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 One of the fundamental challenges in health care markets is lack of information 

about the quality of medical care and technology (Arrow, 1963). Unlike other 

product markets, such as those of electronics and consumer appliances, when new 

health technologies are introduced in the market, minimal information about their 

comparative quality with respect to older technology or products is available to 

consumers, a.k.a. patients and physicians. It is often difficult to predict or anticipate 

such comparative quality information based on product attributes such mechanism 

of drug action, bioavailability or other mechanistic features because of the 

uncertainty in predicting the interaction of the mechanical, pharmacological or 

procedural features of a new medical technology with human biology.  

 Information on medical product quality is usually generated by employing an 

artificial form of ‘learning by doing’ mechanism where a selected group of 

individuals (doers) are allowed to consume alternative medical products (e.g. using 

standard statistical designs, such as randomized assignment of patients to products). 

Wisdom from their experiences is disseminated to other individuals who will face 

the choice of using these medical products in the near future and also to inform 

social policies on access.1 Most public and private stakeholders that are engaged in 

data production on medical quality signals have employed such mechanisms. 

Recently, large boluses of public investments were made in the US, under the 

umbrella term “comparative effectiveness research” (CER) and patient-centered 

outcomes research (PCOR),2 to facilitate production of such data on alternative 

                                                            

1 There are situations where learning from own's doing is popular, aka the 
repeated use of pharmaceutical products in chronic illnesses. 

2 Patient Protection and Affordable Care Act of 2009, H.R. 3590, 111th Congress 
§6301 (2010). 



medical technologies that are currently being used in clinical practice, albeit with 

incomplete knowledge of their comparative qualities.3 

 In this paper, using a simple Roy’s model (1951) of sorting behavior we prove 

that when medical treatments are available to patients under insurance, any data 

production infrastructure for comparative medical quality that relies on voluntary 

participation of subjects (which, unfortunately is and has been the norm for CER 

studies) fails to identify any interpretable treatment effect parameters and therefore 

fails to inform either the individual patient on optimal medical care use or a social 

insurer on optimal medical care insurance coverage.4  

 The implications of this finding is substantial.  Comparative quality information 

influences individual's ex-ante perception of net benefits of treatment and forms the 

basis for the market demand curve (Basu 2011). Accurate estimates of this 

information carry tremendous welfare value as it reduces decision uncertainty for 

individual consumers and help them choose a product that will maximize recovery 

from an illness.  Consequently, it helps align the market demand curve of a product 

with its normative demand curve that is based on true marginal benefits. In contrast, 

when comparative quality information generated by CER-type research is 

incomplete, it has the potential to misguide treatment choices since ex-ante 

perception of benefits do not coincide with the ex-post accrual of the same, and 

result in welfare losses. For example, inefficiencies in the choice of medical 

                                                            
3 Throughout our paper, we assume the CER compares two medical technologies 
that have been approved for use based on meeting the minimum safety 
thresholds as those set by the Food and Drug Administration of the United 
States.  Our discussions do not encompass evaluation of experimental therapies. 
Such discussions are delegated to future work. Also see Philipson (1995). 

4 Note that our assertions about optimality are very general and does not depend 
on specific welfare functions. What we prove is that the structural target 
parameters on which information is required to maximize any welfare function is 
not informed by current data production infrastructure. 



products due to incomplete information can accentuate the inefficiencies due to 

moral hazard stemming from health insurance that separates demand prices from 

supply prices of medical products (Arrow, 1963; Pauly, 1968). Such added 

inefficiencies can translate to higher premiums and less protection against risk in 

both competitive and non-competitive insurance markets. 

 We begin in the next section by laying out the role of perfect and complete 

information on decision making and on outputs from the health care markets. In our 

paper, a social planner is not charged with prescribing treatment to each individual 

but is rather asked to decide on whether to pay for a treatment through insurance. 

Individuals, with their idiosyncratic and, perhaps, evidence-based, beliefs about 

treatment outcomes choose treatments. In Sections 2 and 3 we highlight the current 

data production infrastructure and prove why it would produce incomplete 

information. We study the implications for such incompleteness on decision 

making and welfare.  

 In Section 4, we introduce a new framework for data production that can 

efficiently resolve the biases inherent in the current data production infrastructure 

by using diversification of access to create a conduit for learning about meaningful 

and decision-relevant effect parameters. This work unifies two broad themes in the 

econometric literature, one based on Manski’s work on treatment choice under 

ambiguity (Manski 2000, 2004, 2009) that utilizes the concept of diversification of 

treatment as posited in Manski (2009) and the other based on Heckman, Vytlacil 

and others’ works on estimating heterogeneous treatment effects (Heckman 1997, 

2001; Heckman and Vytlacil 1999, 2001; Heckman et al. 2006). We prove how this 

framework can help overcome inefficiencies in health care markets that stem from 

incomplete information. We discuss many implications of instituting such a data 

production framework such as how it can fix incentives for investment in data 



production for public and private stakeholders in the long-run and its potential to 

fuel global completion in data production for medical quality. 

 

I. The Role of Perfect Quality Information 

 Let us begin with a problem of evaluating the comparative effectiveness of a 

new (approved) treatment compared to a control/standard treatment for a 

population of N patients indexed by i. Standard treatment may also include the do-

nothing option. Let the individual-level true treatment effect represent the benefits 

(net of harms) of the new treatment over the control and is denoted by bi. Let p 

denote the price of the new treatment which is also the marginal cost for 

manufacturing the new treatment.5  

 Patients are members of risk classes Ω, Ω=1,2,..k; k ≤ N, which determine 

heterogeneity in treatment effects across individuals through a production function 

b(), i.e. bi = b(Ω). Risk classes may be defined by the combination of various risk 

factors such as severity of illness, patient demographics, their genetic makeup, 

preferences and many others factors. In order to predict an individual-level 

treatment effect, one requires knowledge about both the patient's risk class Ω and 

the production function b(). CER is responsible for estimating the production 

function. Consider, for example without loss of generality, a production function 

that is expressed as a formulation of splines: 

 ( )ki k ib I k            Eq. 1 

where I() is an indicator function and k is interpreted as the comparative effect of 

the new treatment over the standard treatment in risk class k. Let’s assume that this 

comparative effect is expressed in monetary terms. That is the effectiveness unit is 

                                                            
5 Assume for now that the marginal cost is constant. 



multiplied with the some predefined threshold representing the monetary value of 

the marginal unit of benefit.6  

 A population level average effect parameter is given as 

 Pr( )k kk             Eq. 2 

There are two types of decision makers, 1) the patient-physician dyad, which we 

will refer to as the individual decision maker, is assumed to always have knowledge 

about their risk class; and 2) an insurer or social planner who decides the 

coinsurance rate for providing health insurance coverage for the new treatment.  

 

A. First-Best Scenario 

 Under complete information, both the insurer and the individuals are aware of 

the risk classes and the production function and are able to perfectly predict bi. 

Here, individuals will choose treatment only if bi - p ≥ 0, when they are exposed to 

the full price of treatments. This is efficient, assuming that the generic social 

welfare function we will aim to maximize consumer surplus net of expenditure (i.e. 

a Net-Benefit criterion). If individuals had full insurance they would choose 

treatment if bi ≥ 0. Since the insurer can fully anticipate this individual behavior, 

she can provide full coverage for treatment only for those individuals who would 

experience benefits greater than cost and not provide coverage for the rest. Thus, 

there is no efficiency loss due to moral hazard. The question on economic 

evaluation about providing coverage on the new treatment can be answered in an 

individualized fashion based on individualized comparative effectiveness 

information.  

                                                            
6 Under the welfare economic foundations, this threshold is the inverse marginal 
utility of income (Weinstein and Zechhauser, 1977; Garber and Phelps, 1997; 
Meltzer, 1997).   



 

B. Second-Best Scenario 

 The traditional theory of health insurance recognizes that such a complete 

information scenario is not realistic. Specifically, it assumes that there exist 

asymmetry of information where, even though, individuals are assumed to be aware 

of Ωk and b() and to be able to combine them to predict bi perfectly, the insurer 

cannot as they have either no or only partial information on Ωk (Arrow 1963; Pauly 

and Blavin 2008). Consequently, the insurer cannot exclude patients from coverage 

who would get treatment benefits lower than the cost of treatment (i.e. bi - p < 0). 

This leads to moral hazard (Pauly, 2008) and the insurer may offer coverage with a 

fractional coinsurance rate (r), which is the fraction of price a patient must pay in 

order to receive treatment. When r =1, the new medical product is not covered 

through insurance. 

 We assume individuals choose treatment by maximizing a generic Net-Benefit 

criterion that is based on their perceived benefits from treatment net of the 

demand price they face in acquiring the treatment. We also assume that the social 

insurer’s goal is to maximize consumer surplus as is realized ex post based on 

individual level choices. Therefore, throughout this paper, we will express the 

realized population level benefits under different levels of coverage for the new 

treatment as changes to the total outcomes had all patients taken the standard 

treatment. Under any co-insurance rate r, [0,1],r   this population level benefits, 

H0, is given as 

 0 ( 0) ( )i k k k iH I r p I k          .    Eq. 3 

That is, when individuals have complete information they choose to receive the 

new treatment only if k r p   . The population level benefit is then expressed as 

an aggregation of k across those individuals. Note that under the second-best 



scenario, individuals who would expect to get harmed by treatment (i.e. 0k  ) 

would not select treatment even if it were available to them for free, thereby self-

limiting the magnitude of moral hazard.  

 For a social insurer’s point of view, an optimal co-insurance rate may be 

expressed as a solution to maximizing H0 net of costs and taking into account the 

social value of risk protection provided by the insurance, V2nd(r): 

  *
2arg max ( ) ( 0) ( ) ( )i knd k k i

r
r V r I r p p I k             Eq. 4 

In equilibrium, the welfare loss due to moral hazard due should equate to the social 

value of risk protection (Manning and Marquis, 1996). Consequently, the moral 

hazard (welfare loss) under optimal coinsurance rate in a second-best scenario is 

given as 

   *
* *

2 ( ) ( ) ( ) ( ) ( )
k

p
i knd k k i k kr p

L r I r p p p I k N p


  
 

              , 

           Eq. 5 

which constitutes the welfare loss due to the total number of individuals in each 

risk group (Nk) who would choose treatment given the lower demand price (r·p)  

but ultimately obtain benefits lesser than the price of treatment, i.e. *
kr p p  

. 

 

II. Data Production and Incompleteness in Quality Information 

 Reality, however, deviates from both the first and second best scenarios, 

because both individual and the social decision makers face incomplete 

comparative information. To understand this incompleteness, one must study the 

data production mechanisms in place. We consider and compare the circumstances 

before and after a CER study. We begin by understanding the consequences of 



incomplete information before a CER is conducted and why added investments for 

data productions, such as those provisions by the latest legislations, are called for. 

We then study how the current mechanisms of CER may continue to propagate and 

even enhance the welfare losses due to incomplete information. 

 

A. Pre-CER information and choices 

 Before CER is conducted it is safe to assume that k  is not known with 

certainty both at the individual and the societal level.  However, prior knowledge, 

obtained from evidence (of size n) generated during the process of approving the 

use of this new medical product would determine an individual patient’s anticipated 

belief about the incremental benefits of treatment given one’s own risk class. Let 

this evidence suggest that the average effect of treatment is   that is a random draw 

from Normal( , 2 n ),7 where is the average effect parameter defined in (2) and

 is the heterogeneity and the standard deviation of the effect in the population.  

Let individual beliefs, i , be given as a single draws from the distribution Normal(

 , 2s ) where s is the estimated standard deviation from prior evidence. It is 

assumed that 2s  is a consistent estimator of 2 . The schedule of i  across 

individual patients determines the marginal benefits curve in the population in the 

absence of a CER. Moreover, the social insurer may not have perfect information 

on either k or i . However, she may have information about the average effect, . 

The best a social insurer can do at this point is to calculate the average net monetary 

benefits of treatment, 

                                                            

7 We take a conservative approach is assuming that   and i  are consistent 

estimators of  . To the extent this is not true, the welfare losses described below 
may be higher.  



 p           Eq. 6 

 and recommend coverage if  0p   .8  

Without loss of generality,  

Assumption 1:  Let >0, the true population average treatment effect is positive, 

but k ’s span the whole real line. 

Assumption 2: Let 0p    and full coverage was recommended, i.e. r* = 0.   

Theorem 1: Under Assumptions 1 and 2, PREL (0) > L2nd(r*) for * [0,1]r   if 

0,i i   . The welfare loss under pre-CER information with full insurance 

coverage is strictly larger than the welfare loss under any second-best scenario as 

long as all individuals perceive a positive benefit from treatment. 

 Proof: Under the Pre-CER scenario, the welfare loss is due to two groups of 

people making inefficient choices. The first group consists of people who fail to 

receive treatment because their i<0 but they belong to risk group where the 

treatment produces incremental benefits that are more than the price of the 

treatment (i.e. k p  ). The second group consists of individuals who would 

consume the medical product but obtain a benefit less that its price. Therefore total 

welfare loss is given by: 

 
 

 
, ( 0) ( 0) ( ) ( )

                               + ( 0) ( 0) ( ) ( )

i kPRE CER i k k i

i k i k k i

L I I p p I k

I I p p I k

  

  

          

          
  

  

                                                            
8 This is, in fact, the standard method used in most cost-effectiveness modeling 
studies that try to evaluate the cost-effectiveness of a new approved treatment for 
which there is no head-to-head comparison with its alternatives. 
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where (.) is a cumulative normal distribution. Note that the second expression in 

(7) would include all individuals who would obtain negative benefit from 

consuming the medical product (i.e. 0k  ) but are led to believe that they would 

get a positive benefit ( 0i  ) due to incompleteness in information. Comparing 

(7) to (5),  
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 The first and the third terms in (8) are the incremental losses due to incomplete 

information pre-CER. The first term is the same as in (7) and comprises of 

individuals who fail to take treatment but would benefit more than its price. The 

loss represented in the third term emanate from risk groups where 0k   and a 

fraction of individuals in these risk groups take treatment based on their perceived 

benefits, which was not the case under the second-best scenario.  

 The second term in (8) is a pervasive benefit of incomplete information 

compared to the second-best scenario (expressed as negative loss). The benefit 

emanate from risk groups where 0 k p   and a fraction of individuals in these 

risk groups forgo treatment based on their perceived benefits (i.e. their 0i  ), 

which was not the case under the second-best scenario, thereby generating welfare 

gains. 



 Under assumptions 1 and 2, if one assumes that 0,i i   , that is every 

individual perceives a positive benefit from treatment, Theorem 1 is proved from 

(8) as the second term drops out and PREL (0) > L2nd(0). Thus, naturally, VPRE(0) > 

V2nd(r*) for * [0,1]r  .    ■  

B. An ideal role for CER 

 Often an ideal CER is construed as one having larger sample size. In fact much 

of the value of information literature in medicine has focused estimating the 

marginal value of a trial with additional patients enrolled (see literature on the 

Expected Value of Sample Information, EVSI).   However, it is not clear whether, 

in the presence of heterogeneity, such an approach to CER, is welfare enhancing. 

For example, as n   , 
p  , 2 2

ps  . Consequently, the welfare loss 

post CER of infinite sample will be: 

  
 


 

 

    
              

   
, ( ) 1 ( ) ( ) ( ) ( )

k k

p
pPOST CER n k k k kL N p N p ,     

         Eq. 9 

Note that if ( )



  < 

2( )
s


 , a CER of infinite size will decrease the magnitude of 

loss in the second term but increase the magnitude of loss in the first term as 

compared to LPRE and vice versa. Therefore, the value of such a CER study is 

indeterminate.  

 An ideal role for CER would be when, even though the social insurer continue 

to believe in the average effect , it can enable individual belief, i  to be a draw 

from the distribution Normal( 2,k k  ) where 2
k  is variance for risk-group-specific 



effects.9  If coverage is recommended based on the criteria in (6), welfare losses 

under post ideal-CER scenario will be a modification of (7) to 

* 1 ( ) ( ) ( ) ( )
k k

pK K
p k k k kPOST

k k

L N p N p 
  
 


 

   
              

   
 Eq. 10  

Since, ( )K

k




 > ( )
s


  for K > p as by construction K >  for all K >p and 

( )K

k




 < ( )
s


  for K ≤ p as by construction K <  for all K ≤p,10 

*
*( ) ( )  [0,1]PREPOST

L r L r r   . This unambiguous dominance of an ideal CER over 

pre-CER scenario arises because individuals are able to better self-select their 

optimal treatment based on the risk group specific knowledge generated from an 

ideal CER. In fact, as 0k  , ( ) 1k

k




   for 0k  and ( ) 0k

k




   for 0.k   

Consequently, LPOST
*(r) L2nd(r). Therefore, one can potentially approach a 

second-best scenario under any level of insurance coverage if new CER studies are 

able to generate information that can enable individuals to better self-select 

treatments based on their risk classes, even if the social insurer is unaware of these 

heterogeneous effects. The growing awareness of the potential value of such has 

led to considerable federal investment in CER. New legislation has also identified 

the need to risk stratify comparative effectiveness. 

 However, the current data production infrastructure for CER may not be aligned 

with the goals of such legislation. The gold standard of data production in medical 

care involves controlled experiments, where alternative treatments under 

investigation are allocated to a selected group of patients by a chance mechanism. 

                                                            
9 In practice, even in the absence of CER such a situation may arise, when individuals learn by 
repeated consumption of therapy (e.g. pharmaceuticals) or physicians are able to anticipate 
effect heterogeneity based on  baseline risks. 
10 Assuming σk = s for all k. 



We will refer to such a mechanism as a randomized clinical trial (RCT) henceforth. 

We consider two issues within this data generating infrastructure that contributes 

towards the inability of current CER infrastructure to resolve incompleteness in 

information: selection in RCT enrollment and target parameters for RCTs. 

 

C. Non-ideal design and implementation of CER studies – understanding 

selection into randomized trials 

 Unlike evaluation of experimental therapy where enrollments may be more 

likely driven by altruistic motives, CER and economic evaluation is about approved 

and existing therapies available to patients. Therefore, there must be a strong 

implicit selection process for patients who provide consent to enroll in a CER RCT,  

in which they have a non-trivial probabilistic expectation of receiving a treatment 

(most likely the new treatment) that they have some difficulty in accessing outside 

of the RCT. Such difficulties must be because the cost of accessing the new 

treatments outside RCT must be high either due to differential insurance coverage 

of the treatments or due to strong physician preferences for one therapy over other. 

Consequently, this selection process implies that the anticipated expected 

incremental benefits for patients who enroll in a CER RCT must be less than the 

cost of acquiring the treatment outside of RCT.11  Otherwise they would have taken 

the treatment without enrolling in an RCT. In other words, patients who anticipate 

large incremental benefits or incremental harms from new treatment compared to 

standard care are less likely to enroll in RCTs.  

 This brings to question whether the anticipated benefits of treatment ( i ) are 

related in any form to the true benefits of treatment bi, even in the absence of formal 

                                                            
11 Often enrollees are paid a monetary sum to compensate for their time spent 
participating in the RCTs. 



CER. Obviously, if i  = bi, then the value of any additional CER becomes zero as 

each patient already know their true benefits. On the other hand, the value of CER 

is maximized when i╨bi, where ╨ denotes statistical independence. In practice, 

however, it is not uncommon to find some dependency between iand bi. Such 

dependencies may arise from biological knowledge about the treatment’s 

mechanism of actions, past experiences by physicians on using similar treatments 

on certain patient risk-groups and by patient’s own learning by doing mechanism 

in a chronic disease setting. Under such dependencies, effect of selection into RCT 

becomes non-trivial. Specifically, we show 

Theorem 2: A CER randomized trial produces an unbiased estimate of the 

population average treatment effect  (in Eq. 2) if and only if i╨bi. If Corr( i , 

bi,)> 0, RCTs will typically find small positive benefits of treatment. 

 Proof: We formalize selection into a CER RCT following Roy’s model (1951) 

of self-selection using the following notation 

*( 0)i iS I U  ,         Eq. 11 

where S is an indicator for enrolling in an RCT that is driven by the latent utility U* 

for enrolling. Again, without loss of generality, Ui
* is interpreted as the anticipated 

incremental net benefits (net of costs) of enrolling versus not enrolling in an RCT 

for individual i given that the individual anticipates a positive benefit from 

treatment (i.e. 0i  )12 

 * ( ) ( ) ( ) (1 ) ,i R i RCT i OUT OUT RCT R iU C C C C                 if 0i   

           Eq. 12 

                                                            
12 If individual anticipates a negative benefit from treatment he would not consider enrolling in 
the first place. 



where CRCT and COUT are the costs of accessing the treatment within and outside an 

RCT respectively; R  is the known random probability of receiving the new 

treatment within the CER RCT. 

 In the presence of uncertainty, the population probability of an RCT enrollment 

is given by 

*Pr( ) ( 0) Pr(0 ( )/(1 ))i i i OUT RCT RS E U C C            Eq. 13 

Therefore, only patients with anticipated benefits are positive and less than the 

expected incremental cost of accessing treatment outside RCT would enroll. 

Interestingly, when OUT RCTC C , enrollment in CER can be quite difficult. 

Similarly, as R decreases, it reduces the cost differential between accessing the 

new treatment outside and within the RCT, thereby lowering the probability of RCT 

enrollment. These factors severely limit the generalizability of results from CER 

RCTs. For example, in one of the few surveys ever conducted to understand the 

factors that determine RCT enrollment, it was found that only 2.7% of eligible 

patients enrolled in clinical oncology trials (Movsas et al. 2007). 

 Target Parameters for RCT The target for most RCTs, if not all, is to estimate 

an average effect of treatment compared to the control among the RCT enrollees.  

However, keeping aside the challenges of implementing a protocol driven agenda, 

such an average effect is a weighted average of risk-class-specific effects where the 

weights are arbitrarily defined based on the risk class-specific propensity to enroll 

in the RCT. Therefore, the target parameter for RCT is given by: 

kRCT k kw   
       

Eq. 14 

where the weights    Pr( ) / Pr( )kk k kw k k        and 

Pr(0 ( )/(1 )| )k i OUT RCT R iC C k         . The degree of selection in the 

trial determines the target parameter of an RCT.  



When i╨bi, F( i | i k  ) = F( i ) k , where F() is the cumulative distribution 

function. This implies, k = , k    Pr( ),kw k k     RCT =  (according 

to Eq (2)). On the contrary, RCT   if i ╨ bi,  since the weights would vary 

depending on which risk classes are more likely to enroll in the RCT. 

In fact, ( , ) 0i iCorr b     ( , ) 0k kCorr w   for 0i   and ( , ) 0k kCorr w   for 

0i  . Individuals who correctly anticipate large positive or negative benefits 

from treatment are less likely to enroll in RCTs. In fact, Eq (13) suggest that the 

margin of individual who enroll in RCT anticipates a moderated positive 

magnitude of benefits from treatment. Given that Corr( i , bi,)≥ 0, it implies that 

RCT results would typically find small positive benefits of a newer treatment and 

the generalizability of these results to the whole target population remains 

severely compromised.13 ■ 

 Consequently, in the presence of any anticipatory knowledge about true 

treatment effects, the average effect from an RCT is not a consistent estimator for 

either population average effect or the average effect of any segment of the 

population: ˆ( )RCTE     and ˆ( )RCT kE    k . Next, we study how such results 

can mislead individual level decision making and create inefficiencies both 

through population-level coverage decisions and individual treatment selections.  

Assumption 3: In what follows, we will assume Corr( i , bi,)> 0 even in the 

absence of a formal CER. 

 

                                                            
13 It is possible that under an ideal symmetric condition, the weights are such that equivalent 
portions of the risk‐groups with large positive effects and those with large negative effects select 
out of enrolling and the average effect among the enrollees still reflects the population average. 
However, such a scenario is highly unlikely. 



D. Implications of incompleteness for decision making 

Theorem 3: (a) Under Assumption 3, CER RCT may misguide a social planner to 

provide coverage on treatments with negative average net health benefits and to 

withhold coverage on treatments with positive average net health benefits.  

    (b) Under Assumptions 3, POSTL (0) > = < LPRE(0).  The welfare loss 

under post-CER information can be larger than that under pre-CER scenario with 

full insurance coverage. 

 Proof: (a) Based on CER RCT results, the social planner updates her belief 

over the average effect of the new treatment using a Bayesian updating rule (Basu 

et al. 2011): 

ˆ(1 ) )RCT               Eq. 15 

where the weight θ is determined by a weighted average of prior uncertainty 2 and 

the sampling variance of ˆ
RCT , and calculates the average net monetary benefits of 

treatment to be p  . Under Assumption 3, Theorem 2 proves that ˆ( ) 0RCTE  

but ˆ( )   RCTE      . Therefore, since ( )E    , E( p  ) < E(( )p  )  if 

ˆ( )RCTE     and E( p  ) > E( ( )p  )  if ˆ( )RCTE    .  

 This implies that CER RCT may misguide a social planner to provide coverage 

on treatments with negative average net health benefits and to withhold coverage 

on treatments with positive average net health benefits. This also highlights the fact 

that economic evaluations based on CER studies can be misleading. ■  

   (b) Individual beliefs, i , about comparative effects following 

the CER RCT using a similar Bayesian updating rule (Basu et al. 2011): 

 ˆ(1 ) )i i i i RCT                 Eq. 16 



where the weights θi are determined by a weighted average of prior uncertainty 2s

and the sampling variance of ˆ
RCT . It is important to note that even though original 

beliefs may have been consistent, i.e., ( )i iE b  , after CER, ( )i iE b  . Most 

importantly, i i   0iif   , under Assumption 3, since ˆ( ) 0RCTE   . That is, 

some patients who would have had originally anticipated a negative effect from 

treatment, may be rightfully so, are now led to believe in a larger, presumably, 

positive effect from treatment. Similarly, patients who would have, rightfully 

anticipated large benefits from treatment, would have their updated anticipation 

moderated by the small effect size estimated in the RCTs.  Thus the average result 

from a CER study that is based on voluntary participation actually misleads 

individuals about their own comparative effectiveness. The welfare loss with the 

post CER information is given by: 
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where      ( ) ( | )k i i iE k  and     2( ) ( | )k i i is Var k .  Since ( )
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for any k, it proves that welfare loss under post-CER information can be larger than 

that under pre-CER scenario with full insurance coverage. Only when 
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for αk ≥ p and
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 for αk < p, the CER infrastructure is welfare enhancing 

(LPOST, CER  < LPRE,CER). 

 

 



III. Learning through Diversification (LtD): A New Framework for Data 

Production 

 As we have shown in the previous sections, current CER framework that relies 

on voluntary participation fails to consistently inform either the population-level or 

individual-level comparative effect parameters and cannot potentially lead us 

towards the second–best solutions (in fact, it may lower welfare through evidence-

based misguidance).   

 Manski (2009) proposed that one way a social decision maker can maximize 

welfare is through fractional allocations, where a random fraction of the patient 

population received one treatment while the other receives the alternative. Manski 

argues that, given the ambiguity of evidence on counterfactual outcomes, such an 

allocation would maximize a broad set of utilitarian welfare function for the social 

decision maker. Manski (2009) also points out that such an allocation automatically 

creates randomized experiments, which are particularly important for learning 

treatment responses. The current proposal builds on this idea of “diversified 

treatment” proposed by Manski (2009). However, our proposal takes into account 

two realities in the context of health care.  

 First is that it is almost impossible, at least in the United States, to completely 

restrict “receipt” of a treatment that has crossed the regulatory and evidentiary 

hurdles and has been approved on the basis of safety and efficacy. Therefore 

diversification of treatment allocation in terms of “receipt”, which is essential to 

answer CER and PCOR type question, is usually not possible.  

 Second, the social decision maker in the context of health care is typically 

involved on deciding on insurance coverage of medical treatment, while individual 

subjects are typically left to decide on the choice of treatment given insurance 

coverage. Therefore, a social decision maker’s problem can be viewed to be a two-

step process (Deheja 2005). Under any information set, first physician decides 



whether to prescribe treatment for each individual. Second, given this allocation, 

the social decision maker decides on the level of coverage for treatment. To the 

extent that one can combine the ideas of diversified treatment for the purpose of 

learning to that of the two-step process of social decision making on optimal 

coverage, one can improve the decision making for both the individual patients and 

the social decision maker. This is what the “Learning through Diversification” 

(LtD) infrastructure seeks to accomplish and potentially mimic the ideal CER 

designs discussed in Section II-B.  

 

Figure 1: The Learning through diversification (LtD) infrastructure. 

 The idea behind this new data production infrastructure for CER in illustrated 

in Figure 1 and can be expressed in the following bullet points: 

1. Fractional Coverage can be achieved using a technology lottery, Đ: For 

each new product, develop a random order based on birth dates so that this 

new product with uncertain effectiveness profile will be paid at varying 

levels by insurance in the first year. That is, such coverage creates a 
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completely stochastic distribution of co-insurance rates in the population, 

F(bi | Đ) = F(bi). Note that the lottery is done anew for each new technology 

so that the probability that any one person would be denied coverage for all 

new technologies will approach zero with increasing number of 

technologies. Thus, the initial decision by a social insurer follows the idea 

proposed by Manski (2009) to make fractional treatment allocation. 

However, instead a binary assignment of access, we use a continuously 

varying cost of access, which will be important for assessing treatment 

effect heterogeneity (as shown below).  

2. Outcomes Evaluation: Using the randomization inherent in the lottery, 

evaluating patient outcomes across different levels of coinsurance rates will 

directly answer the economic evaluation questions on expanding coverage 

for the target population. Additionally, the lottery would serve as a perfect 

instrumental variable to study the comparative effectiveness of receiving 

the new product versus its competitor and the heterogeneity in these effects 

in the population. To the extent such analyses can discover nuanced 

subgroups with higher than average benefits, subgroup-specific economic 

evaluations can be conducted to examine whether full coverage is warranted 

in these sub population. Obtaining precise information on comparative 

effectiveness within specific subgroups can itself drive demand to be 

selective in a positive way. 

3. Sequential Decision Making: Based on the outcome evaluation results, 

fractional allocation rules can be adapted over time for specific risk groups. 

For example, among risk groups where estimated ˆk  is expected to be 

positive above a certain evidentiary threshold may receive full payments for 

the treatment under the insurance and vice versa. Fractional allocation 

would continue within risk groups where ambiguity persists. 



 

A. Key Features of the Learning through Diversification Infrastructure 

Coinsurance (demand price) as an instrument 

 The outcomes evaluation part of the LtD framework employs the lottery as an 

instrumental variable (IV) to study comparative effectiveness of the new 

technology compared to controls and also explore treatment effect heterogeneity 

(Heckman 1996; Heckman 1999, 2001; Heckman and Vytlacil, 1999; Heckman et 

al., 2006, Basu 2012). A good instrumental variable must be orthogonal to the 

confounders (i.e. they are not contaminated) and is a strong predictor of treatment 

receipt. Traditional IV analyses focus around the debate on whether a chosen 

instrument is contaminated, given that the strength of the instrument is testable. In 

the LtD framework, the lottery, by design, is orthogonal to all confounders and 

therefore side-steps the typical debates in this literature. What is more interesting 

is that the strength of the instrument is driven by variation in out-of-pocket 

payments by patients that in turn will depend on the market price of the new 

technology and the price elasticity of demand. Although this is a testable feature of 

analyses, two issues are worth pointing out. First, the LtD infrastructure would be 

most efficient in data production for CER for new technologies that come at a high 

price tag, which aligns with the notion that most welfare can be generated if we can 

properly identify people would and would not benefit from the most expensive 

technologies. Second, the response of manufacturers of expensive technologies to 

artificially reduce price in order to undermine the LtD infrastructure may act against 

their bottom-line as they would send a wrong signal about the quality of their 

product and also delay production of evidence that would enable them to demand a 

higher price from payers.    

 



The target parameters in the LtD infrastructure 

 The LtD infrastructure can be used to generate consistent estimates of both k

and  by following the theory and methods of local instrumental variable 

approaches (Heckman and Vytlacil 1999, 2001; Heckman et al. 2006, Basu 2014).14  

In summary, the probability of treatment choice given the lottery can be represented 

by p(Đ,  ) and estimated from data at hand. For any outcome, Y, under regular IV 

assumptions, the marginal treatment effects (Heckman and Vytlacil 1999) are 

identified by  
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,     Eq. 18  

where Y = D*Y1 + (1 - D)*Y0 is the observed outcome and V~Uniform[0,1] by 

construction. 

 MTE is perhaps the most nuanced estimable effect. It identifies an effect for 

an individual who is at the margin of choice such that one’s levels of   and Đ are 

just balanced by one’s level of unobserved factors V, i.e.  ( , )P Đ V .  Basu 

(2014) extends the LIV methods to identify Person-centered treatment (PeT) 

effects, which, for persons who choose treatment, follow  

   | , ( ), 1 0( | , ( ), 1)V P Đ DE E Y Y P Đ D   

=   1 0( | , ( ))E Y Y V P Đ  = 
 

( )1
0( ) ( , )P ĐP Đ MTE v dv     Eq. 19  

 Similarly, conditional effect for a person who did not choose treatment is 

obtained by integrating MTEs over values of V greater than p. Mean treatment 

                                                            
14 Note that it is important to pay close attention to dealing with essential heterogeneity within 
the LtD infrastructure. This is because treatment receipt will be correlated with factors such as 
income (because of the price differentials that the lottery creates), which in turn  may be 
correlated with gains and losses from the new treatment. 



effect parameters, αk (Eq. 1) or (Eq. 2) are readily obtained by average PeT 

effects over respective subgroups (Basu 2014). Thus the LtD structure can be 

used to recover consistent estimates of the decision relevant parameters.  

Welfare effects 

 Let’s take a two period model in which the first period is the Pre-CER period 

during which a CER study is being conducted. As the end of the first period the 

CER study results are disseminated and therefore the second period represents the 

post-CER world. Therefore, under assumptions 1, 2 and 3, total welfare loss over 

the two periods in a CER-based data production world is given as:  

LCER = LPRE,CER  + LPOST,CER        Eq. 20 

where LPRE,CER  and LPOST,CER are given in Eq(7) and Eq(17) respectively.  

Under the LtD framework of data production, welfare losses in both periods will 

be different. Let the total welfare loss over the two periods in a LtD-based data 

production world is given as: 

LLtD = LPRE,LtD  + LPOST,LtD   

Since the LtD infrastructure allows for consistent estimation of the mean treatment 

effect parameters, in the second period, subjective beliefs about the benefits of 

treatment will align with the true values for subjects in each risk groups,  ˆ( )k kE

.  Moreover, given that these estimates were generated using data at the population 

scale, 
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Therefore, an LtD infrastructure will always be welfare enhancing compared to the 

CER infrastructure as long as: 

 LLtD – LCER   = (LPRE,LtD  + LPOST,LtD  )  - (LPRE,CER  + LPOST,CER) <0 

    (LPRE,LtD )  < (LPRE,CER  + LPOST,CER) 

 That is fractional allocation should be designed in a way that the loss during the 

initial data generation process is not greater than the combined losses under the 

CER infrastructure both during and after the data generation process.  For the most 

power for analyses and consistency within the LtD infrastructure, it may be useful 

to set the mean coinsurance rate to be 0.5. The welfare losses, if any, during the 

data production period (that may can one or few years) can be easily recuperated 

from the welfare gains from LtD in the post data production period that typically 

lasts for many years. 

 

Requirements of insurance system for implementation of the LtD 

infrastructure 

 It is natural for the LtD infrastructure to thrive within nationalized health care 

systems and integrated health care delivery systems to prevent attrition of patients. 

However, even in a competitive health insurance market an LtD infrastructure can 

be implemented when a central body helps generate the lotteries and all the private 

and public payers offer coverage following the lottery. In fact, no one payer would 

find it to be in their interest to break away from this commitment as otherwise it 

would invite adverse selection into their plan due to the providing generous 

coverage of new technologies. 

 

 



A new era for outcomes research 

 The power of the LtD infrastructure not only allows the study of one CER 

question by a central body. It opens up a new era of outcomes research for all 

applied researchers. Any prospective or retrospective observational study 

evaluating a new technology in terms of either safety or effectiveness or both using 

novel patient-centered outcomes would benefit from the power of the lottery to 

generate variations that would enable them to make causal inferences (Heckman 

1996). The LtD infrastructure can have the sufficient sample size to test 

heterogeneous treatment effects across nuanced subgroups, which is impossible 

within a traditional trial framework.  Moreover, with the growth of people with 

multiple comorbid diseases, the LtD infrastructure can provide precise answers to 

how different treatments interact with each other and how to create the optimal 

bundle of treatment strategies in order to treat complex patients. Thus the LtD 

infrastructure has the potential to impact almost all fields of study in social sciences, 

public health and medicine, and help in the formulation of payment reforms that 

are based on episodes of care. 

 

The expanded role of Health IT 

 Naturally, strong synergies exist between the LtD infrastructure and the Health 

IT systems that are designed to capture detailed data. Large national electronic 

databases are already being assembled in the context of CER. However, serious 

challenges remains as to how to detect signals from such databases based on which 

patient care can be changes. A fundamental problem is the identification of causal 

effects from such data. The LtD infrastructure can naturally lend tremendous 

identification properties for all types of evaluative questions. 

 



 

IV. CONCLUSIONS 

 New medical treatment often gets approved based on its potential safety 

profile and its incremental efficacy compared to either placebo or a basic control 

treatment. Often superiority of the new treatment is not established and its 

comparative effectiveness compared to current clinical practice remains 

ambiguous.  Nevertheless, the treatment is introduced for consumption at a 

substantial price in anticipation of a positive effectiveness claims based on 

efficacy results. Variability in effectiveness profile remains far from known. 

Under such ambiguity, a social insurer faces the challenge of deciding whether to 

pay for the treatment. In the US, public health insurance provider like the 

Medicare usually extend full coverage of these new treatments as long as there is 

positive efficacy signals. In UK and other countries, that formally look at the 

budget impact of coverage by comparing the costs of treatments (inclusive of its 

price) to the projected effectiveness based on efficacy signals. When coverage is 

allowed, a large welfare loss may ensue even when the new treatment can 

genuinely produce higher effectiveness in a certain margin of the population. This 

is due to the lack of evidence of how to match patients to alternative treatments. 

 In this paper, I show that under the status quo policy of extending coverage to 

a new treatment in the absence on complete information on its effectiveness 

profile, welfare loss can be substantial. These losses can be minimized by 

investments in studies that aims at generating such evidence. However, I also 

show, following a Roy’s model of sorting behavior, that the current infrastructure 

on data production for this purpose, suffer for severe self-selection issues since 

the incentives to enroll in research studies is eroded by the low demand prices of 

obtaining medical care outside these studies. Consequently, the parameters 

identified from these studies do not inform any of the decision-relevant 



parameters, either at the individual or the population level. I show that if one takes 

the normative approach of social insurer who is forward looking and wants to 

maximize any given social welfare function over a duration of time period 

(typically over the longevity of the new technology being considered), then it 

makes sense for the social insurer, irrespective of what coverage decision is made 

today, to device ways to learn about variations in incremental effectiveness of 

treatment in the population so that she can encourage/discourage appropriate 

subgroups to uptake/discard the new treatment. In fact, generation of such public 

evidence can directly inform individuals within the population to use this new 

treatment appropriately without additional effort by the social insurer, thereby 

approaching the second-best solutions. Based on this normative framework, I 

propose a positive Learning through Diversification (LtD) infrastructure, through 

which a social insurer can achieve her objectives. 

 The LtD infrastructure comprises of introducing the new treatment with 

fractional coverage based random individual-level co-insurance rates. One then 

uses these co-insurance rates as an artificially created but an almost perfect 

instrumental variable to study treatment effect heterogeneity based on a spectrum 

of econometric tools available to researchers. Both clinical guidelines and 

coverage decisions can then be sequentially revised to reflect this evidence. I 

show that under very non-stringent conditions, the LtD infrastructure will be 

welfare enhancing compared to the current data production infrastructure, such as 

CER. 

 One aspect of the LtD infrastructure that would appear to be politically 

challenging is the notion of fractional coverage, albeit it is for a short time during 

the introduction of the new treatment. Although a full legal and ethical 

consideration of such random allocation is beyond the scope of this paper, an 

important note to point out is that unlike earlier discussion in this line of 



reasoning that revolved around quasi-random treatment prescription (Manski 

2008), the LtD infrastructure does not withhold treatment from anyone but rather 

changes the cost of accessing it in a random fashion. The potential for patient 

welfare and the richness of scientific and policy question that this infrastructure 

can answer should play a part in deciding its ultimate feasibility.  
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