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Job-seekers often receive help from family and acquaintances when conducting searches (e.g.,

Loury, 2006). Likewise individuals learn about new products and technologies from friends

and colleagues (e.g., Banerjee, Chandrasekhar, Duflo and Jackson, 2013). The actions and

attributes of an adolescent’s peer group predict her initiation of sexual activity, drug use and

academic performance among other behaviors (Case and Katz, 1991; Gaviria and Raphael,

2001). Even the exchange of goods and services may occur within a network. For example,

electronic producers may utilize different, but overlapping, sets of manufacturers to assemble

finished products, sharing valuable technology and know-how with each (e.g., Kranton and

Minehart, 2001).

The ubiquitousness of networks, along with their ability to predict many social and economic

behaviors, motivates their academic study. In particular, the correlation between the actions

of individuals (firms) and the attributes and actions of those with whom they are connected

raises at least two questions. First, how do networks form and evolve? Second, do the actions

and attributes of one’s peers – the set of agents to which one is connected – influence one’s

own actions? There is ample evidence that measurable features of an individual’s social

network predict important social and economic outcomes. Whether these associations are

causal is unclear.

The processes of network formation and network influence are interconnected. If one’s net-

work of friends and acquaintances facilitates job search, it may be that individual’s seek

out connections, at least in part, because of these benefits. In such situations unobserved

drivers of network structure may covary with those of the outcome of interest, rendering any

observed relationship between network structure and outcomes, at least partly, spurious.

Biases of these type are common in many areas of microeconometric research, addressing

them in the context of social network research is difficult.

The interconnected nature of network formation and their effects on outcomes of interest to

decision-makers has important policy implications. If, for example, an adolescent’s rate of

learning is meaningfully influenced by the characteristics and behaviors of her friends, then
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interventions acting on an existing network of friendships, as well as those designed to change

the structure of friendships, may both influence observed achievement (e.g., Goldsmith-

Pinkham and Imbens, 2013).

While social network analysis has a long history in several disciplines, especially sociology (cf.,

Wasserman and Faust, 1994; Bonacich and Lu, 2012), the study of networks in economics,

both theoretically and, even more so, empirically is considerably more recent.

Within economics empirical research on social networks generally concerns itself with one

of the two questions posed above (but rarely both). Manski (1993), in a seminal paper,

studied the second question: under what conditions can a researcher infer that the actions

and/or characteristics of one’s peers influence one’s own actions? Manski’s paper has been

extraordinarily influential; both sparking further methodological research (e.g., Brock and

Durlauf 2001a,b; Graham, 2008, 2011; Bramoulle, Djebbari and Fortin, 2009) as well as

deeply influencing empirical practice (e.g., Angrist and Lang, 2004; Card and Rothstein,

2007; Sacerdote, 2014).

Empirical research on the first question – how do networks form? – is comparatively more

recent. Jackson and Wolisky (1996) introduced the notion of a strategic model of network

formation, where pairs of agents form, maintain or sever links in a decentralized way in

order to maximize utility. Choices are interdependent, since the utility an agent attaches to

a particular link may vary with the presence or absence of other links in the network. This

approach to network formation, with agents maximizing utility in a decentralized way, is a

natural one for economists. Formulating an empirical model with these features is difficult.

Since McFadden (1973) and Manski (1975) economists have modeled single agent discrete

choice problems using random utility models (RUMs). These models provide a principled

way of inferring the distribution of preferences from the observed distribution of choice.

Unfortunately, as is familiar from the literature on games (e.g., Bresnahan and Reiss, 1991;

Tamer, 2003), when agents’ choices are interdependent, as is the case in network formation,

a number of econometric challenges arise. These challenges are compounded by the scale of
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the network formation problem. In an undirected network with N agents, a total of 2

(
N
2

)
configurations of links are possible.

This review will primarily focus on empirical models of network formation (i.e, on the first

of the two questions posed above). The emphasis will further be on models of strategic

network formation (i.e., those with coherent random utility foundations). Other approaches

to network modeling, such as exponential random graph models (ERGMs), will only be

touched upon.

Research on the identification of peer groups effects (i.e, on the second of the two questions

posed above) is comparatively more mature than that on how networks (or peer groups)

form. Several high quality reviews of work in this area are currently available (e.g., Blume,

Brock, Durlauf and Ioannides, 2011). Work in this area will not feature prominently in this

review, except insofar as it connects to questions of network formation.

The partition of research on networks into (i) the study of agent behavior conditional on

friendship (i.e., network) structure and (ii) the study of how networks form is convenient but

not intellectually desirable. In single agent problems the analogs of these two questions are

generally considered jointly. For example, labor economist study the distribution of wages

jointly with schooling and/or labor force participation decisions (e.g., Heckman 1977, Card,

1995).

Brock and Durlauf (2001b) discuss the joint modeling of neighborhood choice and neighbor-

hood influences. Ioannides and Zabel (2008) provide an empirical illustration. Goldsmith-

Pinkham and Imbens (2013) jointly model peer selection and peer influences on academic

achievement. Their paper also includes a fully worked empirical application. Work of this

type, however, remains very much an exception. Some of the strongest empirical work on

peer group effects exploits research designs where group membership is (quasi-) randomly

determined (see Sacerdote (2014) for a review). While the study of social interactions in

settings where peer networks are plausibly exogenous is attractive, limiting research to such

settings substantially narrows the set of behaviors amenable to study.
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Clearly econometric models of strategic network formation are needed to successfully “control

for” network endogeneity when studying peer group effects. While their use in this way is

largely aspirational at the present time, this goal motivates their development. Of course

the study of network formation is scientifically interesting in its own right and, further,

policy-makers may legitimately have preferences over the structure of links in a network,

irrespective of any relationship between these links and other outcomes. For example, a

school administrator may wish to structure instruction in her school so as to encourage

cross-social-class and/or cross-race friendships, reduce the presence of cliques and/or isolated

students and so on. She may wish to do this irrespective of any relationship between students’

network structures and their academic performance.

Section 1, which follows next, describes methods for summarizing network data. Just as

analysis of the distribution of a single random variable typically begins with the calculation

of a sample mean, or one on the association between two random variables with that of

a correlation coefficient, the analysis of network data generally begins with a summary of

various features of a network’s architecture. This material also serves as a vehicle to establish

some basic notation and to review some ‘stylized facts’ on social networks.

Section 2 selectively reviews empirical models of network formation. Here I focus on strategic

models of network formation. I exclude from my discussion so called “network evolution

models” (NEMs) (Toivonen et al. , 2009). Examples of NEMs include the scale free model

of Barabási and Albert (1999) and the small world model of Watts and Strogatz (1998).

NEMs typically begin with a small randomly-generated seed network and then specify simple

stochastic rules for adding and deleting links. This literature focuses on replicating key

features of real world networks (e.g., degree distribution, average path length etc.). I also

exclude exponential random graph models (ERGMs) from my discussion. This approach

directly specifies a probability distribution for the entire graph/network. While EGRMs have

featured prominently in the empirical literature on networks, they are generally not consistent

under sampling (Shalizi and Rinaldo, 2013). Specifically the parameters associated with an
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ERGM fit to a sub-network do not coincide with those associated with the full network. This

makes structural interpretation of model parameters problematic (Christakis, Fowler, Imbens

and Kalyanaraman, 2010). Relatedly, estimation of EGRMs is also challenging (Snijders,

2002). In an interesting working paper, Chandrasekhar and Jackson (2014) propose an

alternative to ERGMs that addresses many of these limitations.

Section 3 discusses methods of network simulation. The inclusion of this material is mo-

tivated by the need to have interesting but tractable null models for network data. Such

models can serve a number of purposes. First, they can be used to assess whether a cer-

tain feature of a network is unusual among the set of all networks that share certain other

features in common. Second, some data collection protocols may only partially reveal net-

work structure. For example public health surveys may collect information on the number

of concurrent sexual partners, but not their identity (Morris, Kurth, Hamilton, Moody and

Wakefield, 2009). The General Social Survey (GSS) collects ego-centered network data (Burt,

1984; McPherson, Smith-Lovin and Brashears, 2006). Specifically information on each GSS

respondent’s direct links are collected, as well as information on any links among those links.

This sampling scheme reveals the network’s degree distribution (i.e., distribution number of

links across agents), as well as the frequency with which one’s friends are friends themselves.

Simulation methods can allow researchers to study the properties of the class of all networks

that are consistent with the sample information available (which may not be the complete

network). Finally, constructing a binary matrix which satisfies a set of side constraints is a

well-defined discrete math problem. In recent years computer scientists have studied these

types of problems (e.g., Blitzstein and Diaconis, 2011; Stanton and Pinar, 2012). Familiarity

with this work is valuable to researchers interested in networks.

Section 4 ends with some thoughts about future directions for research.
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1 Describing networks

Figure 1 provides a visual representation of a set of risk-sharing links, measured in the year

2000, between 119 households residing in Nyakatoke, a small village in Tanzania. These

data are described and analyzed by de Weerdt (2004) and de Weerdt and Fafchamps (2011).

Individuals were asked for lists of people that they could “personally rely on for help”. A list

of undirected links between all households was constructed using responses to this question.

Each point in the figure represents a household, with the size of the point proportional to

the number of risk sharing links to which the household is party. Yellow, orange, green and

blue households correspond to categories of increasing land and livestock wealth (see the

notes to Figure 1).

Graphical representations of network data like Figure 1 have historically played an important

role in empirical analysis and continue to do so (Freeman, 2000). While certain features of a

network can often be intuited from a visual representation, it is also valuable to have a suite

of standard network summary statistics. This section describes methods for summarizing

network data. There are many basic references for the material surveyed here, including

Wasserman and Faust (1994), Newman (2003), Jackson (2008) and Kolaczyk (2009). A few

minor results presented below, mostly of pedagogical significance, are new.

The mathematical language of networks is that of discrete math and, specifically, graph

theory. Bollobas (2013) is a standard graph theory reference. Rosen (2006) is a more

introductory discrete math reference. An undirected graph G (N , E) consists of a set of nodes

N = {1, . . . , N} and a list of unordered pairs of nodes called edges E = {{i, j} , {k, l} , . . .}

for i, j, k, l ∈ N . A graph is conveniently represented by its adjacency matrix D = [Dij]

where

Dij =

 1 if {i, j} ∈ E

0 otherwise
. (1)

A node, depending on the context, may be called a vertex, agent or player. Likewise edges
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Figure 1: Nyakatoke risk-sharing network

Source: de Weerdt (2004) and author’s calculations.
Notes: Node size proportional to household degree. Yellow nodes represent households
with land and livestock wealth below 150,000 Tanzanian Shillings, orange those with wealth
between 150,000 and 300,000 Shillings, green those with wealth between 300,000 and 600,000
Shillings and blue those with wealth of 600,000 Shillings and above. Following Comola and
Fafchamps (forthcoming) land was valued at 300,000 shillings per acre. Network plotted
using igraph package in R (see http : //igraph.org/r/).
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may be called links, friendships, connections or ties. Since self-ties are ruled-out, and the

nodes in edges are unordered, the adjacency matrix is a symmetric binary matrix with a

diagonal of so-called structural zeros (i.e., Dij = Dji and Dii = 0).

Networks may also be directed, such that each link has an ego (sender) and alter (receiver)

ordering. Indeed, the analysis of directed networks in sociology probably predominates. The

focus on undirected networks here is soley for pedagogical reasons.

A social network consists of a set of agents (nodes) and ties (edges) between them. A social

network can be conveniently represented by it node and edge list or by its adjacency matrix.

I will utilize the adjacency matrix representation in most of what follows. Two examples of

undirected network adjacency matrices are

Dex1 =



0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0


, Dex2 =



0 1 1 0 0

1 0 1 0 0

1 1 0 1 1

0 0 1 0 1

0 0 1 1 0


.

These two networks are graphically depicted in Figure 2. The first network, Dex1, takes a so

called ‘star’ configuration, in which a central agent linked to all other agents. The second

network, Dex2, consists of two triangles, which share a single agent in common.

In summarizing the structure of a social network it is convenient to define network statistics

at the level of individual agents, at the level of pairs of agents or dyads, and at the level of

triples of agents or triads.

Network statistics involving single agents and paths through the network

The total number of links belonging to agent i, or her degree is Di+ =
∑

j Dij. The degree

frequency distribution of a network, or degree distribution for short, consists of the frequency
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Figure 2: Two simple networks

of each possible agent-level degree count {0, 1, . . . , N} in the network. A important com-

ponent of the literature on networks takes the degree distribution as its primitive object of

interest (e.g., Barabási and Albert (1999) and Albert and Barabási (2002)). This focus is

motivated by the fact that many other topological features of a network are fundamentally

constrained by its degree distribution (see Faust, 2007). I will have more to stay about the

connection between a network’s degree sequence and its other topological features below.

The density of a network equals the frequency with which any randomly drawn dyad is

linked:

PN =

(
N

2

)−1 N∑
i=1

∑
j<i

Dij. (2)

Note that (N − 1)PN coincides with average degree. The density of the Nyakatoke network

is 0.0698. The density of Dex1 is 0.4, that of Dex2 is 0.6.

Consider the matrix product

D2 =



D1+

∑
iD1iD2i · · ·

∑
iD1iDNi∑

iD1iD2i D2+ · · ·
∑

iD2iDNi

...
... . . . ...∑

iD1iDNi

∑
iD2iDNi · · · DN+


.

The ith diagonal element of D2 equals the number of agent i’s links or her degree. The
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{i, j}th element of D2 gives the number of links agent i has in common with agent j (i.e.,

the number of “friends in common”). In the language of graph theory the {i, j}th element of

D2 gives the number of paths of length two from agent i to agent j. For example, if i and

j share the common friend k, then a length two path from i to j is given by i → k → j.

The diagonal elements of D2 correspond to the number of length two paths from an agent

back to herself. For example if i is connected to k, then one such a path is i→ k → i. The

number of such paths coincides with an agent’s degree.

Calculating D3 yields

D3 =



∑
i,j D1iDijDj1

∑
i,j D1iDijDj2 · · ·

∑
i,j D1iDijDjN∑

i,j D1iDijDj2

∑
i,j D2iDijDj2 · · ·

∑
i,j D2iDijDjN

...
... . . . ...∑

i,j D1iDijDjN

∑
i,j D2iDijDjN

∑
i,j DNiDijDjN


,

whose {i, j}th element gives the number of paths of length 3 from i to j.

The diagonal elements of D3 are counts of the number of transitive triads or triangles in the

network. If both i and j are connected to k as well as to each other, then the {i, j, k} triad is

closed (i.e., “the friend of my friend is also my friend”). Note that if {i, j, k} is a closed triad

it is counted twice each in the ith, jth and kth diagonal elements of D3. Therefore Tr (D3) /6

equals the number of unique triangles in the network.

Proceeding inductively it is easy to show that the {i, j}th element of DK gives the number

of paths of length K from agent i to agent j.

Measuring agent centrality

One preoccupation of network researchers has been the identification of “central” or “impor-

tant” agents. This is sometimes called the key player problem (Ballester, Calvó-Armengol

and Zenou, 2006; Ballester and Zenou, forthcoming). Consider, as just one example, a policy-
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maker who wishes to facilitate the spread of a new technology or idea. She is constrained to

introduce the technology to just one agent in the network. Which agent should she choose?

The answer to this question will depend, of course, on assumptions about how information

moves from one agent to another, as well as the precise objective of the policy-maker. Baner-

jee, Chandrasekhar, Duflo and Jackson (2013) use the above question to motivate a specific

measure of centrality.

Many measures of agent centrality have been proposed (see Wasserman and Faust (1994),

Jackson (2008) and Bonacich and Lu (2012) for textbook expositions of some key examples).

Centrality measures are often heuristically motivated, but have been, in some cases, micro-

founded ex post (e.g., Ballester, Calvó-Armengol and Zenou, 2006).

In turns out that one notion of agent centrality can be defined via an interesting connection

with the “social multiplier”. The concept of a social multiplier has been a key theme in

empirical work on social interactions in economics since the publication of Manski (1993). It

features in, for example, Brock and Durlauf, (2001b), Glaeser and Scheinkman (2001, 2003),

Graham (2008) and Angrist (forthcoming). In the presence of social multiplier effects, the

full impact of an intervention exceeds the initial impact due to feedback effects across agents.

When interactions occur on a non-trivial network, the magnitude of any multiplier effect will

also depend upon exactly which agent is initially acted upon by the policy-maker. This is

the intuition behind social multiplier centrality.

Let Yi be some continuously-valued action chosen by network member i = 1, . . . , N . LetY be

N×1 vector of all agents actions. Let ιN be an N×1 vector of ones and G = diag (DιN)−1D

be the row-normalized network adjacency matrix (i.e., the network adjacency matrix where

each element of the ith row is divided by Di+, the ith agent’s degree). Note that all rows of

this matrix sum to 1 by construction. The matrix is row-stochastic.

Let

Giy =
∑
j 6=i

Gijyj
def
≡ ȳn(i)
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equal the average action of player i’s peers under the (perhaps hypothetical) action profile

y. Here Gi denotes the ith row of G.

Following Blume, Brock, Durlauf and Jayaraman (2013), among others, assume that the

utility agent i receives from action profile y given network structure (D) is

ui (y;D) = (α0 + Ui) yi −
1

2
y2i + β0ȳn(i)yi

= (α0 + Ui) yi −
1

2
y2i + β0Giyyi (3)

with 0 < |β0| < 1 and E [Ui] = 0. Here Ui captures heterogeneity in agents’ preferences for

action.

The marginal utility associated with an increase in yi is increasing in the average action of

one’s peers, ȳn(i). Specifically,
∂2ui (y,D)

∂yi∂ȳn(i)
= β0.

That is, own- and peer-effort are complements. In the terminology of Manski (1993), the

magnitude of β0 indexes the strength of any endogenous social interactions.

Assume that the observed action Y corresponds to a Nash equilibrium where no agent can

increase her utility by changing her action given the actions of all other agents in the network.

Agents observe D and U, the N × 1 vector of individual-level heterogeneity terms.

The first order condition for optimal behavior associated with (3) generates the following

best response function:

Yi = α0 + β0Ȳn(i) + Ui (4)

for i = 1, . . . , N . Equation (4) is a special case of what is called the linear-in-means model

of social interactions (e.g., Brock and Durlauf, 2001b). An agent’s best reply varies with

the average action of those to whom she is directly connected (Ȳn(i)) and unobserved own

attributes (Ui).

Equation (4) defines an N × 1 system of simultaneous equations. It is convenient, for what
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follows, to write the system defined by (4) in matrix form:

Y = α0ιN + β0GY + U. (5)

For |β0| < 1 the matrix IN − β0G is strictly (row) diagonally dominant (IN is the N × N

identity matrix). By the Levy-Desplanques Theorem (cf., Horn and Johnson, 2013) it is

therefore non-singular. Non-singularity of (IN − β0G) allows us to solve for the equilibrium

action vector as a function of D and U alone.

Solving (5) for Y yields the reduced form

Y = α0 (IN − β0G)−1 ιN + (IN − β0G)−1U. (6)

It is helpful to simplify (6) in a number of ways. First, using the series expansion

(IN − β0G)−1 =
∞∑
k=0

βk0G
k,

as well as the fact that GιN = ιN (and hence that GkιN = ιN for k ≥ 1) we get the

simplification α0 (IN − β0G)−1 ιN = α0 (1− β0)−1 ιN . Using this result and re-arranging (6)

yields

Y =
α0

1− β0
ιN +

[
∞∑
k=0

βk0G
k

]
U. (7)

Equation (7) provides some insight into what various researchers have called the social mul-

tiplier. Consider a policy which increases the ith agent’s value of Ui by ∆. We can concep-

tualize the full effect of this increase on the network’s distribution of outcomes as occurring

in “waves”. In the initial wave only agent i’s outcome increases. The change in the entire

action vector is therefore

4ci,
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where ci is an N -vector with a one in its ith element and zeros elsewhere.

In the second wave all of agent i’s friends experience outcome increases. This is because

their best reply actions change in response to the increase in agent i′s action in the initial

wave. The action vector in wave two therefore changes by

4β0Gci.

In the third wave the outcomes of agent i’s friends’ friends change (this includes a direct

feedback effect back onto agent i). In wave three we get a further change in the action vector

of

∆β2
0G

2ci.

In the kth wave we have a change in the action vector of

4βk−10 Gk−1ci.

Observing the pattern of geometric decay we see that the “long-run” or full effect of a ∆

change in Ui on the entire distribution of outcomes is given by

4 (IN − β0G)−1 ci. (8)

Equation (8) indicates the effect of perturbing Ui by 4 on the equilibrium action vector

coincides with the ith column of the matrix 4 (IN − β0G)−1. The total effect on aggregate

action is therefore given by the sum of the ith column of this matrix. Therefore

SMC (β0) = ι′N (IN − β0G)−1

gives a row vector of aggregate effects associated with unit perturbations of Ui for each

agent in the network. If the cost of perturbing Ui does not vary with i, the planner can use
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Figure 3: Social multiplier centrality at β = 0.25 in the Nyakatoke network

Source: de Weerdt (2004) and author’s calculations.

this vector to efficiently target interventions. Call the ith element of this vector agent i′s

social multiplier centrality at parameter β0. Specifically if the planner seeks to maximize the

average action, she will target her intervention toward an agent with high social multiplier

centrality.

Bonacich (1987) develops a closely related, and widely used measure of centrality, Katz-

Bonacich Centrality. Ballester, Calvó-Armengol and Zenou (2006) provide a game-theoretic

foundation for Katz-Bonacich Centrality. Blume, Brock, Durlauf and Jayaraman (2013)

discuss the relationship between the linear-in-means interaction game exposited above and

the one studied by Ballester, Calvó-Armengol and Zenou (2006). See also Jackson and Zenou

(forthcoming) and Ballester and Zenou (forthcoming).

Figure 3 plots the distribution of SMC (β) = ι′N (IN − βG)−1 at β = 0.25 for the Nyakatoke
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risk-sharing network. Under linear-in-means interaction, an intervention initiated on many

households in the Nyakatoke Network would barely increase the aggregate action beyond the

direct effect on the intervened household. For the most central households, however, the full

effect on the aggregate outcome would exceed twice that of the “initial” (direct) effect on

the intervened agent. In the presence of linear-in-means interaction, knowledge of network

structure can lead to substantial improvements in policy-targeting.

Network statistics involving pairs of agents or dyads

The distance between agents i and j corresponds to the minimum length path connecting

them. If there is no path connecting i to j, then the distance between them is infinite. We

can use powers of the adjacency matrix to calculate these distances. Specifically,

Mij = min
k∈{1,2,3,...}

{
k : D

(k)
ij > 0

}

equals the distance from i to j (if it is finite). Here D(k)
ij denotes the ijth element of Dk. For

modest sized networks Mij can be calculated by taking successive powers of the adjacency

matrix.

If the network consists of a single, giant, connected component, such that the minimum

length path between any two agents is finite, we can compute average path length as

M =

(
N

2

)−1 N∑
i=1

∑
j<i

Mij. (9)

If the network consists of multiple connected components, standard practice is to compute

average path length within the largest one. Alternatively, following Newman (2003), we can

calculate average distance or path length in the network as

M
alt

=

[(
N

2

)−1 N∑
i=1

∑
j<i

M−1
ij

]−1
. (10)
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Table 1: Frequency of degrees of separation in the Nyakatoke network
1 2 3 4 5

Count 490 2666 3298 557 10
Frequency 0.0698 0.3797 0.4697 0.0793 0.0014

Source: de Weerdt (2004) and author’s calculations.

By taking the reciprocal of an average of reciprocal distances, we neatly handle the ‘problem’

of infinite paths.

The diameter of a network is the largest distance between two agents in it. It will be finite if

the network consists of a single connected component (in which case all agents are “reachable”

starting from any given agent) and infinite in networks consisting of multiple components

(in which case there are no paths connecting some pairs of agents).

Table 1 gives the frequency of minimum path lengths in the Nykatoke network. There are

490 direct ties in the network (paths of length one). Just under 7 percent of all pairs of

households are directly connected in Nykatoke. Another 2,666 dyads are only two degrees

apart. That is, although they are not connected directly, they share a tie in common. About

80 percent of dyads are separated by three or fewer degrees. The diameter of the Nyakatoke

network is 5. The juxtaposition of low density (i.e., only a small fraction of all possible ties

exists), with few degrees of separation (i.e., low average degree and/or diameter) is a feature

of many real world social networks.

The analysis of distances and diameter has a long history in social network analysis and

falls under the rubric of the “small-world problem”. Stanley Milgram (1967) popularized

this phrase and, through a series of postal experiments in the 1960s, showed that two ran-

dom individuals in the United States could be often be connected through a short chain of

acquaintances (“six degrees of separation”).
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Figure 4: Types of triads in undirected networks

Empty One-Edge Two-Star Triangle

Table 2: Nyakatoke risk-sharing network triad census
empty one-edge two-star triangle

Count 221,189 48,245 4,070 315
Proportion 0.8078 0.1762 0.0149 0.0012
Random Graph Proportion 0.8049 0.1812 0.0136 0.0003

Source: de Weerdt (2004) and author’s calculations.
Notes: The Nyakatoke network includes N = 119 households, corresponding to

(
N
2

)
= 7, 021

unique dyads and
(
N
3

)
= 273, 819 unique triads.

Network statistics involving triples of agents of triads

Triads, a set of three unique agents, come in four types: no connections, one connection,

two connections, or three connections between them. These triad types are called empties,

one-edges, two-stars and triangles respectively. There are
(
N
3

)
= N(N−1)(N−2)

6
unique triads

in a network of size N . A complete enumeration of them into their four possible types

constitutes a triad census.

Each agent can belong to as many as (N − 1) (N − 2) triangles. The counts of these triangles

are contained in the N diagonal elements of D3. However each such triangle appears 6 times

in these counts: as {i, j, k}, {i, k, j}, {j, i, k}, {j, k, i}, {k, i, j} and {k, j, i}. Thus

# of triangles = TT =
Tr (D3)

6
(11)
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equals the number of unique triangles in the network.

Each pair of agents {i, j} can share of up to N − 2 links in common. If {i, j} are not linked

themselves, then they may belong to two stars with their links in common as star centers.

Since each dyad can create up to N−2 closed triangles by forming a link between themselves,

there may be up to
(
N
2

)
(N − 2) = N(N−1)(N−2)

2
(actual) triangles or two stars (i.e., potential

triangles) in the network. These counts are contained in the lower (or upper) off-diagonal

elements of D2. Each triad appears three times in these counts: as {i, j, k}, {i, k, j} and

{j, k, i}. If the triad is a two star, then only one of DjiDki, DijDkj, or DikDjk quantities

will equal one (i.e., contribute). If it is a triangle, then all three will equal one. Therefore

vech (D2)
′
ι gives the network count of three times the number triangles plus the number of

two-stars, with the count of the latter alone equal to

# of two stars = TTS = vech
(
D2
)′
ι− Tr (D3)

2
. (12)

We can use a similar logic to calculate the number of one-edge triads. Each agent be-

longs to N − 2 triads. If all triads are empty or have only one edge, then there will be

(N − 2) vech (D) ι one edge triads. However if some triads are two-stars or triangles this

count will be incorrect. It turns out that subtracting twice the number of two stars and

three times the number of triangles gives the correct answer.

# of one edges= TOE = (N − 2) vech (D)′ ι− 2vech (D2)
′
ι+

Tr(D3)
2

(13)

The number of empty triads, TE, equals
(
N
3

)
minus the sum of (11), (12) and (13). Note

that (11), (12) and (13) collectively imply that

TOE + 2TTS + 3TT = (N − 2) vech (D)′ ι,

=
1

4
N (N − 1) (N − 2)PN
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suggesting that network density can be computed from the triad census according to

PN =

(
4TOE + 8TTS + 12TT
N (N − 1) (N − 2)

)
. (14)

The triad census for the Nyakatoke network is given in Table 2. As a point of comparison

the proportion of each type of triad that we would expect to see in a random graph, where

the probability of a link between any two agents coincides with the observed density of the

Nyakatoke network (0.0698), is given in the last row of the table.

A measure of network transitivity is given by three times the number of transitive triads in

the network relative to three times the number of transitive triads plus those triads which

could become transitive with the addition of a single link (i.e., two stars). The Transitivity

Index, sometimes called the clustering coefficient, is

Transitivity Index =
3TT

TTS + 3TT

=
1

2

Tr (D3)

vech (D2)′ ι

= RN .

In random graphs RN should be close to network density. For the Nyakatoke network the

transitivity index is 0.1884, which substantially exceeds the density of the network (0.0698).

We will explore how to assess the statistical significance of this difference in Section 3 below.

Transitivity has been hypothesized to facilitate risk sharing and other activities where moni-

toring may be helpful. If the (i, j, k) triad is transitive, then agent k may be able to monitor

actions involving i and j. See Jackson (2014) for additional discussion. Faust (2007) surveys

the extensive sociological literature on triad configurations.
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Degree distributions and triad counts

A reoccurring theme in social network analysis concerns whether observed network structures

can be explained through a series of dyadic decisions, or whether interactions among larger

groups of agents, most often a triads, need to be considered (see Faust (2007) for a recent

statement and references to earlier work). Most economic models of network formation model

links as forming via pairwise interactions, albeit interdependent ones.

While network transitivity, and the triad census, has often been a focus of sociologists, other

network researchers have made a network’s degree distribution

F (d+) = Pr (Di+ ≤ d+)

their primary object of study (e.g., Barabási and Albert, 1999). Figure 5 plots the Nyakatoke

network’s degree distribution. A small number of households in the Nyakatoke network have

many links (over 20), while the vast majority have only a small number of links (less than

10).

Faust (2007) argues, via a collection of empirical examples, that the distribution of triad

configurations within networks are well-predicted by network statistics defined on lower

order sub-graphs (i.e., dyads). Some additional insight in this finding can be developed via

some basic algebra.

Some tedious manipulations give a variance of the degree distribution equal to

S2
N =

2

N
(TTS + 3TT )− (N − 1)PN [1− (N − 1)PN ] . (15)

Consider the effect of inducing a mean preserving spread in a network’s degree distribution.

That is, we seek manipulations which keep network density fixed, while increasing the vari-

ance of the degree distribution. Jackson and Rogers (2007a), in the context of a technology

diffusion model, provide an interesting motivation for considering this thought experiment.
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Figure 5: Nyakatoke risk-sharing network degree distribution

Source: de Weerdt (2004) and author’s calculations.
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Using (14) and (15) we get

S2
N =

2

N
(TTS + 3TT )

− (N − 1)

(
4TOE + 8TTS + 12TT
N (N − 1) (N − 2)

)[
1− (N − 1)

(
4TOE + 8TTS + 12TT
N (N − 1) (N − 2)

)]

Inducing a mean-preserving spread requires triad manipulations that (i) increases the first

term in the expression above, while (ii) leaving the second term unchanged. Table 3 list

several mean-preserving triad manipulations. A triad is the smallest subgraph rearrangement

we can use to induce a mean-preserving spread in the degree distribution.

To increase S2
N a two-star or triangle must be added to the network (accommodated by

changes in the number of empties and one edges). Alternatively we can convert a two-

star into a triangle (again accommodated by changes in the number of empties and one

edges). These correspond to manipulations 2 to 5 and manipulation 6 in Table 3. Note that

manipulations 2 and 4 and 3 and 5 are isomorphic, while manipulation 1 does not increase

S2
N . This leaves 4, 5 and 6 as unique triad manipulations which induce mean preserving

spreads in a network’s degree distribution.

Each of manipulations 4 to 6 involve net increases in TTS +3TT , accommodated by decreases

in the number of one edges and increases in the number of empties. This is an example of

how a network’s degree distribution fundamentally constrains other aspects of its topology.

In this case higher variance degree sequences imply networks with more “hubs” (nodes with

many links emanating outwards from them) as well as more isolated nodes. Jackson and

Rogers (2007a) show that the first effect tends to facilitate the spread of infections (ideas,

new technology, etc.) in a network, while the second acts as a break to diffusion.

Note that the effect of the triad manipulations listed in Table 3 on transitivity is not one-

directional. Manipulation 4 reduces transitivity, while manipulations 5 and 6 increase it.

Nevertheless, Barabási and Albert’s (1999) focus on degree distributions may not be mis-

placed. Evidently the form of a network’s degree distribution is strongly connected to the
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Table 3: Mean-preserving spreads via triad manipulations
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Figure 6: Realized values of Uij

α α+γ

Link always forms Link forms if agents share a 
friend in common

Link never forms

distribution of other, high order, subgraph features.

Faust (2007) finds that, as a practical/empirical matter, the distribution of triad configu-

rations across a wide range of networks can be largely explained by lower order subgraph

features (e.g., moments of the degree distribution).

2 Modeling network formation

To characterize some of the issues that arise when empirically modeling network formation it

is helpful to initially consider a very simple model. Assume that directly-linked agents may

make transfers to one another. Therefore agents i and j will form a link if the net surplus

from doing so is positive, conditional on the link behavior of all other agents in the network.

This corresponds to a variant of the direct-transfer network formation game, under pairwise

equilibrium, studied by Bloch and Jackson (2007). Let Fij (D) =
(∑N

k=1DikDjk

)
denote

the number of friends agents i and j share in common. Links form according to the rule

Dij = 1 (α0 + γ0Fij (D)− Uij ≥ 0) (16)

for i = 1, . . . , N and j < i. Here Uij is an unobserved component of link surplus; indepen-

dently and identically distributed across dyads according to a known distribution:

Uij
iid∼ FU , i = 1, . . . , N, j < i Uij ∈ U. (17)
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Rule (16) implies that agents form links if (i) they share many friends in common (Fij (D))

and/or (ii) the unobserved idiosyncratic utility from doing so is high (−Uij). The magnitude

of γ0 > 0 captures the strength of agents’ preferences for triadic closure in links. The

dependence of the surplus generated by an i-to-j link on the presence or absence of links

across other pairs of agents constitutes a network externality. Network externalities generate

complex interdependencies across the choices of different agents, a modeling challenge not

present in textbook single agent models.

As noted earlier, in real world social networks linked agents often share additional links in

common, generating a clustering of ties. Rule (16) generates such clustering by positing a

structural taste for link transitivity – the returns to a relationship are higher if two individuals

share a friend in common. A preference for transitive links may be micro-founded in a variety

of ways. For example, actions between dyad partners can be monitored or refereed by a

shared friend; this may be valuable in the context of a risk-sharing network. Alternatively it

may be more enjoyable to socialize with two friends, if they are also friends with each other.

An alternative explanation for clustering is that agents assortatively match on some unob-

served attribute, a process called homophily. Homophily on observed attributes is a feature

of many real-world networks (McPherson, Smith-Lovin and Cook, 2001). Rule (16) and

assumption (17) rules out homophily a priori.

As an alternative to rule (16) Handcock, Raftery and Tantrum (2007), Krivitsky, Handcock,

Raftery and Hoff (2009) and Graham (2014), consider link formation rules like

Dij = 1
(
Z ′ijη0 + νi + νj − g (ξi, ξj, δ0)− Uij ≥ 0

)
, (18)

where Zij is an observed K × 1 vector of dyad attributes, νi and ξi are unobserved agent-

level heterogeneity, and Uij is an idiosyncratic dyad level surplus component; g (ξi, ξj, δ0)

is a known symmetric distance function which (i) takes a value of zero at ξi = ξj and (ii)

is increasing in |ξi − ξj| . The goal is to learn about η0, δ0 and features of the conditional
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distribution of (νi, ξi) given Z.

Relative to rule (16), rule (18) introduces a much richer form of unobserved agent-level

heterogeneity. First, agents are heterogeneous in the amount of link surplus they generate.

Agents with high values νi generically generate more surplus. Such agents will have more

links, giving rise to degree heterogeneity; an important feature of real work networks (see

Figure 5). Second, the model allows for assortative matching on ξi. Agents which are similar

in terms of the unobserved characteristic ξi generate more surplus from linking. This feature

of the model induces clustering in links. Unlike rule (16), rule (18) does not include any

network externalities. The presence or absence of a link elsewhere in the network does not

change the returns to an i-to-j link.

In practice link rules with network externalities and those with rich forms of agent-level

heterogeneity can generate very similar networks. This makes discriminating between, for

example, structural transitivity and homophily on unobservables difficult. Nevertheless,

distinguishing between them is scientifically interesting and policy-relevant. Transitivity is

associated with an externality in link formation. In the presence of externalities a local

manipulation of network structure can influence link formation elsewhere in the network. If

clustering is due soley to homophily, local manipulations do not have effects that cascade

through the network.

Below I discuss how panel data may be used to model both a structural taste for transitivity

and assortative matching on unobserved attributes simultaneously. Initially, however, I focus

on cross-sectional models that include either network externalities or heterogeneity, but not

both.

A simple cross-sectional model with structural transitivity

Returning to link rule (16), assume that the econometrician bases her inferences on a ran-

dom sample of networks from some well-defined population (of networks). For example

networks of food sharing among households across a population of indigenous communities
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(e.g., Koster and Leckie, 2014). For each sampled network (community) the entire adja-

cency matrix is observed. This sampling process asymptotically reveals F (D|N = n) for

n ∈ N = {2, 3, 4, . . .}. Implicit in (6) is the assumption that the distribution of Uij is in-

dependent of network size. The notation Dij corresponds to the link status of the generic,

randomly drawn, (i, j) dyad, itself sampled from a randomly drawn network. To economize

on notation there is no explicit network subscript in what follows.

Equation (16) defines a system of
(
N
2

)
simultaneous discrete choices. Viewed in this way,

two questions naturally arise. First, for a given θ0 = (α0, γ0)
′ does (16) have a solution for

all U ∈ UN? This is a question of equilibrium existence or model coherence. Demonstrat-

ing existence can be non-trivial for some models of network formation (cf., Jackson, 2008;

Chapter 11; Hellmann, 2013). Second, if an equilibria does exist, is it unique (again for all

U ∈ UN)? This is a question about model completeness: given a particular draw of the

model’s underlying latent variable U, does it deliver a unique prediction for the observed

network, D? Multiplicity of equilibrium network configurations is a common feature of many

models with network externalities.

The study of models with qualitative features similar to those of (16) has a long history

in econometrics (e.g., Heckman, 1978a). Important recent contributions include those of

Bresnahan and Reiss (1991), Tamer (2003) and Ciliberto and Tamer (2009) among others.

Unfortunately the combinatoric complexity of networks, with 2

(
N
2

)
link configurations pos-

sible in a network with N agents, makes the direct application of insights from prior work

difficult.

To keep the discussion simple assume that N = 3. In this case there are four possible

non-isomorphic network configurations corresponding to the four types of triads depicted in

Figure 4 above. The heterogeneity draw is given by the triple U = (U12, U13, U23)
′
∈ U3. For

any given draw of U one of these four configurations will be observed.

Call draws of Uij below α, between α and α+γ, and above α+γ respectively low (L), medium

(M) and high (H) draws (see Figure 6). Let pLLL (θ, FU) = FU (α)3 denote the probability of
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three ‘low’ draws; pLMH (θ, FU) = FU (α)FU (α + γ) [1− FU (α + γ)] the probability of one

low, one medium and one high draw and so on. Observe that low draws of Uij correspond

to higher link surplus.

If U12 falls in the ‘low’ region, then agents 1 and 2 will form a link regardless of whether

they share a friend in common (i.e., D13D23 may equal zero or one). In contrast if U12 falls

in the ‘medium’ region, then agents 1 and 2 will form a link only if they share a friend in

common (i.e., if D13D23 = 1). If U12 falls in the ‘high’ region, then they never form a link.

The contingent behavior associated with a ‘medium’ idiosyncratic surplus component is what

generates the possibility of multiple equilibria. Consider the case where all three elements of

U fall into the ‘medium’ range. In that case two network configurations are consistent with

(16): (i) the empty triad and (ii) a triangle. The model, as specified, is silent on which of

these two networks is chosen.

Let πT (θ, FU) denote the minimum probability the model defined by (16) and (17) logically

attaches to observing a triangle for a particular θ and FU . This probability coincides with

the probability mass attached to the region of U3 where the model uniquely predicts a

triangle network. Let π̄T (θ, FU) denote the maximal probability the model logical attaches

to observing a triangle. This probability coincides with the probability mass attached to the

region of U3 where a triangle network is either the unique network configuration, or among

the set of multiple configurations, consistent with (16).

Recalling the notation of ‘T’ for ‘triangle’, ‘TS’ for ‘two-star’, ‘OE’ for ‘one-edge’ and ‘E’ for

‘empty’, the above logic yields the following probability bounds on the four non-isomorphic
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network configurations:

πT (θ, FU) = pLLL (θ, FU) + pLLM (θ, FU)

π̄T (θ, FU) = pLLL (θ, FU) + pLLM (θ, FU) + pLMM (θ, FU) + pMMM (θ, FU)

πTS (θ, FU) = pLLH (θ, FU)

πOE (θ, FU) = pLMH (θ, FU) + pLHH (θ, FU)

π̄OE (θ, FU) = pLMM (θ, FU) + pLMH (θ, FU) + pLHH (θ, FU)

πE (θ, FU) = pMMH (θ, FU) + pMHH (θ, FU) + pHHH (θ, FU)

π̄E (θ, FU) = pMMM (θ, FU) + pMMH (θ, FU) + pMHH (θ, FU) + pHHH (θ, FU) .

Let πT denote the population frequency of triangle networks, etc. Rule (16) therefore delivers

the following inequality restrictions

πT (θ, FU) ≤ πT ≤ π̄T (θ, FU) (19)

πTS = πTS (θ, FU)

πOE (θ, FU) ≤ πOE ≤ π̄OE (θ, FU)

πE (θ, FU) ≤ πE ≤ π̄E (θ, FU) .

The model also generates the equalities

πT +πOE+πE = π̄T (θ, FU)+πOE (θ, FU)+πE (θ, FU) = πT (θ, FU)+ π̄OE (θ, FU)+ π̄E (θ, FU) .

(20)

The identified set, ΘI , is the set of all θ ∈ Θ such that (19) and (20) are satisfied. Ciliberto

and Tamer (2009), among others, discuss methods of estimating ΘI and conducting inference

on it and/or on θ0.

The observation that link formation rule (16) is a system of simultaneous discrete choices

and, further, that this system generates a set of moment inequalities which may be used as a
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basis for inference on θ0, appears promising. Unfortunately, as noted above, this observation

may be of limited practical importance. In a network with N agents, there are 2

(
N
2

)
possible

configurations of links. For each U in UN and θ ∈ Θ, the consistency of a given network

with (16) must be checked. In practice this is not feasible in real time for all but very small

networks. Even showing that two networks are isomorphic is a non-trivial problem (e.g.,

Read and Corneil, 1977).

While fully exploiting the identifying power of (16) and (17) may be infeasible in even

modest-sized networks, exploiting some of its identifying content is straightforward. Assume

that networks vary in size with N ∈ N = {2, 3, 4, . . .} and recall that the distribution of Uij

is constant in N . Under (16) and (17) the probability that a randomly drawn dyad from a

network of size N is linked (i.e., density in networks of size N) satisfies the inequalities

FU (α0) ≤ Pr (Dij = 1|N) ≤ FU (α0 + γ0 (N − 2))

for all N ∈ N. The lower bound occurs when the randomly drawn dyad share no friends

in common, the upper bound when the dyad is linked to all other members of the network

(except possibly each other).

These upper and lower bounds coincide at N = 2 so that α0 pointed identified by the density

of links across networks consisting of a single dyad:

α0 = F−1U (Pr (Dij = 1|N = 2)) .

A lower bound on γ0 is then given by

γ = sup

{
F−1U (Pr (Dij = 1|N))− α0

N − 2

∣∣∣∣ N ∈ N
}
.

Here an informative lower bound on γ0 is generated by observing a higher density of link

formation in networks with N > 2, than across networks consisting of single dyads. This
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does not strike me as an especially attractive approach to inferring the presence of a taste for

transitivity, but it is illustrative of how some identifying implications of a network formation

model can be easy to exploit (even if utilizing all implications is impractical).

Another, and more interesting, example of this type of approach is provided by Sheng (2012),

who explores the the identifying content of (non-trivial) subnetwork configurations. Assume

networks consist of N agents and consider the probability that, for a randomly drawn triad,

itself drawn from a randomly sampled network, we observe a particular triad configuration

(see Figure 4). This probability will depend on the degree to which members of the sampled

triad are connected to the rest of the network. Maximal connection occurs when all members

of the sampled triad are connected to all other agents in the network. Isolation occurs when

no member of the triad is linked to other agents in the network.

Now imagine repeating the thought experiment used to derive (19) above, but doing so

conditional on different assumptions about the triad’s connectivity to the rest of the network.

For example conditional on the three dyads forming the triad having, say, no, two and two

friends (outside the triad) in common, the model provides upper and lower bounds on the

probability of observing, say, a triangle configuration. An identification region for θ0 can be

computed using the union of these conditional bounds on each triad configuration (computed

for all possible degrees of triad connectivity).

Christakis, Fowler, Imbens and Kalyanaraman (2010) suggest an alternative approach to

dealing with the inferential challenges posed by multiplicity. They posit that the network

forms sequentially. Agents form, maintain or dissolve, links in a specific order and do so

myopically. Specifically they do not anticipate how the links they choose to form today

change the incentives for link formation faced by subsequent agents.

Returning to the N = 3 case, assume that U12, U13 and U23 are respectively low, low and

medium draws (see Figure 6). Assume that agent 1 forms links first, followed by agents two

and three. Under this ordering, agent 1 will immediately form links with both agents 2 and

3. Agent 2 will then form a link with agent 3. Although the idiosyncratic utility from this
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link is only ‘medium’, the link forms to reap the benefits of triadic closure, since both agents

2 and 3 already share 1 as a friend. Finally, agent 3 maintains all links formed earlier. The

triangle configuration emerges from this ordering (and draw of U).

Now consider the alternative ordering where agent 3 forms links first, followed by agents 2

and 1. In this case agent 3 will form a link with agent 1, but not 2. The absence of the

utility gain associated with triadic closure means the 2-to-3 link does not form. Agent 2 then

forms a link with 1. Finally, agent 1 maintains her links with agents 2 and 3. A two-star

configuration emerges from this ordering.

As the above examples indicate, if the ordering of link formation opportunities were ob-

served, likelihood-based inference would be straightforward. Christakis, Fowler, Imbens and

Kalyanaraman (2010) address the unobservability of the posited sequential network forma-

tion process by assigning a probability distribution to agents’ ordering, and then working

with the resulting integrated likelihood. In the the simple example discussed here, there are

N ! = 3! = 6 possible orderings. If each ordering is a priori assumed equally likely the likeli-

hood is easily written down. Christakis, Fowler, Imbens and Kalyanaraman (2010) approach

to inference is Bayesian (and based on the observation of a single network). An important

contribution of their paper is to make the simple idea sketched above computationally op-

erational for realistically-sized networks. Specifically, they use Markov Chain Monte Carlo

(MCMC) methods to take draws from a posterior distribution for the model parameters.

An unattractive feature of assuming the network is formed sequentially, is that the resulting

likelihood will, for certain values of U, place positive probability on network configurations

that do not correspond to an equilibrium of the simultaneous-move static game. This is

again illustrated by the example above. In the static game a low, low, medium draw of U

uniquely predicts a triangle network. For the same draw of U the sequential game places

a probability of two-thirds on the triangle network, and a probability of one-third on the

two-star network. If, in reality, agents have the opportunity to continually revise their links,

a two-star configuration would not emerge conditional on a low, low and medium draw of
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idiosyncratic link surpluses.

Mele (2013) develops a related approach to empirically modeling network formation. He

posits a process whereby in each ‘period’ a randomly drawn dyad is given the opportunity

to form, maintain or dissolve a link. For a specific specification of link surplus and meeting

probabilities, he shows that the sequence of networks generated by the model is a stationary

ergodic process. The long-run probabilities attached to specific network configurations are

used to formulate a likelihood. Like, Christakis, Fowler, Imbens and Kalyanaraman (2010),

Mele’s (2013) approach to inference is Bayesian. He develops an MCMC algorithm for

generating draws from a posterior distribution for the model parameters. His approach

also places positivity probability on network configurations that are not equilibria of the

corresponding simultaneous-move static game.

The Sheng (2012), Christakis, Fowler, Imbens and Kalyanaraman (2010) and Mele (2013)

papers all provide operational methods for inferring the distribution of link surplus from

observed network structure. Sheng’s (2012) approach provides a computationally feasible

(albeit difficult) way to harness the identifying content of pairwise stability. Her approach to

inference requires the observation of many independent networks (see also Miyaichi, 2013).

Christakis, Fowler, Imbens and Kalyanaraman (2010) and Mele (2013) show the identifying

power of moving from a simultaneous to sequential network formation process. All three

methods are computationally intensive.

A simple cross-sectional model with heterogeneity

Now return to the link formation rule (18). This model has a rich heterogeneity structure,

complicating its analysis relative to rule (16). However rule (18) also excludes externalities

in link formation a priori, side-stepping the coherence and completeness issues associated

with rule (16).

Graham (2014) studies (18) with g (ξi, ξj, δ0) empty; that is a model with unobserved degree

heterogeneity, but no homophily on unobservables. He derives the joint maximum likelihood
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estimator where both the common parameter η0 and the incidental parameters {νi}∞i=1 are

estimated simultaneously. He further assume Ui is a logistic random variable. Graham (2014)

derives the limiting distribution of the common parameter as the network grows large. This

limit distribution is normal, but includes a bias term.

Graham also proposes an estimator which conditions on a sufficient statistic for the degree

heterogeneity parameters. Charbonneau (2014), in independent work, develops a closely

related procedure in the context of studying gravity trade models. Random effects estimation

of (18) is pursued in Krivitsky, Handcock, Raftery and Hoff (2009) using MCMC methods.

One advantage of a fixed effects treatment of degree heterogeneity is that the resulting model

of tie formation will be able to perfectly match any observed degree sequence (cf., Chatter-

jee, Diaconis and Sly, 2011). As argued above algebraically, and shown by Faust (2007)

empirically, a network’s degree distribution often does a reasonably good job of explaining

(i.e., predicting) other “higher order” aspects of network architecture (e.g., the frequency of

different triad configurations). For this reason analyses based on (18) are likely to provide

good fits, even if the true link formation process includes network externalities.

Dynamic models of network formation

If the econometrician observes the structure of links within a network evolve over time, a

number of new modeling opportunities arise. In particular is becomes possible to meaningful

incorporate both network externalities and rich forms of agent level heterogeneity into a single

model of link formation. Let t = 0, 1, 2, 3 index the periods in which each network is observed

and assume that links form in period t according to the rule

Dijt = 1 (β0Dijt−1 + γ0Fijt−t (Dt−1) + Aij − Uij ≥ 0) (21)

with, for example,

Aij = νi + νj − g (ξi, ξj) , (22)
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where all notation is as previously defined. Model (21) combines features of the two static

models discussed above (rules (16) and (18)). It incorporates key network dependencies

emphasized in prior work (cf., Snijders, 2011). First, links are persistent. If agents i and

j are linked in period t, they are more likely to be linked in subsequent periods (β0 > 0).

Second, as in the first static model discussed above, there are returns to ‘triadic closure’

(γ0 > 0). The net surplus associated with an i-to-j link is increasing in the number of

friends i and j shared in common during the prior period. Third and fourth, as in the

second static model discussed above, both degree heterogeneity and assortative matching on

unobservables are incorporated.

As in Christakis, Fowler, Imbens and Kalyanaraman (2010) and Mele (2013), model (21)

implies that agents form links myopically. At the beginning of each period agents form,

maintain and dissolve thinks ‘as if’ all other features of the network will remain fixed. This

is analogous to a best-reply dynamic. Assuming a best-reply type dynamic eliminates the

contemporaneous feedback which generated multiple equilibria, and its associated inferential

challenges, in the static model discussed above. At the same time, by allowing link surplus

to vary with the structure of the network in the prior period, network dependencies, such as

a taste for triadic closure, are incorporated into (21).

Most theoretical models of network formation assume agents form links according to some

variant of naive best-reply dynamics (e.g., Jackson and Wolinsky, 1996; Jackson and Watts,

2002; Bala and Goyal, 2000; Watts, 2001; Jackson and Rogers, 2007b), although some

scholars have studied models with forward-looking agents (e.g., Dutta, Ghosal and Ray,

2005). The dynamics of link formation implied by (21) are closely aligned with the types

of dynamics assumed by theorists. Although the myopic nature of link formation may not

be of particular concern, a more mundane, but nevertheless important, concern may arise

in empirical work. It may be that the frequency at which the network is sampled, and the

structure of links recorded, does not correspond naturally with the timing at which agents

actually make link decisions. Similar concerns arise in single agent discrete choice analyses

36



(cf., Chamberlain, 1985). When formulating a social network data collection protocol, the

timing of link decisions and the timing of data collection should be aligned.

In the first static model discussed above, the clustering of ties was explained soley by a taste

for triadic closure. In practice tie clustering might also arise because agents assortatively

match on attributes unobserved by the econometrician (homophily), as was assumed in the

second model. The dynamic model introduced here allows for both sources of clustering.

Goldsmith-Pinkham and Imbens (2013) take random-effects approach to model (21). If the

density of Uij is known (e.g., Standard Normal or Logistic), and the joint distribution of

(D0,A) belongs to a parametric family, then inferences on θ0 = (β0, γ0)
′ may be based

on an integrated or random effects likelihood. In principle this is very much analogous to

random effects approaches to single-agent dynamic panel data models (Heckman, 1981a-c;

Chamberlain, 1985). In reality both the specification and maximization of an integrated

likelihood in this setting is non-trivial.

Ideally the specified joint distribution for (D0,A) should allow for dependence between D0

and A. Since the model implies that D1 varies with A, it seems ‘natural’ to allow the initial

network configuration, D0, to also vary with A. This is a complicated version of the initial

conditions problem which arises in single-agent dynamic panel data models (Wooldridge,

2005).

To get a sense of the modeling issues involved, assume that Aij takes the form given in (22)

with (νi, ξi) bivariate normal with an unknown location vector and scale matrix. Assume

that g (·, ·) is a known function, that Uijt is a standard normal random variable, and that

Dij0 = 1 (Aij − Uij0 ≥ 0) . These assumptions are sufficient to write down the integrated-

likelihood. Evaluating that likelihood, however, would be challenging. Doing so would

involve calculating a 2N -dimensional integral. This integral does not obviously factor into

a set of lower dimensional integrals (since Aij and Akl will share components in common

whenever i = k or j = l).

Motivated by these computational challenges Goldsmith-Pinkham and Imbens (2013) instead
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work with a highly stylized model. They rule out degree heterogeneity, set g (ξi, ξj) =

|ξi − ξj|, and assume that ξi is binary-valued with Pr (ξi = αξ|D0) = Pr (ξi = 0|D0) = 1
2
.

Note that this last assumption assumes, unattractively, independence between D0 and A.

Under these assumptions Goldsmith-Pinkham and Imbens (2013) develop an algorithm for

taking draws from the posterior distribution for the model’s parameters.

Graham (2013) approaches model (21) from a fixed effects perspective, asking if it contains

implications that are invariant to A, but useful for identifying θ0. This approach leaves

the distribution of (D0,A) unspecified and unrestricted. Perhaps surprisingly, fixed effects

identification results can be derived.

Consider a dyad that is embedded in a stable neighborhood. A stable neighborhood has

two features. First, with the exception of possible link formation and dissolution between

themselves, the set of links maintained by agents i and j is the same across periods 1, 2 and

3. Agents i and j may add, maintain or delete links between periods 0 and 1. Second, the

links maintained by friends of players i and j do not change between periods 1 and 2. Dyads

in stable neighborhoods are embedded in local networks with link structures that are largely

fixed up to two degrees away across periods 1, 2, and 3.

Panel A of Figure 7 visually depicts two network sequences in a network consisting of three

agents. Number agents 1, 2 and 3 counter-clockwise from the top in each network. Observe

that Agents 1 and 3 are embedded in a stable neighborhood. Agent 1 is linked to agent 2,

and agent 3 to agent 2, in periods 1, 2 and 3 in both sequences depicted in Panel A.

The only difference between the two network sequences is that in the upper one agents 1 and

3 are linked in period 2, but not in period 1; while in the lower sequence they are linked in

period 1, but not in period 2. In the presence of a taste for triadic closure the net surplus

associated with a 1-to-3 link will be, in expectation, higher in period 2 than it is in period

1. Since agents 1 and 3 share a common friend in period 1, a 1-to-3 link in the next period

will generate additional utility from ensuring triadic closure. Agents 1 and 3 do not share a

common friend in period 0. Therefore forming a link in period 1 generates no extra utility
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Figure 7: Fixed effects identification of transitivity versus homophily (Panel A) and state
dependence versus heterogeneity (Panel B)

t = 0 t = 1 t = 2 t = 3

t = 0 t = 1 t = 2 t = 3

Panel A

Panel B

Notes: Number agents 1, 2 and 3 counter-clockwise from the top in each network. In panel
A d120d230 = 0 but d121d231 = 1 so that (1, 3) forming a link has a higher return in period
2 than in period 1. In period 2 the link generates utility from ensuring ‘triadic closure’, no
such utility gain is generated by a period 1 link. Consequently, the first network sequence
in panel A arises more frequently than the second in the presence of a structural taste
for transitivity in links. Observe that (1, 3) are embedded in a stable neighborhood since
d121 = d122 = d123 = 1 and d231 = d232 = d233 = 1. While the two panel A sequences are
uninformative about the presence of true state dependence in ties, this is not the case for the
two sequences in panel B. In panel B, the first sequence arises more frequently relative to the
second in the presence of true state dependence. Here the intuition is very much analogous
to that in Cox (1958).
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from ensuring triadic closure. In the presence of a genuine taste for transitivity in links, as

embodied in link rule (21), the upper sequence should be observed more frequently than the

lower sequence.

Panel B of Figure 7 presents an example of how the relative frequency of different sequences

of dyad links, when embedded in a different stable neighborhood from the one depicted in

Panel A, provides information about β0 or state-dependence in links.

In single agent models, fixed effects identification of true state dependence in the presence of

unobserved heterogeneity is based on the frequency of observing certain sequences of choices

relative to other sequences (e.g., Cox, 1958; Heckman, 1978b; Chamberlain, 1985; Honoré

and Kyriazidou, 2000). For example, in the absence of state dependence the binary sequences

0101 and 0011 are equally likely. In the presence of state dependence, the relative frequency

of the latter sequence will be greater.

The identification of transitivity versus homophily involves a similar intuition. Conditional

on a dyad being embedded in a certain type of local network architecture, certain order-

ings of link histories should be more frequent than others. This approach involves making

comparisons ‘holding other features of the network fixed’. This is not straightforward to do.

The likelihood associated with a single network sequence includes 3 × 1
2
N (N − 1) distinct

components plus the initial condition (itself ‘high dimensional’). The challenge is that the

likelihood functions associated with the two network histories, even though they are identical

in all respects except that the (i, j) friendship history in one is a permutation of that in the

other, may be very different. This is because the presence or absence of a link in a given

period can affect the likelihood contribution of many other pairs in subsequent periods.

For example if (i, k) are linked in period t, then the addition of an (i, j) link increases the

probability of a (j, k) link in period t+ 1. Local changes in the network can have widespread

effects on the structure of the network likelihood in subsequent periods.

If (i, j) are embedded in a stable neighborhood, the two likelihoods will be nominally quite

different, however many contributions in the first likelihood will be permutations of contri-
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butions which also appear in the second. As a result, the number of distinct terms in the two

likelihoods is small. Exploiting this simplification then allows for the application of identifi-

cation ideas used in prior work on binary choice (e.g., Manski, 1987; Honoré and Kyriazidou,

2000). Graham (2012), extending earlier work published in Graham (2013), show this type

of intuition can be made rigorous.

The relative strengths and weakness of fixed versus correlated random effects approaches to

dynamic network analysis, closely mirror those in single agent dynamic discrete choice anal-

ysis (cf., Chamberlain, 1984). The computational complexity of these approaches when ap-

plied to network models substantially exceeds their single-agent counterparts. The Goldsmith-

Pinkham and Imbens (2013) paper provides a valuable template for undertaking a correlated

random effects analysis. While some of their modeling assumptions are unattractive, it is

one the few coherent likelihood-based empirical models of dynamic network formation and

will no doubt be the building block for future research. The fixed-effects results in Graham

(2012, 2013) indicate that some features of the distribution of link surplus may be identified

without making assumptions about the initial network condition and/or the distribution

of unobserved dyad-level heterogeneity. A fixed effects analysis can provide evidence of a

structural taste for transitivity under weak assumptions and/or be used to validate specific

correlated random effects specifications.

3 Simulating networks

Consider a network with adjacency matrix D = d and corresponding degree sequence D+
def
=

(D1+, . . . , DN+) = (d1+, . . . , dN+)
def
= d+. Let DN,d+ denote the set of all undirected N ×N

adjacency matrices with degree counts equal to d+. This section describes an algorithm for

sampling uniformly from the set DN,d+ . Recently, Del Genio, Kim, Toroczkai and Bassler

(2010), Blitzstein and Diaconis (2011), Zhang and Chen (2012) and others have constructed

(reasonably) efficient procedures for sampling uniformly from the set DN,d+ . Here I outline
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the importance sampling algorithm of Blitzstein and Diaconis (2011), whose exposition I

also follow closely.

Sampling uniformly from DN,d+ has a number of uses. First, it may be used to determine how

unusual a certain graph feature is among the set of all graphs with the same degree sequence.

In the Nyakatoke network the transitivity index is almost three times the magnitude of link

density. Among networks of the same size, with identical degree sequences, how unusual is

it to observe a network with transitivity this high? If there exist very few graphs in this set

with such high transitivity, then the researcher might conclude that modeling transitivity is

worthwhile.

To be specific Let f (D) be some function of the observed adjacency matrix, say its tran-

sitivity index. Among all undirected networks with degree sequences coinciding with D’s

what fraction have a transitivity index less than the one observed in the network in hand?

Let
∣∣DN,d+

∣∣ denote the size, or cardinality, of DN,d+ . We seek to evaluate

Pr (f (D) ≤ c) =

∑
v∈DN,d+

1 (f (v) ≤ c)∣∣DN,d+

∣∣ . (23)

A second motivation for studying DN,d+ , and specifically how to take random draws from it,

is that some sampling schemes do not fully reveal the network adjacency matrix. As noted

in the introduction many surveys collect information on an agent’s degree (e.g., number of

friends, co-workers, sexual partners etc.), but not information on the precise identity of link

partners. In such a situation the sampling process reveals that the true network belongs to

the set DN,d+ , but is agnostic about which network within this set is the actual one.

Consider a family of network formation models indexed by the parameter θ (in what follows

I ignore observed agent characteristics, but incorporating them would be straightforward).

Assume that θ could be consistently estimated if the entire adjacency matrix were observed.

Let Db denote a uniform random draw from the set DN,d+ and let θ̂b denote an estimate of

θ using Db. The identified set may be estimated by the convex hull of θ̂1, . . . , θ̂B for some
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large value of B.

In some situations a researcher may wish to condition on other network features beyonds

the degree sequence. This may because it is more appropriate to study the “unusualness”

of a given network feature, conditional on additional aspects of network architecture. Al-

ternatively, if estimation of a network formation model is the goal, some sampling schemes

reveal more than an agent’s degree. For example the General Social Survey (GSS) collects

information of which friends are friends themselves (i.e., on triad configurations).

Stanton and Pinar (2012) develop a procedure for sampling from the set of networks with

given marginal and joint degree distributions. The joint degree distribution captures, for

example, the frequency with which an agent with three links is matched to an agent with five

links. In very recent work, Goyal, Blitzstein and de Gruttola (2014), show how to construct

networks which satisfy a variety of constraints. The focus on drawing from DN,d+ in this

section is pedagogical. This is the simplest interesting case, illustrates the difficulty of the

larger problem, and provides a stepping stone into a growing mathematics and computer

science literature on network simulation.

Determining whether a candidate degree sequence is graphical

Direction enumeration of all the elements of DN,d+ is generally not feasible. Even for networks

that includes as few as 10 agents, this set may have millions of elements. We therefore require

a method of sampling from DN,d+ uniformly and also estimating its size.

Two complications arise. First, it is not straightforward to construct a random draw from

DN,d+ . Second, we must draw uniformly from this set. Fortunately the first challenge is

solvable using ideas from the discrete math literature. To ensure our draws are uniform we

use importance sampling (e.g., Owen, 2013).

A sequential network construction algorithm begins with a matrix of zeros and sequentially

adds links to it until its rows and columns sum to the desired degree sequence. Unfortunately,

unless the links are added appropriately, it is easy to get “stuck” (in the sense that a certain
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point in the process it becomes impossible to reach a graph with the desired degree and the

researcher must restart the process (e.g., Snijders, 1991)).

Researchers in graph theory and discrete math have studied the construction of graphs with

fixed degrees and, in particular, provided conditions for checking whether a particular degree

sequence is graphical (e.g., Sierksma and Hoogeveen, 1991). We say that D+ is graphical if

there is feasible undirected network with degree sequence D+. Not all integer sequences are

graphical. For example, there is no feasible undirected network of three agents with degree

sequence D+ = (3, 2, 1).

Blitzstein and Diaconis’ (2011) algorithm is guaranteed to produce a matrix from the set

Dd+,N . This is accomplished by cleverly using checks for whether an integer sequence is

graphic when adding links. To get a sense how this works in practice it is helpful to begin

with a check due to Erdos and Gallai (1961). Let D+ = (D1+, . . . , DN+) be a sequence of

candidate degrees for each of N agents in a network. Without loss of generality assume that

the elements of D+ are arranged in descending order so that D1+ ≥ D2+ ≥ · · · ≥ DN+.

Erdos and Gallai (1961) showed that D+ is graphical if and only if
∑N

i=1Di+ is even and

k∑
i=1

Di+ ≤ k (k − 1) +
N∑

i=k+1

min (k,Di+) for each k ∈ {1, . . . , N} .

To show necessity of the condition observe that for any set S of k agents in the network

there can be at most
(
k
2

)
= 1

2
k (k − 1) links between them. For the remaining N − k agents

with i /∈ S there can be at most min (k,Di+) links from i to agents in S.

The study of graphic integer sequences has a long history in discrete math. Sierksma and

Hoogeveen (1991) summarize several criteria that can be used to check whether D+ is graph-

ical. Blitzstein and Diaconis (2011) base their sampling algorithm on a simple recursive test

for whether D+ is graphical due to Havel (1955) and Hakimi (1962). In what follows Di+

denotes the ith element of D+.

Theorem 1. (Havel-Hakimi) Let Di+ > 0, if D+ does not have at least Di+ positive entries
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other than i it is not graphical. Assume this condition holds. Let D̃+ be a degree sequence

of length N − 1 obtained by

[i] deleting the ith entry of D+ and

[ii] subtracting 1 from each of the Di+ highest elements in D+ (aside from the ith one).

D+ is graphical if and only if D̃+ is graphical. If D+ is graphical, then it has a realization

where agent i is connected to any of the Di+ highest degree agents (other than i).

Proof. See Blitzstein and Diaconis (2011).

Theorem 1 is suggestive of a sequential approach to building an undirected network with

degree sequence D+. The procedure begins with a target degree sequence D+. It starts by

choosing a link partner for the lowest degree agent (with at least one link). It chooses a

partner for this agent from among those with higher degree. A one is then subtracted from

the lowest degree agent and her chosen partner’s degrees. This procedure continues until the

residual degree sequence (the sequence of links that remain to be chosen for each agent) is

zero.

To describe the method proposed Blitzstein and Diaconis (2011) we require some additional

notation. Let (⊕i1,...,ikD+) be the vector obtained by adding a one to the i1, . . . , ik elements

of D+:

(⊕i1,...,ikD+)j =

 Dj+ + 1 for j ∈ {i1, . . . , ik}

Dj+ otherwise

Let (	i1,...,ikD+) be the vector obtained by subtracting one from the i1, . . . , ik elements of

D+:

(	i1,...,ikD+)j =

 Dj+ − 1 for j ∈ {i1, . . . , ik}

Dj+ otherwise

Algorithm 1. (Blitzstein and Diaconis) A sequential algorithm for constructing a random

graph with degree sequence D+ = (D1+, . . . , DN+)′ is

1. Let G be an empty adjacency matrix.
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2. If D+ = 0 terminate with output G

3. Choose the agent i with minimal positive degree Di+.

4. Construct a list of candidate partners J = {j 6= i : Gij = Gji = 0 and 	i,j D+ graphical}.

5. Pick a partner j ∈ J with probability proportional to its degree in D+.

6. Set Gij = Gji = 1 and update D+ to 	i,jD+.

7. Repeat steps 4 to 6 until the degree of agent i is zero.

8. Return to step 2.

The input for Algorithm 1 is the target degree sequence D+ and the output is an undirected

adjacency matrix G with G′ι = D+.

An example of how this algorithm might work, adapted from by Blitzstein and Diaconis

(2011), is:

(3, 2, 2, 2, 1)→ (3, 1, 2, 2, 0)→ (2, 0, 2, 2, 0)→ (1, 0, 2, 1, 0)→ (0, 0, 1, 1, 0)→ (0, 0, 0, 0, 0)

The goal is to construct a five agent network with degree sequence (3, 2, 2, 2, 1). The algo-

rithm begins by choosing the ‘last’ agent, who has only a single link. The second agent is

randomly chosen as her partner, generating the residual degree sequence (3, 1, 2, 2, 0). Now

the second agent has the lowest non-zero residual degree. She is selected and matched with

the first agent. This leads to a new residual degree sequence of (2, 0, 2, 2, 0). Now all three

remaining agents who need links have the same residual degree. The algorithm randomly

picks the first agent and matches her with the fourth agent. This leads to residual degree se-

quence (1, 0, 2, 1, 0) . The procedure concludes by matching agents one and three and finally

three and four.

Note the check for graphicality has real bite. Say that in step 2, agent two was matched

instead with agent three, leading to the residual degree sequence of (3, 0, 1, 2, 0) . This degree
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sequence is not graphic. Indeed on the second step agent two is matched with agent one

with probability one.

Blitzstein and Diaconis (2011) discuss how the recursive formulation of Havel-Hakimi check

can be used to speed up the algorithm.

Importance sampling

Let YN,d+ denote the set of all possible sequences of links outputted by Algorithm 1 given

input D+ = d+. Let G (Y ) be the adjacency matrix induced by link sequence Y . Let Y and

Y ′ be two different sequences produced by the algorithm. These sequences are equivalent

if their “end point” adjacency matrices coincide (i.e., if G (Y ) = G (Y ′)). We can partition

YN,d+ into a set of equivalence classes, the number of such classes coincides with the number

of feasible networks with degree distribution D+ (i.e., with the cardinality of DN,d+). Let

c (Y ) denote the number of possible link sequences produced by Algorithm 1 that produce

Y ’s end point adjacency matrix (i.e., the number of different ways in which Algorithm 1 can

generate a given adjacency matrix).

Let i1, i2, . . . , iM be the sequence of agents chosen in step 3 of Algorithm 1 in which Y is the

output. Let a1, . . . , am be the degree sequences of i1, . . . , iM at the time when each agent

was first selected in step 3, then

c (Y ) =
M∏
k=1

ak!

Let σ (Y ) be the probability that Algorithm 1 produces link sequence Y . Note that σ (Y )

is easy to compute. Each time the algorithm choose a link in step 5 record the probability

with which it was chosen (i.e., the residual degree of the chosen agent divided by the sum

of the residual degrees of all agents in the choice set). The product of all these probabilities

equals σ (Y ).

Let f (G) be some function of the adjacency matrix and consider the expected value (using
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the Law of Iterated Expectations)

E
[
π (G (Y ))

c (Y )σ (Y )
f (G (Y ))

]
=

∑
y∈YN,d

π (G (y))

c (y)σ (y)
f (G (y))σ (y)

=
∑

y∈YN,d

π (G (y))

c (y)
f (G (y))

=
∑

g∈DN,d

∑
{y:G(y)=g}

π (g)

c (y)
f (g)

=
∑

g∈DN,d

π (g) f (g)

= Eπ [f (G)] .

The ratio π (G (Yt)) /c (Yt)σ (Yt) is called the likelihood ratio or the importance weight. If

we set f (G) to the constant function we see that the expected value of this weight is one.

This suggests the analog estimator

µ̂f(G) =

[
T∑
t=1

π (G (Yt))

c (Yt)σ (Yt)

]−1
×

T∑
t=1

π (G (Yt))

c (Yt)σ (Yt)
f (G (Yt)) .

Setting π (G) = 1 we get a procedure for estimating the expectation of f (G) when G is

drawn uniformly from DN,d+ .

4 Future research directions

The analysis of networks has always been a multi-disciplinary endeavor. Economists are

relative latecomers to this project. This survey has been deliberately eclectic and biased

toward recent work done by economists. This work has not been undertaken in a vac-

uum. Economists interested in studying networks would be well-advised to read widely.

Goldenberg, Zheng, Fienberg and Airoldi (2009) provide a monograph-length review of the

literature from the perspective of statistics and machine learning. Snijders (2011) surveys

the quantitative sociology literature.
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At the same time there is tremendous latitude to approach network data from first principles

or so-called “fresh eyes”. In my view there is not one obvious “correct” way to formulate a

network formation model and much work remains to be done. At this stage it seems apparent

that a sizable component of empirical research on networks will be computationally complex.

Ideas from discrete math, computer science, and Bayesian MCMC estimation have all proved

to be very useful in work done thus far.

In thinking about identification, ideas from the recent literature on games, as well as the

more established literature on dynamic panel data, have led to valuable insights. In both

case the combinatoric complexity of networks precludes a direct application of methods from

these literatures in all but the very simplest of cases. At the same time clever exploitation of

various peculiarities and symmetries in the network formation problem can lead to tractable

procedures.

This survey has not emphasized special purpose models (e.g., Currarini, Jackson and Pin,

2010). In some settings, for example those often encountered in industrial organization,

substantial additional information may be available about the form of agents’ objective

functions, the timing of decisions and so on. Building empirical models that fully exploit

all this extra information can be fruitful, both for expanding subject area knowledge and

for methodological advancement. Indeed an important component of research by economists

should involve modeling real-world datasets coherently, even if realistic models are only

aspirational at the present time. Simple models are okay.

49



References

[1] Albert, Reka and Albert-Lászlo Barabási. (2002). “Statistical mechanics of complex

networks,” Review of Modern Physics 74 (1): 47 - 97.

[2] Angrist, Joshua D. and Kevin Lang. (2004). “Does school integration generate peer

effects? Evidence from Boston’s Metco program,” American Economic Review 94 (5):

1613 - 1634.

[3] Angrist, Joshua D. (forthcoming). “The perils of peer effects,” Labour Economics.

[4] Bala, Venkatesh and Sanjeev Goyal. (2000). “A noncooperative model of network for-

mation,” Econometrica 68 (5): 1181 - 1229.

[5] Ballester, Coralio and Yves Zenou. (forthcoming). “Key player policies when contextual

effects matter,” Journal of Mathematical Sociology.

[6] Ballester, Coralio., Antoni Calvó-Armengol and Yves Zenou. (2006). “Who’s who in

networks. wanted: the key player,” Econometrica 74 (5): 1403 – 1417.

[7] Banerjee, Abhijit, Arun G. Chandrasekhar, Esther Duflo, Matthew O. Jackson. (2013).

“The diffusion of microfinance,” Science 341 (6144 ): 363 - 370.

[8] Barabási, Albert-László and Réka Albert. (1999). “Emergence of scaling in random

networks,” Science 286 (5439): 509 - 512.

[9] Blitzstein, Joseph and Persi Diaconis. (2011). “A sequential importance sampling al-

gorithm for generating random graphs with prescribed degrees,” Internet Mathematics

6 (4): 489 - 522.

[10] Bollobas, Bela. (2013). Modern Graph Theory. Springer: New York.

[11] Bonacich, Phillip. (1987). “Power and centrality: a family of measures,” American

Journal of Sociology 92 (5): 1170 - 1182.

50



[12] Bonacich, Phillip and Philip Lu. (2012). Introduction to Mathematical Sociology.

Princeton, N.J.: Princeton University Press.

[13] Bloch, Francis and Matthew O. Jackson. (2007). “The formation of networks with

transfers among players,” Journal of Economic Theory 113 (1): 83 -110.

[14] Blume, Lawrence E., William A. Block, Steven N. Durlauf and Yannis M. Ioannides.

(2011). “Identification of social interactions,” Handbook of Social Economics 1B: 853 -

964 (J. Benhabib, A. Bisin, & M. Jackson, Eds.). Amsterdam: North-Holland.

[15] Blume, Lawrence E., William A. Brock, Steven N. Durlauf and Rajshri Jayaraman

(2013). “Linear social interaction models,” NBER Working Paper No. 19212.

[16] Bramoulle, Yann, Habiba Djebbari and Bernard Fortin. (2009). “Identification of peer

effects through social networks,” Journal of Econometrics 150 (1): 41 - 55.

[17] Bresnahan, Timothy F. and Peter C. Reiss. (1991). “Empirical models of discrete

games,” Journal of Econometrics 48 (1-2): 57 - 81.

[18] Brock, William A. and Steven N. Durlauf. (2001a). “Discrete choice with social inter-

actions,” Review of Economic Studies 68 (2): 235 - 260.

[19] Brock, William A. and Steven N. Durlauf. (2001b). “Interactions-based models,” Hand-

book of Econometrics 5: 3297 - 3380 (J.J. Heckman & E. Leamer, Eds.). Amsterdam:

North-Holland.

[20] Burt, Ronald S. (1984). “Network items and the general social survey,” Social Networks

6 (4): 293 - 339.

[21] Card, David. (1995). “Earnings, school, and ability revisited,” Research in Labor Eco-

nomics 14(1): 23 - 48 (S.W. Polachek, Ed.). Greenwich, CT: JAI Press Inc.

[22] Card, David and Jesse Rothstein. (2007). “Racial segregation and the black–white test

score gap,” Journal of Public Economics 91 (11–12): 2158 – 2184.

51



[23] Case, Anne C. and Lawrence F. Katz. (1991). “The company you keep: the effects of

family and neighborhood on disadvantaged youths,” NBER Working Paper No. 3705.

[24] Chamberlain, Gary. (1984). “Panel data,” Handbook of Econometrics 2: 1247 - 1318

(Z. Griliches & M. D. Intriligator, Eds.). Amsterdam: North-Holland.

[25] Chamberlain, Gary. (1985). “Heterogeneity, omitted variable bias, and duration de-

pendence,” Longitudinal Analysis of Labor Market Data: 3 - 38 (J.J. Heckman & B.

Singer, Eds.). Cambridge: Cambridge University Press.

[26] Chandrasekhar, Arun G. and Matthew O. Jackson. (2014). “Tractable and consistent

random graph models,” NBER Working Paper No. 20276.

[27] Charbonneau, Karyne B. (2014). “Multiple fixed effects in binary response panel data

models,” Bank of Canada Working Paper 2014-17.

[28] Chatterjee, Sourav, Persi Diaconis and Allan Sly. (2011). “Random graphs with a given

degree sequence,” Annals of Applied Probability 21 (4): 1400 - 1435.

[29] Christakis, Nicholas A., James H. Fowler, Guido W. Imbens, Karthik Kalyanaraman.

(2010). “An empirical model of strategic network formation,” NBER Working Paper

No. 16039.

[30] Ciliberto, Federico and Elie Tamer. (2009). “Market structure and multiple equilibria

in airline markets,” Econometrica 77 (6): 1791 - 1828.

[31] Comola, Marghertia and Marcel Fafchamps. (forthcoming). “Testing unilateral and

bilateral link formation,” Economic Journal.

[32] Cox, D. R. (1958). “The regression analysis of binary sequences,” Journal of the Royal

Statistical Society B 20 (2): 215 - 241.

52



[33] Currarini, Sergio, Matthew O. Jackson and Paolo Pin. (2010). “Identifying the roles of

race-based choice and chance in high school friendship network formation,” Proceedings

of the National Academy of Sciences 107 (11): 4857 - 4861.

[34] Del Genio, Charo I., Hyunju Kim, Zoltan Toroczkai and Kevin Bassler. (2010). “Effi-

cient and exact sampling of simple graphs with given arbitrary degree sequence,” Plos

One 5 (4): e100012.

[35] De Weerdt, Joachim. (2004). “Risk-sharing and endogenous network formation,” In-

surance Against Poverty : 197 - 216 (Dercon, Stefan, Ed.). Oxford: Oxford University

Press.

[36] De Weerdt, Joachim and Marcel Fafchamps. (2011). “Social identity and the formation

of health insurance networks,” Journal of Development Studies 47 (8): 1152 - 1177.

[37] Dutta, Bhaskar, Sayantan Ghosal and Debraj Ray. (2005). “Farsighted network forma-

tion,” Journal of Economic Theory 122 (2): 143 - 164.

[38] Erdös, Paul and Tibor Gallai. (1961). “Graphen mit punkten vorgeschriebenen grades,”

Matematikai Lapok 11: 264 - 274.

[39] Faust, Katherine. (2007). “Very local structure in social networks,” Sociological Method-

ology 37 (1): 209 - 256.

[40] Freeman, Linton. (2000). “Visualizing social networks,” Journal of Social Structure 1

(1).

[41] Gaviria, Alejandro and Steven Raphael. (2001). “School-based peer effects and juvenile

behavior,” Review of Economics and Statistics 83 (2): 257 - 268.

[42] Glaeser, Edward L. and Jose A. Scheinkman. (2001). “Measuring social interactions,”

Social Dynamics : 83 - 132 (S.N. Durlauf & H.P. Young, Eds.). Cambridge, MA: The

MIT Press.

53



[43] Glaeser, Edward L. and Jose A. Scheinkman. (2003). “Non-market interactions,” Ad-

vances in Economics and Econometrics: Theory and Applications, Eighth World

Congress 1: 339 - 369 (M. Dewatripont et al., Eds.). Cambridge: Cambridge Uni-

versity Press.

[44] Goldenberg, Anna, Alice X. Zheng, Stephe E. Fienberg and Edoardo M. Airoldi. (2009).

“A survey of statistical network models,” Foundations and Trends in Machine Learning

2 (2): 129 - 233.

[45] Goldsmith-Pinkham, Paul and Guido W. Imbens. (2013). “Social networks and the

identification of peer effects,” Journal of Business and Economic Statistics 31 (3): 253

- 264.

[46] Goyal, Ravi, Joseph Blitzstein and Victor de Gruttola. (2014). “Sampling networks

from their posterior predictive distribution,” Network Science 2 (1): 107 - 131.

[47] Graham, Bryan S. (2008). “Identifying social interactions through conditional variance

restrictions,” Econometrica 76 (3): 643 - 660.

[48] Graham, Bryan S. (2011). “Econometric methods for the analysis of assignment prob-

lems in the presence of complementarity and social spillovers,” Handbook of Social

Economics 1B: 965 - 1052 (J. Benhabib, A. Bisin, & M. Jackson, Eds.). Amsterdam:

North-Holland.

[49] Graham, Bryan S. (2012). “Homophily and transitivity in dynamic network formation,”

In Progress, UC - Berkeley.

[50] Graham, Bryan S. (2013). "Comment on "Social networks and the identification of peer

effects" by Paul Goldsmith-Pinkham and Guido W. Imbens," Journal of Business and

Economic Statistics 31 (3): 266 - 270, 2013.

54



[51] Graham, Bryan S. (2014). “An empirical model of network formation: detecting ho-

mophily when agents are heterogenous,” NBER Working Paper w20341.

[52] Hakimi, S. L. (1962). “On realizability of a set of integers as degrees of the vertices of

a linear graph. I,” Journal of the Society for Industrial and Applied Mathematics 10

(3): 496 – 506.

[53] Handcock, Mark S., Adrian Raftery and Jeremy M. Tantrum. (2007). “Model-based

clustering for social networks,” Journal of the Royal Statistical Society A 170 (2): 301

- 354.

[54] Havel, Václav J. (1955). “A remark on the existence of finite graph,” Časopis Pro

Pěstování Matematiky 80: 477 - 480.

[55] Heckman, James J. (1977). “Sample selection bias as a specification error,” Economet-

rica 47 (1): 153 - 161.

[56] Heckman, James J. (1978a). “Dummy endogenous variables in a simultaneous equation

system,” Econometrica 46 (4): 931 - 959.

[57] Heckman, James. J. (1978b). “Simple statistical models for discrete panel data devel-

oped and applied to test the hypothesis of true state dependence against the hypothesis

of spurious state dependence,” Annales de l’inséé 30-31: 227 - 270.

[58] Heckman, James. J. (1981a) “Heterogeneity and state dependence,” Studies in Labor

Markets : 91 - 139 (S. Rosen, Ed.). Chicago: University of Chicago Press.

[59] Heckman, James. J. (1981b). “Statistical models for discrete panel data,” Structural

Analysis of Discrete Data and Econometric Applications : 114 - 178 (C.F. Manski &

D.L. McFadden, Eds.). Cambridge, MA: The MIT Press.

[60] Heckman, James. J. (1981c). “The incidental parameters problem and the problem

of initial conditions in estimating a discrete time-discrete data stochastic process,”

55



Structural Analysis of Discrete Data and Econometric Applications : 179 - 195 (C.F.

Manski & D.L. McFadden, Eds.). Cambridge, MA: The MIT Press.

[61] Hellmann, Tim. (2013). “On the existence and uniqueness of pairwise stable networks,”

International Journal of Game Theory 42 (1): 2111 - 237.

[62] Honoré, Bo E. and Ekaterini Kyriazidou. (2000). “Panel data discrete choice models

with lagged dependent variables,” Econometrica 68 (4): 839 - 874.

[63] Horn, Roger A. and Charles R. Johnson. (2013). Matrix Analysis, 2nd. Ed. Cambridge:

Cambridge University Press.

[64] Ioannides, Yannis M. and Jeffrey E. Zabel. (2008). “Interactions, neighborhood selec-

tion and housing demand,” Journal of Urban Economics 63 (1): 229 - 252.

[65] Jackson, Matthew O. (2008). Social and Economic Networks. Princeton, NJ: Princeton

University Press.

[66] Jackson, Matthew O. (2014). “Networks and the identification of economic behaviors,”

Mimeo, Stanford University.

[67] Jackson, Matthew O. and Brian W. Rogers. (2007a). “Relating network structure to

diffusion properties through stochastic dominance,” B.E. Journal of Theoretical Eco-

nomics 7 (1) (Advances), Article 6.

[68] Jackson, Matthew O. and Brian W. Rogers. (2007b). “Meeting strangers and friends

of friends: how random are social networks?” American Economic Review 97 (3): 890

- 915.

[69] Jackson, Matthew O. and Alison Watts. (2002). “The evolution of social and economic

networks,” Journal of Economic Theory 106 (2): 265 - 295.

[70] Jackson, Matthew O. and Asher Wolinsky. (1996). “A strategic model of social and

economic networks,” Journal of Economic Theory 71 (1): 44 - 74.

56



[71] Jackson, Matthew O. and Yves Zenou (forthcoming). “Games on networks,” Handbook

of Game Theory 4 (P. Young & S. Zamir, Eds.). Amsterdam: North-Holland.

[72] Kolaczyk, Eric D. (2009). Statistical Analysis of Network Data. New York: Springer.

[73] Koster, Jeremy M. and George Leckie. (2014). “Food sharing networks in lowland

Nicaragua: an application of the social relations model to count data,” Social Networks

38: 100 - 110.

[74] Kranton, Rachel E. and Deborah F. Minehart. (2001). “A theory of buyer-seller net-

works,” American Economic Review 91 (3): 485 - 508.

[75] Krivitsky, Pavel N., Mark S. Handcock, Adrian E. Raftery, and Peter D. Hoff. (2009).

“Representing degree distributions, clustering, and homophily in social networks with

latent cluster random effects models,” Social Networks 31 (3): 204 - 213.

[76] Loury, Linda Datcher. (2006). “Some contacts are more equal than others: informal

networks, job tenure, and wages,” Journal of Labor Economics 24 (2): 299 - 318.

[77] Manski, Charles F. (1975). “Maximum score estimation of the stochastic utility model

of choice," Journal of Econometrics 3 (3): 205 - 228.

[78] Manski, Charles F. (1987). “Semiparametric analysis of random effects linear models

from binary panel data,” Econometrica 55 (2): 357 - 362.

[79] Manski, Charles F. (1993). “Identification of endogenous social effects: the reflection

problem,” Review of Economic Studies 60 (3): 531 - 542.

[80] McFadden, Daniel L. (1973). “Conditional logit analysis of qualitative choice behavior,”

Frontiers in Econometrics : 105 - 142 (P. Zarembka, Ed.). New York: Academic Press.

[81] McPherson, Miller, Lynn Smith-Lovin and James M. Cook. (2001). “Birds of a feather:

homophily in social networks,” Annual Review of Sociology 27 (1): 415 - 444.

57



[82] McPherson, Miller, Lynn Smith-Lovin and Matthew E. Brashears. (2006). “Social iso-

lation in America: changes in core discussion networks over two decades,” American

Sociological Review 71 (3): 353 - 375.

[83] Mele, Angelo. (2011). “A structural model of segregation in social networks,” Mimeo,

John Hopkins University.

[84] Milgram, Stanley (1967). “The small-world problem,” Psychology Today 1 (1): 61 - 67.

[85] Miyaichi, Yuhei. (2013). “Structural estimation of a pairwise stable network with non-

negative externality.” Mimeo, Massachusetts Institute of Technology.

[86] Morris, Martina, Ann E. Kurth, Deven T. Hamilton, James Moody and Steve Wake-

field. (2009). “Concurrent partnerships and HIV prevalence disparities by race: linking

science and public health practice,” American Journal of Public Health 99 (6): 1023 -

1031.

[87] Owen, Art. B. (2013). Monte Carlo Theory, Methods and Examples available online at

http : //statweb.stanford.edu/ owen/mc/.

[88] Read, Ronald C. and Corneil, Derek. G. (1977). “The graph isomorphism disease,”

Journal of Graph Theory 1 (4): 339 – 363.

[89] Rosen, Kenneth H. (2006). Discrete Math and its Applications, 6th Ed. Blacklick, OH:

Mcgraw-Hill.

[90] Sacerdote, Bruce. (2014). “Experimental and quasi-experimental analysis of peer ef-

fects: two steps forward?” Annual Review of Economics 6: 253 – 272.

[91] Shalizi, Cosma Rohilla and Alessandro Rinaldo. (2013). “Consistency under sampling

of exponential random graph models,” Annals of Statistics 41 (2): 508 - 535.

[92] Sheng, Shuyang. (2012). “Identification and estimation of network formation games,”

Mimeo, University of Southern California.

58



[93] Sierksma, Gerard and Han Hoogeveen. (1991). “Seven criteria for integer sequences

being graphic,” Journal of Graph Theory 15 (2): 223 – 231.

[94] Snijders, Tom A. B. (1991). “Enumeration and simulation methods for 0-1 matrices

with given marginals,” Psychometrika 56 (3): 397 - 417.

[95] Snijders, Tom A.B. (2002). “Markov chain Monte Carlo estimation of exponential ran-

dom graph models,” Journal of Social Structure 3 (2).

[96] Snijders, Tom A.B. (2011). “Statistical models for social networks,” Annual Review of

Sociology 37 (1): 131 - 153.

[97] Stanton, Isabelle and Ali Pinar. (2012). “Constructing and sampling graphs with a

prescribed joint degree distribution,” Journal of Experimental Algorithmics 17.

[98] Tamer, Elie. (2003). “Incomplete simultaneous discrete response model with multiple

equilibria,” Review of Economic Studies 70 (1): 147 - 167.

[99] Toivonen, Riitta, Lauri Kovanen, Mikko Kivela, Jukka-Pekka Onnela, Jari Saramaki,

Kimmo Kaski. (2009). “A comparative study of social network models: network evolu-

tion models and nodal attribute models,” Social Networks 31 (4): 240 - 254.

[100] Wasserman, Stanley and Katherine Faust. (1994). Social Network Analysis. Cambridge:

Cambridge University Press.

[101] Watts, Alison. (2001). “A dynamic model of network formation,” Games and Economic

Behavior 34 (2): 331 - 341.

[102] Watts, Duncan J and Steven H. Strogatz. (1998). “Collective dynamics of ’small-world’

networks,” Nature 393 (6684): 440 – 442.

[103] Wooldridge, Jeffrey M. (2005). “Simple solutions to the initial conditions problem in

dynamic, nonlinear panel data models with unobserved heterogeneity,” Journal of Ap-

plied Econometrics 20 (1): 39 – 5.

59



[104] Zhang, Jingfei and Yuguo Chen. (2013). “Sampling for conditional inference on network

data,” Journal of the American Statistical Association 108 (504): 1295 - 1307.

60


