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1 Introduction

Over the last several decades, labor’s share of income in the US manufacturing sector has

fallen by more than 15 percentage points.1 A variety of mechanisms have been proposed to

explain declining labor shares; these can be separated into two categories. Some reduce the

labor share solely by altering factor prices. For example, Piketty (2014) maintained that

declining labor shares resulted from increased capital accumulation, and Karabarbounis and

Neiman (2014) argued that they stem from falling capital prices. Other mechanisms, such

as automation and offshoring, would be viewed through the lens of an aggregate production

function as a change in technology.2

As Hicks (1932) first pointed out, the crucial factor in assessing the relevance of these

mechanisms is the aggregate capital-labor elasticity of substitution, which governs how ag-

gregate factor shares respond to changing factor prices. More generally, as a central feature

of aggregate technology, the elasticity helps answer a wide variety of economic questions.

These include, for example, the welfare impact of corporate tax changes, the impact of in-

ternational interest rate differentials on output per worker, the speed of convergence to a

steady state, and how trade barriers shape patterns of specialization.3

Unfortunately, obtaining the elasticity is difficult; Diamond et al. (1978) proved that

the elasticity cannot be identified from time series data on output, inputs, and marginal

products alone. Instead, identification requires factor price movements that are independent

of the bias of technical change. Economists have thus explored two different approaches to

estimating the elasticity.

1The overall labor share has declined by roughly 8 percentage points over the same time period. While the
manufacturing sector is relatively small, representing 13 percent of value added and 8 percent of employment
in 2010 (24 percent and 27 percent respectively in 1970), it accounts for between 30 percent and 45 percent
of decline in the overall labor share, depending on whether the counterfactual freezes the manufacturing
labor share at its 1970 level or both manufacturing’s labor share and its share of value added at its 1970
level.

2Formally, changes in factor compensation can be decomposed into the response to shifts in factor prices
(holding technology fixed) and changes due to shifts in technology (holding factor prices fixed). We call
the latter the “bias of technical change,” and we use the term loosely to include everything other than
factor prices, including changes in production possibilities or in composition due to changing tastes or trade.
Changes in the supply of capital or labor (as in Piketty (2014)) would alter relative factor prices but leave
technology unchanged.

3See Hall and Jorgenson (1967), Mankiw (1995), and Dornbusch et al. (1980).
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The first approach uses the aggregate time series and places strong parametric assump-

tions on the aggregate production function and bias of technical change for identification.

The most common assumptions are that there has been no bias or a constant bias over time.

Leon-Ledesma et al. (2010) demonstrated that, even under these assumptions, it is difficult

to obtain the true aggregate elasticity. Not surprisingly, the estimates found in this literature

range widely from 0.5 to 1.5, hindering inference about the decline in the labor share.4

The second approach uses micro production data with more plausibly exogenous variation

in factor prices, and yields the micro capital-labor elasticity of substitution. Houthakker

(1955), however, famously showed that the micro and macro elasticities can be very different;

an economy of Leontief micro units can have a Cobb–Douglas aggregate production function.5

Given Houthakker’s result, it is unclear whether the micro elasticity can help answer the

many questions that hinge on the aggregate elasticity.

In this paper, we show how the aggregate elasticity of substitution can be recovered from

the plant-level elasticity. Building on Sato (1975), we show that the aggregate elasticity is a

convex combination of the plant-level elasticity of substitution and the elasticity of demand.6

In response to a wage increase, plants substitute towards capital. In addition, capital-

intensive plants gain market share from labor-intensive plants. The degree of heterogeneity

in capital intensities determines the relative importance of within-plant substitution and

reallocation. For example, when all plants produce with the same capital intensity, there is

no reallocation of resources across plants.

Using this framework, we build the aggregate capital-labor elasticity from its individ-

ual components. We estimate micro production and demand parameters. Since Levhari

(1968), it has been well known that Houthakker’s result of a unitary elasticity of substitu-

4Although Berndt (1976) found a unitary elasticity of substitution in the US time series assuming neutral
technical change, Antras (2004) and Klump et al. (2007) subsequently found estimates from 0.5 to 0.9
allowing for biased technical change. Karabarbounis and Neiman (2014) estimate an aggregate elasticity of
1.25 using cross-country panel variation in capital prices. Piketty (2014) estimates an aggregate elasticity
between 1.3 and 1.6. Herrendorf et al. (2014) estimate an elasticity of 0.84 for the US economy as a whole
and 0.80 for the manufacturing sector. Alvarez-Cuadrado et al. (2014) estimate an elasticity of 0.78 for the
manufacturing sector.

5Houthakker assumed that factor-augmenting productivities follow independent Pareto distributions. The
connection between Pareto distributions and a Cobb-Douglas aggregate production function is also empha-
sized in Jones (2005), Lagos (2006), and Luttmer (2012).

6Sato (1975) showed this for a two-good economy. See also Miyagiwa and Papageorgiou (2007).

2



tion is sensitive to the distribution of capital intensities. Rather than making distributional

assumptions, we directly measure the empirical distribution using cross-sectional micro data.

Thus, given the set of plants that existed at a point in time, we estimate the aggregate

elasticity of substitution at that time. Our strategy allows both the aggregate elasticity and

the bias of technical change to vary freely over time, opening up a new set of questions.

Because our identification does not impose strong parametric assumptions on the time path

of the bias, our approach is well suited for measuring how the bias has varied over time

and how it has contributed to the decline in labor’s share of income. We can also examine

how the aggregate elasticity has changed over time and whether it varies across countries at

different stages of development.

We first estimate the aggregate elasticity for the US manufacturing sector using the

US Census of Manufactures. In 1987, our benchmark year, we find an average plant-level

elasticity of substitution of roughly one-half. Given the heterogeneity in capital shares and

our estimates of other parameters, the aggregate elasticity in 1987 was 0.71.7 Reallocation

thus accounts for roughly one-third of substitution. Despite large structural changes in

manufacturing over the past forty years,8 the aggregate elasticity has been stable. We find

the elasticity has risen slightly from 0.67 in 1972 to 0.75 in 2007.

We then use this estimate to decompose the decline in labor’s share of income in the man-

ufacturing sector since 1970. We have several findings. First, since our estimated aggregate

elasticity is below one, mechanisms such as increased capital accumulation or declining cap-

ital prices would raise the labor share. Second, the contribution of factor prices to the labor

share exhibits little variation over time, and thus does not match the accelerating decline of

the labor share. Rather, the acceleration is accounted for by changes in the pace of the bias

of technical change. Third, wages grew more slowly before 1970; a counterfactual exercise

that keeps wage growth at its pre-1970 pace indicates that this can explain about one sixth

of the decline in the labor share. Finally, a shift in the composition of industries accounts

for part of the acceleration in the labor share’s decline since 2000. These findings suggest

7Our estimate is a long-run elasticity of substitution between capital and labor, owing to a proper inter-
pretation of our estimates of plant-level parameters. It is thus an upper bound on the short run elasticity.

8Elsby et al. (2013) have emphasized the shift in industry composition in the context of labor’s share of
income.
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the decline in the labor share stems from factors that affect technology, broadly defined, in-

cluding automation and offshoring, rather than mechanisms that work solely through factor

prices.

Finally, our approach allows us to examine how the shape of technology varies across

countries at various stages of development; policies or frictions that lead to more variation in

capital shares raise the aggregate elasticity. Using their respective manufacturing censuses,

we find an average manufacturing sector elasticity of 0.84 for Chile, 0.84 for Colombia, and

1.11 for India. These differences are quantitatively important; the response of output per

worker to a change in the interest rate is over fifty percent larger in India than in the US,

as is the welfare cost of capital taxation. They also imply that a decline in capital prices

decreases the labor share in India but increases it in the US.

Our work complements the broad literature that examines how changes in factor prices

and technology have affected the distribution of income. Krusell et al. (2000) studied how a

capital-skill complementarity and a declining price of capital can change factor shares and

raise the skill premium. Acemoglu (2002), Acemoglu (2003), and Acemoglu (2010) showed

how factor prices and the aggregate capital-labor elasticity of substitution can determine the

direction of technical change. Burstein et al. (2014) studied how changes in technology and

supplies of various factors alter factor compensation. Autor et al. (2003) and Autor et al.

(2013) studied how changes in technology and trade affect factor income.

The remainder of the paper is organized as follows. In Section 2, we present our theoretical

analysis of the aggregation problem, while in Section 3 we estimate the aggregate elasticity

for manufacturing. Section 4 examines the robustness of our estimates. In Section 5, we

use our estimates of the aggregate elasticity to assess the changes in the labor share. In

Section 6, we examine how the aggregate elasticity varies across countries and discuss policy

implications. Finally, in Section 7 we conclude.

2 Theory

This section characterizes the aggregate elasticity of substitution between capital and labor in

terms of production and demand elasticities of individual plants. We begin with a simplified
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environment in which we describe the basic mechanism and intuition. We proceed to enrich

the model with sufficient detail to take the model to the data by incorporating materials and

allowing for heterogeneity across industries.

A number of features—adjustment costs, an extensive margin, non-constant returns to

scale, imperfect pass-through, and varying production and demand elasticities across plants

in the same industry—are omitted from our benchmark model. We postpone a discussion of

these until Section 4.

2.1 Simple Example

Consider a large set of plants I whose production functions share a common, constant elas-

ticity of substitution between capital and labor, σ. A plant produces output Yi from capital

Ki and labor Li using the following CES production function:

Yi =
[
(AiKi)

σ−1
σ + (BiLi)

σ−1
σ

] σ
σ−1

(1)

Productivity differences among plants are factor augmenting: Ai is i’s capital-augmenting

productivity and Bi i’s labor-augmenting productivity.

Consumers have Dixit–Stiglitz preference across goods, consuming the bundle Y =(∑
i∈I D

1
ε
i Y

ε−1
ε

i

) ε
ε−1

. Plants are monopolistically competitive, so each plant faces an isoelas-

tic demand curve with a common elasticity of demand ε > 1.

Among these plants, aggregate demand for capital and labor are defined as K ≡
∑

i∈I Ki

and L ≡
∑

i∈I Li respectively. We define the aggregate elasticity of substitution, σagg, to be

the partial equilibrium response of the aggregate capital-labor ratio, K/L, to a change in

relative factor prices, w/r:9

σagg ≡ d lnK/L

d lnw/r
(2)

We neither impose nor derive a parametric form for an aggregate production function. Given

the allocation of capital and labor, σagg simply summarizes, to a first order, how a change

in factor prices would affect the aggregate capital-labor ratio.

9Since production and demand are homogeneous of degree one, a change in total spending would not
alter the aggregate capital-labor ratio. We address non-homothetic environments in Web Appendix B.6.
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Let αi ≡ rKi
rKi+wLi

and α ≡ rK
rK+wL

denote the cost shares of capital for plant i and in

aggregate. The plant-level and industry-level elasticities of substitution are closely related

to the changes in these capital shares:

σ − 1 =
d ln rKi/wLi

d lnw/r
=

d lnαi/(1− αi)
d lnw/r

=
1

αi(1− αi)
dαi

d lnw/r
(3)

σagg − 1 =
d ln rK/wL

d lnw/r
=

d lnα/(1− α)

d lnw/r
=

1

α(1− α)

dα

d lnw/r
(4)

The aggregate cost share of capital can be expressed as an average of plant capital shares,

weighted by size:

α =
∑
i∈I

αiθi (5)

where θi ≡ rKi+wLi
rK+wL

denotes plant i’s expenditure on capital and labor as a fraction of

the aggregate expenditure. To find the aggregate elasticity of substitution, we can simply

differentiate equation (5):

dα

d lnw/r
=

∑
i∈I

dαi
d lnw/r

θi +
∑
i∈I

αi
dθi

d lnw/r

Using equations 3 and 4, this can be written as

σagg − 1 =
1

α(1− α)

∑
i∈I

αi(1− αi)(σ − 1)θi +
1

α(1− α)

∑
i∈I

αiθi
d ln θi

d lnw/r
(6)

The first term on the right hand side is a substitution effect that captures the change in

factor intensity holding fixed each plant’s size, θi. σ measures how much an individual plant

changes its mix of capital and labor in response to changes in factor prices. The second term

is a reallocation effect that captures how plants’ sizes change with relative factor prices. By

Shephard’s Lemma, a plant’s cost share of capital αi measures how relative factor prices

affect its marginal cost. When wages rise, plants that use capital more intensively gain a

relative cost advantage. Consumers respond to the subsequent changes in relative prices by

shifting consumption toward the capital intensive goods. This reallocation effect is larger
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when demand is more elastic, because customers respond more to changing relative prices.

Formally, the change in i’s relative expenditure on capital and labor is

d ln θi
d lnw/r

= (ε− 1) (αi − α) (7)

After some manipulation (see Appendix A for details), we can show that the industry elas-

ticity of substitution is a convex combination of the micro elasticity of substitution and

elasticity of demand:

σagg = (1− χ)σ + χε (8)

where χ ≡
∑

i∈I
(αi−α)2
α(1−α) θi.

The first term, (1− χ)σ, measures substitution between capital and labor within plants.

The second term, χε, captures reallocation between capital- and labor-intensive plants.

We call χ the heterogeneity index. It is proportional to the cost-weighted variance of

capital shares and lies between zero and one.10 When each plant produces at the same

capital intensity, χ is zero and there is no reallocation across plants. Each plant’s marginal

cost responds to factor price changes in the same way, so relative output prices are unchanged.

In contrast, if some plants produce using only capital while all others produce using only

labor, all factor substitution is across plants and χ is one. When there is little variation in

capital intensities, within-plant substitution is more important than reallocation.

2.2 Baseline Model

This section describes the baseline model we will use in our empirical implementation. The

baseline model extends the previous analysis by allowing for heterogeneity across industries

and using a production structure in which plants use materials in addition to capital and

labor.

Let N be the set of industries and In be the set of plants in industry n. We assume that

each plant’s production function has a nested CES structure.

10A simple proof:
∑
i∈I (αi − α)

2
θi =

∑
i∈I α

2
i θi − α2 ≤

∑
i∈I αiθi − α2 = α− α2 = α(1− α). It follows

that χ = 1 if and only if each plant uses only capital or only labor (i.e., for each i, αi ∈ {0, 1}).
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Assumption 1 Plant i in industry n produces with the production function

Fni (Kni, Lni,Mni) =

([
(AniKni)

σn−1
σn + (BniLni)

σn−1
σn

] σn
σn−1

ζn−1
ζn

+ (CniMni)
ζn−1
ζn

) ζn
ζn−1

(9)

so its elasticity of substitution between capital and labor is σn. Further, i’s elasticity of

substitution between materials and its capital-labor bundle is ζn.

We also assume that demand has a nested structure with a constant elasticity at each

level of aggregation. Such a structure is consistent with a representative consumer whose

preferences exhibit constant elasticities of substitution across industries and across varieties

within each industry:

Y ≡

[∑
n∈N

D
1
η
n Y

η−1
η

n

] η
η−1

, Yn ≡

(∑
i∈In

D
1
εn
ni Y

εn−1
εn

ni

) εn
εn−1

(10)

This demand structure implies that each plant in industry n faces a demand curve with

constant elasticity εn. Letting q be the price of materials, each plant maximizes profit

max
Pni,Yni,Kni,Lni,Mni

PniYni − rKni − wLni − qMni

subject to the technological constraint Yni = Fni (Kni, Lni,Mni) and the demand curve Yni =

Yn(Pni/Pn)−εn , where Pn ≡
(∑

i∈In DniP
1−εn
ni

) 1
1−εn is the price index for industry n.

The industry-level elasticity of substitution between capital and labor for industry n

measures the response of the industry’s capital-labor ratio to a change in relative factor

prices:

σNn ≡
d lnKn/Ln

d lnw/r

The derivation of this industry elasticity of substitution follows Section 2.1 up to equa-

tion (6). As before, αni = rKni
rKni+wLni

is plant i’s capital share of non-materials cost and

θni = rKni+wLni
rKn+wLn

plant i’s share of industry n’s expenditure on capital and labor. We will

show that reallocation depends on plants’ expenditures on materials. We denote plant i’s

materials share of its total cost as sMni ≡
qMni

rKni+wLni+qMni
. Because producers of intermediate

inputs use capital and labor, changes in r and w would impact the price of materials. We
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define αM ≡ d ln q/w
d ln r/w

to be the capital content of materials.

Proposition 1 Under Assumption 1, the industry elasticity of substitution is:

σNn = (1− χn)σn + χn
[
(1− s̄Mn )εn + s̄Mn ζn

]
where χn =

∑
i∈In

(αni−αn)2
αn(1−αn) θni and s̄Mn =

∑
i∈In (αni−αn)(αni−α

M )θnis
M
ni∑

i∈In (αni−αn)(αni−α
M )θni

The proofs of all propositions are contained in Appendix A.

Relative to equation (8), the demand elasticity is replaced by a convex combination of the

elasticity of demand, εn, and the elasticity of substitution between materials and the capital-

labor bundle, ζn. This composite term measures the change in i’s share of its industry’s

expenditure on capital and labor, θni. Intuitively, a plant’s expenditure on capital and labor

can fall because its overall scale declines or because it substitutes towards materials. The cost

share of materials determines the relative importance of each. As materials shares approach

zero, all shifts in composition are due to changes in scale, and Proposition 1 reduces to

equation (8). In contrast, as a plant’s materials share approaches one, changes in its cost

of capital and labor have a negligible impact on its marginal cost, and hence a negligible

impact on its sales. Rather, the change in its expenditure on capital and labor is determined

by substitution between materials and the capital-labor bundle.

The aggregate elasticity parallels the industry elasticity; aggregate capital-labor substi-

tution consists of substitution within industries and reallocation across industries. Propo-

sition 2 shows that expression for the aggregate elasticity parallels the expressions for the

industry elasticity in Proposition 1 with plant and industry variables replaced by industry

and aggregate variables respectively.

Proposition 2 The aggregate elasticity between capital and labor, σagg = d lnK/L
d lnw/r

, is:

σagg = (1− χagg) σ̄N + χagg
[
(1− s̄M)η + s̄M ζ̄N

]
(11)

where χagg ≡
∑

n∈N
(αn−α)2
α(1−α) θn, s̄M ≡

∑
n∈N

(αn−α)(αn−αM )θn∑
n′∈N (αn′−α)(αn′−αM )θn′

sMn ,

σ̄N ≡
∑

n∈N
αn(1−αn)θn∑

n′∈N αn′ (1−αn′ )θn
σNn , and ζ̄N ≡

∑
n∈N

(αn−α)(αn−αM )θnsMn∑
n′∈N (αn′−α)(αn′−αM )θn′s

M
n′
ζNn .
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Substitution within industries depends on σ̄N , a weighted average of the industry elasticities

of substitution defined in Proposition 1. ζ̄N is similarly a weighted average of industry level

elasticities of substitution between materials and non-materials (we relegate the expression

ζNn to Appendix A). χagg is the cross-industry heterogeneity index and is proportional to

the cost-weighted variance of industry capital shares.

3 US Aggregate Elasticity of Substitution

The methodology developed in the previous section shows how to recover the aggregate

capital-labor elasticity from micro parameters and the distribution of plant expenditures. We

now use plant-level data on US manufacturing plants to estimate all of the micro components

of the aggregate elasticity. We then assemble these components to estimate the aggregate

capital-labor elasticity of substitution for the US manufacturing sector and examine its

behavior over time.

3.1 Data

The two main sources of micro data on manufacturing plants are the US Census of Manufac-

tures and Annual Survey of Manufactures (ASM). The Census of Manufactures is a census

of all manufacturing plants conducted every five years. It contains more than 180,000 plants

per year.11 The Annual Survey of Manufactures tracks about 50,000 plants over five year

panel rotations between Census years, and includes the largest plants with certainty.

In this study, we primarily use factor shares measured at the plant level. For the Census

samples, we measure capital by the end year book value of capital, deflated using an industry

specific current cost to historic cost deflator. The ASM has the capital and investment

history required to construct perpetual inventory measures of capital. Thus, we create

perpetual inventory measures of capital, accounting for retirement data from 1973 to 1987

as in Caballero et al. (1995) and using NIPA investment deflators for each industry-capital

type. Capital costs consist of the total stock of structures and equipment capital multiplied

11This excludes small Administrative Record plants with fewer than five employees, for whom the Census
only tracks payroll and employment. We omit these in line with the rest of the literature using manufacturing
Census data.
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by the appropriate rental rate, using a Jorgensonian user cost of capital based upon an

external real rate of return of 3.5 percent as in Harper et al. (1989). For labor costs, both

surveys contain total salaries and wages at the plant level, but the ASM subsample includes

data on supplemental labor costs including benefits as well as payroll and other taxes. For

details about data construction, see Web Appendix C.

The Census of Manufactures, unlike the ASM subsample, only contains capital data

beginning in 1987. Further, industry definitions change from SIC to NAICS in 1997. Given all

of these considerations, we take the following approach to estimating the aggregate elasticity.

We use the full 1987 Census of Manufactures to estimate the micro elasticities and ex-

amine their robustness. We then use the ASM in each year for the relevant information

on the composition of plants – the heterogeneity indices and materials shares – because we

extend the analysis from 1972 to 2007. So, for example, to compute the aggregate elasticity

of substitution in 1977, we combine estimates of micro parameters from the 1987 Census of

Manufactures with information from the 1977 ASM.

Throughout, we use a plant’s total cost of labor as a measure of its labor input. We

view employees of different skill as supplying different quantities of efficiency units of labor,

so using the wage bill controls for differences in skill. In Section 4.4 we show that our

methodology is valid even if wages per efficiency unit of labor vary across plants.

3.2 Micro Heterogeneity

The extent of heterogeneity in capital intensities, as measured by the heterogeneity index,

determines the relative importance of within-plant substitution and reallocation. Figure 1a

depicts these indices for each industry in 1987. Across industries, the indices average 0.1 and

are all less than 0.2. Similarly, Figure 1b shows how the average heterogeneity index evolves

over time. While heterogeneity indices are rising, they remain relatively small. Industry

capital shares exhibit even less variation; the cross-industry heterogeneity index χagg is 0.05.12

Given this level of heterogeneity, the plant-level elasticity of substitution between capital

12It may seem surprising that these heterogeneity indices are so small. Note, however, that the numerator
of the heterogeneity index is a cost-weighted variance of capital shares, which would likely be smaller than
an unweighted variance. In addition, since capital shares are less than one, their variance is smaller than
their standard deviation.
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(a) Heterogeneity Indices Across Industries (b) Heterogeneity Indices over Time

Figure 1 Heterogeneity Indices

Note: The left figure displays the heterogeneity index, χn, in 1987 for each industry. The right
figure displays the average heterogeneity index over time.

and labor is a primary determinant of the aggregate elasticity. Therefore, we begin with a

thorough investigation of this elasticity.

3.3 Plant Level Elasticity of Substitution

We obtain the plant-level elasticity of substitution from Raval (2014). We describe the

methodology and estimates in detail in order to explain how we map the theory to the data,

and then compare these estimates to others from the literature.

Given cost minimization, the relationship between relative expenditures on capital and

labor rKni/wLni and relative factor prices w/r identifies this elasticity. We exploit wage

differences across local areas in the US in order to identify the micro elasticity of substitution

between capital and labor. Because these wage differences are persistent, with a correlation

between 1990 and 2000 of 0.90, they identify plants’ long-run response to a permanent change

in factor prices. We run the regression:

log
rKni

wLni
= (σn − 1) logwMSA

ni + CONTROLS + εni

where wMSA
ni is the wage for the MSA in which the plant is located. The regression only uses

plants in a single year; the implicit assumption is that capital is mobile so all plants face the

same cost of capital. The local wage should reflect the cost of an efficiency unit of labor in

an MSA, the wages are estimated controlling for observable measures of skill. To obtain the
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MSA wages, we first use data from the Population Censuses to estimate a residual wage for

each person after controlling for education, experience, and demographics. We then average

this residual within the MSA.13 All regressions control for industry fixed effects, as well as

plant age and multi-unit status.

This specification has several attractive properties. First, the dependent variable uses a

plant’s wage bill rather than a count of employees. If employees supply efficiency units of

labor, using the wage bill automatically controls for differences in skill across workers and,

more importantly, across plants. Second, plants may find it costly to adjust capital or labor.

Deviations of a plant’s capital or labor from static cost minimization due to adjustment costs

would be in the residual, but should be orthogonal to the MSA wage. Third, the MSA wage

and plant wage bills are calculated using different data sources, so we avoid division bias

from measurement error in the wage in the dependent and independent variables.

Using all manufacturing plants, Raval (2014) estimates a plant level elasticity of substi-

tution close to one-half in both 1987 and 1997. In this paper, we allow plant elasticities

of substitution to vary by two digit SIC industry and so run separate regressions for each

industry. Figure 2 displays the estimates by industry along with 95 percent confidence in-

tervals.14 Most of the estimates range between 0.4 and 0.7. The remainder of this section

addresses a number of potential issues with our plant level elasticity estimates.

Endogeneity

We estimated the plant level elasticity of substitution using cross-sectional wage differ-

ences across US locations. A natural question is whether these wage differences are exogenous

to non-neutral productivity differences. For example, to the extent that higher MSA wages

were caused by higher labor-augmenting productivity or unobserved skills, our estimate of

the elasticity of substitution would be biased towards one as σ − 1 would be attenuated.

To address such endogeneity problems, we use a version of Bartik (1991)’s instrument for

labor demand, which is based on the premise that MSAs differ in their industrial composi-

tion. When an industry expands nationwide, MSAs more heavily exposed to that industry

experience larger increases in labor demand. Thus given each MSA’s initial industrial com-

13For details about how we construct this wage, see Web Appendix C.2.
14We list these estimates in Web Appendix D.1.
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Figure 2 Plant Elasticity of Substitution by Industry, 1987

Note: For each industry, this graph plots the plant level elasticity of substitution between capital
and labor as estimated in Raval (2014), together with the 95 percent confidence interval for each
estimate. Standard errors are clustered at the MSA-industry level.

position, we can construct the change in each MSA’s labor demand due to the change in

each industry’s nationwide employment. We restrict the instrument to non-manufacturing

industries only.15

Table I contains estimates of the elasticity of substitution using these instruments in the

third column.16 The first two columns contain our baseline least squares estimates. The first

column contains the average plant-level elasticity when we estimate separate elasticities for

each two-digit SIC industry.17 The second column estimates a common elasticity across all

15Formally, the instrument is constructed as follows: Let gn(t) = 1
10 ln(Ln(t)/Ln(t− 10)) be the national

growth rate of industry n, and let ωj,n(t) be the share of MSA j’s employment working in industry n. The
instrument is the interaction between initial MSA employment shares and 10 year national employment
growth rates: Zj(t) =

∑
n∈NS ωj,n(t − 10)gn(t), where NS is the set of non-manufacturing four-digit SIC

industries.
16Although all other specifications use wages from data on workers from the Population Censuses, here we

use wages based on data on average payroll to employment across all establishments in an MSA from the
Longitudinal Business Database. The Population Censuses are only conducted every 10 years in different
years from the Economic Censuses, so the wages from the Population Censuses do not match the year of
the Economic Census. For most of our specifications, this mismatch is not a problem because our wage
variation is highly persistent. This mismatch becomes a problem if we want to use short run variation in
wages from labor demand shocks. While the wages from establishment data do not control for differences
in individual worker characteristics, the labor demand instrument should be orthogonal to the measurement
error in wages. Because the SIC industry definitions changed from 1972 SIC basis to 1987 SIC basis in 1987,
for 1987 we use the 1976-1986 instrument.

17This average, along with other averages across industries, is a weighted average where the weight on

industry n is αn(1−αn)θn∑
n∈N αn(1−αn)θn as in Proposition 2.

14



industries in manufacturing. In both years, the IV estimates are close to one-half, ranging

from 0.49 to 0.52, and are similar to the baseline least squares estimates.

Table I Robustness Checks for Plant Capital-Labor Substitution Elasticity

(1) (2) (3) (4) (5) (6)
Separate Single Bartik Equipment

OLS OLS Instrument Capital Firm FE State FE
1987 0.52 0.52 (0.04) 0.49 (0.05) 0.53 (0.03) 0.49 (0.05) 0.48 (0.05)
1997 0.52 0.46 (0.03) 0.52 (0.08) 0.48 (0.08) 0.46 (0.04)

Note: Standard errors are in parentheses. The table contains five specifications. The first spec-
ification estimates a separate plant elasticity of substitution for each industry, and then averages
them using the cross industry weights used for aggregation. The second specification estimates a
single common elasticity of substitution for the entire manufacturing sector. The third specification
estimates the elasticity of substitution in an IV framework using Bartik labor demand instruments.
The fourth specification estimates the plant elasticity of substitution through least squares, defining
capital to only include equipment capital. The fifth specification estimates the plant elasticity of
substitution through least squares but includes firm fixed effects, excluding all single plant firms. The
sixth specification estimates the plant elasticity of substitution through least squares but includes
state fixed effects.

All regressions include industry fixed effects, age fixed effects, and a multi-unit status indicator.
Wages used are the average log wage for the MSA. In the IV specification, the wage is computed
as payroll/number of employees at the establishment level; in all other cases, the wage is computed
as wage and salary income over total number of hours worked adjusted for differences in worker
characteristics. Standard errors are clustered at the industry-MSA level.

Rental Rate of Capital

Our estimate of the micro elasticity of substitution would be biased if rental rates vary

systematically with local wages. Three reasons might cause these rental rates to vary with

wages. First, the cost of some kinds of capital, such as structures, may reflect local wages.

To examine this, we estimate the elasticity of substitution between labor and equipment

capital, which is more plausibly mobile across locations.18 Second, the cost of capital could

vary through differences in lending rates from banks in different locations, or from differences

in firm creditworthiness or access to capital markets. To control for these differences, we

add firm fixed effects for plants that belong to multi-unit firms. Third, individual states

could have different capital taxes or investment subsidies; we control for these through state

fixed effects. Table I reports the estimates from these specifications in columns (4)-(6); in

all cases, the estimates are quite close to those from the baseline specification.

Extensive Margin

18Because the Census does not separate equipment and structures capital in 1997, we only estimate this
specification for 1987.
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In the baseline model presented in Section 2, plants could substitute across inputs and

change size. However, the set of existing plants remained fixed, so there was no extensive

margin of adjustment. Would a higher wage cause entering firms to choose more capital

intensive technologies? If so, the aggregate elasticity of substitution should account for that

shift.

Here we provide an example of a putty-clay model in which there is adjustment along

both the intensive and extensive margins. We will show that while we must interpret our

estimated micro elasticity of substitution differently, our estimate of the macro elasticity is

unchanged.

Consider an environment in which plant i has some core characteristics {Ai,Bi}. Upon

entering, it can choose a technology {Ai, Bi} from the menu

[
(Ai/Ai)1−σ

ext

+ (Bi/Bi)1−σ
ext
] 1

1−σext ≤ 1

Once it has selected its technology, it cannot change to an alternative technology. After

entering, it produces using the production function

Yi =

[
(AiKi)

σint−1

σint + (BiLi)
σint−1

σint

] σint

σint−1

(12)

σint thus represents a short run elasticity. Once the plant has entered, it cannot switch

{Ai, Bi}, so σint is the response of i’s capital-labor ratio to relative factor prices:

Ki

Li
=

(
Ai
Bi

)σint−1 ( r
w

)−σint
A shift in factor prices would also alter entering plants’ choices of technologies. Given factor

prices, i’s choice of technologies will satisfy
(
AiKi
BiLi

)σint−1

σint

=
(
Ai/Ai
Bi/Bi

)σext−1
. Along with i’s

choice of capital and labor, this implies that, after entry, the entering plant’s capital-labor

ratio will be
Ki

Li
=

(
Ai
Bi

)σtotal−1 ( r
w

)−σtotal
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where σtotal is defined to satisfy

1

σtotal − 1
=

1

σint − 1
+

1

σext − 1

σtotal represents a long run elasticity of substitution. If, for example, the wage was high

and remained high, all entering plants would choose more capital intensive technologies, and

σtotal would capture the resulting shifts in capital-labor ratios.

If the true model contains both an intensive and extensive margin, then how should we

interpret our estimates of the micro elasticity? Our estimation strategy uses cross-sectional

differences; we compare capital-labor ratios across locations with different wages. These

differences in capital-labor ratios come from some combination of the intensive and extensive

margins. Because geographic wage differences are extremely persistent, our estimated micro

elasticity corresponds to σtotal; in high-wage locations, past entering cohorts would have

selected technologies that reflected the higher cost of labor.

With our methodology we are unable to distinguish between the intensive and extensive

margins of adjustment. Fortunately, doing so is not necessary to build up to a long-run

aggregate elasticity.19

Sorting

Our estimates do not account for the possibility that plants select locations in response

to factor prices. To see why this might matter, consider the following extreme example:

Suppose plants cannot adjust their factor usage but can move freely. Then we would expect

to find more labor intensive plants in locations with lower wages. A national increase in the

wage would not, however, change any plant’s factor usage. Thus, to the extent that this

channel is important, our estimated elasticity will overstate the true elasticity.

19Houthakker (1955) also features an extensive margin. We do not have a general result for that type of
environment, but we can show that under his assumptions our methodology would deliver an estimate of the
aggregate elasticity of substitution of one. The argument that our estimated micro elasticity captures both
the intensive and extensive margins of adjustment is the same, but the mapping from Houthakker’s model
to our parameter estimates is more opaque. In that model, even though individual plants have Leontief
production functions, one can show that the equilibrium distribution of capital shares (αi) in the cross
section is independent of factor prices. Thus we would estimate a unit plant-level elasticity of substitution.
Houthakker also assumed that each plant’s capacity was constrained by a fixed factor. This, in combination
with his distributional assumptions, implies that the average revenue-cost ratio in that model is infinite.
Thus we would estimate a unit demand elasticity (see Section 3.4). Thus, for any heterogeneity index, our
estimation strategy would yield a Cobb-Douglas aggregate production function.
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Plants ability to sort across locations likely varies by industry. We would expect industries

in which plants are more mobile to be more clustered in particular areas. This could depend,

for example, on how easily goods can be shipped to other locations.

Raval (2014) addressed this by looking at a set of ten large four-digit industries located

in almost all MSAs and states. These are industries for which we would expect sorting across

locations to be least important. The leading example of this is ready-mixed concrete; because

concrete cannot be shipped very far, concrete plants exist in every locality. Elasticities for

these industries are similar to the estimates for all industries in our baseline, with average

elasticities of 0.49 for 1987 and 0.61 for 1997.

Alternative Estimates

Our estimation strategy uses cross-sectional variation to estimate a long-run plant-level

elasticity. Chirinko (2008) surveyed the existing literature estimating short- and long-run

elasticities of substitution at various levels of aggregation. This literature typically uses

variation in the user cost of capital over time stemming from changes in tax-laws or the

price of capital that differentially affect asset types.

Chirinko et al. (2011) and Barnes et al. (2008) provided estimates that are conceptually

closest to ours, as they used long-run movements in the user cost of capital to identify the

long-run micro elasticity for US and UK public firms respectively. Their approach estimates

the elasticity using the capital first order condition and allows for biased technical change at

the industry level. Because they use variation within firms over time, their estimates are not

biased by sorting across locations. In addition, because their estimated elasticities contain

only the intensive margin of adjustment, we would expect them to be slightly lower than

ours. Each estimated a micro elasticity of substitution of 0.4. We find it comforting that

two approaches that use very different sources of variation yield similar estimates.

3.4 Aggregation

We now estimate the remaining plant-level production and demand parameters. We then

use them to aggregate to the manufacturing-level elasticity of substitution.

The reallocation effect depends upon both the plant elasticity of substitution between

materials and non-materials, ζ, and the elasticity of demand, ε.
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To identify ζ, we use the same cross-area variation in the wage. Across MSAs, the local

wage varies but the prices of capital and materials are fixed. Cost minimization implies that

ζ measures the response of relative expenditures of materials and non-materials to changes

in their respective prices: 1 − ζ = d ln[(rKni+wLni)/qMni]
d ln(λni/q)

, where λni is the cost index of i’s

capital-labor bundle. Holding fixed the prices of materials and capital, a change in the

local wage would increase these relative prices by d lnλni/q = (1 − αni)d lnwMSA
ni . To a

first-order approximation, the response of (rKni + wLni)/qMni to the local wage would be

(1− ζ)(1− αni). We therefore estimate ζ using the regression

log
rKni + wLni

qMni

= (1− ζ)(1− αni)(logwMSA
ni ) + CONTROLS + εni

Table II contains these estimates for 1987 and 1997. Because we use the full Census for

each estimate, our estimate of ζ is common across industries. The first column contains

our baseline estimate. This implicitly assumes a national market for materials. The second

column adjusts the regression to account for the fact that some materials are sourced locally;

an increase in the local wage would raise the cost of such locally sourced materials. See Web

Appendix D.3 for details. These estimates are a bit lower than one; in our subsequent

calculations, we use the 1987 MSA level estimate of 0.90.20

Table II Elasticities of Substitution between Materials and Non-Materials for the Manufac-
turing Sector

No Local Content Local Content
1987 0.90 (0.06) 0.87 (0.07)
1997 0.67 (0.04) 0.63 (0.05)
N ≈ 140, 000

Note: Standard errors are in parentheses. All regressions include industry fixed effects, age
fixed effects and a multi-unit status indicator, and have standard errors clustered at the two digit
industry-MSA level. Specifications with local content are as described in Web Appendix D.3.

Within industries, the demand elasticity tells us how much consumers substitute across

plants when relative prices change. We estimate the elasticity of demand using the impli-

20Atalay (2014) pursued a complementary approach using differences in materials prices across plants in the
US Census of Manufactures and finds an estimate of 0.65, within the range of Table II. See Appendix F of his
paper. This differs from his main estimate of this elasticity which uses shorter-run industry-level variation
and includes non-manufacturing industries, and so may not reflect the long-run, plant-level elasticity for
manufacturing required for our model.
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cations of profit maximization; optimal price setting behavior implies that the markup over

marginal cost is equal to ε
ε−1 . Thus, we invert the average markup across plants in an indus-

try to obtain the elasticity of demand. The assumption of constant returns to scale implies

that each plant’s markup is equal to its ratio of revenue to cost.21 Figure 3 displays the elas-

ticities of demand for each manufacturing industry in 1987.22 Across industries, elasticities

of demand vary between three and five.

The overall scale elasticity is s̄Mn ζ + (1 − s̄Mn )εn. s̄Mn is an average of materials shares,

which are high in manufacturing; the average across industries in 1987 is 0.54. Figure 3

contains our estimates of the scale elasticities; they average 2.26 across industries.

Figure 3 Elasticity of Demand and Scale Elasticity by Industry, 1987

Note: For each industry, this graph plots both the elasticity of demand, estimated from revenue-
cost ratios, and the scale elasticity s̄Mn ζ + (1− s̄Mn )εn.

To aggregate across industries, we need one more elasticity, the cross industry elasticity of

demand η. We estimate this elasticity using industry-level panel data by regressing quantity

on price, using average cost as an instrument for supply. Web Appendix D.4 contains the

details of this analysis. Across specifications, we find estimates centered around one. We

thus set η to one. As we would expect, the cross-industry demand elasticity η is much

lower than the plant-level demand elasticities; varieties in the same industries are better

21We relax the assumption of constant returns to scale in Section 4.3, and explore alternative estimation
strategies for the demand elasticity in Section 4.1.

22We list these estimates in Web Appendix D.2.
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(a) Plant and Industry Elasticities (b) Aggregate Elasticity Across Time

Figure 4 Elasticities of Substitution and Aggregation

Note: The left figure displays the plant level elasticity and industry level elasticity of substitution
for each industry. The right figure displays the manufacturing level elasticity of substitution for each
Census year from 1972-2007.

substitutes than varieties in other industries.

We can now combine the substitution and reallocation effects to estimate the industry

and manufacturing sector level elasticities of substitution. In Figure 4a, we depict the plant

level and industry level elasticities of substitution. Because the heterogeneity indices tend to

be small, the industry-level elasticities of substitution are only moderately higher than the

plant-level elasticities. The average industry elasticity is 0.69 and the overall manufacturing

level elasticity of substitution is 0.71.23 Within-plant substitution accounts for 69 percent of

industry substitution and 63 percent of overall substitution for manufacturing.

The manufacturing sector has evolved over time. Our methodology allows us to examine

how much changes in the composition of plants caused the aggregate elasticity of substitution

to vary over time.24 Figure 4b depicts the aggregate elasticity of substitution from 1972 to

2007. The aggregate elasticity has risen slightly from 0.67 to 0.75. In Web Appendix D.5,

we examine the robustness of this approach by using estimates of the micro production and

demand elasticities based on the 1997 Census of Manufactures. The resulting time path of

aggregate elasticities is virtually identical to those that use the 1987 micro estimates. This

result provides support for models that assume a stable elasticity of substitution over time.

23For our methodology, uncertainty about specification is likely more important than statistical impreci-
sion. That being said, the standard error of our estimate of the aggregate capital-labor elasticity is 0.03. We
arrive at this by using the standard errors from our micro level elasticity estimates.

24After 1997, industry definitions switch from two digit SIC basis to three digit NAICS basis. We assign
SIC plant elasticities to the equivalent NAICS industries.
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4 Robustness

In this section, we examine the robustness and sensitivity of our estimates to alternative

modeling assumptions. We first examine our estimates of the micro elasticities of demand.

We also discuss measurement error and changes in the specification of the economic envi-

ronment, including imperfect pass-through, returns to scale, adjustment costs, and other

misallocation frictions.

4.1 Elasticity of Demand

For several homogeneous products, the US Census of Manufactures collects both price and

physical quantity data. We can thus estimate the elasticity of demand by regressing quantity

on price, instrumenting for price using average cost. This approach is similar to Foster et al.

(2008). This strategy implies an average industry-level capital-labor elasticity of substitution

of 0.52 among these industries, close to the estimate of 0.54 using our baseline strategy.25

The trade literature finds estimates in the same range using within industry variation across

imported varieties to identify the elasticity of demand. For example, Imbs and Mejean (2011)

find a median elasticity of 4.1 across manufacturing industries.

Web Appendix B.5 generalizes the analysis to a homothetic demand system with arbitrary

demand elasticities and imperfect pass-through of marginal cost. In that environment, the

formula for the industry elasticity in Proposition 1 is unchanged except the elasticity of

demand εn is replaced by a weighted average of the quantity bniεni; εni is i’s local demand

elasticity and bni is i’s local rate of relative pass-through (the elasticity of its price to a change

in marginal cost). Note that under Dixit-Stiglitz preferences, bni = 1 and εni = εn for each

i. Here, however, if a plant passes through only three-quarters of a marginal cost increase,

then the subsequent change in scale would be three-quarters as large. Given a pass-through

rate of three-quarters, our estimate of the 1987 aggregate elasticity of substitution would be

25Foster et al. (2008) instrument for price using plant-level TFP. We cannot use their estimates directly
because they assume plants produce using homogeneous Cobb-Douglas production functions. Because we
maintain the assumption of constant returns to scale, the appropriate analogue to plant-level TFP is average
cost. Directly using the demand elasticities of Foster et al. (2008) would yield an average industry-level
elasticity of substitution of 0.54.

22



0.67.

4.2 Non-CES Production Functions

In our baseline model, we assumed that within an industry, each plant produced using a

nested CES production function with common elasticities. Here we relax the strong func-

tional form assumption. While we maintain that each plant’s production function has con-

stant returns to scale, we impose no further structure. In particular, we do not assume

substitution elasticities are constant, that inputs are separable, or that technological differ-

ences across plants are factor augmenting. Rather, we relate the industry-level elasticity of

substitution to local elasticities of individual plants.

For plant i, we define the local elasticities σni and ζni to satisfy σni − 1 ≡ d ln rKni/wLni
d lnw/r

and ζni− 1 ≡ 1
αM−αni

d ln
qMni

rKni+wLni

d lnw/r
.26 In Appendix A we derive an expression for the industry

elasticity of substitution in this environment. The resulting expression is identical to Propo-

sition 1 except the plant elasticities of substitution are replaced with weighted averages of the

plants’ local elasticities, σ̄n ≡
∑

i∈In
αni(1−αni)θni∑

i′∈In αni′ (1−αni′ )θni′
σni and ζ̄n ≡

∑
i∈In

(αni−αn)(αni−αM )sMni∑
i′∈In (αni′−αn)(αni′−α

M )sM
i′
ζni:

σNn = (1− χn)σ̄n + χn
[
(1− s̄n)εn + s̄Mn ζ̄n

]
4.3 Returns to Scale

Our baseline estimation assumed that each plant produced using a production function with

constant returns to scale. Alternatively, we can assume that plant i produces using the

production function:

Yni = Fni(Kni, Lni,Mni) = Gni(Kni, Lni,Mni)
γ

26If i’s production function takes a nested CES form as in Assumption 1, σni and ζni would equal σn and
ζn respectively. The definition of σni is straightforward but ζni is more subtle; see Appendix A for details.
Here, however, these elasticities are not parameters of a production function. Instead, they are defined
locally in terms of derivatives of i’s production function evaluated at the cost-minimizing input bundle.
Exact expressions for σni and ζni are given in Web Appendix B.1.
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where Gni has constant returns to scale and γ < εn
εn−1 . Relative to the baseline, two things

change, as shown in Web Appendix B.3. First, the industry elasticity of substitution becomes

σNn = (1− χn)σ̄n + χn
[
s̄Mn ζ̄n + (1− s̄Mn )xn

]
where xn is defined to satisfy xn

xn−1 = 1
γ

εn
εn−1 . Thus the scale elasticity is a composite of two

parameters, the elasticity of demand and the returns to scale. When the wage falls, the

amount a labor-intensive plant would expand depends on both.

Second, when we divide a plant’s revenue by total cost, we no longer recover the markup.

Instead, we get
PniYni

rKni + wLni + qMni

=
1

γ

εn
εn − 1

=
xn

xn − 1

Fortunately, this means that the procedure we used in the baseline delivers the correct

aggregate elasticity of substitution even if we mis-specify the returns to scale. To see this,

when we assumed constant returns to scale, we found the elasticity of demand by computing
PniYni

rKni+wLni+qMni
PniYni

rKni+wLni+qMni
−1

. With alternative returns to scale, this would no longer give the elasticity

of demand, εn; rather, it gives the correct scale elasticity, xn.27

4.4 Adjustment Costs and Distortions

Section 2 showed that the relative importance of within-plant substitution and reallocation

depends upon the variation in cost shares of capital. Implicit in that environment was that

this variation came from non-neutral differences in technology. On the other hand, some

of this heterogeneity may be due to adjustment costs or other distortions as in the recent

misallocation literature; see Banerjee and Duflo (2005), Restuccia and Rogerson (2008),

Hsieh and Klenow (2009). A natural question arises: What are the implications for the

aggregate elasticity of substitution if these differences come from distortions?

Consider an alternative environment in which plants pay idiosyncratic prices for their

27This specification of returns to scale rules out some features such as fixed costs of production. In an
environment in which production functions exhibited such features, xn would be replaced by a weighted
average of individual plants’ local scale elasticities. For details see Web Appendix B.6, which also derives an
aggregate elasticity when production functions are non-homothetic.
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inputs.28 We are interested in how changes in factor prices impact the relative compensation

of capital and labor. To be precise, suppose plant i pays factor prices rni = TKnir and

wni = TLniw, and we define the industry elasticity of substitution in relation to the change

in relative factor compensation in response to a change in w/r (holding fixed the idiosyncratic

components of factor prices, {TKni, TLni}i∈In) so that it satisfies29

σNn − 1 =
d ln

(∑
i∈In rniKni/

∑
i∈In wniLni

)
d lnw/r

As shown in Web Appendix B.4, it turns out that the expression for the industry elasticity

of substitution is exactly the same as in Proposition 1, provided that we define αi = riKi
riKi+wiLi

and θi = rniKni+wniLni∑
i′∈In rni′Kni′+wni′Lni′

. Thus, as long as expenditures are measured correctly, no

modifications are necessary.

Alternatively, a plant’s shadow value of an input may differ from its marginal expenditure

on that input. This could happen if the input is fixed in the short run or if use of that input

is constrained by something other than prices. In the presence of such “unpaid” wedges, our

expression for the industry elasticity would change slightly.

If we observed these unpaid wedges, we could compute the industry elasticity. However,

measuring these wedges presents a challenge. Differences in plants’ cost shares of capital

could reflect differences in unpaid wedges or differences in technology; data on revenue and

input expenditures alone are not sufficient to distinguish between the two.

To get a sense of how big of an issue these unpaid wedges might represent, we consider

the following thought experiment. Suppose all variation in cost shares of capital were due to

“unpaid” wedges. In that case, the aggregate elasticity of substitution for the manufacturing

sector in 1987 would be 0.71, the same as our baseline, while in 1997 the aggregate elasticity

would be 0.91 rather than 0.75 in the baseline (see Web Appendix B.4 for details). This

suggests that misallocation would not substantially alter our analysis.

28In fact, our identification of the plant-level elasticity of substitution relies on plants (in different locations)
facing different wages.

29In this environment the mapping between changes in the capital-labor ratio and changes in factor com-

pensation is fuzzy; generically, d lnKn/Ln
d lnw/r − 1 6= d ln

∑
i∈In rniKni/

∑
i∈In wniLni

d lnw/r .
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4.5 Measurement Error

The measured heterogeneity indices may be affected by measurement error. Two types of

measurement error might play a role. First, if the costs of capital or labor are misreported

or constructed incorrectly, we would likely overstate the heterogeneity indices as they would

include both true heterogeneity and measurement error. In the extreme case in which all

measured heterogeneity reflects mismeasurement, then the true aggregate elasticity would

equal the plant-level elasticity. A second type of measurement error would work in the op-

posite direction. As described by White et al. (2012), data for some plants in the Census are

imputed, reducing the measured dispersion of productivity. This means that our measured

heterogeneity indices might understate the true heterogeneity in capital intensities.

A reason to think measurement error might not play a big role is that both types of

measurement discussed above are much more important for small plants than for large plants,

and the heterogeneity indices are weighted by expenditure.

5 The Decline of the Labor Share

Figure 5 depicts the labor share of income in the US for the manufacturing sector and for the

aggregate economy in the post-war period.30 The labor share for manufacturing has fallen

since 1970, from about 0.73 to 0.55 in 2011. The steepest decline has been since 2000; the

labor share fell from roughly 0.65 to 0.55 in one decade. The labor share has fallen for the

overall economy as well, though not by as much, falling from 0.70 in 1970 to 0.62 in 2011.

Labor’s share of income could change in response to factor prices or for other reasons

which, through the lens of an aggregate production function, would be viewed as biased

technical change. The aggregate elasticity determines the impact of changes in factor prices;

30The labor share for manufacturing comes from the BLS Multifactor Productivity Series, while the
aggregate labor share comes from Fernald (2012); both are based on data from the National Accounts. As
Gomme and Rupert (2004), Krueger (1999), and Elsby et al. (2013) point out, the major issue with calculating
the labor share is whether proprietors’ income accrues to labor or capital. Both series assume that the share
of labor for proprietors is the same as for corporations. For the manufacturing sector, proprietors’ income
represented 1.4 percent of income on average since 1970. Industry definitions change over this period from
SIC basis to NAICS basis; for consistency, we include NAICS Publishing Industries in manufacturing because
Publishing was included in manufacturing on a SIC basis.
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Figure 5 Labor Share over Time

Note: The solid line is the labor share for manufacturing based on data from the BLS Multifactor
Productivity series. The dashed line is the labor share for the overall economy from Fernald (2012).

we ascribe the residual to the bias of technical change. We now measure the bias of technical

change, and examine how it has varied over time.31

Formally, let sv,L denote labor’s share of value added. Then the change in the labor share

can be decomposed into two terms

dsv,L =
∂sv,L

∂ lnw/r
d lnw/r +

(
dsv,L − ∂sv,L

∂ lnw/r
d lnw/r

)

The first measures the contribution of changes in factor prices. The second measures a

residual that we label the “bias of technical change”.

To execute this decomposition, we need measures of factor prices. We base our rental

prices on NIPA deflators for equipment and structures, and wages on average compensation

per hour worked adjusted for changes in worker quality over time.32 Our measures of value

31See Web Appendix D.6 for the details of this calculation. Total income can be decomposed into payments
to labor, payments to fixed capital, and a residual that we label “profit”. Any return to intangible capital
or entrepreneurship would be included in this category. Consistent with Section 2, we assume changes in
factor prices do not alter the “profit” share of gross output. See Web Appendix D.7 for a comparison to
alternative econometric methods using only aggregate data.

32For rental prices, we develop a Tornqvist index for the rental price to account for changing shares of two
digit industries and different types of capital over time. For wages, we use BLS data on total compensation
and hours for each industry, correcting for labor quality using indices from Jorgenson et al. (2013). Jorgenson
et al. (2013) measures labor quality as the deviation of total hours from a Tornqvist index of hours across
many different cells that represent workers with different amounts of human capital, as in Jorgenson et al.
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added and input expenditures are based on NIPA data. Our estimates of expenditures

on fixed capital combine NIPA data on equipment and structures capital with our rental

prices.33 Finally, we allow the aggregate elasticity to vary across time, linearly interpolating

between the Census years in which we estimated the elasticity.

Table III displays the annualized change in the labor share and each of its components

before and after the year 2000. This type of decomposition cannot provide a full explanation

of the decline in the labor share. Nevertheless, any explanation should be consistent with

the patterns that we depict.

We have several findings. First, an estimated aggregate elasticity less than one implies

that two mechanisms that have been put forward – an acceleration in investment specific

technical change as in Karabarbounis and Neiman (2014) or increased capital accumulation

as in Piketty (2014) – would have raised rather than lowered labor’s share of income. The

declining cost of capital relative to labor raised the labor share by a total of 3.2 percentage

points over the 1970-2010 period.34 Second, the contribution of changes in factor prices has

been relatively constant over the past 40 years, at 0.08 percentage points per year in the

1970-1999 period and 0.07 percentage points per year in the 2000-2010 period. This means

that other explanations that work through factor prices, such as a decline in labor supplied

by prime-aged males or changes in benefits, would have trouble matching the timing of the

decline in the labor share.

Instead, there has been an acceleration in the bias of technical change over the past 40

years; the labor share has decreased about half a percentage point faster in the period since

(2005).
33The labor share from NIPA is based on firm level data, rather than production level data, and so would

include non-manufacturing establishments of a manufacturing firm, such as a firm’s headquarters. In 1987,
the total wages and salaries from the production data (from the NBER-CES Productivity database) was
88.2 percent of the wages and salaries from NIPA. While our aggregate elasticities are estimated using
production data, we apply these elasticities to labor shares from NIPA. This is our preferred estimate. See
Web Appendix D.6.2 for details and alternative measures.

34Our rental prices are based upon official NIPA deflators for equipment and structures capital. However,
Gordon (1990) has argued that the NIPA deflators underestimate the actual fall in equipment prices over
time. In Web Appendix D.6.3 we use an alternative rental price series for equipment capital that Cummins
and Violante (2002) developed by extending the work of Gordon (1990). Their series extends to 1999, so we
compare our baseline to these rental prices during the 1970-1999 period. Using the Cummins and Violante
(2002) equipment prices implies that the wage to rental price ratio has increased by 3.8 percent per year,
instead of 2.0 percent per year with the NIPA deflators. This change increases the contribution of factor
prices to the labor share between 1970 and 1999 by 0.05 percentage points per year, or about 1.9 percentage
points over the period.
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2000, and this is accounted for by the bias of technical change. The cumulative decrease in

the labor share due to the bias is almost the same in the 1970-1999 and 2000-2010 periods at

about 10.6 and 9.4 percentage points respectively. The bias may stem from different sources,

including automation, IT investment, the decline of unions, or offshoring.

Table III Contributions to Labor Share Change

Annual Contribution Cumulative Contribution
Labor Factor Labor Factor

Period Share Prices Bias Share Prices Bias

1970-1999 -0.27 0.08 -0.35 -8.12 2.50 -10.61
2000-2010 -0.79 0.07 -0.85 -8.64 0.71 -9.35

Note: The factor price and bias contributions are as defined in the text. Annual Contributions
are in percentage points per year and Cumulative Contributions are in percentage points.

From 1970-2011, annual growth in real wages in the manufacturing sector was 1.9 per-

centage points lower than 1954-1969. How much of the decline in the labor share can be

explained by the slowdown in wage growth? If wage growth had continued to grow at the

same robust pace, how much higher would the labor share be?

We can use our estimated aggregate elasticity to assess this counterfactual.35 We find

that if wages grew faster, the manufacturing labor share in 2010 would be 0.58, compared

to its actual value of 0.55. Thus the slowdown in wages can explain about one-sixth of the

total decline.

5.1 Industry Decomposition

What drives the bias of technical change? One possibility is that industries have become

more capital intensive. Alternatively, the composition of industries within manufacturing

could have shifted. Changes in trade barriers or the cost of outsourcing, for example, could

change the aggregate capital intensity by shifting industry composition.

Figure 6 shows that industries that were more labor intensive tended to shrink relative

to capital intensive industries. Thus shifts in composition likely played a role in the labor

35Note that this counterfactual involves extrapolating our local estimate of the aggregate elasticity of
substitution.
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Figure 6 Shift in Industry Composition

Note: The figure depicts each industry’s change in value added share in between 1990 and 2010
and its labor share of income in 1990. The regression line depicts the linear regression of the
change in value added share on the 1990 labor share, weighting each industry by its 1990 share
of value added. All industries with a value added share above 4 percent are labeled; the NAICS
industries represented are: CHEM Chemical Products, COMP Computer and Electronic Products,
ELEC Electrical Equipment, Appliances, and Components, FAB Fabricated Metal Products, FOOD
Food and Beverage and Tobacco Products, MACH Machinery, MET Primary Metals, PAP Paper
Products, PUBL Publishing Industries, and TRANS Transportation Equipment.

share’s decline.

We can go further and decompose the sources of aggregate bias between biased technical

change within industries and compositional change across industries. Formally, let sv,Ln

denote labor’s share of industry n’s value added, and let vn denote industry n’s share of

total value added. Since sv,L =
∑

n vns
v,L
n , the change in labor’s share of income can be

decomposed into within- and between-industry components

dsv,L =
∑
n

vndsv,Ln +
∑
n

(
sv,Ln − sv,L

)
dvn
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(a) Annual Change (b) Cumulative Change

Figure 7 Change in Labor Share Components over Time

Note: All changes are in percentage points. Each contribution to the labor share change has been
smoothed using a Hodrick-Prescott filter. The contributions from factor prices, within-industry bias,
and between-industry bias are as defined in the text.

The change in the overall labor can thus be decomposed into three terms:

dsv,L =
∂sv,L

∂ lnw/r
d lnw/r +

∑
n

vn

(
dsv,Ln −

∂sv,Ln
∂ lnw/r

d lnw/r

)
(13)

+
∑
n

(
sv,Ln − sv,L

)(
dvn −

∂vn
∂ lnw/r

d lnw/r

)

The first term measures the contribution of factor price changes. The second term measures

within-industry contributions to the bias of technical change. It is the weighted average of

the changes in industries’ labor shares dues to technical change. The third term measures the

between-industry contribution to the bias of technical change. It is the covariance between

industry growth due to technical change and its labor share of income. If the covariance is

positive, labor-intensive industries have grown relative to capital-intensive industries, which

raised labor’s share of value added.

Figure 7 shows the contribution of the within-industry bias and between-industry bias

as in equation (13). Figure 7a shows the annualized rate of change while Figure 7b shows

the cumulative change.36

This decomposition points to the importance of both technical change within industries

36We smooth each contribution by applying a Hodrick-Prescott filter; the change in the labor share is then
the sum of all the components. We use a smoothing parameter of 60.
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and compositional changes in the decline of the labor share of manufacturing. The within-

industry bias contribution has been large since the 1980s; overall, it accounts for about 12.7

percentage points of the decline in the labor share, of which about 4.4 percentage points were

in the 2000s. The between-industry bias was low for much of the sample period, but rose in

the 2000s. Overall, it accounts for about 7.2 percentage points of the decline in the labor

share, of which 4.9 percentage points were in the 2000s. The increase in the importance of

compositional change in the 2000s may point to multiple factors behind the decline in the

labor share.

Finally, we can examine how changes within industries are related to changes across

industries. Figure 8 plots each industry’s annual change in value added against the annual

change in its labor share. There was a clear shift in this relationship between the first

and second halves of the sample period. After 1990, the industries that grew more were

those with the largest decline in labor share; before 1990, the two were much less correlated.

This pattern is inconsistent with a simple story in which the labor-intensive segment of an

industry moves abroad; it is consistent with automation or a more complex offshoring story

in which both labor intensive tasks move abroad and production using capital intensive tasks

expands. The largest industries that have both expanded and become more capital intensive

are Computer Equipment and Chemicals. These industries include R&D intensive companies

such as Apple and Pfizer and may suggest the increasing importance of intangible capital.

6 Cross–Country Elasticities

How does the aggregate capital-labor elasticity vary across countries? Production technolo-

gies may differ across countries for a number of reasons. Researchers have generally found

greater variation in capital intensity and productivity in less developed countries; see Hsieh

and Klenow (2009), Bartlesman et al. (2013). This may stem from resource misallocation.

Alternatively, if lower wages in less developed countries reduce adoption of new capital inten-

sive technologies, as in Acemoglu and Zilibotti (2001), developing countries would operate

a mix of old and new technologies. In our framework, greater microeconomic heterogeneity

implies a higher aggregate capital-labor elasticity of substitution. We now examine how the
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(a) 1970-1990 (b) 1990-2010

Figure 8 Changes in Value Added Shares and Changes in Labor Shares

Note: All changes are annualized and are in percentage points. Each regression line depicts the
linear regression of the change in value added share on the change in labor share, weighting each
industry by its share of value added in the initial year. All industries with a value added share above
4 percent are labeled. In the 1970-1990 figure, the SIC industries represented are: CHEM Chemical
Products, ELEC Electronic and Other Electric Equipment, FAB Fabricated Metal Products, FOOD
Food and Kindred Products, MACH Industrial Machinery and Equipment, MET Primary Metals,
PRINT Printing and Publishing, and TRANS Transportation Equipment. In the 1990-2010 figure,
the NAICS industries represented are: CHEM Chemical Products, COMP Computer and Electronic
Products, ELEC Electrical Equipment, Appliances, and Components, FAB Fabricated Metal Prod-
ucts, FOOD Food and Beverage and Tobacco Products, MACH Machinery, MET Primary Metals,
PAP Paper Products, PUBL Publishing Industries, and TRANS Transportation Equipment.

greater microeconomic heterogeneity found in less-developed countries affects the aggregate

elasticity.

6.1 Estimates

We examine the aggregate elasticity for three less developed countries – Chile, Colombia, and

India – using micro datasets on production for each country. Web Appendix C.7 contains

the details of each dataset; on average, there are roughly 5,000 plants per year for Chile

from 1986–1996, 7,000 for Colombia from 1981–1991, and 30,000 for India from 2000–2003.

In computing the aggregate elasticity, we allow the composition of plants to change across

countries but fix production and demand elasticities at their US 1987 values for matching

industries. Figure 9 depicts these estimates; we find an average aggregate manufacturing

elasticity of 0.84 in Chile, 0.84 in Colombia, and 1.11 in India, all of which are higher than

the US 1987 value of 0.70.
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Why are aggregate elasticities higher in the less developed countries? Figure 9 depicts the

average plant level and industry level elasticities; most of the difference across countries is

due to larger industry level elasticities. For India and Chile, greater heterogeneity in capital

intensities accounts for roughly 70 percent of the difference in aggregate elasticities.37 The

higher elasticity for Colombia is due to a combination of multiple factors, including a different

industrial composition, more heterogeneity, and lower materials shares.

Figure 9 Manufacturing Elasticity of Substitution Across Countries

Note: This figure records the average plant level, industry level, and manufacturing level elasticities
of substitution. The elasticities for each country is an average over the relevant time period, which
is 1986-1996 for Chile, 1981-1991 for Colombia, 2000-2003 for India, and 1987 for the US.

6.2 Policy Implications

These cross-country differences in elasticities can imply large differences in outcomes. We

examine two potential policy changes that would affect output per worker through a change

in the capital rental rate. The first policy change lowers foreign interest rates to the US real

interest rate; the second sets corporate taxes to zero. Our approach allows us to examine the

effect of each policy change without assuming that each country shares the same aggregate

technology.

The capital rental rate is composed of the real interest rate R, depreciation rate δ, and

37Across industries, the average heterogeneity index in Chile is 0.15, 50 percent higher than the US 1987
value, and 0.30 in India, three times the US value.

34



effective corporate tax rate τ :

r =
R + δ

1− τ

Table IV contains these rental rates; see Web Appendix C.7 for the details of the con-

struction of each variable. The real interest rate is higher than the US for all three developing

countries, with an interest rate differential of 1.8 percentage points for Chile, 1.9 percentage

points for India, and 5.3 percentage points for Colombia. Higher real interest rates imply

that all three countries have higher capital rental rates than the US; the Chilean capital

rental rate is 9 percent higher than the US rate, the Indian rate 17 percent higher, and the

Colombian rate 51 percent higher. Capital tax rates are roughly similar for all countries.

Table IV Cross Country Differences in Real Interest Rates, Effective Corporate Taxes, and
Capital Rental Rates

Chile Colombia India US
Real Interest Rate 5.9% 9.5% 6.0% 4.2%
Effective Corporate Tax Rate 15.1% 24.3% 20.3% 18.2%
Capital Rental Rate 18.1% 25.0% 19.4% 16.6%

Note: This table records the average real interest rate from 1992–2011 using the private sector
lending rate from the IMF International Financial Statistics adjusted for inflation using the change
in the GDP deflator, the one year effective corporate tax rate from Djankov et al. (2010), and the
capital rental rate given the average real interest rate, corporate tax rate, and a depreciation rate of
9.46 percent.

Table V displays the change in output per worker from both policy changes, as well as the

change in output per worker if all countries shared the US aggregate elasticity. The elasticity

of output per worker to relative factor prices is proportional to the aggregate elasticity:

d lnY/L

d ln r/w
= ασagg

where α is the capital share.38

38Two notes: First, because the elasticity that we estimate is local, counterfactual predictions for non-local
changes in rental rates involves extrapolating from our local elasticity. Second, we hold the wage fixed in
these experiments; the change in wage induced from changes in rental rates depends upon labor supply as
well as demand. Our estimates are a lower bound on the full effects of removing interest rate differentials,
while the wage change for the capital tax change depends upon whether the revenue loss is compensated for
by other tax changes.
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If all interest rates fell to the US interest rate, output per worker would increase by

5.5 percent in Chile, 12.4 percent in Colombia, and 8.5 percent in India. These effects are

exacerbated because the aggregate elasticity of substitution is larger in these countries than

in the US. For example, the impact of the interest rate differential in India is more than fifty

percent larger than it would be if India had the same elasticity of substitution as the US.

The story is similar with corporate tax rates. Reducing the corporate tax rate to zero

would raise output per worker by 3.4 percent for the US, 7.3 percent for Chile, 10.5 percent for

Colombia, and 14.8 percent for India; with the US aggregate elasticity, this change becomes

6.2 percent for Chile, 8.9 percent for Colombia, and 9.5 percent for India.39 Differences

in aggregate technology across countries have large effects on the outcome of these policy

changes.

Table V Change in Output per Worker from Policy Changes Affecting the Capital Rental
Rate

Policy Change Chile Colombia India US
Equalize to US Interest Rate 5.5% 12.4% 8.5% 0%
Equalize to US Interest Rate, using US Elasticities 4.6% 10.5% 5.4% 0%
Zero Corporate Tax 7.3% 10.5% 14.8% 3.4%
Zero Corporate Tax, using US Elasticities 6.2% 8.9% 9.5% 3.4%

Note: This table records the change in output per worker from two policy experiments- equalizing
all interest rates to the US interest rate and setting the corporate tax rate to zero. For each
experiment, we examine the change in output per worker using the country elasticity and using the
US 1987 elasticity.

7 Conclusion

This paper has developed a new approach to estimate the aggregate elasticity of substitution

between capital and labor by building up from micro structural parameters and the cross-

sectional distribution of plant-level expenditures. Our approach has several advantages. We

can estimate the aggregate elasticity at each point in time, which means we can separately

examine the bias of technical change. In addition, with cross-sectional micro data, we can

39 We cannot interpret the change in output per worker from these policy changes as a gain in welfare be-
cause that comparison contrasts two different steady states. However, Chamley (1981) found in a full general
equilibrium model that the welfare cost of capital taxation is proportional to the elasticity of substitution.
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examine the robustness of our model and identification strategy.

We then applied our methodology to data on plants in the US manufacturing sector.

While we estimated an average plant-level elasticity of roughly 0.5, our estimates indicated

that the aggregate elasticity of substitution between capital and labor has been close to

0.7 from 1972 to 2007. Thus roughly 63 percent of aggregate factor substitution happened

within plants.

We then measured the contributions of factor prices and two components of the bias of

technology to the fall of the labor share in manufacturing since 1970. To do this, we used our

estimates of aggregate elasticities and the history of factor prices. We found that the bias

of technical change within industries has steadily decreased the labor share, accounting for

most of the shift. There has been a sharp drop in the labor share since 2000 that coincides

with a shift in the composition of industries. We found that mechanisms that work through

factor prices alone cannot account for the decline in the labor share.

Our work indicates that explaining the decline in the labor share requires understanding

the determinants of technical change, broadly defined, including automation, IT investment,

offshoring, or shifts in composition driven by changing tastes or trade. Our decomposition

suggests that there may be more than one force at work. While we have applied our method-

ology to the change in the US labor share, we believe it can be useful in understanding the

evolution of skill premia and inequality.

Finally, our approach allowed us to estimate how the aggregate elasticity varies across

time and countries, and to understand the underlying reasons for such variation. In par-

ticular, greater heterogeneity in capital intensities implies a higher aggregate elasticity of

substitution. Elasticities in all three of the developing countries we examined were higher

than the US, with an average manufacturing sector elasticity of 0.84 for Chile, 0.84 for

Colombia, and 1.11 for India. Our estimates can help illuminate how and why policies have

differential effects across countries.
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Appendix

A Proofs of Propositions

Appendix A describes the aggregate elasticity of substitution between capital and labor when each
plant’s production function exhibits constant returns to scale. Web Appendix B derives expressions
for the aggregate elasticity under alternative assumptions. Web Appendix B.1 characterizes local
elasticities of substitution and Web Appendix B.2 derives preliminary results under the assumption
that plants’ production functions are homothetic. The assumption of constant returns to scale
is relaxed in Web Appendix B.3. Web Appendix B.4 introduces misallocation frictions. Web
Appendix B.5 generalizes the demand system to allow for arbitrary elasticities of demand and
imperfect pass-through. Web Appendix B.6 relaxes the assumption that production functions are
homothetic.

Throughout, we use the following notation for relative factor prices:

ω ≡ w

r

q ≡ q

r

In addition, we define pni ≡ Pni/r and pn ≡ Pn/r to be plant i’s and industry n’s prices respectively
normalized by the rental rate. It will also be useful to define plant i’s cost function (normalized by
r) to be

zni(Yni, ω, q) = min
Kni,Lni,Mni

Kni + ωLni + qMni subject to Fni(Kni, Lni,Mni) ≥ Yni

and industry n’s cost as zn =
∑

i∈In zni. Two results will be used repeatedly. First, Shephard’s
lemma implies that for each i:

(1− sMni )(1− αni) =
∂ ln zni
∂ lnω

(14)

sMni =
∂ ln zni
∂ ln q

(15)

Second, since αn =
∑

i∈In αniθni, then for any quantity κn,∑
i∈In

(αni − αn)κnθni = 0 (16)

When production functions take the functional form in defined in Assumption 1, it is relatively
straightforward to derive the industry-level elasticity of substitution. However, when we aggregate
across industries, we have no justification for using any particular functional form for the industry-
level production function, or how capital, labor, and materials are nested in the industry-level
production function. We will therefore derive a formula for the industry-level elasticity of substi-
tution in a way that nests nicely: the same formula used to go from plant-level to industry-level
can be used to go from industry level to aggregate.

Consequently here we relax the functional form assumption on plants’ production functions.
While we maintain that each plant’s production function has constant returns to scale, we impose
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no further structure.

Assumption 1′ Plant i in industry n uses the constant returns to scale production function
Fni(Kni, Lni,Mni).

The purpose of this is twofold. First, it provides guidance on the robustness of the formulas in
Proposition 1. Second, we will later use the formulas here to aggregate across industries and derive
an expression for the elasticity of substitution between capital and labor for the manufacturing
sector as a whole.

For plant i, we define the local elasticities σni and ζni to satisfy

σni − 1 =
d lnKni/ωLni

d lnω
(17)

ζni − 1 =
1

αM − αni
d ln qMni

Kni+ωLni

d lnω
(18)

If i’s production function takes a nested CES form as in Assumption 1, σni and ζni would equal
σn and ζn respectively.40 Under Assumption 1′, they are defined locally in terms of derivatives of
Fni evaluated at i’s cost-minimizing input bundle. Exact expressions for σni and ζni are given in
Web Appendix B.1 of the web appendix. Proposition 1′ then expresses the industry elasticity of
substitution σNn . The resulting expression is identical to Proposition 1 except the plant elasticities
of substitution are replaced with weighted averages of the plants’ local elasticities, σ̄n and ζ̄n.

Proposition 1′ Under Assumption 1′, the industry elasticity of substitution σNn = d lnKn/Ln
d lnω is:

σNn = (1− χn)σ̄n + χn
[
(1− s̄Mn )εn + s̄Mn ζ̄n

]
(19)

where χn ≡
∑

i∈In
(αni−αn)2θni
αn(1−αn) and s̄Mn ≡

∑
i∈In

(αni−αn)(αni−αM )∑
j∈In (αnj−αn)(αnj−α

M )
sMni as in Proposition 1 and

σ̄n ≡
∑
i∈In

αni(1− αni)θni∑
j∈In αnj(1− αnj)θnj

σni

ζ̄n ≡
∑
i∈In

(αni − αn)(αni − αM )sMni∑
j∈In(αnj − αn)(αnj − αM )sMnj

ζni

Proof. As discussed in the text, the definitions of σni and σNn imply

σni − 1 =
d ln rKni

wLni

d lnω
=

1

αni(1− αni)
dαni
d lnω

, ∀i ∈ In

σNn − 1 =
d ln rKn

wLn

d lnω
=

1

αn(1− αn)

dαn
d lnω

40The definition of σni is straightforward but ζni requires some elaboration. Suppose that Fni takes the

nested CES form of Assumption 1. Let λni ≡ 1
r

[
(r/Ani)

1−σn + (w/Bni)
1−σn

] 1
σn−1 be the marginal cost of

i’s capital-labor bundle. Then cost minimization implies qMni

Kni+ωLni
=
(

q/Cni
λni

)1−ζn
. Since d ln q

d lnω = 1 − αM

and, from Shephard’s Lemma, d lnλnid lnω = 1− αni, we have that
d ln

qMni
Kni+ωLni

d lnω = (ζn − 1)(αM − αni).
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Since αn =
∑

i∈In αniθni, we can differentiate to get

σNn − 1 =
1

αn(1− αn)

[∑
i∈In

dαni
d lnω

θni +
∑
i∈In

αni
dθni
d lnω

]

=

∑
i∈In αni(1− αni)θni(σni − 1)

αn(1− αn)
+

∑
i∈In αni

dθni
d lnω

αn(1− αn)

Using the definition of σ̄n and
∑

i∈In
dθni
d lnω = 0, we have

σNn − 1 = (σ̄n − 1)
∑
i∈In

αni(1− αni)θni
αn(1− αn)

+

∑
i∈In(αni − αn) dθnid lnω

αn(1− αn)
(20)

Since χn =
∑

i∈In
(αni−αn)2θni
αn(1−αn) , one can verify that

∑
i∈In

αni(1−αni)θni
αn(1−αn) = 1− χn, which gives

σNn = (1− χn)σ̄n +

∑
i∈In(αni − αn) dθnid lnω

αn(1− αn)
+ χn (21)

We now find an expression for d ln θni
d lnω . θni can be written as

θni =
rKni + wLni∑

j∈In rKnj + wLnj
=

(1− sMni )zni∑
j∈In(1− sMnj)znj

=
(1− sMni )zni
(1− sMn )zn

Since d ln
1−sMni
sMni

= 1
sMni
d ln(1− sMni ), the definition of ζn implies

d ln(1− sMni )
d lnω

= sMni (ζn − 1)(αni − αM )

The change in i’s expenditure on all inputs depends on its expenditure shares:

zni
zn

=
rKni + wLni + qMni∑

j∈In rKnj + wLnj + qMnj
=

εn−1
εn

PniYni∑
j∈In

εn−1
εn

PnjYnj
=

εn−1
εn

P 1−εn
ni YnP

εn
n∑

j∈In
εn−1
εn

P 1−εn
nj YnP

εn
n

=

(
pni
pn

)1−εn

The change in i’s price depends on the change in its marginal cost

d ln pni
d lnω

=
d ln εn

εn−1mcni

d lnω
=
d lnmcni
d lnω

= (1− sMni )(1− αni) + sMni (1− αM ) (22)

Putting these pieces together, we have θni =
1−sMni
1−sMn

(
pni
pn

)1−εn
, so differentiating and using equa-
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tion (16) yields

∑
i∈In

(αni − αn)θni
d ln θni
d lnω

=
∑
i∈In

(αni − αn)θni

[
d ln 1− sMni
d lnω

+ (1− εn)
d ln pni
d lnω

]

=
∑
i∈In

(αni − αn)θni

{
sMni (ζni − 1)(αni − αM )

+(1− εn)
[
(1− sMni )(1− αni) + sMni (1− αM )

] }
=

∑
i∈In

(αni − αn)θni
{
sMni (ζni − εn)(αni − αM ) + (1− εn)(1− αni)

}
Using the definitions of ζ̄n, s̄Mn , and χn, this becomes∑
i∈In

(αni − αn)θni
d ln θni
d lnω

=
∑
i∈In

(αni − αn)θni
[
sMni (ζ̄n − εn)(αni − αM ) + (1− εn)(1− αni)

]
=

∑
i∈In

(αni − αn)θni
[
s̄Mn (ζ̄n − εn)(αni − αM ) + (1− εn)(1− αni)

]
=

∑
i∈In

(αni − αn)θni
[
s̄Mn (ζ̄n − εn)(αni − αn) + (1− εn)(αn − αni)

]
= αn(1− αn)χn

[
(ζ̄n − εn)s̄Mn − (1− εn)

]
Finally, we can plug this back into equation (21) to get

σNn = (1− χn)σ̄n + χn
[
s̄Mn ζn + (1− s̄Mn )εn

]
To build up to the aggregate elasticity of substitution between capital and labor, we proceed in

exactly the same way as with the industry-level elasticity. Define ζNn to satisfy (ζNn −1)(αn−αM ) =

d ln
1−sMn
sMn

d lnω . The claim below will give an expression for ζNn in terms of plant level elasticities and
choices.

Proposition 2′ Under Assumption 1′, the aggregate elasticity between capital and labor is

σagg = (1− χN )σ̄N + χN
[
s̄M ζ̄N + (1− s̄M )η

]
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where χN , σ̄N , ζ̄N , s̄M , and ζNn are defined as

χN =
∑
n∈N

(αn − α)2θn
α(1− α)

σ̄N =
∑
n∈N

αn(1− αn)θn∑
n′∈N αn′(1− αn′)θn′

σNn

ζ̄N ≡
∑

n∈N (αn − α)(αn − αM )θns
M
n ζ

N
n∑

n∈N (αn − α)(αn − αM )θnsMn

s̄M =

∑
n∈N (αn − α)(αn − αM )θns

M
n∑

n∈N (αn − α)(αn − αM )θn

ζNn =
∑
i∈In

θni

[
ζni

sMni (αni − αM )

sMn (αn − αM )
+ εn

{
1− sMni (αni − αM )

sMn (αn − αM )

}]

Proof. Note that since zni
zn

= PniYni
PnYn

, we have both d lnYn
d lnω =

∑
i∈In

zni
zn

d lnYni
d lnω and d ln pn

d lnω =∑
i∈In

zni
zn

d ln pni
d lnω . With the first, we can derive an expression for the change in cost that paral-

lels equation (27):

d ln zn
d lnω

=
∑
i∈In

zni
zn

d ln zni
d lnω

=
∑
i∈In

zni
zn

[
d lnYni
d lnω

+ (1− sMni )(1− αni) + sMni (1− αM )

]
=

d lnYn
d lnω

+ (1− sMn )(1− αn) + sMn (1− αM )

With the second, we can derive an expression for the change in the price level that parallels
equation (22)

d ln pn
d lnω

=
∑
i∈In

zni
zn

d ln pni
d lnω

=
∑
i∈In

(1− αni)(1− sMni ) + sMni (1− αM )

= (1− αn)(1− sMn ) + sMn (1− αM )

Thus following the exact logic of Proposition 1′, we have that

σagg = (1− χN )σ̄N + χN
[
s̄M ζ̄N + (1− s̄M )η

]
It remains only to derive the expression for ζNn . Begin with 1− sMn =

∑
i∈In(1− sMni )

zni
zn

. Differen-
tiating each side gives:

d ln(1− sMn )

d lnω
=
∑
i∈In

(1− sMni )zni
(1− sMn )zn

[
d ln(1− sMni )

d lnω
+
d ln zni/zn
d lnω

]
=
∑
i∈In

θni

[
d ln(1− sMni )

d lnω
+
d ln zni/zn
d lnω

]
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Using (αni − αM )(ζni − 1) = 1
sMni

d ln(1−sMni)
d lnω and (αn − αM )(ζNn − 1) = 1

sn

d ln(1−sMn )
d lnω gives

sMn (αn − αM )(ζNn − 1) =
∑
i∈In

θni

[
sMni (αni − αM )(ζni − 1) +

d ln zni/zn
d lnω

]
Finally, we have

d ln zni/zn
d lnω

=
d lnYni
d lnω

+ (1− sMni )(1− αni) + sMni (1− αM )− d lnYn
d lnω

− (1− sMn )(1− αn)− sMn (1− αM )

= (−εn)
d ln pni/pn
d lnω

+ (1− sMni )(1− αni) + sMni (1− αM )− (1− sMn )(1− αn)− sMn (1− αM )

= (1− εn)
[
(1− sMni )(1− αni) + sMni (1− αM )− (1− sMn )(1− αn)− sMn (1− αM )

]
= (εn − 1)

[
sMn (αn − αM )− sMni (αni − αM ) + (αni − αn)

]
Plugging this in, we have

sMn (αn − αM )(ζNn − 1) =
∑
i∈In

θni

{
sMni (αni − αM )(ζni − 1)

+(εn − 1)
[
sMn (αn − αM )− sMni (αni − αM ) + (αni − αn)

] }

Using
∑

i∈In θni(1− εn)(αni − αn) = 0, dividing through by sMn (αn − αM ) and subtracting 1 from
each side gives the result.
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