
NBER WORKING PAPER SERIES

THE EFFICIENCY OF REAL-WORLD BARGAINING:
EVIDENCE FROM WHOLESALE USED-AUTO AUCTIONS

Bradley Larsen

Working Paper 20431
http://www.nber.org/papers/w20431

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2014, Revised September 2019

I thank Panle Jia Barwick, Glenn Ellison, and Stephen Ryan for invaluable help and advice. I 
would also like to thank Isaiah Andrews, Gabe Carroll, Mingli Chen, Victor Chernozhukov, 
Denis Chetverikov, Dominic Coey, Joachim Freyberger, Ken Hendricks, Kyoo-il Kim, Steven 
Lang, Ariel Pakes, Christopher Palmer, Parag Pathak, Brennan Platt, Zhaonan Qu, Dan Quint, 
Mark Satterthwaite, Paulo Somaini, Alan Sorensen, Evan Storms, Jean Tirole, Juuso Toikka, and 
Anthony Zhang for helpful suggestions. This paper also benefited from conversations with many 
other faculty and students at various institutions. I thank several anonymous auction houses and 
their employees for providing data and institutional details. I acknowledge support from the 
National Science Foundation under grants GRFP-0645960 and SES-1530632. Earlier versions of 
this paper were circulated under the title, "The Efficiency of Dynamic, Post-Auction Bargaining: 
Evidence from Wholesale Used-Auto Auctions." The views expressed herein are those of the 
author and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2014 by Bradley Larsen. All rights reserved. Short sections of text, not to exceed two 
paragraphs, may be quoted without explicit permission provided that full credit, including © 
notice, is given to the source.



The Efficiency of Real-World Bargaining: Evidence from Wholesale Used-Auto Auctions 
Bradley Larsen
NBER Working Paper No. 20431
August 2014, Revised September 2019
JEL No. C57,C78,D44,D47,D82,L1

ABSTRACT

This study empirically quantifies the efficiency of a real-world bargaining game with two-sided 
incomplete information. Myerson and Satterthwaite (1983) and Williams (1987) derived the 
theoretical ex-ante efficient frontier for bilateral trade under two-sided uncertainty and 
demonstrated that it falls short of ex-post efficiency, but little is known about how well 
bargaining performs in practice. Using about 265,000 sequences of a game of alternating-offer 
bargaining following an ascending auction in the wholesale used-car industry, this study 
estimates (or bounds) distributions of buyer and seller valuations and evaluates where realized 
bargaining outcomes lie relative to efficient outcomes. Results demonstrate that the ex-ante and 
ex-post efficient outcomes are close to one another, but that the real bargaining falls short of both, 
suggesting that the bargaining is indeed inefficient but that this inefficiency is not solely due to 
the information constraints highlighted in Myerson and Satterthwaite (1983). Quantitatively, 
findings indicate that 17–24% of negotiating pairs fail to trade even though gains from trade 
exist, leading an efficiency loss of 12–23% of the available gains from trade.

Bradley Larsen
Department of Economics
Stanford University
579 Serra Mall
Stanford, CA 94305
and NBER
bjlarsen@stanford.edu



Whether haggling in an open-street market, deciding upon prices between an upstream supplier

and downstream producer, or negotiating a corporate takeover deal, bargaining between a buyer and

seller is one of the oldest and most common ways of transacting. When both parties have incomplete

information, it is known that equilibrium outcomes are difficult to characterize.1 Myerson and

Satterthwaite (1983) demonstrated that ex-post efficiency—trading whenever the buyer values the

good more than the seller—is not possible in bargaining with two-sided incomplete information.

Myerson and Satterthwaite (1983) and Williams (1987) derived the theoretical ex-ante efficient

frontier, but, as Williams emphasized, “little is known about whether or not these limits can be

achieved with ‘realistic’ bargaining procedures.”2 This paper is the first attempt to bring data

to this question. I develop a framework to estimate distributions of private valuations of both

buyers and sellers who participate in bargaining following wholesale used-auto auctions. I then

map these primitives into results from the theoretical mechanism design literature to compare

real-world outcomes to efficient outcomes.

The question of whether real-world bargaining is efficient is one that cannot be addressed

in a standard non-strategic framework (e.g. some form of Nash bargaining) or even a strategic

alternating-offer game (e.g. Rubinstein 1982). These frameworks entail complete information and

thus presume knowledge a priori that bargaining is perfectly efficient: in such a world, bargaining is

never even attempted unless agreement is the efficient outcome. Treating bargaining as efficient, if it

is in fact not, can result in incorrect market design recommendations or misleading calculations for

welfare or pricing, or an incorrect understanding of bargaining power. The data and methodology

I use in this paper allow me to study whether or not bargaining is actually efficient, rather than

assuming it to be so.

Moreover, this question is indeed an empirical question—one that theory alone cannot address.

Theoretical work by Chatterjee and Samuelson (1983), Satterthwaite and Williams (1989), Ausubel

and Deneckere (1993), and Ausubel, Cramton, and Deneckere (2002) demonstrated that certain

knife-edge or limiting cases of bargaining games may reach the theoretical ex-ante efficient frontier,

but the limits of practical bargaining are unknown. Also, while the large theoretical literature on

incomplete-information strategic bargaining has yielded valuable insights, it has done so primarily

through a focus on special cases (see Appendix Table A1 for a summary of this literature). The

1Fudenberg and Tirole (1991) stated, “The theory of bargaining under incomplete information is currently more
a series of examples than a coherent set of results. This is unfortunate because bargaining derives much of its
interest from incomplete information.” Fudenberg, Levine, and Tirole (1985) similarly commented “We fear that
in this case [of two-sided incomplete information], few generalizations will be possible, and that even for convenient
specifications of the functional form of the distribution of valuations, the problem of characterizing the equilibria
will be quite difficult.” Very little work—theoretical or empirical—on bargaining with two-sided uncertainty and
continuous valuations has been published before or after this time.

2In the language of Holmström and Myerson (1983), the term ex-ante refers to before the players learn their
values and before the outcome of the bargaining is realized, and the term ex-post refers to after the valuations and
bargaining outcomes are realized. As explained below, the ex-ante efficient frontier describes the limits on possible
combinations of buyer and seller surplus that can be achieved under any bilateral bargaining mechanism in the
presence of incomplete information.

1



general case, with alternating offers, two-sided incomplete information, and continuous valuations

has received little attention because it involves complex signaling and updating by both parties. It

is known to have multiple equilibria, some of which are very inefficient, but no canonical model or

equilibrium characterization exists for the general setting examined in this paper.

To overcome these challenges, I take advantage of a unique, new dataset and novel empirical

approach. The data consists of several hundred thousand sequences of bargaining offers between

buyers and sellers at wholesale used-car auctions. It is the first bargaining dataset of this volume

and detail to be analyzed in the literature, containing not only final negotiated prices on consum-

mated deals, as most empirical bargaining datasets likely would, but also all of the back-and-forth

bargaining offers between negotiating parties, and even all cases where bargaining failed to yield

an agreement. The data also contains detailed information on cars and characteristics of the sale.

The empirical setting, described in Section 2, is a large market of business-to-business trans-

actions where new- and used-car dealers buy vehicles from other dealers as well as from rental

companies and banks. This industry represents the backbone of the supply side of the US used-car

market, with 15 million cars annually passing through its lanes, totaling $80 billion in sales. For

each car, the auction house runs a secret-reserve-price ascending auction, followed by bargaining if

the auction price falls short of the secret reserve price (which occurs more than two-thirds of the

time). It is in this bargaining stage of the game that trade can fail, and thus understanding the

efficiency of the bargaining is key to understanding the efficiency of the overall market. Industry

wide, about 40% of sales attempts result in no trade. Why do these trades fail? These could be

cases where the seller values the good more than the buyer, and hence no trade should occur even

in a fully efficient world; these could be cases where gains from trade do exist, but trade fails due

to the information constraints highlighted by Myerson and Satterthwaite (1983); or these may be

cases where trade fails because of the particular bargaining protocol employed or the particular

equilibrium played. These questions are the focus of this paper.

The bargaining I study takes place after an auction.3 This is not an unfortunate character-

istic of the data, but rather a useful feature in studying what might otherwise be an intractable

problem. Indeed, it is quite difficult to make any progress studying incomplete-information bar-

gaining empirically without some kind of special lever. Specifically, given that no canonical model

or even characterization of equilibria exists for such games, theory provides no obvious mapping

from observables to primitives. In my setting, however, the distribution of buyer valuations can

be estimated using the auction data, and bounds on the distribution of seller valuations can be

obtained using sellers’ responses to the first bargaining offer (the auction price). Each of these

3Many other settings similarly constitute an auction followed by bargaining, where one party collects initial bids
from a number of different bidders in an auction-like stage and then selects a single bidder with whom to negotiate
a final deal. Examples include business-to-business settings (e.g. procuring subcontractors), government settings
(e.g. procuring services or selling government property), or private settings (e.g. selling a home). See examples in
Elyakime, Laffont, Loisel, and Vuong (1997), Wang (2000), Huh and Park (2010), and An and Tang (2018).
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steps imposes only minimal assumptions on the structure of the bargaining game.

I lay out a model in Section 3 and demonstrate several theoretical properties that aid in esti-

mating model primitives. I show that the precise effect of the auction on the bilateral bargaining

game is twofold: first, the auction leads to a truncation of the lower bound of the support of types

who bargain. Thus, the game I study is analogous to a setting of bargaining alone where the lower

bound of the support of the types in the bargaining game differs across realizations of the game

in a tractable manner determined by the realization of the auction price, and the results herein

average over these realizations. Second, the auction price is the first offer in the bargaining game

and provides a lower bound on achievable prices in the bargaining game, similar to how a list price

would provide an upper bound in many other real-world bargaining games, such as haggling over

a car at a retail outlet. I also demonstrate in the model that game-level heterogeneity affects the

game’s outcomes in a tractable manner.

My approach to bounding the distribution of seller valuations is similar in spirit to Haile and

Tamer (2003), using inequalities implied by very basic assumptions about players’ rationality to

learn about model primitives without imposing a complete model of the game or solving for an

equilibrium. The bargaining setting is more complicated than the auction setting in Haile and

Tamer (2003), however, in that it is not necessarily the case that an upper and lower bound on

the valuation is observed for each individual observation in the data; instead, I obtain conditional

probability statements that bound the whole distribution of valuations. This methodology is new

to the empirical bargaining literature, and can be applied in alternating-offer bargaining settings,

regardless of whether the bargaining follows an auction, when the econometrician observes the first

offer and the response to that offer.

In order to compute expected gains from trade to measure efficiency in the real-world mecha-

nism, it is necessary to know not only the distributions of valuations but also which player types

trade and which do not. This is an equilibrium object and, as highlighted above, existing the-

ory provides no guidance on identifying the equilibrium of games involving two-sided incomplete-

information bargaining. I demonstrate, however, that even without solving explicitly for equilibrium

strategies the direct-revelation mechanism corresponding to the equilibrium of the real-world game

is identified in the data. This argument relies on the Revelation Principle, which has been exploited

widely in the theoretical mechanism design literature. Applying this concept to my empirical set-

ting allows me to avoid solving for or characterizing the actual equilibrium of the game and instead

work with the direct mechanism corresponding to this game as implied by the data.

Section 4 describes each step of my estimation approach, which exploits the model’s properties.

After controlling for observable heterogeneity, I use a likelihood approach to deconvolve unobserved

game-level heterogeneity and estimate buyer valuations using an order statistic inversion. I then

estimate bounds on seller valuations, exploiting revealed preferences inequalities. I estimate the

mapping between auction prices and the lower bounds of the support of buyer and seller types in
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the bargaining game as well as the mapping corresponding to the direct revelation mechanism of

the game. These mappings and the seller valuation bounds can each be estimated using flexible

spline approximations within a constrained least squares framework.

After estimating these structural objects, I describe in Section 5 how I compute welfare under

counterfactual efficient bargaining mechanisms. These counterfactual mechanisms are related to

results derived in Myerson and Satterthwaite (1983) and Williams (1987), but are more complex

to compute than the mechanisms they study because the distributions I estimate do not satisfy the

regularity assumptions exploited by Myerson and Satterthwaite (1983) and Williams (1987) (defined

below in Section 5) to simplify their analysis. I must therefore impose incentive compatibility

numerically. Also, having only bounds on seller valuations, and not point estimates, I must perform

a large numerical search to find bounds on efficiency measures. I ease this computational burden by

deriving useful monotonicity properties that allow me to obtain bounds for some welfare measures

directly using bounds on the distribution of seller valuations.

In Section 6 I then compare outcomes under efficient bargaining to those under the real bar-

gaining to measure the relative efficiency. The first type of efficiency loss I measure is the loss

due solely to incomplete information. Ideally, a buyer and seller should trade whenever the buyer

values the good more than the seller (ex-post efficient trade). However, the celebrated Myerson

and Satterthwaite (1983) Theorem demonstrated that, when the supports of buyer and seller types

overlap, there does not exist any incentive-compatible, individually rational bargaining mechanism

that is ex-post efficient and that also satisfies an ex-ante balanced budget. Williams (1987) then

derived the entire ex-ante efficient frontier for any range of relative weights placed on the buyer’s

and seller’s expected gains from trade. This frontier describes the limits on buyer and seller surplus

that can be achieved by any incentive-compatible, individually rational, budget-balancing mecha-

nism. I highlight several mechanisms along the ex-ante efficient frontier: the mechanism that places

equal welfare weight on the buyer and seller surplus, which I refer to as the second-best mechanism;

the mechanism placing all welfare weight on the seller’s surplus (the seller-optimal mechanism);

and the mechanism placing all welfare weight on the buyer’s surplus (the buyer-optimal mecha-

nism). The gap between the ex-ante and ex-post efficient frontiers represents an efficiency loss due

to the presence of incomplete information. Using the estimated distributions, I find that incom-

plete information per se need not be a huge problem in this market: the second-best mechanism

achieves about the same range of expected surplus as the infeasible ex-post efficient mechanism.

The efficiency loss due solely to incomplete information is about $9–59 for cars sold by dealers and

$9–77 for cars sold by fleet or lease institutions. The second-best mechanism falls short of ex-post

efficiency in terms of the probability of trade by 3 to 16 percentage points, but these trades that

the second-best mechanism fails to capture appear to be low-surplus trades.

The second type of efficiency loss I measure compares the real-world bargaining to the ex-ante

efficient frontier. The real bargaining may fall short of this frontier for several reasons. First,
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it is well known that, unlike the mechanisms discussed in Myerson and Satterthwaite (1983) and

Williams (1987), real-world bargaining with two-sided uncertainty has no clear equilibrium pre-

dictions due to signaling by both parties, and many qualitatively different equilibria exist (see

Ausubel and Deneckere 1993). The equilibrium play observed in the data may correspond to a

particularly inefficient equilibrium. Second, it may the case that the alternating-offer protocol used

in this market is inefficient regardless of the equilibrium played; it may indeed be the case that

a more efficient, practical protocol exists. Third, it may be that the real bargaining falls short

of the theoretically efficient benchmark because that benchmark fails to satisfy other constraints

that real-world bargaining satisfies, such as having rules that are simple for players to understand

or being implementable without requiring the strong assumption that players and the market de-

signer all have common knowledge of players’ valuation distributions and beliefs (an assumption of

traditional mechanism design critiqued in the influential Wilson doctrine, Wilson 1986). Because I

place very little structure on the bargaining game, my analysis allows for any of these three cases

to occur. Any of these cases can lead to a gap between the real outcome and that of an ex-ante

efficient mechanism.

My findings indicate that the real bargaining falls short of the second-best by $377–1,123 for

cars sold by dealers and by $223–834 for cars sold by large fleet or lease institutions. The losses of

the real-world mechanism compared to the ex-post efficient frontier are similar in magnitude. These

losses represent 17–23% of the ex-post gains from trade for cars sold by dealers and 12–20% for

cars sold by large institutions. In terms of the probability of trade, the real-world bargaining falls

short of the ex-post efficient outcome by 0.172–0.225 for cars sold by dealers and by 0.199–0.235

for cars sold by fleet and lease sellers. This implies that about 17–24% of negotiations constitute

cases where the buyer indeed values the good more than the seller and yet the negotiation fails.

Given that the overall rate of trade failure in the bargaining stage is about 35% in each sample,

this suggests that over half of failed trades are cases where gains from trade exist but the parties

do not trade, and the remainder of failed trades are cases where no gains from trade exist. The key

takeaway of my analysis is that the real-world bargaining in this market is indeed inefficient and

that this inefficiency is not solely due to the information constraints highlighted in Myerson and

Satterthwaite (1983).

1 Related Literature

To my knowledge, this paper is the first to bring data to the bargaining efficiency framework of My-

erson and Satterthwaite (1983). Unlike the vast structural auction literature—where researchers

identify primitives to study various counterfactuals by modeling the game as one of incomplete

information and strategic behavior—structural studies analyzing bargaining through a strategic,
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incomplete-information lens are rare.4 Several exceptions that estimate models of one-sided in-

complete information include Sieg (2000) and Silveira (2017), who focused on take-it-or-leave-it

bargaining in trial settings, and Ambrus, Chaney, and Salitsky (2018), who studied pirate ransom

negotiations and modeled bargaining following the theoretical work of Fudenberg, Levine, and Ti-

role (1985). Structural empirical work that highlights a role for two-sided uncertainty in bargaining

(i.e. where both parties have private information) includes Genesove (1991), who discussed briefly

the bargaining that takes place at wholesale auto auctions. Lacking detailed data on bargaining,

he tested several parametric specifications for buyer and seller distributions and found that these

assumptions performed poorly in explaining when bargaining occurred or when it was successful.

Li and Liu (2015) studied identification of valuations in a static, two-sided incomplete-information

bargaining game (a k double auction).

Another strand of the literature offers reduced-form analysis of implications of incomplete infor-

mation bargaining. These studies include Merlo and Ortalo-Magne (2004), studying home sales in

the U.K.; Scott Morton, Silva-Risso, and Zettelmeyer (2011), studying survey data from retail car

buyers; Bagwell, Staiger, and Yurukoglu (2017), studying international trade negotiations; Backus,

Blake, Larsen, and Tadelis (2018), studying alternating-offer bargaining data in an online mar-

ketplace; and Grennan and Swanson (2019), studying information disclosure in hospital-supplier

bargaining.5 The data I analyze is new to the literature, and is particularly novel in the opportunity

it presents for analyzing bargaining in detail, as it contains hundreds of thousands of observations

and rich information about the characteristics of the goods sold and the actions players take during

each observation of the game.

The only previous structural analysis of actual back-and-forth offers is Keniston (2011), but

the setting, methodology, and focus of the two papers are quite distinct. Keniston (2011) collected

several thousand observations of back-and-forth bargaining offers between riders and autorickshaw

drivers in India, whereas my setting studies professionals engaging in business-to-business nego-

tiations. The model of Keniston (2011) allowed for two-sided incomplete information, like mine,

but the author embedded this model in a search-and-matching framework to model agents’ outside

options, whereas my paper does not explicitly model players’ continuation payoffs when bargaining

fails. The method of Keniston (2011) requires estimating beliefs in the bargaining subgame, relying

on the assumption of a stationary equilibrium, whereas my approach does not require stationarity

4In a separate strand of the structural bargaining literature, a number of papers have made valuable contributions
by abstracting away from incomplete information and modeling negotiated prices as arising from a Nash-bargaining
surplus-splitting rule, such as Crawford and Yurukoglu (2012) and other subsequent studies of bargaining settings
with externalities, and other work studying post-auction bargaining settings (Elyakime, Laffont, Loisel, and Vuong
1997; An and Tang 2018). Merlo and Tang (2012) provided identification arguments for stochastic bargaining games
of complete information, and Merlo and Tang (2018) and Watanabe (2009) studied complete-information games with
asymmetric priors.

5Merlo, Ortalo-Magné, and Rust (2015) provided a structural model of the home-sales data from Merlo and
Ortalo-Magne (2004) but abstracted away from bargaining actions in order to focus on the seller’s dynamic choice of
list price.
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assumptions or belief estimation. Keniston (2011) does not focus on the efficiency of bargaining

or the Myerson-Satterthwaite Theorem, but instead compares welfare under bargaining to welfare

under a fixed-price mechanism.

The approach developed in my paper can be applied to other settings with alternating-offer

data to identify and estimate bounds on the distribution of valuations for the player who responds

to the first offer. Larsen and Zhang (2018) presented an approach that can be used to instead

obtain the distribution of valuations in bargaining games for the player who makes (rather than

responds to) the first offer. Larsen and Zhang (2018) applied their approach to a subset of the data

used in this paper to analyze the full auction-plus-bargaining mechanism rather than the bilateral

bargaining studied in this paper, finding similar qualitative results regarding mechanism efficiency.

2 The Wholesale Used-Car Industry and the Data

The wholesale used-auto auction industry provides liquidity to the supply side of the US used-car

market. Each year approximately 40 million used cars are sold in the United States, 15 million

of which pass through a wholesale auction house. Industry wide, about 60% of these cars sell,

with an average price between $8,000 and $9,000, totaling to over $80 billion in revenue (NAAA

2009). The industry consists of approximately 320 auction houses scattered across the country.

Throughout the industry, the majority of auction house revenue comes from fees paid by the buyer

and seller when trade occurs. Buyers attending wholesale auto auctions are used-car dealers. Sellers

may be car dealers (whom I will refer to as “dealers”) selling off extra inventory, or they may be

large institutions, such as banks, manufacturers, or rental companies (whom I will refer to as

“fleet/lease”) selling repossessed, off-lease, lease-buy-back, or old fleet vehicles.

Sellers bring their cars to the auction house, usually several days before the sale, and establish

a secret reserve price. In the days preceding the sale, potential buyers may view car details and

pictures online, including a condition report for cars sold by fleet/lease sellers, or may visit the

auction house to inspect and test drive cars (although very few visit prior to the day of sale). The

auction sale takes place in a large, warehouse-like room with 8–16 lanes running through it. In

each lane there is a separate auctioneer, and lanes run simultaneously. A car is driven to the front

of the lane and the auctioneer calls out bids, raising the price until only one bidder remains.

If the auction price exceeds the secret reserve price, the car is awarded to the high bidder. If

the auction price is below the secret reserve price, the high bidder is given the option to enter into

bargaining with the seller. If the high bidder opts to bargain, the auction house will contact the

seller by phone (or in person, if the seller is present at the sale), at which point the seller can accept

the auction price, end the negotiations, or propose some counteroffer higher than the auction price.6

6If the seller is not present and the auctioneer observes that the auction price and the reserve price are far enough
apart that phone bargaining is very unlikely to succeed, the auctioneer may choose to reject the auction price on
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If the seller counters, the auction house calls the buyer. Bargaining continues in this fashion until

one party accepts or terminates negotiations (with the typical time between calls being 2-3 hours).

It is this bilateral bargaining that is the focus on this paper.

The dataset used in this paper is new to the literature. The data come from six auction houses

owned by one company, each maintaining a large market share in the region in which it operates.

The sample period is from January 2007 to March 2010. An observation in the dataset represents

a run of the vehicle, that is, a distinct attempt to sell the vehicle through the mechanism. For

a given run, the data records the date, time, auction house location, and auction lane, as well as

the seller’s secret reserve price, the auction price, and, when bargaining occurs over the phone,

the full sequence of buyer and seller actions (accept, quit, or counter), and the amounts of any

offers/counteroffers. The data also records detailed characteristics of each car and sale. I drop a

number of observations, such as those with missing variables or extreme price realizations (lying

outside the lowest or highest 0.01 percentiles). I also drop car types (make-model-year-trim-age

combinations) that are not offered for sale at least ten times in my sample. Appendix C.1 contains

a list of all of my sample restrictions and a list of car observable characteristics that I use in

estimation. In the end, I am left with 133,523 runs of cars offered for sale by used-car dealers

(which I will refer to as the dealers sample), and 131,443 offered for sale by fleet/lease sellers

(which I will refer to as the fleet/lease sample).

Descriptive statistics for these samples are displayed in Table 1 (with additional descriptive

statistics shown in Appendix Table A3). The probability of trade is 0.705 in the dealers sample

and 0.768 in the fleet/lease sample; in both of these subsamples, this trade probability is higher

than the industry-wide average highlighted above (due primarily to my sample restrictions, such

as focusing on certain make-model-year-trim-age combinations). In the dealers sample, the average

auction price is over $1,000 below the average reserve price and about $600 below the average

blue book price. Dealer cars are on average seven years old and have nearly 100,000 miles on the

odometer. Fleet/lease cars tend to be newer (three years old and 57,000 miles), higher priced, and

have a smaller gap between the reserve and auction prices. Also, unlike dealer cars, for fleet/lease

cars the reserve price does not exceed the blue book price on average. All of these descriptive

statistics are consistent with conversations with industry participants: dealer cars tend to be older

cars with more aggressive reserve prices and tend to be less likely to sell.

Table 1 also shows information on the number of bidders participating in the auction. A precise

measure of the number of bidders is difficult to obtain at these auctions, as many sales take place

behalf of the seller. If both the buyer and seller are present at the auction sale, a quick round of bargaining may
sometimes take place in person immediately following the auction, but such behavior is discouraged as it delays
the next sale; each auction typically takes 30–90 seconds, and inserting in-person negotiations into that procedure
could drastically increase that time. Furthermore, the auction house discourages in-person interactions less they lead
parties to transact off site in attempts to avoid auction house fees. Such off-site transacting is generally prevented by
social norms, but in extreme cases violators could be punished through the auction house revoking access to future
sales.
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simultaneously in different auction lanes and bidders are not required to register for the sale of

a specific car. However, for some auction sales, the company offers live video streaming and a

web-based portal for remote bidding, and for these sales I can obtain a lower bound on the number

of bidders from bid logs. These bid logs record each bid and the identity of the bidder if the bidder

participated online. If the bidder was instead physically present on the auction house floor, the bid

log only records the amount of the bid and an indicator, “floor”, rather than an identity. A lower

bound on the number of distinct bidders is given by the number of distinct online identities who

placed bids plus 1 if the log records any floor bids or plus 2 if the log records two consecutive floor

bids (assuming no bidder bids against himself). This lower bound rarely falls below 2 (this occurs

in 0.37% of observations in the dealers sample and 1.76% of observations in the fleet/lease sample).

The mean of this lower bound conditional on it being at least 2 is 2.924 in the dealers sample and

2.973 in the fleet/lease sample. The distribution of this lower bound will be used in estimation in

Section 4.

As data on actual back-and-forth offers is rare in the literature, I provide a period-by-period

summary of this data in Table 2 (for the dealers sample). Outcomes in this table are separated by

the period of the game in which the observed sequence ends. Period 1 is the auction. Observations

ending in period 1 represent cases that ended with auction price exceeding the reserve price or with

the auction price falling short of the reserve price and the buyer opting out of bargaining. The

remaining periods are labeled with even numbers for seller turns and odd numbers for buyer turns.

Table 2 demonstrates that in 10.66% of the dealers sample the game ends at the auction, and in

these cases the final price when trade happens (which occurs 88.58% of the time) is naturally the

auction price. The remainder of the time, the buyer opts out of bargaining. Observations ending in

trade in the second period also have the final price equal to the auction price (as the auction price

is the first bargaining offer). Consider now the fifth period of the game. Only 1.25% of the full

sample reaches this period, but this still consists of nearly 1,700 observations. In the fifth period,

when trade does occur, it occurs at an average final price of $7,792, which is over $600 above the

average auction price ($7,174), but still does not reach as high as the average reserve price ($8,640).

Overall, Table 2 suggests that observations ending in later periods had somewhat higher reserve

prices than those ending in earlier periods. Only one buyer-seller pair in the data endured ten

periods of the game, coming to agreement in the end, at a price $2,600 above the auction price.

Appendix Table A4 displays similar patterns for the fleet/lease sample. In the fleet/lease sample,

the game ends at the auction 34.39% of the time. Thus, in both the dealers and fleet/lease samples,

what happens after the auction plays a major role in the market.

9



3 Model

This section presents a model of the game played in wholesale used-car markets. Prior to stating

the assumptions of the model, I first restate the timing of the game, which is as follows:

1. Seller sets a secret reserve price, R.

2. N bidders bid in an ascending auction.

3. If the auction price, PA, exceeds the secret reserve price, the high bidder wins the item.

4. If the auction price does not exceed the secret reserve price, the high bidder is given the

opportunity to walk away, or to enter into bargaining with the seller.

5. If the high bidder chooses to enter bargaining, the auction price becomes the first bargaining

offer, and the high bidder and seller enter an alternating-offer bargaining game, mediated by

the auction house.

Throughout I maintain the following assumptions:

Assumptions.

(A1) N ≥ 2 risk-neutral bidders participate in an ascending button auction with zero participation

costs. For i = 1, ..., N , each buyer i has a private valuation B̃i = W +Bi, with Bi ∼ FB and

W ∼ FW , and with (W ,N ,{Bi}Ni=1) mutually independent..

(A2) A risk-neutral seller has a private valuation S̃ = W +S, with S ∼ FS and with S independent

of (W ,N ,{Bi}Ni=1).

(A3) The bargaining lasts for up to T <∞ periods; buyers incur a common bargaining cost, cB > 0,

for each offer made; and sellers incur a common bargaining cost, cS > 0, for each offer made.

(A4) Strategies of the bargaining subgame are continuous in the auction price.

(A5) S has density fS and Bi has density fB, where fB is positive on [b, b].

The motivation for the independent private values framework is that, according to market

participants, buyers—as well as dealer-type sellers—have valuations arising primarily from their

local demand and inventory needs.7 Also, seller valuations can depend on the value at which

7These buyers come from a wide geographic area, with some participants driving long distances or even flying to
attend the auction sale, and thus strong correlations between local demands and inventory needs among these buyers
are not likely a major concern. While there is likely some common values component to wholesale auto auctions,
accounting for this in estimation would be beyond the state of the methodological literature (positive identification
results do not exist for valuations at common values ascending auctions; see Athey and Haile 2007). In conversations
with market participants, buyers often claim to decide upon their willingness to pay before bidding begins, sometimes
having a specific retail customer lined up for a particular car, also suggesting a strong private component to valuations
(see also discussions on the popular industry blog, thetruthaboutcars.com, Lang 2011). Studying similar auto auctions
in Korea, Roberts (2013) and Kim and Lee (2014) provided evidence that private values models fit bidder behavior
well in these settings.
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the car was assessed as a trade-in; for a bank or leasing company, valuations can arise from the

size of the defaulted loan.8 The button auction assumption simplifies the analysis of the auction,

but is also not an unreasonable approximation, as it is the auctioneer in this market who raises

the price and not the bidders (unlike in oral English auction) and bid increments are small. The

assumption of symmetric buyers is not restrictive in this setting given that the high bidder’s identity

is generally not known to the seller during bargaining and given that, in a private values ascending

auction, bidders’ auction strategies will not depend on the identities of other participants. The

assumption that N is independent of buyer valuations rules out endogenous entry. In Appendix

C.3.2, I document some evidence supporting this assumption, following the intuition derived in

Aradillas-López, Gandhi, and Quint (2016).

The form of bargaining costs in Assumption A3 is found elsewhere in the theoretical bargaining

literature (e.g. Perry 1986 and Cramton 1991), and prevents players from continuing to bargain

even when no surplus is to be had. The cap on the number of periods T simplifies the proofs of

many of the model properties. T is assumed to be known to the players but not necessarily to

the econometrician (and similarly for cB and cS). Assumption A4 is a technical condition required

for the differentiability of the seller’s payoff, exploited in the proof of Proposition 3 to prove strict

monotonicity of the seller’s secret reserve price strategy.

The assumption of positive density for Bi in Assumption A5 only plays a role in preventing

division by zero when I prove strict monotonicity of the seller’s secret reserve price (Proposition

3) and when I prove identification arguments in Appendix C.4–C.6. For the support of the seller

density, fS , I will use the notation [s, s]. My results do not rely on specifying whether the supports

of Bi and S are finite or infinite. In estimation and in computing welfare measures, I choose large,

finite values for the support bounds of B and S. In pinning down one tail condition empirically

(discussed in estimation step 4 in Section 4), I will also assume that s ≥ b, given that the seller will

be guaranteed a price of at least b from the auction.

The random variable W in Assumptions A1 and A2 is observed by all buyers and the seller and

represents game-level heterogeneity. Conditional on W , buyers and sellers have independent private

values, but unconditional on W valuations are correlated. In estimation, in Section 4, I consider

W to be unobserved to the econometrician, and I incorporate an additional, additively separable

game-level heterogeneity term X ′γ that is observable to both the econometrician and to the players.

Incorporating this latter term, the seller’s value is S+W +X ′γ and buyer i’s value is Bi+W +X ′γ.

I do not assume that Bi and S take on only positive values; this is because these random variables

represent how the players value the car relative to the game-level heterogeneity component they all

observe (so a negative Bi or S means that a buyer or seller values the car less than the observable

8These explanations for seller values are due to conversations with industry professionals. Note also that adverse
selection from the seller possessing more knowledge about car quality than the buyer is likely small because of auction
house information-revelation requirements and because sellers are not previous owners/drivers of the vehicles.
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value of the car). Because these objects can be negative, I assume nothing that prevents the model

from suggesting that players’ overall valuations may be negative. However, in practice, when I

estimate the pieces of my model, I find that the majority of the variation in these valuations arises

from the observable heterogeneity term X ′γ, and that this term has most of its mass above zero,

and thus the additively separable model does not appear to be a bad approximation. I discuss this

in Appendix C.2.2.

For the next several subsections, I will discuss properties of the game conditional on a realization

of W , and thus I will omit W for notational simplicity and return to it when I incorporate game-

level heterogeneity in Proposition 5. I ignore auction house fees in this analysis but discuss them

in detail in Appendix D.

3.1 Payoffs

I model the game as follows. In period t = 0, the seller chooses her secret reserve price, R = ρ(S),

knowing only her type S. This choice of reserve price is not revealed to buyers, before or after

the auction. In period t = 1, the ascending auction takes place. Let βi denote bidder i’s auction

strategy (a price at which bidder i drops out of the auction), and let the final auction price be

denoted PA. If PA ≥ R, the high bidder wins the car and the game ends. If PA < R, the high

bidder is given the opportunity to walk away (denoted DB
1 = 1), which ends the game, or now walk

away (DB
1 = 0), entering into bargaining with the seller .

When the auction price is PA, a high bidder of type B chooses to enter into bargaining rather

than walk away whenever the payoff from entering into bargaining is non-negative. If the buyer

chooses not to walk away, the buyer enters an alternating-offer bargaining game with the seller. In

doing so the buyer immediately incurs a bargaining cost, cB > 0, and this cB will be incurred by

the buyer at every offer he makes. The seller will incur a bargaining cost, cS > 0, at each offer she

makes. The first offer of the bargaining game is PA. The game moves to period 2 of the game, in

which the seller chooses DS
2 ∈ {A,Q,C}—a choice to accept (A), quit (Q), or counter (C). If the

seller chooses Q or A the game ends. If the seller chooses C, the seller specifies a counteroffer PS2 ,

and play continues to period 3, with the buyer choosing DB
3 ∈ {A,Q,C}, and so on up to period

T . If period T is reached, the player whose turn it is can only choose to accept or quit.

Throughout the game, bargaining offers must be weakly greater than the auction price. In

practice, this is an understood norm at the auction house, and it is supported in the data (bargaining

prices lie above the auction price nearly 100% of the time). This feature means that the auction

price plays a similar role for the seller that a list price would play for a buyer in many other real-

world haggling scenarios.9 In the auto auction setting, this ability of the seller to accept the auction

9In haggling in the presence of posted list price, a seller and buyer may negotiate over prices in a range below the
list price but the buyer may at any point choose to end the game by returning to the list price and accepting it. In
such a haggling setting, the list price can be thought of the first bargaining offer, just as the auction price is here.
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price can either be modeled as an additional action available to the seller at any of her turns, or

can be modeled as a rule enforced by the auction house that all bargaining offers must lie weakly

above the auction price. I follow the latter approach.

The payoffs in the game are as follows. If a buyer of type B and a seller of type S agree to

trade at a price P , the buyer’s payoff is B − P less the per-offer bargaining costs the buyer has

incurred up to that point. If trade occurs in round 1 of the game (i.e. at the auction), the buyer’s

payoff will be B − P , with P = PA, the auction price. Similarly, if the buyer and seller agree to

trade at a price of P , the seller’s payoff is P , less any bargaining costs incurred by the seller up to

that point.

When disagreement occurs, the buyer receives a payoff of zero and the seller a payoff of S

(less any incurred costs). This modeling choice is one of the abstractions (and limitations) of the

model. In practice, a buyer who fails to acquire a car may choose to later re-enter the market to

bid on a similar car. The approach I adopt—treating buyers’ outside option as a 0 payoff—means

that the object I model as the buyer’s valuation is actually the buyer’s full willingness to pay

minus a discounted continuation value of re-entering the market. Similarly, what I model as the

seller’s value S is in practice the seller’s discounted continuation value of re-entering the market to

attempt to sell the car again at the auction house, at a competing wholesale outlet, or at her own

lot. These abstractions are appropriate under the following interpretation of my counterfactual

exercises: For a given buyer and seller pair who meet in bargaining today, holding fixed their

continuation values of re-entering the market, how would their expected gains from trade improve

if today’s bargaining game were efficient? Where these abstractions become a limitation is that

they do not allow me to model how players’ continuation values might change if the bargaining

mechanism were to change permanently. In Appendix B.4, I demonstrate that my qualitative and

quantitative findings are similar in several analyses that cut the data based on variables related to

players’ continuation values. These analyses do not alleviate all concerns associated with ignoring

these continuation-game dynamics. I ignore these dynamics across games in order to focus on

dynamics within the game; studying instead the dynamics across games would be an interesting

avenue for future research.10

3.2 Equilibrium Concept

In what follows, I will focus on pure strategy Bayesian Nash equilibria (BNE). A BNE of the

game is as follows. Let Ht represent the history of offers, including the auction price, up through

period t− 1 of the bargaining game. The strategy of a buyer of type bi is a history-contingent set

of actions σB(bi) = {βi, {DB
t |Ht}, {PBt |Ht}}, where the decisions DB

t and offers PBt included are

10Note that players’ continuation values within a given game are addressed in the model; see Appendix A; it is
only players’ continuation values across instances of the game that I abstract away from.
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those for periods in which it is the buyer’s turn.11 The strategy of a seller of type s is a history-

contingent set of actions σS(s) = {ρ, {DS
t |Ht}, {PSt |Ht}}, where the decisions and offers are those

for periods in which it is the seller’s turn. A set of strategies σB∗(bi) for all buyers and σS∗(s) for

the seller constitutes a BNE of this game if, for each player, his or her strategy is a best response to

opponents’ strategies and players update their beliefs about opponent valuations using Bayes rule

at each history of the game that is reached with positive probability.12

It is simple to derive a multiplicity of equilibria of the game, such as the following three examples

(none of which need violate Assumption A4):

Three Examples of Equilibria of the Bargaining Subgame:

1. Sellers only accept or quit at t = 2, and buyers reject all (off-equilibrium) offers at t = 3.

2. Sellers make uninformative offers (equal to s, say) at t = 2, buyers counter at t = 3, and

sellers only accept or quit at t = 4. Buyers reject all off-equilibrium offers at t = 3 or t = 5.

3. All offers and counteroffers must lie within a particular set of possible values, and in the

(off-equilibrium) case in which any player deviates from these offers, the opponent responds

by quitting.

Ausubel and Deneckere (1993) provided a discussion of other partial-pooling equilibria for a

similar bargaining game but with one-sided offers, and Ausubel, Cramton, and Deneckere (2002)

suggested that such arguments can be extended to two-sided offer games as well.

3.3 Mechanism Design Framework for Evaluating Bargaining Efficiency

Prior to deriving the properties of BNE of this game, I describe the mechanism design framework I

use to assess efficiency of bargaining, as it is the motivation for deriving some of the game’s proper-

ties. By the Revelation Principle (Myerson 1979), any BNE of an incomplete-information trading

game has a corresponding, payoff-equivalent, direct-revelation mechanism. In a direct mechanism,

a buyer of type b and seller of type s report their true types to the mechanism designer and then

trade occurs with probability x(s, b) (the allocation function), where this allocation function is

determined so that players receive the same expected outcomes as in the original game.

11This discussion ignores the possibility of buyers conditioning their auction strategies on information observed
during the auction (such as the points at which opponents drop out); as shown in Proposition 1 below and discussed
in Appendix B.2, bidders would not gain from conditioning on such information.

12Note that Perfect Bayes Equilibrium (PBE) is a refinement of BNE (and thus, every PBE is also a BNE) requiring
that the researcher also specify how beliefs are updated at histories of the game that are never reached in equilibrium.
I focus on the broader equilibrium concept, BNE, because the PBE concept does not meaningfully narrow down the
set of equilibria in sequential bargaining games of incomplete information (see discussion in Gul and Sonnenschein
1988) and because none of my identification or estimation arguments rely on specifying how beliefs are updated after
zero-probability events. See Appendix B.1 for more discussion of the equilibrium concept.
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The allocation function corresponding to ex-post efficient trade is simply x∗(s, b) ≡ 1{s ≤ b}.
The allocation function corresponding to a given point along the ex-ante efficient frontier, on the

other hand, will maximize a convex combination of the buyer’s and seller’s ex-ante expected gains

from trade, with weight η given to the seller’s gains and weight 1 − η given to the buyer’s. I will

use the notation xη(·), for a given η ∈ [0, 1], to denote the allocation function corresponding to a

point on the ex-ante efficient frontier. Computing xη(·) boils down to solving a linear programming

problem, described in Section 5 and Appendix C.7. The direct mechanism corresponding to the

real-world bargaining, which I denote xRW (·), can be estimated directly from the data, as described

in Section 4. Computing each of these allocation functions requires estimates of FB and FS , the

distributions of buyer and seller valuations. Thus, a key focus of this paper is the estimation of these

distributions without imposing a priori any restrictions on how efficient the real-world bargaining

is relative to these counterfactual benchmarks.

3.4 Model Properties

I now describe a number of properties of this game that will hold in any equilibrium.13 These prop-

erties will then be exploited in Section 4 to estimate the distributions of buyer and seller valuations,

the support of types who enter the bargaining game, and the allocation function corresponding to

the real-world mechanism.

Bidding Behavior. The first property concerns a bidder’s auction strategy, which is a price at

which he will stop bidding:

Proposition 1. If Assumption A1 holds then truthtelling is a weakly dominant action in the

auction regardless of other players’ strategies in the auction or players’ strategies in the BNE of

the continuation game.

Proposition 1 states that bidders receive no positive benefit from deviating from a strategy in-

volving dropping out of the bidding when, and only when, the auction price reaches their valuations

(i.e. truthtelling). The intuition behind the proposition is that, as in a standard ascending button

auction, a bidder will not find it optimal to drop out before the current price reaches his value

because doing so would make the bidder miss out on a chance to win the auction. A bidder will

also not find it optimal to remain in the auction once the current price passes his value because

doing so will yield a negative payoff if the bidder does end up winning. One implication of the

proposition is that a bidder will not gain from conditioning his auction strategy on any information

revealed during the auction, such as other bidders’ drop-out points. Appendix B.2 expounds on

this result and proves that bidders bidding above their valuations and then attempting to bargain

13Appendix B.5 discusses an extension of this model in which sellers have some uncertainty about the distribution
of buyer valuations when choosing the reserve price, which addresses explicitly why sellers may accept offers below
their secret reserve price. Appendix B.5 also provides several other explanations of this phenomenon.
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to a lower final price later could not occur in equilibrium even if bargained prices below the auction

price were allowed by the auction house.

There can exist BNE of this game in which bidders are indifferent between bidding truthfully

and not. For example, one such BNE would consist of the seller setting a very high reserve price,

all bidders dropping out at zero, and, in bargaining, the seller immediately rejecting any (off-

equilibrium) positive auction price; in this equilibrium, bidders would receive a payoff of zero, but

would receive no less by bidding truthfully. To rule out such cases, and motivated by Proposition

1, I make the following assumption:

Assumption. (A6) All bidders follow the weakly dominant strategy of bidding truthfully.

In practice, for identification and estimation, it is only the highest bid that plays any role.

Seller’s Choice to Accept the Auction Price or Quit. I now demonstrate that bounds

on the distribution of seller valuations can be achieved by an argument similar to the Haile and

Tamer (2003) bounds in English auction settings. The argument differs from Haile and Tamer

(2003), however, in that it is not possible here to construct both an upper and lower bound on the

seller’s value for each individual realization of the game. This is because, as shown below, a lower

bound on a seller’s valuation is only observed when the seller chooses to quit. Therefore, rather

than observation-level bounds, I will obtain bounds on the distribution of seller values relying on

probability statements formed from observations of many sellers’ decisions to accept or walk away

from an offer on the table.

Let DS = A, without a t subscript (to distinguish this from the period-specific action described

in Section 3.1), represent the event in which the seller takes an action in period 1 or 2 that results

in the game ending in agreement at the auction price. This event occurs either when 1) the auction

price exceeds the reserve price or 2) the auction price fails to meet the reserve price, the high bidder

does not opt out of bargaining, and the seller accepts the auction price on her first bargaining turn.

Similarly, let DS = Q represent the event in which the seller takes an action in period 2 that results

in the game ending in disagreement at the auction price. This event happens when the auction price

fails to meet the reserve price, the high bidder does not opt out of bargaining, and the seller quits

on her first bargaining turn rather than accepting the auction price or making a counteroffer.14

I exploit the following assumption:

Assumption. (A7) The seller never (i) accepts an auction price below her value or (ii) walks

away from (quits at) an auction price above her value.

The conditions in Assumption A7 will be satisfied in any BNE of the game.15 These conditions

imply that, if the realized auction price is pA and the seller accepts, it must be the case that the

14Note that the events DS = A and DS = Q as defined above are observable to the econometrician for every
instance of the game recorded in the data, not just those in which bargaining occurs.

15To see this, suppose to the contrary that a seller’s strategy involves accepting an auction price pA < s. A

16



seller values the good less than pA. Similarly, if the seller quits when the auction price is pA, it

must be the case that the seller values keeping the car herself more than pA. These conditions

imply bounds on distribution of S:

Pr(DS = A|PA = pA) ≤ Pr(S ≤ pA) = FS(pA)

Pr(DS = Q|PA = pA) ≤ Pr(S ≥ pA) = 1− FS(pA)⇒ Pr(DS 6= Q|PA = pA) ≥ FS(pA)

I state these bounds as the following proposition, where F represents the space of all possible CDFs

(i.e. right-continuous, weakly increasing functions approaching 0 to the left and 1 to the right):

Proposition 2. Under Assumptions A2 and A7, for any v ∈ [s, s], any CDF of seller valuations

FS ∈ F must satisfy FS(v) ∈ [Pr(DS = A|PA = v),Pr(DS 6= Q|PA = v)].

I now highlight several interesting features of these bounds. First, the bounds do not cross,

because DS = A ⇒ DS 6= Q, and therefore Pr(DS = A|PA = v) ≤ Pr(DS 6= Q|PA = v).

A monotonized version of these bounds may cross, however, and such a crossing would indicate

a violation of Assumption A7; see discussion in Appendix B.3. Second, these bounds rely only

on Assumption A2 (that is, that buyer and seller valuations are independent) and the conditions

in Assumption A7. Under these assumptions alone, the bounds are sharp. However, under the

additional assumptions imposed elsewhere in the paper (namely, that actions correspond to some

BNE), the bounds are not necessarily sharp, but are conservative. Appendix B.3 discusses sharpness

formally.

Third, the width of these bounds will be determined by the frequency with which (i) the seller

chooses to make a counteroffer in response to the first offer or (ii) the buyer opts out of bargaining.

Specifically, the bounds can be re-written

Pr(DS = A|PA = pA) ≤ FS(pA) ≤ Pr(DS = A|PA = pA) + Pr(DS 6= A ∩ DS 6= Q|PA = pA)︸ ︷︷ ︸
Prob. seller counters or buyer opts out

The object Pr(DS 6= A ∩ DS 6= Q|PA = pA) is the probability that either the seller makes a

counteroffer in response to the first offer or the buyer opts out of bargaining. If, at a given PA = pA,

the buyer doesn’t opt out and the seller only accepts or quits (doesn’t counter), this probability

will be zero, and the bounds will collapse to a point equal to the probability of acceptance at that

pA, Pr(DS = A|PA = pA).

These bounds can be applied to other alternating-offer bargaining settings, independent of

profitable deviation from this strategy would be to quit instead, as this would yield a payoff of s. Now suppose a
seller’s strategy involves quitting when facing an auction price pA > s. A profitable deviation from this strategy
would be to accept instead, as this would yield a payoff of pA. Thus, any BNE cannot involve violations of A7. Note
that bargaining costs from Assumption A3 do not play a role in these bounds as those costs are only incurred by a
player when making an offer, not when accepting or quitting.
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whether the bargaining follows an auction. In such cases, the decisions DS = A or DS = Q would

represent the first action taken by the player in the bargaining game who responds to the first offer.

The Lower Support of Buyer and Seller Types Who Bargain. One advantage of studying

bargaining following an ascending auction is that the auction outcome affects the bargaining game

in a tractable manner, allowing me to isolate the bargaining game from the auction. Let πB(pA, b)

represent the buyer’s expected payoff from entering into bargaining conditional on his value b and

the realization of the auction price. Let χ(b) be defined by πB(χ(b), b) = 0. The high bidder will

end up in bargaining when PA < R and when πB(PA, b) ≥ 0. The object χ−1(pA) then represents

the buyer type that would be indifferent between bargaining and not bargaining when the realized

auction price is pA. As above, ρ(·) is the seller’s secret reserve price strategy; that is, R = ρ(S).

Proposition 3. If Assumptions A1–A6 hold, then in any BNE satisfying Assumption A4, con-

ditional on an auction price PA = pA and conditional on bargaining occurring, the support of

seller types in the bargaining game is [s(pA), s] and the support of buyer types is [b(pA), b], where

s(·) ≡ ρ−1(·) and b(·) ≡ χ−1(·). Moreover, ρ(·) and χ(·) are strictly increasing, with ρ(s) ≥ s and

χ−1(pA) > pA.

The intuition behind this result is as follows. When the auction price is pA and bargaining

occurs, it will be common knowledge among the two bargaining parties that the seller’s type s

satisfies ρ(s) ≥ pA (i.e. the reserve price is above the auction price), implying s ∈ [ρ−1(pA), s].

Similarly, bargaining occurring means the buyer did not opt out, so χ(b) ≥ pA, implying b ∈
[χ−1(pA), b]. Thus, the game I study is analogous to a setting of bargaining alone where the lower

bound of the support of the types in the bargaining game differs across realizations of the game

as determined by the realization of the auction price, and when I present welfare results later they

will average over these realizations. The clean relationship between the auction and the bargaining

game obtained in Propositions 1 and 3 would not exist if the pre-bargaining stage were a first-price

auction rather than an ascending auction; the first-price auction would affect the bargaining (and

vice versa) in an intractable manner.16

The proof of Proposition 3 also addresses the seller’s choice of reserve price, demonstrating

that ρ(·) is strictly monotone using a monotone comparative statics result from Edlin and Shannon

(1998), a special case of Topkis’s Theorem. Assumption A4, continuity of the equilibrium of the

bargaining subgame in the auction price, is required to prove differentiability of the seller’s payoff

in order to apply the Edlin and Shannon (1998) result.

Proposition 3 implies that, given an auction price pA, the distributions of buyer and seller types

in bargaining are given by FB(b)
1−FB(χ−1(pA))

and FS(s)
1−FS(ρ−1(pA))

, respectively. These distributions corre-

16Elyakime, Laffont, Loisel, and Vuong (1997) discussed this issue and adopted a model in which a first-price auction
takes place under incomplete information and post-auction bargaining takes place under complete information (Nash
bargaining).
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spond precisely to on-equilibrium-path Bayes updating of the buyer’s and seller’s beliefs about their

opponents’ type given the actions occurring prior to the bargaining, as highlighted in Section 3.2.

Also, the seller’s beliefs in the bargaining game do not condition on N , the number of bidders. This

is due to a convenient property of the symmetric independent private values button auction: the

distribution of the maximum order statistic (here, the valuation of the buyer entering bargaining)

conditional on a lower order statistic (here, the auction price), does not depend on N , a result first

shown in Song (2004) and extended to the unobserved heterogeneity case in Freyberger and Larsen

(2017). Thus, the number of bidders does not enter into the seller’s beliefs about the density of

buyer valuations she faces in bargaining once she knows the realization of PA.

The Real-World Mechanism. The allocation function corresponding to the real-world mecha-

nism, xRW , satisfies the following property:

Proposition 4. Under Assumptions A1–A6, in any BNE satisfying Assumption A4, the allocation

function xRW can be written as

xRW (r, b; pA) ≡ 1
{
b ≥ g

(
r, pA

)}
(1)

where g(r, pA) is an unknown function that is weakly increasing in r.

Proposition 4 demonstrates that xRW depends on a cutoff function defining the boundary

between those types who trade and those who do not. Ausubel and Deneckere (1993) referred to

this property as the “Northwestern Criterion” as it implies that trade occurs if and only if players’

types lie northwest of a boundary defined by g. The proof of Proposition 4 relies directly on an

argument presented in Storms (2015), and also exploits the strict monotonicity of ρ(·) proved in

Proposition 3, which makes it possible to model the allocation conditional on a realization of the

reserve price, R = r, rather than conditional on the seller’s type. This is particularly useful in

that it allows me to evaluate the allocation function for the real-world bargaining without knowing

where the true distribution of seller valuations lies within the bounds from Proposition 2.

Game-level Heterogeneity. The above results are derived conditional on a given realization

of game-level heterogeneity. I now consider the additively separable structure of buyer and seller

valuations in the common component W .

Proposition 5. Suppose, when W = 0, the equilibrium is such that the reserve price is r; the

auction price is pA; the lowest buyer type who would choose to bargain is χ−1(pA); and, for each

period t at which the game arrives, the offer is given by Pt = pt and the decision to accept, quit, or

counter is given by Dt = dt. Then, under Assumptions A1–A6, when W = w, the equilibrium will

be such that the reserve price is r̃ = r+w; the auction price is p̃A = pA +w; the lowest buyer type
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who would choose to bargain is χ−1(p̃A − w) + w; the period t decision is dt; and, for any period t

offer that is accepted with positive probability, the period t offer is pt + w.

Proposition 5 is similar to results used elsewhere in the empirical auctions literature (Haile,

Hong, and Shum 2003; Asker 2010) but is a generalization specific to this setting. It implies

that continuous actions of the game (reserve prices, auction prices, and bargaining offers) will

be additively separable in W ; choice probabilities for discrete actions (accepting, declining, or

countering in response to an offer) will be unaffected by the value of W . An immediate implication

of Proposition 5 is that the allocation function is invariant to game-level heterogeneity; that is,

xRW (r + w, b+ w; pA + w) = xRW (r, b; pA).

4 Estimating Valuations and the Bargaining Mechanism

In this section, I exploit the model properties derived above in order to estimate the distribution

of buyer and seller valuations and the bargaining mechanism. Identification and estimation require

the following additional assumptions on the data. Below, let FR, FPA , and FW represent the

cumulative distribution functions of R, PA, and W .

Assumptions.

(A8) FR, FPA, and FW have densities fR, fPA, and fW satisfying the following: (i) the characteris-

tic functions of fR and fW have only isolated real zeros; (ii) the real zeros of the characteristic

function of fPA and its derivative are disjoint; and (iii) E[W]=0.

(A9) The supports of S and B satisfy s ≥ b.

(A10) Observations of random variables (S,Bi,W ,N) across instances of the game are identically

and independently distributed.

(A11) All observations in the data are generated by the same equilibrium.

Assumption A8 lists the sufficient conditions from Evdokimov and White (2012) for proving

identification of fR, fPA , and fW .17 I use Assumption A9 in pinning down the left tail of the upper

bound on the seller valuation CDF. Motivation for this assumption (s ≥ b) is that any seller is

guaranteed a price of at least b from participating.

Assumption A10 is common in the empirical games literature, and it abstracts away from

dynamics across instances of the game.18 Assumption A11 is not required for steps 1–4 below

17Evdokimov and White (2012) demonstrated that these are weaker conditions than those used previously in the
empirical auctions literature in settings relying on convolution arguments (Li and Vuong 1998; Krasnokutskaya 2011).
The assumption that E[W ] = 0 is a location normalization, and this normalization could alternatively be placed on
R or PA without loss of generality.

18Appendix C.1 and Section B.4 discuss some simple ways in which I do analyze inter-game dynamics.
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but is required for steps 5–6. For example, even if different equilibria of the bargaining subgame

are played in different observations of the data, the distribution of buyer valuations can still be

estimated (step 3) using the distribution of auction prices, as described below. Similarly, the

revealed preference arguments used to bound the distribution of seller valuations (step 4) will still

hold even if A11 fails. Steps 5–6, however, require inverting policy functions that will depend

on the equilibrium of the game. Fortunately, none of the steps below, including 5–6, require fully

specifying or solving for the equilibrium. Like Assumption A10, Assumption A11 is also common in

the structural literature. The typical approach in the literature to handling cases where particular

subsamples of the data are believed to have been generated by different equilibria is to estimate

the model separately in these subsamples. In line with this, throughout the estimation, I treat

the dealers and fleet/lease samples separately because, according to conversations with industry

professionals, this is likely the most important division of the data in which behavior may differ

(although, as highlighted in Section 6, I find very similar results between the two samples). I

perform additional subsample analyses in Appendix B.4 and C.1.3.

I now provide an overview of each estimation step. I do not describe all of the technical details

for each step here, but include them in Appendix C. Appendix C also contains nonparametric

identification arguments, arguments for consistency of the estimates, and evidence of goodness of

fit for each estimation step.

Step 1) Accounting for Observed Heterogeneity Empirically. To account for game-level

characteristics that are observed to the econometrician as well as the players, I apply Proposition

5. Let Rraw and PA,raw be random variables representing the reserve price and auction price in

the raw data, prior to any adjustments for heterogeneity. As above, let W be a random variable

representing unobserved game-level heterogeneity. Let X be a random variable representing game-

level heterogeneity that is instead observed (by the econometrician as well as the players), with X

independent of W , S, B, N . Let realizations of Rraw, PA,raw, X, and W for game j be denoted

by lower case letters with subscript j.

I specify the total game-level heterogeneity (observed plus unobserved) for observation j to be

x′jγ + wj , where γ is a vector of parameters to be estimated. Proposition 5 implies that auction

prices and reserve prices can be “homogenized” (Haile, Hong, and Shum 2003) by estimating the

following joint regression of reserve prices and auction prices on observables:[
rrawj

pA,hj

]
=

[
x′jγ

x′jγ

]
+

[
r̃j

p̃Aj

]
,

where r̃j = rj + wj , p̃
A
j = pAj + wj . In the vector xj I include a rich vector of controls, including

flexible mileage terms, dummies for each make-model-year-trim-age combination, and a number of

other factors described in detail in Appendix C.1. An estimate of r̃j is then given by subtracting x′j γ̂
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from rrawj , and similarly for p̃Aj . Variation in these two quantities is then attributed to unobserved

game-level heterogeneity and to players’ private valuations, as detailed below.

Step 2) Accounting for Unobserved Heterogeneity Empirically. To account for hetero-

geneity W in the game that is observed by the players but not by the econometrician, I apply a

result due to Kotlarski (1967), which implies that observations of R̃ = R+W and P̃A = PA +W

(which are additively separable in W by Proposition 5) are sufficient to recover the densities fW , fR,

and fPA . This result has been applied elsewhere in first-price auction work (e.g. Li, Perrigne, and

Vuong 2000; Krasnokutskaya 2011); my application of this deconvolution argument using instead

an ascending auction bid and a reserve price to identify unobserved heterogeneity parallels Decaro-

lis (2018) and Freyberger and Larsen (2017). I estimate these densities using a flexible maximum

likelihood approach, where the likelihood of the joint density of (R̃, P̃A) is given by

L(fPA , fR, fW ) =
∏
j

[∫
fPA(p̃Aj − w)fR(r̃j − w)fW (w)dw

]
(2)

I approximate each of the densities fPA , fR, and fW as Hermite polynomials, as suggested by

Gallant and Nychka (1987) (I use fifth-order polynomials). This also yields estimates of the CDFs

FW , FR, and FPA . Appendix C.2 describes technical details and nonparametric identification.

Step 3) Estimating the Distribution of Buyer Valuations. I recover the distribution of

buyer valuations, FB, from the distribution of auction prices, FPA , which, by Proposition 1, will

coincide with the distribution of the second order statistic of buyer valuations. The relationship of

FPA and Pr(N = n) (the distribution of the number of bidders) to FB is as follows:

FPA(v) =
∑
n

Pr(N = n)
[
nFB(v)n−1 − (n− 1)FB(v)n

]
(3)

The right-hand side of (3) is strictly monotonic in FB(·), and thus FB is nonparametrically identified

by Pr(N = n) and FPA (see, for example, Athey and Haile 2007). I estimate the object FB by

solving (3) numerically on a grid of values for v, pluggin in an estimate of P̂r(N = n) and the

maximum likelihood estimate F̂PA(v) from (2).

To estimate P̂r(N = n), I use the subsample of the data for which bid logs are available, in which

I observe a lower bound on N that varies from auction to auction (see discussion in Section 2). I

set P̂r(N = n) equal to the empirical frequency with which this lower bound equals n. This treats

the distribution of the lower bound as though it is the true distribution of the number of bidders. I

gathered some additional independent data supporting this choice by physically attending over 200

auction sales and recording the number of bidders (see Appendix C.3.1). It turns out, however, that

the choice of Pr(N = n) is, perhaps surprisingly, not critical to the welfare estimates of this paper.

Specifically, the choice of Pr(N = n) affects the estimate of the full underlying buyer distribution,
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FB, but has a negligible effect on the transformation of FB used in evaluating welfare, which is the

distribution of the high bidder’s value conditional on the auction price integrated against the auction

price density (i.e. the maximum order statistic distribution). In Appendix C.3.1, I demonstrate

numerically that this latter object is not sensitive to the choice of Pr(N = n). I also provide a

new mathematical result, stated as Proposition 10, proving that, for a class of possible choices of

Pr(N = n) (Poisson distributions with mean λ), conditional on F̂PA , the inferred maximum order

statistic distribution has a derivative that is identically zero with respect to the choice of λ.19

Step 4) Estimating Bounds on the Distribution of Seller Valuations. Proposition 2

demonstrates that, absent unobserved game-level heterogeneity, the objects Pr(DS = A|PA = v)

and Pr(DS 6= Q|PA = v) will provide bounds on FS(v). The same revealed preference arguments

used to derive that result—Assumption A7—extend to the case of unobserved heterogeneity, pro-

viding bounds on the distribution of S̃ ≡ S + W conditional on P̃A ≡ PA + W . Here I also

incorporate the bound provided by secret reserve prices themselves: R ≥ S ⇒ FS(v) ≥ FR(v).

To describe these bounds, let q(v;FS) =
∫
FS(v − w) MS(v,w)∫

MS(v,z)dz
dw, where MS(v, w) ≡ fPA(v −

w)fW (w) is the joint density PA and W . Bounds on FS , which I denote [FLS (v), FUS (v)], are given

by the solution to the following minimization problem:

min
(FLS ,F

U
S )∈Φ

{∣∣∣∣∣Pr(DS = A|P̃A = v)− q
(
v;FLS

) ∣∣∣∣∣
2

+

∣∣∣∣∣Pr(DS 6= Q|P̃A = v)− q
(
v;FUS

) ∣∣∣∣∣
2}

(4)

where | · |2 represents the L2-norm, and the set Φ is the set of feasible pairs of CDFs that can be

bounds on FS ; that is, Φ =
{
FLS ∈ F , FUS ∈ F : FUS (v) ≥ FLS (v) ≥ FR(v) ∀ v ∈ [s, s]

}
, where F is

the set of possible CDFs, as defined in Section 3.4. Appendix C.4 demonstrates that these bounds

are nonparametrically identified.

The objects FLS and FUS , as well as the functions χ−1 and g in steps 5 and 6 below, can be

estimated using a minimum-distance, constrained least squares procedure. I will describe this

approach in slightly more detail in this step and be more brief in my description in steps 5 and 6.

Additional technical details for each of these steps are found in Appendices C.4–C.6. To estimate

the functions FLS and FUS , I first parameterize each as a very flexible piecewise linear spline; I denote

these approximations FLS (·, θS,L) and FUS (·, θS,U ). Denote the fixed vector of spline knots {vSk }
KS
k=1.

I choose KS = 200; as discussed in Appendix C.4, the estimates are not sensitive to this choice. I

estimate the parameter vectors θS,L and θS,U using the following objective function:

min
θS,L,θS,U

KS∑
k=1

{[
P̂r(DS = A|P̃A = vSk )

(∫
M̂S(vSk , z)dz

)
−
∫
FS(vSk − w; θS,L)M̂S(vSk , w)dw

]2

19This result is new to the literature and sheds some light on why many estimated welfare results from order-
statistic-inversion estimates can be insensitive to the choice of P̂r(N = n) used in the inversion, as I find to be the
case in this study.
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+

[
P̂r(DS 6= Q|P̃A = vSk )

(∫
M̂S(vSk , z)dz

)
−
∫
FS(vSk − w; θS,U )M̂S(vSk , w)dw

]2
}

(5)

This approach searches for the lowest and highest possible values of FS that can rationalize the

observed behavior in the data described by the conditional probabilities Pr(DS = A|P̃A = v) and

Pr(DS 6= Q|P̃A = v). I impose several constraints on the minimum distance problem in (5): (i)

FLS lies graphically above FR and graphically below FUS ; (ii) FLS and FUS lie in [0, 1]; (iii) FLS and

FUS are weakly increasing; and (iv) FLS (v) and FUS (v) are equal to 0 for any v < vS1 and equal to

1 for any v > vSKS . These last three constraints ensure that FLS and FUS will correspond to proper

distribution functions. The only constraint of (iv) that binds in practice is that of the left tail of

FUS . My assumption essentially bounds that left tail below by b, as stated in Assumption A9. This

is discussed in more detail in Appendix C.4.

Computing (5) requires first-step estimates of several other objects, including F̂R, f̂PA , and f̂W ,

which come from the maximum likelihood procedure in (2). The procedure also requires the objects

P̂r(DS = A|P̃A = p̃A), and P̂r(DS 6= Q|P̃A = p̃A), which I estimate using local linear regressions.

Step 5) Estimating the Lower Support of Bargaining Types. By Proposition 3, both

b(·) ≡ χ−1(·) and s(·) ≡ ρ−1(·) are increasing functions, and correspond to the lower support of

buyer and seller types who enter the bargaining game. For any function FS(·) lying in the estimated

bounds [F̂LS (·), F̂SU (·)], the function ρ(s) can be constructed as ρ(s) = F−1
R (FS(s)), with FR replaced

with the estimated F̂R from (2). Similarly, ρ−1(r) can be constructed as ρ−1(r) = F−1
S (FR(r)).

To describe the identification and estimation of χ−1(·), let DB
1 = 0 represent the buyer’s decision

to not walk away (and let DB
1 = 1 represent walking away) when informed that the high bid does

not meet the reserve price, which occurs with the following conditional probability:

Pr(DB
1 = 0|P̃A = p̃A, P̃A < R̃) =

∫
1− FB(χ−1(p̃A − w))

1− FB(p̃A − w)

(
Mχ(p̃A, w)∫
Mχ(p̃A, z)dz

)
dw (6)

where Mχ(p̃A, w) ≡ fPA(p̃A−w)(1−FR(p̃A−w))fW (w) is the likelihood of the event (PA = p̃A−
w, P̃A < R̃,W = w). Appendix C.5 demonstrates that χ−1(·) is nonparametrically identified. For

estimation, I approximate hχ(·) ≡ 1−FB(χ−1(·)) as a flexible piecewise linear spline parameterized

by θχ. Like the bounds on seller valuations, these parameters can be estimated using constrained

least squares. I do so by evaluating the left-hand side and right-hand side of (6) on a fixed grid of

points for the auction price p̃A and search for the value of the parameter vector θχ that minimizes

the distance between the left- and right-hand sides. This procedure requires estimates of densities

and CDFs from above, as well an estimate of the conditional probability of not walking away,

Pr(DB
1 = 0|P̃A = p̃A, P̃A < R̃) which I estimate using a local linear regression. Technical details

are found in Appendix C.5.
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Step 6) Estimating the Direct Mechanism Corresponding to Real-World Bargaining.

Proposition 4 demonstrates that the allocation function corresponding to the real-world mechanism

can be written as xRW (r, b; pA) ≡ 1
{
b ≥ g

(
r, pA

)}
for some unknown function g(·). The empirical

object that can be used to identify this function g(·) is the probability of trade conditional on a

realization of R̃ and P̃A. Let A ∈ {0, 1} be a random variable indicating whether or not trade

occurs in a given instance of the game. The conditional probability of trade is given by

Pr(A = 1|R̃ = r̃, P̃A = p̃A) =

∫
1− FB

(
g(r̃ − w, p̃A − w)

)
1− FB (p̃A − w)

(
Mg(r̃, p̃

A, w)∫
Mg(r̃, p̃A, z)dz

)
dw (7)

where Mg(r̃, p̃
A, w) ≡ fR(r̃−w)fPA(p̃A−w)fW (w) is the joint density of (R,PA,W ). Appendix C.6

demonstrates that g(·) is nonparametrically identified. For estimation, I approximate hg(r, pA) ≡
1−FB(g(r,pA)

1−FB(pA)
using a flexible bilinear spline parameterized by θg. As with the estimation of the

seller CDF bounds and the estimation of χ−1(·), I obtain an estimate of θg using constrained least

squares. I do so by evaluating the left-hand side and right-hand side of (7) on a fixed grid of points

and searching for the parameters θg to minimize the distance between the left- and right-hand sides.

As with preceding steps, I estimate the conditional probability Pr(A = 1|R̃ = r̃, P̃A = p̃A) in a

first step; for this two-dimensional conditional probability, I use a tensor product of cubic b-spline

functions. The other objects in (7) consist of densities and CDFs estimated above. Technical details

are found in Appendix C.6.

Summary of Identification. Appendices C.2–C.6 provide nonparametric identification proofs

for each of the objects I estimate. Here I provide a brief summary of the identification. The

step 1 regression controlling for observable heterogeneity identifies the joint distribution of (R̃, P̃A)

(the residuals). This joint distribution identifies the marginal distributions FR, FPA , and FW ,

estimated in step 2. The underlying buyer distribution, FB, estimated in step 3, is identified by

the probability mass function, Pr(N = n), and by the marginal distribution of auction prices, FPA .

Bounds on the distribution of seller valuations, estimated in step 4, are identified by FR, fPA , and

fW , and by the conditional probabilities of sellers accepting and not quitting, Pr(DS = A|P̃A = p̃A)

and Pr(DS 6= Q|P̃A = p̃A). The object χ−1(·), estimated in step 5, is identified by FR, FB,

fP
A

, and fW , and by the conditional probability of buyers not walking away from bargaining,

Pr(DB
1 = 0|P̃A = p̃A, P̃A < R̃). The object ρ−1(·) is identified by FR for any FS lying in the seller

CDF bounds. Finally, the object g(·), estimated in step 6, is identified by FB, fR, fPA , and fW ,

and by the conditional probability of trade, Pr(A = 1|R̃ = r̃, P̃A = p̃A).
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5 Computing Bargaining Efficiency

To evaluate efficiency, I consider several welfare measures and compute these measures for the real-

world bargaining and for ex-ante and ex-post efficient mechanisms. Each welfare measure depends

on the estimated densities, CDFs, and lower support functions (b(·) ≡ χ−1(·) and s(·) ≡ ρ−1(·))
obtained in the estimation steps 2–5 above. Each welfare measure will also depend on an allocation

function, x. As discussed in Section 3.3, the allocation function corresponding to the real-world

bargaining is xRW (estimated in step 6); the ex-post efficient allocation function is x∗(s, b; pA) ≡
1{s ≤ b}; and the ex-ante efficient frontier consists of allocation functions, which I denote xη,

that place welfare weight of η on the seller’s expected utility and 1 − η on the buyer’s. Several

points η along the ex-ante efficient frontier are of particular interest: x1, the allocation function

corresponding to a take-it-or-leave-it offer by the seller; x0, the allocation function corresponding

to a take-it-or-leave-it offer by the buyer; and x
1
2 , the equal-weighted ex-ante efficient mechanism.

In discussing results below I will refer to x
1
2 as the second-best mechanism, x1 as the seller-optimal

mechanism, and x0 as the buyer-optimal mechanism.

The first welfare measure I consider is the overall expected gains from trade. For a given

allocation function x and densities fS and fB, this is given by

∫ b

b

[∫ b

b(pA)

∫ s

s(pA)
(b− s)x(s, b; pA)fS(s|pA)fB(b|pA)ds db

]
fpA(pA)dpA (8)

where fS(s|pA) = fS(s)
1−FS(s(pA))

and fB(b|pA) = fB(b)
1−FB(b(pA))

are the Bayes-updated beliefs of agents

about their opponents’ types when bargaining starts. This welfare measure, along with the others I

consider, is integrated over realizations of the lower bound of the support of buyer and seller types

(i.e. integrated over the realized auction price pA). I also evaluate several other welfare measures

that are related to (8): the buyer’s or seller’s gains from trade (constructed by replacing b − s in

(8) with just b or s) and the probability of trade (constructed by replacing b− s with 1).

The efficiency loss due to incomplete information—the loss highlighted in Myerson and Sat-

terthwaite (1983)—can be estimated by evaluating the gains from trade using (8) for the ex-post

efficient allocation function (i.e. replacing x(s, b; pA) in (8) with x∗(s, b; pA)) and comparing this to

(8) evaluated using the second-best allocation function (x
1
2 ). The efficiency loss due to other sources

beyond those highlighted in Myerson and Satterthwaite (1983) can be estimated by comparing this

second-best efficient outcome to (8) evaluated at the real-world mechanism (xRW ).20

Evaluating the efficiency of bargaining at a given allocation function x is therefore easy once the

densities, CDFs, and lower support of the bargaining types are known; it simply involves numerically

evaluating integrals like (8). Computing the ex-ante efficient allocation functions themselves (xη),

20For the expected gains from trade in the real bargaining, I also incorporate an upper bound on the amount of
bargaining costs incurred in the real-world mechanism (see Appendix C.7.3).
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however, is extremely computationally involved in my setting. This is because it must be done at

each realization of the lower bound of the support (each pA) and because the type distributions

I estimate are irregular, in the sense of Myerson (1981). FB and FS are referred to as regular if

b − 1−FB(b)
fB(b) and s + FS(s)

fS(s) , the virtual valuations of buyers and sellers, are increasing. Myerson

and Satterthwaite (1983) and Williams (1987) derived convenient solutions for the mechanisms

along the ex-ante efficient frontier under the assumption of regularity. Without regularity, I am

forced to numerically enforce a large number of incentive compatibility constraints (see Appendix

C.7). Furthermore, although I have point estimates of FB, I only have bounds on FS , and, without

further theory, obtaining bounds on welfare measures would require evaluating each mechanism

at all possible distributions FS within the estimated bounds. Fortunately, I am able to derive a

number of useful monotonicity results that simplify this computation entirely. These results are

summarized in Table 3 and in the following proposition:

Proposition 6. A first order stochastically dominating change in FS will lead to the monotonic

changes in welfare measures described in Table 3.

Each cell in Table 3 marked with a ↓ signifies that the specified measure will decrease given

a first-order stochastically dominating shift in the distribution of seller valuations (e.g. a shift

from FUS to FSL ). Each cell marked with an asterisk indicates that I have no proven monotonicity

result for that welfare measure. For these latter welfare measures, I am forced to obtain bounds

numerically through a massive grid search. This still yields valid bounds on welfare, but is very

computationally expensive.21 Appendix C.7 contains technical details on this numerical procedure

and the procedure for computing the ex-ante efficient allocation functions, xη, which builds on

results from Myerson and Satterthwaite (1983) and Williams (1987).

6 Putting It All Together: How Efficient Is Bargaining?

6.1 Distribution Estimates

This section presents the distributions of buyer and seller valuations estimated using the procedures

described in Section 4. In each figure that follows, monetary values are denoted in units of $1,000.

In Figure 1, panels A and B display, for the dealers and fleet/lease samples respectively, the

distribution of the auction price net of unobserved heterogeneity, FPA (the dashed line), and the

estimated underlying distribution of buyer valuations, FB. The distribution of auction prices does

not entirely dominate that of the underlying buyer valuations in a first order stochastic dominance

21To give a rough idea of the computational burden, even with the techniques I introduce here to reduce this
burden, it takes about one year of computation time for a single machine to compute all of the estimates and
confidence intervals reported in the paper. I parallelize these computations on a high-performance computing cluster
to reduce this time to less than one week.
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sense. This is due to the distribution of the number of bidders, Pr(N = n), having much of its

mass at two or three bidders.

Panels C and D of Figure 1 show the distribution of secret reserve prices net of unobserved

heterogeneity, FR (the dashed line), and the estimated upper and lower bounds on the distribution

of seller valuations, FLS and FUS , in solid lines. These bounds suggest that, for dealer cars (panel

C), when the first bargaining offer (the auction price) is about -$1,000 (i.e. $1,000 lower than

would be predicted based on car-level heterogeneity), sellers choose to accept this offer or walk

away from it with frequencies that imply that the probability that S is less than -$1,000 is in the

range [0.56, 0.80]. For the fleet/lease sample (panel D) the corresponding probability inferred from

sellers accepting or walking away from an offer of this same magnitude is in the range [0.61, 0.80].

Comparing the top panels of Figure 1 to the bottom panels, it is clear that there is overlap

in the support of buyer valuations and seller valuations. This feature illustrates what is referred

to in the theoretical bargaining literature as the “no gap” case (i.e. there is no gap between

the upper bound of the support of seller valuations and the lower bound of the support of buyer

valuations, and hence there is uncertainty as to whether gains from trade actually exist), and is

the case motivating Myerson and Satterthwaite (1983) (see Fudenberg and Tirole 1991). However,

the actual overlap in terms of mass appears to be small, as most seller values (at least 80% in

each sample) lie below zero—in some cases, far below zero—while buyer values are centered about

zero and are much less dispersed. This implies that the actual efficiency loss due to incomplete

information may be small in this setting. A more precise quantitative analysis of the overlap in

buyer and seller mass will be discussed below, taking into account the support of the types who

actually end up in the bargaining game.

6.2 Graphical Analysis of Bargaining Efficiency

Using the approach described in Section 5, I compute buyer gains and seller gains in the real-world

bargaining mechanism as well as the ex-post and ex-ante efficient frontiers. The performance of

the real-world bargaining relative to these theoretical frontiers is displayed in Figure 2. In panels

A–D, the dashed line displays the ex-post efficient frontier in the space of buyer gains (the vertical

axis) and seller gains (the horizontal axis). The solid line displays the ex-ante efficient frontier.

The solid dot indicates the expected gains in the real-world mechanism. Panels A and B use the

seller CDF lower bound and panels C and D use the upper bound.

Comparing the ex-ante efficient frontier to the ex-post efficient frontier provides an indication

of the size of efficiency loss due strictly to incomplete information. In each case in Figure 2,

the ex-ante efficient frontier lies close to the ex-post efficient frontier. This suggests that, in this

market, incomplete information per se may not be leading to large inefficiencies, likely due to the

limited overlap in buyer and seller distributions suggested by Figure 1. Comparing the real-world
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bargaining outcome to the ex-ante efficient frontier, on the other hand, provides an indication of

the size of efficiency loss due to the fact that the mechanism used in practice (alternating-offer

bargaining) or its equilibrium may be inefficient. Panels A and B demonstrate that the real-world

mechanism lies not far from the ex-ante efficient frontier when evaluated at the seller valuation CDF

lower bound, but panels C and D demonstrate a clear shortfall in the efficiency of the real-world

mechanism when evaluated at the seller valuation CDF upper bound, where the outcome lies in

the interior of the ex-ante efficient frontier.

Panels E and F of Figure 2 display the probability of trade along the ex-ante efficient frontier

evaluated at the seller valuation CDF upper and lower bounds. Each point on the horizontal axis

represents the weight η ∈ [0, 1] given to the seller’s valuation in evaluating ex-ante efficiency. The

dashed line represents the probability of trade in the real bargaining (conditional on bargaining

occurring). These figures demonstrate that the probability of trade is higher when η is closer to

0.5, and decreases slightly as η approaches 1. The probability of trade decreases dramatically as

the seller’s welfare weight goes to 0, and in this range of η the real-world bargaining outperforms

the ex-ante efficient mechanisms in terms of the probability of trade.

6.3 Quantitative Analysis of Bargaining Efficiency

The graphical analysis in the preceding section does not capture bounds on the difference in wel-

fare between the different mechanisms; it only evaluates these mechanisms at the upper and lower

bounds on seller valuations. This section presents a quantitative analysis of the bounds on welfare

measures and the bounds on differences in welfare described in Section 5. Tables 4 and 5 contain

numerical values for each of these bounds. Panel A displays the expected gains from trade, buyer

and seller gains, and probability of trade for the ex-post efficient mechanism, the second-best mech-

anism, the buyer-optimal mechanism, the seller-optimal mechanism, and the real-world bargaining.

Panel B displays the expected gains and probability of trade for the difference between ex-post ef-

ficiency and the second-best, the second-best and the real-world mechanism, and ex-post efficiency

and the real-world mechanism. Gains are reported in units of $1,000. I do not include the auction

house revenue in the total expected gains from trade in these tables, but I do in my analysis of

auction house fees in Appendix D. Tables 4 displays results using the dealers sample and Table 5

displays results using the fleet/lease sample. The estimated bounds are reported in square brackets

and confidence sets are in parentheses. These confidence sets are constructed using a nonpara-

metric bootstrap of the full estimation procedure (steps 1–6) and the counterfactual computations,

thus accounting for uncertainty in the estimation procedure and counterfactuals. Appendix C.8

describes the confidence sets and proves that they are conservative.

Efficiency and Trade Volume in Dealer Sales. I begin by discussing the estimates in panel

A of Table 4. The first column demonstrates that, in a full-information world, where ex-post
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efficiency would be achievable, the gain from trade for the bargaining game would lie in a range

$2,442–5,045. Taking the lower bound ($2,442) for illustrative purposes, this number suggests that

(for example) if a car sells for $7,000, the seller might have been willing to sell the car for as low as

$5,558 and the buyer willing to buy the car for as much as $8,000 (because 8, 000−5, 558 = 2, 442).

The probability of trade under ex-post efficiency mechanism ranges from 0.818–0.871. This latter

quantity (or rather, one minus this quantity) serves as a direct measure of the amount (in mass)

of overlap between the buyer and seller valuations.

The second column of panel A displays the second-best mechanism—the direct revelation mech-

anism maximizing the equally weighted expected gains subject to information constraints. I find

that the range of surplus for this mechanism is only slightly below that of ex-post efficiency, sug-

gesting that there is very little loss due solely to incomplete information in this setting. Moving

to panel B of Table 4, the results in the first column confirm this finding, where I display bounds

on the difference between the ex-post and second-best gains from trade and probability of trade.

These bounds indicate that the second-best gains from trade fall below ex-post efficiency by $9–59.

Interestingly, however, the probability of trade in the second-best mechanism can be substantially

lower than under ex-post efficiency (a lower bound of 0.699 as opposed to 0.818 in panel A, and an

upper bound on the ex-post efficient probability of trade minus the second-best of 0.128 in panel

B). Thus the second-best mechanism can miss out on trades that would be ex-post efficient (i.e.

cases where the buyer values the car more than the seller), but these missed trades appear to be

cases where the difference in valuations is small, and hence the surplus level is still close to ex-post

efficient.

The final column of panel A indicates that the expected gains from trade in the real-world

mechanism range from $1,993 to $3,933, with the buyer’s expected gains lying in $822–845 and the

seller’s lying in $1,171–3,088. Relative to the real-world bargaining outcomes, column 3 of panel

B indicates that ex-post efficiency would entail an increase in expected surplus of $422–1,139 per

bargaining transaction. This surplus lost in the real bargaining represents 17–23% of the ex-post

efficient surplus. This lost surplus is a deadweight loss, uncaptured by either party (or by the

auction house).

Efficient bargaining would also yield a higher conversion rate. Table 4 shows that the probability

of trade in the real-world bargaining is 0.646, meaning trade fails 0.354 of the time. The final

column of Panel B demonstrates that probability of trade would increase by 0.172–0.225 under

ex-post efficiency. This implies that 17.2–22.5% of negotiating pairs consist of cases where the

buyer values the car more than the seller but trade fails. Comparing this to the overall failure rate

(35.4%) suggests that approximately half (48.5–63.6%) of failed negotiations are cases where gains

from trade do exist but fail to be realized.

Panel B of Table 4 also demonstrates that the probability of trade would increase by up to 0.182

when moving from real-world bargaining to the second-best mechanism. Note that the lower bound
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on the improvement in the probability of trade is much lower in the second-best mechanism (0.052),

implying that I cannot reject the possibility that the real bargaining achieves only a slightly lower

trade volume than the second-best mechanism. This again highlights the feature that the second-

best mechanism would guarantee an increase in expected surplus relative to the real bargaining

by capturing higher-value trades, not necessarily a higher volume of trade. However, industry

participants suggest that it is high conversion—a high probability of trade—that is the primary

goal of wholesale auto auction houses (see Treece 2013; Lacetera, Larsen, Pope, and Sydnor 2016),

and thus the real-world mechanism may be achieving this goal relatively well.

Efficiency and Trade Volume in Fleet/lease Sales. The findings for the fleet/lease sample are

shown in Table 5 and display similar patterns. As in the dealers sample, the second-best mechanism

achieves a surplus level that is similar to ex-post efficiency in panel A, and panel B indicates that

an upper bound on the gap between second-best and ex-post efficient gains from trade is $77. The

real-world bargaining falls short of the ex-post efficient gains by $289–864, a deadweight loss of

about 12–20% of the ex-post efficient surplus. Panel A indicates that the probability of trade in

the second-best mechanism is strictly lower than under ex-post efficiency, although still higher than

in the real-world bargaining. This is confirmed in panel B, where the gap in probability of trade

between the second-best and real-world bargaining ranges from 0.045–0.174, but between ex-post

efficiency and real-bargaining the gap ranges from 0.199–0.235. Trade in the bargaining stage of the

game occurs with probability 0.658 in the fleet/lease sample; the 0.199–0.235 improvement under

ex-post efficiency shown in panel B suggests that 58.2–68.7% of failed trades are cases where the

buyer values the car more than the seller but trade fails to occur.

The estimated probabilities of trade for the real bargaining (0.646 in Table 4 and 0.658 in Table

5) come from integrating the estimated allocation function xRW (ρ(S), B;PA) over all three of its

arguments, as described in Section 5. The corresponding raw probability of trade in the data for

the bargaining stage can be calculated by combining periods 2 and higher from Table 2 (and from

Appendix Table A4). For the dealers sample this number is 0.684 and for the fleet/lease sample

this number is 0.656, each of which is close to the estimated probability of trade from Tables 4–5

for the real bargaining. This comparison is one indication of the good fit of the overall estimation

exercise; other measures are discussed in Appendix C, where I show that the integrated absolute

error for each estimation step is small.

Overall, the results are quite similar in the dealers and fleet/lease samples. This suggests

that, while the observable characteristics of these cars differ (as shown in Table 1), the residual

variation after controlling for these observables—and the players’ behavior in the game—does not

differ drastically between the two samples. As discussed at the end of Section 4, identification of

the key objects of the paper relies on several key objects in the data: the joint distribution of

(R̃, P̃A), Pr(N = n), and several conditional probability statements. Appendix Figures A3 and A5
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display estimates of many of these objects for the two samples, illustrating that these drivers of

identification do not differ much between the two samples.

Buyer-Optimal and Seller-Optimal Mechanisms. The third and fourth columns of panel

A in Tables 4–5 display bounds on welfare outcomes under the buyer-optimal and seller-optimal

mechanisms. These mechanisms also lie along the ex-ante efficient frontier, but place all of the

welfare weight on one party or the other. One interesting feature of these mechanisms is that they

are easy to implement; they simply require letting one party make a take-it-or-leave-it offer to the

opposing party.

I find in Table 4 that the buyer-optimal mechanism would yield a much higher payoff for

the buyer ($1,416–3,962) and much lower payoff for the seller ($360–370) than under the current

mechanism. The probability of trade, however has the potential to drop as low as 0.266 under the

buyer-optimal mechanism (with an upper bound of 0.609). Some of these changes are due to the

fact that in this buyer-optimal bargaining the buyer is no longer forced to treat the auction price

as a lower bound on the available bargaining prices.

The seller-optimal mechanism would potentially yield improvements for the seller, with the

seller’s expected gains from trade lying in a range from $1,870–4,349, and the buyer’s gains in this

mechanism dropping to $474–649. The probability of trade under the seller-optimal mechanism

can be as low as 0.634, not nearly as low as in the buyer-optimal mechanism, and close to that of

the real-world bargaining. The bounds on the total expected gains from trade in the seller-optimal

mechanism are similar to those in the second-best mechanism ($2,344–4,999). Table 5 displays

similar results for the fleet/lease sample. Comparing the seller-optimal and real bargaining columns

suggests that the probability of trade in the fleet/lease sample would potentially be lower under

the seller-optimal mechanism ([0.592, .747]) than under the real-world mechanism (0.658).

This highlights an interesting distinction between a secret reserve price and a public reserve

price. In an independent private values environment, a public reserve auction is equivalent to

an auction followed by the seller-optimal bargaining mechanism (Menezes and Ryan 2005) and is

optimal for the seller in most standard auction environments. A secret reserve auction, however,

may be preferred by the intermediating platform—in this case, the auction house—because it may

yield a higher probability of trade. In particular, if industry fees are such that the auction house is

only paid when trade occurs, as is the case in the wholesale auto industry, then an auction house

would prefer to maximize trade volume rather than seller revenue. The combination of secret reserve

prices and bargaining in this setting (and potentially in other settings as well) may therefore be

motivated by a goal to maximize the volume of trade rather than seller revenue (a related point is

made in Elyakime, Laffont, Loisel, and Vuong 1994). Appendix B.6 contains further discussion of

secret vs. public reserve prices.
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6.4 Bargaining Between a Random Buyer and Seller

I now analyze the estimated expected gains from trade in a setting where bargaining takes place

between the seller and a random buyer rather than the high-value bidder. Note that this alters

the support of the types in the bargaining game for both the buyer and the seller, and this shifts

not only the outcomes achieved in the real-world bargaining, but also the ex-ante and ex-post

efficient frontiers. The allocation function for the real-world bargaining in this setting is possible

to simulate by evaluating the estimated g(r, pA) function at a very small realized value of pA (I

choose the 0.001 quantile). At this small realization, the valuation of the buyer who bargains

approximately represents a draw from the full support of buyer valuations, [b, b] rather than from

the truncated support used in the main analysis above, [b(pA), b]. Similarly, the valuation of the

seller who bargains is a draw from the full support of seller valuations, [s, s] rather than from

[s(pA), s].

Table 6 displays the results. In the dealers sample, the range for the gains from trade under

ex-post efficiency is slightly tighter than in the main results in Table 4, and the estimated bounds

on the gains in the real-world bargaining lie closer to zero than in the main results. The overall loss

in efficiency between the real bargaining and ex-post efficiency is $976–2,204 in the dealers sample,

which corresponds to a loss of 39–45% of the ex-post efficient surplus. This loss is much larger than

the percentage loss in the main results in Table 4, suggesting that bargaining between a random

buyer and seller is more inefficient than bargaining between the high bidder and the seller. For the

fleet/lease sample, the overall efficiency loss of the real bargaining is $1,525–2,765, corresponding

to a percentage loss of about 49–56% of the ex-post efficient surplus, a range in losses that is much

larger than in the main results in Table 5. The results of this exercise suggest that the presence

of the auction (through its roles of truncating the support of the types who arrive at bargaining

and constraining from below the level of the final offer) does indeed improve the efficiency of the

bargaining. The main findings of the paper still hold in this analysis: the real-world bargaining is

inefficient, and nearly all of this inefficiency is due to factors other than the information constraints

highlighted in Myerson and Satterthwaite (1983), as the second-best mechanism yields outcomes

that are nearly ex-post efficient.

7 Discussion and Conclusion

The finding of this paper that the ex-ante and ex-post efficient frontiers are close to one another in

this market stands in stark contrast to the result in the most popularly studied theory example of

bilateral bargaining, that of symmetric uniform values (where both buyer and seller valuations are

uniformly distributed on the interval [0, 1]; see, for example, Chatterjee and Samuelson 1983 and

Myerson and Satterthwaite 1983). This case is known to yield a gap between the ex-post efficient
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and second-best probability of trade. The large gap in this special case, however, may have little

bearing on the gap to be expected in real-world settings, where the features of the distribution

and the extent of asymmetries may diverge far from uniformity and symmetry. Also, as the results

above highlight, even in situations where some efficient trades fail to occur, many of these failed

trades may be cases where only very small gains from trade exist (i.e. where the buyer’s value is

very close to the seller’s), and thus the loss in efficiency due to information constraints need not be

large.

Overall, it is not obvious whether the results of this paper should be interpreted as implying

that the real-world bargaining in this market is relatively efficient or relatively inefficient compared

to other markets, particularly given that there are no existing empirical studies of bargaining with

two-sided uncertainty to which these results may be compared. Estimating a structural model

of one-sided uncertainty, Ambrus, Chaney, and Salitsky (2018) found an efficiency loss of 14% in

studying ransom negotiations, and the losses I find are similar to these (17–23% for dealer cars

and 12–20% for fleet/lease cars). Several papers in the experimental literature can also provide

an interesting comparison. Bazerman, Gibbons, Thompson, and Valley (1998) argued that real-

world bargaining can potentially yield more efficient outcomes than the theoretical ex-ante efficient

frontier due to non-traditional utility functions (where one player’s utility nests the other’s), limits

on players’ abilities to mimic other types, and other features of bounded rationality; and Valley,

Thompson, Gibbons, and Bazerman (2002) found evidence in lab experiments that communication

between players can allow them to outperform the ex-ante efficient frontier. In light of these

arguments, the bargaining at wholesale auto auctions might be seen as relatively inefficient given

that it falls short of that frontier at all.22

As discussed in the introduction, a gap between the outcome of actual bargaining and the ex-

ante efficient frontier can occur for a number of reasons. First, real-world bargaining mechanisms

can have multiple equilibria, many of which may be inefficient (see Ausubel and Deneckere 1993),

and the actions I observe in the data may correspond to one of these inefficient equilibria. Second,

it may be that this particular bargaining protocol, even in its most efficient equilibria, falls short

of the frontier.23 Third, it may be the case that a gap exists because of a Wilson-doctrine-like

argument: ex-ante efficient mechanisms can be unwieldy to implement in practice (in particular

when η ∈ (0, 1)). These mechanisms require that players and the mechanism designer all have

22Importantly, nothing in my estimation procedure forced the real-world outcome to lie within the ex-ante efficient
frontier; this is a finding implied by my estimates, not a constraint placed on the model.

23Ausubel and Deneckere (1993) explain this potential efficiency loss as follows: “In [the second-best mechanism],
each player reveals his private information before hearing his opponent’s report. By way of contrast, in sequential
bargaining, the player who reveals second may be less apt to report truthfully than if he were still ignorant of his
opponent’s report. To the extent that information revelation is inhibited, this might further contribute to waste.”
Ausubel and Deneckere (1993) demonstrated that this efficiency loss need not occur in sequential bargaining with one-
sided incomplete information when the valuation distribution has a monotone hazard rate (unlike the distributions I
estimate). Ausubel, Cramton, and Deneckere (2002) argued that these results may be extended to alternating-offer
games, but no general exposition exists.
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knowledge of buyer and seller distributions, and furthermore that the players comprehend that it

is indeed incentive compatible for them to truthfully reveal their valuations. The implementation

of alternating-offer bargaining, on the other hand, does not require such assumptions and the

rules can be easily explained to both the players and the market designer, unlike the black box

that theoretical mechanisms may appear to be from a player’s perspective. It may indeed be

the case, as hypothesized by Wilson (1986) and Ausubel and Deneckere (1993), that “[real-world

bargaining mechanisms] survive because they employ trading rules that are efficient for a wide class

of environments.”24

Actual quantitative estimates of real-world bargaining efficiency from other studies will be a

welcome addition to the literature in the future for comparison to the estimates in this paper. A

fruitful avenue for future empirical research would be to apply the bounding methodology developed

in this paper to study the efficiency of bargaining in other settings, potentially exploiting more

fully all of the offers observed in alternating-offer bargaining data—a form of data that is becoming

increasingly available (e.g. Merlo and Ortalo-Magne 2004; Keniston 2011; Bagwell, Staiger, and

Yurukoglu 2017; Backus, Blake, Larsen, and Tadelis 2018; Hernandez-Arenaz and Iriberri 2018).

My consistent finding is that the ex-ante and ex-post efficient frontiers lie close together in this

market, while the real-world bargaining falls short of the ex-ante efficient frontier. This suggests

that efficiency loss in this market may not be due to incomplete information alone, but to the other

aspects of the real-world bargaining described above. It is important to note, however, that these

other aspects all have roots in incomplete information; if players were to have complete information,

many of these other barriers to efficiency might also disappear.

24An interesting avenue for future theory research would be to apply recent robust mechanism design techniques
(surveyed in Carroll 2018) to the analysis of alternating-offer bargaining to determine whether there is a designer’s
objective function or information structure under which alternating-offer bargaining is preferable to other mechanisms
for bilateral trade.
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Figure 1: Distribution Estimates

(A) Buyer Values, Dealers (B) Buyer Values, Fleet/lease

(C) Seller Values, Dealers (D) Seller Values, Fleet/lease

Notes: Panels A and B display estimated distribution of auctions prices (dashed line) after removing observable and
unobservable game-level heterogeneity, and estimated distribution of buyer valuations (solid line). Panels C and D display
estimated distribution of reserve prices (dashed line) after removing observable and unobservable game-level heterogeneity,
and estimated lower and upper bounds on distribution of seller valuations (solid lines). Panels on left use dealers sample and
on right use fleet/lease sample. Units = $1, 000.
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Figure 2: Graphical Evaluation of Bargaining Efficiency

(A) Dealers, Gains Using Seller Lower Bound (B) Fleet/lease, Gains Using Seller Lower Bound

(C) Dealers, Gains Using Seller Upper Bound (D) Fleet/lease, Gains Using Seller Upper Bound

(E) Dealers, Prob of Trade (F) Fleet/lease, Prob of Trade

Notes: Panels A and B display estimated expected seller and buyer gains on ex-post efficient frontier (dashed line), on ex-ante
efficient frontier (solid line), and in real-world bargaining (solid dot) using the seller distribution lower bound. Panels C and D
display the same estimates at the seller distribution upper bound. Panels E and F display, in solid lines, the estimated
probability of trade at each η (seller’s welfare weight) along the ex-ante efficient frontier evaluated at the seller valuation
distribution upper and lower bounds. The dashed line in panels E and F displays the probability of trade in the real-world
mechanism for comparison. Panels on left use dealers sample and on right use fleet/lease sample. Units = $1, 000.



Table 1: Descriptive Statistics

Dealers Fleet/lease

A. Full Sample Mean S.D. Mean S.D.

Trade 0.705 0.456 0.768 0.422

Reserve price $7,405 $5,196 $10,307 $5,789

Auction price $6,253 $4,881 $9,804 $5,857

Auction price if ≥ reserve $6,197 $4,700 $11,063 $6,139

Auction price if < reserve $6,258 $4,899 $9,160 $5,600

Number of periods 2.096 0.681 1.774 0.690

Blue book $6,820 $4,828 $10,951 $6,144

Age (years) 6.769 3.369 3.178 2.552

Odometer (miles) 97,938 46,445 57,481 40,389

Sample size 133,523 131,443

B. Bid Log Sample Mean S.D. Mean S.D.

Number bidders lower bound 2.924 0.340 2.973 0.443

Sample size 13,150 102,172

Notes: Mean and standard deviation of variables in dealers and fleet/lease samples. Trade is an indicator for whether trade
occurred between the buyer and seller. Number of periods is 1 if game ends through auction price exceeding reserve price or
through buyer opting out of bargaining, 2 if seller accepts at her first bargaining turn, etc. Blue book is an estimate of the
market value of the car, provided by the auction house. Panel A displays full sample and panel B displays subsample
containing bid log records.
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Table 2: Outcomes of Game By Period: Dealers Sample

Full Sample Conditional on Sale

Ending

period

Player’s

turn

#

Obs

% of

Sample

%

Trade

Reserve

price

Auction

price

Reserve

price

Auction

price

Final

price

1 (Auction) 14,232 10.659% 88.58% $5,818 $6,050 $5,704 $6,197 $6,197

($4,688) ($4,696) ($4,626) ($4,700) ($4,700)

2 S 99,708 74.675% 77.28% $7,632 $6,379 $7,132 $6,003 $6,003

($5,245) ($4,936) ($4,922) ($4,651) ($4,651)

3 B 14,644 10.967% 11.81% $7,192 $5,502 $7,725 $6,508 $6,912

($5,041) ($4,598) ($5,222) ($4,968) ($5,054)

4 S 2,916 2.184% 65.47% $7,828 $6,369 $7,678 $6,359 $6,608

($5,168) ($4,833) ($5,022) ($4,733) ($4,798)

5 B 1,667 1.248% 38.15% $8,267 $6,680 $8,640 $7,174 $7,792

($5,283) ($4,933) ($5,469) ($5,173) ($5,317)

6 S 190 0.142% 75.79% $8,655 $7,068 $8,995 $7,456 $7,965

($5,286) ($4,988) ($5,460) ($5,171) ($5,298)

7 B 139 0.104% 54.68% $8,459 $6,829 $8,865 $7,339 $8,029

($5,260) ($4,963) ($5,394) ($5,153) ($5,315)

8 S 20 0.015% 70.00% $8,935 $7,575 $9,446 $8,157 $8,725

($4,933) ($4,888) ($5,669) ($5,614) ($5,692)

9 B 6 0.004% 66.67% $7,583 $6,225 $6,675 $5,188 $5,838

($4,362) ($4,517) ($2,871) ($2,964) ($2,800)

10 S 1 0.001% 100.00%$14,500 $11,000 $14,500 $11,000 $13,600

.

Notes: Dealers sample. For each period (period 1 = auction, period 2 = seller’s first turn in bargaining, period 3 = buyer’s
turn, etc.), table reports the number of observations ending in that period, percent of total sample ending in that period, and
percent of cases in which trade occurred. Table also reports reserve price and auction price for observations ending in a given
period and, for those observations ending in trade, the reserve price, auction price, and final price conditional on trade.
Corresponding statistics for the fleet/lease sample are found in Table A4.
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Table 3: Monotonicity Results for Welfare Measures

A. Levels Ex-post Second-best
Buyer-
optimal

Seller-
optimal

Real
bargaining

Expected gains ↓ ↓ – – ↓
from trade

Buyer gains – ↓ – ↓

Seller gains – – ↓ ↓

Probability of ↓ * * ↓ ↓
trade

B. Differences
Ex-post minus

second-best
Second-best minus

real
Ex-post minus real

Expected gains * ↓ ↓
from trade

Probability of * * ↓
trade

Notes: Table displays monotonicity results for welfare measures proved in Proposition 6. Each cell marked with a ↓ signifies
that the specified measure will decrease given a first-order stochastically dominating shift in FS . Each cell marked with an
asterisk indicates that there is no mathematical proof of a monotonicity result and that the bounds must be determined
numerically. Cases marked with “–” in the second-best column indicate that I will report bounds on these quantities
corresponding to the FS leading to the maximum and minimum bounds on the total expected gains from trade. Cases marked
with “–” in the buyer-optimal column indicate that I will report bounds on these quantities corresponding to the FS leading
to the maximum and minimum bounds on the buyer gains from trade. Cases marked with “–” in the seller-optimal column
indicate that I will report bounds on these quantities corresponding to the FS leading to the maximum and minimum bounds
on the seller gains from trade.
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Table 4: Bounds on Welfare Measures, Dealers Sample

A. Levels Ex-post Second-best
Buyer-

optimal

Seller-

optimal

Real

bargaining

Expected gains [2.442, 5.045] [2.397, 5.029] [1.776, 4.332] [2.344, 4.999] [1.993, 3.933]

from trade (2.184, 5.247) (2.149, 5.227) (1.473, 4.492) (2.096, 5.207) (1.812, 4.085)

Buyer gains [0.553, 0.701] [1.416, 3.962] [0.474, 0.649] [0.822, 0.845]

(0.521, 0.733) (1.159, 4.102) (0.457, 0.662) (0.779, 0.913)

Seller gains [1.844, 4.328] [0.360, 0.370] [1.870, 4.349] [1.171, 3.088]

(1.578, 4.519) (0.190, 0.441) (1.612, 4.561) (0.947, 3.202)

Probability of [0.818, 0.871] [0.699, 0.828] [0.266, 0.609] [0.634, 0.801] [0.646, 0.646]

trade (0.806, 0.894) (0.672, 0.857) (0.250, 0.637) (0.627, 0.811) (0.638, 0.672)

B. Differences
Ex-post minus

second-best

Second-best minus

real
Ex-post minus real

Expected gains [0.009, 0.059] [0.377, 1.123] [0.422, 1.139]

from trade (0.004, 0.066) (0.318, 1.202) (0.355, 1.219)

Probability of [0.034, 0.128] [0.052, 0.182] [0.172, 0.225]

trade (0.015, 0.142) (0.026, 0.194) (0.159, 0.236)

Notes: Dealers sample. Bounds on welfare measures under ex-post efficient, second-best, buyer-optimal, and seller-optimal
mechanisms compared to real-world mechanism. Panel A displays levels and panel B displays differences. Estimated bounds
are in square braces and 95% confidence set is in parentheses. Gains are in $1,000 units.
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Table 5: Bounds on Welfare Measures, Fleet/lease Sample

A. Levels Ex-post Second-best
Buyer-

optimal

Seller-

optimal

Real

bargaining

Expected gains [2.408, 4.195] [2.342, 4.165] [1.762, 3.503] [2.223, 4.088] [2.080, 3.370]

from trade (2.168, 4.363) (2.102, 4.337) (1.682, 3.783) (1.992, 4.253) (1.843, 3.466)

Buyer gains [0.867, 1.039] [1.439, 2.953] [0.664, 0.880] [1.158, 1.192]

(0.797, 1.058) (1.278, 3.080) (0.628, 0.888) (1.073, 1.219)

Seller gains [1.475, 3.126] [0.323, 0.550] [1.558, 3.208] [0.922, 2.178]

(1.281, 3.298) (0.311, 0.720) (1.350, 3.367) (0.754, 2.302)

Probability of [0.857, 0.893] [0.703, 0.832] [0.377, 0.660] [0.589, 0.747] [0.658, 0.658]

trade (0.847, 0.898) (0.694, 0.840) (0.364, 0.678) (0.551, 0.752) (0.653, 0.677)

B. Differences
Ex-post minus

second-best

Second-best minus

real
Ex-post minus real

Expected gains [0.009, 0.077] [0.223, 0.834] [0.289, 0.864]

from trade (0.007, 0.082) (0.195, 0.955) (0.260, 0.985)

Probability of [0.042, 0.155] [0.045, 0.174] [0.199, 0.235]

trade (0.035, 0.157) (0.029, 0.179) (0.177, 0.238)

Notes: Fleet/lease sample. Bounds on welfare measures under ex-post efficient, second-best, buyer-optimal, and seller-optimal
mechanisms compared to real-world mechanism. Panel A displays levels and panel B displays differences. Estimated bounds
are in square braces and 95% confidence set is in parentheses. Gains are in $1,000 units.
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Table 6: Expected Gains From Trade in Bargaining Between a Random Buyer and Seller

Ex-post Second-best
Real

bargaining

Ex-post

minus real

Dealers Sample [2.515, 4.888] [2.423, 4.837] [1.539, 2.684] [0.976, 2.204]

(2.113, 5.049) (2.026, 4.991) (1.189, 2.867) (0.787, 2.675)

Fleet/lease Sample [3.095, 4.971] [2.972, 4.900] [1.571, 2.207] [1.525, 2.765]

(2.926, 5.192) (2.796, 5.144) (1.464, 2.586) (1.233, 2.995)

Notes: Bounds on expected gains from trade in ex-post efficient, second-best, real-world bargaining, as well as the gap
between ex-post efficient and real-world bargaining, when a random buyer (rather than the high bidder) bargains with a
seller. As explained in Section 6.4, this setting is computed by setting the auction price to a low quantile of the auction price
distribution. Units are $1,000. Estimated bounds are in square braces and 95% confidence set is in parentheses.
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A Proofs

Before providing the proofs corresponding to results in the main text, I first introduce some addi-

tional notation and state some preliminary lemmas. Let Ht ≡ {Pτ}t−1
τ=1 represent the set of offers

made from period 1 up through period t − 1 of the bargaining game. The player whose turn it is

at time t has not yet made an offer and so this offer does not enter into Ht. Let DS
t ∈ {A,Q,C}

represent the seller’s decision in period t, and let DB
t+1 ∈ {A,Q,C} represent the buyer’s decision

in period t+ 1.

The seller’s payoff at period t of the bargaining game is given by the following. Conditional on

a realization of the history Ht = ht, which includes the buyer’s most recent offer (pBt−1), a seller of

type S = s, chooses to accept (A), quit (Q), or counter (C), yielding the following payoffs:

A : pBt−1

Q : s

C : V S
t (s|ht)

= max
p

{
pPr

(
DB
t+1 = A|{ht+1, p}

)
+ sPr

(
DB
t+1 = Q|{ht+1, p}

)
− cS

+ Pr
(
DB
t+1 = C|{ht+1, p}

)
EPBt+1

[
max

{
PBt+1, s, V

S
t+2

(
s|{ht+1, p, P

B
t+1}

)} ∣∣∣∣∣{ht+1, p}, DB
t+1 = C

]}

where p is the counteroffer chosen by the seller. The seller’s counteroffer payoff takes into account

that the buyer may either accept, quit, or return a counteroffer. In the latter case, the seller receives

her expected payoff from being faced with the decision in period t+ 2 to accept, quit, or counter.

The buyer’s payoff at period t + 1 of the bargaining game is defined similarly, with the buyer

receiving b − p if he accepts a price p, 0 if he quits, and an expected counteroffer payoff if he

counters. Conditional on a realization of the history Ht+1 = ht+1, which includes the seller’s most

recent offer (pSt ), a buyer of type B = b chooses to accept (A), quit (Q), or counter (C), yielding

the following payoffs:

A : b− pSt
Q : 0

C : V B
t+1 (b|ht+1)

= max
p

{
(b− p) Pr

(
DS
t+2 = A|{ht+1, p}

)
− cB

+ Pr
(
DS
t+2 = C|{ht+1, p}

)
EPSt+2

[
max

{
b− PSt+2, 0, V

B
t+3

(
b|{ht+1, p, P

S
t+2}

)} ∣∣∣∣∣{ht+1, p}, DS
t+2 = C

]}
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where p is the counteroffer chosen by the buyer. The buyer’s outside option is normalized to zero.

The expected payoff of a buyer of type B = b in the bargaining subgame, conditional on winning

the auction and conditional on entering bargaining when the auction price is pA, is given by

πB(pA, b) = (b− pA) Pr
(
DS

2 = A|pA
)

+ Pr
(
DS

2 = C|pA
)
EPS2

[
max

{
b− PS2 , 0, V B

3

(
b|{pA, PS2 }

)} ∣∣∣∣∣pA, DS
2 = C

]
− cB

This expression is the payoff to the buyer from stating the auction price as a counteroffer, which is

how the bargaining game begins.

Lemma 1. If Assumptions A1–A3 are satisfied, then for any finite T and any realized histories

ht and ht+1, V S
t (s|ht) is weakly increasing in s and V B

t+1 (b|ht+1) is weakly increasing in b for all

t ≤ T .

Proof. The proof proceeds by induction on the number of periods remaining. I prove the result in

the case where the buyer moves last; analogous reasoning proves that the result also holds if the

seller moves last. Suppose there are T total periods in the game and there is currently one period

remaining: it is the seller’s turn and after her turn the buyer will only be allowed to accept or quit.

At a given realization of HT−1 = hT−1, the seller’s payoff from countering at a price of p is then

UST (s, p|hT−1) ≡ pPr(DB
T = A|{hT−1, p}) + s(1− Pr(DB

T = A|{hT−1, p}))− cS

Let p∗(s|hT−1) ∈ arg maxp U
S
T (s, p|hT−1). That is, V S

T−1(s|hT−1) = UST−1(s, p∗(s|hT−1)|hT−1).

Now let VT−1(s, s′|hT−1) represent the payoff to the seller of type s who mimics type s′ < s

(note that the ability of a seller—or buyer—to mimic another type relies on the i.i.d. properties

in Assumptions A1–A2). Clearly VT−1(s, s|hT−1) ≥ VT−1(s, s′|hT−1) because VT−1(s, s|hT−1) is

the maximized counteroffer payoff given the seller’s true value, s. It remains to be shown that

VT−1(s, s′|hT−1) ≥ VT−1(s′, s′|hT−1).

Below, p∗(s′|hT−1) represents the offer that would be optimal for a seller of type s′ given the

realized history hT−1. Observe that

VT−1(s, s′|hT−1) = p∗(s′|hT−1) Pr(DB
T = A|{hT−1, p

∗(s′|hT−1)})

+ s(1− Pr(DB
T = A|{hT−1, p

∗(s′|hT−1)}))− cS ,

and

VT−1(s′, s′|hT−1) = p∗(s′|hT−1) Pr(DB
T = A|{hT−1, p

∗(s′|hT−1)})

+ s′(1− Pr(DB
T = A|{hT−1, p

∗(s′|hT−1)}))− cS
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Thus,

VT−1(s, s′|hT−1)− VT−1(s′, s′|hT−1) = (s− s′)(1− Pr(DB
T = A|{hT−1, p

∗(s′|hT−1)})) ≥ 0

Therefore, VT−1(s, s|hT−1) ≥ VT−1(s′, s′|hT−1), and the seller’s counteroffer payoff is weakly in-

creasing in her type when there is one period remaining.

To complete the proof by induction, let V S
T−(t−1)(s|hT−(t−1)) denote the seller’s counteroffer

payoff with t − 1 periods remaining, and suppose V S
T−(t−1)(s|hT−(t−1)) is weakly increasing in s.

Note that, for s′ < s, when there are t periods remaining, VT−t(s, s|hT−t) ≥ VT−1(s, s′|hT−t) by

the same argument as above for. It remains to be shown that VT−t(s, s
′|hT−t) ≥ VT−t(s′, s′|hT−t).

Note that

VT−t(s, s
′|hT−t)− VT−1(s′, s′|hT−t)

= (s− s′) Pr
(
DB
T−(t−1) = Q|{hT−t, p∗(s′|hT−t)}

)
+ Pr

(
DB
T−(t−1) = C|{hT−t, p∗(s′|hT−t)}

)
× EPB

T−(t−1)

[
max

{
PBT−(t−1), s, V

S
T−(t−2)

(
s, s′|{hT−t, p∗(s′|hT−t), PBT−(t−1)}

)}
− max

{
PBT−(t−1), s

′, V S
T−(t−2)

(
s′, s′|{hT−t, p∗(s′|hT−t), PBT−(t−1)}

)} ∣∣∣∣∣{hT−t, p∗(s′|hT−t)}, DB
T−(t−1) = C

]
≥ 0

Therefore, VT−t(s, s|hT−t) ≥ VT−t(s
′, s′|hT−t), completing the proof. The proof that the buyer

counteroffer payoff, V B
t+1 (b|hT+1), is increasing in b follows by the same steps.

Lemma 2. In any equilibrium with truthtelling in the auction, fB being positive everywhere on the

support of B implies fPA is positive everywhere on the support of B.

Proof. If fB is positive everywhere on the support of B, then FB is strictly increasing. Equation

(3) demonstrates that, under truthtelling in the auction, FPA is then also strictly increasing, and

so fPA is positive everywhere on the support of B.

Proof of Proposition 1

Proof. Consider an arbitrary bidder of type B = b. A bidder’s strategy is the price at which he

stops bidding as a function of his type. Suppose the current price of the ascending button auction

is some value p̄ and suppose the bidder is one of at least two bidders still remaining in the auction

up until the price reaches its current level p̄. The auction will eventually end at some price pA ≥ p̄.
If b > p̄, it is optimal for the bidder to remain in the auction, as dropping out would yield a

payoff of 0 and staying in would yield a non-negative expected payoff because there is some chance

that the bidder will win at a price pA < b. To see that the expected payoff of remaining in the
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bidding is non-negative, consider first the case where the auction price and reserve price satisfy

pA ≥ R; in this case, the car will sell through the auction and the bidder will receive a positive

payoff. Now consider the case where instead pA < R; in this case, the bidder will be given the

option to enter into bargaining, and will only choose to enter if doing so yields a non-negative

expected payoff. Recall that the bidder only pays the cost of bargaining, cB, if he chooses not to

opt out of bargaining at this point.

If b < p̄, the buyer cannot receive a positive expected payoff from remaining in the auction. To

see this, note that if the bidder remains in the auction there is some chance that he will win at

some pA > b. If this occurs and the auction price and reserve price satisfy pA ≥ R, the car will sell

through the auction and the bidder will receive b− pA < 0. If, on the other hand, the bidder wins

and pA < R, the bidder’s payoff conditional on entering bargaining will necessarily be negative

because the final bargained price must be greater than pA and hence, in this case, the bidder will

opt out of bargaining, receiving a payoff of 0.

Proof of Proposition 3

Proof. Note that for b′ > b, πB(χ(b), b′) > 0. This follows because, by Lemma 1, V B
3 (·) is weakly

increasing in b, and this fact, combined with the term (b − pA) appearing in πB(pA, b), which is

strictly increasing in b, implies that πB(pA, b) is strictly increasing in b. Thus, χ(b′) > χ(b), and

hence χ is strictly increasing, and χ−1 exists and is also strictly increasing.

The property that χ−1(pA) > pA follows from the following argument. A buyer must pay cB > 0

if he opts to bargain, and the best possible outcome a buyer can expect from bargaining would be

to only have to pay pA. Therefore, for any auction price pA, there exists some buyer with type close

to pA, say pA + ε, where ε < cB, who would prefer to opt out of bargaining rather than receive a

payoff of (at most) ε− cB, which is negative.

Strict monotonicity of ρ(·), along with the fact that ρ(s) ≥ s, is proven separately in Lemma 3

below.

When the auction price is pA and bargaining occurs, it will be common knowledge among the

two bargaining parties that seller’s type s satisfies ρ(s) ≥ pA, and thus s ∈ [ρ−1(pA), s]. Similarly,

bargaining occurring means the buyer did not opt out, so χ(b) ≥ pA, implying b ∈ [χ−1(pA), b].

Lemma 3. If Assumptions A1–A5 are satisfied, then in any BNE satisfying Assumption A4, the

seller’s optimal secret reserve price, ρ∗(s), is strictly increasing in s and satisfies ρ∗(s) ≥ s.

Proof. Suppose for simplicity that there is some positive probability that the buyer does not opt out

of bargaining when R > PA; as I discuss below, the proposition still holds without this assumption.

In choosing her secret reserve price, ρ(s), a seller of type S = s wishes to maximize her ex-ante
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payoff, given by

EPA

[
EB

[
PA ∗ 1

{
PA ≥ ρ(s)

}
+ s ∗ 1

{
PA < ρ(s), πB(PA, B) < 0

}
(9)

+ πS
(
PA, s

)
∗ 1
{
PA < ρ(s), πB(PA, B) ≥ 0

} ∣∣∣∣∣PA
]]

This term consists of three pieces: 1) the auction price, which the seller receives if it exceeds the

reserve price; 2) the seller’s type s, which the seller receives if the auction price is below the reserve

price and the buyer opts out of bargaining; and 3) the seller’s bargaining payoff, πS
(
PA, s

)
=

max
{
PA, s, V S

2

(
s|PA

)}
, which the seller receives when the price is below the reserve price and

bargaining occurs.

The seller’s payoff can be re-written as

∫ b

ρ
pAfPA(pA)dpA +

∫ ρ

b

[∫ χ−1(pA)

pA
sfB(b)db+

∫ b

χ−1(pA)
πS
(
pA, s

)
fB(b)db

]
fPA(pA)

1− FB(pA)
dpA

=

∫ b

ρ
pAfPA(pA)dpA +

∫ ρ

b

[
s
(
FB(χ−1(pA))− FB(pA)

)
+ πS

(
pA, s

) (
1− FB(χ−1(pA))

) ] fPA(pA)

1− FB(pA)
dpA

Assumption A4 implies πS(·, s) is continuous and thus the payoff is differentiable. Differentiating

the above expression using Leibniz Rule yields the following derivative with respect to ρ:

∂

∂ρ
= fPA(ρ)

[
−ρ+ s

FB(χ−1(ρ))− FB(ρ)

1− FB(ρ)
+ πS (ρ, s)

1− FB(χ−1(ρ))

1− FB(ρ)

]
(10)

I next show that fPA(ρ) > 0 for any ρ in the support of R. To see this, first note that fPA(v) > 0

for all v ∈ [b, b] by Lemma 2. Second, choosing any ρ < b would be dominated by instead choosing

a reserve price of b because every buyer has a valuation of at least b. Third, a seller would be

indifferent between any reserve price above b (because no buyer would be willing to pay more than

b). Therefore, any ρ /∈ [b, b] would be weakly dominated, and so I can remove fPA(ρ) from the

above expression without dividing by zero. Also note that 1−FB(ρ) > 0 because fB is positive by

Assumption A5.

Lemma 1 shows that πS
(
pA, s

)
is weakly increasing in s and so ∂

∂ρ is weakly increasing in s.

Topkis Theorem then implies that ρ∗(s) is weakly increasing in s.

A stronger, strictly increasing result for ρ∗(s) is then obtained as follows. The proof of Proposi-

tion 3 demonstrates (due to costly bargaining) that χ−1(pA) > pA, and thus FB(χ−1(ρ)) > FB(ρ).

Combining these arguments implies that ∂
∂ρ is strictly increasing in s, which in turn implies, by the

Edlin and Shannon (1998) Theorem, that ρ∗(s) is strictly increasing on the interior of the support

of R. Let r and r be the infimum and supremum of ρ(s) that are optimal for any s. Suppose the
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support of R is an interval. For the purposes of applying the Edlin and Shannon (1998) result,

the support of r can be considered to be (r − ε, r + ε) for some ε > 0, and ρ∗(s) will be strictly

increasing on the interior of this interval. Now suppose the support of R is not an interval, i.e.

suppose there exist a point or points on the interior of [r, r] that are not optimal for any s ∈ [s, s].

Such points would constitute discontinuities of the function ρ∗(s). By the weakly increasing result

from above (due to Topkis Theorem), any such discontinuities are positive jumps in the function

ρ∗(s), and therefore ρ∗(s) will be strictly increasing even if the support of R is not an interval.

The fact that ρ∗(s) ≥ s follows from a simple rationality argument (no seller would offer a

reserve price less than s given that a reserve price of s yields a weakly higher payoff), but it can

also be seen by noting that the first-order condition above implies that the reserve price is given

by a convex combination of s and a quantity weakly greater than s (i.e. πS(ρ, s)).

Note that if the equilibrium of the game is such that the buyer opts out of bargaining with

probability one when R > PA then the expression in (10) becomes ∂
∂ρ = fPA(ρ) [−ρ+ s], and thus

the optimal reserve price is ρ∗(s) = s, again satisfying the proposition.

Proof of Proposition 4

Proof. Theorem 1 of Storms (2015) (included below as Lemma 4, modified to fit this setting)

implies that, in any BNE of this game, conditional on a realization of the auction price, pA, for

each seller type s, there is a cutoff value g0(s, pA) such that trade occurs if and only if the buyer’s

type b satisfies b ≥ g0(s, pA). Given the strict monotonicity of ρ(·) (Proposition 3), such a cutoff

function also exists with realizations s replaced with realizations of the reserve price r. Call this

cutoff function g(r, pA).

Lemma 4. (Due to Storms 2015) If Assumptions A1–A5 are satisfied, then, conditional on any

realization of the auction price PA = pA, in any BNE of the bargaining subgame satisfying A4, for

each seller type s there is a cutoff value g0(s, pA) such that s trades with a buyer b if and only if

b ≥ g0(s, pA).

Proof. Fix PA = pA throughout this proof. I first prove a preliminary property. Fix any arbitrary

BNE. Let Pr(A = 1|b, ht) represent the probability of trade for a buyer who mimics the strategy of

a buyer of type b when the history so far in the game is ht. Here, A ∈ {0, 1} is a random variable

indicating whether or not trade occurs, where, from the buyer’s perspective, the seller’s valuation

is unknown. Let y(b, ht) represent the expected transfer from playing such an action. Also, let

ht(s, b) denote the history of the game in time t when the players’ types are s, b and when they

play their equilibrium strategies.

I will discuss properties that must hold on histories that have a positive probability of being

played in equilibrium (i.e. histories that at least some buyer and seller pair would play). In such
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histories, in any BNE, each buyer type must weakly prefer to play his own strategy from any history

onward to playing that of another type. Thus, for b′ > b, we have

bPr(A = 1|b, ht)− y(b, ht) ≥ bPr(A = 1|b′, ht)− y(b′, ht)

b′ Pr(A = 1|b′, ht)− y(b′, ht) ≥ b′ Pr(A = 1|b, ht)− y(b, ht)

Combining inequalities demonstrates that, for b′ > b,

Pr(A = 1|b′, ht) ≥ Pr(A = 1|b, ht) (11)

A similar result holds for s′ < s,

Pr(A = 1|s′, ht) ≥ Pr(A = 1|s, ht) (12)

Using this property, Lemma 4 can be proved by contradiction. Such a contradiction would be a

triple s, b, and b′ with b′ > b such that s eventually (at some unspecified time period of the game)

trades with b, but does not at any period of the game reach agreement with a type b′. For the sake

of clarity, I will give such triples a name, referring to them as Type A triples. Let h∗t be the longest

history of play among all Type A triples such that the strategy for b is the same as that for b′ up

to time t when the seller’s type is s (that is, h∗t = ht(s, b) = ht(s, b
′)). Throughout the remainder

of the proof, let s, b, and b′ be a Type A triple at which h∗t is achieved. The result in (11) implies

that b′ must trade with weakly greater probability than b from ht onward. This weak inequality,

combined with (s, b, b′) being a Type A triple, implies that there must be some seller type s′ who

reaches history ht against both b and b′ and who trades with b′ but not b.

Now consider two cases.

1. Case where s′ > s. Since s does not trade with b′ from the history ht+1(s, b′), s cannot trade

with any types b̃ < b′ from ht+1(s, b′), or else (s, b̃, b′) would form a counterexample to h∗t

because it would constitute a Type A triple with buyers having t + 1 periods of identical

strategies. But by (12), s must trade more often than s′ conditional on the history ht+1(s, b′),

and hence there must be some type b′′ > b′ such that b′′ eventually trades with s but not with

s′ when the history is ht+1(s, b′). The triple (s′, b′, b′′) then gives a contradiction because it

constitutes a Type A triple with buyers having t+ 1 stages of their strategies being identical.

2. Case where s′ < s. Since s trades with b from the history ht+1(s, b), s must trade with all

types b̃ > b from ht+1(s, b), or else (s, b, b̃) would form a counterexample to h∗t because it

would constitute a Type A triple with buyers having t+ 1 periods of identical strategies. By

(12), s′ must trade more often than s conditional on the history ht+1(s, b). It follows that

there must be some type b′′′ < b that trades with s′ but not s. The triple (s′, b, b′′′) then gives
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a contradiction because it constitutes a Type A triple with buyers having t+ 1 stages of their

strategies being identical.

Proof of Proposition 5

Proof. Given the structure of additive separability in the willingness to pay/sell, the goal is to

show that the auction price, players’ bargaining counteroffers, and the seller’s secret reserve price

will also be additively separable in the game-level heterogeneity. The buyer’s type is given by

B̃ ≡ B + W ∼ FB̃, with density fB̃. The seller’s type is given by S̃ ≡ S + W . For this proof, let

the realization of W be w.

That the auction price will be additively separable in w is obvious, given that there is no

incentive for bidders to deviate from truthful bidding by Proposition 1.

To demonstrate that bargaining offers are also additively separable, the proof proceeds by

induction on the number of periods remaining. Before proving this result, I highlight here that

Proposition 5 only states that bargaining offers will be additively separable if they are accepted

with positive probability; the equilibrium framework does not rule out equilibria in which a player

makes an offer that would not be accepted by any type, and additive separability will not necessarily

hold for such offers.

Suppose there is currently one period remaining in the bargaining game: it is the seller’s turn

and after her turn the buyer will only be allowed to accept or quit (I prove the result in the case

where the buyer moves last; analogous reasoning proves that the result also holds if the seller moves

last).

Suppose for simplicity that the equilibrium does not entail the buyer rejecting all offers with

probability one in the final period (if not, the seller would not choose to counter in period T − 1).

In the final period, a buyer with type B̃ = b̃ will accept a price, p̃, if and only if p̃ ≤ b̃. In period

T − 1, the seller of type S̃ = s̃ chooses p̃∗ to solve

p̃∗ ∈ arg max
p̃
p̃(1− FB̃(p̃)) + s̃FB̃(p̃)− cS

= arg max
p
p(1− FB(p)) + sFB(p)− cS + w(1− FB(p)) + wFB(p)

= w + arg max
p
{p(1− FB(p)) + sFB(p)− cS}

Therefore, the penultimate bargaining offer in the heterogeneous setting will be w above the bar-

gaining offer from the homogeneous good setting, and similarly for the seller’s maximized payoff.

To complete the proof by induction, suppose that offers and payoffs in periods T − (t− 1) and

T − (t−2) are w higher than their homogeneous good counterparts and the probability of the buyer

accepting, quitting, or countering in period T − (t− 1) will be the same in the heterogeneous good
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model as in the homogeneous good model. It remains to be shown that the same holds true for

the offers and payoffs in period T − t. Let all (̃·) expressions represent the heterogeneous model

expressions. The seller’s payoffs from accepting, quitting, or countering in period T − t can be

written as follows:

A : p̃BT−(t+1) = w + pBT−(t+1)

Q : s̃ = w + s

C : Ṽ S
T−t

(
s̃|h̃T−t

)
= max

p̃
p̃Pr

(
DB
T−(t−1) = A|{h̃T−t, p̃}

)
+ s̃Pr

(
DB
T−(t−1) = Q|{h̃T−t, p̃}

)
+ Pr

(
DB
T−(t−1) = C|{h̃T−t, p̃}

)
× EP̃B

T−(t−1)

[
max

{
P̃BT−(t−1), s̃, Ṽ

S
T−(t−2)

(
s̃|{h̃T−t, p̃, P̃BT−(t−1)}

)} ∣∣∣∣∣{h̃T−t, p̃}, DB
T−(t−1) = C

]
− cS

= w + max
p
pPr

(
DB
T−(t−1) = A|{hT−t, p}

)
+ sPr

(
DB
T−(t−1) = Q|{hT−t, p}

)
+ Pr

(
DB
T−(t−1) = C|{hT−t, p}

)
× EPB

T−(t−1)

[
max

{
PBT−(t−1), s, V

S
T−(t−2)

(
s|{hT−t, p, PBT−(t−1)}

)} ∣∣∣∣∣{hT−t, p}, DB
T−(t−1) = C

]
− cS

The last line follows by removing w from each expression. Note that if the equilibrium entails the

buyer quitting with probability 1 in period T − (t − 1) then the seller would have no incentive

to counter in period T − t and so the additive separability result still holds for offers observed in

equilibrium.

To see that the probability of the buyer accepting, quitting, or countering in period T − (t− 1)

will be the same in the heterogeneous good model as in the homogeneous good model, note that

the buyer’s payoffs for each action are given by:

A : b̃− p̃ST−t = b− pST−t
Q : 0

C : Ṽ B
T−(t−1)

(
b̃|h̃T−(t−1)

)
= max

p̃
(b̃− p̃) Pr

(
DS
T−(t−2) = A|{h̃T−(t−1), p̃}

)
− cB

+ Pr
(
DS
T−(t−2) = C|{h̃T−(t−1), p̃}

)
× EP̃S

T−(t−2)

[
max

{
b̃− P̃ST−(t−2), 0, Ṽ

B
T−(t−3)

(
b̃|{h̃T−(t−1), p̃, P̃

S
T−(t−2)}

)} ∣∣∣∣∣{h̃T−(t−1), p̃}, DS
T−(t−2) = C

]
= V B

T−(t−1)

(
b|hT−(t−1)

)
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And thus the claim is true because the buyer’s bargaining payoffs are the same in the homogeneous

good and heterogeneous good models. It also immediately follows that πB(χ̃, b̃) = πB(χ, b) by the

above arguments for the buyer’s bargaining payoff, where χ̃ satisfies 0 = πB(χ̃, b̃).

Now consider the seller’s secret reserve price in the setting with game-level heterogeneity w.

Suppose for now that the equilibrium does not entail the buyer opting out of bargaining with

probability 1 when R > PA. From the proof of Lemma 3, the derivative of the seller’s payoff with

respect to the seller’s choice of secret reserve price, r̃ = ρ(s̃), will be given by

∂

∂r̃
= fP̃A(r̃)

[
−r̃ + s̃

FB̃(χ̃−1(r̃))− FB̃(r̃)

1− FB̃(r̃)
+ πS (r̃, s̃)

1− FB̃(χ̃−1(r̃))

1− FB̃(r̃)

]
(13)

= fPA(r̃ − w)

[
−r̃ + w + s

FB(χ−1(r̃ − w))− FB(r̃ − w)

1− FB(r̃ − w)
+ πS (r̃ − w, s) 1− FB(χ−1(r̃ − w))

1− FB(r̃ − w)

]
(14)

Therefore, the optimal secret reserve price in the heterogeneous setting will be w above the optimal

reserve in the homogeneous setting. Now suppose the equilibrium does involve the buyer opting

out of bargaining with probability 1 when R > PA. In this case, the expression in (13) becomes
∂
∂r̃ = −r̃ + s̃, and thus the optimal secret reserve price is s+ w, again satisfying the proposition.

An immediate implication of these results is a generalization of Proposition 4: At a general

realization W = w, trade occurs if and only if b̃ ≥ g(r̃, p̃A)⇒ b ≥ g(r̃ − w, p̃A − w) = g(r, pA).

Proof of Proposition 6

Proof. I first introduce notation. LetW(x, FS) refer to any welfare measure under a given allocation

function x and at a given seller valuation distribution FS (suppressing dependence on FB given

that I have point estimates of FB). I will add specific subscripts to W to denote a particular

type of welfare measure: the total expected gains from trade is WEG(x, FS), given by (8); the

expected gains from trade for the buyer alone is WB(x, FS) and for the seller alone is WS(x, FS);

and the expected probability of trade is WPr(x, FS). The gap between the expected gains from

trade for the ex-post efficient and second-best mechanisms, between the second-best and real-world

mechanisms, and between the ex-post efficient and real-world mechanisms are given by the following

three expressions:

WEG(x∗ − x
1
2 , FS) ≡ WEG(x∗, FS)−WEG(x

1
2 , FS)

WEG(x
1
2 − xRW , FS) ≡ WEG(x

1
2 , FS)−WEG(xRW , FS)

WEG(x∗ − xRW , FS) ≡ WEG(x∗, FS)−WEG(xRW , FS)

Similar notation can be used to denote the gap between the probability of trade in different mech-

anisms.
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I begin by proving that WEG(x∗, FS) will decrease given a stochastically dominating change in

FS . Let WEG(x∗, FS ; pA) be the expected gains from trade under ex-post efficiency conditional on

a realization of the auction price pA. This object can be written as

WEG(x∗, FS ; pA) =

∫ s

s(pA)
Λ(s)fS(s|pA)ds (15)

where Λ(s, pA) is given by

Λ(s, pA) =

∫ b

b(pA)
(b− s)1{b ≥ s}fB(b|pA)db

Note that this function is weakly decreasing in s. Also recall that fS(s|pA) = fS(s)
1−FS(s(pA))

, and note

that the denominator of this term does not vary with FS , because FS(s(pA)) = FS(ρ−1(pA)) =

FS(F−1
S (FR(pA))) = FR(pA). It is well known that, for any weakly decreasing Λ(·) in an expec-

tation such as (15), replacing fS with a density corresponding to a distribution that first-order

stochastically dominates fS will lead to a lower value for the evaluated integral WEG(x∗, FS ; pA).

Integrating WEG(x∗, FS ; pA) over pA yields the desired result. The monotonicity of WPr(x
∗, FS)

follows by the same result.

For the second-best mechanism, the proof of monotonicity of the expected gains from trade is

much more involved and is found in recent work by Zhang (2017). It does not yield an mathematical

proof of the monotonicity of the expected buyer or seller gains or the probability of trade in the

second-best mechanism. For the buyer-optimal mechanism, monotonicity of the buyer gains follows

from the same line of reasoning as in Zhang (2017), but there is no proof of monotonicity of the

total expected gains from trade, seller gains, or probability of trade.

For the seller-optimal mechanism, the allocation function is x1 = 1{b− 1−Fb(b)
fB(b)

≥ s}. As in the

ex-post efficient case, this allocation function does not depend on FS , and thus monotonicity of all

the welfare measures in the seller-optimal mechanism are guaranteed (even for those marked with

“–” in the seller-optimal column of Table 3).

For the real-world mechanism, the proof of monotonicity of the expected gains from trade

exploits that I have defined the real-world mechanism as a function of the reserve price, R, given

that R is a strictly increasing function of S, and hence, holding fixed FR, the allocation function,

xRW (ρ(s), b; pA) ≡ 1
{
b ≥ g

(
ρ(s), pA

)}
, does not depend on the unknown distribution FS . The

expected gains from trade in the real-world mechanism can be written

WEG(xRW , FS) =

∫ b

b

[∫ b

b(pA)

∫ s

s(pA)
(b− s)1

{
b ≥ g

(
ρ(s), pA

)}
fS(s|pA)fB(b|pA)ds db

]
fpA(pA)dpA

where ρ(s) ≡ F−1
R (FS(s)). Holding FR fixed, the object ρ(s) would be unchanged by such
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a first-order stochastically dominating shift in FS . This is because ρ(s) always returns the

FS(s) quantile of FR. To see this, let F̆S first order stochastically dominate FS and let s̆

and s be realizations such that s̆ > s and F̆S(s̆) = FS(s). Thus, s̆ = F̆−1
S (FS(s)). Then

ρ̆(s̆) ≡ F−1
R (F̆S(s̆)) = F−1

R (F̆S(F̆−1
S (FS(s)))) = ρ(s), proving the result. The monotonicity of

WB(xRW , FS), WS(xRW , FS), and WPr(x
RW , FS) follow by the same argument. Note that these

results should not be interpreted as suggesting that the real-world mechanism does not depend

on the distribution of seller valuations; these results simply imply that, because reserve prices are

one-to-one with seller valuations, after conditioning on FR, the estimation of the object ρ(·) will

not depend on the estimate of FS .

For the first column in panel B of Table 3, there is no mathematical proof of monotonicity of

the gap between the ex-post and second-best gains from trade, WEG(x∗ − x
1
2 , FS), and similarly

for the gap for the probability of trade. For the gap between the expected gains from trade in the

second-best mechanism and the real-world mechanism, WEG(x
1
2 − xRW , FS), monotonicity follows

from the arguments above (the allocation function xRW does not depend on FS , and the expected

gains from trade for the second-best mechanism are monotonic). For the gap in the probability of

trade there is no proof of monotonicity. For the final column in panel B of Table 3, monotonicity of

the gap between ex-post efficient and real-world expected gains from trade, WEG(x∗ − xRW , FS),

follows by the same arguments as above for the real-world and ex-post efficient mechanisms, and

similarly for the probability of trade gap.

B Additional Model Discussion

B.1 Discussion of BNE vs. Other Equilibrium Concepts

Throughout the paper, I assume play corresponds to a BNE. The use of BNE, rather than a

Perfect Bayesian Nash (PBE) framework, for example, does not mean I am modeling the game as

a static game; I am modeling the game as dynamic—I am just not specifying how players update

their beliefs at histories of the game that are never reached. In any BNE, players’ beliefs about

the type of opponent they are facing are updated using Bayes Rule at any history of the game

reached on the equilibrium path, but BNE places no restrictions on how these beliefs are updated

when off-equilibrium (i.e. zero-probability) events occur.25 PBE is a refinement of BNE (and

thus, every PBE is also a BNE) requiring that the researcher also specify how beliefs are updated

when these zero-probability events occur. Refinements such as PBE are useful in some applied

theory settings to narrow down the set of possible equilibria, but they have not proven very useful

25Because Bayes Rule is the only updating rule allowed on-path in BNE, and because BNE includes no statement
of off-equilibrium beliefs, it is not technically necessary to discuss beliefs at all a BNE framework; it is only for clarity
of exposition that I explicitly state the feature that beliefs are updated using Bayes Rule at all histories of the game
that are reached in equilibrium.
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for sequential incomplete-information bargaining games like mine.26 In spite of the independence

assumptions in A1–A2, and the simple bargaining structure imposed in Assumption A3, this game is

difficult to analyze, both theoretically and empirically, as two-sided bargaining problems (i.e. games

where both parties can make offers) with two-sided uncertainty (where both parties have private

information) are known to have a multiplicity of equilibria that can be qualitatively quite dissimilar,

and no known characterization of these equilibria exists (see discussion in Ausubel, Cramton, and

Deneckere 2002). The approach I take in this paper will circumvent this problem by only assuming

that participants play some BNE of the game, without attempting to fully characterize or solve for

that equilibrium.

B.2 Additional Discussion of Proposition 1 Truthful Bidding Result

The proof of Proposition 1 is greatly simplified by the rule, discussed in Section 3, that the bargained

price cannot be below the auction price; if this were not the case, proving the proposition would

require ruling out the possibility of buyers bidding above their valuations and then attempting to

bargain down to a lower final price afterward. It is possible to show that such behavior cannot

occur in equilibrium, but the proof is more involved. I state this as the following lemma:

Lemma 5. If the rules of the game are relaxed such that the bargained price is allowed to be lower

than the auction price, then it is still the case that the following cannot occur in equilibrium: Some

bidder i remains in the bidding even after the current bid exceeds bi and, if bargaining occurs and

if given the chance to counteroffer, the bidder makes a counteroffer less than bi and this offer is

accepted by the seller.

Proof. Note that a buyer who bids above his value bears a risk of winning the auction at a price

that exceeds the reserve price, giving the bidder a negative payoff. Therefore, if some bidder i does

want to bid above his value in the auction, it must be because that bidder hopes to eventually end

up in bilateral bargaining with the seller and hopes to have the bargaining game end at a price

weakly below his value, and the bidder believes that the chance of this happening is sufficiently high

to warrant the risk of bidding above his value. That is, for this behavior to occur in equilibrium,

26Previous work has found that such refinements can lead to predictions of immediate trade or immediate dis-
agreement (Perry 1986) or that equilibria satisfying proposed refinements often fail to exist (see the discussion in
Sections 3.1.2 and 5 of Ausubel, Cramton, and Deneckere (2002) of equilibrium refinements of incomplete-information
bargaining games proposed in Cramton (1984), Rubinstein (1985), Grossman and Perry (1986), Cho (1990), and
Bikhchandani (1992). Gul and Sonnenschein (1988) pointed out that traditional refinements (such as Sequential
Equilibrium or Perfect Bayesian Equilibrium) often do not meaningfully narrow down equilibria in sequential bar-
gaining games because BNE can often be made sequential/perfect by specifying optimistic beliefs: whenever the seller
makes an off-equilibrium offer the buyer believes the seller is the weakest type, and vice versa. The bargaining game
described in Perry (1986) is nearly identical to the setup of the bargaining subgame described herein, but the author
focuses on Sequential Equilibria rather than BNE and finds a unique equilibrium that involves only immediate trade
or immediate disagreement. Cramton (1991) discussed how the Perry (1986) result can be overturned by allowing
for a small amount of time discounting. Cramton (1992) derived a particular equilibrium in a two-sided bargaining
game involving a war of attrition.
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it must be the case that, in the bargaining game, i makes a counteroffer lower than pA and this

offer is accepted by some seller (the seller should never make such an offer herself because accepting

pA would be preferable). Let the term high-low strategy refer to this strategy of remaining in the

bidding even after the current bid exceeds bi and then, if given the chance to do so, making an offer

less than bi (and hence also less than pA).

In order for the high-low strategy to be optimal for bi, the following must be true (I will refer

to this as the high-low supposition): the seller cannot distinguish between type bi and some type

b̆ > bi whom the seller believes may not be playing the high-low strategy (and hence may not be

attempting to later counter below pA). If the seller could distinguish between the two, the seller

would simply accept pA when faced with the bidder known to be playing the high-low strategy.

Note that it cannot be the case that all bidders play the high-low strategy, or else the seller would

always immediately accept the auction price and the bidders would all obtain a negative surplus

and hence all bidders would have been better off not bidding above their values. Thus, in order for

the high-low strategy to be optimal for bi, it must be the case that the seller cannot distinguish

between type bi and some type b̆ > bi whom the seller believes may not be playing the high-low

strategy.

Suppose the high-low supposition is true. Note that, if type bi > pA finds it optimal to play

the high-low strategy, so will all types higher than bi, because πB(pA, bi) ≥ 0 ⇒ πB(pA, b̆) > 0 for

all b̆ > bi (because V B
3 (·) is weakly increasing in bi by Lemma 1 and (bi − pA) is strictly increasing

in bi, so πB(pA, bi) is strictly increasing in bi). Therefore, if any buyer finds it optimal to play the

high-low strategy, so will buyer type b̆ > bi, which contradicts our supposition. Therefore, if any

buyer finds it optimal to play the high-low strategy, and if pA is higher than the lowest buyer type

who would find it optimal to play the high-low strategy, then the seller’s best response when facing

an auction price of pA at the beginning of a bargaining game would be to immediately accept pA

if pA ≥ s and quit otherwise.

B.3 Sharpness of Proposition 2 Bounds for Seller Valuations

Proposition 7. If the only maintained assumptions are Assumption A7 and Assumption A2, the

bounds in Proposition 2 are sharp.

Proof. Suppose Assumptions A2 and A7 are satisfied. Let the bounds on FS be given by Pr(DS =

A|PA = pA) and Pr(DS 6= Q|PA = pA). I must demonstrate that any FS lying in these bounds

could have generated these exact bounds. The following behavior will generate the bounds exactly.

Given an auction price pA, if s ≤ pA the seller accepts with probability Pr(DS=A|PA=pA)
FS(pA)

and

otherwise the seller counters or the buyer opts out of bargaining; if s ≥ pA the seller quits with

probability 1−Pr(DS 6=Q|PA=pA)
1−FS(pA)

and otherwise the seller counters or the buyer opts out of bargaining.

This behavior generates the bounds exactly.
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An interesting feature of these bounds is that Pr(DS = A|PA = v) and Pr(DS 6= Q|PA = v)

are not necessarily monotonic, but Proposition 7 still holds. This is because these are bounds on a

distribution function, and hence they are bounds on a weakly increasing function (i.e. lying in F).

An alternative, monotonized version of these bounds that emphasizes this point is

sup
v<pA

Pr(DS = A|PA = v) ≤ FS(pA) ≤ inf
v>pA

Pr(DS 6= Q|PA = v) (16)

This ironing-like procedure results in bounds that are monotonic, as illustrated in Figure A1, but

this does not result in bounds on FS that are any tighter than those originally stated in Proposition

2 because FS is already restricted to be a proper CDF.

Importantly, if these monotonized bounds from (16) cross at any point, this would be an

indication of a violation of Assumption A7. Such a violation would mean that there is no weakly

increasing function lying between the monotonized bounds or between the Proposition 2 bounds.

Proposition 7 demonstrates sharpness if the only maintained assumptions are A2 and A7. How-

ever, under the assumption of BNE (maintained throughout the paper, but not actually required

for Proposition 2), the bounds are not necessarily sharp because there is no guarantee that the be-

havior described in the proof of Proposition 7 describes a BNE. Proving sharpness of these bounds

is difficult within an equilibrium framework because, as highlighted above, no full characterization

of equilibria exists for two-sided incomplete-information bargaining settings in the current theory

literature, and hence it is difficult to determine an equilibrium in which the bounds hold with

equality. However, either relaxing the assumptions or restricting the available data can lead to

sharpness. For example, the behavior could indeed constitute a BNE if the buyer were to commit

to never bargain, in which case the seller’s best response would always be to only accept or reject

the auction price. In this case the bounds would hold with equality, but such an equilibrium—where

buyers never bargain—would be unlikely to describe the data well. In light of these arguments, the

bounds in Proposition 2 are conservative.

B.4 Continuation Values from Re-entering the Market

One limitation with the analysis in this paper is that it does not provide a sophisticated model

of player’s continuation payoffs when trade fails: the buyer is modeled as receiving a payoff of 0

and the seller receives her valuation S.27 In practice, buyers who fail to acquire a car may choose

to later bid on a similar car. This is precisely what the market thickness controls described in

27As highlighted in Section 3.1, this abstraction is only a limitation in that it ignores the possibility that a permanent
change to a new bargaining mechanism would potentially shift the distribution of types who are willing to participate
and also shift the payoff they receive if they choose to re-enter the game when trade fails. My counterfactual analysis
is consistent with a one-time change in the bargaining mechanism: holding fixed the distribution of these inter-game
continuation payoffs, the counterfactuals analyze the effects of a shift from the current bargaining mechanism to a
counterfactual mechanism for the current instance of the game.
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Appendix C.1 capture in the observed heterogeneity regression, but only in a reduced-form way

through an additively separable effect on prices. The approach I adopt—treating buyers’ outside

option as a 0 payoff—means that what I model as the buyer’s valuation is actually the buyer’s

value of owning the car minus the buyer’s discounted continuation payoff of re-entering the market.

In the third row of Table A6, I restrict the sample to observations in which the number of cars of

the same make and model remaining to be sold on a given day is above the median value of this

measure. In this subsample of the data, these continuation dynamics may look different than in

the full sample, as players have more upcoming opportunities to obtain similar cars. I find that the

estimates do differ from the full-sample estimates; in particular in the fleet/lease sample the upper

bound on the efficiency loss between the real-world mechanism and ex-post efficiency is lower ($654

as opposed to $864 in the main sample). However, overall the qualitative findings in this subsample

are similar to those in the main sample.

When the car fails to sell, the seller may take the car back to her own store or lot, or may leave

the car at the auction house where another sale attempt will take place, typically one month later.

What I model as the seller’s value S is actually the seller’s discounted continuation payoff from

re-entering the market. Similarly, a seller selling multiple cars on a given day may treat these cars

as a portfolio, and the seller’s willingness to sell one car may be related to her set of remaining cars

to be sold. In the fourth row of each panel of Table A6, I restrict the sample to those observations

in which the number of cars remaining to be sold by this same seller on a given day is above the

median value of this measure. In this subsample I find similar results to the full sample for dealers,

and a smaller upper bound on efficiency loss for fleet/lease sellers ($634, close to the estimate from

the third row of Table A6).

In the final row I limit the sample to observations of the seller’s first attempt to sell a given

car (i.e. a given VIN). The main estimates in the paper treat each attempt to sell the car as an

independent observation (Assumption A10), but if sellers’ outside options are not an independent

draw from FS with each attempt to sell the car, the model estimates might differ for cars with

previous failed attempts to sell. In this final row, in both dealers and fleet/lease cars, I find a higher

estimated gains from trade and lower efficiency shortfall for the real-world mechanism than in the

main sample. Importantly, however, the qualitative implications are the same in every subsample:

the real-world bargaining appears to be inefficient, and not solely due to the information constraints

highlighted in Myerson and Satterthwaite (1983), as the second-best mechanism achieves a similar

range of surplus as ex-post efficiency.

B.5 Sellers Accepting Offers Below the Secret Reserve Price

This section provides a discussion of several explanations rationalizing why some sellers would set a

secret reserve price and then, in the bargaining stage, accept an offer below the reserve price. These
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explanations include a specific equilibrium example where this behavior can occur; an extension to

the main model in which seller’s have market-level uncertainty at the time they set their reserve

prices; and seller biases due to over-optimism about buyer demand or due to attempts to influence

auctioneer effort.

B.5.1 An Equilibrium Example

This section demonstrates that the model in the body of the paper can contain BNE in which

sellers accept offers that lie below their previously set reserve prices.28 For simplicity of exposition,

assume the seller has a value of S = 0 and buyer value B is uniformly distributed on [0, 1].

Suppose the buyer commits to reject all counteroffers when pA ≥ 1/2 and the seller refuses to

consider any counteroffer after her first counteroffer when pA < 1/2. The seller’s optimal secret

reserve price must then be at least 1/2. When pA < 1/2, let y(pA) denote the optimal take-it-

or-leave-it offer for the seller at her first chance to counteroffer, given the realized auction price.

Suppose also that for each pA < 1/2, there is a unique counteroffer as a function of pA, call it z(pA),

that the buyer will accept if z(pA) < B. Define this z(pA) to be equal to pA at pA = 1/4, to be

equal to y(pA) outside of [1/4− ε, 1/4 + ε] for some small ε > 0, and to be the linear interpolation

of pA and y(pA) along this interval:

z(pA) =


|pA−1/4|

ε y(pA) +
(

1− |p
A−1/4|
ε

)
pA if pA ∈ [1/4− ε, 1/4 + ε]

y(pA) otherwise.

For small enough ε, the seller’s optimal reserve price will be 1/2. Moreover, the seller’s best

response counteroffer for pA ∈ [0, 1/2] and pA /∈ [1/4−ε, 1/4+ε] is y(pA). Now consider the seller’s

response when pA ∈ [1/4−ε, 1/4+ε]. Since the buyer will not consider any counteroffer other than

z(pA), the seller’s only options are to accept the auction price or to counter at z(pA). Which option

she chooses will depend on whether the price increase from countering is higher than the cost of

making a counteroffer. The price increase is z(pA) − pA, which is non-negative since y(pA) > pA,

while the cost of an making an offer is cS . Since y(pA) − pA = 0 for pA = 1/4, for pA sufficiently

close to 1/4, the seller will accept the auction price, while for pA further away from 1/4 she will

counter at z(pA). This is the seller’s optimal response given that the buyer rejects any counteroffer

other than z(pA), while the buyer’s strategy of accepting only z(pA) and accepting it if and only

if z(pA) is below his valuation is optimal since the seller never offers a lower price. Thus, in this

equilibrium, the seller accepts some auction prices below her reserve price. Note also that this

equilibrium example satisfies Assumption A4.

28I thank Evan Storms for this example.
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B.5.2 Model Extension with Market-Level Uncertainty

This section extends the model of Section 3 to allow sellers to have uncertainty, at the time they

set their reserve prices (which is several days in advance of the actual auction day), about what

their own valuation and what the distribution of buyer valuations will be on the day the auction

will take place. This uncertainty is then resolved once the auction takes place and the seller sees

(or learns over the phone through an auction house employee) additional information, such as the

level of buyer turnout/interest, which can be affected by weather, financial news, or other shocks.

Such uncertainty can rationalize why some sellers would set a secret reserve price and then accept

an auction price below the reserve price.

The existence of such uncertainty would not affect certain key results of the model, such as

bidding behavior in the auction. It would also not affect the result that the seller’s secret reserve

price strategy is strictly increasing, as I demonstrate below.

Let ζ be a finite vector parameterizing a seller’s uncertainty about buyer valuations, where

ζ is independent of buyer and seller valuations. Let Fb(·; ζ), fb(·; ζ), fPA(·; ζ), χ−1(b; ζ), and

πS
(
pA, s; ζ

)
be equivalent to the analogous objects in the main model but conditional on ζ, and

let u(s; ζ) represent the seller’s valuation conditional on the realization of ζ. At ζ = 0, let each

of these functions be equal to its counterpart in the main model (so u(s; 0) = s, Fb(·; 0) = Fb(·),
fb(·; 0) = fb(·), fPA(·; 0) = fPA(·), χ−1(b; 0) = χ−1(b), and πS

(
pA, s; 0

)
= πS

(
pA, s

)
). At the

time the seller chooses the reserve price, she knows each of these functions but does not know the

realization of ζ. I also assume that u(s; ζ) is weakly increasing in ζ.

The following argument follows the steps of the proof of Lemma 3 and demonstrates that in

this model reserve prices would still be increasing in s. To simplify this proof I assume that the

optimal ρ(s) satisfies fPA(ρ(s); ζ) > 0 for any ζ. The seller’s expected payoff, prior to knowing the

realization of ζ, can be written as

Eζ

{∫ b

ρ
pAfPA(pA; ζ)dpA

+

∫ ρ

b

[∫ χ−1(pA;ζ)

pA
u(s; ζ)fB(b)db+

∫ b

χ−1(pA;ζ)
πS
(
pA, u(s; ζ); ζ

)
fB(b; ζ)db

]
fPA(pA; ζ)

1− FB(pA; ζ)
dpA

}

=Eζ

{∫ b

ρ
pAfPA(pA; ζ)dpA

+

∫ ρ

b

[
u(s; ζ)

(
FB(χ−1(pA; ζ); ζ)− FB(pA; ζ)

)
+ πS

(
pA, u(s; ζ); ζ

) (
1− FB(χ−1(pA; ζ); ζ)

) ]

× fPA(pA; ζ)

1− FB(pA; ζ)
dpA

}
Differentiating the above expression using Leibniz Rule yields the following first-order condition
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for the reserve price:

∂

∂ρ
= −ρEζ [fPA(ρ; ζ)] + u(s; ζ)Eζ

[
FB(χ−1(ρ; ζ); ζ)− FB(ρ; ζ)

1− FB(ρ; ζ)
× fPA(ρ; ζ)

]
+ Eζ

[
πS (ρ, u(s; ζ); ζ)

1− FB(χ−1(ρ; ζ); ζ)

1− FB(ρ; ζ)
× fPA(ρ; ζ)

]
Conditional on a realization of ζ, Lemma 1 applies, and hence πS

(
pA, u(s; ζ); ζ

)
is weakly

increasing in s for any realization of ζ. Also, conditional on a realization of ζ, χ−1(pA; ζ) > pA by

the same arguments as in Proposition 3, and thus FB(χ−1(ρ; ζ); ζ) > Fb(ρ; ζ). Combining these

results demonstrates that ∂
∂ρ will be strictly increasing in s, and thus the Edlin and Shannon (1998)

Theorem implies that the reserve price will be strictly increasing in s for a given realization of ζ,

and taking expectations over ζ yields the desired result.

However, even simple versions of this market uncertainty model would likely not be empirically

tractable. Suppose buyer and seller valuations are additively separable in ζ, such that u(s; ζ) =

s + ζ, Fb(b; ζ) = Fb+ζ(b), etc., and suppose ζ can be estimated in the data (such as through a

location-by-date fixed effect). In this case, the arguments in Proposition 5 imply that players’

continuous decisions taking place after ζ is realized (the auction price and bargaining offers) will

be shifted by ζ, but the secret reserve price, set before ζ is realized, will be shifted instead by E[ζ].

The advantage of Proposition 5 in the main model is that it allows me to account for game-level

heterogeneity in steps 1–2 and then ignore it in subsequent steps. This would not be feasible in this

alternative model because some later estimation steps would require carrying around the realization

of ζ. For example, the function determining the probability of trade, g(·), is a function of r, b,

and pA, all of which are additively separable in game-level heterogeneity in the main model; in this

additively separable market uncertainty model, however, b and pA are additively separable in ζ but

r is not.

B.5.3 Optimistic Beliefs and Influencing Auctioneers

Sellers accepting prices below their secret reserve price can also be rationalized by sellers having

overly optimistic beliefs about auction prices prior to the auction taking place (Treece 2013) or by

an attempt to influence auctioneers to exert greater effort to achieve higher prices (Lacetera, Larsen,

Pope, and Sydnor 2016; Treece 2013). Such situations can be modeled as the sellers choosing a

reserve price given by the optimal, un-biased reserve price, ρ∗(s), plus a bias term, h(s), that is

weakly increasing in s. Under such a weakly increasing bias assumption, the observed reserve prices

would be strictly increasing in the underlying seller valuation.29

29Lacetera, Larsen, Pope, and Sydnor (2016) demonstrated that who gets assigned as an auctioneer for a given sale
can affect the probability of sale, the speed of the sale, and, to a lesser extent, the auction price, and Coey, Larsen,
and Sweeney (2014) demonstrated that this assignment can have meaningful effects on seller revenue. I do not model
any role of human auctioneers in this paper. Lacetera, Larsen, Pope, and Sydnor (2016) also provided evidence in
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B.6 Secret vs. Public Reserve Prices

I present here a discussion of public vs. secret reserve prices. Consider a modified version of the

game consisting of no bargaining and only a public reserve price set optimally by the seller prior to

the auction. Such a modified game would be equivalent to an auction with no reserve price followed

by a bargaining game in which the seller makes a take-it-or-leave-it offer to the high bidder (see

Menezes and Ryan 2005). In this modified setup, the seller’s valuation would be related to the

optimal public reserve price (RP ) and to the distribution of buyer valuations according to

S = RP −
1− FB(RP )

fB(RP )
(17)

The existing literature has provided a number of possible explanations for why some real-world

auctions include secret instead of public reserve prices. The findings of my paper are most closely

related to two previous papers, Elyakime, Laffont, Loisel, and Vuong (1994, 1997), both studying

timber auctions in France, which follow a format of a secret reserve auction followed by post-

auction bargaining (but the auction is a first price auction instead of an ascending auction). An

important point raised in the first paper is that the use of secret reserve prices may be motivated

by a goal to increase the sellers’ revenue rather than seller’s profits (where the latter includes the

seller’s private value). Using their structural model estimates, the authors found that the expected

revenue is 22% higher in the secret reserve auction than it would be in a public reserve auction.

The authors state, “If this superiority in expected sales of the secret reservation price was general,

then this might give a plausible explanation for the frequent use of auctions with secret reservation

price since the organizers of the auctions are paid a percentage of sales.” Wholesale auto auctions

have a similar feature where the auction house is only paid when trade occurs; as explained in

Appendix D, the fee in my setting is primarily a fixed fee. My results in Tables 4–5 suggest

that the seller-optimal mechanism can potentially have a lower probability of trade than the real-

world secret-reserve-auction-plus-bargaining mechanism. This is consistent with the findings and

conjecture of Elyakime, Laffont, Loisel, and Vuong (1994): the use of secret reserve prices may be

motivated by auction house incentives to increase trades.

An important point raised in the second paper, Elyakime, Laffont, Loisel, and Vuong (1997), is

that post-auction bargaining “is a consequence of the inability of the seller to commit to a secret

favor of random assignment of auctioneers in their data. Under such random assignment, ignoring these auctioneer
effects in my model would have no effect on the model’s interpretation if the auctioneer primarily affects the number of
bidders N or the bidders’ valuations. This is because N , B, and S are already considered to be mutually independent
in the model, and random auctioneer assignment would serve as one source of the random variation in B and N .
If, however, some auctioneers are better than others at actually influencing sellers to change their valuations then
this would not fit easily into the current model, because the reserve price is chosen before any auctioneer influence.
Lacetera, Larsen, Pope, and Sydnor (2016) provided survey evidence that sellers are not influenced by auctioneers in
this fashion; instead, the authors find survey and quantitative evidence that better auctioneers create more excitement
among bidders, which could be consistent with influencing N or B.
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or even public reservation price.” A secret reserve price itself may also reflect a seller’s inability to

commit to the optimal bargaining outcome (i.e. a public reserve price). At wholesale auto auctions,

the auction house does not provide an avenue for sellers to commit to or announce a reserve price

before the auction, and the auction house calls up the seller when the secret reserve price is not met,

also reducing a seller’s commitment power. Here I present evidence that the current secret reserve

price mechanism leads to higher reserve prices than would a public reserve auction, potentially due

to this lack of commitment power in the current mechanism.

A simple way to compare secret vs. public reserve prices is to compare the seller valuations

estimated in the body of the paper to those that would be implied from naively treating the secret

reserve prices in the data as optimally set public reserve prices.30 The distribution of these implied

values can be computed by simply plugging in draws from F̂R into (17). Figure A2 displays the

results of this comparison. The results in each panel indicate that the seller valuations estimated in

the body of the paper are, for the most part, lower than those that would be inferred from treating

reserve prices as optimal public reserve prices. Equivalently, the secret reserve prices observed in

the data appear to be for the most part higher than optimal public reserve prices would be. This

may arise because, in the current mechanism, when sellers set a high reserve price and the auction

price falls short of the reserve price, sellers can still have the option to accept the auction price

or take other bargaining actions, whereas in the public reserve setting the seller must commit to

a non-negotiable reserve price. Thus, the downside to setting a high secret reserve price may be

smaller than the downside to setting a high public reserve price. Along these lines, Kim (2013),

Coey, Larsen, Sweeney, and Waisman (2018), and others have noted the asymmetric losses from

choosing a non-optimal public reserve price: the losses in expected revenue from setting too high of

a public reserve price can be large, and are much larger than the losses from setting a public reserve

price too low. Industry commentators suggest that sellers’ reserve prices at wholesale auto auctions

do indeed appear to be surprisingly high (Treece 2013). The exercise presented here suggests that

this feature may be driven at least in part by the fact that the auction mechanism is a secret reserve

auction followed by bargaining, where sellers do not commit ex-ante to a publicly announced reserve

price.

30Note that the seller CDF bounds estimated in the body of the paper do not rely on the distribution of secret
reserve prices other than through the inequality R ≥ S.
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C Technical Details on Estimation Steps

C.1 Additional Details on Sample Restrictions and Controlling for Game-level

Observables

C.1.1 Sample Restrictions

Table A2 describes the order in which I impose sample restrictions and also the number of ob-

servations dropped due to each restriction. Panel A describes the first restrictions I impose using

the full dataset, before splitting into dealer and fleet/lease sales, and panel B describes restrictions

I impose separately for the dealers and fleet/lease samples. The full sample contains 1,008,847

runs of vehicles. I first drop observations having missing values for the auction house blue book

estimate or odometer reading (158,520) or the timestamp of the attempted sale (21,246). These

missing values, and other misrecorded observations described below, are in many cases an indica-

tion that a planned run of the vehicle did not actually take place. I drop 126 observations with

misrecorded Vehicle Identification Numbers (VINs), such as those having all zeros or less than the

correct number of characters for a VIN, and 4 duplicate observations at the VIN-seller-time level.

I also drop 1,578 observations in which the same car is recorded as having been sold by one seller,

then another seller, and then the original seller; I drop these because I do not trust that they are

recorded correctly. I drop 27,027 observations with both the auction price and the reserve price

missing because these cannot be used in my analysis. I compute each car’s age as the difference

between the model year and the year corresponding to the date the vehicle is run. I drop 5,855

observations that are very old (age > 16 years) or very new (i.e. next year’s model, in which case

age < 0) or that have less than 100 miles or greater than 300,000 miles on the odometer.

I drop a number of atypical observations (18,309) in which the data contains conflicting indi-

cators of whether the vehicle sold (e.g. the vehicle was recorded as having sold but no sales date is

recorded or the bargaining sequence suggests the agents ended in disagreement; or the vehicle was

recorded as having not sold but the auction price exceeded the reserve price). I also take several

steps to clean the bargaining sequences. I drop observations (10,269) in which bargaining began

through a bidder other than the high bidder contacting the auction house with an offer immediately

after a failed auction. In 2,595 observations, this same process occurs but with multiple bidders

reporting what are referred to as “back-up offers” to the auction house in case trade fails with the

current buyer in bargaining. These offers and back-up offers occur infrequently and are not the

primary methods of sale. I also drop 179 observations with inexplicable bargaining sequences (e.g.

the buyer accepts and then the seller counters); 150 observations in which the auction price appears

to have missing or extra zeros; 1,423 observations in which the sale price in the data is not equal

to the auction price or to the final negotiated price; and 9 observations in which the final price is

below the auction price. After all of these drops described in panel A, 761,557 observations remain,
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427,607 of which are dealer sales and 333,950 of which are fleet/lease sales.

I then impose a number of restrictions separately for the dealers and fleet/lease samples, shown

in panel B. I first drop observations for which the following variables lie outside their respective

0.01 and 0.99 percentiles: blue book price, final price, auction price, and reserve price. Panel B

lists the number of observations dropped in each case along with the particular cutoff values of the

cutoff defining the sample restriction (i.e. the 0.01 or 0.99 quantiles of the corresponding variable).

I also drop a small number of observations in which the later bargaining offers (i.e. beyond the

auction price) take on extreme values (lying outside the 0.01 or 0.99 quantiles of the auction price).

Finally, I drop observations from days on which fewer than 100 cars were offered for sale at a given

auction house on that day and observations in which fewer than ten vehicles were observed at a

given make-model-year-trim-age combination. In the end I am left with 300,740 observations in

the dealers sample and 211,656 observations in the fleet/lease sample. I will refer to these samples

as the regression samples.

Some of these remaining observations record only a secret reserve price or only an auction price

but not both. These observations are not suitable for my final analysis (which requires observing

both the auction price and the reserve price for a given attempted sale) but are still useful in

controlling for observable heterogeneity, and therefore I include these observations in the regression

sample used in the step 1 regression but not in the subsequent estimation steps. Panel C of Table

A2 provides counts for these observations. In the end, I am left with 133,523 dealer observations

and 131,443 fleet/lease observations that can be used in the full estimation procedure. I will refer

to these samples as my final samples.

I remark here briefly on these missing reserve prices and missing auction prices shown in panel

C of Table A2. Missing reserve prices typically occur when the seller chooses not to report a reserve

price, either planning to be present at the auction sale to accept or reject the auction price in person

or planning to have the auction house call her on the phone rather than determining a reserve price

a priori. Missing auction prices can indicate that a planned vehicle run actually never took place;

the auction house does not always have time to run every vehicle it plans to on a given day. Missing

auction prices can also arise from the descending/ascending practice of auctioneers: auctioneers do

not start the bidding at zero; they start the bidding high and then lower the price until a bidder

indicates a willingness to pay, at which point the ascending auction begins. If bidders are slow to

participate, the auctioneer will cease to lower bids and postpone the sale of the vehicle until a later

date, leaving no auction price recorded. See Lacetera, Larsen, Pope, and Sydnor (2016).

If sellers who choose not to report a reserve price have much higher valuations than other sellers,

then my results may be overstating the gains from trade (and the opposite is true if these missing

reserve prices correspond to low-value sellers). A similar argument can be made for missing auction

prices leading to an under- or over-statement of the gains from trade. To explore this possibility,

I estimate the probability of trade in the 19,265 observations in the dealers regression sample and
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in the 65,393 observations in the fleet/lease regression sample in which the reserve price is missing

(see panel C of Table A2. I compare these numbers to the overall probability of trade in the final

samples, shown in Table 1. In the dealers sample, I find that the probability of trade conditional

on a missing reserve price is 0.691, compared to 0.705 in the final sample. In the fleet/lease sample,

the corresponding numbers are 0.796 and 0.768, suggesting the opposite for fleet/lease cars. In both

cases, the numbers are quite close, suggesting that selection introduced by missing reserve prices

may not be a major concern. For missing auction prices, no similar analysis can be performed

because missing auction prices always correspond to a no-sale.

C.1.2 Observable Heterogeneity Regressions

In the regressions controlling for observable covariates, I include the following controls in xj :

1. Fifth-order polynomial terms (all degrees of the polynomial from one through five) in the

auction houses’ blue-book estimate and the odometer reading

2. The number of previous attempts to sell the car; the number of pictures displayed online; a

dummy for whether or not the odometer reading is considered accurate, and the interaction

of this dummy with the odometer reading; the interaction of the odometer reading with

car-make dummies

3. Dummies for each make-model-year-trim-age combination (where age refers to the age of the

vehicle in years); dummies for condition report grade (ranging from 1-5, observed only for

fleet/lease vehicles); dummies for the year-month combination and for auction house location

interacted with hour of sale; dummies for 32 different vehicle damage categories recorded by

the auction house; and dummies for each seller who appears in at least 500 observations

4. Dummies for discrete odometer bins: four equally sized bins for mileage in [0, 20000);

eight equally sized bins for mileage in [20000, 80000); four equally sized for mileage in

[100000, 200000); one bin for mileage in [200000, 250000); and one bin for mileage greater

than 250000.

5. Several measures of the thickness of the market during a given sale, computed as follows: for

a given car on a given sale date at a given auction house, I compute the number of remaining

vehicles still in queue to be sold at the same auction house on the same day lying in the same

category as the car in consideration. The six categories I consider are make, make-by-model,

make-by-age, make-by-model-by-age, age, or seller identity.

6. Controls for the run numbers, which represents the order in which cars are auctioned. I include

fifth-order polynomials for both the run number within an auction-house-by-day combination,

and the run number within an auction-house-by-day-by-lane combination.
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The market thickness measures described in bullet 5 above help control for inter-auction dy-

namics in a reduced-form way; they control for the level of possible alternative sales to which a

buyer might substitute if he fails to win the current sale. Similarly, for the seller, these controls

help account for how the existence of future market opportunities affects the current transaction.

See discussion in Section 3 and Appendix B.4.

For the dealers sample, overall the right-hand side variables in the regression includes 11,285

make-model-year-trim-age category effects and 313 other covariates; for the fleet/lease sample the

corresponding numbers are 7,314 and 284. The adjusted R2 from this first-stage regression is 0.95

in the fleet/lease sample and 0.93 in the dealers sample, implying that most of the variation in

auction prices and reserve prices is explained by observables.

C.1.3 Subsample Analyses

Table A6 displays bounds on the expected gains from trade using several different subsamples of

the data. The first row in each panel uses only observations of cars with below-median blue book

value (less-expensive cars). I find that the gains from trade and the efficiency loss are lower than in

the full sample (Tables 4–5). The second row examines cars with below-median age (newer cars),

where I find larger gains and efficiency shortfall than in the main estimates. The main estimates

of the paper treat observable characteristics X, which includes the blue book value and car age, as

independent of other random variables in the game, such as buyer and seller valuations. Table A6

demonstrates that this is indeed an abstraction, as the estimates do differ in these subsamples. For

less expensive cars, the estimated gains from trade and efficiency shortfall are lower than in the full

sample. For newer cars, the numbers are quite similar to those in the full sample. Importantly, the

qualitative findings of the paper are robust: the ex-ante and ex-post efficient outcomes are close

to one another, and the real-world bargaining falls short of efficiency. Appendix B.4 discusses the

other results in Table A6.

C.2 Technical Details on Estimation for Unobserved Game-Level Heterogeneity

Nonparametric identification of fR, fP
A

, and fW follows from immediately arguments used in Li

and Vuong (1998), Krasnokutskaya (2011), Evdokimov and White (2012), Freyberger and Larsen

(2017), and elsewhere; I rely specifically on the assumptions of Evdokimov and White (2012):

Proposition 8. By independence of R, PA, and W , and by Assumption A8, the joint density of

R+W and PA +W nonparametrically identifies the marginal densities of R, PA, and W .

Proof. This result follows by Lemma 1 of Evdokimov and White (2012).

The estimation details are as follows. For each random variable Y ∈ {W,R,PA},
the density of Y is approximated by normalized orthogonal Hermite polynomials, fY (y) ≈
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, where K is the number of elements in θY ; θY , µY ,

and σY are parameters to be estimated for each Y ∈ {W,R,PA}; and Hk are Hermite polynomials,

defined recursively by H1(y) = 1, H2(y) = y, and Hk(y) = 1√
k
[yHk−1(y) −

√
k − 1Hk−2(y)] for

k > 2. A Hermite polynomial approximation for the densities, as advocated by Gallant and Nychka

(1987), has the advantage of being flexible and parsimonious, and also yields an approximation of

the CDFs FW , FR, and FPA as functions of the same parameters as the densities.

I maximize the likelihood in (2) subject to the constraint that, for each Y ∈ {W,R,PA},∑K
i=1(θYi )2 = 1, which ensures that each approximated function is indeed a density function, and

also subject to the constraint E[W ] = 0. I choose to include K = 5 terms.31 The location and scale

parameters {µY , σY }Y ∈{W,R,PA} are not required but improve the performance of the estimator

and are standard in estimation with Hermite polynomials. I estimate these parameters in an initial

step, maximizing (2) with each density fY being approximated by a N(µY , σY ). I then plug in the

estimated values of {µ̂Y , σ̂Y }Y ∈{W,R,PA} into (2) and maximize the likelihood to obtain consistent

estimates of {θY }Y ∈{W,R,PA}. Consistency of this estimation approach is discussed in Gallant and

Nychka (1987), Freyberger and Larsen (2017), and elsewhere.

Throughout the paper, for any estimator requiring integration against the density fW , such

as in (2), I perform this integration using Gauss-Hermite quadrature with 10 nodes. For any

univariate function g(·), Gauss-Hermite quadrature is given by
∫∞
−∞ g(v)dv ≈

∑KGH

k=1 g(xk)e
x2kwk,

where KGH is the number of nodes and xk and wk are the Gauss-Hermite quadrature nodes and

weights described in Judd (1998).

C.2.1 Estimates from Unobserved Heterogeneity Step

Figure A3 displays the resulting estimated CDFs. Table A5 shows, in panel A, the variance for each

of the independent components that sum up to the raw reserve prices and auction prices: X ′γ, W ,

and R and PA. As implied by the high adjusted R2 measures reported in Appendix C.1, over 93%

of the variation in auction prices and reserve prices is explained by observable X. In the dealers

sample, of the residual variation in reserve prices after the step 1 regression, 59% comes from the

variance inW and the remainder from the variance inR (computed by V ar(W )/(V ar(W )+V ar(R))

using draws of R and W from the estimated FR and FW ). In the fleet/lease sample, the unobserved

heterogeneity component W only explains 34% of the residual variance. For auction prices, the

proportion of residual auction prices explained by variance in W is 53% in the dealers sample and

33% in the fleet/lease sample. These numbers suggest that unobserved heterogeneity especially

plays a large role for dealer cars.

31The above framework can be treated as a semi-nonparametric maximum likelihood setting, letting K grow
appropriately with the sample size and choosing K through cross-validation. I instead fix K = 5, treating this as
a flexible parametric approximation, as suggested in Kim and Lee (2014) and Freyberger and Larsen (2017). I find
that choosing K larger than 5 does not affect estimates noticeably.
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One measure of the fit of the maximum likelihood procedure performed in step 2 is shown in

panel B of Table A5, where I display the correlation of the raw reserve prices and auction prices

compared with the correlation of R+W and PA +W simulated from their estimated distributions

FR, FPA , and FW . In the dealers sample, these numbers are 0.513 in the raw residuals vs. 0.557

in the simulation, and in the fleet/lease sample these numbers are 0.293 vs. 0.341. In each sample

the correlations differ by less than 0.05. A graphical evaluation in a similar vein is shown in Panels

A and B of Figure A5, where I plot the empirical CDF of the difference between the raw variables,

Rraw − PA,raw, along with the simulated CDF of R − PA, with R and PA drawn independently

from the estimated FR and FPA . In both panels A and B the two CDFs are indistinguishable,

suggesting that the fit is quite good.

C.2.2 Evaluating Additive Separability

I evaluate here the appropriateness of my additively separable model of heterogeneity. The variables

R, PA, and W are assumed to be independent and are not restricted to have positive support and

are added to X ′γ (which they are assumed independent of) to yield the raw, observed reserve

prices and auction prices. Therefore, nothing prevents my estimates from suggesting that some

reserve prices and auction prices might be negative (even though in the data all raw prices are

non-negative). However, in practice, the observable heterogeneity term X ′γ has most of its mass

far above zero, and the random variables R, PA, and W have most of their mass lying in a small

interval around zero, and thus the sums X ′γ + W + R and X ′γ + W + PA have the majority of

their mass being positive. I demonstrate this in panel A of Table A5, which displays the 0.1 to 0.9

quantile range of X ′γ̂ and of the estimated distributions of R, PA, and W . Even at the 0.1 quantile

of X ′γ̂, the negative 0.1 quantiles for the other components of prices are small enough in magnitude

that the model does not predict large negative observed prices. To evaluate this point further, I

simulate from the estimated distributions (taking draws of X ′γ from the empirical distribution of

the predicted value X ′γ̂ and taking draws of R, PA, and W from the estimated FR, FPA , and

FW ). I find that this exercise predicts negative values of X ′γ + W + R with probability 0.008 in

the dealers sample and 0.005 in the fleet/lease sample; the corresponding predictions for negative

values of X ′γ +W + PA are slightly larger but still small (0.042 and 0.010). Thus, the additively

separable model I use is at best an approximation—because in reality the raw, observed prices are

never negative—but appears to be a good approximation.

C.3 Technical Details on Buyer Distribution Estimation

Proposition 9. FB is nonparametrically identified by FPA and Pr(N = n).

Proof. This result follows immediately from the fact that the right-hand side of (3) is strictly

monotonic in FB(·) (see, for example, Athey and Haile 2007).

75



To estimate FB(·), I first replace FPA(v) in (3) with the maximum likelihood estimate F̂PA(v)

from (2) evaluated on a grid of values for v. I estimate P̂r(N = n) using the empirical probability

mass function of the lower bound of the number of bidders from the bid logs subsample discussed

in Section 2. This treats the distribution of the lower bound as though it is the true distribution

of the number of bidders. I discuss this further below in Appendix C.3.1. I also discuss evidence

below in Appendix C.3.2 consistent with the underlying assumption that N is independent of buyer

valuations.

With P̂r(N = n) and F̂PA(v) in hand, I then obtain F̂B(v) by numerically solving (via a bisection

method) for the value u such that

0 = F̂PA(v)−
∑
n

P̂r(N = n)
[
nun−1 − (n− 1)un

]
(18)

Consistency of this type of order statistics inversion estimator is shown in Menzel and Morganti

(2013). The error in this estimation procedure can be made arbitrarily small—up to machine

precision and the estimation error in FPA and Pr(N = n)—as this procedure corresponds to

numerically solving for zeros of an identity.

C.3.1 Robustness to Distribution of Number of Bidders

In order to guide the choice of Pr(N = n), the distribution of the number of bidders, I first manually

collected additional data by visiting multiple auction house locations and physically observing over

200 auctions. For each auction sale, I recorded the number of bidders who appeared to be actively

participating or interested in the car. The mean of these observations, conditional on cases where

at least two bidders appeared to be active, was 2.62, close to the mean of the lower bound on the

number of bidders from the bid log sample (2.924 and 2.973 in the dealers and fleet/lease samples).

However, I also present evidence here that the key estimates in the paper are not sensitive to

how Pr(N = n) is specified. In doing so I compare several possibilities for Pr(N = n). The first

is that which is used in the body of the paper, which is the empirical probability mass function of

the lower bound on the number of bidders in each auction in the bid log sample. Let this random

variable be denoted N . The next is the empirical probability mass function of a (very conservative)

upper bound on the number of participants in each auction in the bid log sample. This upper

bound comes from adding the total number of bidders who signed in through the online portal

for a given lane on a given day (I observe this number in the bid log data, whether or not these

signed-in bidders placed any bids) to the total number of floor bids (physically present bids, as

described in Section 2); thus, this treats each floor bid as having come from a distinct bidder. Let

this random variable be denoted N . The mean of this upper bound is 15.64 in the dealers bid log

subsample and 25.99 in the fleet/lease bid log subsample. An additional possibility is that N is

drawn from some parametric distribution, such a Poisson, Negative Binomial, etc. Here I consider
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cases in which N follows a Poisson distribution with mean λ ∈ {3, 7, 10, 20}, conditional on N ≥ 2

(thus, these latter four are truncated Poisson distributions).

I find that the qualitative findings of the paper are not sensitive to the approximation chosen

for Pr(N = n), and the estimates themselves do not vary drastically. In Table A7, for each of

these choices of Pr(N = n), I display bounds on the expected gains from trade and probability of

trade. Panel A shows bounds for ex-post efficiency, the second-best mechanism, and the real-world

bargaining, and bounds on the difference between ex-post efficiency and the real-world mechanism.

The estimated expected gains are lower under specifications of Pr(N = n) that place more mass on

higher N . Panel B displays similar results for the probability of trade and also demonstrates that

the estimated probability of trade is lower under specifications for Pr(N = n) that place more mass

on higher N .32 Both panels indicate only small changes in the estimated bounds across different

specifications for Pr(N = n).

I now present a discussion of why these welfare measures are relatively insensitive to this choice.

The welfare measures I evaluate depend on the estimated distribution of buyer valuations, but in

a particular way: they depend primarily on the distribution of the valuation of the highest bidder

(the buyer who bargains) conditional on the auction price, integrated against the auction price

density; this yields the distribution of the maximum order statistic of buyer valuations. To see this,

note that the maximum order statistic distribution (averaged over values of N) can be computed

as

FB(1)(v) =
∑
n

Pr(N = n)FB(v)n, (19)

or, alternatively, it can be computed from the density of the maximum order statistic conditional

on the second order statistic integrated against the density of the second order statistic, given by

FB(1)(v) =

∫ v

b

∫ y

b
=

fB(y)

1− FB(pA)
fPA(pA)dpAdy. (20)

Each of the welfare measures evaluated in this paper (described in Section 5) depend on an object

similar to the latter formulation, although the relationship between (20) and what I evaluate is not

exact—for example, the denominator in my welfare measures is 1−FB(χ−1(pA)), and in estimating

χ−1(·) and g(·) in estimation steps 5–6 terms appear that are not exactly the same as maximum

order statistic distributions.

Figure A6 demonstrates that the distribution of the maximum order statistic is much less

sensitive than the underlying distribution FB to the choice of Pr(N = n). Panels A and B show

32To create Table A7, I run estimation step 3 under a given specification of Pr(N = n), yielding an estimate of
FB , and then I use this new FB in re-doing estimation steps 5–6 and in computing counterfactuals. I do not estimate
bounds on the probability of trade for the second-best mechanism in Table A7, as calculating bounds on this quantity
is computationally intensive, as described in Proposition 6 and Table 3.
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the estimates of the underlying distribution, FB, which differ widely as Pr(N = n) changes. Panels

C and D show the distribution of the maximum order statistic, obtained by using FPA(v) and

Pr(N = n) to obtain FB(v) by solving (3) and then using this FB(v) and Pr(N = n) to obtain

FB(1)(v) using (19) or (20). Panels C and D demonstrate that the distribution of the maximum

order statistic is quite insensitive to the choice of Pr(N = n) used in this procedure.

For certain choices of Pr(N = n), including the Poisson distribution, it is possible to prove

analytically that the computed maximum order statistic distribution will be entirely insensitive to

Pr(N = n). I state this as the following proposition.33 Below, note that FB(2) denotes the second

order statistic distribution (averaged over values of N), which is equivalent to FPA in the body of

the paper.

Proposition 10. If Pr(N = n) is given by a Poisson distribution with parameter λ, and FB(2)

is known, then, at any point v, the maximum order statistic distribution FB(1)(v) obtained by the

following two steps will have zero derivative with respect to λ: 1) use FB(2)(v) and Pr(N = n) to

obtain FB(v) by solving (3); 2) use this FB(v) and Pr(N = n) to obtain FB(1)(v) using (19) or

(20).

Proof. When Pr(N = n) is a Poisson with mean λ, it can be shown that FB(v) = ψ(FB(2)(v);λ),

where ψ(FB(2)(v);λ) is defined implicitly as the solution to

FB(2)(v) = (1 + λ(1− ψ(FB(2)(v);λ)))eλ(ψ(F
B(2) (v);λ)−1) (21)

and the maximum order statistic distribution is given by

FB(1)(v) = eλ(ψ(F
B(2) (v);λ)−1) (22)

Holding fixed v and FB(2)(v), implicitly differentiating (21) with respect to λ yields

0 =

(
1− ψ(FB(2)(v);λ)− λdψ(FB(2)(v);λ)

dλ

)
FB(1)(v) + (1− λ(1− ψ(FB(2)(v);λ)))

dFB(1)(v)

dλ

(23)

where I take into account that FB(1) will depend on λ. Note that

dFB(1)(v)

dλ
= eλ(ψ(F

B(2) (v);λ)−1)

(
ψ(FB(2)(v);λ)− 1 + λ

dψ(FB(2)(v);λ)

dλ

)
(24)

Plugging (24) into (23) yields

0 = λ(1− ψ(FB(2)(v);λ))
dFB(1)(v)

dλ
(25)

33I thank Zhaonan Qu for help with this proof.

78



Recall that ψ(FB(2)(v);λ) = FB(v). This expression in (25) must hold at all v, even at v where

FB(v) 6= 1. Thus, it must be the case that
dF
B(1) (v)

dλ = 0.

Proposition 10 should not be misinterpreted as an unconditional statement that the distribution

of the maximum order statistic does not depend on λ. Rather, the result demonstrates that,

conditional on FB(2) , the exercise of inverting FB(2) to obtain FB, and then computing FB(1) from

this FB, is invariant to λ. It may be possible to prove this mathematical result for a larger class

of Pr(N = n), for, as demonstrated in Figure A6, even at non-Poisson distributed N (such as the

distributions of the upper and lower bounds on the number of bidders or the truncated Poisson

distributions), FB(1) is very insensitive to the choice of Pr(N = n).

To my knowledge, Proposition 10 is new to the literature, and may be of some independent

interest, as it suggests assumptions under which one can compute the marginal distribution of the

maximum order statistic solely from knowledge of the marginal distribution of the second order

statistic, without knowing N or even fully specifying the distribution of N .34 In turn, these two

objects—the marginal distributions of the first and second order statistics—can then be used to

identify many objects of interest in auction settings, such as bidder surplus, seller profits, and

optimal reserve prices, as pointed out by Aradillas-Lopez, Ghandi, and Quint (2013).

C.3.2 Valuations Independent of Number of Bidders

The estimation of buyer valuations in Section 4 relies on the assumption (stated in Assumption A1)

that buyer valuations are independent of N , the number of bidders. Here I examine the validity of

this assumption.

For any k ≤ n and any v, let

ψk:n(v) ≡ n!

(n− k)!(k − 1)!

∫ v

0
tk−1(1− t)n−kdt

Proposition 2 of Aradillas-López, Gandhi, and Quint (2016) demonstrated the following (modified to

the environment of this paper). Suppose buyer values (given by the random variable B̃ = B+W ) are

non-negatively correlated within a given auction, as they will be in an environment of conditionally

independent private values with independent, additively separable unobserved heterogeneity. Then

for any v and any n > n′, valuations being independent of N implies

ψ−1
n−1:n(FB̃n−1:n(v)) ≥ ψ−1

n′−1:n′(FB̃n′−1:n′ (v)) (26)

where, for any n, FB̃n−1:n represents the distribution of the auction price (including unobservable

34Precisely, these assumptions are symmetric, conditionally independent, private values (or independent private
values with separable unobserved heterogeneity) with valuations independent of N and with N distributed according
to a Poisson distribution with unknown mean λ.
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heterogeneity) when n bidders are present. Importantly, Aradillas-López, Gandhi, and Quint (2016)

demonstrated that standard models of endogenous entry in auctions, such as those of Samuelson

(1985) and Levin and Smith (1994), would violate (26).

I apply this result by performing the inversion in (26) for different values of n in the bid log

subsample. For this exercise, I treat the lower bound on the number of bidders in a given auction

in this subsample as though it represents the true number of bidders in that auction. Panels E and

F of Figure A6 display estimates of ψ−1
n−1:n(FB̃n−1:n(·)) for the most prevalent values of n observed

in the bid log subsample. In both the dealers and fleet/lease samples, a pattern emerges consistent

with the inequality in (26) and inconsistent with the models of endogenous entry highlighted in

Aradillas-López, Gandhi, and Quint (2016), lending credence to the assumption that valuations are

independent of N .

C.4 Technical Details on Estimation of Seller Valuation Bounds

I begin this section with a nonparametric identification proof. Below, and throughout the appendix,

for any function f(v) : RK 7→ R, let its Fourier transform be denoted

FTf (u) =

∫
f(v)e−2πiv·udv

where v · u represents the inner product. When I take a Fourier transform of any function that

does not necessarily have full support, I consider its support to be extended such that the function

is zero outside of its original support.

Proposition 11. The functions FLS and FUS are nonparametrically identified by fPA, fW , FR,

Pr(DS = A|P̃A = v), and Pr(DS 6= Q|P̃A = v).

Proof. First, note that a solution exists satisfying the constraints in Φ, defined in the sentence

below (4); one such solution is FLS = FUS = FR. Let (FLS,0, F
U
S,0) represent a pair of bounds in

Φ such that the objective function in (4) is minimized; q(v;FLS,0) and q(v;FUS,0) are then q(v; ·)
evaluated at this pair of functions. I now demonstrate that these functions q(·;FLS,0) and q(·;FUS,0)

uniquely determine (FLS,0, F
U
S,0), demonstrating that (FLS,0, F

U
S,0) is identified. Let

q̄L(v) = q(v;FLS,0)

(∫
MS(v, z)dz

)
=

∫
FLS,0(v − w)fPA(v − w)fW (w)dw

Then, evaluated at FLS,0, the term in (4) that depends on FLS can be written

∣∣∣∣∣Pr(DS = A|P̃A = v)

(∫
MS(v, z)dz

)
− q̄(v)

∣∣∣∣∣
2

(27)
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The object q̄L(v) is a convolution of a(v) ≡ FL,0S (v)fPA(v) against the density fW (w). Specifi-

cally, for any u ∈ R,

FTq̄L(u) =

∫ (∫
a(v − w)fW (w)dw

)
e−2πivudv

=

∫
fW (w)

(∫
a(v − w)e−2πivudv

)
dw

=

∫
fW (w)

(∫
a(y)e−2πi(y+w)udy

)
dw

=

(∫
fW (w)e−2πiwudw

)∫
a(y)e−2πiyudy

= FTfW (u)FTa(u)

where y = v − w and dy = dv. Rearranging yields

FTa(u) =
FTq̄L(u)

FTfW (u)
(28)

By Assumption A8(i), FTfW (u)—the characteristic function of fW—has only isolated zeros, and

hence (28) does not divide by zero except on a set of measure zero. Taking the inverse Fourier

transform then yields a(v). This function can then be rearranged to solve for FLS,0 by dividing by

fPA(v), which is positive at every v in the support of PA. Thus, q̄(v;FLS,0) uniquely identifies FLS,0.

A similar argument applies for FUS,0.

To estimate the bounds on the distribution of seller valuations, I parameterize FLS (·) and FUS (·)
using piecewise linear splines. A spline approximation—or other linear sieve approximation—to an

unknown function has the advantage of being linear in parameters while remaining very flexible

in fitting the function. Let {vSk }
KS
k=1 represent a fixed vector of KS knots on the support of P̃A,

and LSS(·) : R 7→ RKS be the piecewise linear spline transformation for this vector of knots. An

approximation to FS is then given by FS(·; θS) ≡ LSS(v)′θS and an approximation to the density is

given by fS(v; θS) ≡ LS′S(v)′θS , where θS is a KS-by-1 vector of parameters.35 I choose the knots

{vSk }
KS
k=1 to be uniformly spaced between the 0.001–0.999 quantiles of P̃A, and I choose KS = 200

as the number of knots for each bound (KS = 250 or KS = 300 yield similar results, as shown in

Panels A and B of Appendix Figure A7).

The lower and upper bounds can then be denoted FLS (v) = LSS(v)′θS,L and FUS (v) =

LSS(v)′θS,U , where (θS,L, θS,U ) are each KS-by-1 vectors of parameters to be estimated. I esti-

35Specifically, let mk(v) = (v − vSk )/(vSk+1 − vSk ) and let v ∈ [vSk , v
S
k+1] for some k ∈ {1, ...,KS − 1}. Then LSS(v)

returns a KS-by-1 vector with (1−mk(v)) as the kth element, mk(v) as the (k + 1)th element, and zeros elsewhere.
Thus, letting ∆k = (θSk+1 − θSk )/(vSk+1 − vSk ), FS(v; θS) is given by θSk + (v − vSk )∆k. For the density, LS′S(v) returns
the derivative of the vector LSS(v) with respect to v, and thus fS(v; θS) = ∆k.
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mate these parameters by solving the following constrained least squares problem:

min
θS,L,θS,U

KS∑
k=1

[
ΩL(vSk ; θS,L)2 + ΩU (vSk ; θS,U )2

]
(29)

where

ΩL(vSk ; θS,L) ≡ P̂r(DS = A|P̃A = vSk )

∫ (
M̂S(vSk , z)dz

)
− L̃SS(vSk )′θS,L

ΩU (vSk ; θS,U ) ≡ P̂r(DS 6= Q|P̃A = vSk )

∫ (
M̂S(vSk , z)dz

)
− L̃SS(vSk )′θS,U

and where L̃SS(vSk ) is a KS-by-1 vector with the `th element given by
∫

(LSS(vSk −
w)′e(`))M̂S(vSk , w)dw and e(`) is a KS-by-1 selection vector with 1 in the `th spot and zeros else-

where. An advantage, again, of the spline approximation is that this object L̃SS(vSk ), which requires

numerical integration against fW , can be computed outside the optimization problem; this also sim-

plifies the computation of analytical derivatives to supply to the optimization algorithm. I impose

several constraints on the minimum distance problem in (29): (i) FLS lies graphically above FR and

graphically below FUS ; (ii) FLS and FUS lie in [0, 1]; (iii) FLS and FUS are weakly increasing; and (iv)

FLS (v) and FUS (v) are equal to 0 for any v < vS1 and equal to 1 for any v > vSKS . These last three

constraints ensure that FLS (v) and FUS (v) will correspond to proper distribution functions.

Computing the objective function in (29) requires estimates of F̂R, f̂PA , and f̂W , as well as

P̂r(DS = A|P̃A = p̃A), and P̂r(DS 6= Q|P̃A = p̃A). Estimates of the first three objects come

from the maximum likelihood procedure in (2). I estimate P̂r(DS = A|P̃A = p̃A) using a local

linear regression of the event 1{DS = A} on realizations of P̃A = p̃A.36 I estimate P̂r(DS 6=
Q|P̃A = p̃A) analogously. In (29) the combination of a nonparametric first-stage estimate of a

nuisance vector (e.g. P̂r(DS = A|P̃A = vSk )
(∫

M̂S(vSk , z)dz
)

) followed by a parametric second

stage estimated through minimum distance falls into the class of two-step semiparametric GMM

estimators, discussed in Ackerberg, Chen, and Liao (2014) and references therein, and is consistent

for estimating θ̂S,L, θ̂S,U .

For this optimization exercise, I find that the left tail of the bounds, in particular the left tail

of FUS , can be sensitive to the starting values. To evaluate this sensitivity, estimated the bounds

using starting values of FLS (v) = FUS (v) = 1 everywhere, starting values of FLS (v) = FUS (v) = FR(v)

36For this local linear regression, as well as the local linear regressions run in estimating χ−1(·), I use a Gaussian
kernel with the rule-of-thumb bandwidth presented in Ruppert, Sheather, and Wand (1995), who suggested computing
the bandwidth on the sample lying between the α and 1−α quantiles for some α ∈ [0, 1] in order to reduce sensitivity
to data in the tails. I use α = .001. I replace any estimates of conditional probabilities lying outside of [0, 1] with 0
and 1, following Frölich (2006).

As highlighted in Section 4, by construction, the Proposition 2 population bounds will not cross. Empirical estimates
of these bounds may cross, however. For example, a local linear approximation to the conditional probabilities in
Proposition 2 may cross; I find that such crossing is very minimal in my application. A kernel regression approximation
of these bounds (or other local constant approach to approximating a conditional average) will not cross.
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everywhere, and 20 additional cases varying uniformly between FLS (v) = FUS (v) = 1 and FLS (v) =

FUS (v) = FR(v). Panels E and F of Figure A7 show the estimates under the FLS (v) = FUS (v) = 1

starting values in solid lines; the estimates under the FLS (v) = FUS (v) = FR(v) starting values in

dotted lines; and, in dashed lines, the estimates under the case that achieved the smallest objective

value of (29) for the 22 cases tested. Searching over a large number of cases is computationally

burdensome, especially when bootstrapping the estimation procedure. I use the FLS (v) = FUS (v) = 1

starting values for my estimation throughout the paper because the objective value under these

starting values is very close to that under the dashed-line case.

I now discuss briefly the surjectivity of these bounds in this context as well as in other

alternating-offer settings. As explained in Section 3, the revealed preference bounds proposed

in this paper can be used in other alternating-offer settings to identify bounds on the valuations

of the player who responds to the first bargaining offer, whom I will refer to as the first responder.

In order for these bounds to be surjective (i.e. provide bounds for the whole range of the CDF

from [0, 1]) when evaluated on a given range of knots, the data must contain some realizations of

the first bargaining offer that are extreme enough that the first responder accepts with probability

close to one and some realizations of the first bargaining offer such that the first responder rejects

(quits) with probability close to one. If this is not the case in a given dataset, specific institutional

details may aid in identifying the support of the bounds, as I now describe.

In examining the surjectivity of the bounds in the current application, I find that there is

sufficient variation in the data for the lower bound to be surjective over the range of chosen knots.

The estimate of FUS reaches a value of 1, but does not fully reach a value of 0; in particular, I find

an estimate of θ̂S,U1 (the lowest spline parameter) of approximately 0.075 in the dealers sample and

0.09 in the fleet/lease sample, meaning that the estimate of FSU does not rule out the possibility

that 7.5% of sellers (or 9% of sellers in the fleet/lease sample) have values less than or equal to vS1 ,

the lowest knot; as explained above, this lowest knot is equal to the 0.001 quantile (approximately

the minimum) of the auction price distribution. I therefore treat FUS as having a mass point at vS1 .

This mass point could be placed at any arbitrary point weakly below vS1 . I choose to place it at

vS1 based on Assumption A9, that is, s ≥ b, which I believe is a conservative lower bound for the

support of seller’s values.37

The goodness of fit of the estimated bounds can be evaluated using the integrated absolute

37Surjective estimates of the bounds correspond to the case where θ̂S,U1 and θ̂S,L1 are close to 0 and the estimates
of θ̂S,UKS

and θ̂S,LKS
are close to one. If the bounds are not surjective, the following arguments provide a complete

description of FLS (v) and FUS (v) for points v that lie outside of the support of the chosen knots: (i) for v > vSKS
,

FLS (v) is given by a horizontal line at θ̂S,LKS
from vSKS

to F̂−1
R (θ̂S,LKS

) and by F̂R(v) above that point; (ii) for v > vSKS
,

FUS (v) = 1; (iii) for v < vS1 , FLS (v) = F̂R(v); (iv) for v < vS1 , F̂US (v) = 0 (or, if the assumption that s ≥ b were to be
relaxed, F̂US (v) for v < vS1 would be given by a horizontal line at θ̂S,L1 ). If the estimates of FLS and FUS are surjective,
then specifying conditions (i)–(iv) is unnecessary. The only condition that is binding in practice in my application is
condition (iv).
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error, which I compute as follows for FLS :

1∑KS
k=1 M̂S(vSk , z)dz

KS∑
k=1

|ΩL(vSk ; θ̂S,L)| (30)

I compute an analogous measure for FUS , with ΩL(vSk ; θ̂S,L) replaced with ΩU (vSk ; θ̂S,U ). These inte-

grated absolute error measures can be interpreted as the average percent by which the conditional

probability statement estimated directly from the data fails to be fit by its corresponding model

equivalent, where this average is weighted by where the data lies. I find this error to be less than

0.4% for the estimates of FLS and FUS in both the dealers and fleet/lease samples, as shown in Table

A5. Panels C and D in Figure A5 display these estimated conditional probability statements and

the corresponding fitted estimates. Table A5 also shows the integrated absolute error restricting

to cases that constitute violations of the conditional probability statements in (29), computed as

1∑KS
k=1 M̂S(vSk , z)dz

KS∑
k=1

ΩL(vSk ; θ̂S,L)1
{

ΩL(vSk ; θ̂S,L) > 0
}

for FLS and by

1∑KS
k=1 M̂S(vSk , z)dz

KS∑
k=1

−ΩU (vSk ; θ̂S,U )1
{

ΩU (vSk ; θ̂S,U ) < 0
}

for FUS . These quantities are 0.2% or smaller in both samples.

C.5 Technical Details on Estimation of Lower Bound of Support of Types Who

Bargain

I begin this section with a nonparametric identification proof.

Proposition 12. For any function FS(·) lying in the estimated bounds [F̂LS (·), F̂SU (·)], the functions

ρ(s) and ρ−1(r) are nonparametrically identified by FR. At every point in the support of PA and less

than the upper bound of the support of R, the function χ−1(·) in (6) is nonparametrically identified

by FR, fPA, fW , FB, and Pr(DB
1 = 0|P̃A = p̃A, P̃A < R̃).

Proof. For any function FS(·) lying in the estimated bounds [F̂LS (·), F̂SU (·)], the function ρ(s) can

be constructed as ρ(s) = F−1
R (FS(s)), with FR replaced with the estimated F̂R from (2). Similarly,

ρ−1(r) can be constructed as ρ−1(r) = F−1
S (FR(r)).

Identification of χ−1 is more involved. Equation (6) can be written as

Pr(DB
1 = 0|P̃A = p̃A, P̃A < R̃)

(∫
Mχ(p̃A, z)dz

)
=

∫
1− FB(χ−1(p̃A − w))Mχ(p̃A, w)

1− FB(p̃A − w)
dw (31)
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where Mχ(p̃A, w) ≡ fPA(p̃A − w)(1 − FR(p̃A − w))fW (w) is the likelihood of the event (PA =

p̃A − w, P̃A < R̃,W = w). Now let

aχ(v) ≡ (1− FB(χ−1(v)))fPA(v)(1− FR(v))

1− FB(v)
(32)

The integrand on the right-hand side of (31) is a convolution of aχ(v) against the density fW (w),

given by

qχ(v) =

∫
aχ(v − w)fW (w)dw

By the same argument as in the proof of Proposition 11, for any u ∈ R,

FTaχ(u) =
FTqχ(u)

FTfW (u)
(33)

By Assumption A8(i), FTfW (u) has only isolated zeros, and hence (33) does not divide by zero

except on a set of measure zero. Taking the inverse Fourier transform then yields aχ(v). This

function can then be rearranged to solve for χ−1(·) as

χ−1(v) = F−1
B

(
1− aχ(v)(1− FB (v))

(1− FR(v))fPA(v)

)
Note that this expression does not divide by zero at any v that is in the support of PA and that

is less than the upper bound of the support of R; at such v, (1 − FR(v))fPA(v) is positive. Also,

FB(·) is invertible (because fB(·) is positive by Assumption A5). Thus χ−1(·) is nonparametrically

identified.

Note that Proposition 12 only demonstrates identification of χ−1(pA) at each pA that is less

than the upper bound of the support of R. This is because at each point beyond this upper bound,

the term 1 − FR(pA) is equal to zero. However, knowing χ−1 beyond this point is unnecessary

because at such a pA the game will always end at the auction (because the auction price is larger

than the largest R).

For estimation, I let hχ(·) ≡ 1 − FB(χ−1(·)), and I approximate this function as a flexible

piecewise linear spline, denoted hχ(·; θχ) ≡ LSχ(·)′θχ, where θχ is a vector of spline parameters

and LSχ(·) : R 7→ RKχ is the linear spline transformation for a fixed vector of knots {vχk }
Kχ
k=1,

defined analogously to the linear spline transformation described in Appendix C.4 for estimating

seller valuation bounds. I choose the knots {vχk }
Kχ
k=1 to be uniformly spaced between the 0.001–0.999

quantiles of P̃A, and set χ−1(v) = v for any v outside of these knots. I choose Kχ = 25. I estimate
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θχ by solving the following constrained least squares problem:

min
θχ

Kχ∑
k=1

[
P̂r(DB

1 = 0|P̃A = vχk , P̃
A < R̃)

(∫
M̂χ(vχk , z)dz

)
− L̃Sχ(vχk )′θχ

]2

(34)

where L̃Sχ(vχk ) is a Kχ-by-1 vector with the `th element given by

∫
(LSχ(vχk − w)′e(`))M̂χ(vχk , w)

1− F̂B(vχk − w)
dw

and e(`) is a Kχ-by-1 selection vector with 1 in the `th spot and zeros elsewhere. I impose the

constraints that hχ(·; θχ) is decreasing and 0 ≤ hχ(vχk ; θχ) ≤ 1−FB(vχk ) for each k. Computing the

objective function in (34) requires the estimates of F̂B, F̂R, f̂PA , and f̂W from above. The object

M̂χ(·) comes from evaluating Mχ(·) using these estimated distributions. To estimate P̂r(DB
1 =

0|P̃A = p̃A, P̃A < R̃), I use a local linear regression of the event 1{DB
1 = 0} on realizations of

P̃A = p̃A using observations where the auction price falls below the reserve (P̃A < R̃). As with the

estimator described in (29), the estimator in (34) falls into the class of two-step semiparametric

GMM estimators and will be consistent for θ̂χ. From estimates of hχ(·), an estimate of χ−1(·) is

given by χ−1(·) = F−1
B (1− hχ(·)).38

Panels A and B of Figure A4 display the estimates for ρ̂−1(·) evaluated at the upper and lower

bounds for the seller CDF. Panels C and D display the estimates for χ̂−1(·). The goodness of fit of

the estimates for χ̂−1(·) can be evaluated using the integrated absolute error, as in (30), comparing

the conditional probability statement P̂r(DB
1 = 0|P̃A = vχk , P̃

A < R̃) estimated from the data to its

fitted equivalent from (34). I find this error to be less than 0.1% in both the dealers and fleet/lease

samples, as shown in Table A5. Panels E and F in Figure A5 display this estimated conditional

probability and the corresponding fitted estimates.

C.6 Technical Details on Estimation of the Direct Mechanism Corresponding

to Real-World Bargaining

I begin this section with a nonparametric identification proof.

Proposition 13. The function g(·) in (7) is nonparametrically identified by fR, fPA, fW , FB, and

Pr(A = 1|R̃ = r̃, P̃A = p̃A).

38The estimation of χ−1, ρ, and ρ−1 each require constructing inverse functions (of FB , FR, and FS); I construct
these via linear interpolation of their respective CDF estimates. I do the same for inverse CDFs discussed in Appendix
C.6.
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Proof. Equation (7) can be written as

Pr(A = 1|R̃ = r̃, P̃A = p̃A)

(∫
Mg(r̃, p̃

A, z)dz

)
=

∫
1− FB

(
g(r̃ − w, p̃A − w)

)
Mg(r̃, p̃

A, w)

1− FB (p̃A − w)
dw

(35)

where Mg(r̃, p̃
A, w) ≡ fR(r̃ − w)fPA(p̃A − w)fW (w). Now let

a(v1, v2) ≡ 1− FB(g(v1, v2))fR(v1)fPA(v2)

1− FB(v2)
(36)

and let v = (v1, v2). The integrand on the right-hand side of (35) is a convolution of a(v) against

the density fW (w), given by

qg(v) =

∫
a(v1 − w, v2 − w)fW (w)dw

Identification of a(v) follows from a convolution theorem argument. Taking the Fourier transform

of qg yields the following, where y = (y1, y2), y1 = v1 − w, y2 = v2 − w, and hence dy = du:

FTqg(u) =

∫
R2

(∫
R
a(v1 − w, v2 − w)fW (w)dw

)
e−2πi(v1u1+v2u2)dv

=

∫
R
fW (w)

(∫
R2

a(v1 − w, v2 − w)e−2πi(v1u1+v2u2)dv

)
dw

=

∫
R
fW (w)

(∫
R2

a(y1, y2)e−2πi((y1+w)u1+(y2+w)u2)dy

)
dw

=

(∫
R
fW (w)e−2πiw(u1+u2)dw

)∫
R2

a(y1, y2)e−2πi(y1u1+y2u2)dy

= FTfW (u1 + u2)FTa(u)

Because FTfW has only isolated zeros (Assumption A8(i)), it follows that

FTa(u) =
FTqg(u)

FTfW (u1 + u2)

Taking the inverse Fourier transform then yields a(v1, v2). This function can then be rearranged

to solve for g(·) as

g(v1, v2) = F−1
B

(
1− a(v1, v2)(1− FB (v2))

fR(v1)fPA(v2)

)
where fR(v1)fPA(v2) is positive at every v1 in the support of R and v2 in the support of PA; and

FB(·) is invertible (because fB(·) is positive by Assumption A5). Thus g(·) is nonparametrically

identified.
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For estimation, I approximate the function hg(r, pA) ≡ 1−FB(g(r,pA)
1−FB(pA)

using a flexible bilinear

spline defined on a two-dimensional grid for r̃ and p̃A, with KA = 25 grid points in each dimension.

Let these grid points be denoted {vRk }
KA
k=1 and {vPAj }

KA
j=1. This yields Kg = K2

A = 625 parameters to

be estimated. I chose these knots to be uniformly spaced between the 0.001 and 0.999 quantiles of R̃

and P̃A, respectively. I denote this approximation hg(r, p
A; θg) ≡ BL(r, pA)′θg, where BL(·) : R2 7→

RKg .39 Like the linear spline approximation used to estimate χ−1 and bounds on FS , this bilinear

approximation has several advantages: it is very flexible; it allows me to perform the integration

against fW in a first step, outside of the optimization over θg; and it eases the calculation of

analytical derivatives of the objective function to feed to the optimization routine.

I estimate θg by solving the following constrained least squares problem:

min
θg

KA∑
k=1

KA∑
j=1

[
P̂r(A|R̃ = vRk , P̃

A = vP
A

j )

(∫
M̂g(v

R
k , v

PA

j , z)dz

)
− B̃Lg(vRk , vP

A

j )′θg

]2

(37)

where B̃Lg(v
R
k , v

PA
j ) is a Kg-by-1 vector with the `th element given by

∫
(BLg(v

R
k − w, vP

A

j −
w)′e(`))M̂g(v

R
k , v

PA
j , w)dw and e(`) is a Kg-by-1 selection vector with 1 in the `th spot and zeros

elsewhere. The constraints I impose are that hg(r, p
A) ∈ [0, 1]; hg(r, p

A) is decreasing in r; and

g(r, pA) ≥ g(r, pA) ≡ max{pA, ρ−1(r)} ⇒ h(r, pA) ≤ 1−FB(g(r,pA))

1−FB(pA)
. I enforce this latter constraint

by evaluating ρ−1(r) = F−1
S (FR(r)) at FS = F̂LS . This ensures that the estimated real-world

mechanism is consistent with the estimated valuation distributions in that it does not imply trade

occurring for cases where S > B.

In (37), the objects F̂B, f̂R, f̂PA , and f̂W are those estimated above, and M̂g(·) comes from

evaluating Mg(·) using these estimated distributions. To estimate the conditional probability

P̂r(A = 1|R̃ = r̃, P̃A = p̃A) I use a tensor product of two univariate cubic b-spline functions,

with fifteen knots in each dimension (uniformly spaced between the 0.001 and 0.999 quantiles of

R̃ and P̃A, respectively).40 As with (29) and (34), this estimator falls into the class of two-step

semiparametric GMM estimators, which will be consistent for estimating θ̂g. With estimates of θ̂g,

39For r ∈ [vRk , v
R
k+1], pA ∈ [vP

A

j , vP
A

j+1], BL(r, pA) returns a vector of Kg elements, with one element corresponding

to each combination of grid points from {vRk }
KA
k=1 and {vP

A

j }KAj=1 (and hence one element corresponding to each

element of θg). Specifically, BL(r, pA) returns zeros everywhere except for the following locations, where m(r, pA) =

(vRk+1− vRk )(vP
A

j+1− vP
A

j ): it returns (vRk+1− r)(vP
A

j+1− pA)/m(r, pA) for the element in θg corresponding to (vRk , v
PA

j );

(r− vRk )(vP
A

j+1 − pA)/m(r, pA) for the element in θg corresponding to (vRk+1, v
PA

j ); (vRk+1 − r)(pA − vP
A

j )/m(r, pA) for

the element in θg corresponding to (vRk , v
PA

j+1); and (r− vRk )(pA − vP
A

j )/m(r, pA) for the element in θg corresponding

to (vRk+1, v
PA

j+1).
40This yields 121 parameters to be estimated in the estimation of P̂r(A = 1|R̃ = r̃, P̃A = p̃A). Given a set of I knots,
{ti}Ii=1, a univariate b-spline transformation of degree d evaluated at a point v is defined as follows. BS1(v) returns
an (I−d−1)-by-1 vector with 1 as its ith element if ti ≤ v < ti+1 and 0 otherwise. BSk(v), for k ∈ {2, ..., d}, is defined

recursively, returning a vector with the ith element given by BSi,k(v) = v−ti
ti+k−ti

BSi,k−1(v)+
ti+k+1−v

ti+k+1−ti+1
BSi+1,k−1(v).

A cubic b-spline is given by BS3(v), and with I = 15 knots, yields I − d− 1 = 11 parameters to be estimated. The
tensor product of two such univariate b-splines thus yields 121 parameters to be estimated. In estimating this
conditional probability, I replace any estimates lying outside of [0, 1] with 0 and 1.
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I then obtain g(r, pA) = F−1
B (1− (1− FB(pA))hg(r, pA; θ̂g)).

Panels E and F of Figure A4 display the estimates for ĝ(·) evaluated at PA = 0. The goodness

of fit of the estimates for ĝ can be evaluated using the integrated absolute error, just as in (30)

for the seller distribution bounds. This compares the conditional probability statement P̂r(A|R̃ =

vRk , P̃
A = vP

A

j ) estimated from the data to its fitted equivalent from (37). I find this error to be

6.0% in the dealers sample and 2.47% in the fleet/lease sample, as shown in Table A5. This error

is somewhat larger than that of the estimates of FLS , FUS , and χ−1, as the estimation of g requires

fitting a two-dimensional flexible function rather than just a one-dimensional function.

C.7 Technical Details on Computation of Ex-ante Efficient Mechanisms and

Welfare Measures

C.7.1 Ex-ante Efficient Mechanisms

The focus of this paper is the efficiency of the bilateral bargaining between the seller and the high

bidder. To analyze this, I integrate welfare measures over the support of buyer and seller types who

bargain in a given instance of the game, ([b(pA), b], [s(pA), s]), and then integrate over realizations

of the auction price pA. Because valuations and transfers are additively separable in game-level

heterogeneity, W will play no role in evaluating welfare measures.

Allocation functions xη corresponding to mechanisms along the ex-ante efficient frontier can be

computed as follows. For a given realization of the auction price, pA, let fS(s|pA) = fS(s)
1−FS(s(pA))

and fB(b|pA) = fB(b)
1−FB(b(pA))

represent the densities of seller and buyer valuations conditional on pA

at the beginning of the bargaining (i.e. these are the Bayesian updated beliefs about valuations

after the auction stage). Let FS(s|pA) and FB(s|pA) represent their corresponding distributions.

Let q represent the expected utility of the lowest seller type (s(pA)). The allocation function xη is

the solution to the linear programming problem,

max
x

{
η[q(x; pA) + US(x; pA)] + (1− η)[Γ(x; pA)− q(x; pA) + UB(x; pA)]

}
(38)

subject to x(s, b; pA) ∈ [0, 1] ∀(s, b) ∈ [s(pA), s]× [b(pA), b]

xB(b; pA) ≡
∫ s

s(pA)
x(s, b; pA)fS(s|pA)ds weakly increasing in b

xS(s; pA) ≡
∫ b

b(pA)
x(s, b; pA)fB(b|pA)db weakly decreasing in s

Γ(x; pA) ≥ 0

See Section 2 of Williams (1987). The values ŪS(x) and UB(x) are the ex-ante expected utilities
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(prior to knowing their valuations) of the seller and buyer, given by

ŪS(x; pA) =

∫ b

b(pA)

∫ s

s(pA)
x(s, b; pA)fB(b|pA)FS(s|pA)dsdb (39)

ŪB(x; pA) =

∫ b

b(pA)

∫ s

s(pA)
x(s, b; pA)(1− FB(b|pA))fS(s|pA)dsdb (40)

The objects Γ(x; pA) and q(x; pA) are given by

Γ(x; pA) =

∫ b

b(pA)

∫ s

s(pA)
(b− s)x(s, b; pA)fS(s|pA)fB(b|pA)dsdb−

[
US(x; pA) + UB(x; pA))

]
q(x; pA) =

0 if η ≤ 1
2

Γ(x; pA) if η > 1
2

The monotonicity constraints on xB and xS in (38) ensure that the mechanism will be incentive

compatible. Williams (1987) referred to these constraints as the “troublesome constraints,” and he

demonstrated that these constraints can be ignored if the distributions FS and FB are regular. To

define regularity, let

φS(s, α1; pA) ≡ s+ α1
FS(s|pA)

fS(s|pA)
and φB(b, α2; pA) ≡ b− α2

1− FB(b|pA)

fB(b|pA)
(41)

Regularity corresponds to φS(·, 1; pA) and φB(·, 1; pA) being increasing functions. When this is the

case, the mechanisms along the ex-ante efficient frontier can be written as follows:

xα1(η),α2(η)(s, b; pA) = 1
{
φB(b, α2(η); pA) ≥ φS(s, α1(η); pA)

}
(42)

where the parameters (α1(η), α2(η)) can be solved for at any given η as described in Theorem 3 of

Williams (1987). This simplifies the linear programming problem in (38) considerably to merely

solving for a scalar.

When distributions are not regular, however, as in my application, I am required to solve the full

linear programming problem (38) subject to all of the original constraints. Plugging in estimates

of densities, CDFs, and lower support functions from steps 2–5 of the estimation procedure, I use

linear programming to solve the problem in (38) separately at each value of pA (i.e. each realization

of the lower bound of the support of bargaining types) on a grid of points for the s and b dimensions.

Appendix C.7.4 discusses this grid choice and also discusses numerical integration. I also solve this

problem separately at different FS lying in the estimated CDF bounds, as described in the Section

C.7.2.
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C.7.2 Computing Bounds on Welfare

Each of the welfare measures described in Section 5 can be computed by plugging in the corre-

sponding empirical estimates from Section 4 and using any seller valuation CDF lying between the

estimated seller CDF bounds. Let the space of such CDFs be given by F∗ = {FS ∈ F : FS(v) ∈
[FLS (v), FUS (v)]∀v ∈ [s, s]}. As in the proof of Proposition 6, let the notation W(x, FS) refer to a

welfare measure under a given allocation function x and at a given seller valuation distribution FS

(suppressing dependence on FB given that I have point estimates of FB). In the spirit of Reguant

(2016), bounds on any welfare measure W(x, FS), denoted [W(x),W(x)], can be computed by[
min
FS∈F∗

W(x, FS), max
FS∈F∗

W(x, FS)

]
(43)

Numerically computing these bounds is extremely burdensome, as it requires searching over a

high-dimensional parameter vector FS and solving a linear programming problem at each realiza-

tion of the lower bound of the support of types at each guess of FS . To reduce this computational

complexity, in computing bounds on welfare I reduce the number of knots in the spline approxi-

mation to K ′S = 25, with these knots uniformly spaced over the range of the original KS = 200

knots. Panels C and D of Appendix Figure A7 demonstrate that this number of knots still ap-

proximates the bounds well. Let the subset of these uniformly spaced indices be denoted K and

let the vector θ̃S,L = {θ̂S,Lk′ : k′ ∈ K} and the vector θ̃S,U = {θ̂S,Uk′ : k′ ∈ K}; that is, these vectors

are subsets of the original estimated spline coefficients from Section 4 corresponding to the uni-

formly spaced K ′S knots. The search to find bounds on welfare can then be performed over the set

ΘS ≡ {θS : θSk ∈ [θ̃S,Lk , θ̃S,Uk ] and θSk ≤ θSk+1∀k < K ′S} following (43).

To ease the computational burden further, I derive the monotonicity results presented in Propo-

sition 6 and summarized in Table 3. Each cell in Table 3 marked with a ↓ signifies that the specified

measure will decrease given a first-order stochastically dominating shift in the distribution of seller

valuations. Each cell marked with an asterisk indicates that there is no mathematical proof of a

monotonicity result and that the bounds must be determined numerically using (43). The buyer

and seller gains in the column labeled second-best are marked with “–” because, in the analysis

below, I will report bounds on these quantities that correspond to the respective player’s surplus

under the FS that leads to the maximum and minimum bounds on the total gains from trade.

Similarly, for the buyer-optimal column, bounds on the total gains from trade and seller gains

correspond to the FS that leads to the maximum and minimum bounds on the buyer gains from

trade, and similarly for the seller-optimal column (although it turns out that some of these welfare

measures also satisfy the monotonicity property, as discussed in the proof of Proposition 6).
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C.7.3 Bounding Bargaining Costs

For the real-world mechanism, bargaining costs will enter into the computation of the expected

gains from trade. For the lower bounds on expected gains from trade in the real-world bargaining

(WEG(xRW ),WB(xRW ), andWS(xRW ) in the notation of the proof of Proposition 6), I incorporate

these costs by subtracting an upper bound on expected bargaining costs, described below. To obtain

an upper bound on gains from trade, bargaining costs are set to zero.

Bounds on the parameters cB and cS can be derived from cases in which a player chooses to make

a counteroffer. A necessary condition for a party to choose to counter is that the payoff in the state

where the opponent accepts with probability one must exceed the player’s payoff from accepting

the current offer on the table. That is, pS2 − cS ≥ pB1 for a seller offer and b− pB3 − cB ≥ b− pS2 for

a buyer offer. Rearranging yields

pS2 − pB1 ≥ cS (44)

pS2 − pB3 ≥ cB (45)

Thus, an upper bound on cS is given by the minimum gap between period 2 and period 1 offers

and an upper bound on cB is given by the minimum gap between period 2 and period 3 offers (in

cases where such offers took place). Rather than use the minimum over all observations, I follow

Chernozhukov, Lee, and Rosen (2013) to obtain a bias-corrected, one-sided 95% confidence bound

for cS and cB and treat these as upper bounds on cS and cB, which I denote cS and cB.41

Let the random variable T be the period in which the game ends. The buyer’s and seller’s ex-

ante expected disutility due to bargaining costs are then given cBE [bT /2c] and cSE [b(T − 1)/2c],
respectively, because by round t of the game the buyer has made a total of b t2c offers (where b·c is

the floor function), and similarly for the seller.

Applying this approach yields estimates of an upper bound of less than $25 for both cS and cB

in the dealers sample and $50 for both cS and cB in the fleet/lease sample. The upper bound on

the total expected loss due to bargaining costs is $23.3 for buyers and $4.1 for sellers in the dealers

sample, and $33.6 for buyers and $5.2 for sellers in the fleet/lease sample.

C.7.4 Numerical Integration

The integrals in the welfare measures I evaluate involve integration in three dimensions, pA, b,

and s. For integration in the pA dimension, this integral is computed using Gauss-Chebyshev

quadrature with 25 nodes. For any univariate function g(·) to be integrated over [v, v], Gauss-

41Chernozhukov, Lee, and Rosen (2013) explained that taking the minimum over all observations using inequalities
such as those in those in (44) and (45) will be biased downward, precisely because they are derived from taking
a minimum. The authors suggested a bias-corrected 1 − α confidence bound (which the authors refer to as being
half-median unbiased) given, in this case, by taking the 1− α quantile of bootstrapped estimates of the minimum. I
perform this using 200 bootstrap replications.
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Chebyshev quadrature is given by
∫ v
v g(v)dv ≈ π(v−v)

2KGC

∑KGC

k=1 g(xk)wk, where KGC is the number of

nodes; xk = (1/2)(zk + 1)(v− v) + v; wk = (1− z2
k)1/2; and zk = cos(π(2k− 1)/(2KGC)) (see Judd

1998).

The integration in the s and b dimension is required not only for evaluating welfare measures

but also for solving the linear programming problem in (38); the pA dimension, on the other hand,

is only involved in computing a simple average. For the s and b dimensions, therefore, I choose

a larger number of nodes (50 in each dimension) to achieve a high degree of accuracy in solving

for the ex-ante efficient mechanisms. I choose these nodes to be evenly spaced quantiles of FS and

FB, which works particularly well here for numerical integration due to the fact that the seller

valuation distribution bounds can be multi-modal (corresponding to a CDF that is nearly flat over

large portions of the seller support). I construct fS and fB for these numerical integrals by finite

differences of FS and FB.

C.8 Computing Confidence Sets for Welfare Bounds

Confidence sets for the bounds on welfare can be computed by bootstrapping. Specifically, for any

estimated bounds on a welfare measure, which constitute an interval, [W(x),W(x)], the lower 95%

bootstrapped confidence band about W(x) and the upper 95% bootstrap confidence band about

W(x) will provide a conservative 95% confidence interval for the set [W(x),W(x)]. This claim

follows by a simple Bonferroni inequality argument: For a fixed α ∈ [0, 1], let cα/2 be the lower

critical value for the 1−α confidence band for W(x) and c1−α/2 be the upper critical value for the

1−α confidence band for W(x). Also, let A be the event that W(x) ≥ cα/2 and let A be the event

that W(x) ≤ c1−α/2. Therefore, Pr(A) = Pr(A) = 1− α/2. Bonferroni inequalities imply

Pr(A ∩A) ≥ Pr(A) + Pr(A)− Pr(A ∪A) ≥ Pr(A) + Pr(A)− 1 = 1− α,

thus completing the argument. To compute these confidence sets I use 200 bootstrap replications of

the full estimation procedure and counterfactual computations: for each replication, I take a sample

of observations the same size as the original sample, drawn with replacement from the original

sample, and use this bootstrap sample to perform all estimation steps 1–6 and all counterfactual

computations, including the large numerical search for welfare bounds where required by Table

3/Proposition 6.

This approach yields very similar results to the method proposed by Chernozhukov, Hong,

and Tamer (2007) (CHT) but has the advantage of yielding an asymmetric confidence set that is

guaranteed to lie within the range of bootstrapped estimates, i.e. the confidence set will naturally

be contained within the minimum and maximum bootstrapped estimates, as it is composed of

quantiles that are on the interior of these estimates. This is not the case with the symmetric

confidence sent of CHT, for example, where it is possible for one end of the estimated confidence
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set to lie outside the extremes of the bootstrapped estimates. For example, even if the estimated

gap between the expected gains from trade in the second-best and real-world mechanisms is positive

in every bootstrap sample, the CHT confidence set can contain zero. Given this feature, and given

that the above confidence sets are easier to compute, I adopt the above approach throughout the

paper.

D Auction House Fees

At wholesale auto auctions, when a buyer and seller agree on a price, both parties pay a fee to

the auction house to consummate the trade. These fees introduce a trade-reducing wedge: if a

buyer values the car more than the seller, but that difference in valuations is less than the sum of

the buyer and seller fees, the parties will not trade. The analysis in the body of the paper does

not remove this wedge, but rather lets these same fees be paid in counterfactual mechanisms just

as they are in the real-world mechanism. In this section, I compute the ex-post efficient outcome

absent auction house fees. I also compute the mechanism that implements the optimal broker fees,

also discussed in Myerson and Satterthwaite (1983).

From results in Myerson and Satterthwaite (1983), when an intermediating broker is paid by the

buyer and seller whenever trade occurs, and when buyer and seller distributions are regular, then

the mechanism that would maximize expected revenue for this broker is given by xα1(η),α2(η)(s, b; pA)

from (42) with α1 = α2 = 1. Thus, in the regular case, no optimization problem need be solved

to determine the broker-optimal mechanism. When distributions are not regular—as is the case

with my estimates—it is much more complex to solve for the broker-optimal mechanism. The

mechanism is given by the solution to

max
x

Γ(x; pA) (46)

subject to x(s, b; pA) ∈ [0, 1] ∀(s, b) ∈ [s(pA), s]× [b(pA), b]

xB(b; pA) ≡
∫ s

s(pA)
x(s, b; pA)fS(s|pA)ds weakly increasing in b

xS(s; pA) ≡
∫ b

b(pA)
x(s, b; pA)fB(b|pA)db weakly decreasing in s

As with the ex-ante efficient mechanisms, I solve for the broker-optimal mechanism by solving the

linear program in (46) separately for each value of pA on a grid of points for the s and b dimensions,

and I do so separately for different FS lying in the estimated CDF bounds, as described in Section

C.7.2.

I now describe how I compute the ex-post efficient outcome absent auction house fees. In

practice, buyer and seller fees can consist of both a fixed fee and a percentage commission, but
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the latter makes up only a small portion of the overall fee. Here I consider these fees to be solely

a fixed component, which I approximate using the average of seller fees and the average of buyer

fees observed in the data, denoted hS and hB here. This structure implies that the distribution

of buyers’ willingness to pay and sellers’ willingness to sell absent auction house fees is simply

a mean-shift of the buyer and seller valuation distributions estimated in Section 4; these shifted

distributions can be denoted FB∗ and FS∗ , where B∗ ≡ B+hB and S∗ ≡ S−hS .42 After performing

this mean-shift to the estimated distributions of buyer and seller valuations, I compute the ex-post

efficient outcome exactly the same as in the main counterfactuals (which use the non-adjusted

valuation distributions).

Table A8 displays the results of my analysis of auction house fees, with panel A showing results

for the dealers sample and panel B for the fleet/lease sample. The first column displays the expected

gains from trade and probability of trade under ex-post efficiency in the absence of auction house

fees. The second column reports the outcome of the broker-optimal mechanism, along with the

revenue this would raise for the auction house. The final column is similar to the real-world

bargaining welfare results from Tables 4–5, but here I also report the auction house revenue itself,

and I include this revenue in the calculation of gains from trade.43

The expected auction house fees in the real bargaining is $199 in both samples (the last row,

last column in panels A and B). The expected gains from trade under ex-post efficiency with these

fees removed (the first column in panels A and B) are naturally higher than those reported in

Tables 4–5. Part of this is mechanical due to removing the $199 fee. But Table A8 shows that

removing auction house fees increases the ex-post efficient gains from trade by more than just this

amount; this is because, in an ex-post efficient world, removing fees would allow additional buyers

and sellers (those whose valuations differ by less than the fee amount) to profitably trade.

I find that the optimal revenue for the auction house is $1,270–3,652 in the dealers sample

and $1,134–2,464 in the fleet/lease sample. These numbers are far above the revenue numbers

in the real mechanism. Both buyer gains and seller gains would be much lower in the broker-

optimal mechanism than in the real mechanism, as the majority of surplus would be taken by the

auction house. The probability of trade would also fall due under the broker-optimal mechanism

to the broker’s rent-extraction behavior, decreasing from 0.646 in the real-world to 0.271–0.560 in

the dealers sample, and from 0.658 to 0.303–0.501 in the fleet/lease sample. This optimal revenue

could only be achieved if the auction house were a monopolist provider of wholesale dealer-to-dealer

42The following is an example of how to interpret these adjusted distributions relative to the original FB and FS
distributions referred to elsewhere in the paper: if a buyer has a valuation of B = b, this buyer is willing to pay
a price b to the seller plus the auction house fee. Absent auction house fees, the buyer would be willing to pay
more—b∗ = b + hB—directly to the seller. Similarly, a seller with valuation S = s is willing to accept a price of s
from the buyer and also pay hS to the auction house. Absent auction house fees, the seller would be willing to accept
a lower price—s∗ = s− hS—from the buyer.

43Auction house revenue is the sum of the buyer and seller fee when trade occurs and 0 when trade fails. The buyer
and seller fee conditional on trade is reported in Appendix Table A3.
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trading. In practice, auction houses owned by different companies compete in most major cities,

and buyers and sellers have other outlets for buying and selling cars. This competition prevents

auction houses from fully exploiting the broker-optimal mechanism.
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Figure A1: Weakly Increasing Property of Seller Distribution Bounds (Illustration Only)

Notes: This figure illustrates an example of conditional probabilities from Proposition 2 (displayed as solid lines) that are not
monotone. The dashed lines displays the monotonized version of the seller CDF bounds from equation (16), but this
alternative version does not provide any tighter bounds on the seller distribution because CDFs are monotone by definition.
This figure is an illustration only; it does not display estimates.

Figure A2: Comparison of Public vs. Secret Reserve Prices

(A) Inferred FS , Dealers (B) Inferred FS , Fleet/lease

Notes: Panels A and B display the bounds on FS (solid lines) along with CDF of seller valuations inferred from naively
treating reserve prices as optimal public reserves (dashed line). Panels on the left use dealers sample and on the right use
fleet/lease sample. Units = $1, 000.
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Figure A3: Distributions of Reserve Prices, Auction Prices, and Unobserved Heterogeneity

(A) Reserve Price, Dealers (B) Reserve Price, Fleet/lease

(C) Auction Price, Dealers (D) Auction Price, Fleet/lease

(E) Unobserved Heterogeneity, Dealers (F) Unobserved Heterogeneity, Fleet/lease

Notes: Panels A–D display distributions of reserve prices and auction prices prior to removing unobserved heterogeneity
(dashed lines) and after removing unobserved heterogeneity (solid lines). Panels E and F display the estimated distribution of
unobserved heterogeneity. Panels on the left use dealers sample and on the right use fleet/lease sample. Units = $1, 000.
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Figure A4: Estimates of ρ−1(·), χ−1(·), and g(·)

(A) ρ−1, Dealers (B) ρ−1, Fleet/lease

(C) χ−1(·), Dealers (D) χ−1(·), Fleet/lease

(E) g(·), Dealers (F) g(·), Fleet/lease

Notes: Panels A and B display estimates of ρ−1(R) using the upper and lower bound on the distribution of seller values (solid
lines) as well as the 45 degree line (dashed line). Panels C and D display the estimates of χ−1(PA) (solid line) and the 45
degree line (dashed line). Panels E and F display estimates of g(·, 0); that is, the g(R,PA) function evaluated at PA = 0.
Panels on the left use dealers sample and on the right use fleet/lease sample. Units = $1, 000.
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Figure A5: Fit of Estimates

(A) Dealers (B) Fleet/lease

(C) Dealers (D) Fleet/lease

(E) Dealers (F) Fleet/lease

Notes: Panels A and B display the CDF of R− PA based on draws from the estimated FR and FPA distributions compared
to the CDF of the difference between the raw values in the data (Rraw − PA,raw). Panels C and D display the estimated
conditional probability statements, Pr(DS = A|P̃A) and Pr(DS 6= Q|P̃A), compared to the fitted estimates (from the
right-hand-side quantities in (5) used to estimate FLS and FUS ). Panels E and F display the estimated conditional probability

statement Pr(DB1 = 0|P̃A, P̃A < R̃) compared to the fitted estimate (from the right-hand-side of (6) used to estimate χ−1).
Panels on the left use dealers sample and on the right use fleet/lease sample. Units = $1, 000.
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Figure A6: Robustness of Buyer Distribution Estimates

(A) FB , Dealers (B) FB , Fleet/lease

(C) FB(1) , Dealers (D) FB(1) , Fleet/lease

(E) Order Statistics Inversion of Correlated

Buyer Values, Dealers

(F) Order Statistics Inversion of Correlated Buyer

Values, Fleet/lease

Notes: Panels A and B display estimates of FB under different distributions for the number of bidders. Values for λ represent
the mean number of bidders under a Poisson distribution. N and N represent distribution of the upper bound and lower
bound on the number of bidders derived from bid log data. Panels C and D display the distribution of the maximum order
statistic, B(1). Panels E and F display estimates of ψ−1

n−1:n(FBn−1:n+W (·)) for varying n, following the logic proposed in
Aradillas-López, Gandhi, and Quint (2016) using the bid log subsample. Panels on the left use dealers sample and on the
right use fleet/lease sample. Units = $1, 000.

103



Figure A7: Robustness of Seller Distribution Bound Estimates

(A) Alternative Knots, Dealers (B) Alternative Knots, Fleet/lease

(C) 25 Knot Approximation, Dealers (D) 25 Knot Approximation, Fleet/lease

(E) Varying Start Values, Dealers (F) Varying Start Values, Fleet/lease

Notes: Panels A and B display bounds on seller distribution using linear splines with 200 knots (solid lines), as in the main
results displayed in Figure 1; 250 knots (dashed lines); 300 knots (dotted lines). Panels C and D display 25 uniformly spaced
knots from the main 200 knots and their corresponding estimated coefficients. Panels E and F display the main bounds on FS
(solid lines), obtained using start values of FLS (v) = FUS (v) = 1 everywhere, as well as estimates under two other start values
(dotted and dashed lines) discussed in Appendix C.4. Panels on the left use dealers sample and on the right use fleet/lease
sample. Units = $1, 000.
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Table A1: Theoretical Incomplete-Information Bargaining Literature

One-sided offers Alternating offers

One-sided 2-types Fudenberg and Tirole (1983) Rubinstein (1985, 1985b)

incomplete Sobel and Takahashi (1983) Bikhchandani (1992)

information Admati and Perry (1987)

Cont. Fudenberg, Levine, and Tirole (1985, 1987) Grossman and Perry (1986)

types Gul, Sonnenschein, and Wilson (1986) Gul and Sonnenschein (1988)

Ausubel and Deneckere (1989) Cramton (1991)

Two-sided 2-types Fudenberg and Tirole (1983) Chatterjee and Samuelson (1987,1988)

incomplete Feinberg and Skrzypacz (2005) Compte and Jehiel (2002)

information Gantner (2008)

Cont. Cramton (1984) Cramton (1992)

types Cho (1990) Perry (1986)

Ausubel and Deneckere (1992, 1993) Watson (1998)

Abreu and Gul (2000)

Notes: While by no means exhaustive, this table presents a list of a variety of theoretical papers on incomplete-information
bargaining settings, demonstrating that most of these papers do not model such games as being cases of two-sided incomplete
information with a continuum of buyer/seller valuations, where both parties can make offers. Rather, the literature focuses
primarily on settings of one-sided uncertainty (Fudenberg and Tirole 1983; Sobel and Takahashi 1983; Fudenberg, Levine, and
Tirole 1985; Rubinstein 1985a; Rubinstein 1985b; Gul, Sonnenschein, and Wilson 1986; Grossman and Perry (1986); Admati
and Perry 1987; Gul and Sonnenschein 1988; Ausubel and Deneckere 1989; Cramton 1991; Bikhchandani 1992), settings of
one-sided offers (Cramton 1984; Cho 1990; Ausubel and Deneckere 1993; Feinberg and Skrzypacz 2005), settings with
two-types rather than a continuum of types (Chatterjee and Samuelson 1988; Compte and Jehiel 2002), or settings with
uncertainty not being about valuations (Watson 1998; Abreu and Gul 2000). Two papers that did model bargaining as an
alternating-offer game and a continuum of types with two-sided incomplete information, where the incomplete information is
about players’ valuations, are Perry (1986), which predicted immediate agreement or disagreement, and Cramton (1992),
which modeled the bargaining game as beginning with a war of attrition and consisting of players signaling their valuations
through the length of delay between offers, as in Admati and Perry (1987). An additional line of research considers static
bargaining games with two-sided incomplete information referred to as k double auctions (see Chatterjee and Samuelson 1983
and Satterthwaite and Williams 1989), discussed in the body of the paper. See Binmore, Osborne, and Rubinstein (1992),
Kennan and Wilson (1993), Roth (1995), and Ausubel, Cramton, and Deneckere (2002) for additional surveys of the
theoretical and experimental bargaining literature.
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Table A2: Observations Dropped Through Sample Restrictions

A. Drops in combined sample (original combined sample size = 1,008,847) # Obs.

Missing blue book or odometer reading 158,520
Missing timestamp for run 21,246
Misrecorded VIN 126
Duplicate record at location-VIN-seller-time level 4
Car switched from seller A to seller B than back to A 1,578
Missing auction price and reserve price 27,027
Extreme age (<0 or >16 years) or odometer reading (<100 or >300,000 miles) 5,855
Inconsistent data on whether trade occurred or not 18,309
Bargaining begins with non-high-bidder offer 10,269
Bargaining sequence includes “back-up” offer(s) 2,595
Inexplicable bargaining sequence 179
Misrecorded prices (obvious mistakes of extra (or missing) zeros) 150
Final price not equal to auction price or final negotiated price 1,423
Final price below auction price 9

Total observations remaining 761,557
Dealers observations remaining 427,607
Fleet/lease observations remaining 333,950

Dealers Fleet/lease
B. Drops within dealers vs. fleet/lease samples # Obs. Cutoff # Obs. Cutoff

Blue book ≤ q(.01) 4,328 375 3,496 550
Blue book ≥ q(0.99) 4,285 25,550 3,351 30,825
Final price ≤ q(.01) 1,567 300 2,175 400
Final price ≥ q(0.99) 760 24,300 795 29,500
Auction price ≤ q(.01) 5,661 0 5,554 1
Auction price ≥ q(0.99) 292 25,000 291 29,000
Reserve price ≤ q(.01) 3,279 750 5,175 0
Reserve price ≥ q(0.99) 898 27,500 204 31,000
Counteroffers ≤ q(.01) or ≥ q(0.99) of auction price 70 42
Day with < 100 cars sold 9,890 20,737
Make-model-year-trim-age combo obs < 10 times 95,837 80,474

Total observations remaining 300,740 211,656

C. Obs that can be used only in Step 1 regression Dealers Fleet/lease

Reserve price recorded, auction price missing 148,075 15,034
Auction price recorded, reserve price missing 19,142 65,179

Total observations remaining for full estimation 133,523 131,443

Notes: Panel A displays the number of observations that each sample restriction (enforced in the order shown) drops from the
original sample. Appendix C.1.1 describes these restrictions. Panel B displays the number of observations dropped from
additional sample restrictions enforced (in the order shown) separately for the dealers and fleet/lease samples. For sample
restrictions involving trimming at the 0.01 or 0.99 quantiles (denoted q(0.01) and q(0.99)), Panel B also lists values of those
quantiles. Panel C displays the number of observations for which the reserve price or auction price is missing. These
observations can be used in the step 1 regression but not in the subsequent steps. The final sample size is shown in the last
row.
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Table A3: Additional Descriptive Statistics

Dealers Fleet/lease

A. Trade Sample Mean S.D. Mean S.D.

Reserve price $6,978 $4,926 $10,401 $5,943

Auction price $6,057 $4,673 $10,246 $5,996

Final price $6,075 $4,681 $10,255 $5,994

Buyer fee $162 $36 $209 $45

Seller fee $146 $54 $94 $15

Number of periods 1.957 0.587 1.591 0.579

Blue book $6,435 $4,603 $11,173 $6,335

Age (years) 7.021 3.278 3.216 2.539

Odometer (miles) 100,875 45,690 56,001 39,637

Sample size 94,170 100,983

B. No-trade Sample Mean S.D. Mean S.D.

Reserve price $8,427 $5,663 $9,996 $5,232

Auction price $6,720 $5,316 $8,337 $5,104

Number of periods 2.431 0.767 2.382 0.681

Blue book $7,740 $5,215 $10,212 $5,397

Age (years) 6.166 3.503 3.051 2.590

Odometer (miles) 90,909 47,471 62,390 42,419

Sample size 39,353 30,460

Notes: Mean and standard deviation of variables in dealers and fleet/lease samples. Number of periods is 1 if game ends
through auction price exceeding reserve, 2 if seller accepts at her first bargaining turn, etc. Blue book is an estimate of the
market value of the car, provided by the auction house. Panel A displays subsample where trade occurs and panel B displays
subsample where no trade occurs.
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Table A4: Outcomes of Game By Period: Fleet/lease Sample

Full Sample Conditional on Sale

Ending

period

Player’s

turn

#

Obs

% of

Sample

%

Trade

Reserve

price

Auction

price

Reserve

price

Auction

price

Final

price

1 (Auction) 45,204 34.391% 98.35% $10,202 $10,969 $10,246 $11,063 $11,063

($6,044) ($6,154) ($6,053) ($6,139) ($6,139)

2 S 73,718 56.084% 74.01% $10,694 $9,647 $10,586 $9,683 $9,683

($5,764) ($5,700) ($5,885) ($5,833) ($5,833)

3 B 10,630 8.087% 10.86% $8,345 $6,426 $8,533 $7,357 $7,817

($4,395) ($3,986) ($4,260) ($4,113) ($4,189)

4 S 896 0.682% 55.25% $8,500 $6,819 $8,845 $7,219 $7,539

($4,615) ($4,214) ($4,824) ($4,383) ($4,472)

5 B 920 0.700% 31.20% $8,884 $7,187 $9,385 $7,888 $8,509

($4,650) ($4,268) ($4,923) ($4,572) ($4,687)

6 S 36 0.027% 52.78% $8,775 $6,968 $8,726 $7,124 $7,711

($4,196) ($4,334) ($3,565) ($3,801) ($3,836)

7 B 35 0.027% 31.43% $10,454 $8,587 $12,991 $10,632 $11,727

($6,339) ($5,790) ($9,732) ($8,854) ($9,237)

8 S 2 0.002% 0.00% $16,250 $14,500 . . .

($7,425) ($6,364) . . .

9 B 2 0.002% 0.00% $11,750 $9,925 . . .

($8,132) ($7,743) – – –

Notes: Fleet/lease sample. For each period (period 1 = auction, period 2 = seller’s first turn in bargaining, period 3 = buyer’s
turn, etc.), table reports the number of observations ending in that period, percent of total sample ending in that period, and
percent of cases in which trade occurred. Table also reports reserve price and auction price for observations ending in a given
period and, for those observations ending in trade, the reserve price, auction price, and final price conditional on trade.
Corresponding statistics for the dealers sample are found in Table 2.
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Table A5: Model Dispersion and Fit

A. Dispersion Dealers Fleet/lease

Variance
0.1

Quantile

0.9

Quantile
Variance

0.1

Quantile

0.9

Quantile

X ′γ̂ 24.760 2.007 14.593 32.381 3.289 18.072

W 0.728 -0.979 0.885 0.478 -0.698 0.656

R 0.515 -0.379 1.102 0.908 -0.731 1.242

PA 0.653 -1.642 0.074 0.967 -1.302 0.836

B. Corr(R+W ,PA +W ) Dealers Fleet/lease

Corr(R+W ,PA +W ) from Step 1 residuals 0.513 0.293

Corr(R+W ,PA +W ) simulated 0.557 0.341

C. Probability of Negative Prices Dealers Fleet/lease

Pr(X ′γ +W +R < 0) 0.008 0.005

Pr(X ′γ +W + PA < 0) 0.042 0.010

D. Integrated Absolute Error Dealers Fleet/lease

FLS (·) 0.0039 0.0030

FUS (·) 0.0027 0.0017

FLS (·) violations 0.0017 0.0020

FUS (·) violations 0.0018 0.0011

χ−1(·) 0.0005 0.0003

g(·) 0.0600 0.0247

Notes: Panel A displays the variance, 0.1 quantile, and 0.9 quantile of Xγ, W , R, and PA, simulated by drawing with
replacement J draws from the estimated distribution of each of these objects, where J is the sample size (J = 133, 523 in the
dealers sample and 131,443 in the fleet/lease sample). In the case of Xγ, I sample directly from the estimates of Xγ from the
step 1 regression. Panel B compares the correlation in the residuals from the regression from estimation step 1 to the
correlation in simulated draws from the estimated distributions for R, PA, and W . Panel C shows the model’s predicted
probability of observing a raw reserve price or auction price that is not positive. Panel D displays the integrated absolute
error from the constrained least squares problems in steps 4–6 of the estimation. Rows labeled violations show this same
measure but where the only errors included in the integration are those that constitute violations of the conditional
probability bounds in (4).
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Table A6: Expected Gains From Trade Using Alternative Sample Restrictions

A. Dealers Sample Ex-post Second-best
Real

bargaining

Ex-post

minus real

Less Expensive Cars [1.711, 2.933] [1.694, 2.926] [1.421, 2.400] [0.241, 0.583]

(1.666, 3.053) (1.645, 3.044) (-0.049, 2.482) (0.225, 3.009)

Newer Cars [2.492, 5.808] [2.434, 5.796] [1.988, 4.397] [0.471, 1.445]

(2.142, 6.104) (2.110, 6.093) (1.744, 4.632) (0.324, 1.549)

More Cars Remaining [2.565, 5.261] [2.527, 5.238] [2.135, 4.210] [0.399, 1.081]

of Same Make-Model (2.169, 5.498) (2.125, 5.483) (1.819, 4.444) (0.295, 1.128)

More Cars Remaining [2.137, 5.228] [2.083, 5.209] [1.664, 3.871] [0.445, 1.386]

of Same Seller (2.016, 5.597) (1.979, 5.577) (1.579, 4.173) (0.350, 1.476)

First Run of Car [2.605, 4.804] [2.569, 4.792] [2.314, 4.220] [0.241, 0.633]

(1.997, 5.123) (1.965, 5.110) (1.786, 4.485) (0.163, 0.711)

B. Fleet/lease Sample

Less Expensive Cars [1.896, 3.604] [1.832, 3.574] [1.622, 2.846] [0.232, 0.800]

(1.843, 3.741) (1.779, 3.710) (1.550, 2.905) (0.227, 0.897)

Newer Cars [2.583, 4.316] [2.524, 4.291] [2.223, 3.422] [0.321, 0.934]

(2.382, 4.604) (2.328, 4.596) (1.958, 3.722) (0.311, 1.092)

More Cars Remaining [2.997, 4.136] [2.951, 4.121] [2.616, 3.549] [0.314, 0.654]

of Same Make-Model (2.762, 4.389) (2.708, 4.375) (2.369, 3.685) (0.289, 0.801)

More Cars Remaining [2.800, 4.178] [2.748, 4.155] [2.442, 3.612] [0.290, 0.634]

of Same Seller (2.403, 4.443) (2.355, 4.416) (2.083, 3.747) (0.255, 0.827)

First Run of Car [2.663, 3.997] [2.614, 3.978] [2.369, 3.550] [0.231, 0.510]

(2.385, 4.101) (2.333, 4.081) (2.126, 3.614) (0.201, 0.575)

Notes: Table displays expected gains from trade as in Tables 4–5 but using specific subsamples of the data, described in
Appendix B.4 and C.1.3. Panel A contains dealer sellers and panel B fleet/lease sellers. Estimated bounds are in square
braces and 95% confidence set is in parentheses. Units are $1,000.
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Table A7: Expected Gains and Probability of Trade Under Different Pr(N = n)

A. Expected Gains Ex-post Second-best
Real

bargaining

Ex-post

minus real

Dealers Sample

N [2.442, 5.045] [2.397, 5.029] [1.993, 3.933] [0.422, 1.139]

λ = 3 [2.367, 4.965] [2.328, 4.952] [1.946, 3.892] [0.394, 1.101]

λ = 7 [2.321, 4.910] [2.286, 4.899] [1.923, 3.853] [0.370, 1.084]

λ = 10 [2.318, 4.905] [2.284, 4.894] [1.922, 3.851] [0.369, 1.082]

λ = 20 [2.317, 4.904] [2.283, 4.893] [1.921, 3.851] [0.368, 1.081]

N [2.251, 4.832] [2.222, 4.823] [1.874, 3.780] [0.350, 1.080]

Fleet/lease Sample

N [2.408, 4.195] [2.342, 4.165] [2.080, 3.370] [0.289, 0.864]

λ = 3 [2.305, 4.089] [2.248, 4.063] [1.984, 3.291] [0.282, 0.837]

λ = 7 [2.229, 4.006] [2.179, 3.983] [1.923, 3.238] [0.267, 0.807]

λ = 10 [2.225, 4.002] [2.176, 3.979] [1.924, 3.242] [0.262, 0.798]

λ = 20 [2.223, 3.999] [2.174, 3.976] [1.921, 3.236] [0.264, 0.802]

N [2.114, 3.883] [2.073, 3.864] [1.828, 3.147] [0.247, 0.774]

B. Probability of Trade Ex-post Real bargaining
Ex-post minus

real

Dealers Sample

N [0.818, 0.871] [0.646, 0.646] [0.172, 0.225]

λ = 3 [0.804, 0.867] [0.642, 0.642] [0.162, 0.225]

λ = 7 [0.793, 0.862] [0.637, 0.637] [0.155, 0.225]

λ = 10 [0.792, 0.862] [0.637, 0.637] [0.155, 0.225]

λ = 20 [0.792, 0.862] [0.638, 0.638] [0.154, 0.225]

N [0.777, 0.857] [0.628, 0.628] [0.149, 0.229]

Fleet/lease Sample

N [0.857, 0.893] [0.658, 0.658] [0.199, 0.235]

λ = 3 [0.844, 0.885] [0.655, 0.655] [0.188, 0.230]

λ = 7 [0.830, 0.878] [0.651, 0.651] [0.179, 0.227]

λ = 10 [0.829, 0.878] [0.652, 0.652] [0.177, 0.225]

λ = 20 [0.829, 0.878] [0.651, 0.651] [0.178, 0.226]

N [0.812, 0.869] [0.644, 0.644] [0.168, 0.225]

Notes: This table displays bounds on the expected gains from trade (panel A) and probability of trade (panel B) estimated by
altering the specification of Pr(N = n) in estimation step 3, yielding different estimates of FB . These FB estimates are then
used in re-doing estimation steps 5–6 and in computing counterfactuals. N denotes the lower bound based on bid log data and
N the upper bound. The λ rows denote truncated Poisson approximations (i.e. restricted to have N ≥ 2) with mean λ = 3, 7,
10, or 20.
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Table A8: Auction House Fees and the Broker-Optimal Mechanism

A. Dealers Sample
Ex-post

without fee

Broker-

optimal

Real

bargaining

Expected gains [2.702, 5.317] [1.806, 4.371] [2.192, 4.133]

from trade (2.451, 5.517) (1.503, 4.613) (2.012, 4.285)

Buyer gains [0.215, 0.475] [0.822, 0.845]

(0.181, 0.482) (0.779, 0.913)

Seller gains [0.321, 0.245] [1.171, 3.088]

(0.169, 0.394) (0.947, 3.202)

Probability of [0.862, 0.891] [0.271, 0.560] [0.646, 0.646]

trade (0.849, 0.922) (0.226, 0.567) (0.638, 0.672)

Auction house [1.270, 3.652] [0.199, 0.199]

revenue (1.001, 3.799) (0.196, 0.207)

B. Fleet/lease Sample

Expected gains [2.675, 4.470] [1.711, 3.382] [2.279, 3.569]

from trade (2.435, 4.639) (1.594, 3.682) (2.042, 3.668)

Buyer gains [0.341, 0.596] [1.158, 1.192]

(0.326, 0.649) (1.073, 1.219)

Seller gains [0.236, 0.322] [0.922, 2.178]

(0.202, 0.504) (0.754, 2.302)

Probability of [0.903, 0.924] [0.303, 0.501] [0.658, 0.658]

trade (0.891, 0.929) (0.289, 0.556) (0.653, 0.677)

Auction house [1.134, 2.464] [0.199, 0.199]

revenue (0.965, 2.597) (0.198, 0.205)

Notes: Bounds on expected gains from trade and auction house revenue (in $1,000 units) and on probability of trade from the
ex-post efficient mechanism in the absence of auction house fees, the broker-optimal mechanism, and the real-world
bargaining. Real-world bargaining estimates come from panel A of Tables 4–5 with one exception: auction house revenue in
this table is included in the total expected gains from trade. Panel A displays dealers sample and panel B fleet/lease.
Estimated bounds are in square braces and 95% confidence set is in parentheses.
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