2(0) < SM1(0). Combining the latter equation with S′M2

(0) ≥
S′M1

(0), which follows by taking the limit of S′M2
(Dt) > S′M1

(Dt) when Dt goes to zero, we find

ZM2(0) > ZM1(0), a contradiction since ZM2(0) = ZM1(0) = 0. Hence, SM2(M1) > SM1(M1).

The inequalities SM2(Dt) > SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) hold by continuity for Dt

smaller than and close to M1. Suppose, by contradiction, that there exists Dt ∈ (0,M1) such

that SM2(Dt) ≤ SM1(Dt) or S′M2
(Dt) ≤ S′M1

(Dt), and consider the supremum m within that set.

The definition of m implies SM2(Dt) > SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) for all Dt ∈ (m,M1), and

SM2(m) = SM1(m) or S′M2
(m) = S′M1

(m). Only one of the latter two equations holds since otherwise

the solutions SM1(Dt) and SM2(Dt) would coincide. If SM2(m) = SM1(m) and S′M2
(m) > S′M1

(m),

then SM2(Dt) < SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) for Dt smaller than and close to M1. The

same argument as in Lemma A.3 then implies SM2(Dt) < SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) for all

Dt ∈ (0,m). This, in turn, implies ZM2(0) > ZM1(0), a contradiction. If instead SM2(m) > SM1(m)

and S′M2
(m) = S′M1

(m), then the same argument as in Lemma A.3 implies SM2(Dt) > SM1(Dt) and

S′M2
(Dt) < S′M1

(Dt) for all Dt ∈ (0,m). This, in turn, implies ZM2(0) < ZM1(0), a contradiction.

Hence, SM2(Dt) > SM1(Dt) and S′M2
(Dt) > S′M1

(Dt) for all Dt ∈ (0,M1).

Since for given Dt ∈ (0,∞), the function M → SM (Dt), defined for Dt < M , is increasing in

M and is bounded above by the affine solution derived for L = ∞, it converges to a finite limit

S(Dt) when M goes to infinity. Likewise, since for given Dt ∈ (0,∞), the function M → S′M (Dt),

defined for Dt < M , is increasing in M and is bounded above by a1, it converges to a finite limit

Ŝ(Dt) when M goes to infinity. The same argument as when taking the limit over ε establishes that

Ŝ(Dt) = S′(Dt) and that S(Dt) solves the system of ODEs in (0,∞). Since S′M (Dt) is decreasing

in Dt and is bounded below by zero and above by a1, its limit S′(Dt) over M is non-increasing in

Dt and has the same bounds. Hence, S′(Dt) converges to finite limits S′(0) when Dt goes to zero

and S′(∞) when Dt goes to infinity. Lemma A.13 implies that Z(0) ≡ κD̄S′(0)− rS(0) = 0, where

S(0) denotes the limit of S(Dt) when Dt goes to zero. Lemma A.13 also implies that S′(∞) is a

root of (A.11). Since S′(Dt) is the simple limit of S′M (Dt), which is positive and increasing in M ,

it is positive. Hence, S′(∞) is non-negative and equal to the unique positive root of (A.11). The

same arguments as when taking the limit over ε establish that the properties in Lemmas A.7, A.8,

A.10, A.11 and A.12 hold for all Dt ∈ (0,∞).

The argument in the case θ < η is symmetric. The monotonicity of Sε,M (Dt) and S′ε,M (Dt)

as functions of ε, and of SM (Dt) and S′M (Dt) as functions of M , is the opposite relative to the

case θ > η. When θ < xη, the limit S′(∞) is equal to the smaller of the two positive roots of

(A.11) because S′(Dt) is bounded above by that root. The upper bound on S′(Dt) follows from
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the same upper bound on S′M (Dt): convexity implies that S′M (Dt) < S′M (M) for all Dt ∈ (0,M),

and S′M (M) is equal to the smaller positive root of (A.11).

Theorem 3.1 follows from Lemma A.14.

Proof of Proposition 3.3. Substituting the asset’s share return from (3.1) into (2.2), and setting

St = S(Dt), we find that the asset’s dollar return is

dRt =

[
Dt + κ(D̄ −Dt)S

′(Dt) + 1
2σ

2DtS
′′(Dt)

]
dt+ σ

√
DtS

′(Dt)dBt

S(Dt)
− rdt. (A.53)

The return’s conditional volatility is the diffusion coefficient in (A.53) times
√
dt:

√
Vart(dRt) =

σ
√
DtS

′(Dt)
√
dt

S(Dt)
. (A.54)

The return’s conditional volatility under the affine solutions derived for L = 0 and L =∞ is given

by (A.5). Comparing (A.5) and (A.54), we find that the return’s conditional volatility is higher

than under the affine solutions if

S′(Dt)(κD̄ + rDt) > rS(Dt)⇔ Z(Dt) > 0,

and is lower than under the affine solutions if Z(Dt) < 0. When θ > η, Z(0) = 0 and concavity

imply Z(Dt) < 0, and hence conditional volatility is lower than under the affine solutions. When

instead θ < η, Z(0) = 0 and convexity imply Z(Dt) > 0, and hence conditional volatility is higher

than under the affine solutions. The comparison of conditional volatility across the cases θ > η and

θ < η follows from the comparison of each case with the affine solutions since volatility under the

affine solutions is independent of θ.

Since the return’s unconditional variance is the unconditional expectation of the return’s con-

ditional variance, the comparisons derived for conditional volatility carry over to unconditional

volatility.

Proof of Proposition 3.4. The conditional beta of asset n is

βnt =
Covt(dRnt, dRMt)

Vart(dRMt)
, (A.55)

where dRnt denotes the return of asset n and dRMt denotes the return of the market portfolio.
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Assuming that the market portfolio includes ζm shares of asset m = 1, .., N , its return is

dRMt =
dRshMt

SMt
=

∑N
m=1 ζmdR

sh
mt∑N

m=1 ζmSmt
=

N∑
m=1

ζmSmt∑N
m=1 ζmSmt

dRmt =

N∑
m=1

ωmtdRmt, (A.56)

where SMt denotes the market portfolio’s price and

ωmt ≡
ζmSmt∑N
m=1 ζmSmt

denotes the weight of asset n in the market portfolio. Equation (A.55) implies that the conditional

beta of asset n exceeds that of asset n′ if

Covt(dRnt, dRMt) > Covt(dRn′t, dRMt)

⇔ ωnVart(dRnt) > ωn′Vart(dRn′t)

⇔ ζnSntVart(dRnt) > ζn′Sn′tVart(dRn′t), (A.57)

where the second step follows from (A.56) and the independence of returns across assets.

Suppose next that θn < η < θn′ , and that other characteristics of assets n and n′ are identical

(κn = κn′ , D̄n = D̄n′ , σn = σn′ , Dnt = Dn′t and ζn = ζn′). Since a1 decreases in θ (Proposition 3.1),

the affine solution derived for L =∞ is larger for θn than for θ′n. Since, in addition, Snt lies above

the affine solution for θn, while Sn′t lies below the affine solution for θ′n (Theorem 3.1), Snt > Sn′t.

Since, finally, Vart(dRnt) > Vart(dRn′t) (Proposition 3.3), (A.57) implies Covt(dRnt, dRMt) >

Covt(dRn′t, dRMt) and hence βnt > βn′t.

The unconditional beta of asset n is

βnt =
Cov(dRnt, dRMt)

Var(dRMt)
=

E (Covt(dRnt, dRMt))

E (Vart(dRMt))
,

Since the conditional covariance of Covt(dRnt, dRMt) is larger for asset n than for asset n′, the

same is true for the unconditional covariance, and hence for the unconditional beta.

Proof of Proposition 3.5. Since (3.6) implies S(Dt) = a1

(
κ
r D̄ +Dt

)
, (3.17) is equivalent to

a1n + a1n′ − (a1n̂ + a1n̂′) > 0. (A.58)

When L =∞, Proposition 3.1 implies that (A.58) is equivalent to

Ψ(θn) + Ψ(θn′)− [Ψ(θn̂) + Ψ(θn̂′)] > 0, (A.59)
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where the function Ψ(θ) is defined in the proof of Proposition 3.1. Setting ` ≡ θ̄− θn = θn′ − θ̄ > 0

and ˆ̀≡ θ̄ − θn̂ = θn̂′ − θ̄ ∈ (0, `), we can write (A.59) as

Ψ(θ̄ − `) + Ψ(θ̄ + `)−
[
Ψ(θ̄ − ˆ̀) + Ψ(θ̄ + ˆ̀)

]
> 0∫ `

ˆ̀
Ψ′(θ̄ + x)dx−

∫ `

ˆ̀
Ψ′(θ̄ − x)dx > 0

⇔
∫ `

ˆ̀

(∫ x

−x
Ψ′′(θ̄ + y)dy

)
dx > 0. (A.60)

Equation (A.60) holds because Ψ(θ) is convex. When L = 0, Proposition 3.2 implies that (A.58)

is equivalent to (A.59) with the function Ψ( θ−xη1−x ) instead of Ψ(θ). Since Ψ( θ−xη1−x ) is convex, the

modified (A.59) holds.

Propositions 3.1 and 3.2 imply that the comparison between L =∞ and L = 0 in the corollary

is equivalent to

Ψ

(
θn − xη
1− x

)
+ Ψ

(
θn′ − xη

1− x

)
−
[
Ψ

(
θn̂ − xη
1− x

)
+ Ψ

(
θn̂′ − xη

1− x

)]
> Ψ(θn) + Ψ(θn′)− [Ψ(θn̂) + Ψ(θn̂′)]

⇔ Ψ

(
θ̄ − xη
1− x

− `

1− x

)
+ Ψ

(
θ̄ − xη
1− x

+
`

1− x

)
−

[
Ψ

(
θ̄ − xη
1− x

−
ˆ̀

1− x

)
+ Ψ

(
θ̄ − xη
1− x

+
ˆ̀

1− x

)]
> Ψ(θ̄ − `) + Ψ(θ̄ + `)−

[
Ψ(θ̄ − ˆ̀) + Ψ(θ̄ + ˆ̀)

]
⇔
∫ `

1−x

ˆ̀

1−x

(∫ x

−x
Ψ′′
(
θ̄ − xη
1− x

+ y

)
dy

)
dx >

∫ `

ˆ̀

(∫ x

−x
Ψ′′(θ̄ + y)dy

)
dx. (A.61)

Since Ψ(θ) is convex and x ∈ [0, 1),

∫ `
1−x

ˆ̀

1−x

(∫ x

−x
Ψ′′
(
θ̄ − xη
1− x

+ y

)
dy

)
dx >

∫ ˆ̀

1−x+`−ˆ̀

ˆ̀

1−x

(∫ x

−x
Ψ′′
(
θ̄ − xη
1− x

+ y

)
dy

)
dx

>

∫ `

ˆ̀

(∫ x

−x
Ψ′′
(
θ̄ − xη
1− x

+ y

)
dy

)
dx.

Since, in addition,

Ψ′′(θ) =
C2

4(B + Cθ)
3
2

1(
A+
√
B + Cθ

)2 +
C2

2(B + Cθ)

1(
A+
√
B + Cθ

)3
is decreasing, (A.61) holds under the sufficient condition θ̄−xη

1−x ≤ θ̄, which is equivalent to θ̄ ≤ η.

Proof of Proposition 4.1. We proceed in three steps. In a first step we show that for any ε > 0,
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the investor’s expected utility under any feasible contract does not exceed the utility (4.1), achieved

when the benchmark position η, the delegation set L and the manager’s positions are as in the

proposition, and the fee f(W ) is zero. Moreover, the difference in utilities is bounded away from

zero when η, L or the manager’s positions are not as in the proposition. In a second step we

show that the investor’s expected utility under the feasible contract described in the proposition

converges to the maximum utility (4.1) when ε goes to zero. In a third step we show that the

maximum in (4.1) is achieved for L > 0.

The first and second steps imply that (η,L) described in the proposition are part of an optimal

contract when ε goes to zero, and that such a contract generates the manager’s positions described

in the proposition. Indeed, if an optimal contract involved different η, L or manager’s positions,

then it would yield a utility bounded away from (4.1), while the feasible contract described in the

proposition yields that utility when ε goes to zero. Adding the third step implies that the investor

employs the manager. Indeed, not employing her is equivalent to setting (η,L, f(W )) = (z∗0 , {0}, 0),

but this generates a utility bounded away from (4.1) because L = {0} is not as in the proposition.

Step 1: Since the fee f(W ) is increasing and ΠO gives positive probability only to positive

values of R, an unskilled manager with posterior ΠO chooses the maximum value of z that meets

the constraint F (∆, s) ∈ L. Conversely, since f(W ) is increasing and ΠP gives positive probability

only to negative values of R, an unskilled manager with posterior ΠP chooses the minimum value

of z such that F (∆, s) ∈ L. We denote these maximum and minimum values by z̄(s) and
¯
z(s),

respectively, using the same notation as in the case L = [0, L].

Consider a feasible contract (f(W ),L) that induces positions z(s) by the skilled manager (and

z̄(s) and
¯
z(s) by the unskilled manager). Since f(W ) is positive (because it is non-negative and

increasing), the investor’s expected utility is smaller than the utility achieved when the manager’s

positions remain the same and the fee is zero. The latter utility is

−(1−λ)

∫
s∈Φ

Es
(
e−ρz(s)SR

)
h(s)ds− λ

2

∫
s∈Φ

[
E0

(
e−ρz̄(s)SR

)
+ E0

(
e−ρ¯

z(s)SR
)]
h(s)ds. (A.62)

Since the investor’s conditional expected utility −Es
(
e−ρzSR

)
is concave in Z, it is increasing for

z < z∗(s) and decreasing for z > z∗(s). Therefore, when z∗(s) > z̄(s), expected utility for z(s) is

smaller than for z̄(s) > z(s). Conversely, when z∗(s) <
¯
z(s), expected utility for z(s) is smaller

than for
¯
z(s) < z(s). Since, in addition, expected utility is maximum for z∗(s), (A.62) does not
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exceed

− (1− λ)

[∫
s∈Φ̄

Es
(
e−ρz̄(s)SR

)
h(s)ds+

∫
s∈Φ\(Φ̄∪

¯
Φ)

Es
(
e−ρz

∗(s)SR
)
h(s)ds

+

∫
s∈

¯
Φ
Es
(
e−ρ¯

z(s)SR
)
h(s)ds

]
− λ

2

∫
s∈Φ

[
E0

(
e−ρz̄(s)SR

)
+ E0

(
e−ρ¯

z(s)SR
)]
h(s)ds, (A.63)

where we denote by Φ̄ the set of signals s such that z∗(s) > z̄(s), and by
¯
Φ the set of signals s such

that z∗(s) <
¯
z(s). Equation (A.63) describes also the expected utility when the set L is replaced

by [0, L] with L ≡ supL, since (z̄(s),
¯
z(s)) are the same for both sets. Since replacing L by [0, L]

yields the term in curly brackets in (4.1), and since (4.1) is the maximum of that term over (η, L),

it exceeds the utility under any feasible contract.

For (η, L) not maximizing the term in curly brackets in (4.1), (A.63) is smaller than (4.1).

For L differing from [0, L] by a positive-measure set, (A.62) is smaller than (A.63) and hence also

than (4.1). Indeed, since the range of z∗(s) is the real line, z(s) differs from z∗(s) in a positive-

measure set. For z(s) differing from the values in (A.63) in a positive-measure set (while meeting

the constraint F (∆, s) ∈ L), (A.62) is smaller than (A.63) and hence also than (4.1). Since (4.1),

(A.62) and (A.63) are independent of ε, the difference between (4.1) and the utility under a feasible

contract in which η, L or the manager’s positions are not as in the proposition is bounded away

from zero.

Step 2: Consider the contract (f(W ), η,L) with (η,L) described in the proposition and

f(W ) = εg(W ) + ε
1
2

(
ε−

1
8 − e−ρW

)
1W> 1

8ρ
log(ε). (A.64)

(The term 1W>
¯
W is the indicator function, equal to one if W >

¯
W and zero otherwise.) Since

the function ε−
1
8 − e−ρW is positive and increasing for W > 1

8ρ log(ε), the fee f(W ) satisfies the

non-negativity and monotonicity constraints. Since the function g(W ) is bounded over (−∞,∞)

and the function 1 − ε
1
8 e−ρW is bounded over W > 1

8ρ log(ε), f(W ) converges uniformly to zero

when ε goes to zero.

Equation (A.64) implies that the manager’s utility is

−e−ρ̄f(W ) = −1 + ρ̄ε
1
2

(
ε−

1
8 − e−ρW

)
1W> 1

8ρ
log(ε) + ε

3
4k(W ), (A.65)

where the function k(W ) is uniformly bounded when ε goes to zero. Since the dominant term in

(A.65) in the interval W > 1
4ρ log(ε) is an affine transformation of the investor’s utility, the position

that maximizes the skilled manager’s expected utility when ε goes to zero converges to the position

that maximizes the investor’s expected utility. Hence, when ε goes to zero, the investor’s expected
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utility is given by the (4.1).

Step 3: Breaking the integrals, we can write the term in curly brackets in (4.1) as

− (1− λ)

[∫
s∈Φ̄

Es
(
e−ρz̄(s)SR

)
h(s)ds+

∫
s∈Φ\(Φ̄∪

¯
Φ)

Es
(
e−ρz

∗(s)SR
)
h(s)ds

+

∫
s∈

¯
Φ
Es
(
e−ρ¯

z(s)SR
)
h(s)ds

]
− λ

2

∫
s∈Φ

[
E0

(
e−ρz̄(s)SR

)
+ E0

(
e−ρ¯

z(s)SR
)]
h(s)ds. (A.66)

The derivative of (A.66) with respect to L is

(1− λ)

[∫
s∈Φ̄

Es
(
e−ρz̄(s)SRR

)
S
∂z̄(s)

∂L
h(s)ds+

∫
s∈

¯
Φ
Es
(
e−ρ¯

z(s)SRR
)
S
∂
¯
z(s)

∂L
h(s)ds

]

+
λ

2

∫
s∈Φ

[
E0

(
e−ρz̄(s)SRSR

∂z̄(s)

∂L

)
+ E0

(
e−ρ¯

z(s)SRSR
∂
¯
z(s)

∂L

)]
h(s)ds. (A.67)

The definitions of (z̄(s),
¯
z(s)) imply

∂z̄(s)

∂L
= −∂¯

z(s)

∂L
> 0. (A.68)

Together with the definitions of (Φ̄,
¯
Φ), they also imply Es

(
e−ρz̄(s)SRR

)
> 0 for all s ∈ Φ̄(L), and

Es
(
e−ρ¯

z(s)SRR
)
< 0 for all s ∈

¯
Φ(L). Hence, the first of the two terms in square brackets in (A.67)

is positive. The second term is zero for L = 0 because of (A.68) and z̄(s) =
¯
z(s) = η. Therefore,

the derivative of (A.66) with respect to L is positive at L = 0, which means that the maximum in

(4.1) is achieved for L > 0.

Proof of Proposition 4.2. The maximum position z̄(s) and minimum position
¯
z(s) that meet

the constraint

F (∆, s) = |zt − η|σ
√
DtS

′(Dt) ≤ L

are

z̄(s) = η +
L

σ
√
DtS′(Dt)

, (A.69)

¯
z(s) = η − L

σ
√
DtS′(Dt)

, (A.70)

respectively. The position z∗(s) that maximizes an investor’s expected utility conditional on s is

the position that unconstrained investors hold in equilibrium. In the unconstrained region, defined
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by (4.3), z∗(s) can be derived by setting z1t = z2t in the market-clearing condition (4.2), and is

z1t = z∗(s) =
θ − λxη
1− λx

.

To derive z∗(s) in the constrained region, defined by

|θ − η|
1− λx

σ
√
DtS

′(Dt) > L,

we distinguish cases. When θ > η, z∗(s) can be derived by setting z2t = z̄(s) in (4.2), and is

z1t = z∗(s) =
θ − xη − (1−λ)xL

σ
√
DtS′(Dt)

1− x
.

When instead θ < η, z∗(s) can be derived by setting z2t =
¯
z(s) in (4.2), and is

z1t = z∗(s) =
θ − xη + (1−λ)xL

σ
√
DtS′(Dt)

1− x
.

Hence, (z̄(s),
¯
z(s), z∗(s)) are as in the proposition’s statement. The ODEs in the unconstrained and

constrained region can be derived from (3.2) by substituting Et(dRsht ) by the drift term in (3.1),

Vart(dR
sh
t ) by the square of the diffusion term, and z1t by z∗(s). This yields

Dt + κ(D̄ −Dt)S
′(Dt) +

1

2
σ2DtS

′′(Dt)− rS(Dt) =
ρ(θ − λxη)

1− λx
σ2DtS

′(Dt)
2 (A.71)

in the unconstrained region, and

Dt+κ(D̄−Dt)S
′(Dt)+

1

2
σ2DtS

′′(Dt)−rS(Dt) =
ρ(θ − xη)

1− x
σ2DtS

′(Dt)
2−ρ sgn(θ − η)(1− λ)xL

1− x
σ
√
DtS

′(Dt)

(A.72)

in the constrained region. When θ > η, z∗(s) ∈ (η, z̄(s)] in the unconstrained region, and z∗(s) >

z̄(s) in the constrained region. When instead θ < η, z∗(s) ∈ [
¯
z(s), η) in the unconstrained region,

and z∗(s) <
¯
z(s) in the constrained region. Hence,

Φ̄ = {θ > η and z∗(s) > z̄(s)} = {θ > η and
|θ − η|
1− λx

σ
√
DtS

′(Dt) > L}, (A.73)

¯
Φ = {θ < η and z∗(s) < z̄(s)} = {θ < η and

|θ − η|
1− λx

σ
√
DtS

′(Dt) > L}. (A.74)

The derivative of (A.66) with respect to L in the continuous-time limit can be derived from
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(A.67) by replacing SR by dRsht , and is

(1− λ)

[∫
s∈Φ̄

Es
(
e−ρz̄(s)dR

sh
t dRsht

) ∂z̄(s)
∂L

h(s)ds+

∫
s∈

¯
Φ
Es
(
e−ρ¯

z(s)dRsht dRsht

) ∂
¯
z(s)

∂L
h(s)ds

]

+
λ

2

∫
s∈Φ

[
E0

(
e−ρz̄(s)dR

sh
t dRsht

∂z̄(s)

∂L

)
+ E0

(
e−ρ¯

z(s)dRsht dRsht
∂
¯
z(s)

∂L

)]
h(s)ds. (A.75)

The derivative of (A.66) with respect to η in the continuous-time limit is

(1− λ)

[∫
s∈Φ̄

Es
(
e−ρz̄(s)dR

sh
t dRsht

) ∂z̄(s)
∂η

h(s)ds+

∫
s∈

¯
Φ
Es
(
e−ρ¯

z(s)dRsht dRsht

) ∂
¯
z(s)

∂η
h(s)ds

]

+
λ

2

∫
s∈Φ

[
E0

(
e−ρz̄(s)dR

sh
t dRsht

∂z̄(s)

∂η

)
+ E0

(
e−ρ¯

z(s)dRsht dRsht
∂
¯
z(s)

∂η

)]
h(s)ds. (A.76)

To simplify (A.75) and (A.76), we use

Es
(
e−ρz(s)dR

sh
t dRsht

)
= Es

(
(1− ρz(s)dRsht )dRsht

)
= Es(dRsht )− ρz(s)Vars(dR

sh
t )

= ρ[z∗(s)− z(s)]Vars(dR
sh
t )

= ρ[z∗(s)− z(s)]σ2DtS
′(Dt)

2, (A.77)

where the third step follows because z∗(s) is optimal and hence satisfies the first-order condition

(3.2);

E0

(
e−ρz(s)dR

sh
t dRsht F (s)

)
= E0

[
Es
(
e−ρz(s)dR

sh
t dRsht F (s)

)]
= ρE0

[
Es
(
[z∗(s)− z(s)]σ2DtS

′(Dt)
2F (s)

)]
= ρE0

[
[z∗(s)− z(s)]σ2DtS

′(Dt)
2F (s)

]
, (A.78)

where the second step follows from (A.77); and

∂z̄(s)

∂L
=

1

σ
√
DtS′(Dt)

, (A.79)

∂
¯
z(s)

∂L
= − 1

σ
√
DtS′(Dt)

, (A.80)

∂z̄(s)

∂η
= 1, (A.81)

∂
¯
z(s)

∂η
= 1, (A.82)

which follow by differentiating (A.69) and (A.70).
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Using (A.73), (A.74) and (A.77)-(A.80), we can write (A.75) as

∑
θ>η

π(θ)Eθ
[
[z∗(s)− z̄(s)]1{z∗(s)>z̄(s)}σ

√
DtS

′(Dt)
]
−
∑
θ<η

π(θ)Eθ
[
[z∗(s)−

¯
z(s)]1{z∗(s)<

¯
z(s)}σ

√
DtS

′(Dt)
]

+
λ

2(1− λ)

∑
θ

π(θ)Eθ
[
[
¯
z(s)− z̄(s)]σ

√
DtS

′(Dt)
]
. (A.83)

Setting (A.83) to zero, and using (A.69) and (A.70) to simplify the third term, we find (4.5). Using

(A.73), (A.74), (A.77), (A.78), (A.81) and (A.82), we can write (A.76) as

∑
θ>η

π(θ)Eθ
[
[z∗(s)− z̄(s)]1{z∗(s)>z̄(s)}σ2DtS

′(Dt)
2
]

+
∑
θ<η

π(θ)Eθ
[
[z∗(s)−

¯
z(s)]1{z∗(s)<

¯
z(s)}σ

2DtS
′(Dt)

2
]

+
λ

2(1− λ)

∑
θ

π(θ)Eθ
[
[2z∗(s)− z̄(s)−

¯
z(s)]σ2DtS

′(Dt)
2
]
. (A.84)

Setting (A.84) to zero, and using (A.69) and (A.70) to simplify the third term, we find (4.4).

When η > θmax, the first term in the left-hand side of (4.4) is zero because the summation is

over an empty set of θ, the second term is negative because the summation is over a non-empty set

of θ and the set of values of Dt such that z∗(s) <
¯
z(s) has positive measure, and the third term

is negative because z∗(s) < η when θ < η. Hence, the left-hand side of (4.4) is negative, which

means that the investor can raise his utility by lowering η. When instead η < θmin, the first term

is positive because the summation is over an non-empty set of θ and the set of values of Dt such

that z∗(s) > z̄(s) has positive measure, the second term is zero because the summation is over an

empty set of θ, and the third term is positive because z∗(s) > η when θ > η. Hence, the left-hand

side of (4.4) is positive, which means that the investor can raise his utility by raising η. Therefore,

η ∈ [θmin, θmax].

When θ can take only one value, θmin and θmax coincide with that value, and so does η ∈
[θmin, θmax]. Moreover, the first and second terms in the left-hand side of (4.5) are zero because

the summations are over empty sets of θ. Hence, L = 0.

When θ can take multiple values, the argument showing that the left-hand side of (4.4) is

negative when η > θmax can be extended to η ≥ θmax because the set of θ < η is non-empty.

Likewise, the argument showing that the left-hand side of (4.4) is positive when η < θmin can be

extended to η ≤ θmin because the set θ > η is non-empty. Therefore, η ∈ (θmin, θmax). Fixing

η ∈ (θmin, θmax), the first and second terms in the left-hand side of (4.5) are positive and bounded

for L ≥ 0, and converge to zero when L goes to infinity. When λ = 0, the third term is zero. Hence,

the left-hand side of (4.5) is positive, which means that the investor can raise his utility by raising

L to infinity. When λ ∈ [0, 1), the third term is a linear and decreasing function of L. Hence, the
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solution L to (4.5) is finite. When λ goes to one, the third term converges to infinity for any finite

L. Hence, the solution L to (4.5) converges to zero.

B Alternative Constraint

We first show that (2.7) resembles closely a constraint restricting the weights of a portfolio consisting

of one riskless and multiple risky assets. Suppose that there are N risky assets instead of one.

Denote by Snt the price of risky asset n = 1, .., N , by znt the number of shares of the asset that

an investor is holding, and by ηn the number of shares of the asset in the benchmark portfolio.

Denote also by η0 the riskless asset investment in the benchmark portfolio. The weight of risky

asset n in the investor’s portfolio is zntSnt
Wt

and in the benchmark portfolio is ηntSnt
η0+

∑N
n=1 ηntSnt

, where

Wt is the investor’s wealth. Restricting the two weights not to differ by more than L ≥ 0 yields

the constraint∣∣∣∣∣zntSntWt
− ηnSnt

η0 +
∑N

n=1 ηnSnt

∣∣∣∣∣ ≤ L⇔
∣∣∣∣∣znt − ηnWt

η0 +
∑N

n=1 ηnSnt

∣∣∣∣∣Snt ≤ LWt. (B.1)

The constraint (2.7) is the same as (B.1) except that ηn and L replace ηnWt

η0+
∑N
n=1 ηnSnt

and LWt,

respectively. The quantity ηnWt

η0+
∑N
n=1 ηnSnt

is the number of shares of asset n that the investor holds

when investing all his wealth Wt in the benchmark portfolio. The constraint (2.7) approximates

(B.1) well when the relative variation in Wt

η0+
∑N
n=1 ηnSnt

and Wt is small compared to that in Snt.

That condition is likely to hold when N is sufficiently large.

In a similar spirit, (2.6) resembles closely a constraint restricting the volatility of a portfolio

consisting of one riskless and multiple risky assets. Restricting the volatility of each component of

the portfolio separately yields the constraint

∣∣∣∣∣zntSntWt
− ηnSnt

η0 +
∑N

n=1 ηnSnt

∣∣∣∣∣
√

Vart(Rnt)

dt
≤ L⇔

∣∣∣∣∣znt − ηnWt

η0 +
∑N

n=1 ηnSnt

∣∣∣∣∣
√

Vart(Rshnt)

dt
≤ LWt.

(B.2)

The constraint (2.6) is the same as (B.2) except that ηn and L replace ηnWt

η0+
∑N
n=1 ηnSnt

and LWt,

respectively.

Under the alternative constraint (2.7), the system of ODEs consists of (3.4) in the unconstrained

region defined by

|θ − η|S(Dt) ≤ L, (B.3)
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Figure 6: Alternative Constraint
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Asset price St (left panel) and position z2t of constrained investors (right panel) as functions of the dividend
flow Dt, under the alternative constraint (2.7). The thick lines correspond to the case where there is a
constraint (L ∈ (0,∞)). The thin lines correspond to the polar cases where there is no constraint (L =∞)
and where the constraint is infinitely tight (L = 0). The latter case corresponds to the more extreme values
in the left panel and to the horizontal line z2t = 1 in the right panel. In all three cases, the dashed red line
is drawn for θ = 0.8 and the solid blue line is drawn for θ = 1.2. All parameter values are as in Figure 1
except for L which is equal to 0.2.

and

Dt+κ(D̄−Dt)S
′(Dt)+

1

2
σ2DtS

′′(Dt)−rS(Dt) =
ρ(θ − xη)

1− x
σ2DtS

′(Dt)
2−ρ sgn(θ − η)xL

1− x
σ2DtS

′(Dt)
2

S(Dt)

(B.4)

in the constrained region defined by

|θ − η|S(Dt) > L. (B.5)

Figure 6 plots the solution of that system within the numerical example of Section 3. The left panel

plots the price and the right panel plots the position of constrained investors, both as function of

Dt. Consistent with Theorem 3.1, the price for L ∈ (0,∞) lies between the affine solution in

the polar cases where there is no constraint (L = ∞) and where the constraint is infinitely tight

(L = 0). Moreover, the price is convex in Dt for θ < η and concave for θ > η.
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