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1 Introduction

We develop a parsimonious model to study the equilibrium and socially optimal decisions
of banks to enter and trade in an over-the-counter (OTC) market. Banks differ in terms
of their exposure to an aggregate risk factor, their size, and their entry cost, but otherwise
are endowed with the same OTC trading technology. In an entry equilibrium, banks’ opti-
mal participation decisions determine the structure of the OTC market endogenously: the
characteristics of participants, the heterogeneity in their portfolios and trading patterns, the
dispersion in their marginal valuations and transaction prices. We argue that equilibrium
outcomes reproduce stylized facts about the structure of OTC markets. In particular, large-
sized banks endogenously emerge as “dealers” who profit from price dispersion, and in doing
so provide intermediation services to middle-sized “customer” banks. We then formalize
and explicitly characterize banks’ entry incentives, in equilibrium vs. in the corresponding
constrained planning problem. This allows us to address policy questions about market size
and composition. We show that a bank entering the market as a dealer adds social value,
and we formalize the manner in which it mitigates OTC market frictions by facilitating trade
among customer banks with dispersed marginal valuations. However, we also show that, in
an entry equilibrium, the trading profits of the marginal dealer exceed its marginal social
contribution. As a result, dealer banks tend to provide too many intermediation services
relative to the social optimum.

We extend our equilibrium concept to study exit. In an exit equilibrium, banks face
shocks to their cost of ongoing participation in the OTC market, and they make optimal
decisions to stay in or to exit the market. Crucially, we assume that the market is imperfectly
resilient: a bank who has lost some of its trading counterparties due to exit may or may
not be able to trade with new ones. In this context, we show that dealers are the most
vulnerable to negative shocks: they have the strongest private incentives to exit. However,
we find that, relative to the social optimum, dealers exit too much only if the shock is large
enough and if the market is not perfectly resilient.

Our model is populated by a continuum of financial institutions, called banks, who con-
template entering an OTC market for derivative “swap” contracts. Each bank is a coalition
of many risk-averse agents, called traders. Banks have heterogenous sizes and heterogenous
endowments of a non-tradable risky loan portfolio, creating heterogenous exposures to an
aggregate default risk factor. Since traders in banks are risk averse, they will attempt to
equalize these exposures by trading Credit Default Swaps (CDS) in the OTC market. We
focus on CDS for concreteness, but one could also consider any derivatives contracts for

hedging an aggregate risk such as interest or exchange rate swaps, for example.



First, conditional on their size and initial exposure to aggregate default risk, banks choose
whether to pay a fixed cost in order to enter into the market. The fixed cost payment
represents the acquisition of infrastructure and specialized expertise required to trade in
OTC markets. Second, after entry, all banks are granted access to the same technology to
trade swaps. Their traders are paired uniformly, and each pair negotiates over the terms
of the contract subject to a uniform trade size limit. This limit represents banks’ risk-
management constraints on individual trading desk positions in practice. Third, each bank
consolidates the swaps signed by its traders and all contracts and loans are paid off.

Banks have two distinct private incentives to enter the OTC market. The first incentive is
to hedge their underlying risk exposure. The second incentive arises because, in equilibrium,
hedging is imperfect. Imperfect hedging creates dispersion in banks’ marginal valuations
and price dispersion. This dispersion gives banks incentives to enter in order to earn trading
profits, and in doing so provide intermediation services. We show that both incentives
are U-shaped functions of a bank’s initial risk exposure: they are larger for banks with
extreme initial risk exposures, either small or large, and smaller for banks with intermediate
exposures. Combined with fixed entry costs, these U-shaped incentives result in entry and
trading patterns which are corroborated by empirical evidence. First, small-sized banks
cannot spread the fixed entry cost over enough traders, and choose not to enter. Second,
medium-sized banks only find it optimal to enter the market if their incentives are large
enough, which occurs if their initial risk exposure is sufficiently small or large. They use
the OTC market to take a large net position, either long or short, and in this sense act as
customers. Third, banks with intermediate exposures have the smallest incentive to enter and
so they only pay the fixed cost if they are large enough. Since they start with an intermediate
exposure, close to the market-wide average, they do not trade to hedge. Instead, they take
many offsetting long and short positions, have large gross exposures, small net exposures,
and enter mostly to make intermediation profits. Hence, these large banks endogenously
emerge as dealers.

Next, we study the problem of a planner who chooses banks’ entry and trading patterns in
the OTC market, but is otherwise subject to the same frictions as in the equilibrium. We find
that trading patterns are socially optimal conditional on entry, but that entry patterns are
not. We show that dealers are socially useful because they facilitate trade between banks
with dispersed marginal valuations. However, we find that their profits are larger than
their marginal social contribution. Hence, dealers have too great an incentive to enter in
equilibrium. In a parametric example, we show that, starting from the equilibrium, a social
planner finds it optimal to decrease the entry of dealers and increase the entry of customers.

The resulting socially optimal OTC market structure has fewer participants, generates less



trading volume, and creates smaller ratios of gross-to-net exposures. Therefore, according
to the model, there is a policy role for taxing dealer banks in order to reduce some of the
trading volume generated by intermediation activity, while subsidizing the participation of
customer banks in order to promote direct customer-to-customer transactions.

In the last part of the paper, we extend our framework to study exit. We assume that
entry has already occurred and that banks are faced with an unexpected negative shock:
they must incur a cost to continue actively trading in the OTC market, or they must exit.
We define market resilience to be the likelihood that traders who lose a counterparty due to
exit find a new counterparty with whom to resume trading. In the case of perfect resilience,
traders immediately re-match, and the model of exit is equivalent to the entry model. In the
case of no resilience, banks that lose a counterparty cannot re-match, as is often assumed.
In the case of imperfect resilience, banks scramble to replace their lost counterparties, some
successfully and some not. In our analysis, we allow for variation in market resilience, and
describe its crucial role in determining exit outcomes and policy prescriptions. Our main
findings are as follows. First, we find that imperfect resilience makes exit decisions strategic
complements and can create multiple equilibria: if more banks exit, then remaining banks
have fewer counterparties and so more incentive to exit. Second, as in the entry model,
incentives to participate are U-shaped. This implies that banks who have intermediate
initial exposures, which we know from our analysis of entry decisions tend to be large and to
act as dealers, have the strongest incentives to exit. Third, we find that, depending on the
size of the shock and on market resilience, dealers may exit too little or too much. This is
because of two effects going in opposite directions. On the one hand, there can be too little
exit because dealers appropriate too much surplus in their bilateral trades relative to the
social surplus they create. Just as in the entry model, this gives them too much incentive to
stay. On the other hand, and in contrast to the entry model, there is a new effect that can
lead to excessive exit: a bank does not internalize that when it exits the market, it lowers the
chance of trading for the banks who choose to stay. In a parametric example, we show that
either effect can dominate. In particular, when the negative shock is large enough and when
the market is not too resilient, then dealer banks exit too much. Thus, according to the

model, there is a policy role for subsidizing dealers banks during severe financial disruptions.
Related Literature

Our main contribution relative to the literature on OTC markets is to develop a model
that is sufficiently tractable to analyze endogenous entry and exit, explain empirical patterns
of participation across banks of different sizes, and address normative issues regarding the

size, composition and resilience of the market.



Several recent papers consider ideas related to the role of the market structure in deter-
mining trading outcomes in OTC markets. Duffie and Zhu (2011) use a framework similar
to that in Eisenberg and Noe (2001) to show that a central clearing party for CDS only
may not reduce counterparty risk because such a narrow clearinghouse could reduce cross
contract class netting benefits. Babus (2009) studies how the formation of long-term lending
relationships allows agents to economize on costly collateral, demonstrating how star-shaped
networks arise endogenously in the corresponding network formation game. Gofman (2011)
emphasizes the role of the bargaining friction in determining whether trading outcomes are
efficient in an exogenously specified OTC trading system represented by a graph. Farboodi
(2014) develops a model in which a core-periphery network emerges as a result of incentives
to capture intermediation profits. More generally, our framework shares features of both the
game theoretic and graph theoretic models of network formation, as described in detail in
Jackson (2010). As in graph-theoretic models, meetings are random. However, as in game-
theoretic models, the network of agents’ connections, which is the collection of observed
bilateral trades, varies due to economic incentives.

The effects of the trading structure on trading outcomes has been studied in the literature
on systemic risk.! Allen and Gale (2000) develop a theory of contagion in a circular system,
which they use to consider systemic risk in interbank lending markets. This framework
has been employed by Zawadowski (2013) to consider counterparty risk in OTC markets.
Eisenberg and Noe (2001) also study systemic risk, but use lattice theory to consider the
fragility of a financial system in which liabilities are taken as given (see also the recent work of
Elliott, Golub, and Jackson, 2014). In addition to proposing a new modeling framework, our
work on exit differs from these papers by allowing the OTC market to be imperfectly resilient,
i.e., banks may be able to resume trading with others even if their original counterparties
chose to exit the market. According to our model, accounting for imperfect resilience is
crucial to assess the social value of policy intervention: subsidizing dealers is warranted only
if the market is not sufficiently resilient.

One of the most commonly employed frictions used to study OTC markets, following
Duffie, Géarleanu, and Pedersen (2005), is the search friction.? Kiefer (2010) offers an early

1See Stulz (2011) for a discussion of the potential for systemic risk in CDS markets.

2Duffie, Garleanu, and Pedersen (2002) apply the paradigm to markets for borrowing stocks. Vayanos
and Wang (2007), Weill (2008), and Vayanos and Weill (2008) study cross-sectional asset pricing in multi-
asset extensions of the original model. Lagos and Rocheteau (2009) and Géarleanu (2009) demonstrate that
relaxing the asset holding constraint can have important impact on asset prices and on the entry decisions of
intermediaries. Afonso (2011) studies the externalities involved in investors’ entry decisions. Weill (2007) and
Lagos, Rocheteau, and Weill (2011) study the liquidity provision of dealers in response to liquidity shocks.
Biais, Hombert, and Weill (2014) use this paradigm to analyze equilibrium in limit order markets. Duffie and
Strulovici (2012) study limited capital mobility between markets and its impact on asset prices. Pagnotta
and Philippon (2011) analyze exchanges competing to offer trading speed. He and Milbradt (2014) study



analysis of CDS pricing within this framework. Our paper is most closely related to Afonso
and Lagos (2015), who focus on high-frequency trading dynamics in the Federal Funds
Market. They take entry decisions as given and find that some banks emerge endogenously
as intermediaries in the process of reallocating reserves balances over the course of the day.
Our main contribution relative to this paper and to this literature more generally is to study
the positive and normative implications of entry and exit in OTC markets. To do so, we
develop a new model, in the spirit of Shi (1997), in which all trades occur statically in one
single multilateral trading session. Our approach preserves the key insight of dynamic models
while being much more tractable, providing analytical characterizations of banks equilibrium
and socially optimal entry and exit decisions.

The paper proceeds as follows. Section 2 presents the economic environment. Section 3
solves for equilibrium trading and entry patterns. Section 4 studies the normative implica-
tions of our model. Section 5 extends the model to study exit. Finally, Section 6 provides
additional results, including comparative statics on entry, exit, and market structure with
respect to changes in trading frictions in the context of a parametric example, and Section

7 concludes. Proofs are gathered in the appendix.

2 The economic environment

This section presents the economic environment.

2.1 The agents

The economy is populated by a unit continuum of risk-averse agents, called traders. Traders
have utility functions with identical constant absolute risk aversion (CARA), and they are
endowed with a technology to make payments by producing a storable consumption good
at unit marginal cost. Precisely, if an agent consumes C' and produces H, his utility is
UC—-H)= —%e_"(C_H), for some coefficient of absolute risk aversion n > 0.

To model the financial system, we take a novel approach in the literature: we assume

that traders are organized into a continuum of large coalitions called banks. Banks are

the interaction between default risk and OTC market liquidity. Information diffusion is addressed by Duffie
and Manso (2007), Golosov, Lorenzoni, and Tsyvinski (2014); Duffie, Malamud, and Manso (2009); and
recently by Babus and Kondor (2013) using different techniques. Adverse selection is studied by Guerrieri
and Shimer (2012) and Chang (2012). Trejos and Wright (2012) offer a unified analysis asset pricing in
finance and monetary models of bilateral trades. Bolton, Santos, and Scheinkman (2012) show how OTC
markets may inefficiently “cream-skim” assets from organized exchange. Gavazza (2013) estimates an applied
version of this model and calculates the welfare role of dealers at estimated parameters.



heterogenous in several dimensions: they differ in their sizes, in their fixed costs of entry in

the OTC market, and in their risk-sharing needs.

Size and fixed entry costs. We identify the size of a bank with the measure of traders in
the coalition, which we denote by S. The fixed cost of entry in the OTC market is denoted
by c. Taken together, the distribution of bank sizes and the fixed cost induce a distribution
of per-trader entry costs, ¢/.S, in the population of traders. We represent this distribution
by the right-continuous and increasing function ®(z): the cumulative measure of traders
in banks with per-trader entry costs less than z = ¢/S. We assume that this distribution
has compact support but otherwise place no further restrictions: the distribution can be
continuous, discrete, or a mixture of both.

As will become clear shortly, conditional on its hedging needs, a bank’s entry decisions
will only depend on its per-trader entry cost, ¢/S. Therefore, from a theoretical perspective,
the exact nature of the cost does not matter for our results: we could have alternatively
assumed that banks have heterogenous variable costs with the same distribution ®(z). From
an empirical perspective, however, fixed costs matter: together with the entry incentives
generated by the OTC market, they explain empirical evidence about entry and trading
patterns in a cross section of banks sorted by size, an easily observable bank characteristic
(see Atkeson, Eisfeldt, and Weill, 2012, for stylized facts about this cross-section in the CDS
market). Namely, aside from having the obvious consequence that small-sized banks do
not participate, fixed costs will create an empirically realistic correlation between size and

trading patterns amongst those banks who choose to enter the market.

Risk-sharing needs. We assume that banks receive heterogenous initial endowments of a
risky asset, which gives them a need to share risk. Given our focus on the long-run structure
of the OTC market, we interpret this risky asset endowment as the bank’s typical portfolio
of illiquid loans, arising from lending activity to households and corporations which we do
not model explicitly here. Thus, in this model, an insurance company or a hedge fund
would have a small endowment, and a commercial bank a large endowment. For each bank,
we denote the per-trader endowment by w, so that the bank-level endowment is S x w.
We assume that banks’ per-trader endowments, w, are positive, belong to some finite set,
), and are distributed independently from the per-trader entry cost, ¢/S. That is, the
measure of traders in banks with per capita-endowment w and entry cost less than ¢/S can
be written as a product 7(w)®(c/S), for some positive {7(@)}zeq such that Y - w(0) = 1.
The assumption that size and endowments are independent clarifies the economic forces at

play and, importantly, allows us to argue that for banks who choose to the participate in the



OTC market, the correlation between size and per-capita endowment is purely endogenous.?

In line with our loan portfolio interpretation, we denote the payoff of the asset by 1 — D,
where 1 represents the face value of a typical loan extended by the bank, and D represents
its typical aggregate default risk. We assume that D is a (non-trivial) random variable with
strictly positive mean and twice continuously differentiable moment generating function.
Since D represents aggregate default risk, we assume that its realizations are identical for
all banks and all assets.

Before proceeding to the analysis of the OTC market, let us briefly describe what would
happen in this environment in the absence of frictions, if banks could trade their risky-asset
endowments directly in a centralized market. Then, banks would be able to share their risk
fully by equalizing their exposures to the aggregate factor D, they would all trade at the
same price, and they would have no incentive to enter the market in order to engage in a
gross volume of trade in excess of their net trades. To depart from these counterfactual

predictions, we now consider the OTC market with frictions.

2.2 The OTC market

In our model, banks cannot trade their risky-asset endowments directly and frictionlessly.
Instead, they can enter an OTC derivatives market to trade swap contracts, resembling CDS.
The timing of entry and trade in the OTC market is as follows.

First, conditional on their size, S, and initial endowment, w, each bank chooses whether
to pay the fixed cost, ¢, to enter in the OTC market. Then, after entry decisions have
been made, all banks that have entered the market are granted access to the same trading
technology: their traders are paired uniformly to sign a swap contract subject to a uniform
trade size limit. The pairing is uniform in the sense that it occurs in proportion to the
distribution of traders present in the market across endowments w € €2. The swap contract
resembles a CDS: it exchanges a fixed payment for a promise to make a payment equal to
the realization of the aggregate default factor, D. Finally, after trading, banks consolidate
the positions of their traders and all payoffs from loan portfolios and swap contracts are
realized.

The key friction shaping trading patterns and entry incentives is the trade size limit on
bilateral trades, which ultimately prevents participant banks from fully sharing their risk in

an OTC market equilibrium. This leads to equilibrium price dispersion and hence creates

3This being said, our model is flexible enough to handle more general joint distributions of size and per
capita endowments. For example, in an earlier version of the paper, we provided a characterization of the
post-entry equilibrium when larger banks have more neutral pre-trade exposures than smaller banks, for
example through greater internal diversification. We also considered a continuous distribution of w.



incentives for banks to enter and actively engage in intermediation activity. Moreover, as we
shall see below, the trade size limit provides a simple and tractable way of parameterizing
the extent to which traders from a single bank with endowment w can, collectively, direct
their trading volume to those counterparties from whom they get the best prices. We shall
see that, when the trade size limit increases, trading patterns change. They look less random
and more directed in the sense that there is less and less intermediation activity, and gross
exposures converge to net exposures.

While we do not model the microfoundations of the trade size limit, we note that, in
practice, traders typically do face line limits. For example, Saita (2007) states that the
traditional way to prevent excessive risk taking in a bank “has always been (apart from
direct supervision...) to set notional limits, i.e., limits to the size of the positions which each
desk may take.” In addition, measures such as DVO1 or CS1% which measure positions’
sensitivities to yield and credit spread changes, as well as risk weighted asset charges, are
used to gauge and limit the positions of a particular desk’s traders. Theoretically, one might
motivate such limits as stemming from moral hazard problems, concerns about counterparty

risk and allocation of scarce collateral, or capital requirement considerations.

3 Equilibrium definition and existence

We study an equilibrium in two steps. First, we study an OTC market equilibrium condi-
tional on the distribution of traders in the market arising from banks’ entry decisions. We
establish existence and uniqueness of this equilibrium, and show that it is socially optimal
conditional on banks’ entry decisions. Second, we present the fixed point problem that de-
fines an equilibrium in which banks’ entry decisions are chosen optimally. We establish the
existence of an equilibrium with positive entry by proving that this fixed point-problem has

a non-zero solution.

3.1 OTC market equilibrium conditional on entry

Suppose that banks have made their decisions to enter the OTC market, and let p =
{p(w)}oeq denote the measures of traders aggregated across banks with per capital endow-
ment w in the OTC market. As will be clear shortly, the distribution g is the only relevant
aggregate state variable conditional on entry because our model has a natural homogeneity

property: in equilibrium, banks’ trading and entry incentives only depend on w.



3.1.1 Payoffs

If there is positive entry, > p(w) > 0, then each trader present in the OTC market is paired
with a trader from another bank to bargain over a CDS contract. The pairwise matching of
traders from different banks is uniform. Thus, for any individual trader from a bank with
any given per capita endowment w, the probability of being paired with a trader from a bank

whose per-capita endowment is @ € 2 is

p(w)

2o m(@)’

the fraction of such traders in the OTC market. We denote the associated cumulative

n(w) = (1)

distribution by N(w) = >, n(®), and its support by supp(/V). The successor of w € Q in
the support of N is w™ = min{® € supp(N) : @ > w}, with the convention that w™ = oo
and N(oco) = 1 if this set is empty. Similarly, w™ is the predecessor of w € € in the support
of N.

Bilateral exposures. When a trader from a bank of type w is paired with a trader from a
bank of type @, they bargain over the terms of a derivative contract resembling a CDS. The
w-trader sells vy(w, @) contracts to the w-trader, whereby she promises to make the random
payment y(w, @)D at the end of the period, in exchange for the fixed payment v(w, ©) R(w, ).
If y(w, @) > 0 then the w-trader sells insurance, and if y(w, @) < 0 she buys insurance. As
explained before, traders face a trade size limit: in any bilateral meeting, they cannot sign
more than a fixed amount of contracts, k, either long or short. Taken together, the collection

of CDS contracts v = {7(w, @)} wa)en2 must therefore satisfy:

V(w, @) +7(@,w) =0 (2)
—k<qw,w) <k (3)

for all (w,@) € Q2. Equation (2) is a bilateral feasibility constraint, and equation (3) is the

constraint imposed by the trade size limit.

Certainty equivalent payoff. We assume that at the end of the period, traders of bank
w get back together to consolidate all of their long and short CDS positions. This captures
a realistic feature of banks in practice: within a bank, some traders will go long and some

short, depending on whom they trade with. After consolidation, the per capita consumption

10



of traders in an active bank with per capita endowment w, entry cost ¢, and size S' is:

—S+w(l-D)+ ;”y(w, &) [R(w, &) — D]n(@), (4)
by the law of large numbers. The first term is the per capita entry cost. The second term
is the per capita payout of the risky asset endowment. The third term is the per capita
consolidated amount of fixed payments, v(w,®)R(w,®), and random payments, v(w,&)D,
on the portfolio of contracts signed by all w-traders with their counterparties from banks
with endowment @.

Now recall that traders have CARA utility with coefficient 7. Calculating expected
utility, we obtain that the certainty equivalent of (4) is:

C

S

I

+w+ Zv(w, O)R(w,0)n(w) — I'[g(w)], where I' [g(w)] log (E [eng(w)D]) . (5)

The first terms of this certainty equivalent add up the non-stochastic components of (4):
the per-capita entry cost, ¢/S, the face value of the bank’s endowment of risky loans, w, and
the sum of all CDS fixed payments, v(w,©)R(w,®). The last term of this certainty equiva-
lent, —I" [g(w)], represents the bank’s cost of bearing default risk. Precisely, the stochastic

component of (4) is —g(w) x D, where
gw)=w+ Y (W @n(@), (6)

is the banks’ post-trade exposure to default risk. It is the sum of the initial exposure, w, and
of all the additional exposures acquired in bilateral trades, v(w,@). Thus, the term —I" [g(w)]
in (5) transforms this post-trade exposure to default risk into the certainty equivalent cost
of bearing it. One easily shows (see Appendix A.1) that the cost of risk bearing function,
g — I'[g], is twice continuously differentiable, strictly increasing for g > 0, and strictly
convex. In particular, when D is normally distributed, then I [¢] is a familiar quadratic loss
function: T'[¢g] = gE[D] + gz%[m. The first term is the expected loss due to default risk,
gE [D]. The second term is an additional cost arising because banks are risk averse and the

loss is stochastic.

3.1.2 Bargaining

Having derived banks’ payoffs, we are in a position to discuss how terms of trade are deter-

mined via bargaining in the OTC market. Our approach follows the literature which allows

11



risk sharing within families, such as in Lucas (1990), Andolfatto (1996), Shi (1997), Shimer
(2010), and others, and assumes that a trader’s objective is to maximize the marginal impact
of her decision on her bank’s utility. Namely, we assume that, when a pair of (w,®) traders

bargain over the terms of trade, they take the trading surplus to be:

() (r/ 9(@)] — I [g(w) ) )

The expression is intuitive. Suppose the w-trader sells v(w,®) contracts to the w-trader.
Since each trader is small relative to her bank, he or she only has a marginal impact on the
cost of risk bearing. Precisely, the cost of risk bearing of bank w, the seller of insurance,
increases by v (w,@)I"” [g(w)], while the cost of risk bearing of bank @, the buyer of insurance,
decreases by v(w, )" [g(@)]. Hence, the trading surplus (7) measures the net change in the
two banks’ cost of risk bearing: the number of contracts sold multiplied by the difference
between the marginal value of the buyer and the marginal cost of the seller.

One can provide more precise micro foundations for this surplus formula. For instance,
in a previous version of this paper, we assumed that each trader maximizes her expected
trading profit discounted by the marginal utility of other traders in her bank coalition.
Another microfoundation is to assume that a trader maximizes her expected utility and can
trade frictionlessly with other traders in her bank coalition.

We assume that the terms of trade in a bilateral match between an w-trader and an
w-trader are determined via symmetric Nash bargaining. The first implication of Nash
bargaining is that the terms of trade are bilaterally Pareto optimal, i.e, they must maximize
the surplus shown above. Since the marginal cost of risk bearing, I" [¢], is strictly increasing,

this immediately implies that:

k if g(@) > g(w)
7("‘)7 C:J) = [_kv k] if g(dj> = g(w) (8)
—k if g(@) < g(w).

This is intuitive: if the w-trader expects a larger post-trade exposure than the w-trader, i.e.
g(@) > g(w), then the w-trader sells insurance to the w-trader, up to the trade size limit.
And vice versa if g(@) < g(w). When the post-trade exposures are the same, then any trade
in [—k, k] is optimal.

The second implication of Nash bargaining is that the unit price of a CDS, R(w,®), is

12



set so that each trader receives exactly one half of the surplus. This implies that:

1

Rl,d) = 3 (1 lo)] + (@) ). )

That is, the price is halfway between the two traders’ marginal cost of risk bearing. As is
standard in OTC market models, prices depend on traders’ “infra-marginal” characteristics
in each match, instead of depending on the characteristic of a single “marginal” trader, as

would be the case in a Walrasian market.

3.1.3 OTC market equilibrium conditional on entry: definition and existence

Conditional on the distribution of traders, n = {n(w)}wcq, generated by banks’ entry de-
cisions p = {p(w)}weq, an OTC market equilibrium is made up of CDS contracts, v =
{7(w, @) }w.@)eq2, post-trade exposures, g = {g(w) }ueq, and CDS prices, R = { R(w, @) } (w5)c02:
such that

(i) CDS contracts are bilaterally feasible: ~ satisfies (2) and (3);
(ii) CDS contracts are optimal: v and R satisfy (8) and (9) given g;
(iii) post-trade exposures are generated by CDS contracts: ¢ satisfies (6) given ~.

In what follows, we will also seek to study the efficiency properties of the equilibrium.

To that end, we consider the planning problem conditional on entry:
W40 =max 3 { = ) = w] ] - 0 o)} (10)

subject to (1), (2), (3), (6), and conditional on the entry decisions summarized by u. In the
planner’s objective, the term associated with endowment w is to be interpreted as follows.
Given the assumed distribution of banks over the set €2, there is a measure 7(w) of traders
in banks with pre-trade exposures w. Conditional on banks’ entry decisions as summarized
by p = {p(w)}ueq, a measure m(w) — p(w) of these traders are not in the OTC market and
keep their exposure w, incurring the cost of risk bearing I' [w]. And a measure u(w) trade
in the OTC market and change their exposures to g(w), incurring the cost of risk bearing
I [g(w)].

Given that certainty equivalents are quasi-linear, a collection of CDS contracts and post-
trade exposures solve this planning problem if and only if it is Pareto optimal, in that it
cannot be Pareto improved by choosing another feasible collection of CDS contracts and

post-trade exposures and making deterministic transfers. With this in mind, we find:
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Theorem 1. There exists an OTC market equilibrium conditional on entry. All equilibria
solve the planning problem conditional on entry. They all share the same post-trade risk

exposures, g, and CDS prices, R. They may only differ in terms of bilateral exposures, 7.

The theorem shows that all equilibrium objects are uniquely determined, except perhaps
the bilateral exposures, v. Indeed, when two traders with the same post-trade exposures are
paired, they are indifferent regarding the sign and direction of the CDS contract they sign.

Note as well that post-trade exposures, g, are uniquely determined even for w ¢ supp(N).
This is an important property to establish for the analysis of equilibrium entry. Indeed, we
shall see that it unambiguously determines an individual bank’s entry incentives even when

no other bank of the same type enters the market.?

3.1.4 Post-trade exposures, gross exposures, and net exposures

In this section we establish some elementary results about equilibrium trading patterns
conditional on entry. As we shall see shortly, these trading patterns are crucial to understand

the economic forces shaping entry incentives. Our first result concerns post-trade exposures:

Proposition 1. Suppose that |supp(N)| > 2. Then, post-trade exposures are increasing and

closer together than pre-trade exposures:
0<g(@) —gw) <@w—w, foralw<. (11)

Moreover, if n(w) +n(@) > 0, then g(@) — g(w) < @ —w. Finally, there is a k > 0 such that
9(©) = g(w) for all (w,@) € supp(N)? if and only if k > k.

The proposition shows that, as long as k is small enough, then there is partial risk sharing:
g(@) — g(w) is smaller than @ — w, but in general remains larger than zero. The proposition
also shows that full risk sharing obtains as long as k is large enough.

Appendix A.4 provides further results about post-trade exposures. In particular, we show
that if g(w) is strictly increasing at w, then it must be equal to the post trade exposure that
arises when traders in an w bank sell insurance up to their trading limit k& to all traders
in banks with higher w and buy insurance up to their trading limit £ from all traders in
banks with lower w. This result thus implies that g(w) is strictly increasing only when the

density of traders in the neighborhood of w is not too large. If the density of traders in

4Dealing with w ¢ supp(IV) creates a technical difficulty because we cannot fully characterize an equilib-
rium by merely comparing the first-order conditions of the planning problem with the equilibrium conditions.
Indeed, the post-trade exposures of w ¢ supp(N) are not uniquely pinned down by the planning problem,
since these traders are given zero weight in the planner’s objective. Nevertheless, we can show that the
equilibrium optimality condition (8) uniquely pins down g(w) for all w € Q, including w ¢ supp(V).
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the neighborhood of w is large, then all traders in that neighborhood share risk locally by

trading to a common post-trade exposure. This gives g(w) a flat spot in that neighborhood.

Gross vs. net exposures in the cross-section. An important empirical observation
in OTC credit derivative markets is that banks’ gross exposures can dramatically differ
from their net exposures. Banks with large ratios of gross to net exposures act as dealers:
they simultaneously buy and sell many CDS contracts, but their long and short positions
approximately offset each other. Banks with ratios of gross to net exposures close to one act
as customers: they mostly trade in one direction, either long or short.

To see how differences in gross and net exposures arise in our environment, let us consider

the gross number of contracts sold and purchased by a bank of type w, per trader capita:
Gt (w) =Y max{y(w,@),0}n(@) and G~ (w) = Y _ max{—y(w, &), 0}n(&).

In our model, it is natural to measure the extent to which a bank acts as a dealer

vs. customer by its intermediation volume:
min{G"(w), G~ (w)}, (12)

the number of contracts, per-trader capita, that fully offset each other within the bank’s

portfolio. We have the following proposition:

Proposition 2. When supp(N) > 3 and k is small enough, intermediation volume, as
defined in (12), is a hump-shaped function of & € supp(N), achieving its strictly posi-
tive mazimum at, or next to, a median of N. That is, if w € supp(N) is mazximum of
min{G"(w), G~ (w)}, then a median of N belongs to {w™,w,w™}.

Thus, our model predicts that banks with intermediate pre-trade exposure, w, will tend
to assume the role of dealers. This is intuitive: these banks do not need to change their
exposure, since they start with one that is already close to the market-wide average. They
can use all their trading capacity to provide intermediation services to others. Banks with
extreme exposures assume the role of customers: those with low pre-trade exposures use
their trading capacity to sell insurance, while those with high pre-trade exposures use it to

purchase insurance.

Gross vs. net exposures in the aggregate. Proposition 2 focuses on small k& because,
in this case, bilateral exposures, 7, are uniquely determined in equilibrium. Indeed, post-

trade exposures are strictly increasing and so the bilateral optimality condition, (8), implies
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that traders are never indifferent about the size and direction of their trade. For larger k,
there may be some indeterminacy in bilateral exposures. As a result, the gross exposure of
a bank with endowment w, G™(w) + G~ (w), may be indeterminate as well. To resolve this
indeterminacy, and obtain necessary conditions for gross exposures to exceed net exposures,

we consider bilateral exposures that minimize average gross exposures:
G(k) =inf Y~ [GF(w) + G~ (w)] n(w), (13)

with respect to bilateral exposures, 7, solving the planning problem conditional on entry and
given k.

Next, we compare gross exposures to net exposures. We note that, unlike its gross
exposure, the net exposure of a bank with endowment w is uniquely determined because it is
equal to |GT(w) — G~ (w)| = |g(w) —w|. The average net exposure in the market is: N (k) =
> |GT(w) — G~ (w)|n(w). A natural measure of the volume created by intermediation

activity is the ratio of gross-to-net exposure:

G(k)
RE)=—"L>1
(k) N(k) —
When R(k) = 1, gross and net exposures are the same, and there is no intermediation

activity. When R(k) > 1, some banks are taking simultaneous long and short positions and
intermediation activity arises. Note that, since we consider for this calculation the bilateral
exposures that minimize gross exposures, this prediction is robust. That is, intermediation
activity arises in all sets of bilateral exposures which are consistent with equilibrium. We

obtain:

Proposition 3. Assume that |supp(N)| > 3. Then there is some k such that R(k) > 1 if
and only if k < k. Moreover k > k, where k is the trade size limit needed to equalize post

trade exposures as defined in Proposition 1.

The condition [supp(/N)| > 3 is necessary because we need at least 3 types to create
intermediation activity: indeed, with only two types, each bank would only have one type of
counterparty, and would always trade in the same direction. Notice also that k> k: at the
point when the OTC market can achieve full risk sharing, all equilibria require some strictly
positive amount of intermediation activity.

The proposition shows that, by varying k, we effectively vary the extent to which banks
are able to direct their trade to their best counterparties. Indeed, when k£ < k is small,

frictions are large and trading patterns appear more random: there is partial risk sharing,
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banks may trade in either direction depending on who they meet, and gross exposures differ
strictly from net exposures. When k > l%, frictions are small and trading patterns become
directed: there is full risk sharing and each bank trades in only one direction. Lemma 14
in the appendix offers further illustration of this point in the context of a parametric model

with three types.

3.2 Equilibrium entry

We now define and establish the existence of an equilibrium with banks’ entry decisions

chosen optimally.

3.2.1 The marginal private value of entry

Given the distribution of traders, n, and the post-trade exposures, g, that arise in the
corresponding OTC market equilibrium conditional on entry, we can calculate a bank’s net
per-trader capita utility of entering given its initial endowment w. In the spirit of Makowski

and Ostroy (1995), we call this the bank’s marginal private value of entry:

MPV(w | p) = 0 if > g u(@) =0 (14)

[w] =T g(w)] + 225 v(w, @) Rw,@)n(@) if 325 p(@) >0,

where, for this section, our notation is explicit about the fact that the marginal private value
depends on other banks’ entry decisions, as summarized by p = {p(w) }weq-

If no other bank enters in the OTC market, > . p(@) = 0, and marginal private value
is evidently zero. Otherwise, if there is positive entry, > - (@) > 0, the marginal private
value has two terms. The first term, I' [w] — I" [g(w)], is the bank’s change in per capita
exposure: it is negative if the bank is a net seller of insurance, and positive if it is a net
buyer. The second term is the sum of all CDS premia collected and paid by the bank per
trader capita. The second term is the sum of all CDS premia collected and paid by the
bank per trader capita. The premia collected are positive on contracts sold and negative on
contracts purchased. We note that this sum can be positive even if the bank takes a zero
net position in CDS contracts if the prices at which contracts are sold exceed the prices at
which they are purchased.

We now show that MPV(w | p) is defined unambiguously: it only depends on g, which
we know from Theorem 1 is the same in all equilibria. In particular, it does not depend on

the particular bilateral exposures, 7, established by banks in the OTC market equilibrium.
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Lemma 1. Given n, in any OTC market equilibrium conditional on entry, the sum of all
CDS premia collected and paid by a bank with per-capita endowment w is uniquely pinned

down by the equilibrium post-trade exposures, g:
Z Y (w, &) R(w,@)n(@) =T [g(w)] [9(w) — w] + g Z T [9(@)] = T [g(w)] [n(@).-

We obtain this formula by adding and subtracting the term ) - I" [g(w)] y(w, @)n(@) to
Y 5 V(w,0)R(w,@)n(w) as defined by equation (9) and then use equation (6) as well as the
optimality condition (8) to obtain the first term on the right-hand side of the equation above.

3.2.2 Equilibrium entry: definition and existence

A bank of type w will find it optimal to enter if and only if

MPV(w | p) > g,

where c is the bank’s fixed cost of entry, and S is the bank’s size. Now recall our distributional
assumptions. First, the measure of traders in banks with per capita endowment w is equal
to m(w). Second, conditional on w, the measure of traders in banks with per-capita entry
costs less than ¢/S is given by the CDF ®(c¢/S). Thus, the measures of traders in the OTC
market must satisfy p € T [u|, where T'[u] is the set of measures /i such that:

m(w)® [MPV(w|1)7] < ji(w) < m(w)® [MPV(w | )] (15)

for allw € Q. In the formula, 7(w)® [MPV(w | x)~] and 7(w)® [MPV (w | p)] are, respectively,
the minimum and the maximum measures of type-w traders in banks that choose to enter
the OTC market given the marginal private value of doing so, MPV (w | i).

An equilibrium with entry is, then, a fixed point of the operator T'. Based on this definition

we establish:

Theorem 2. There always exists an equilibrium with no entry, 0 € T[0]. Moreover, there
exists some b(n, k) > 0, a function of traders’ absolute risk aversion, n, and risk limits, k,
such that, for any CDF of costs satisfying ® [b(n, k)~] > 0, there exists an equilibrium with
strictly positive entry, i.e. some p € T[p] such that ) - p(@) > 0.

It is obvious that no entry is always an equilibrium: if no other bank enters, then
MPV(w|0) = 0 for all w, and so no bank finds it strictly optimal to enter. The non-trivial

part of the theorem is to establish that there exists an equilibrium with strictly positive
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entry. To do so, we note that, given positive entry, for any distribution n, the marginal
private value must be strictly positive for at least some type, i.e., maxgzeq MPV (@ | ) > 0 if
p # 0. Intuitively, if n(w) > 0 for some w, then any @ # w gains from sharing risk with w.
After showing that the marginal private values are continuous functions of the distribution
of traders, n, we can take the infimum over all possible n and obtain a strictly positive bound
on the marginal private value of at least one type. As long as there are banks with suffi-
ciently low entry cost, this translates into a strictly positive lower bound p on the measure
of traders in the market. This allows us to apply Kakutani’s fixed point theorem on the set
of measures p such that the total measure of traders in the market exceeds this lower bound,
> o (@) > p and, in doing so, find a fixed point with strictly positive entry.

Finally, we note that the theorem holds when banks’ per-trader entry costs are all
bounded away from zero: it does not require that there is an atom of banks with infi-
nite size and/or zero per-trader costs, nor that there are banks with arbitrarily large size

and per trader costs arbitrarily close to zero.

4 Private vs. social entry incentives

In this section, we study banks’ private and social incentives to enter. We first show that
private entry incentives are U-shaped functions of banks’ initial exposures, regardless of the
nature of entry costs. If entry costs are fixed, we argue that this implies that, in equilibrium,
only large enough banks find it optimal to enter the market and act as dealers. Next, we
compare private and social entry incentives. We establish that, for banks who act as dealers,
the marginal private value of entry is greater than the marginal social value, regardless of the
nature of entry costs. Thus, these banks have too large an incentive to enter in equilibrium.
For banks that assume the role of customers, we obtain the opposite result. Their marginal
private value of entry is lower than their marginal social value. Thus, these banks have too

small an incentive to enter in equilibrium.

4.1 Properties of the marginal private value of entry

Banks’ decisions to enter the OTC market are driven by two motivations. The first moti-
vation is to hedge underlying risk exposure. The second motivation arises because, as long
as k is small enough, hedging is imperfect in equilibrium. As a result, the marginal costs of
risk bearing are not equalized across banks and prices are dispersed. This gives banks an
incentive to enter in order to earn additional trading profits. To isolate the hedging from the

trading profit motives in the marginal private value, MPV(w), we extend the decomposition
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Figure 1: The figure shows the marginal cost of risk bearing for two types of banks. On the
left-hand side, a bank of type wy who is a net provider of insurance to other banks in the OTC
market, g(wy) > wy. For this bank the competitive surplus, K(w), corresponds to the shaded
area above the marginal cost curve. On the right-hand side, a bank of type wy who is a net
demander of insurance. For this bank the competitive surplus corresponds to the shaded area
below the marginal cost curve.

of a bank’s trading revenues presented in Lemma 1. We let the hedging motive correspond
to the entry incentives of a hypothetical bank whose traders have no bargaining power, and
let the trading profit motive correspond to the residual.

For a type-w bank, the net utility of entry when traders have no bargaining power is

K(w) =T w] = T'[g(w)] +ZT' lg(@)]y(w, @)n(w)
=T'[w] = T[g(w)] + I [g(w)] [9(w) — ],

since, in that case, traders would buy and sell CDS at the same price, equal to their bank’s
marginal cost, IV [g(w)]. By the convexity of I'[¢], the function K (w) is positive. As illus-
trated in Figure 1, it can be viewed as producer surplus if the bank is a net seller of CDS,
and as consumer surplus if it is a net buyer. In what follows, we will refer to K(w) as
the per-capita competitive surplus of bank w. The competitive surplus measures a bank’s
fundamental gains from trade, because it is equal to the producer or consumer surplus if the
bank would conduct all its trades at the same price, equal to its marginal valuation.

The trading profit motive corresponds to the residual, MPV(w) — K(w). It corresponds
to the profits traders can make when risk-sharing is imperfect and the marginal cost of risk
bearing is not equalized across banks. This allows traders to negotiate prices above marginal

cost when they sell, and below marginal value when they buy. This trading profit motive is

20



given by

SFW) =) v(w @) Rw o)n@) =Y T g(w)] v(w&)n(@)

where the third equality follows from the optimality condition (8). We call F'(w) the frictional
surplus, because it represents gains from entering the market over and above the competitive
surplus that are purely due to the frictions: the matching and trade size limit that result
in imperfect risk sharing. Note that F'(w) is strictly positive if and only if there is strictly
positive price dispersion. Thus, the frictional surplus can be interpreted as the trading profits
gained from price dispersion.

By construction, we must have:

1
MPV(w) = K(w) + §F(w)
The next proposition shows that the competitive and the frictional surplus are larger at the

extremes of the set €2:
Proposition 4. The competitive and frictional surplus have the following properties:

e The competitive surplus, K(w), is equal to zero if and only if g(w) = w. Moreover,

when I [g] is quadratic, it is a U-shaped function of w.

e The frictional surplus, F(w), is strictly positive if and only if price dispersion is strictly
positive. It is a U-shaped function of w, and achieves its minimum at any median of

the distribution of traders in the market, N.

The proposition implies that banks with intermediate w, which we know from Proposition
2 engage in intermediation activity, have the smallest incentives to enter: they tend to have
lower competitive and frictional surpluses.

From Figure 1, it is clear that the competitive surplus is smallest if the bank has zero
net exposure due to trading, g(w) = w. One can obtain a sharper characterization of K (w)
in the special case of quadratic cost of risk bearing. Then, direct calculations reveal that
the competitive surplus is quadratic as well, equal to K (w) = %/ [g(w) — w]z, where I'” is the
(constant) second derivative of I' [g]. One sees that the competitive surplus only depends on
the distance between post- and pre-trade exposures in this case, and not on their level. It
reveals that K (w) is larger when g(w) and w are further apart, which in equilibrium occurs

when w is either small or large.
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Mathematically, the frictional surplus, F'(w), measures the average absolute distance, in
terms of marginal valuation, between bank w and other banks @ # w. As is well known,
this average absolute distance is minimized by any median of the distribution of marginal
valuations. Since the marginal valuation is increasing in w, it is also minimized by any
median of .

The U shapes of K(w), F(w), and MPV(w) imply that, conditional on entering the
market, there is a systematic relationship between banks’ endowments and banks’ size, even
though no such relationship exists in the economy at large. To illustrate this point, we make
some simplifying assumptions so that there exists an equilibrium in which the median and
the mean of N are both equal to the center of symmetry of the distribution, w*. As a result,
K(w), F(w), and MPV(w) all achieve their minimum at w = w*. It should be clear, however,
that the economic intuition applies more broadly: it simply relies on the observation that

MPV (w) is smaller for intermediate w and larger for extreme w.

Corollary 1. Assume that k is small, that the cost of risk-bearing is quadratic, that Q) and
{m(w)}ueq are symmetric around some endowment w*, and that ®(z) > 0 for all z > 0.
Then, there exists an equilibrium in which the distribution of bank sizes conditional on w is

hump-shaped, in the sense of first-order stochastic dominance.

Intuitively, we have shown that banks with intermediate initial exposures assume the
role of dealers (Proposition 2) and, at the same time, have the smallest incentives to enter
(Proposition 4). Combined with fixed entry costs, this implies that banks with intermediate
exposures who assume the role of dealers must be larger, on average, than banks with extreme
exposures, who assume the role of customers.

The corollary also predicts a systematic empirical relationship between bank size and
trading behavior: only large-sized banks enter to assume the role of dealers; middle-sized
banks only enter to assume the role of customers; small sized banks do not enter.

Before proceeding, let us note that our model delivers additional empirical implications in
the cross-section of banks sorted by size. Specifically, in Atkeson, Eisfeldt, and Weill (2012),
we showed that large dealer banks tend to have larger gross-exposure per capita, even if they
have the same trade size limit k as other banks, as is the case in the data. We also showed
that large dealer banks tend to trade amongst each other at less dispersed prices. In the
earlier work of Duffie, Garleanu, and Pedersen (2005), it is exogenously assumed that market
makers or dealers trade in a frictionless market at common prices. In our model, such an

interdealer market arises endogenously among large banks that are central to the market.
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4.2 Properties of the marginal social value of entry

Next, we show that equilibrium entry incentives are not aligned with social interest. To do
so, we compare the marginal private value of entry for a bank to its marginal social value

from entry as obtained from a social planning problem for banks’ entry decisions.

The marginal social value. Consider any bank entry pattern, as represented by measures
p of traders in the OTC market. The social value generated in the OTC market equilibrium
conditional on this entry pattern is given by the solution W (u) of the planning problem

studied in (10). The marginal social value of a w bank is defined as:

(16)

In words, the marginal social value of a type-w trader is the partial derivative of social
welfare with respect to the measure of such traders, given optimal trading behavior in the
OTC market. To show that this marginal social value is well defined and provide an explicit

expression for it, we can apply an envelope theorem of Milgrom and Segal (2002).

Lemma 2. For any p # 0, the marginal social value of a bank of type w is:

MSV(w) = K(w) + F(w) — = F, (17)

N | —

where K (w) is the competitive surplus, F(w) is the frictional surplus, and F is the average
frictional surplus F =3 F(@)n(®).

To understand the formula, it is useful to interpret entry in the OTC market as a pro-
cess of match creation and match destruction between pairs of traders. Match creation
arises because, when a small measure € of new traders enter, they create ¢ new matches
with incumbent traders. Match destruction arises because, in the absence of entry, these
¢ incumbents would have been matched together instead of being matched with the ¢ en-
trants. Therefore, entry effectively destroys matches amongst these £ incumbents. Given
that there are two traders per match, the measure of matches thus destroyed is equal to €/2.
The marginal social value is obtained, using the envelope theorem, by calculating the value
of match creation net of the cost of match destruction, holding all bilateral exposures, 7,
constant.

The first two terms of (17), K (w) + F'(w), represents the social value of match creation.
By entering in the OTC market, w-traders establish new CDS contracts. In doing so, they

create competitive surplus by changing their own exposure from w to g(w), and they also
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generate frictional surplus with their counterparties. Precisely, if one assumes that, in all
matches with w traders, marginal values and costs are equal to I [g(w)], then the social value
of match creation is equal to the competitive surplus, K(w). However, because of imperfect
risk sharing, the marginal cost of increasing exposure is always lower than the marginal
value, and strictly so if exposures are not equalized. This increases the social value of match
creation above and beyond the competitive surplus by the term F'(w), the average distance
between marginal value and marginal cost in all matches involving a type-w trader.

The last term of (17), —F/2, represents the social cost of match destruction. When a
new trader of type w enters, 1/2 matches amongst incumbents are destroyed. The identity
of incumbents in these matches that are destroyed is independent of w and hence the value
destroyed per match is the average frictional surplus F, the average difference between

marginal value and marginal cost in all OTC market matches.

The marginal social value is always positive. Next, we establish two results. First,
we show that the marginal social value of a bank is always positive, i.e., the value of match
creation always exceeds that of match destruction. Thus, absent any entry cost, a planner
would always like to make the market as large as possible. Second, we show that, when risk
sharing is imperfect, intermediation has strictly positive social value. This means that, if
trade size limits are tight enough, a social planner has strict incentives to let some banks

with intermediate exposure assume the role of intermediaries.

Lemma 3. Suppose that supp(N) > 2. Then, the marginal social value is positive, MSV(w) >
0, and strictly so for at least one w. Moreover, suppose there is imperfect risk sharing in the
OTC market and consider a pure intermediary, i.e., a bank w such that g(w) = w. Then,
for this intermediary, MSV(w) > 0.

To see why MSV(w) > 0, we first note that by convexity, the first term in the marginal
social value, K (w), is always positive. The second and third term term, F(w) — F/2, which
represents the net effect on frictional surplus of match creation and destruction, is also always
positive. Indeed, when an additional w-trader participates in the market, she destroys some
existing matches, and simultaneously replaces all these destroyed matches by two matches
with herself. Consider, as illustrated in Figure 2, the destruction of a pair of (z,y), with
x <y, and the simultaneous creation of two pairs (w, z) and (w,y). The net surplus created

is:
T [g(w)] = T [g(@)] | + T [g(@)] =T’ [g()] | = [T [g(x)] = T"[g()]| >0,  (18)
which is positive by the triangle inequality. The intuition is that, since any direct trade
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Figure 2: An illustration of match creation and match destruction.

between x and y can be replicated by two indirect trades through the w-trader, the process
of match creation and match destruction cannot destroy any value. To the contrary, the
optimal indirect trade through the w trade can create strictly more value than the optimal
direct trade between x and y. This occurs whenever the post-trade exposure of the w-trader
is located either strictly to the left or to the right of the post-trade exposures of the z- and
the y-trader. For example if g(w) < g(z) < ¢g(y), then w can provide insurance to y at lower
cost than z. Even better, w can also provide insurance to x.

The second part of the Lemma asserts that, when risk sharing is imperfect, intermediation
creates strictly positive social value. To do so we need to demonstrate that a bank creates
a strictly positive social value by taking a gross position that is larger than its net position.
The simplest way to make this point is to consider a pure intermediary: a hypothetical bank
with strictly positive gross position but zero net position, g(w) = w. Since risk sharing
is imperfect, and since the w bank does not change its exposure, there must be banks of
type x and y such that n(z) > 0, n(y) > 0 and, g(z) < g(w) < g(y), with at least one
strict inequality. In equilibrium, the traders of a bank of type w provide intermediation, in
particular they buy insurance from z and sell insurance to y. To see why MSV(w) > 0, note
that the entry of a type-w trader destroys matches of type (z,z) and (y,y) and replaces
them by matches of type (z,w) and (w,y). In doing so, it creates social value by allowing

an indirect trade between x and y, when no direct trade existed before.
Marginal social vs. private value. Finally, we compare MSV(w) and MPV(w). When

a w-trader enters and destroys a match between x < y-traders, she appropriates half of the

surplus:

3 (9] = ' lg(o)] |+ o)) - T o] ). (19)
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Subtracting this surplus appropriated from the surplus created, in equation (18), we obtain:

%(\r’ [9(@)] ~ ' [g@)] | + 1" [g(w)] ~ T [o(v)] \) | g(@)) ' [a(w)]]

One sees from the equation that the difference between the surplus created and appropriated
can be either negative or positive, depending on the position of g(w) relative to g(z) < g(y).
One sees in particular that the difference between surplus created and appropriated be strictly
positive even for a pure intermediary. This arises for example if x = y but g(w) # g(x).
Averaging over the 1/2 incumbent matches destroyed, we obtain that:

MSV(w) — MPV(w) = = [F(w) — F]. (20)

N —

The economic intuition for this formula is as follows. The marginal social and private
incentives have one term in common: the competitive surplus, which measures the value
attached to changes in net positions. Hence, banks’ competitive surplus cancels out in
computing the difference between the marginal social and private values of entry. In contrast,
the consideration of frictional surplus differs in the marginal social and private incentives to
enter. A social planner attributes to each marginal entering bank the full frictional surplus
that its traders induce by creating new trading opportunities. A marginal entering bank,
on the other hand, only considers the portion of that surplus that it can capture through
bargaining with its new counterparties. At the same time, however, a social planner also
attributes to each marginal entering bank a social cost equal to the loss of frictional surplus
in the trading opportunities that are displaced by entry. By direct computations, we have
shown that the gap between the marginal social and marginal private incentives, in equation
(20), is equal to the portion of the surplus in new trading opportunities created by bank
entry that is not captured through bargaining by the entering bank, F'(w)/2, less the expected
surplus in trading opportunities among incumbents displaced due to the entry of a new bank,
F)2.

Equation (20) also revals that banks who are far enough from others, in terms of their
marginal cost, have a marginal social value that is greater than their marginal private value.
These banks create, on average, more surplus than they appropriate. Now recall that, by
Proposition 4, the frictional surplus is U-shaped. Therefore, banks with extreme endow-
ments, who assume the role of customers, have a marginal social value that is greater than
their marginal private value. In equilibrium, they have too small an incentive to enter. By
contrast, banks with intermediate endowments, who assume the role of intermediaries, have

a marginal social value that is lower than their marginal private value. In equilibrium, they
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have too large an incentive to enter.

As equation (20) makes clear, the finding that MSV(w) — MPV(w) is positive for extreme
w banks and negative for intermediate w banks follows directly from our assumption of
symmetric bargaining weights (of 1/2) for all traders. This result can be altered if we make
bargaining weight asymmetric across banks. To illustrate this point, in Section 6, we show
in the context of a parametric example that if traders from intermediate endowment banks
have sufficiently low bargaining power, then it is possible for the gap to be positive instead
of negative for middle-w banks. In this case, there is too little entry of dealer banks in

equilibrium.

4.3 A social planning problem for entry

We provide further illustrations of our normative results by studying the socially optimal
pattern of entry into the market given the trade size limits and fixed entry costs. Social
welfare conditional on the entry patterns pu is equal to W (u), as defined in (10). To calculate
the total entry cost associated with the entry patterns p, we first rank traders in terms of
their entry costs using the quantile function ¢ (q) = inf {z € [z, 2] : ®(z) > ¢}, where [z, Z]
is the support of ®(z). The function 1 (q) represents the cost of the trader positioned at
the quantile ¢ of the distribution. It is clear that, all else equal, a social planner always lets
traders with the lowest cost enter first. Therefore, when p(w) € [0, 7(w)] traders enter the

market, they collectively incur the cost:

p(w)

Cw) =Y () / " () dr,

weN 0

which is an increasing, convex, and continuous function. The social planning problem is,
then, max W(u) — C(u), subject to u(w) € [0, 7(w)] for all w € Q. Our main result is:
“w

Theorem 3. The social planning problem has a solution and has the following properties:

e if there is an equilibrium with positive entry, then the planner’s problem has a solution

with positive entry;

e if the planning problem prescribes positive entry, then the first-order necessary condi-

tions for optimality can be written
(W)@ [MSV(w)™] < p(w) < 7(w)® [MSV(w)],
where the marginal social value is defined in (16);
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e if the planning problem prescribes positive entry, then it can be implemented as an

entry equilibrium provided type-w banks receive a per-trader subsidy equal to MSV(w) —
MPV(w) = 1 [F(w) — F].

Existence follows because the planner’s objective can be shown to be continuous and
because the constraint set is compact.

The first bullet point follows because, in any entry equilibrium, for any entrant, individual
rationality implies that the utility of entering must be at least as large as the utility of staying
out. Adding up all these utilities, and using the fact that all CDS payments add up to zero,
we obtain that social welfare in any equilibrium must be at least as large as social welfare
with no entry.

The second bullet point shows a close correspondence between the planner’s first-order
condition and the equilibrium fixed-point equation: they are formally identical, except for
the fact that MPV(w) is replaced by MSV(w). The intuition is that, if the planner lets
type-w traders enter up until their marginal social value is equal to MSV(w), then all the
traders with cost strictly less than MSV(w) must have entered, and all traders with cost
strictly above than MSV (w) must have stayed out.

The third bullet point follows directly from the second one: in order to induce optimal
entry, a policy maker needs to give a subsidy equal to the difference between marginal social
and marginal private value. In particular, banks with extreme exposure, who assume the
role of customers, should be subsidized. Banks with intermediate exposures, who assume the
role of intermediaries, should be taxed. In practice the precise implementation of such taxes
would depend on, and possibly be constrained by, regulators’ information about banks’ risk
exposures.

One sees clearly from the theorem that inefficiencies arise because of imperfect risk sharing
in the OTC market, which creates dispersion in banks’ marginal cost of risk bearing. If
the planner prescribes full risk sharing in the OTC market, which can be shown to occur
regardless of entry costs as long as k is large enough, then F(w) = F = 0, MSV(w) =
MPV(w). Comparing the equilibrium fixed-point problem with the planner’s first-order
conditions, one then immediately sees that there exists an entry equilibrium that implements
the planner’s allocation.®

In Section 6.1.2, we explicitly compare the planning solution and the equilibrium in a

parametric example with three endowment types. We derive conditions such that, starting

SWhenever the equilibrium implements the planning solution, there are no intermediation profits to be
made in the OTC market. Yet, as we saw in Proposition 3, intermediation activity may be necessary to
achieve the planner’s allocation. Formally, in Appendix A.13 we show that, for some parameter, in the
planner’s allocation, there is full risk sharing and, at the same time, some banks engage in intermediation
activity, in that the ratio of gross exposures to net exposure must be strictly greater than 1.
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from the equilibrium, the social planner finds it optimal to decrease the entry of dealers
and increase the entry of customers. The resulting socially optimal OTC market structure
has fewer participants, generates less trading volume, and creates smaller ratios of gross-
to-net positions. Therefore, according to the model, there is a policy role for taxing dealer
banks in order to reduce some of the trading volume generated by intermediation activity,
while subsidizing the participation of customer banks in order to promote direct customer-
to-customer transactions.

Finally, we also show that, in this parametric example, a social optimum can be imple-
mented in an equilibrium with appropriately chosen asymmetric bargaining weights. We
show that dealers’ bargaining weight should be strictly positive, less than %, and that it
should be a decreasing function of the socially optimal fraction of dealer in the market.
Given any bargaining weight in between % and some strictly positive lower bound, there can
be either over- or under-entry of dealers in equilibrium, depending on other model parame-

ters.

5 Exit

The model studied so far provides insights into the structure of OTC markets subject to
sunk entry costs, for banks that expect to maintain an average exposure of w over time. An
important question of interest, prompted by the financial crisis, is whether OTC markets are
excessively vulnerable to shocks causing the exit of financial institutions?® In this section,
we study this question in a variation of our framework based on two additional assumptions.
First, banks receive shocks to the costs they must incur to continue actively trading in the
OTC market. These shocks may occur in conjunction with a crisis, or in response to a
crisis because of increase in regulation. Second, the OTC market is imperfectly resilient,
in the sense that traders who lose a counterparty due to exit face difficulties finding a new

counterparty with whom to resume trading.

5.1 The model

To model the response of the OTC market to negative shocks, we modify our framework as

follows.

®Dodd (2012) notes that during the financial crisis “Dealers (...) withdrew from the markets. (...)
Without the dealers, there was no trading, especially in securities such as collateralized debt obligations,
certain municipal securities, and credit derivatives. With no buyers, investors could not reduce losses by
trading out of losing positions and they could not sell those positions to meet calls for more margin or
collateral to pledge against loans they had taken out to buy those instruments. This illiquidity in OTC
markets contributed to the depth and breadth of the financial crisis.”
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Negative shocks. We assume that entry has already taken place, and that all traders
in the OTC markets have already established bilateral relationships. Then, each bank cur-
rently in the market draws a negative shock, denoted by z, raising its costs of continued
participation in the market on a per trader basis, and chooses whether or not to exit.

To highlight the similarities between this model of exit and our model of entry, we keep
the same notation. We denote the CDF of exit costs by ®(z). Of course, this CDF does not
need to be the same as the CDF of entry costs we considered before. Likewise, we denote by
m(w) the measure of traders of type w in the market before exit decisions have been made,
with the normalization > . (@) = 1. Finally, we denote by u(w) € [0, 7(w)] the measure of

type-w traders who remain in the OTC market after exit decisions have been made.

Imperfectly resilient market. The key difference with the model of entry is that, after
exit, the OTC market is imperfectly resilient: we assume that those traders who lose a
counterparty due to exit may not be able to find a new one. More precisely, the traders who
lose a counterparty due to exit can re-match amongst each other with probability p € (0, 1].
The parameter p indexes the resilience of the OTC market: if p ~ 1, then the market is
very resilient, in that a trader who has lost a counterparty is very likely to establish a new
trading relationship with another trader in the market, and vice versa if p = 0.

To see how imperfect resilience changes the matching process relative to the entry model,
we calculate the probability a given trader in the market has of having counterparty of type
w after exit decisions have been made:

W) [y @] )
”“’)w()*;“{l J”za,

w m( (@)

&

The first term is the probability 7(w) that the original counterparty is of type w, multiplied
by the probability that this original counterparty does not exit, p(w)/m(w). The second term
is the probability of losing a counterparty due to exit, > - 7(®) [l — p(@)/7 ()], multiplied
by the probability of being re-matched, p, multiplied by the probability of re-matching with
a counterparty of type w, pu(w)/[D_ 1(@)]. Simplifying the expression, we obtain that the
probability of matching with a counterparty of type w after exit decisions have been made
is equal to:
- W
a(p) x n(w) where a(p) =p+ (1 —p) Z,u(w), and n(w) = %

Imperfect resilience impacts the matching probability, «(u), in two ways. First, it is in

general less than one. As we will see, this changes the OTC market equilibrium conditional
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on entry. Second, it is now endogenous, and depends on the measure of banks who stay
in the market. As we will see, this induces strategic complementarities in exit decisions,
and could potentially generate further multiplicity of equilibrium. Third, it creates a new

externality that changes the normative analysis in a fundamental way.

5.2 Equilibrium exit

As before, we first define an equilibrium conditional on exit. Relative to our model of entry,
the only difference is that the probability of matching, a(u), can be less than one. As a

result, the post-trade exposure becomes:
g(w) = w+a(p) Y y(w, &)n(@). (21)

One sees that, because CDS contracts are consolidated within the bank, all bilateral expo-

sures are scaled down by the matching probability a(u). In fact:

Lemma 4. The tuple {v, g, R} is an equilibrium conditional on exit, given matching proba-
bility a(p) and trade size limit k, if and only if it is an equilibrium conditional on entry with

trade size limit a(p)k.

In an exit equilibrium, the marginal private value of remaining in the market for a bank

with endowment w becomes:

0 if 3, (@)

=0
MPV (w =
(w|p) K(w) + #F(w) if > u(@) >0,

where we make the dependence of the marginal private value on p explicit. This is the same
formula as for the entry equilibrium with one change: the frictional surplus is scaled down by
the endogenous matching probability, «(x). Up to this adjustment, the fixed-point problem
for the exit equilibrium is formally the same as the one of Section 3.2.2. Using the same

arguments as before, we obtain:

Proposition 5. There is always an equilibrium in which all banks exit, 0 € T[0]. Moreover,
there exists some b(n, k) > 0, a function of traders’ absolute risk aversion and risk limits,
such that, for any CDF of costs satisfying ® [b(n,k)~] > 0, there exists an equilibrium in
which a strictly positive measure of banks stay, i.e. some p € T'[p] such that ). p(@) > 0.

As before, the marginal private value tends to be smaller for banks with intermediate
initial exposures, who in equilibrium provide intermediation services. Therefore, our model

implies that, all else equal, intermediaries are the most vulnerable to the negative shocks.
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The endogenous probability of matching in the OTC market, a(u), creates strategic
complementarities in exit decisions. When more banks exit, the measures p decrease, and so
the probability of matching, «(u), decreases as well. This reduces the value of remaining in
the market to share risk, and so may foster more exit. We shall see in Section 6.2.1, in the
context of a parametric example, that these strategic complementarities can create further

multiplicity of equilibria.

5.3 Normative implications

We have seen so far that the analysis of equilibrium exit is formally very similar to the one
of equilibrium entry. In this section we study the normative implications of exit and show
that they can differ significantly from the normative implications of entry. Our main result

is:
Lemma 5. In the model with exit, the marginal social value of a type-w bank is:

MSV(w) = K(w) 4+ a(p)F(w) — S F,

NI

where K(w) is the competitive surplus, F(w) is the frictional surplus, and F is the average

frictional surplus.

There are two differences with the corresponding formula in the entry model, in equation
(17). First, the frictional surplus is multiplied by «(u), since the matching probability
after exit is less than one. Second, the average frictional surplus is multiplied by p/2. By
contrast, if the matching probability after exit were exogenous, then the coefficient would
be a(u)/2 > p/2. Put differently, relative to a model in which the matching probability is
exogenous, the endogeneity of the matching probability increases the marginal social value
of keeping a bank in the market. This is because, if the bank were to exit, some of its
counterparties would not be able to re-match. As a result, the difference between marginal

social and private value,

MSV(w) — MPV(w) = = [a(p)F(w) — pF] , (22)

|~

can now be positive even for pure intermediaries, i.e. banks such that g(w) = w, as long as
the market is not resilient enough.

A commonly held view is that there is a policy role for subsidizing intermediaries during
financial market disruptions. Indeed, intermediaries may exit too promptly in the face of

negative shocks, which has adverse consequences because they are central counterparties to
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many other players in OTC markets. Accordingly, we have found that intermediaries have
the lowest MPV(w), and so the strongest private incentives to exit. Yet, our analysis reveals
that these strong private incentives can be either smaller or larger than the corresponding
social incentives. It all depends on market resilience, or traders’ ability to quickly resume
trading with alternate counterparties. If the market is very resilient, then private incentives
are smaller than social incentives. To implement a social optimal amount of exit, a policy
maker would need to tax intermediaries, not subsidize them. Subsidizing intermediaries is
only warranted if the market is not too resilient. We shall see in Section 6.2.2, in the context
of a parametric example, that the case for subsidizing intermediaries also depends on the
size of the shock. Given any p < 1, we will obtain that MSV(w) > MPV(w) for large enough
shocks.

Finally, we note that, aside from the endogenous probability of trading, a(u), the planning
problem in the case of exit is formally the same as in the case of entry. Therefore, the results
of Theorem 3 continue to hold, after appropriate changes in the formula of marginal private

and social values.

6 An illustrative example with three types

So far, we have studied the equilibrium and social optimum in the general case, i.e., with
unrestricted the distribution of entry cost and endowment types. While this approach pro-
vided a general characterization of the economic forces at play in our model, it had some
limitations too. In particular, in the general case, it is difficult to determine whether there
is a unique equilibrium and to derive precise comparative statics. It is also difficult to go
beyond the marginal analysis of private and social values and precisely characterize the dif-
ferences between the equilibrium with the social optimum. In this section we make progress
in these directions in a parametric example of our model that can be solved analytically. We
focus on the main findings here and provide a comprehensive analysis in Appendix B.

We make special parametric assumptions ensuring that the equilibrium distribution of
traders in the market, {n(w)},eq is symmetric and can be summarized by one single number.
There are three symmetric types, and we normalize the set of types to be Q = {0, %, 1}. We
take the distribution of types in the economy at large to be symmetric as well: for simplicity
we assume that it is uniform, 7(w) = 1/3 for all w € €. Finally, to make entry and exit
incentives symmetric for for types w = 0 and w = 1, we assume that the cost of risk bearing,
I'[g], is quadratic. As we have shown before, this arises when the loss upon default, D, is
normally distributed. In Appendix B.2 we show that, in this model, all equilibria and social

optima are symmetric, i.e. the fraction of traders in the OTC market with w =0 and w =1
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Figure 3: Trading patterns in the three-type model, under partial risk sharing.

are equal, i.e.;, n(0) = n(1). This makes the model very tractable because the distribution
of traders in the OTC market can now be parameterized by a single number, the fraction of
traders in w = § banks, n(3).

In this symmetric model, the equilibrium in the OTC market conditional on entry is very
simple. For instance, in the case of partial risk sharing, the network of trades is shown in
Figure 3 (for the other cases, see Appendix B.1). There are direct trades of size k between
traders of type w = 0 and traders of type w = 1, and indirect trades of size k intermediated

1

by traders of type w = 5. Middle-w banks are pure intermediaries: they meet w = 0 and

w = 1 banks with equal probability, trade equal amounts, and so they do not change their

exposures, g(3) = 3.

6.1 Entry with three types

To study entry, we assume that the distribution of bank sizes is Pareto with parameter

7

1460 > 0, for some 6§ > 0, over the support [S,00).” This implies that the measure of

traders in banks with size greater than some S > S is (S/5) ~? The associated distribution

of per-capita entry costs has support [0, 2], 2 = ¢/S, and CDF ®(z) = (z/2)".

6.1.1 Positive results

The first proposition discusses entry patterns:

Proposition 6. There exists a unique equilibrium with positive entry, pug. This equilibrium

has the following properties:
e entry patterns of extreme-w banks are symmetric: pg(0) = pup(l);
e if k <1, there is partial risk sharing and nE(%) > 0;

o if k> 1, there is full risk sharing and ng(3) = 0.

"Precisely, the fraction of banks with size larger than S > S is equal to (S/S)~('*?). To ensure that

there is a measure one of traders, we also need to assume that the total measure of bank establishments in
0 1

the economy at large is 175 5. The homogeneity of the CDF simplifies the derivation of comparative statics.

34



Since the lower bound of the support of the cost distribution is zero, we have that
®(z) > 0 for all z > 0, and so Theorem 2 implies that there always exists an equilibrium
with strictly positive entry. Relative to our earlier general existence results, we learn that,
in this parametric example, the equilibrium is unique. Given that entry is symmetric, the
economic force underlying uniqueness is that the entry decisions of middle-w banks are
strategic substitutes: when more middle-w banks enter, risk-sharing improves, intermediation
profits are eroded, and so middle-w banks have less incentives to enter.

The proposition also shows that, when trade size limits are small enough, £ < 1, there is
partial risk sharing and extreme-w banks cannot fully equalize their exposures in the OTC
market. As a result, there are intermediation profits to be made and some middle-w banks
operate in the market, nE(%) > 0. When k& > 1, there is full risk sharing and nE(%) =0.

Our positive findings below offer insights into the growth in OTC markets by contrasting
two possible scenarios: a decline in the entry cost, ¢, representing more sophisticated trading
technologies, or a relaxation of trade size limits, k, representing improvements in operational
risk management practices. We first consider a comparative static with respect to the fixed

cost of entry, c:

Corollary 2. In equilibrium, when the fixed entry cost, ¢, decreases
o for all w € ), the measure of w-traders, ug(w), increases continuously;
e the fraction of middle-w traders, nE(%), increases continuously.

The first bullet point shows that an improvement in trading technologies, as proxied by
a decline in the entry cost, leads to greater entry of all types of banks. The second bullet
point shows that this leads to relatively more entry of middle-w banks, who assume the role
of intermediaries, than of extreme-w banks, who assume the role of customers. This arises
because of our assumed distribution of costs together with the observation that middle-w
banks have less incentives to enter than extreme-w banks. Next, we consider a comparative

static with respect to the trade size limit, k:
Corollary 3. In equilibrium, when the trade size limit, k, increases

e the measure of middle-w traders, pg(3), varies non-monotonically. It increases with k

when k ~ 0, and it goes to zero as k — 1.

e the fraction of middle-w traders, np(3), varies non-monotonically. It is positive when
k =0 and equal to zero when k = 1. It decreases with k when k ~ 0 and ~ 1, but can

icrease with k otherwise.
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An increase in k has two opposite effects on middle-w banks’ entry incentives. On the
one hand, there is a positive partial equilibrium effect: when £ is larger, each trader in
a given bank can increase the size of its position and thus earn larger profits. But, on
the other hand, there is a general equilibrium effect: risk sharing improves, which reduces
intermediation profits. The first effect dominates when k& ~ 0, increasing the measure of
middle-w traders. But the second effect dominates when k£ ~ 1, decreasing the measure of
middle-w traders. To understand the effects on the fraction of middle-w traders, note that,
when k£ ~ 0, an increase in k causes both middle-w and extreme-w traders to enter. But
extreme-w traders enter more, resulting in a decrease in nE(%) When k ~ 1, risk-sharing is
almost perfect, the trading profits of middle-w banks are close to zero, and so n E(%) decreases
towards zero.®
These comparative statics translate into predictions about the evolution of gross expo-

sures and net exposures as frictions decrease.
Corollary 4 (Exposures). A reduction in frictions has the following effects on exposures:

e When c decreases, both the average gross exposure, G, and the ratio of gross-to-net

exposures, R, increase.

e When k increases, k >~ 0 or k ~ 1, the average gross exposure increases, but the ratio

of gross-to-net exposure, R, decreases.

Hence, in all cases, reducing frictions causes the market to grow, in the sense of increasing
gross notional outstanding per capita. But predictions differ markedly in other dimensions.
For example, when trading technologies improve, as proxied by a decline in ¢, the market
grows through an increase in intermediation activity, and the gross-to-net notional ratio
increases. In contrast, when risk-management technologies improve, as proxied by an increase
in k, the market can grow through an increase in customer-to-customer trades. As a result,
the gross-to-net notional ratio can decrease. Thus, according to the model, the evolution
of the gross-to-net notional ratio can help distinguish a decrease in frictions due to an
improvement in trading versus risk-management technologies. This paragraph mentioned
before net-to-gross while the proposition is about gross-to-net. I corrected the language
accordingly. These comparative statics can also help to guide policies aimed at reducing the
importance of central dealers. Our analysis indicates that improvements to risk management
technologies, rather than reductions in entry costs, are more likely to decrease intermediated

trade and excess volume.

8When k goes to zero, the measures of all traders’ types, pg, go to zero when k goes to zero. However,
they all do so at the same speed, so that in the £ — 0 limit the fraction of middle-w traders, nE(%), remains
bounded away from zero.
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6.1.2 Normative results

One benefit of the three-types model is that the planner’s solution can be characterized an-

alytically as well. Thus, we can explicitly compare the planner’s solution to the equilibrium.

Proposition 7. In the three-types model, the planner’s problem has a unique solution, p,

which is symmetric, up(0) = up(1l). In this solution, relative to the equilibrium:
e the fraction of middle-w traders is smaller: np(3) < ng(3);
e the ratio of gross-to-net exposure, per capita, is smaller: Rp < Rpg;
e the measure of extreme-w traders is greater: up(0) + pup(l) > up(0) + pe(l);
o if 0 <1, the market is smaller: Y pp(w) <> pp(w);

The main message of the proposition is that the planner chooses a market structure
which generates a larger fraction of direct trades between extreme-w banks, who assume
the role of customers, and a smaller fraction of indirect trades intermediated by middle-w
banks, who assume the role of dealers. To do so, the planner lets more extreme-w banks
enter the OTC market and, when 6 < 1, less middle-w banks. The net effect is, under the
sufficient condition that 6 < 1, that market size and trading volume are smaller. Numerical
computations, not reported here, suggests that this result can also hold for 6 > 1.

The proposition shows that, in equilibrium, the market is too large due to excessive
intermediation activity. While intermediation activity should not be fully eliminated, it
should be reduced. Taxing banks who assume the role of dealers and subsidizing banks
who assume the role of customers would shrink the market and reduce trading volume. Yet,
welfare would increase because some intermediated trades would be replaced by direct trades
with customers.

Finally, we study whether an asymmetric surplus sharing rule can implement efficient

entry.

Proposition 8. Suppose that, in the three-types model: middle-w traders have bargaining
power B € (0,1) when they match with extreme-w traders; and the planner’s solution pre-

scribes interior entry of middle-w traders: np(3) € (0,min{3, 1 —1}). Then:
e an entry equilibrium implements the planner’s problem if and only if B = % [1 — np(%)} .
e in any entry equilibriums:
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The proposition shows that the social planner’s solution can be implemented in an equi-
librium as long as middle-w traders receive strictly less than half of the surplus when they
bargain with extreme-w traders. Middle-w should, however, extract some strictly positive
share of the surplus. The expression for the socially optimal surplus sharing rule is intuitive:
when many middle-w traders enter in the planner’s solution, then the social value of the
marginal dealer bank is lower, and so more surplus should be given to customers.

The proposition also reveals that the socially optimal surplus sharing rule depends,
through, np(%), on all parameters of the model. In particular, if we fix some 5 € (0, %)
and k € (0,1), one can show that there exists parameters for the distribution of costs such

that there is either over-entry, 8 > 1 [1 —np(1)], or under-entry, 8 < 1 [1—np(3)].

6.2 Exit with three types

Next, we turn to the model with exit. We assume that the distribution of traders’ types in

the market arises from the entry model described above. We show in Appendix B.5 that it
11
3k
exit costs: all banks have to pay the same cost, z, per trader, in order to resume trading in
the OTC market.

implies the restriction 7(2) < min{%, 1+ — 1}. We consider a simple discrete distribution of

6.2.1 Positive results
Our main existence result is:

Proposition 9. All equilibria are symmetric. If p < 1, for some z, there exist multiple
equilibria with positive participation. Otherwise, if p = 1, for all z, there exists at most
one equilibrium with positive participation. Finally, for all z, the equilibrium with highest

participation maximizes utilitarian welfare amongst all equilibria.

The proposition shows that there can be multiple equilibria: this is due, as noted earlier,
to strategic complementarities in exit decisions. When other banks exit, traders are more
likely to end up without a counterparty, which increases an individual bank’s incentives to
exit. Multiple equilibria only arise when p < 1: thus, according to the model, coordination
failures in OTC market are more likely to arise when these markets are not too resilient.
We also note that trading patterns can be affected by exit. For instance if k is large and
full risk-sharing obtained before exit then traders would not use all of their trading capacity.
After exit, the matching probability has dropped and so traders optimally increase their

trade size with remaining counterparties.
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The next proposition abstracts from coordination failures and focuses on the equilibrium

with highest utilitarian welfare:

Proposition 10. There are three cost thresholds, z1p < zop < 23g, such that, in the highest

welfare equilibrium.:

o if 2 € [0, 215, all banks stay:

pp(0) = 7(0), pp(1) = (1), and up(3) = 7(3);

o if 2 € (21, 225), extreme-w banks stay and middle-w banks exit partially:
pp(0) = m(0), pp(1) = (1), and 0 < pp(3) < 7(3);

o if 2 € [20p, 23], extreme-w banks stay and middle-w exit fully:
p(0) = m(0), pp(1) = (1), and pp(z) = 0;

o if 2 > z3p: all banks exit fully:

pe(0) = pp(3) = pe(l) = 0.
Moreover, the measures of extreme-w and middle-w traders in the market are continuous

and decreasing in z except when p < 1 at the threshold z3g, where the measure of extreme-w

traders has a downward jump.

The thresholds appearing in the proposition, have intuitive interpretations. For example,
the first threshold, zg, is the lowest cost that makes a middle-w bank indifferent between
staying or not, when all other banks stay:

2p = MPV (%) ‘HE(O):W(O)vﬂE(l):W(l) and pp(1/2)=r(1/2)’
When z = 25, MPV (0) > MPV (1) = z, and so all extreme-w banks find it optimal to stay.

The proposition shows that middle-w banks are the most vulnerable to shocks: for any
z, a middle-w bank is more likely to exit than an extreme-w bank. The reason is, as before,
that MPV(3) < MPV(0) = MPV(1). We also learn from the proposition that the measure
of customer banks is discontinuous in z at z = z3g when p < 1. This is expected given
multiple equilibria: selections of the equilibrium map typically have discontinuities. What
is perhaps more interesting is that this discontinuity occurs for relatively large shocks, that
it goes downwards so it represents a sudden drying up of trading activity and not a sudden
boom, and that it is characterized by a sudden withdrawal of customer banks once all dealer
banks have exited. Thus, according to the model, the exit of dealers from the market is

associated with more volatile levels of trading activity.
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6.2.2 Normative results

In the appendix, we solve the planning problem fully. We show in particular that, in several
dimensions, the socially optimal exit patterns resemble the ones that arise in equilibrium. In
particular, the exit patterns are characterized by three cost thresholds, just as in Proposition
10, and there also exists a cost threshold at which the measure of customers banks falls
discretely. However, the cost thresholds for the equilibrium are different from the one arising
in the planner problem. This implies that the planner will choose exit patterns that differ

from the equilibrium. In particular, we find:

Proposition 11. Assume that p < 1 and let pg(3) and pp(3) denote the measure of middle-
w traders who stay in the OTC market, in equilibrium and in the planner’s problem. Then,
there are three thresholds 0 < z1 < 2z < z3 such that:

o if 2 < 2, ,uE(%) = MP(%) _ W(%);
);

o if 2 € (2,2), up(3) < 1p(3);

N[

o if 2 € (21,2), nu(3) > pr(

o if 2> 2, up(3) = pp(z) = 0.
Moreover, zy = z if p [1 + W(%)} <1.

The proposition shows that from the planner’s perspective there is too little exit if the
shock is small, z € (z1, 23), and too much exit when the shock is large, z € (22, 23). Therefore,
relative to our earlier result, we find that the case for subsidizing intermediaries not only
depends on market resilience, but also on the size of the shock. Subsidizing intermediaries
is welfare improving only when the shock is large enough. The intuition for this result is
that middle-w banks are socially more useful when only a few of them remain in the market,

which happens when the shock is large.

7 Conclusion

Several observations regarding entry and trading patterns OTC markets for derivatives have
recently received considerable attention from policy makers and the public alike. First,
the large volume of bilateral trades at varied prices creates an intricate liability structure
between participating banks. Second, the largest banks in these markets act as “dealers” by

engaging in intermediation activity: they trade contracts in both directions, long or short,
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and they have very large gross positions relative to their net positions. In contrast, medium-
sized banks act as “customers”: they trade mostly in one direction, either long or short, so
their gross and net positions are close to each other. These trading patterns have raised a
number of concerns. Why is much of the intermediation activity provided by large banks?
Do they provide too little or too many intermediation services? Does the concentration of
intermediation activity in these large banks make OTC markets excessively vulnerable to
negative shocks?

In this paper, we highlight the role of entry and exit incentives in shaping the structure
and ultimate resilience of OTC markets. We develop a parsimonious model of OTC markets
with entry costs and trade size limits to illustrate why only large enough banks enter the
market as “dealers,” while medium-sized banks enter mainly as “customers.” Although we
endow all banks with the same trading technology, heterogeneity in trading patterns arise
endogenously from banks’ varied incentives to trade to hedge their risk exposure vs. to make
intermediation profits. Imperfect hedging in equilibrium leads to the price dispersion from
which dealers derive their profits. We show that dealers play a socially valuable role in
mitigating OTC market frictions. However, they tend to provide too many intermediation
services relative to the social optimum: they have a “business stealing” motive for entry.
Finally, we find that banks who act as dealers are in fact the most vulnerable to negative
shocks and have the strongest incentives to exit. Whether these large banks exit more than
is socially optimal, however, depends crucially on market resilience. That is, given all other
parameters, OTC market participants must find it sufficiently difficult to engage with new
counterparties for it to be optimal to subsidize the continued participation of large dealers.

We see several avenues open for future research. First, it would be natural to introduce
further dimensions of heterogeneity, in particular in trading capacity. Second, different price
setting mechanisms could be explored, as well as competition between exchanges offering
alternative price setting mechanisms. Third, although our static model has the advantage of
being tractable while allowing for varied economic incentives, a dynamic model could help
to further develop results for the formation of trading relationships and provide foundations

for our notion of imperfect market resiliency.
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A Omitted proofs in Section 3-5

A.1 Properties of the certainty equivalent cost of risk bearing
The first derivative of T'[g] is:

vy B0
9= TR [enD]
The second derivative is:

E [D2e19P] E [e9P] — E [DemP)?

E [en9D)?

I"lgl=n
The numerator is positive since, by the Cauchy-Schwarz inequality, we have
E[DeP]* =B | Dens/20en/?| * CE[D?WP]E [WP].

The denominator is positive as well. We thus obtain that T''(g) > 0 as claimed. To show that
I[g] > 0 for g > 0, note first that the inequality is true at g = 0 since I''[0] = E[D] > 0 by
assumption. Since I'[g] is strictly convex, we obtain that I [g] > 0 for all g > 0. O

A.2 Proof of Theorem 1

Proof that an equilibrium exists. For any vector g = {g(w)}weq, consider the set V(g) C
Rl of all post-trade exposures § = {§(w)}weq generated by some feasible bilateral exposures
¥ = {7(w,®) }(w,@)eq2 and which are optimal given g. That is, for any g € V(g), there are bilateral
exposures -y, such that:

e The bilateral exposures «y are feasible, i.e., they satisfy equations (2) and (3);
e The post-trade exposures g are generated by ~, i.e., they satisfy (6) given ~;
e The bilateral exposures 7 are optimal, i.e., they satisfy (8) given g.

Clearly, V(g) is convex and non-empty, and it is included in a compact set. To apply Kakutani’s
fixed-point Theorem (see Theorem M.I.2., p. 953, in Mas-Colell et al., 1995), we also need to
show that V(g) has a closed graph. To that end, consider a sequence (g@),g@)) converging to
some (g, g) and such that q» eV (g(p)) for all p. Then, there is an associated sequence ) of
bilateral exposures generating g(f”) for each p. Since bilateral exposures belong to a compact set,
the sequence has at least one accumulation point, v. By continuity, v must satisfy (2), (3), and
it must generate the limiting exposures, §g. To show that it also satisfies the optimality condition
(8), consider any (w,®) such that g(w) < g(@). Then, for all p large enough, ¢ (w) < ¢ (@)
and so 7P (w,®) = k. Thus v(w,®) = k. Likewise, if g(w) > ¢g(@) then v(w,&) = —k. Finally, if
g(w) = g(®), then the limiting bilateral exposure v(w,®) trivially satisfies the optimality condition
(8), since it belongs to [k, k].

Proof that the planner’s problem has a solution. This follows directly because the
objective is continuous and the constraint set is compact.
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Proof that all solutions share the same post-trade exposures over supp(/N). This
follows directly because g +— T'[g] is strictly convex, and because the constraint set is convex.

Proof that all equilibria solve the planning problem. Consider the Lagrangian of the
planner’s problem:

The first-order necessary and sufficient conditions (see Theorem M.K.2., p. 959, and Theorem
M.K.3., p. 961, in Mas-Colell et al., 1995) for optimality are found by differentiating the Lagrangian
with respect to y(w, @), for all (w,d) € supp(N)*:

I [g(w)] = &(w,®) +&(@,w) — P(w, @) + p(w,©).
together with 7(w,®) > 0, v(w,®) > 0, as well as the complementary slackness condition:

7(w,@) [k — y(w,@)] =0 and v(w,®) [k + v(w,D)] = 0.

Given any equilibrium, consider the multipliers 7(w,®) = v(@,w) = $ max {I" [¢(®)] — I [g(w)] , 0}
and &(w,@) + (@, w) = 3 (I'[g(w)] + I"[g(@)]). Then, the first-order condition holds by con-
struction, and the complementary slackness condition holds by the equilibrium bilateral optimality

condition (8). Therefore, any equilibrium allocation is a solution of the planning problem.

Proof that equilibrium post-trade exposures are uniquely determined. Consider
two equilibria, denoted by “1” and “2”.

For all w € supp(N), that g1(w) = ga(w) follows directly from the previous two paragraphs:
indeed, we have established that all equilibria solve the planning problem, and all solutions of the
planning problem share the same post trade exposures for all w € supp(N).

Now consider some w ¢ supp(/N) and suppose that ¢g;(w) < g2(w). For all & € supp(V)
and g1(@) = g2(®) < q1(w) < g2w), N(w,®) = 72(w,w) = —k. For all ® € supp(N) and
g1(w) < g1(®) = g2(©0), 1(w,©) = k > Y2(w,w). In all cases, v1(w,©) > y2(w,®), which implies
that:

W =w+ > Nwom@) >ew=wt > pwo)n@)
@wesupp(N) @esupp(N)

which is a contradiction. O

A.3 Proof of Proposition 1

A preliminary result. First we note that

9(w) < g(@) = Y A(w.w)n(z) =Y (@ 2)n(), (A.1)
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with a strict inequality if n(w) + n(©) > 0. To see that (A.1) holds, consider any bilateral meeting
of w or @ with some trader of type x ¢ {w,w}. Then, from (8) it follows that w sells at least as
much insurance as @: indeed, if g(z) < g(w), then v(w,z) > vy(@,x) = —k, and if g(x) > g(w),
Y(w,x) =k > (@, x). Next, consider a bilateral meeting between traders of type w and @. Since
g(w) < g(@), it follows that y(w,®) = k > (v, w) = —k, i.e., the type-w sells a strictly positive
amount of insurance to the type-&w traders. As long as n(w) + n(@) > 0, this trades occurs with
positive probability for at least one of the two types {w, @}, implying that (A.1) holds with a strict
inequality. If n(w) + n(@) = 0, this sale occurs with probability zero, implying that (A.1) holds
with a weak inequality.
Finally, note as well that:

g(w) =g(@) and w < © = Z’y(w,x)n(x) > Z’y(d),m)n(m) (A.2)

This follows directly: since bank-w starts with a strictly smaller pre-trade exposure but ends with
the same post-trade exposure as bank-w, bank-w must sell more insurance than bank-@.

Proof that post-trade exposures are increasing. To establish the first result suppose,
constructing a contradiction, that there is some w < @ such that g(w) > ¢g(®). Then, by (A.1), @
must sell more insurance than w, > y(@,z)n(x) > > v(w,z)n(r). But since @ > w, this implies
that 0+ > (@, z)n(z) = g(©) > w+ >, v(w,z)n(zr) = g(w), which is a contradiction.

Proof that post-trade exposures are closer together than pre-trade exposures,
and strictly so if n(w) + n(@w) > 0. Consider any w < &. Then if g(w) = g(©), the result is
obvious. Since post-trade exposures are increasing, the only other case to consider is if g(w) < g(®).
In that case, the result follows from (A.1).

Proof that 0 < k < co. To prove the last result define:
k=inf{k>0: gw) =E[Q] Yw e Q}.
To show that k& > 0, consider any two w < @ and note that

9(@) — gw) =& —w+ 3 (@, 2) — y(w,2)] n(2) > & —w - 2,

since y(@,z) > —k, y(w,z) < k, and ), n(x) = 1. Hence, if k is chosen to be small enough so that
& — w > 2k for some w < @, then there cannot be full risk sharing. This implies that k& > 0.

To show that k < oo, consider the bilateral exposures v(w,&) = & — w, whereby traders
effectively swap their pre-trade exposures in every bilateral meeting. These bilateral exposures
lead to full risk sharing, g(w) = E[@] = >, an(x), and they are feasible for k large enough.
Clearly, they also solve the optimality conditions. Thus, k < co.

Next, we note that there must be full risk-sharing for all & > k: indeed, if a collection of
bilateral exposures achieves full risk sharing and is feasible for some k, then it remains feasible for
all ¥’ > k. Since the other equilibrium conditions are the same, the result follows.

Finally, we note that there must be full risk-sharing for k¥ = k. Indeed, consider any sequence
kP = &k kP >k and a corresponding sequence of equilibrium bilateral exposures, ’y(p). By
construction, these bilateral exposures are feasible, 7)(w, &) € [-k®), k®)], and since k® > k
they achieve full risk-sharing, ¢")(w) = w + 35 7P (w,@)n(@) = E[@]. Since the set of feasible
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bilateral exposures is compact, we can extract a subsequence converging to some y(w,w). By
continuity, y(w, @) € [—k, k], and g(w) =w + >, v(w,0)n(@) = E [©]. The equilibrium conditions
are clearly satisfied.

A.4 Further characterizations of post-trade exposures
In this section we provide a more precise characterization of equilibrium post-trade exposures:

Proposition 12. If g(w) is strictly increasing at w, then:
gw)=w—kN(w™ )+ k[l - N(w)]. (A.3)

If g(w) is flat at w then:
g(w)=E [w |we [g,w]} —kN(w™)+k[1 - N(@)], (A.4)

where the expectation is taken with respect to n(w), conditional on w € |w,w], and where w =
min{® : g(@) = g(w)} and W = max{w : g(&) = g(w)} are the boundary points of the flat spot
surrounding w.

Proof. All w-traders in [w,w] sell & CDS contracts to any trader @ > @ and buy k& CDS contracts
from any trader © < w. With traders @ € [w, @], the number of CDS contracts bought and sold is
indeterminate. For any w € [w,w] we thus have:

9(w) = 9(@) = gw) =w — kN(W) + > y(w,&)n(@) + k[ = N@)].

Now multiply by n(w), sum from w to @ and note that, by (2) it must be the case that:

ZZ (@) = 0.

In other words, the net trade across all matches (w,®) € [w,®]? must be equal to zero. Collecting
terms we obtain expression (A.4). O O

The intuition for this result is the following. If g(w) is strictly increasing at w, then it must be
that a w-trader sells k£ contracts to any trader @ > w, and purchases k contracts from any traders
W < w. Aggregating across all traders in bank w, the total number of contracts sold by bank w is
k[l — N(w)] per capita. Likewise, the total number of contracts purchased by bank w is kN (w™)
per capita. Adding all contracts sold and subtracting all contracts purchased, we obtain (A.3).

Now consider the possibility that g(w) is flat at w and define w and @ as in the proposition. By
construction, all banks in [w, @] have the same post-trade exposure. Therefore, g(w) must be equal
to the average post-trade exposure across all banks in [w,®| which is given in equation (A.4): the
average pre-trade exposure across all banks in [w,@], plus all the contracts sold to @ > w-traders,
minus all the contracts purchased from & < w-traders. The contracts bought and sold among
traders in [w,®| do not appear since, by (2), they must net out to zero. Finally, we provide a
sufficient condition for a flat spot:

Corollary 5. For all w < maxQ, if k [n(w™') + n(w)] > wt —w, then g(w’) = g(w).
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Proof. Suppose that g(w) < g(w™). Then:

0<gw) —gw) =w" —w+yw",wn(w) = 7w w)nw")
+ Z [Y(wT,z) —v(w,z)] n(z). (A.5)
z¢{wwT}

By (8), v(w,w™) = k and y(w™,w) = —k since g(w) < g(w™). Moreover, y(w,z) > y(wt,z) = —k
for all x < w, and y(w,z) = k > y(w™,z) for all z > w*. Thus, w sells at least as much insurance
than w™ to all z ¢ {w,w'}. Together with (A.5), this implies that:

0<g(w") —gw) <w" —w—Fk[nw")+nw)].
Therefore, k [n(w™) + n(w)] < w®™ —w. The result obtains by contrapositive. O

Intuitively, when there is a large measure of traders at {w,w™}, with a large enough trading
capacity and similar enough endowments, these traders can execute sufficiently many and large
enough bilateral trades amongst themselves that they manage to pool their risks fully.

A.5 Proof of Proposition 2

When k is small, Gt (w) = k [1 — N(w)] is strictly decreasing over supp(N), and G~ (w) = kN (w™)
is strictly increasing. Hence, I(w) = min{G" (w), G~ (w)} is hump shaped, equal to G~ (w) for low
values of w, and to GT (w) for large values. Moreover since |supp(NN)| > 3, then there is at least one
element of w € supp(N) which is not at the boundary of the support, i.e. such that N(w™) > 0
and 1 — N(w) > 0. This implies that max,,cgupp(n) I(w) > 0.

Consider first a maximum w € supp(NN) of I(w) and suppose that:

Nw™) <1- N(w). (A.6)

Recall that we have defined w™ to be the predecessor of w within supp(N), so that n(w™) > 0.
Thus, (A.6) implies that N(w™) < 1. Moreover, it must be the case that N(w) > 1 — N(w*), for
otherwise I(w™) > I(w). Therefore, N(w") > . Now recall that w €  is a median of N if and
only if N(w™) < § and N(w) > 4. Thus, if N(w) > 1, then w is a median of N. If N(w) < 1, then
wt is a median of N.

Next, consider a maximum w € supp(N) of I(w) and suppose that:

1—N(w) < Nw). (A7)

Since w € supp(IN), we have that n(w) > 0, so (A.7) implies that N (w) > 3. Moreover 1—N(w™) >
N(w™"), for otherwise I(w™) > I(w). Since n(w~") > 0, this implies that N(w™~) < 5. Thus, if
N(w™) > 1, then w™ is a median of N. If N(w™) < 3, then w is a median of N. O

A.6 Proof of Proposition 3

First, we note that by the Theorem of the Maximum (see Stokey and Lucas, 1989, Theorem 3.6), the
set of bilateral exposures solving the planning problem is compact, implying that the minimization
problem defining G(k) has a solution. Second, we note that R(k) = 1 if and only if each bank in
supp(NN) only trades in one direction, either long or short. That is, R(k) = 1 if and only if, for all
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w € supp(V):

Gt (w) -G (W) > 0= vy(w,®) > 0Y& € supp(N)
GT(w) -G (W) £0= vy(w,@) <0Y® € supp(N).

Proof that R(k) > 1 when k < k. 1In this case, since there is not full risk sharing, there must
exist (wy,ws) € supp(N)?, w1 < wa, such that g(w;) < g(ws). Since |supp(N)| > 3 there exists
at least another type of bank, w3 in the OTC market. We then distinguish two cases. If there is
some w3 € supp(N), ws ¢ {wi,ws}, whose post-trade exposure is different from that of wy or wo,
g(ws3) ¢ {g(w1),g(w2)}, we are done: indeed, (8) implies that the bank with intermediate exposure
will go long and short k contracts with the two banks with extreme exposures, and so its gross
exposure will exceed its net exposure. If there is no such ws, then it must be the case that all banks
ws € supp(N) have an exposure that is either equal to g(wy) or equal to g(ws). In other words,
g(w) = g(w1) when w is below some threshold, and g(w) = g(ws), when w is above the threshold.
Thus, without loss of generality, we can assume in this case that the threshold is wq, that wo = wf’,
and that ws > wo. Then, using Proposition 12, we have

g(we) =E[w|w > wo] — kN(w1) = we — kN (w1) + Z Y(we, z)n(z)
= Z Y(we,z)n(z) =Ew|w > ws] — wy > 0,

T>wo

where the strict inequality obtains because of our assumption that there is some w € supp(V) such
that w > wy. Therefore, a bank of type ws sells insurance to some w > wy and buys insurance from
all w < ws. Therefore, its gross exposure exceeds its net exposure.

Proof that R(k) > 1 near k, and equal to 1 for k large enough. To address this case

we prove an auxiliary result:

Lemma 6. Suppose there exists some collection of bilateral exposures, vy, implementing full risk
sharing, and such that gross exposures are equal to net exposures for all w € supp(N). Then full risk
sharing can be implemented by some other collection of bilateral exposures, 74, with gross exposure
strictly larger than net exposures for some w € supp(N), and such that max, g)e supp(n)2 |7 (w, @)| <

max, o)esupp(N)?2 |7(w7 (‘D) | :

This Lemma, proved below, implies by contrapositive that, when k = k, then full risk sharing
can only be implemented if gross exposures are strictly larger than net exposures.

Note that for k > k, g(w) —w = G (w) — G~ (w) = E[@] — w and so N (k) is constant. Clearly,
since post-trade exposures are constant and equal to E [w] for all k > k, the constraint set of (13)
increases with k, implying that G(k) is decreasing in k. Taken together, this implies that R(k) is
decreasing in k. To show that R(k) = 1 for finite k, we rely on the following Lemma:

Lemma 7. There exists bilateral exposures implementing full risk sharing and such that gross
exposures equal net exposures.

This immediately imply that k = inf{k > 0 : R(k) = 1} is finite. O
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Proof of Lemma 6. To prove this result, consider a collection of bilateral exposures, v(w, ),
that implements full risk sharing and such that gross exposures equal net exposures for all w €
supp(N). Thus, banks in supp(N) with w < E [@], who have positive net exposure, must always
trade in the same direction, vy(w,x) > 0 for all x € supp(N). Vice versa, for all banks in supp(N)
such that w > E[@], v(w,z) < 0 for all € supp(N). Note in particular that v(w,@) = 0 if the
pre-trade exposures, w and @, are on the same side of E [©].

Now let k = max(, g)esupp(v)2 [7(w,@)| and consider any (wi,ws) € supp(N)? such that
v¥(w1,w2) = k. Note that this implies that w; < E [@] < we. We consider two cases.

e Suppose there exists some w3 € supp(N) such that wg < E[©] and (w3, w2) < k, or such
that wy > E [@] and y(wi,w3) < k. Then, we can reduce (w1, ws) and still achieve full risk
sharing, using ws as an intermediary. For instance, if wy < E[©0] and (w3, w2) < k, one
can reduce y(wi,wz) by € > 0, increase y(wi,ws) from zero to en(wz)/n(ws), and increase
(w3, ws) by en(wi)/n(ws). By choosing ¢ small enough, we can make sure that |y(wq,ws)],
|7(w1,ws)], and |y(ws,wsz)| are now strictly less than k.

e Now consider the second case: if for all ws < E[@], v(ws,w2) = k, and if for all ws > E [©],
~v(w1,ws) = k. Note that this implies that E [©] ¢ supp(/V). Hence, for all w < E [©]:

Z’y(w,m)n(a:) = Z Y(w, z)n(z) < Z kn(z) = Z’y(wl,az)n(ac).
T ] T

2>E[®] z>E[@

Since Proposition 1 established that net sales were strictly decreasing in w, this implies that
w1 = minsupp(V). Likewise wy = maxsupp(N). Moreover, since [supp(/N)| > 3, there
must be at least another type of bank in supp(N), for example some w; < w3 < E[&]
(the other case is symmetric). For such bank of type ws, there must be banks of type
E [®0] < wg < we such that y(ws,ws) < k. Otherwise, bank w3 would have the same bilateral
exposures as bank wy, and since ws > wi, it would have strictly larger post-trade exposure,
g(ws) > g(w1), which would contradict our maintained assumption of full risk sharing. With
this in mind, we can reduce ~y(wy,w2) using ws and wy as intermediaries. Namely, we can
reduce y(wi,w2) by €, increase v(wi,ws) from zero to en(ws)/n(ws), increase y(ws,wy) by
en(we)n(wi)/ [n(ws)n(ws)], and increase y(wy,ws) from zero to en(wy)/n(ws). By choosing €
small enough, we can make sure that |y(wy,w2)|, |v(w1,ws)|, [v(ws,ws)|, and |y(wg,ws)|, are
all strictly less than k.

Proof of Lemma 7. We proceed by construction. We let Q¥ denote the set of w < E[@] in
supp(V), with elements as wl < w¥ ... < wk. Likewise, let 2 be the set of w > E [] in supp(N),
with elements wil > wi > ... > wlf. We construct the desired bilateral exposures recursively.
We initialize our algorithm at step s = 0 with o“(0) = ¢"(0) = 1, ¢(®(w) = w for all w, and
7O (w, &) = 0. At step s > 1, let i = o%(s — 1) and j = o (s — 1) and

E[5] - gD (wh) ¢¢ V() —E @] }
nwh T n@h) |

Y (wf, wi) = 45D (WE, wH) + min {
That is, we pick bilateral exposures that bring either i or j to E [©]. We let o*(s) = i+ 1 if the min
is achieved by the left-hand side argument, and o/(s) = j + 1 if it is achieved by the right-hand
side argument. By construction, w € QF only sells insurance, and all w € Q only buy insurance,
and they do so until they reach a post-trade exposure equal to E [©]. Let S be the smallest step
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such that either o%(S) = I or o/(S) = J. Note that S is finite since |©2] < oo and since, at
each step, either o%(s) > o¥(s — 1) or of(s) > of(s — 1). We argue that, at S, o(S) = I and
ofl(S) = J. Suppose for example that o©(S) = I (the argument is symmetric if o (S) = J).
Then, by construction, the post-trade exposure of each w < E [©] is equal to E [©], and so the total
amount of contracts sold by w < E [@] is equal to:

Y (B[] -w)n(w).

w<E[D]

The total amount of contracts purchased by w > E [@] is smaller than:

Y (w-E@)nw).

w>E[D]

with an equality if and only if g(w) = E [©] for all w > E [@]. Since the total amount of contracts
sold and purchased must be equal, we obtain:

Y. W-EE)nw < Y (BB -w)nw).

w>E[@] w<E[&]

with an equality if and only if g(w) = E[@] for all w > E[@]. Collecting terms, one immediately
sees that the above inequality must hold with equality, and we are done.

A.7 Proof of Theorem 2

As explained in Section 5, the model of entry is obtained as a special case of the model of exit,
by setting p = 1. Hence, Theorem 2 is a special case of Proposition 5, proved in Section A.15
below. O

A.8 Proof of Proposition 4

Proof of the first bullet point. That K(w) = 0 if and only if g(w) = w follows from the fact
that ' [g] is strictly convex. Next, suppose that I' [w] is quadratic. Then, a second-order Taylor
expansion shows that:
1"// 1"//

Tw] =Tlg(w)] =T gw)] [w - g(w)] + 5 [w - gw)* = K(w) = 5 lw- g(w)*. (A.8)
We know from Proposition 1 that g(w) — w is a strictly decreasing function of w over supp(V).
Moreover, Y - [g(@) — @] n(w) = 0, which implies that g(w) —w > 0 for w = minsupp(N), and
g(w) —w < 0 for w = maxsupp(N). Taken together with (A.8), these two observations imply that
K (w) is a U-shaped function of w € €, achieving its minimum when the distance between g(w) and
w is smallest.
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Proof of the second bullet point. To simplify notation, let p(w) = T" [g(w)]. The frictional
surplus is

w) =k Y [pw) = p@)]n@) +k Y [p@) — plw)] n(@)

w<w w>w

_ hplw Z )HEY pl@ kp(w) [1 - N(w)
1] -

— kp(w) 2N (w) - @n(@) + kS pl@)n(@).

O>w
Let & denote the successor of w in the set :

p(@) 2N (@) = 1] = kp(w) 2N (w) — 1] = kp(@)n(@) — kp(@)n(w)
w)] [2N (w) — 1] = sign [F(®) — F(w)] = sign 2N (w) — 1],

Il
-l
)

&

|
=

keeping in mind that p(@) — p(w) > 0. Now consider any median wps of N in the set 2. Then, the
predecessor in the set 2 of any @ < wyy satisfies 2N (w) —1 < 0, hence F(©) — F(w) < 0. Likewise,
the successor in the set € of any w > wys satisfies 2N (w) — 1 > 0, hence F (@) — F(w) > 0. The
result follows. O

A.9 Proof of Corollary 1
1

Without loss of generality we assume that () is symmetric around w* = 5. Then, the symmetry
assumption can be stated as: 1 € Q, w € Q= 1—w € Q, and (1 — w) = 7(w). We first establish
that, if the distribution of traders in the market is symmetric, then the equilibrium conditional on
entry is symmetric as well:

Lemma 8. Suppose that the distribution of traders is symmetric n(w) = n(l —w) and has full
support. Then, equilibrium post-trade exposures are symmetric as well, g(1 — w) = 1 — g(w), and
can be implemented by a symmetric collection of CDS contracts, such that y(w,®) = —y(l—w, 1—®).

To see this, consider some equilibrium collection of CDS contracts, ~y
post-trade exposures, g(w). Now, the alternative collection of CDS #(w
feasible and generates post-trade exposures:

—W—Zyl—wl—:n —uu—Zyl—uul—:E) (1—2x)

== 3w ynly) =1 (1—w+27<1 —W»wn(y))
Y

Y

@), and its associated

(w,
) = =71 —-w,1—-0Q)is

=1-g(1—w).

where the first equality holds by definition of 4(w,®), the second equality because n(z) = n(1—x),
and the third equality by change of variables y = 1 —z. Now it is easy to see that ¥(w, @) satisfies
(8). Indeed, g(w) < g(@) is equivalent to g(1 — @) < ¢g(1 — w), which implies from (8) that
71 -®,1-w) = —91—-w,1—-0) = F(w,&) = k. Since equilibrium post-trade exposures are
uniquely determined, we conclude from this that g(w) =1 — g(1 —w) = g(w).

To see that g(w) can be implemented using a symmetric collection of CDS contracts, consider
Y (w, @) = (y(w,®) +9(w,@)), for the same §(w,®) defined above. By construction, we have that
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Tl —w,1-@) = —v*(w,®), and g*(w) = 3(g(w) + §(w)) = g(w), given that we have just shown
that g(w) is symmetric.

Now note that, as long as k is small enough (say, £ < max ) — min ), full risk sharing cannot
obtain regardless of N, which implies that MPV(%) > 0. Hence, together with the other stated
assumptions of the corollary, this Lemma allows us to apply Kakutani’s fixed point theorem in the
subset of measures p which are strictly positive and symmetric, i.e., which satisfy pu(w) = p(1—w) >
0. This delivers a fixed point that is strictly positive and symmetric as well.

Having established the existence of a symmetric equilibrium, we turn to the proof of the Corol-
lary. Bank sizes are distributed according to the distribution F(S) such that [¢° SdF(S) = 1.
That ®(z) > 0 for all z > 0 means that the support of this distribution is unbounded above.

We note that for all w < @ < %, (w,®) € suppN?, MPV(w) > MPV (@) > 0. Indeed, we have
a weak inequality for both the competitive and the frictional surplus. We have a strict inequality
for the competitive surplus by Proposition 1, since ¢(@) — g(w) < & — w for any (w,@) € suppN?2.
Surpluses are strictly positive because k is assumed to be small. Let ¥(w) = ¢/MPV(w) and let
Q(w) denote the measure of bank establishments with endowment w who choose to stay out. It
must satisfy Q(w) € [F(X(w)7), F(X(w))]. Indeed, banks with sizes strictly above ¥ (w) find it
strictly optimal to enter, banks with size exactly equal to ¥ (w) are indifferent between entering or
not, and banks with sizes strictly below Y (w) find it strictly optimal to stay out. Taken together,
this implies that the distribution of bank size conditional on endowment w is

F(S) -

F(S|w) = Tg;u)ﬂ{szm)}-

Now recall that for all w < & < £, (w,®) € suppN2, MPV(w) > MPV(@). This clearly implies that
Y(w) < ¥(w) and, since Q(w) € [F(X(w)™), F(X(w))], this also implies that Q(w) < Q(&). Hence,
F(S|) is greater than F'(S|w) in the sense of first-order stochastic dominance. The results of the
corollary follow. O

A.10 Proof of Lemma 2

As explained in Section 5, the model of entry is obtained as a special case of the model of exit, by
setting p = 1. Hence, Lemma 2 is a special case of Lemma 5, proved in Section A.16 below. ]

A.11 Proof of Lemma 3
Proof that MSV (w) > 0. Since K(w) > 0, a sufficient condition for positivity is that

53 M o))~ T o)l [n(a)n(y) > 0. (A9)

Pw) > 5 |0 )] T [o(a)] |n(z) -
T T,y
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Note that:

DI L) T 9o o) = 5 32 ()] = o] )+ 5 32 1 )] = )] )
= 5 S =l o)+ 315 1 )] o)
= % mZy: {\F/ [9(w)] =T [g(2)] | + [T [g(w)] = T [g(y)] !}n(sv)n(y),

where the first equality follows obviously, the second equality follows by changing the name of the
variable from x to y, and the third follows because ) n(r) = 1. Plugging this back into (A.9), we
obtain that F(w) > g if and only if:

% > {!F’ lg(@)] =T [g@)] | + [T [g(w)] = T [g)] | = [T [g(x)] = T" [g(v)] !}n(x)n(y) > 0.
' (A.10)

which is true by the triangle inequality. O

Proof that MSV(w) > 0 for some w. Assume towards a contradiction that MSV(w) = 0 for
all w € Q. Then it follows that K(w) = 0 for all w € €2, and so by strict convexity g(w) = w for all
w € Q. Recall from Proposition 1 that for all w < & such that n(w) + n(®), g(w) —w > g(@) — ©.
Since ) n(w) = 1, there must be at least one pair of (w,@) such that n(w) 4+ n(®) > 0, which
leads to a contradiction. O

Proof that MSV (w) > 0 if g(w) = w and if risk-sharing is imperfect. Suppose there is
a pure intermediary, i.e., a bank such that g(w) = w, and that there is imperfect risk sharing. Then,
there must be at least one other bank in the market such that n(xz) > 0 and g(x) # g(w). Clearly,
the frictional surplus associated with the pair (z,w) is strictly positive, so the result follows. O

A.12 Proof of Theorem 3

Proof that a solution exists. Let W (u,~) denote social welfare as a function of the measures
of traders who enter, 1, and of the bilateral exposures they establish in the OTC market, . Clearly,
W is continuous at any feasible allocation (p,~y) such that p # 0. The only potential difficulty arises

because n(w) = <% cannot be extended by continuity at u = 0, so that W(u,v) may not be
2o H(@)

continuous at points (¢, y) = (0,7). However, note that n(w) only enters in the term I' [¢g(w)], which
is bounded since |g(w)| is bounded by max . Moreover, this term I' [g(w)] of W(u,~) is always
multiplied by pu(w). Hence, for any sequence (ug,vx) — (0,7), we have that ug(w)T [gr(w)] — 0.
This implies that W(ug,vx) — W(0,7), hence the planner’s objective is continuous. The result
then follows from the fact that the set of feasible allocations is compact.

Proof that positive entry in equilibrium implies positive entry for the planner.
Indeed, in an equilibrium, for any entrant, the utility of entering is at least as large as the utility
of staying out. Adding up all these utilities, and using the fact that all CDS payments add up to
zero, we obtain that social welfare in any equilibrium allocation must be at least as large as social
welfare in the no-entry allocation. The result follows.
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Proof of the first-order conditions. The first-order condition of the planner’s problem can
be written:

0 if p(w) =10
I (CONIIEEIAS

(G
MSV(w) § > 4
$(1 i u(w) = 7(w)

We show that this implies the condition shown in the Theorem. When u(w) = 0, this is obvious: in
that case MSV(w) < 9(0), and since 1(0) is the lower bound of the support of the cost distribution,
® [MSV(w)~] = 0. When p(w) = 7(w), this is also obvious: in that case MSV(w) > 9(1), and since
1 (1) is the upper bound of the support of the cost distribution, ® [MSV(w)] = 1. Finally consider

the interior case. Then, by Lemma 41, MSV(w) > 1 <M> implies that p(w) < w(w)® [MSV(w)].

w(w)
The other inequality can be written

MSV(w) < (45 +¢)

for all € > 0 and n > 0. By the definition of ¢(q), this implies that:
& MSV(w) — o] < X&) 4 .
Letting € and 1 go to zero, we obtain the desired inequality:

® [MSV(w)] < %

Proof of the implementation result. Suppose that the planning solution prescribes positive
entry and full risk sharing. Then, since F(w) = 0, we have that MPV(w) = MSV(w) for all w € Q.
As a result, the planner’s first-order conditions coincide with the equilibrium conditions. The result
follows. O

A.13 Proof of the claim in Footnote 5

To prove this claim, consider any distribution of costs such that ®(z) > 0 for all z > 0, and assume
that |Q2| > 4. We note that for £ > max Q) — min ), then the bilateral exposures v(w,w) = ® — w
are feasible and implement full risk sharing regardless of N. Clearly, it is also a socially optimal
allocation conditional on entry. Therefore, for k¥ > max ) — min §2, in the planner’s solution, there
is full risk-sharing.

Let © be the measure of traders in the planner’s solution, when & > max — min€). Given
the distribution of traders generated by u, we can define k as the smallest trade size limit such
that risk-sharing obtains in an equilibrium conditional on entry, as in Theorem 1. Given k, the
planner’s solution remains p, and full risk-sharing obtains conditional on entry: indeed, the planner
can achieve the same value as with £ > max{) — min €2, even though its constraint set is tighter.
Because || > 4, there must be at least 3 types w such that g(w) = E[0] # w, K(w) > 0 and,
therefore, MSV(w) > 0. Because ®(z) > 0 for all z > 0, this implies that, for these banks pu(w) > 0.
Therefore, supp(N) > 3, and the result follows by Proposition 3: the ratio of gross-to-net exposures
in the market is strictly greater than one.
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A.14 Proof of Lemma 4

The tuple {~v, g, R} is an equilibrium conditional on exit if and only if it solves the following system
of equations:

k if g(@) < g(w)
Y(w,w) =4 [~k k] if g(©) = g(w)
—k if (@) < g(w),

together with v(w, @) +v(@,w) = 0 and —k < y(w,@) < k. One immediately sees that {a(u)y, g, R}
is an equilibrium conditional on entry with trading limit a(u)k, and conversely. U

A.15 Proof of Proposition 5

We first study the function (o, n) — M PV (w | a,n), for (a,n) € [p, 1]xA, where A = {n : 3 _on(w) =1}
is the simplex. We proceed first with a intermediate result:

Lemma 9. The function (a,n) — g(w|a,n) is continuous.

Proof. For any vector g = {g(w)}weq, consider the set V(g,,n) of all post-trade exposures § =
{9(w)}wea generated by some feasible bilateral exposures v = {(w,©)}(w z)e0? given o and n, and
which are optimal given g. That is, for any g € V(g,,n), there are bilateral exposures ~y, such
that:

e The bilateral exposures «y are feasible, i.e., they satisfy equations (2) and (3);
e The post-trade exposures § are generated by =, i.e., they satisfy (21) given v, «, and n;
e The bilateral exposures 7 are optimal, i.e., they satisfy (8) given g.

Using the exact same argument as in the proof of Theorem 1, one shows that the correspondence
V(g,a,n) is non-empty and upper hemi continuous.

To show continuity consider any (a,n) € [p, 1] x A, and the associated equilibrium post-trade ex-
posures, g, which are the unique solution of g € V (g, a,n). Now consider any convergent sequences
n® — n and a® — a. For each p, there is a unique ¢ such that ¢®) ¢ V (g(p), oz(p),n(p)). We
seek to show that ¢?) — ¢. Since ¢ belongs to a compact set, it has at least one accumulation
point, g*. Since V (g, o, n) is upper hemi continuous, it must be the case that ¢* € V(g*,a,n). But
since equilibrium post-trade exposures are unique, it must be the case that ¢g* = g. Therefore, g(f”)
has a unique accumulation point, equal to ¢, implying that ¢® — g¢. O

Our second intermediate result is:
Lemma 10. The function (a,n) — MPV(w|a,n) is continuous.

Proof. This follows because the marginal values, MPV(w |, n), are continuous functions of g, «,
and n, and equilibrium post-trade exposures, g, are by Lemma 9, continuous in («,n). O

The third intermediate result is:
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Lemma 11. Given any (o, n) € [p, 1] X A, there exists at least one w € Q such that MPV(w | a,n) >
0. Hence,

A ‘f Me ’ A1l
(k)= inf  maxMPVw|a,n) >0 o

Proof. For the first statement, assume towards a contradiction that MPV(w | a,n) = 0 for all w € Q.
Then it follows that K(w) = 0 for all w € Q, and so by strict convexity g(w) = w for all w € Q. But
we know from Proposition 1 that, for any w < @ such that n(w) +n(©) > 0, g(w) —w > g(@) — ©.
Since we are considering that ) n(w) = 1, there must exist at least one pair (w,@) such that
n(w) + n(@) > 0, which leads to a contradiction. The second statement follows since, by Lemma
10, (a,n) = max,eq MPV(w |, n) is continuous. O

Now, given any (a,n) € [p,1] x A, we define:

I(a,n) = Zﬂ(w)tﬁ [MPV(w | a,n)”].

w

The function II(a,w) can be viewed as a lower bound on the measure of traders who participate in
the market, given the participation incentives generated by (a,n). Our fourth intermediate result
is:

Lemma 12. Suppose that ® [b(n,k)~] > 0. Then II = inf 4 nye[p,1xa H(a, n) > 0.

Proof. Since [p,1] x A is compact, there exists a sequence (a(p),n(p)), converging towards some
(a,n) € [p,1] x A and such that II (a(p), n(p)) > II and lim,,_,o0 I1 (a(p), n(p)) = II. Since, as shown
in Lemma 10, the MPVs are continuous functions of (a,n), we have that MPV (w | a(p),n(p)) —
MPV(w | a,n). Since ®(z7) is increasing, we have:

Zw: o [MPV (w ] a(p),n(p)ﬂ > Zw: o [z(p) (w)_] where 2P (w) = 1111212 MPV (w | a(q),n(q)> .

Since z(P)(w) is increasing and converges towards MPV (w | a,n), and since ®(z~) is left continuous,
we can go to the limit on both sides and we obtain:

o= plLI&ZW(Lu)@ [MPV(w | oz(p),n(p))] > Zw(w)fb [IMPV(w|a,n)”].

But we know from Lemma 11 that MPV(w |, n) > b(n, k). The result follows from our assumption
that @ [b(n, k)] > 0. O

Next, we move on to the application of Kakutani’s fixed point theorem. We restrict attention
to:

uEME{u:Oﬁ,u(w)gw(w) and Z,u(w)ZE}.
wel

Note that the set M is not empty: consider for instance any (a,n) € [p,1] x A. Then, p(w) =
7(w)® [MPV(w|a,n)] is clearly positive and smaller than 7(w), and ) u(w) > II by definition of
II. Clearly, the set M is bounded, convex, and compact. Moreover:
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Lemma 13. The correspondence T maps M into itself, is non-empty, convexr valued, and upper
hemi continuous.

Proof. The set T[u] is, by construction, non-empty and convex. We also have T'[u] C M by
construction of II. To show upper hemi continuity, we consider a sequence u(p) € M and t?) ¢
T[puP)] converging to some y and t in M. Given that the range of T[] is compact, we need to
establish that ¢ € T'[u] (see Stokey and Lucas, 1989, p.56). Consider then, the associated sequences
al?) = o (,u(p)), where a(p) = p+ (1 — p) >, p(w), and n® = n (,u(p)), where, for each w
n(p)|w] = pw)/ X5 1(@)]. By continuity, we have that a®) — a(u). Since u € M, u # 0. Thus,
n(-) is continuous at p and n® — n(u). Since (a,n) — MPV(w|a,n) is continuous by Lemma
10, it follows that MPV (w|a®, n®)) — MPV (w|a(u),n(n)). Now keep in mind that, since

tP) e T [,u(p)], we have m(w)® [MPV (w|oz(p),n(p))_} < tP(w) < 7(w)® [MPV (w|oz(p),n(p))].
Since ®(z7) is increasing and left-continuous, and since ®(z) is increasing and right-continuous,

an application of Lemma 38 and 39 allows us to take the limit in the above inequalities, and we
obtain:

W)@ {MPV[w|a(p),n(p)]" } < t(w) < 7(w)® {MPV]w|a(u),n(1)]},

meaning that t € T'[pu].
The proposition then follows from an application of Kakutani’s fixed point theorem. O

A.16 Proof of Lemma 5

To derive the formula for marginal social value, we apply an envelope theorem of Milgrom and
Segal (2002): according to their Corollary 4, it is equal to the partial derivative of the objective
function (10) with respect to p(w), evaluated at some maximizer +, as long as the result of this
calculation does not depend on the particular choice of the maximizer.

Thus, in order to apply this envelope theorem, we simply evaluate the partial derivative of (10)
assuming that the bilateral exposures are chosen optimally, i.e., they solve the first-order conditions
(8). We obtain:

el =T lo(e)] - 3 p (o)) { - = Yk [ ’ +<1—p>%<x,w>}

T Y

=T [w] -Tgw)]+p) %7(% YT [g(z)] +

p+(1- ] (wv$)rl [9(2)]

=T [w] = T[g(w)] + p Y _ T’ [g(x)] v(z, y)n ) +a Z I'[g )n(x)

where we used y(z,w) = —v(w,x) to obtain the last term on the second line, and where the last
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line follows by definition of & = p+ (1 — p) > u(@) and n. The second term can be written:

P2 T B@NA@ ) = § 3T @] ey + §Zr' 9] 7> n(y)n()
’y -5 ZF’ -3 ST (e nnt)
=3 Zv (o) {T” Io( (yn}n(:c)n(y)
= 2N | @)~ I o)) n(aInty) = ~2F.

where the first equality follows by exchanging the variables in the summation, the second equality
follows by using v(x,y) = —y(y, z), the third equality by collecting terms, and the fourth equality
by the optimality condition of the planner’s problem with respect to v, in equation (8). The last
equality follows by definition of the average frictional surplus.

The third term can be written:

a) T [g(x)] y(w, = azf' ) + OZZW w,z) {T' [g()] = T’ [g(w)]} n(=)
ZF'[EI( )] g(w) —w +04k‘2|r/ [g(w)]| n(x)
=T"[g(w)] [g(w) — w] + aF (w).

where the first equality follows by adding and subtracting I [g(w)], the second equality by definition
of g(w) —w and by the optimality condition of the planner’s problem with respect to -, in equation
(8), and the third equality by definition of the frictional surplus. Collecting terms we obtain the
formula for MSV(w). Clearly, this formula does not depend on the particular choice of maximizer,
so the envelope theorem of Milgrom and Segal applies. O
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