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I. Introduction

In this paper we extend the conventional perturbation method, as described in Judd

(1998) and Schmitt-Grohe and Uribe (2004) and advocated recently by Lombardo (2010)

and Borovic̆ka and Hansen (2013), to approximating the solutions of Markov-switching dy-

namic stochastic general equilibrium (MSDSGE) models. The extension poses a very chal-

lenging task because the presence of time-varying parameters in MSDSGE models makes

high-order approximations potentially intractable. We advance the literature in three signif-

icant respects. First, we develop a general methodology for approximating the solution to

a wide class of Markov-switching models with any order of accuracy. Second, our method-

ology preserves the time-varying coefficients to the maximum extent in high-order Taylor

series expansions. Third, we show the feasibility and practicality of constructing high-order

approximations by reducing the potentially intractable problem to the manageable problem

of solving a system of quadratic polynomial equations.

The literature on Markov-switching linear rational expectations (MSLRE) models has been

an active field in empirical macroeconomics (Leeper and Zha (2003), Blake and Zampolli

(2006), Svensson and Williams (2007), Davig and Leeper (2007), and Farmer, Waggoner,

and Zha (2009)). Building on standard linear rational expectations models, the MSLRE

approach allows parameters to change over time according to discrete Markov processes.

This nonlinearity has proven to be important in explaining shifts in monetary policy and

macroeconomic time series (Schorfheide (2005), Davig and Doh (2008), Liu, Waggoner, and

Zha (2011), and Bianchi (2010)) and in modeling the expected effects of future fiscal policy

changes (Davig, Leeper, and Walker (2010), Davig, Leeper, and Walker (2011), Bi and

Traum (2012), Bianchi and Melosi (2013)). In particular, Markov-switching models provide

a tractable way to study how agents form expectations over possible discrete changes in the

economy, such as those in technology and policy.

There are, however, two major shortcomings with the MSLRE approach advocated by

Farmer, Waggoner, and Zha (2011). First, the approach begins with a system of standard

linear rational expectations equations that have been obtained by linearizing equilibrium

conditions as though the parameters were constant over time. Discrete Markov processes

are then annexed to certain parameters. As a consequence, the resultant MSLRE model

may be incompatible with the optimizing behavior of agents in an original economic model

with Markov-switching parameters. Second, because it builds on linear rational expecta-

tions models, the MSLRE approach does not take into account higher-order coefficients in

the approximation. Not only do higher-order approximations improve the approximation
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accuracy but they are essential to addressing important questions such as whether time-

varying volatility is the driving force of fluctuations in the financial markets and business

cycles (Bloom, 2009).

This paper develops a general perturbation methodology for constructing first-order and

second-order approximations to the solutions of MSDSGE models in which certain parame-

ters vary over time according to discrete Markov processes.1 The key is to derive high-order

approximations to the equilibrium conditions implied by the original nonlinear economic

model when Markov-switching parameters are present. Our methodology, therefore, over-

comes the serious shortcomings associated with the MSLRE shortcut. By working with the

original MSDSGE model directly rather than taking a system of linear rational expectations

equations with fixed parameters as a shortcut, we maintain the congruity between the orig-

inal economic model with Markov-switching parameters and the resultant approximations

to the model solution. Such congruity is necessary for researchers to derive both first-order

and higher-order approximations consistent with the original nonlinear model. Our general

methodology leads to several developments as follows.

• We show that the steady state must be independent of the realization of any regime

in the discrete Markov process governing parameter changes. We follow the literature

and define the steady state with the ergodic mean values of Markov-switching pa-

rameters. One natural extension of the conventional perturbation method commonly

used for DSGE models with no time-varying parameters is to perturb all Markov-

switching parameters around their ergodic mean values. We call this “the naive

perturbation method.”

• Since certain Markov-switching parameters such as time-varying volatilities do not

influence the steady state, we develop a rigorous framework called “the Partition Prin-

ciple” for partitioning the Markov-switching parameter space such that those Markov-

switching parameters are not perturbed. By not perturbing the Markov-switching

parameters that have no bearing on the steady state, we preserve the original Markov-

switching nonlinearity in first-order as well as higher-order approximations. This

preservation improves approximation accuracy, especially at low orders, in compar-

ison to the naive perturbation method. We call this newly-developed method “the

partition perturbation method.” We provide a revealing Markov-switching model to

illustrate the importance of our methodology. In addition, we use a Markov-switching

real business cycle (RBC) model as a more realistic example to demonstrate that the

partition perturbation method delivers more accurate first-order and second-order

approximations than the naive perturbation method.

1We show in the paper that one can extend our methodology to higher-order approximations through

standard linear algebra.



PERTURBATION METHODS FOR MARKOV-SWITCHING DSGE MODELS 3

• We show that any finite-order approximation to the model solution can be reduced to

the manageable problem of solving a system of quadratic polynomial equations. The

rest of the approximation involves solving a system of linear equations recursively—a

key insight of our methodology. This result is powerful because it provides a viable

way of approximating the solution of an MSDSGE model at a high order without in-

curring much of the computational time. Obtaining such a result is difficult because

Markov switching compounds the complexity of implicit differentiation when deriv-

ing the Taylor series expansion. The most difficult part is the potentially rampant

notation that inhibits the reader from following and implementing our methodology.

We introduce a new notation that makes transparent to the reader (as well as us) that

simple linear algebra is all researchers need to accomplish high-order approximations,

even in the presence of time-varying coefficients in the Taylor series expansion.

• Solving a system of quadratic polynomial equations is the only bottleneck for ob-

taining an approximate solution of any order. There are numerical algorithms in the

literature (Svensson and Williams (2007), Farmer, Waggoner, and Zha (2011), and

Cho (2011)), but those algorithms may not converge or may find only a subset of

solutions. We propose to apply the theory of Gröbner bases to obtaining all solu-

tions to a system of quadratic polynomial equations.2 The Gröbner-bases approach

has not been discovered or utilized in the DSGE literature. We document that it is

computationally efficient relative to the existing numerical algorithms.

• Once we obtain all solutions, we can determine how many of these solutions are

stable according to the mean-square-stability criterion (Costa, Fragoso, and Marques

(2005) and Farmer, Waggoner, and Zha (2009)). This procedure enables researchers

to ascertain both the existence and the uniqueness of a stable solution.

The rest of the paper is organized as follows. Section II presents the framework for solving

a general class of MSDSGE models. We outline our methodology, review the conventional

perturbation method, extend this commonly-used method to the naive perturbation method,

and develop the partition perturbation method according to the Partition Principle. Sec-

tion III derives both first-order and second-order approximations that have convenient forms

for researchers to use. We show how to reduce the complex Markov-switching problem to

solving a system of quadratic polynomial equations. We prove that the rest of the approx-

imation of any order involves simple linear algebra. Section IV proposes the application of

Gröbner bases for solving a system of quadratic polynomial equations, reviews the concept

of mean square stability, and discusses how efficient the Gröbner-bases approach is relative

2For the theory of Gröbner bases and its application to economics, see Kubler and Schmedders (2010a)

and Kubler and Schmedders (2010b) for finding multiple equilibria in general equilibrium models and Datta

(2010) for finding all Nash equilibria.



PERTURBATION METHODS FOR MARKOV-SWITCHING DSGE MODELS 4

to the existing numerical algorithms. Section V uses a simple Markov-switching model to

illustrate why the partition perturbation method is more accurate than the naive perturba-

tion method. Section VI applies our methodology to a Markov-switching RBC model and

compares approximation errors between the two perturbation methods. Concluding remarks

are offered in Section VII.

II. The Framework

This section establishes the theoretical foundation of our proposed partition perturbation

method for a general class of MSDSGE models. We present the class of MSDSGE models

and introduce the key idea of partitioning the Markov-switching parameter space. Based

on this idea we propose the partition perturbation method and highlight the importance

of our method in contrast to the naive perturbation method that derives directly from the

conventional perturbation method, which has been used for DSGE models. Throughout the

paper, we use a stylized real business cycle (RBC) model as an illustrative example to guide

the reader through our new methodology.

II.1. A general class of MSDSGE models. We study a general class of MSDSGE models

in which some of the parameters follow a discrete Markov process indexed by st ∈ {1, . . . , ns}
with the transition matrix P =

[
pst,st+1

]
. The element pst,st+1 represents the probability of

st+1 at time t + 1 conditional on observing st at time t. We denote the time t vector of

all Markov-switching parameters by θ(st) ∈ Rnθ .3 We assume that the Markov process is

ergodic and denote the ns-vector of ergodic probabilities by p̄. The ergodic mean of θ(st) is

θ̄ = [θ(1) · · · θ(ns)] p̄.

Given the vector of state variables (xt−1, εt, st), the equilibrium conditions for MSDSGE

models have the general form

Etf
(
yt+1,yt,xt,xt−1, εt+1, εt,θ (st+1) ,θ (st)

)
= 0ny+nx , (1)

where Et denotes the mathematical expectation operator conditional on information available

at time t, yt ∈ Rny is a vector of non-predetermined (control) variables, xt ∈ Rnx is a vector

of (endogenous and exogenous) predetermined variables, 0ny+nx is an (ny + nx)-vector of

zeros, and εt ∈ Rnε is a vector of i.i.d. innovations to the exogenous predetermined variables

with Etεt+1 = 0nε and Etεt+1ε
ᵀ
t+1 = Inε . The superscript ᵀ indicates the transpose of a

matrix or a vector and Inε denotes the nε×nε identity matrix. The function f is defined on

an open subset of Rnf , where nf = 2(ny + nx + nε + nθ), and its range is a subset of Rny+nx .

3The parameters that are constant over time, which we call “constant parameters” for the rest of the

paper, are not included in the vector θ (st). Unless otherwise stated, all vectors in this paper are column

vectors.
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We make the following assumptions about f throughout the paper. These assumptions are

satisfied by almost all economic models.

Assumption 1. The function f is infinitely differentiable with respect to all arguments.

Assumption 2. Integration and differentiation of f are exchangeable.

Assumption 3. There exist the steady state values yss and xss such that

f
(
yss,yss,xss,xss,0nε ,0nε , θ̄, θ̄

)
= 0ny+nx . (2)

We use a simple RBC model to illustrate how the equilibrium conditions can be arranged

in the form of (1). Consider an economy with the representative household whose preferences

over a stochastic sequence of consumption goods, ct, are represented by the expected utility

function

maxE0

∞∑
t=0

βt
cυt
υ
,

where β is the discount factor and υ relates to risk aversion. The resource constraint is

ct + kt = z1−α
t kαt−1 + (1− δ) kt−1,

where δ is the rate of depreciation, kt is a stock of physical capital, and zt represents a

technological process that evolves according to

log
zt
zt−1

= (1− ρ(st))µ (st) + ρ(st) log
zt−1

zt−2

+ σ (st) εt,

where εt ∼ N (0, 1) is a standard normal random variable. The drift, persistence, and

volatility parameters are time varying with st ∈ {1, 2}. The three equations characterizing

the equilibrium are the equation describing the technological process and the following two

first-order equations

cυ−1
t = βEtcυ−1

t+1

[
αz1−α

t+1 k
α−1
t + (1− δ)

]
,

ct + kt = z1−α
t kαt−1 + (1− δ) kt−1.

The economy is non-stationary. To obtain a stationary equilibrium we define z̃t = zt
zt−1

,

k̃t = kt
zt

, and c̃t = ct
zt−1

. The stationary equilibrium conditions summarized by (1) can be

specifically expressed as

03 = Etf
(
yt+1,yt,xt,xt−1, εt+1, εt,θ (st+1) ,θ (st)

)
=

Et


c̃υ−1
t − βz̃υ−1

t c̃υ−1
t+1

{
αe[(1−ρ(st+1))µ(st+1)+ρ(st+1) log(z̃t)+σ(st+1)εt+1](1−α)k̃α−1

t + 1− δ
}

c̃t + z̃tk̃t − z̃1−α
t k̃αt−1 − (1− δ) k̃t−1

log z̃t − (1− ρ(st))µ (st)− ρ(st) log z̃t−1 − σ (st) εt

 , (3)

where yt = c̃t, xt = [k̃t z̃t]
ᵀ, εt = εt, and θ (st) = [µ(st) ρ(st) σ(st)]

ᵀ. The dimensions of

this RBC model are ny = 1, nx = 2, nε = 1, nθ = 3, and ns = 2.
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II.2. The conventional perturbation method. Before we propose our partition pertur-

bation method for solving MSDSGE models, we review the conventional perturbation method

used for solving constant-parameter DSGE models (Judd, 1998; Schmitt-Grohe and Uribe,

2004; Lombardo, 2010; Holmes, 2012; Borovic̆ka and Hansen, 2013; Gomme and Klein, Forth-

coming). The constant-parameter model can be considered as a special Markov-switching

model with either ns = 1 or θ(st) = θ̄ for all st.

The conventional perturbation method begins with positing that the solutions yt and xt

are of the form

yt = g (xt−1, εt, χ) , (4)

xt = h (xt−1, εt, χ) , (5)

where g : Rnx+nε+1 → Rny and h : Rnx+nε+1 → Rnx are functions with the Taylor series

representation about the point (xss,0nε , 0) satisfying

yss = g (xss,0nε , 0) , (6)

xss = h (xss,0nε , 0) , (7)

and χ ∈ R is the perturbation parameter. The conventional perturbation is a method that

recursively finds the Taylor series expansion of g and h by positing that equations (4) and

(5) are a solution of

0ny+nx = F (yt,xt,xt−1, εt, χ)

≡
∫
Rnε
f
(
g(xt, χεt+1, χ),yt,xt,xt−1, χεt+1, εt, θ̄, θ̄

)
dµ(εt+1), (8)

for all xt−1, εt, and χ, where µ(εt+1) is a σ-finite measure on the space of εt+1. When χ = 1,

equation (8) reduces to equation (1). By construction, g and h satisfy equation (8) when

xt−1 = xss, εt = 0nε and χ = 0.

To form the Taylor series expansion of g and h, one must be able to compute the deriva-

tives of g and h and evaluate these derivatives at the point (xss,0nε , 0). By repeated implicit

differentiation of equation (8), one can recursively solve for the derivatives of g and h eval-

uated at (xss,0nε , 0).

II.3. The naive perturbation method. It is straightforward to extend the conventional

perturbation method discussed in Section II.2 to MSDSGE models as in Amisano and Tris-

tani (2011). Suppose that yt and xt are of the form

yt = gst (xt−1, εt, χ) , (9)

xt = hst (xt−1, εt, χ) , (10)
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for all st, where gst : Rnx+nε+1 → Rny and hst : Rnx+nε+1 → Rnx are continuously differ-

entiable functions. In the constant-parameter case, the choice of the steady state as the

approximation point is natural and one needs to perturb εt+1 only. The choice of approxi-

mation point in the Markov-switching case is more involved. We show that θ(st+1) and θ(st)

must be perturbed. To this end we first show that the steady state in the Markov-switching

case must be independent of regime st.

Suppose that the steady-state variables xss (st) depend on regime st. As in the constant-

parameter case, we must choose the values of gst (xss (st) ,0nε , 0) and hst (xss (st) ,0nε , 0)

such that

f
(
gst+1

(hst (xss(st),0nε , 0) ,0nε , 0) , gst (xss(st),0nε , 0) ,

hst (xss(st),0nε , 0) ,xss(st), 0nε ,0nε ,θ (st+1) ,θ (st)) = 0ny+nx (11)

for all st and st+1. Because the value of gst+1
is evaluated at the point (xss(st+1),0nε , 0), it

follows that xss (st+1) = hst (xss (st) ,0nε , 0) for all st and st+1. For the latter relationship

to hold, it must be that xss(st) = xss and xss(st+1) = xss for all st and st+1. That is, the

steady state must be regime independent.

We now show that the Markov-switching parameters θ(st+1) and θ(st) must in general be

perturbed. Since xss(st) = xss for all st, the system of equations (11) becomes

f
(
gst+1

(xss,0nε , 0) , gst (xss,0nε , 0) ,xss,xss,0nε ,0nε ,θ (st+1) ,θ (st)
)

= 0ny+nx . (12)

This is a system of n2
s(ny + nx) equations in nsny + nx unknowns (ny unknowns in each

gk(xss,0nε , 0) for 1 ≤ k ≤ ns and another nx unknowns in xss), which cannot be solved in

general. We must, therefore, perturb the Markov-switching parameters to reduce the number

of equations.

One natural approach is to define a perturbation function for Markov-switching parameters

by

θ(k, χ) = χθ(k) + (1− χ)θ̄ (13)

for 1 ≤ k ≤ ns. When χ = 0, we have θ(k, 0) = θ̄; when χ = 1 we have θ(k, 1) = θ(k).

Given xss(k) = xss for 1 ≤ k ≤ ns, we have the following assumption

Assumption 4. The function gk(xss,0nε , 0) has the same value for all 1 ≤ k ≤ ns. We

denote this value by yss.

With this perturbation and Assumption 4, system (12) becomes

f
(
yss,yss,xss,xss,0nε ,0nε , θ̄, θ̄

)
= 0ny+nx .

By Assumption 3 there is a solution to this system of equations.
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For illustration we return to the RBC model in which the system of equations f is given

by (3). Let the steady state and ergodic mean values of parameters be denoted by yss = c̃ss,

xss = [k̃ss z̃ss]
ᵀ, and θ̄ = [µ̄ ρ̄ σ̄]ᵀ. The steady state must satisfy

03 = f
(
yss,yss,xss,xss,0nε ,0nε , θ̄, θ̄

)
=

c̃υ−1
ss − βz̃υ−1

ss c̃υ−1
ss

{
αe[(1−ρ̄)µ̄+ρ̄ log(z̃ss)](1−α)k̃α−1

ss + 1− δ
}

c̃ss + z̃ssk̃ss − z̃1−α
ss k̃αss − (1− δ) k̃ss

log z̃ss − (1− ρ̄) µ̄− ρ̄ log z̃ss

 . (14)

Solving for the steady state is the same as in the constant-parameter case. With the pertur-

bation function (13), it is straightforward to write down an equation analog of the constant-

parameter case (8) and obtain the Taylor series expansions for gst and hst around the point

(xss,0nε , 0). We call this approach the “naive perturbation method.” In Section V we show,

through a revealing example, why this method is naive in comparison to the new perturbation

method developed below.

II.4. The partition perturbation method. As in many DSGE models, the steady state

expressed in (14) can be obtained in closed form as

z̃ss = eµ̄,

k̃ss =
(
α−1e(α−1)µ̄

(
β−1e(1−υ)µ̄ − 1 + δ

)) 1
α−1 ,

and c̃ss = k̃ss
(
1− δ − eµ̄ + α−1

(
β−1e(1−υ)µ̄ − 1 + δ

))
.

Clearly, the steady state solution does not depend on either ρ̄ or σ̄. As argued in Section II.3,

the purpose of perturbing the Markov-switching parameters around their ergodic mean values

is to solve the steady state when the perturbation parameter χ and the innovations εt are set

to zero. Since ρ (st) and σ (st) do not influence the steady state, perturbing these parameters

generates unnecessary approximations. If we do not perturb these parameters, we maintain

the Markov-switching nonlinearity along the direction of these parameters in the original

model. We formalize this idea by proposing the following perturbation function

θ(k, χ) = χ

[
θ̄1(k)

θ2(k)

]
+ (1− χ)

[
θ̄1

θ2(k)

]
=

[
θ̄1 + χ

(
θ1(k)− θ̄1

)
θ2(k)

]
(15)

for 1 ≤ k ≤ ns with the Partition Principle stated below.

Partition Principle. Let the Markov-switching parameters be ordered and partitioned as

θᵀ (st) = [θᵀ1 (st) θᵀ2 (st)]. The second block θ2 (st) is chosen to contain the maximum
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number of Markov-switching parameters such that

f (yss,yss,xss,xss,0nε ,0nε ,θ (st+1, 0) ,θ (st, 0)) =

f
(
yss,yss,xss,xss,0nε ,0nε , θ̄, θ̄

)
= 0ny+nx (16)

for all st and st+1.

According to the Partition Principle, the second block of Markov-switching parameters

is not perturbed. Since perturbation is necessary only for approximations to the original

nonlinear model, the fewer number of Markov-switching parameters we perturb, the more

accurate are finite-order approximations. We illuminate this point through examples dis-

cussed in Sections V and VI.

It is practicable to implement the Partition Principle. Whenever we write down DSGE

models, we should be able to write down the steady state equilibrium conditions and identify

which Markov-switching parameters have no influence on these conditions. For most DSGE

models like our RBC model, the steady state can be solved in closed form. We group all

such Markov-switching parameters into θ2 (st) as long as the critical system (16) is satisfied.

Verifying whether (16) holds is straightforward.

To obtain the analog of system (8), we define the continuously differentiable function

F st : Rny+2nx+nε+1 → Rny+nx as

F st(yt,xt,xt−1, εt, χ) =
ns∑

st+1=1

pst,st+1

∫
Rnε
f
(
gst+1

(xt, χεt+1, χ),yt,xt,xt−1,

χεt+1, εt,θ(st+1, χ),θ(st, χ)
)
dµ(εt+1)

such that (9) and (10) are a solution to

F st(yt,xt,xt−1, εt, χ) = 0ny+nx (17)

for all st, xt−1, εt, and χ. The perturbation functions θ(st+1, χ) and θ(st, χ) are given

by (15). When χ = 1, the perturbed system (17) reduces to the original system (1). By

construction, system (17) is satisfied for all st when yt = yss, xt = xt−1 = xss, εt = 0nε ,

and χ = 0. We call this approach “the partition perturbation method.”

Like the conventional perturbation method or the naive perturbation method, the par-

tition perturbation method allows one to solve recursively for the partial derivatives of gst
and hst by repeated implicit differentiation of system (17) and evaluate these derivative

at (xss,0nε , 0). Unlike those perturbation methods, the partial derivatives of gst and hst

depend on the partial derivatives of f evaluated at

(yss,yss,xss,xss,0nε ,0nε ,θ(st+1, 0),θ(st, 0)) .
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Because the second block of Markov-switching parameters is not perturbed, the Taylor series

coefficients for gst and hst are in general time-varying when the set containing θ2 (st) is

not empty. The presence of such time-varying Taylor series coefficients makes high-order

approximations a potentially intractable problem. One principal contribution of this paper

is to prove that the partition perturbation method can be implemented by reducing this

potentially intractable problem to a recursive problem involving only simple linear algebra

once we remove the bottleneck of solving a system of quadratic polynomial equations. This

theoretical result is provided in Section III. In Section V we provide a revealing Markov-

switching dynamic equilibrium example that has closed-form solutions. Using this example

we illustrate that the Partition Principle delivers a more accurate solution than the naive

perturbation method for an approximated solution of any order.

III. First-Order and Second-Order Approximations

This section gives a detailed description of how to derive first-order and second-order

approximations to the model solution by using the partition perturbation method. We

present the results up to only second order to conserve the space, but it is straightforward

to derive higher-order approximations with a similar approach. To make our theoretical

results transparent to a general reader, we develop a new notation, which proves crucial

to the clarity of our derivations. The new notation, moreover, enables us to show that

Markov-switching volatility (uncertainty) has first-order effects on dynamics while the naive

perturbation method nullifies such effects by construction.

III.1. New notation. We stack the regime dependent solutions (9) and (10) as

Y t = G (xt−1, εt, χ) =


g1 (xt−1, εt, χ)

...

gns (xt−1, εt, χ)

 and X t = H (xt−1, εt, χ) =


h1 (xt−1, εt, χ)

...

hns (xt−1, εt, χ)

 .
Define Y ss = 1ns⊗yss andXss = 1ns⊗xss, where 1ns is the ns-vector of ones. It follows that

yt = gst (xt−1, εt, χ) =
(
eᵀst ⊗ Iny

)
Y t and xt = hst (xt−1, εt, χ) =

(
eᵀst ⊗ Inx

)
X t for all st,

where ek, for 1 ≤ k ≤ ns, is the kth column of the ns × ns identity matrix. Approximating

a solution to yt and xt is equivalent to approximating a solution to Y t and X t.

Define Fi : Rnsny+nsnx+nx+nε+1 → Rny+nx by

Fi (Y t,X t,xt−1, εt, χ) = F i

((
eᵀi ⊗ Iny

)
Y t, (e

ᵀ
i ⊗ Inx)X t,xt−1, εt, χ

)
and F : Rnsny+nsnx+nx+nε+1 → Rns(ny+nx) by

F (Y t,X t,xt−1, εt, χ) =


F1 (Y t,X t,xt−1, εt, χ)

...

Fns (Y t,X t,xt−1, εt, χ)

 .
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With these definitions, system (17) is equivalent to

F (Y t,X t,xt−1, εt, χ) = 0ns(ny+nx). (18)

We now introduce a derivative notation that is used throughout the paper. Let w(u) be

a continuously differentiable function from Rnu into Rnw . Let u` be the `th component of u

for 1 ≤ ` ≤ nu and wk(u) be the kth component of w(u) for 1 ≤ k ≤ nw. D`w
k(u), a real

number, denotes the partial derivative of wk with respect to u` evaluated at the point u.

Dw(u), the nw × nu matrix [D`w
k(u)] for 1 ≤ k ≤ nw and 1 ≤ ` ≤ nu, denotes the total

derivative of w evaluated at the point u.

As for second-order partial derivatives, let D`2D`1w
k(u), a real number, denote the second

partial derivative of wk with respect to u`1 and u`2 evaluated at u. D`2D`1w(u) denotes

the nw-vector [D`2D`1w
k(u)] for 1 ≤ k ≤ nw. D`2Dw(u) denotes the nw × nu matrix

[D`2D`w
k(u)] for 1 ≤ k ≤ nw and 1 ≤ ` ≤ nu. It is straightforward to extend this notation

to higher-order partial derivatives.

Ifw(u,v) is a continuously differentiable function from Rnu+nv into Rnw , we useDuw(u,v)

to denote the nw × nu matrix consisting of the first nu columns of the nw × (nu + nv)

matrix Dw(u,v). Similarly, Dvw(u,v) denotes the last nv columns of Dw(u,v) and

Dw(u,v) = [Duw(u,v) Dvw(u,v)].

III.2. First-order approximation. Denote zᵀt =
[
xᵀ
t−1 εᵀt χ

]
and zᵀss =

[
xᵀ
ss 0ᵀ

nε 0
]
.

The dimension of both zt and zss is nz = nx + nε + 1. The first-order approximation of

G(zt) and H(zt) is

G(zt) ≈ Y ss +DG(zss)(zt − zss),

H(zt) ≈Xss +DH(zss)(zt − zss).

The following proposition shows that both DG(zss) = [Dxt−1G(zss) DεtG(zss) DχG(zss)]

and DH(zss) = [Dxt−1H(zss) DεtH(zss) DχH(zss)] can be obtained by solving a system

of quadratic polynomial equations and two systems of linear equations.

Proposition 1. Under Assumptions 1-4, the matrices Dxt−1G(zss) and Dxt−1H(zss) can be

obtained by solving a system of ns(ny+nx)nx quadratic polynomial equations in ns(ny+nx)nx

unknowns. Given a solution to this quadratic polynomial system, the matrices DεtG(zss)

and DεtH(zss) can be obtained by solving a system of ns(ny + nx)nε linear equations in

ns(ny + nx)nε unknowns; the vectors DχG(zss) and DχH(zss) can be obtained by solving a

system of ns(ny + nx) linear equations in ns(ny + nx) unknowns.

Proof. See Appendix A.

The proof of Proposition 1 shows how to represent the first-order solution in a form that

can be implemented in practice. More important is the elegant result that reduces the



PERTURBATION METHODS FOR MARKOV-SWITCHING DSGE MODELS 12

potentially intractable problem of solving MSDSGE models to the manageable problem of

solving a system of quadratic polynomial equations. Section IV provides an effective way of

solving this problem.

III.3. Characterizing the first-order approximation. As shown in the proof of Proposi-

tion 1, the slope coefficient matrices, represented by Dxt−1G(zss) and Dxt−1H(zss), and the

impact coefficient matrices represented by DεtG(zss) and DεtH(zss), are functions of the

partial derivatives Dyt+1
f(uss), Dytf(uss), Dxtf(uss), Dxt−1f(uss), and Dεtf(uss), where

uᵀ
ss = [yᵀ

ss,y
ᵀ
ss,x

ᵀ
ss,x

ᵀ
ss,0

ᵀ
nε ,0

ᵀ
nε ,θ(st+1, 0)ᵀ,θ(st, 0)ᵀ].

Thus, the slope and impact coefficients depend, in general, on both θ2(st+1) and θ2(st).

When the naive perturbation method is used, by contrast, the slope and impact coefficients

depend only on θ̄, not on θ(st+1) or θ(st), as stated in the following corollary.

Corollary 1. Let Assumptions 1-4 hold. Under the naive perturbation method, the first-

order coefficients Dxt−1G(zss), Dxt−1H(zss), DεtG(zss), and DεtH(zss) do not depend on

θ (st), but are functions of θ̄ only.

For our RBC model summarized in (3), one can see that Dyt+1
f(uss) and Dxtf(uss)

depend on ρ(st+1), Dxt−1f(uss) depends on ρ(st), and Dεtf(uss) depends on σ(st). Thus,

both the Markov-switching persistence and volatility parameters have first-order effects. By

contrast, these effects are muted by the naive perturbation method because the partial

derivatives of f depend only on ρ̄ and σ̄.4 Consequently the finite-order approximation

becomes less accurate. In Section VI we provide a numerical assessment of this accuracy by

computing approximation errors of the Euler equations.

III.4. Second-order approximation. The second-order approximation is represented by

G(zt) ≈ Y ss +DG(zss)(zt − zss) +
1

2

nz∑
`1=1

nz∑
`2=1

D`2D`1G(zss)(zt,`1 − zss,`1)(zt,`2 − zss,`2),

H(zt) ≈Xss +DH(zss)(zt − zss) +
1

2

nz∑
`1=1

nz∑
`2=1

D`2D`1H(zss)(zt,`1 − zss,`1)(zt,`2 − zss,`2),

where zt,` and zss,` are the `th component of zt and zss. The following proposition delivers

a powerful result that the vector D`2D`1G(zss) and D`2D`1H(zss) can be obtained through

simple linear algebra.

4The naive perturbation method resembles the existing methods for solving DSGE models with drift-

ing parameters, where slope and impact coefficients in the first-order approximation are not time-varying

(Fernandez-Villaverde, Guerron-Quintana, and Rubio-Ramirez, 2014).
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Proposition 2. Under Assumptions 1-4 and given a first-order approximation, the vectors

D`2D`1G(zss) and D`2D`1H(zss), for 1 ≤ `1, `2 ≤ nz, can be obtained by solving a system

of ns(ny + nx)n
2
z linear equations in ns(ny + nx)n

2
z unknowns.

Proof. See Appendix A.

Because the coefficients represented by D`2D`1G(zss) and D`2D`1H(zss) can be time-

varying, it is not at all obvious that Proposition 2 would hold. One of the principal

developments in this paper is to reduce the potentially unmanageable complexity of the

Markov-switching problem to a straightforward linear algebra problem for higher-order ap-

proximations. In the proof of Proposition 2 we show that, with a delicate application of

implicit differentiation, the second-order approximation simply requires solving a system

of linear equations even in the presence of Markov-switching coefficients.5 As second-order

coefficients are functions of first-order coefficients, Markov-switching volatility has a first-

order effect on the impact coefficients and a second-order effect on both slope and impact

coefficients.

IV. Removing the Bottleneck

Propositions 1 and 2 show how to translate the complex Markov-switching DSGE problem

into a simple linear algebra problem, as long as one is able to solve for Dxt−1G(zss) and

Dxt−1H(zss). As indicated by Proposition 1, the bottleneck involves solving a system of

quadratic polynomial equations. In this section we discuss the Gröbner-bases approach

for solving this system and the mean-square-stability (MSS) criterion for selecting a stable

solution. The theory of Gröbner bases implies that in most cases we can find all the solutions

of the system and thus form the first-order Taylor series expansion of G and H . Stable first-

order solutions are then selected by the MSS criterion. Higher-order expansions can be

derived recursively from a first-order stable solution.

IV.1. Solving polynomial equations with Gröbner bases. When there are no Markov-

switching parameters, the system of quadratic polynomial equations (see system (A4) in

Appendix A) collapses to a special form that can be solved by using the generalized Schur

decomposition (Uhlig, 1999; Klein, 2000). When Markov-switching parameters are present,

however, the system of ns(ny + nx)nx quadratic polynomial equations in ns(ny + nx)nx

unknowns are no longer of this special form and the general Schur technique is no longer

applicable. Gröbner bases provide a practical means to obtain all the solutions to a system

of quadratic polynomial equations. A more detailed description of Gröbner bases is provided

5Armed with our notation and applying the same technique, one can prove that the approximation of any

higher-order higher involves solving a system of linear equations recursively. We leave the derivation to the

reader.
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in Appendix B. In this section we provide an intuitive explanation of how to apply Gröbner

bases to solving a system of multivariate polynomials.

Suppose one wishes to find all the solutions to a system of n polynomial equations in n

unknowns. There exist a number of routines that transform the original system of n polyno-

mial equations to another system of n polynomial equations with the same set of solutions.

This transformed system is known as a Gröbner basis. The following theorem, known as

the Shape Lemma, shows that in most cases there is a Gröbner basis with a particularly

powerful form. The Shape Lemma is known in the mathematics and computational science

literature, but is still an unfamiliar object in the economics literature. We therefore restate

this theorem in a form that is suitable to our problem.

The Shape Lemma There exists an open dense subset S of all systems of n polynomial

equations in n unknowns such that for every system

f1(x1, . . . , xn) = 0, · · · , fn(x1, . . . , xn) = 0

in S, there exists a system of n polynomial equations in n unknowns with the same set of

roots of the form

x1 − q1 (xn) = 0, · · · , xn−1 − qn−1 (xn) = 0, qn (xn) = 0,

where each qi(xn) is a univariate polynomial.

See Becker, Marianari, Mora, and Treverso (1993) for the proof of this result. There are

several important aspects of the Shape Lemma. First, most polynomial systems have a

Gröbner basis of this form. Second, most algorithms for obtaining a Gröbner basis returns

the above form. For instance, Mathematica’s GroebnerBasis[] command implements the

Shape Lemma. Third, it is straightforward to find all the roots of the univariate polynomial

qn(xn). With these values of xn in hand, it is trivial to find x1, · · · , xn−1.

A large strand of literature has dealt with the computation of Gröbner bases in the Shape

Lemma. Buchberger (1998)’s algorithm is the original technique. A number of more efficient

variants have been subsequently proposed. We refer the interested reader to Cox, Little, and

O’Shea (1997). In this paper we use Mathematica to find a Gröbner basis.

To illustrate how powerful the Shape Lemma is, consider the following example featuring

a system of quadratic polynomial equations in four unknown variables x1, . . . , x4:

x1x2 + x3x4 + 2 = 0, x1x2 + x2x3 + 3 = 0,

x1x3 + x4x1 + x4x2 + 6 = 0, and x1x3 + 2x1x2 + 3 = 0.
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A Gröbner basis of the form given in the Shape Lemma is

x1 −
1

28
(9x5

4 + 6x3
4 − 15x4) = 0, x2 −

1

28
(−9x5

4 − 6x3
4 + 99x4) = 0,

x3 −
1

14
(−3x5

4 − 9x3
4 − 2x4) = 0, and 3x6

4 + 9x4
4 − 19x2

4 − 49 = 0.

The last polynomial is univariate of degree six in x4. There are 6 roots for this polynomial.

Each of these roots can be substituted into the first three equations to obtain all 6 solutions.

The theory of Gröbner bases ensures that these solutions are the same as those of the original

system (see Appendix B for details).

This example illustrates the multiple-solution nature of a system of quadratic polynomial

equations. For the two models studied in this paper, it turns out that there is a unique

stable solution. We are able to establish this result precisely because we use the theory of

Gröbner bases to find all the solutions to the system of quadratic polynomial equations,

coupled with the MSS criterion (discussed below), to ascertain the uniqueness of a stable

first-order solution.

IV.2. Mean square stability. In the case of constant-parameter DSGE models, whether

the first-order approximation is stable or not can be determined by verifying whether its

largest absolute generalized eigenvalue is greater than or equal to one, a condition that

holds for most concepts of stability. In the MSDSGE case, the problem is both subtle and

complicated because alternative concepts of stability would imply different kinds of solutions.

Given the first-order approximation, we use the concept of mean square stability (MSS) as

defined in Costa, Fragoso, and Marques (2005) and advocated by Farmer, Waggoner, and

Zha (2009) who discuss several advantages of using the MSS criterion over alternative ones

such as the bounded stability. The MSS criterion states that a solution is stable if and only

if all the eigenvalues of the nsn
2
x × nsn2

x matrix(
P ᵀ ⊗ In2

x

)
diag

[
Dxt−1h1 ⊗Dxt−1h1 . . . Dxt−1hns ⊗Dxt−1hns

]
are inside the unit circle, where diag denotes the block diagonal matrix with the Dxt−1hk ⊗
Dxt−1hk, for k = 1, . . . , ns, along the diagonal. The nx × nx matrices Dxt−1hk are obtained

by reading off the appropriate rows of the matrix Dxt−1H . In particular we have

Dxt−1H =


Dxt−1h1

...

Dxt−1hns

 .
IV.3. Why is the Gröbner-bases approach computationally efficient? While the

mathematics literature provides no specific formula to determine the nature of solutions for

the system of quadratic polynomial equations in regard to no solution, a finite number of

solutions, or infinitely many solutions, an open dense subset in the Shape Lemma implies
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that, for all practical purposes, a system of quadratic polynomial equations has a finite

number of solutions.

Although the theory of Gröbner bases is well known in the mathematics literature, the

existing DSGE literature has not discovered or utilized this powerful application. Instead the

literature has relied on numerical methods such as Newton’s algorithm (Farmer, Waggoner,

and Zha, 2011). We have experimented with a number of widely-used DSGE models with a

wide range of parameter configurations (including a Markov-switching dynamic equilibrium

model larger than Smets and Wouters (2007)’s model), the Gröbner-bases approach finds

all the solutions in a fraction of a second while Newton’s algorithm typically takes several

seconds to find only a subset of the solutions, depending on how good the starting points

are and how thorough the search for these points is. There may be situations in which the

Gröbner-bases application does not return solutions within a reasonable frame of time. In

such a case, one can simply code up additional lines terminating the application and returning

the warning message “no finite number of solutions.” As for the Newton algorithm, we often

encounter the situation in which the algorithm fails to converge while the Gröbner-bases

approach proves successful. For both theoretical and practical points of view, the Gröbner-

bases approach is superior to the Newton method.

V. Understanding the Partition Perturbation Method

In the preceding sections we develop the partition perturbation method and show how to

use it for obtaining first-order and second-order approximations to the solutions of MSDSGE

models. In this section we use a simple dynamic equilibrium model to reveal the power of the

partition perturbation method in comparison to the naive perturbation method. The model

is particularly instructive because we can obtain a closed-form solution, which allows us to

show that the naive partition method incurs needless approximation errors in the Taylor

series expansion, especially in low-order expansions.

Consider a simple inflation model in which the nominal interest rate is linked to the real

interest rate and the expected inflation rate by the Fisher equation

Rt = r + Etπt+1,

where Rt is the nominal interest rate at time t, πt+1 is the inflation rate at time t + 1, and

the steady state real interest rate r = R− π. Monetary policy follows the rule

Rt = R + φ (st) (πt − π) + σ (st) εt,

where the monetary policy shock εt is an i.i.d. normal random variable. A positive monetary

policy shock raises the nominal interest rate and lowers inflation. Denoting π̂t = πt − r and
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combining the previous two equations lead to

φ (st) π̂t + σ (st) εt = Etπ̂t+1. (19)

Suppose that st ∈ {1, 2} follows a two-state Markov process. Because of the presence of

Markov-switching parameters φ (st) and σ (st), equation (19) is in essence a nonlinear model.

To write this model in the same form as (1), we define a new variable such that π∗t = πt

and let yt = π∗t and xt = πt. We thus have yss = π and xss = π. To use the partition

perturbation method, we follow the Partition Principle and partition the Markov-switching

parameters so that no Markov-switching parameter is perturbed. Specifically, θ (k, χ) =[
φ(k) σ(k)

]ᵀ
. The equilibrium conditions can be expressed as

Etf
(
yt+1,yt,xt,xt−1, χεt+1, εt,θ (st+1, χ) ,θ (st, χ)

)
=

Et

[
(1− φ (st)) π + φ (st)πt − π∗t+1 − σ (st) εt

π∗t − πt

]
(20)

such that

f (yss,yss,xss,xss,0,0,θ(j, 0),θ(i, 0)) = 0, for 1 ≤ i, j ≤ 2.

Proposition 3. With the partition perturbation method, a first-order approximation to the

nonlinear model (20) is an exact solution and there are no higher-order Taylor series expan-

sions (i.e., higher-order coefficients are all zero).

Proof. See Appendix A.

The proof of Proposition 3 in Appendix A shows that the implication of Proposition 3

is more general than the result specific to model (19) or (20). For a large class of Markov-

switching dynamic equilibrium models, a first-order solution generated by the partition per-

turbation method delivers an exact solution. Indeed, applying the partition perturbation

method to our example yields the exact solution as

π̂t = −σ (st)

φ (st)
εt.

By contrast, the naive perturbation method perturbs the Markov-switching parameters as

θ(k, χ) =

[
φ̄

σ̄

]
+ (1− χ)

[
φ (st)− φ̄
σ (st)− σ̄

]
,

where φ̄ and σ̄ are the ergodic means of φ (st) and σ (st). The first-order approximation

generated by the naive perturbation method is πt = −
(
σ̄/φ̄

)
εt for all st. Clearly, this

solution is not exact and higher-order Taylor series expansions are needed to improve the

solution accuracy.
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We demonstrate these results numerically with the following parameterization: p1,1 = 0.95,

p2,2 = 0.85, φ(1) = 1.25, φ(2) = 0.96, σ(1) = 0.1, and σ(2) = 0.6. The Gröbner-bases

analysis gives four solutions for this parameterization, but only one is stable according to the

MSS criterion. The first-order stable approximation generated by the partition perturbation

method is

π̂t = −0.08 εt for st = 1 and π̂t = −0.625 εt for st = 2.

Because all higher-order coefficients are exactly zero, the first-order approximation is the

exact solution.

Similarly, the first-order stable approximation produced by the naive perturbation method

is

π̂t = −0.191083 εt for st = 1 and π̂t = −0.191083 εt for st = 2.

Because all the Markov-switching parameters are perturbed, the first-order solution does not

depend on the realization of a particular regime. The regime-dependent nature relies on the

second-order solution

π̂t = 0.0447610 εt for st = 1 and π̂t = −0.8986170 εt for st = 2.

How does this approximation compares to the exact solution? To assess the accuracy of

the two perturbation methods, we compute Euler-equation errors (EEs) as suggested in Judd

(1998). Table 1 reports the base-10 log absolute value of the approximation error for the

original nonlinear equation (19), where the initial condition is set as εt = 1.0. We discuss

the reason for using the base-10 log value in Section VI.3.

Given the simplicity of this model, we can compute EEs without any simulation. Since

the first-order solution generated by the partition perturbation method is the exact solution

(Proposition 3), the absolute value of the approximation error is zero (the log absolute

value of the error is −∞). On the other hand, the naive perturbation method relies on

higher-order approximations to get a more accurate solution. As indicated in Table 1, the

second-order approximation obtained by the naive perturbation method is closer to the exact

solution with a much smaller approximation error than the error generated by the first-order

approximation, but it is still not close to the exact solution. This example clearly illustrates

the importance of the partition perturbation method in obtaining an accurate low-order

approximation.

Table 1. Euler-equation errors (base-10 log absolute value)

Perturbation Method Partition Naive Naive

Exact First-order First-order Second-order

EE −∞ −∞ −0.5564 −1.3691
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VI. Application to the RBC Model

In this section we apply the partition perturbation method to the two-state Markov-

switching RBC model introduced in Section II.1. We then compare approximation errors

generated by the partition perturbation method with those incurred by the naive perturba-

tion method to asses the accuracy of both methods.

The parameterization we use is presented in Table 2 and it is motivated by business-

cycle facts related to emerging markets. The value of β corresponds to a real rate of

3 percent in steady state, the value of of α corresponds to a capital share of one-third,

and the value of δ corresponds to an annual capital depreciation rate of approximately

10 percent. The growth-rate parameters µ (1) and µ (2) and the standard deviations pa-

rameters σ (1) and σ (2) are set to make the output growth and its unconditional variance

differ across regimes in magnitudes consistent with the emerging markets such as the Ar-

gentinian economy (Fernández-Villaverde and Rubio-Ramirez, 2007; Fernández-Villaverde,

Guerrón-Quintana, Rubio-Ramı́rez, and Uribe, 2011). Note that the first regime is associ-

ated with positive growth while the second with negative growth. Moreover, the first regime

is less volatile and more persistent than the second regime. Given this parameterization, the

stationary steady-state values of consumption, capital, and technology are c̃ss = 2.08259,

k̃ss = 22.1504, and z̃ss = 1.007. Denote ĉt = c̃t − c̃ss, k̂t = k̃t − k̃ss, and ẑt = z̃t − z̃ss.

VI.1. Solution from the partition perturbation method. For the first-order approxi-

mation, the Gröbner-bases approach delivers four solutions. According to the MSS criterion,

only one of these solutions is stable. We report below the second-order approximation asso-

ciated with the unique stable solution

ĉtk̂t
ẑt

 =

0.0405 0.1264 0.0091 0.000049

0.9692 −2.1406 −0.1552 −0.3720

0.0 0.1 0.0072 0.0184



k̂t−1

ẑt−1

εt
1

+
1

2



−0.0009 −0.0003 0

0.0022 −0.0957 0

0.0002 −0.0069 0

−0.0004 −0.0168 0

0.0022 −0.0957 0

−0.1173 2.3364 −0.0894

0.0006 0.0153 0.0007

0.0008 0.0374 0.0018

0.0002 −0.0069 0

0.0006 0.0153 0.0007

0.0000 0.0011 0.0001

0.0001 0.0027 0.0001

−0.0004 −0.0168 0

0.0008 0.0374 0.0018

0.0001 0.0027 0.0001

−0.0495 0.0557 0.0003



ᵀ



k̂t−1

ẑt−1

εt
1

⊗

k̂t−1

ẑt−1

εt
1






PERTURBATION METHODS FOR MARKOV-SWITCHING DSGE MODELS 20

if st = 1, and

ĉtk̂t
ẑt

 =

0.0405 0.0 0.0268 −0.0968

0.9692 0.0 −0.4649 0.9227

0.0 0.0 0.0217 −0.0410



k̂t−1

ẑt−1

εt
1

+
1

2



−0.0009 −0.0003 0

0 0 0

0.0005 −0.0208 0

−0.0021 0.0405 0

0 0 0

0 0 0

0 0 0

0 0 0

0.0005 −0.0208 0

0 0 0

0.0004 0.0100 0.0005

−0.0012 −0.0193 −0.0009

−0.0021 0.0405 0

0 0 0

−0.0012 −0.0193 −0.0009

−0.0467 0.0869 0.0017



ᵀ



k̂t−1

ẑt−1

εt
1

⊗

k̂t−1

ẑt−1

εt
1




if st = 2. For the dynamics of ĉt and k̂t, one can see that the coefficients of ẑt−1 and εt

are considerably different across regimes. The large difference across regimes also shows up

in the coefficients of k̂t−1 εt, ẑt−1 εt, and ε2
t . These differences are induced by the Markov-

switching volatility parameter σ (st), which has both first-order and second-order effects on

the dynamics of ĉt and k̂t.
6

VI.2. Solution from the naive perturbation method. The naive perturbation method,

according to Corollary 1, does not have the time-varying effects as discussed in the previous

section. In particular, it can be seen from the following second-order solution that the

coefficients of ẑt−1, εt, k̂t−1 ẑt, k̂t−1 εt, ẑ
2
t−1, ẑt−1 εt, and ε2

t are all identical across regimes.

ĉtk̂t
ẑt

 =

0.0374 0.0856 0.0154 0.0335

0.9703 −1.5534 −0.2796 −0.4535

0. 0.0667 0.012 0.0191



k̂t−1

ẑt−1

εt
1

+
1

2



−0.0008 −0.0003 0.

0.0014 −0.0643 0.

0.0002 −0.0116 0.

0.0006 −0.0186 0.

0.0014 −0.0643 0.

0.0038 0.1027 0.

0.0007 0.0185 0.

0.0449 −0.7477 0.0333

0.0002 −0.0116 0.

0.0007 0.0185 0.

0.0001 0.0033 0.

−0.0058 0.1171 −0.0048

0.0006 −0.0186 0.

0.0449 −0.7477 0.0333

−0.0058 0.1171 −0.0048

−0.1203 0.1585 −0.0014



ᵀ



k̂t−1

ẑt−1

εt
1

⊗

k̂t−1

ẑt−1

εt
1




6The time-varying coefficients of the cross terms k̂t−1 ẑt−1, and ẑ2t−1 are related to the Markov-switching

persistence parameter ρ (st).
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if st = 1, and

ĉtk̂t
ẑt

 =

0.0374 0.0856 0.0154 −0.0626

0.9703 −1.5534 −0.2796 0.8996

0. 0.0667 0.012 −0.038



k̂t−1

ẑt−1

εt
1

+
1

2



−0.0008 −0.0003 0.

0.0014 −0.0643 0.

0.0002 −0.0116 0.

−0.001 0.0369 0.

0.0014 −0.0643 0.

0.0038 0.1027 0.

0.0007 0.0185 0.

−0.0897 1.4958 −0.0667

0.0002 −0.0116 0.

0.0007 0.0185 0.

0.0001 0.0033 0.

0.0116 −0.234 0.0096

−0.001 0.0369 0.

−0.0897 1.4958 −0.0667

0.0116 −0.234 0.0096

−0.1248 0.2792 −0.0054



ᵀ



k̂t−1

ẑt−1

εt
1

⊗

k̂t−1

ẑt−1

εt
1




if st = 2.

The only Markov-switching effect is through the coefficient of the perturbation parameter

χ. As a result, the naive perturbation method produces less accurate approximations as

shown in the following section—a result that confirms what we find in Section V.

Table 2. The parameterization for the Markov-switching RBC model

α β υ δ µ (1) µ (2) ρ (1) ρ (2) σ (1) σ (2) p1,1 p2,2

0.33 0.9976 −1 0.025 0.0274 −0.0337 0.1 0.0 0.0072 0.0216 0.75 0.5

VI.3. Assessing approximation errors. Using the parameterization in Table 2, we com-

pare the accuracy of approximated solutions from the two perturbation methods. Our results

confirm that the partition perturbation method is more accurate than the naive perturbation

method, especially for first-order and second-order approximations.

As a basis for comparison, we solve the nonlinear model using value function iterations

(Uhlig, 1999). To accomplish this task we formulate the value function problem for the

Markov-switching stationary RBC model as

V
(
k̃, z̃, ε, s

)
= max

c̃,k̃

{
c̃υ

υ
+ βz̃υEV

(
k̃′, z̃′, ε′, s′

)}
subject to

c̃+ z̃k̃′ = z̃1−αk̃α + (1− δ) k̃ and log z̃′ = (1− ρ(s))µ(s) + ρ(s) log z̃ + σ(s)ε.

Following Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2006), we solve the problem

on a grid of 25600 points for k̃, 51 points for z̃, and 51 points for ε. We use Tauchen

(1986)’s method to discretize the stochastic process and smooth the policy functions using
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the Shape-Preserving Splines described in Judd and Solnick (1994). Since we need to find

two value functions (one for each regime), the computation is very expensive. To solve the

above value function problem within a reasonable amount of time, we rely on the CUDA

(compute unified device architecture) of NVIDIA to build algorithms that utilize graphics

processing units (GPUs). This approach leads to a remarkable improvement in computing

time. Aldrich, Fernández-Villaverde, Gallant, and Rubio-Ramı́rez (2011) document that

utilization of the GPU delivers a speed improvement of about 200 times.

Let gorder
st and horder

st denote the solution from the Taylor series expansion of a particular

order of interest. For our Markov-switching RBC model, the dimension of gorder
st is just one

(i.e., ny = 1) and we consider approximations up to the first three orders. Let hk, order
st be the

kth function of horder
st (there are two functions because nx = 2). The EE evaluated at k̃t−1,

z̃t−1, εt, and st is

EEorder
(
k̃t−1, z̃t−1, εt, st

)
= 1−β

2∑
st+1=1

pst,st+1

∫
R

(gorder
st+1

(
h1,order
st

(
k̃t−1, z̃t−1, εt, 1

)
, z̃t, εt+1, 1

)υ−1

gorder
st

(
k̃t−1, z̃t−1, εt, 1

)υ−1

[
α exp

{
(1− α)h2,order

st

(
h1,order
st

(
k̃t−1, z̃t−1, εt, 1

)
, z̃t, εt+1, 1

)}
h1,order
st

(
k̃t−1, z̃t−1, εt, 1

)α−1

+ 1− δ
])
µ (εt+1) εt+1,

where µ denotes the unconditional probability density. The associated absolute value of the

unconditional EE is

EEEorder =
2∑

st=1

[∫
R

∫
R

∫
R

∣∣∣EEorder
(
k̃t−1, z̃t−1, εt, 1, st

)∣∣∣µ(k̃t−1, z̃t−1, εt

)
dk̃t−1dz̃t−1dεt

]
p̄ (st) ,

where p̄ (st) is the ergodic probability of st.

We use the following procedure to approximate EEEorder for order ∈ {first, second, third}.
We begin by simulating εt from the standard normal distribution and st from the ergodic

distribution. Conditioning on each simulated set {εt, st}, we use horder
st to simulate k̃t and z̃t.

The length of the simulated path is 10,000 periods, with first 1,000 periods discarded as a

burn-in. The remaining 9,000 simulations are used to form the unconditional distribution of

the variables k̃t−1 and z̃t−1. This procedure is justified by Santos and Peralta-Alva (2005).

For each set of k̃t−1, z̃t−1, εt, and st randomly selected from these 9,000 simulations,

we draw 10,000 values of εt+1 from the standard normal distribution and 10,000 values of

st+1 from the transition probability pst,st+1 to compute the expectation that depends on the

functions gorder
st+1

, gorder
st , and horder

st . The result is 9,000 values of EEorder
(
k̃t−1, z̃t−1, εt, st

)
. We

average across these 9,000 values to compute EEEorder. We repeat this procedure for each

order ∈ {first, second, third}, and for both the partition and naive perturbation methods.
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When simulating a path for second-order and third-order approximations, we use the pruning

technique described in Andreasen, Fernandez-Villaverde, and Rubio-Ramirez (2013). We

repeat the same procedure for the value function iteration approach except there is no need

for pruning.

Table 3 reports the base-10 log absolute values of EEs for each solution method.7 Although

the value function iteration method is most accurate as expected, the partition perturbation

method fares remarkably well in comparison. This is an important result because, even with

the advanced CUDA technology, value function iterations take about fifteen minutes to find

an approximation to the model solution (with the steady state as an initial starting point),

while either perturbation method takes only a fraction of a second to find a third-order

approximation.

Table 3. Euler-equation errors (base-10 log absolute value)

Value function iteration -4.54

Partition perturbation

First-order -3.01

Second-order -3.59

Third-order -3.73

Naive perturbation

First-order -2.48

Second–order -3.07

Third-order -3.16

For both perturbation methods, Table 3 indicates that higher-order approximations pro-

duce a higher degree of accuracy. In all cases, increasing the approximation from first order

to second order delivers significant gain without taking much more computational time. The

accuracy gain is much smaller when the approximation moves from second order to third

order. More important is the result that the partition perturbation method is more accurate

than the naive perturbation method for any order of approximation. As argued in Section III

and illuminated in Section V, the partition perturbation method does not take approximation

along the direction of θ2 (st) and thus preserves the time-varying nature of these parameters

even for the first-order approximation. Indeed, the accuracy of the first-order approximation

from the partition perturbation method is almost as good as the accuracy of the second-order

7As a reference, the base-10 log value has this interpretation: the value −4 implies an error of $1 for each

$10,000 of consumption.



PERTURBATION METHODS FOR MARKOV-SWITCHING DSGE MODELS 24

approximation from the naive perturbation method. Because the programming and compu-

tational time is the same for both methods, the partition perturbation method is superior

to the naive perturbation method.

VII. Conclusion

Markov switching has been introduced as an essential ingredient to a large class of models

usable for analyzing structural breaks in the economy and regime shifts in policy, rang-

ing from backward-looking models (Hamilton (1989) and Sims and Zha (2006)) to forward-

looking rational expectations models (Clarida, Gali, and Gertler (2000), Lubik and Schorfheide

(2004), Davig and Leeper (2007), Farmer, Waggoner, and Zha (2009)). This paper expands

the literature by developing a general methodology for constructing high-order approxima-

tions to the solutions of MSDSGE models. Higher-order approximations enable researchers

to study many economic problems, such as how important is uncertainty in both the private

sector and government policies for shaping the business cycle.

While the key developments have been extensively discussed in the introduction, we em-

phasize that the contribution of this paper is not only theoretically lucid but also practically

important. We show through a Markov-switching RBC model that the implementation of

the partition perturbation method is not burdensome but rather straightforward, once one

knows how to solve a system of quadratic polynomial equations efficiently. It is our hope that

the advance made in this paper enables applied researchers to estimate MSDSGE models by

focusing on particular economic problems.
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Appendix A. Proofs of Propositions 1, 2, and 3

Before presenting the proofs of Propositions 1, 2, and 3, we briefly review two forms of

the chain rule in our notation and clarify the notation for the arguments of the function

f . If w : Rnu → Rnw , u : Rnv → Rnu and v ∈ Rnv , the chain rule for the nw × nv total

derivative matrix is Dw ◦u(v) = Dw(u(v))Du(v). This is the form used for the first-order

Taylor series expansion. For second-order and higher-order Taylor series expansions, we use

the following nw × 1 vector form:

D`w ◦ u(v) =
nu∑
m=1

Dmw(u(v))D`u
m(v),

for 1 ≤ ` ≤ nv. We write the function f as f(yt+1,yt,xt,xt−1, ε̃t+1, εt,θt+1,θt). This

notation prevents confusion when making the substitutions ε̃t+1 = χεt+1, θt+1 = θ(st+1, χ),

and θt = θ(st, χ).

A.1. Proof of Proposition 1. Define

vi(zt) =

(eᵀi ⊗ Inx)H(zt)

χεt+1

χ

 and ui,j(zt) =



(eᵀj ⊗ Iny)G(vi(zt))

(eᵀi ⊗ Iny)G(zt)

(eᵀi ⊗ Inx)H(zt)

xt−1

χεt+1

εt

θ(j, χ)

θ(i, χ)


.

With this notation we have

0(ny+nx) = Fi(zt) =
ns∑
j=1

pi,j

∫
Rnε
f(ui,j(zt))dµ(εt+1)

for 1 ≤ i ≤ ns. Thus,

0(ny+nx)×nz = DFi(zt) =
ns∑
j=1

pi,j

∫
Rnε

Df(ui,j(zt))Dui,j(zt)dµ(εt+1), (A1)
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for 1 ≤ i ≤ ns. The nf × nz matrix Dui,j(zt) is computed with implicit differentiation as

Dui,j(zt) =



(eᵀj ⊗ Iny)DG(vi(zt))Dvi(zt)

(eᵀi ⊗ Iny)DG(zt)

(eᵀi ⊗ Inx)DH(zt)
Inx 0nx×nε 0nx×1

0nε×nx 0nε×nε εt+1

0nε×nx Inε 0nε×1

0nθ×nx 0nθ×nε θ(j, 1)− θ(j, 0)

0nθ×nx 0nθ×nε θ(i, 1)− θ(i, 0)




, (A2)

where the nz × nz matrix Dvi(zt) is

Dvi(zt) =

 (eᵀi ⊗ Inx)DH(zt)[
0nε×(nx+nε) εt+1

01×(nx+nε) 1

] . (A3)

Substituting (A2) and (A3) into equation (A1), evaluating at zss, and integrating, one

obtains

0(ny+nx)×nz = DFi(zss) =
ns∑
j=1

pi,jDf(ui,j(zss))

×



(eᵀj ⊗ Iny)
(
Dxt−1G(zss)(e

ᵀ
i ⊗ Inx)DH(zss) + [0nsny×(nx+nε) DχG(zss)]

)
(eᵀi ⊗ Iny)DG(zss)

(eᵀi ⊗ Inx)DH(zss)
Inx 0nx×nε 0nx×1

0nε×nx 0nε×nε 0nε×1

0nε×nx Inε 0nε×1

0nθ×nx 0nθ×nε θ(j, 1)− θ(j, 0)

0nθ×nx 0nθ×nε θ(i, 1)− θ(i, 0)




.

In the above expression we have used the fact that
∫
Rnε εt+1dµ(εt+1) = Etεt+1 = 0nε . Since

there is an explicit expression for f and ui,j(zss), the (ny + nx) × nf matrix Df(ui,j(zss))

also has an explicit representation. The above system can be written as

0(ny+nx)×nx =
ns∑
j=1

pi,j

{
Dxt−1f(ui,j(zss))+

Dyt+1
f(ui,j(zss))(e

ᵀ
j ⊗ Iny)Dxt−1G(zss)(e

ᵀ
i ⊗ Inx)Dxt−1H(zss)+

Dytf(ui,j(zss))(e
ᵀ
i ⊗ Iny)Dxt−1G(zss) +Dxtf(ui,j(zss))(e

ᵀ
i ⊗ Inx)Dxt−1H(zss)

}
, (A4)
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0(ny+nx)×nε =
ns∑
j=1

pi,j

{
Dεtf(ui,j(zss))+

Dyt+1
f(ui,j(zss))(e

ᵀ
j ⊗ Iny)Dxt−1G(zss)(e

ᵀ
i ⊗ Inx)DεtH(zss)+

Dytf(ui,j(zss))(e
ᵀ
i ⊗ Iny)DεtG(zss) +Dxtf(ui,j(zss))(e

ᵀ
i ⊗ Inx)DεtH(zss)

}
, (A5)

and

0(ny+nx)×1 =
ns∑
j=1

pi,j

{
Dθt+1f(ui,j(zss))(θ(j, 1)−θ(j, 0)) +Dθtf(ui,j(zss))(θ(i, 1)−θ(i, 0))

+Dyt+1
f(ui,j(zss))(e

ᵀ
j ⊗ Iny)

(
Dxt−1G(zss)(e

ᵀ
i ⊗ Inx)DχH(zss) +DχG(zss)

)
+Dytf(ui,j(zss))(e

ᵀ
i ⊗ Iny)DχG(zss) +Dxtf(ui,j(zss))(e

ᵀ
i ⊗ Inx)DχH(zss)

}
(A6)

for 1 ≤ i ≤ ns. From these representations, one can see that equation (A4) represents a sys-

tem of ns(ny+nx)nx quadratic polynomial equations in the ns(ny+nx)nx unknown matrices

Dxt−1G(zss) and Dxt−1H(zss). For a solution to the quadratic system (A4), equation (A5)

represents a linear system in the unknown matrices DεtG(zss) and DεtH(zss) and equation

(A6) represents a linear system in the unknown matrices DχG(zss) and DχH(zss). These

results complete the proof of Proposition 1.

A.2. Proof of Proposition 2. The ns(ny+nx)n
2
z unknownsD`2D`1G(zss) andD`2D`1H(zss)

can be found by solving the system of equations

D`2D`2Fi(zss) = 0,

for 1 ≤ i ≤ ns and 1 ≤ `1, `2 ≤ nz. Since

D`1Fi(zt) =
ns∑
j=1

pi,j

∫
Rnε

nf∑
m1=1

Dm1f(ui,j(zt))D`1u
m1
i,j (zt)dµ(εt+1),

we obtain

D`2D`1Fi(zt) =
ns∑
i=1

pi,j

∫
Rnε

nf∑
m1=1

Dm1f(ui,j(zt))D`2D`1u
m1
i,j (zt)dµ(εt+1)

+
ns∑
i=1

pi,j

∫
Rnε

nf∑
m2=1

nf∑
m1=1

Dm2Dm1f(ui,j(zt))D`2u
m2
i,j (zt)D`1u

m1
i,j (zt)dµ(εt+1). (A7)

Each of the terms in the second summation in equation (A7) can either be explicitly com-

puted or are known from the first order expansion. All that remains is to compute the term
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D`2D`1u
m1
i,j (zt), which is the mth

1 component of

D`2D`1ui,j(zt) =


(eᵀj ⊗ Iny)D`2D`1G ◦ vi(zt)

(eᵀi ⊗ Iny)D`2D`1G(zt)

(eᵀi ⊗ Inx)D`2D`1H(zt)

0nx+2nε+2nθ

 . (A8)

The term D`2D`1G ◦ vi(zt) is equal to

(eᵀj⊗Iny)

(
nz∑
k1=1

Dk1G(zt)D`2D`1v
k1
i (zt) +

nz∑
k2=1

nz∑
k1=1

Dk2Dk1G(zt)D`2v
k2
i (zt)D`1v

k1
i (zt)

)
,

where

D`2D`1vi(zt) =

[
(eᵀi ⊗ Inx)D`2D`1H(zt)

0nε+1

]
.

Substituting this into equation (A7) and evaluating at zss, it is easy to see that this will

be linear in the unknowns D`2D`1G(zss) and D`2D`2H(zss). These complete the proof of

Proposition 2.

A.3. Proof of Proposition 3. Proposition 3 follows directly from the more general version

given below. While there is no constant term in equation (A9), this case can easily be

handled by appending a variable x̃t to the vector of predetermined variables xt and adding

an equation of the form x̃t− x̃t−1 = 0. While this introduces an additional unit root into the

system, this will not pose any problems for the solutions techniques discussed in this paper.

Proposition 4. With the partition perturbation method, the first-order solution of

Et [A1(θ(st),θ(st+1))yt+1 +A2(θ(st),θ(st+1))yt +A3(θ(st),θ(st+1))xt

+A4(θ(st),θ(st+1))xt−1 +A5(θ(st),θ(st+1))εt+1 +A6(θ(st),θ(st+1))εt] = 0 (A9)

is exact and all higher-order terms are zero, where A1 and A2 are (ny + nx) × ny, A3 and

A4 are (ny + nx)× nx, and A5 and A6 are (ny + nx)× nε.

Proof. It is easy to see that the steady-state is yss = 0ny and xss = 0nx , which is independent

of all the parameters. This implies that none of the parameters need to be perturbed and the

perturbation function is θ(k, χ) = θ(k). We first show that the first order Taylor expansion

of G and H exactly solves equation (A9) and then show that all terms of order two or

greater in the full Taylor series expansion of G and H are zero.

The first order Taylor expansion, evaluated at χ = 1 is

yt = (est ⊗ Iny)(Dxt−1G(zss)xt−1 +DεtG(zss)εt +DχG(zss)),

xt = (est ⊗ Inx)(Dxt−1H(zss)xt−1 +DεtH(zss)εt +DχH(zss)).
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Substituting this into the left hand side of equation (A9), taking expectations, and gathering

like terms, we obtain

ns∑
j=1

pi,j

{
A4(i, j) +A1(i, j)(eᵀj ⊗ Iny)Dxt−1G(zss)(e

ᵀ
i ⊗ Inx)Dxt−1H(zss)

+A2(i, j)(eᵀi ⊗ Iny)Dxt−1G(zss) +A3(i, j)(eᵀi ⊗ Inx)Dxt−1H(zss)
}
xt−1

+
ns∑
j=1

pi,j

{
A6(i, j) +A1(i, j)(eᵀj ⊗ Iny)Dxt−1G(zss)(e

ᵀ
i ⊗ Inx)DεtH(zss)

+A2(i, j)(eᵀi ⊗ Iny)DεtG(zss) +A3(i, j)(eᵀi ⊗ Inx)DεtH(zss)
}
εt

+
ns∑
j=1

pi,j

{
A1(i, j)(eᵀj ⊗ Iny)

(
DχG(zss) +Dxt−1G(zss)(e

ᵀ
i ⊗ Inx)DχH(zss)

)
+A2(i, j)(eᵀi ⊗ Iny)DχG(zss) +A3(i, j)(eᵀi ⊗ Inx)DχH(zss)

}
,

Where Ak(i, j) is short hand notation for Ak(θ(i),θ(j)). Since equations (A4) through (A6)

must hold, the above is equal to zero. Thus the first order expansion is an exact solution of

(A9).

We now show that all the higher order terms must be zero. Because none of the parameters

are perturbed, one sees that the last 2nθ rows of the expression for Dui,j(zt) given in equation

(A2) are zero. So, if m > 2(ny+nx+nε), then D`u
m
i,j(zt) = 0 for 1 ≤ ` ≤ nz. It is also easy to

see that Dm2Dm1f(ui,j(zt)) = 0 if both m1 and m2 are less than or equal to 2(ny +nx +nε).

Thus, an easy induction argument on q shows that

D`q · · ·D`1Fi(zt) =
ns∑
j=1

pi,j

∫
Rnε

2(ny+nx+nε)∑
m1=1

Dm1f(ui,j(zt))D`q · · ·D`1u
m1
i,j (zt)dµ(εt+1).

Finally, if follows from equation (A8) that

D`q · · ·D`1ui,j(zt) =


(eᵀj ⊗ Iny)D`q · · ·D`1G ◦ vi(zt)

(eᵀi ⊗ Iny)D`q · · ·D`1G(zt)

(eᵀi ⊗ Inx)D`q · · ·D`1H(zt)

0nx+2nε+2nθ

 ,

for q > 1. Since D`q · · ·D`1G◦vi(zt) is linear in D`q · · ·D`1G(zt) and D`q · · ·D`1H(zt) it fol-

lows thatD`q · · ·D`1G(zt) = 0 andD`q · · ·D`1H(zt) = 0 will be a solution ofD`q · · ·D`1Fi(zt) =

0. Thus all the terms of order two or greater in the Taylor series expansion of G and H are

zero. These results complete the proof of Proposition 4.
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Appendix B. Discussion of Gröbner bases

In this appendix we give an overview of Gröbner bases and describe how they can be

applied to our problem. See Becker, Weispfenning, and Kredel (1998) for a more detailed

description and other applications.

We wish to find all the solutions of a system of n polynomial equations in n variables.

Let the polynomial system under study be

f1(x1, . . . , xn) = 0, · · · , fn(x1, . . . , xn) = 0.

Each equation in this system defines a manifold of dimension (n − 1) in Rn and the set of

solutions of the system is the intersection of these manifolds.

When all the fi’s are linear, the solution set consists of a linear subspace of Rn. It is well

known that there are three possible outcomes: a unique solution, no solutions, or infinitely

many solutions. More importantly, the set of linear systems with no solution or infinitely

many solutions is of measure zero in the set of all linear systems. When there is a unique

solution, it can be easily found.

When the fi’s are higher-order polynomials, the solution set is more complicated, but the

intuition from the linear case still holds. For most polynomial systems of n equations in n

variables, there are only finitely many solutions and these solutions can be easily found.

To describe how solutions are computed for polynomial systems, we need to develop

the concept of an ideal and its Gröbner basis. Given a set of polynomials in n variables,

{f1, . . . , fm}, the ideal generated by {f1, . . . , fm} is the set of all polynomials of the form

g1(x1, . . . , xn)f1(x1, . . . , xn) + · · ·+ gm(x1, . . . , xn)fm(x1, . . . , xn)

where g1, . . . , gm vary over all polynomials in n variables. We denote this ideal by 〈f1, . . . , fm〉.
For our purpose we focus on one important feature of an ideal. The point (a1, . . . , an) ∈ Rn

is a zero of the polynomials f1, . . . , fm if and only if it is a zero of every polynomial in the

ideal 〈f1, . . . , fm〉. This feature implies that if two different sets of polynomials generate the

same ideal, then they have the same zeros. The goal is to find a generating set for which it

is easy to compute zeros.

Before giving the definition of a Gröbner basis, we must first define what we mean by

the leading term of a polynomial. A polynomial in x1, . . . , xn is a sum of terms of the form

cxk11 x
k2
2 · · · xknn , where ki is a non-negative integer and c is a non-zero real number. The

product xk11 x
k2
2 · · · xknn is called a monomial in x1 · · · xn. The degree of a term is the sum of

its exponents, k1+· · ·+kn. For polynomials in a single variable, the leading term is defined to

be the one of highest degree. For polynomials of several variables, there may be many terms

of the same degree. Thus, one defines the leading term relative to a monomial ordering. For

instance, the lexicographical ordering of monomials implies that xk11 · · · xknn < xm1
1 · · · xmnn
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if and only if either
∑n

i=1 ki <
∑n

i=1mi or
∑n

i=1 ki =
∑n

i=1 mi and there is an i such that

ki < mi and kj = mj for j < i. In general, a monomial order must satisfy

(1) The monomial x0
1x

0
2 · · · x0

n = 1 is the est monomial.

(2) If X, Y , and Z are monomials with X < Y , then XZ < Y Z.

The leading term of a polynomial is the largest term with respect to the monomial

ordering. With these notions in hand, we are ready to define a Gröbner basis. The set

{h1, . . . , hk} is a Gröbner basis for the ideal 〈f1, . . . , fm〉 if

(1) 〈f1, . . . , fm〉=〈h1, . . . , hk〉
(2) The leading term of any polynomial in 〈f1, . . . , fm〉 is divisible by the leading term

of hi for some i.

Consider the following example. Consider the ideal generated by

{2x1x2 − x1, x2 − x3, x
2
3 − 1}.

Note that the first term of each polynomial is the leading term with respect to the lexico-

graphical order. Is this generating set a Gröbner basis? The answer is negative because the

leading term in 1
2
(2x1x2−x1)−x1(x2−x3) = x1x3− 1

2
x1 is not divisible by any of the leading

terms in the generating set.

As an illustration, we show how to use Buchberger’s Algorithm to construct a Gröbner

basis. There are many other algorithms, most of which are based on Buchberger’s Algorithm,

that can also be used to construct Gröbner bases. The algorithm begins with constructing

S-polynomials. The polynomial 1
2
(2x1x2 − x1) − x1(x2 − x3) = x1x3 − 1

2
x1 is called the

S-polynomial of 2x1x2 − x1 and x2 − x3 because factors 1
2

and x1 were chosen so that the

leading terms would cancel. After the S-polynomial has been formed, it must be reduced

using the elements of the generating set. The reduction step is illustrated by the following

example.

Consider the S-polynomial of 2x1x2−x1 and x2
3−1, which is 1

2
x2

3(2x1x2−x1)−x1x2(x2
3−1) =

x1x2 − 1
2
x1x

2
3. This polynomial is reduced by using the leading terms in the generating set

to eliminate terms in the S-polynomial. In this case the reduction proceeds as follows:

x1x2 −
1

2
x1x

2
3 ⇒ (x1x2 −

1

2
x1x

2
3)− 1

2
(2x1x2 − x1) = −1

2
x1x

2
3 +

1

2
x1

−1

2
x1x

2
3 +

1

2
x1 ⇒ (−1

2
x1x

2
3 +

1

2
x1) +

1

2
x1(x2

3 − 1) = 0

So the reduction of the S-polynomial of 2x1x2 − x1 and x2
3 − 1 gives the zero polynomial.

Readers should convince themselves that the S-polynomial of 2x1x2 − x1 and x2 − x3 given

above cannot be reduced further and that the S-polynomial of x2 − x3 and x2
3 − 1 can be

reduced to zero. Note that the reduction is in general not unique. It can depend on the order

in which the terms are eliminated and on particular elements of the generating set that are
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used to eliminate the terms. One can always devise an algorithm to reduce any polynomial

in finite steps.

Buchberger’s Algorithm proceeds as follows. Successively form the S-polynomials from

pairs of polynomials in the generating set and reduce them. If a reduced non-zero S-

polynomial is obtained, add it to the generating set. Continue until all S-polynomials formed

from pairs of the enlarged generating set can be reduced to zero. This algorithm is guaran-

teed to terminate in a Gröbner basis. See Buchberger (1998) or Becker, Weispfenning, and

Kredel (1998) for details.

Continuing with our example, the reduced S-polynomial of 2x1x2 − x1 and x2 − x3 is

x1x3 − 1
2
x1. We add it to our generating set to obtain

{2x1x2 − x1, x2 − x3, x
2
3 − 1, x1x3 −

1

2
x1}.

As discussed above, the S-polynomials of both the pair 2x1x2 − x1 and x2
3 − 1 and the pair

x2 − x3 and x2
3 − 1 are zero. Note also that the S-polynomial of 2x1x2 − x1 and x1x3 − 1

2
x1

reduces to zero, but the S-polynomial of x2−x3 and x1x3− 1
2
x1 is x1x3(x2−x3)−x2(x1x3−

1
2
x1) = 1

2
x1x2 − x1x

2
3 and reduces to

1

2
x1x2 − x1x

2
3 ⇒ (

1

2
x1x2 − x1x

2
3)− 1

4
(2x1x2 − x1) = −x1x

2
3 +

1

4
x1

−x1x
2
3 +

1

4
x1 ⇒ (−x1x

2
3 +

1

4
x1) + x1(x2

3 − 1) = −3

4
x1.

We add this non-zero polynomial to our generating set to obtain

{2x1x2 − x1, x2 − x3, x
2
3 − 1, 2x1x3 − x1,−

3

4
x1}.

The reader should verify that all S-polynomials of pairs from this generating set will reduce

to zero. Thus we have obtained a Gröbner basis.

Gröbner bases are not unique, because adding any element from the ideal generated by

a Gröbner basis will result in another Gröbner basis. To obtain uniqueness, with respect to

the monomial ordering, we work with a reduced Gröbner basis. A Gröbner basis is said to

be reduced if

(1) The coefficient of the leading term of each polynomial in the basis is one.

(2) Each polynomial in the basis cannot be further reduced with respect to the other

polynomials in the basis.

Any Gröbner basis can be easily transformed to a reduced Gröbner basis by first reducing

each polynomial in the basis with respect to the other polynomials in the basis and then

dividing the resultant leading term by the leading coefficient. For instance, the Gröbner

basis obtained above is not reduced because both 2x1x2− x1 and 2x1x3− x1 can be reduced
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to zero. Thus these polynomials must be eliminated to obtain the reduced Gröbner basis

{x1, x2 − x3, x
2
3 − 1}.

The reduced basis above is called a Shape basis because it is of the form

{x1 − q1(xn), . . . , xn−1 − qn−1(xn), qn(xn)},

where q1, . . . , qn are polynomials in a single variable with the degree of qi strictly less than the

degree of qn for 1 ≤ i ≤ n−1. Shape bases are particularly useful because it is straightforward

to find all the zeros from this representation. One first finds the values of xn that are zeros

of qn(xn) and then substitutes each of these values into q1 through qn−1 to obtain the values

of x1 through xn−1.

Not all reduced Gröbner bases are Shape bases. An alternative form of the Shape lemma,

given below, gives the conditions under which the reduced Gröbner basis is a Shape basis.

The Shape Lemma Let f1, . . . , fn be polynomials in x1, . . . , xn. The reduced Gröbner basis

with respect to the lexicographical ordering of the ideal 〈f1, . . . , fn〉 is a Shape basis if and

only if the following conditions hold.

(1) The system f1, . . . , fn has only finitely many zeros.

(2) If (a1, . . . , an) and (b1, . . . , bn) are two distinct zeros, then an 6= bn.

(3) Each zero is either a simple point or a multiple point of local dimension one.

(4) If a zero is a multiple point, then the tangent line at the zero does not contain the

hyperplane xn = 0.

The meaning of Conditions 1 and 2 is clear, but Conditions 3 and 4 need further explana-

tion. The point (a1, . . . , an) ∈ Rn is a zero of the polynomial system f1, . . . , fn if and only if

〈f1, . . . , fn〉 ⊆ 〈x1 − a1, . . . , xn − an〉. If there exists an i such that

〈f1, . . . , fn〉 ⊆ 〈x1 − a1, . . . , (xi − ai)2, . . . , xn − an〉 ⊂ 〈x1 − a1, . . . , xn − an〉,

then we say the zero is a multiple point ; otherwise, the zero is simple. One can verify that the

zero (a1, . . . , an) is a multiple point if and only if there exists an i such that Difj(a1, . . . , an) =

0 for all 1 ≤ j ≤ n. The tangent space at the zero (a1, . . . , an) is the set of all (x1, . . . , xn) ∈
Rn such that 

D1f1(a1, . . . , an) · · · Dnf1(a1, . . . , an)
...

. . .
...

D1fn(a1, . . . , an) · · · Dnfn(a1, . . . , an)



x1

...

xn

 = 0.

Note that this matrix of partial derivatives is the Jacobian. If the zero is simple, then this

definition of the tangent space corresponds to our usual geometric notion of a tangent space,

but the correspondence breaks down if the zero is a multiple point. The local dimension of
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a zero is the dimension of the tangent space. Note that the local dimension is zero if and

only if the Jacobian is of full rank. Thus, if the Jacobian is of full rank, then the zero will

be simple. The converse, however, is not necessarily true. Finally, if the Jacobian at each

zero is of full rank, then each zero is isolated and there can only be finitely many zeros.

One can easily verify that if the reduced Gröbner basis is a Shape basis, then Conditions

1-4 will hold. The converse is also true, but the verification requires much more work. See

Becker, Marianari, Mora, and Treverso (1993) for details. While the Shape Lemma does not

hold for every set of n polynomials in n unknowns, it is the case that for every such system,

there is a nearby system that will satisfy conditions 1-4.

In summary, for most polynomial systems, there are only finitely many zeros and Buch-

berger’s Algorithm can be used to find them. While Buchberger’s Algorithm is instructive,

it can be inefficient for certain problems. Active research continues to develop variants of

this algorithm that improve efficiency.
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M. Uribe (2011): “Risk Matters: The Real Effects of Volatility Shocks,” American

Economic Review, 101(6), 2530–2561.

Fernández-Villaverde, J., and J. Rubio-Ramirez (2007): “Estimating Macroeco-

nomic Models: A Likelihood Approach,” Review of Economic Studies, 74(4), 1059–1087.

Gomme, P., and P. Klein (Forthcoming): “Second-Order Approximation of Dynamic

Models Without the Use of Tensors,” Journal of Economic Dynamics & Contral.

Hamilton, J. (1989): “A New Approach to the Economic Analysis of Nonstationary Time

Series and the Business Cycle,” Econometrica, 57(2), 357–384.

Holmes, M. H. (2012): Introduction to Perturbation Methods. Springer, second edn.

Judd, K. (1998): Numerical Methods in Economics. MIT Press.

Judd, K., and A. Solnick (1994): “Numerical Dynamic Programming with Shape-

Preserving Splines,” Mimeo.

Klein, P. (2000): “Using the Generalized Schur Form to Solve a Multivariate Linear Ra-

tional Expectations Model,” Journal of Economic Dynamics & Contral, 24, 1405–1423.



PERTURBATION METHODS FOR MARKOV-SWITCHING DSGE MODELS 37

Kubler, F., and K. Schmedders (2010a): “Competitive Equilibria in Semi-Algebraic

Economies,” Journal of Economic Theory, 145(1), 301–330.

(2010b): “Tackling Multiplicity of Equilibria with Gröbner Bases,” Operations
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