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1 Introduction

Empirical analyses in economics and other disciplines rely heavily on regressions of count

data, such as patents, citations, publications, and counts of accidents or unemployed workers.

Along with the negative binomial estimator, the Poisson Conditional Fixed Effects Maximum

Likelihood Estimator (PCFE) has become the standard approach to analyze count data. A

key advantage is that the PCFE is robust to misspecifications of the underlying distribution

as long as the conditional mean is correctly specified (Wooldridge (1999), and Gourieroux,

Monfort and Trognon (1984)). For example, the PCFE is robust even if the variance of the

distribution is different from the mean (violating the assumption of equidispersion), or if the

data includes an excessive number of zeros. Another key benefit is that the PCFE is robust

to dependence over time. For example, counts of patents or unemployed workers may be

correlated over time and the PCFE is robust to such correlation.

Count data can, however, also be affected by cross-sectional dependence. For example,

Jaffe, Trajtenberg and Henderson (1993) show that knowledge spillovers are geographically

localized. Patent data analyzed by Hall, Griliches and Hausman (1986) show evidence of

spatial dependence. Figure 1 depicts patterns of spatial dependence for patents by firms

with more than 100 patents per year. These firms may benefit from localized knowledge

spillovers (as described by Jaffe, Trajtenberg and Henderson (1993)) or from shared access

to human capital and other inputs to invention (Marshall (1890)).

Counts of patents, publications, and other measures for innovation may also be corre-

lated in idea space - in addition to geographic space - if knowledge spillovers and scientific

breakthroughs encourage innovation across related fields. This type of spatial dependence

in idea space is likely to affect a growing literature (e.g. Azoulay, Zivin and Wang (2010),

Furman and Stern (2011), Moser and Voena (2012), Borjas and Doran (2012), Williams

(2013), Kogan, Papanikolaou, Seru and Stoffman (2012), and Moser, Voena and Waldinger

(2014)).
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This paper investigates whether whether spatial dependence (or correlation in the cross-

section) threatens statistical inference from Poisson estimates of count data. To account

for spatial dependence, we specify the likelihood scores of the PCFE as moment conditions

in Conley (1999)’s spatial estimation framework. We find that the PCFE is consistent

and asymptotically normal. The asymptotic variance of the PCFE is generally different

from the variance that assumes spatial independence. To address this issue, we present a

consistent spatial variance estimator for the case of spatial dependence. In comparison with

clustering as a standard approach to address cross-sectional dependence, the spatial variance

estimator is more general than clustering because it allows for dependence between any pair

of individuals while clustering only allows for dependence within groups.1

Figure 1: Patents per Firm Conditional on Patents by Neighboring Firms
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(A) Sum of neighboring patents is   
between 0 and 30 (0-25th percentile)
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(B) Sum of neighboring patents is 
between 30 and 190 (25-50th percentile)

200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

(C) Sum of neighboring patents is       
between 190 and 639 (50-75th percentile)
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(D) Sum of neighboring patents is         
between 639 and 4198 (75-100th percentile)

Notes: Firm A is defined to be a neighbor of firm B if its distance in terms of latitude and longitude is less
or equal to the 10th quantile of distances in the sample; results are robust to using the 25th or 50th quantile
as a cutoff to define neighbors. Dots plot the unconditional distribution of patents per year by firms with
more than 100 patents per year. Bars plot the distribution of patents per year for firms whose neighbors
produce few patents (sum of neighboring patents is between 0 and the 25th quantile, Panel A), medium level
of patents (25-50th and 50-75th quantiles, Panels B and C) and many patents (75-100th quantile, Panel D).

1 For a discussion of clustering see Cameron and Trivedi (2005), section 24.5.6, or STATA 13 User’s

Guide, section 20.21.2.
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Allowing for spatial dependence changes the variance of the PCFE if covariances of the

likelihood score function between observations in the cross-section are nonzero. We also show

that covariances of the likelihood scores are zero - and the standard sandwich estimator of

the PCFE is consistent - as long as spatial dependence is time-invariant.For example, firm

patent applications may be spatially correlated because of unobservable shocks that affect

the local supply of high-skilled workers such as cultural goods, high-quality restaurants or

schools. If access to these amenities is constant during the sample period, then the structure

of spatial dependence is time-invariant.

More formally, spatial dependence is time-invariant if unobservable shocks can be fac-

tored into a time-variant and a time-invariant component, and only the time-invariant com-

ponent generates spatial dependence. Time-invariant spatial dependence does not affect the

asymptotic variance of the PCFE because the source of spatial dependence are unobservable

time-invariant components that are not separately identified from the unobservable fixed

effects of the PCFE model.

The fixed effects of the PCFE model are modified to absorb time-invariant components

of unobservable shocks that cause spatial dependence. With this modification, covariances of

the likelihood score between different observations in the cross-section are zero. As a result,

the asymptotic variance of the PCFE under time-invariant spatial dependence is equal to

the variance under spatial independence, and the standard sandwich variance estimator is

consistent. In addition to the PCFE, this result also applies to the commonly used Logit

model of panel data with fixed effects.

To detect spatial dependence that is not time-invariant, a test-statistic is constructed

based on the coefficients of a regression of the likelihood score of each individual on an

average of the likelihood scores of neighboring individuals. Under the null hypothesis of

time-invariance, the estimated parameters of this regression should be close to zero, because

the covariance of the likelihood scores between different individuals is zero. The test-statistic

is a Wald test for the restriction that these parameters are jointly equal to zero.
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We illustrate the PCFE, its variance estimators, and the test statistic by applying them

to Hall, Griliches and Hausman (1986)’s analysis of the link between firms’ expenditures on

research and patent counts, as a measure of research output. We also apply our approach to

Furman and Stern (2011)’s analysis of the effects of a biological research center on cumulative

research output, measured by count data on scientific citations. We provide new commands

in STATA and MATLAB that compute the PCFE, its variance estimators, and the test

statistic.2

The remainder of this paper is organized as follows. In Section 2, we summarize existing

robustness results for the PCFE that rely on the assumption of spatial independence. Section

3 derives the asymptotic distribution of the PCFE under spatial dependence, and provides

a consistent spatial estimator for the variance of the PCFE. We show that the sandwich

variance estimator is consistent for the variance of the PCFE if spatial dependence is time-

invariant. Section 4 constructs a test-statistic and derive its distribution under the null

hypothesis of time-invariance. Section 5 illustrates the estimator with the examples of Hall,

Griliches and Hausman (1986) as well as Furman and Stern (2011). An appendix presents

proofs for the results in this paper and provides additional details about the code in MATLAB

and STATA.

2 PCFE under Spatial Independence

This section introduces the PCFE model of Hausman, Hall and Griliches (1984) (HHG)

and summarizes existing robustness results that rely on the assumption of spatial indepen-

dence. We revisit these results in the next section where the assumption of spatial inde-

pendence is relaxed. For i = 1, . . . N (cross-sectional units), and t = 1, . . . T (time periods),

denote the random variables: yi = [yi1 . . . yiT ]′ a T × 1 vector of count dependent variables;

xi = [xi1 . . . xiT ]′ a T ×K matrix of explanatory variables; φ = [φ1 . . . φN ]′ a N × 1 vector of

2 Available at www.stanford.com/˜bertanha/xtpsse stata.zip; and www.stanford.com/˜bertanha/xtpsse matlab.zip
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strictly positive individual fixed effects that are unobserved.3 To compute asymptotic distri-

butions, we let N →∞ while T remains fixed. The likelihood function is derived assuming

observations are independent across i and t, and yit|xi, φi ∼ iid Poisson (φi exp (x′itβ0)). Un-

like the Poisson random effects model, here individual fixed effects and explanatory variables

can be dependent or independent.

Using the argument of Andersen (1972), HHG conditions the Poisson distribution above

on the sum across t of yit, ni =
∑T

t=1 yit. This leads to a likelihood function that does

not depend on the unobserved φ. Following Wooldridge (1999), the pseudo log-likelihood

function is LN (β) = 1
N

∑N
i=1 `i (β), where `i (β) =

∑T
t=1 yit log [pt (xi, β)], and pt (xi, β) =

exp (x′itβ)/
∑T

k=1 exp (x′ikβ). The maximum likelihood estimator is the zero of the score

function4 SN (β) = 1
N

∑N
i=1 Si (β) where

Si (β) = ∇βp (xi, β)′W (xi, β)ui (β)

p (xi, β) = [p1 (xi, β) , . . . , pT (xi, β)]′

W (xi, β) = [diag {pt (xi, β)}t]
−1

ui (β) = yi − p (xi, β)ni

Using standard results for the asymptotics of maximum likelihood estimators,

3 Despite being random, the φi’s are called fixed effects because the Poisson distribution assumption is

made conditionally on the φi’s.
4 HHG shows global concavity of this likelihood function for a compact parameter space. Note that we

cannot compute β̂ if there exist explanatory variables that are constant over time, or any linear combination

of the explanatory variables that is constant over time.
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√
N
(
β̂ − β0

)
d→ N

(
0;A−10 B0A

−1
0

)
where (1)

A0 = E [∇βSi (β0)]

B0 = V AR [Si (β0)]

If the model is correctly specified, then A0 = −B0, and the variance in the sandwich form

simplifies to B−10 or −A−10 . An important reason for the widespread use of PCFE to analyze

count data lies in its robustness to misspecification of the Poisson distribution. Empirically,

the main concern is that count data typically do not satisfy the Poisson’s assumption of

equidispersion, i.e. the variance of the distribution is equal to the mean. Another issue is

that count data typically include a larger number of zeros than the best fitted Poisson model

would predict.

There are two important robustness results in the literature for the Poisson model that as-

sume spatial independence. In the case of cross-sectional data with no fixed effects, Gourier-

oux, Monfort and Trognon (1984) show that consistency and asymptotic normality only

relies on the correct specification of the conditional mean. Wooldridge (1999) extends this

robustness result for the case of panel data with fixed effects, where the conditional mean is

assumed to be correctly specified as

E[yit|xi, φi] = φi exp (x′itβ0) (2)

In other words, Wooldridge (1999) proves that the PCFE proposed by HHG is consistent

and asymptotically N
(
0;A−10 B0A

−1
0

)
under misspecification of the Poisson distribution as

long as the conditional mean is correctly specified. If the Poisson distribution is misspecified,

A0 may be different than −B0, and we cannot simplify the sandwich form of the variance
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A−10 B0A
−1
0 . This is the reason why current applied research estimates A−10 B0A

−1
0 instead B−10

or −A−10 . Using Â = 1
N

∑N
i=1∇βSi(β̂), and B̂ = 1

N

∑N
i=1 Si(β̂)Si(β̂)′ as consistent estimators

for A0 and B0, the so called ‘sandwich variance estimator’ is consistent for the asymptotic

variance of PCFE under misspecification of the Poisson distribution:

Â−1B̂Â−1 (3)

This paper relaxes the assumption of independence across individuals in the cross-section

of the PCFE model. Many types of count-data regressions are affected by spatial dependence,

for example, in geographic or idea space. For example, counts of patent applications by a

firm may be correlated to patent applications by neighboring firms if knowledge spillovers

are geographically localized (Jaffe, Trajtenberg and Henderson (1993)). Knowledge spillovers

can also influence patent counts of similar research fields, generating spatial dependence in

idea space. In the next section, we show that spatial dependence changes the distribution

of β̂ given in (1) above. Standard-errors that are computed based on the distribution in (1)

may lead to invalid inferences in the presence of spatial dependence.

3 PCFE under Spatial Dependence

In this section we apply Conley (1999)’s results to derive the asymptotic distribution

of the PCFE under spatial dependence. We show that this asymptotic distribution is the

same as the asymptotic distribution that assumes spatial independence (1) as long as spatial

dependence is time-invariant. This is a new robustness result for the PCFE. In the next

section, we construct a test-statistic and derive its distribution under the null hypothesis of

time-invariant spatial dependence.

Using the PCFE score function as a moment condition, consistency and asymptotic

normality follow from Conley (1999)’s spatial GMM estimator. In the following paragraph,

we introduce definitions that are central to our current analysis; see Conley (1999) for a
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more detailed discussion.5

From now on, we substitute the i index in any random variable by si ∈ R2, which means

that each unit in the cross-section has an Euclidean coordinate locating it in the R2 space

(this can also be generalized to Rk). We assume that these coordinates are observed for all

units in the sample. The subscript s represents a coordinate in R2, and p, a coordinate in

Z2.

It is assumed that observations are at least d0 > 0 apart from each other. To better

index observations, the R2 is covered by a regular lattice. Construct a grid with d∗ × d∗

identical squares with a diagonal that is less than d0. This implies that there is always at

most one point in each square. Let D1 and D2 denote the number of lines and columns,

respectively, of the largest rectangular grid with d∗ × d∗ squares that contains the observed

sample. Label the grid lines using integers and label each square by its southwest corner

coordinate, a vector p ∈ Z2. Not every square in this grid necessarily has an observation, that

is, N ≤ D1D2. The probability of observing a realization in any square is given by λ, and

this event is independent of everything else and across different squares. Let Yp(β) = Ss(β)

if s is observed in square p, but Yp(β) = 0 otherwise. Using Conley (1999)’s central limit

theorem, if the conditional mean (eq. 2) is correctly specified, then:

√
N
(
β̂ − β0

)
d→ N

(
0, A−10 C0A

−1
0

)
(4)

5 Lemma 2 in the appendix shows that the PCFE score function satisfies Conley (1999)’s identification

assumption; that is, β0 is the unique solution to E[Si(β)] = 0.
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where

A0 = λ−1E[∇βYp(β0)]

V0 = lim
D1,D2→∞

(D1D2)
−1
∑
p,q

COV [Yp (β0) , Yq (β0)] non-singular

C0 = λ−1V0

In this setting, Â = N−1
∑

i∇βSsi(β̂) is a consistent estimator for the Hessian matrix

A0. The consistent estimator Ĉ for C0 is an weighted average of sample spatial covariances

which is generally different than B̂. Like other covariance estimators, we need to cut off the

number of maximum lags we use when computing covariances between all possible pairs of

individuals. We denote the vertical and horizontal bandwidths as LD1 and LD2 . These are

assumed to go to infinity more slowly than the sample size.

Define

Ĉ =
1

N

LD1
−1∑

j=−LD1
+1

LD2
−1∑

k=−LD2
+1

D1∑
m=1

st 1≤m+j≤D1

D2∑
n=1

st 1≤n+k≤D2

KD1,D2 (j, k)

[
Ym,n

(
β̂
)
Ym+j,n+k

(
β̂
)′]

where we used the notation p = (m,n) ∈ Z2 and

KD1,D2 (j, k) =

 (1− |j| /LD1) (1− |k| /LD2) , for |j| < LD1 , |k| < LD2

0 , o.w.

Under additional assumptions, Conley (1999) shows that Ĉ
p→ C0. Therefore, a consistent
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estimator for the asymptotic variance of the PCFE under spatial dependence is given by

Â−1ĈÂ−1 (5)

We call this estimator the ‘spatial variance estimator’.

Our approach allows for spatial dependence, whereas HHG and Wooldridge (1999) assume

spatial independence. The only restrictions that Conley (1999) imposes on the nature of

spatial dependence are stationarity and mixing conditions. Although accounting for spatial

dependence preserves the consistency and asymptotic normality of the PCFE, estimates

of the variance may be affected by spatial dependence, such that inference based on the

sandwich variance estimator may be misleading.

Comparing the distribution of β̂ under spatial dependence (4) to the distribution of β̂

under spatial independence (1), the difference arises in the expression for the variance of the

sum of the individual score functions (C0 vs B0). Under spatial dependence, this variance

contains covariances between scores of different individuals. If the covariance of the score

function of any two different individuals is zero, then C0 = λ−1E[Yp(β0)Yp(β0)
′] = B0, and

B̂ = N−1
∑

i∇βSsi(β̂)∇βSsi(β̂)′ is a consistent estimator for B0 = C0. The asymptotic

results for the PCFE given in (1) along with its sandwich variance estimator continue to be

valid under spatial dependence if C0 = B0. If the covariance of the score function is not zero

for some pairs of individuals, then C0 can be different than B0, and the sandwich variance

estimator can be inconsistent for the variance of the PCFE.

We define the unobserved shock vector εs = [εs,1, · · · , εs,T ]′ such that εs,t ≡ ys,t/
(
φs exp(x′s,tβ0)

)
for s ∈ R2 and t = 1, . . . , T . Given the observed data {ys, xs}s and the conditional mean

assumption (eq. 2), we can identify β0 and the joint distribution of {ys, xs, φsεs}s but we

cannot identify the distribution of φs and εs separately. There can be different ε̃s,t and

φ̃s such that φ̃sε̃s,t = φsεs and the conditional mean equation holds for β0 and φ̃s. It is

important to emphasize that the spatial dependence of unobserved shocks conditional on
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explanatory variables xs and fixed effects φs is what makes C0 and B0 different. However, if

there is spatial dependence on εs,t conditional on (xs, φs), but no spatial dependence on ε̃s,t

conditional on (xs, φ̃s), then C0 and B0 will be the same. This is the case when the spatial

dependence on {εs}s is time-invariant.

Definition 1. The spatial dependence on {εs}s is said to be ‘time-invariant’ if there exists

c > 0 and {{us,t}t, ηs}s strictly positive scalar random variables such that

εs,t = ηsus,t

with us⊥(us′ , xs′ , φs′ηs′)|xs, φsηs for every s 6= s′, where us = [us,1, · · · , us,T ]′, and E[us,t|xs, φsηs] =

c for every s, t .

Intuitively, time-invariant spatial dependence means that εs,t can be decomposed in a

time-invariant component ηs, and a time-variant component us,t, and that the spatial de-

pendence in εs,t is generated by the time-invariant component ηs. Note that time-invariance

only restricts the spatial dependence on the unobserved variable εs,t to be constant over

time. It does not say that variables shouldn’t be correlated at all. For example, we can have

spatial and time dependence in ys,t, xs,t, εs,t, and spatial dependence in φs and still have

time-invariant spatial dependence on εs,t.

If the spatial dependence on {εs}s is time-invariant, then the covariance of the score

function between any two different individuals is zero. Therefore, the asymptotic results

for the PCFE given in (1) along with its sandwich variance estimator are robust to spatial

dependence under time-invariance. Theorem 1 states the result; we present the complete

proof in the appendix.

Theorem 1. Under correct specification of the conditional mean function (eq. 2), if the

spatial dependence on {εs}s is ‘time-invariant’, then

COV [Ss(β0), Ss′(β0)] = 0, for every s 6= s′
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Consequently,
√
N
(
β̂ − β0

)
d→ N

(
0, A−10 B0A

−1
0

)
, and the sandwich estimator given in

equation 3 is consistent for the variance of the PCFE.

Time-invariance on the spatial dependence of εs,t does not affect the asymptotic variance

of the PCFE because the source of spatial dependence is ηs. This time-invariant component of

εs,t is not separately identified from the fixed effects φs that we control for in the PCFE model.

In other words, we can write an indistinguishable model with fixed effects φ̃s that absorb

the time-invariant components ηs leaving no spatial dependence on the unobserved shocks.

For example, firm patent applications may be spatially correlated because of unobservable

factors that affect the local supply of high-skilled workers such as cultural goods, high-quality

restaurants or schools. If access to these amenities is constant during the sample period,

then the structure of spatial dependence is time-invariant.

4 Testing for Time-invariant Spatial Dependence

In this section we construct a test-statistic and derive its distribution under the null

hypothesis of time-invariant spatial dependence on the unobservable shocks {εs}s. The idea

is to detect if the asymptotic variance of β̂ changes from A−10 B0A
−1
0 to A−10 C0A

−1
0 when there

is spatial dependence. Throughout this section, we maintain Conley (1999)’s assumptions of

spatial dependence (as in section 3). If the null hypothesis of time-invariance is false, then

A−10 B0A
−1
0 is generally different than A−10 C0A

−1
0 , and we should use the spatial variance

formula (eq. 5) to estimate the variance of β̂ consistently. If the null hypothesis is true, then

A−10 B0A
−1
0 = A−10 C0A

−1
0 , and the simpler sandwich variance estimator is consistent for the

variance of β̂. The spatial variance estimator is also consistent if the null hypothesis is true,

and the difference between sandwich and spatial estimates is small in large samples.

To compute the test statistic, we regress each of the K elements of the vector Ss(β̂) on

averages of the spatial lags of the elements of the vector Ss(β̂). Under the null hypothesis of

time-invariance, the covariance of the score function between different cross-sectional units

13



is zero (Theorem 1). This leads to estimated regression coefficients that are close to zero in

large samples. We use the Wald test statistic to test the restriction that all parameters are

zero.

For a given observation located in p = (m,n), we define the non-random set of neighbors

up to the l = (l1, l2) spatial lag to be N(p, l) = {p′ = (m′, n′) ∈ Z2 : p′ 6= p, |m′ − m| ≤

l1, |n′ − n| ≤ l2}. The number of elements in N(p, l) does not depend on p, and we call it

Nl. Remember that Yp(β) = Ss(β) if s ∈ R2 is in the grid cell p ∈ Z2, and zero otherwise.

The average of the l-th spatial lags of the vector Yp is defined as Ȳp,l = N−1l
∑

q∈N(p,l) Yq.

For a given choice of spatial lag l = (l1, l2), and for each k = 1, . . . , K, we regress Y
(k)
p (β̂) on

k explanatory variables Ȳ
(1)
p,l (β̂), · · · , Ȳ (k)

p,l (β̂) to obtain the k × 1 vector of estimates θ̂k. We

have a total of K∗ = K(K+ 1)/2 estimated parameters that are stacked in Θ̂ = [θ̂′1 . . . θ̂
′
K ]′.

We define the test statistic T̂ as:

T̂ = N Θ̂′ Ŵ−1 Θ̂

where

Θ̂ =

(∑
p

Zp(β̂)Zp(β̂)′

)−1∑
p

Zp(β̂)Yp(β̂)

Zp(β)K∗×K = diag
{
Ȳ

(1:k)
p,l (β)

}K
k=1

Ȳ
(1:k)
p,l (β)k×1 =

[
Ȳ

(1)
p,l (β), · · · , Ȳ (k)

p,l (β)
]′

ŴK∗×K∗ = Γ̂−1Ω̂Γ̂−1

Γ̂K∗×K∗ = − 1

N

∑
p

Zp(β̂)Zp(β̂)′

14



Ω̂K∗×K∗ =
1

N

LD1
−1∑

j=−LD1
+1

LD2
−1∑

k=−LD2
+1

D1∑
m=1

st 1≤m+j≤D1

D2∑
n=1

st 1≤n+k≤D2

KD1,D2 (j, k)

[
Zm,n(β̂)Ym,n(β̂)Ym+j,n+k(β̂)′Zm+j,n+k

(
β̂
)′]

Under the null hypothesis of time-invariant spatial dependence, this test-statistic is

asymptotically Chi-square distributed (Theorem 2, for a proof see Appendix, 7.4).6

Theorem 2. Under the null hypothesis of time-invariant spatial dependence,

T̂
d→ χ2

K∗

If the estimate of this test-statistic exceeds a critical value, the null hypothesis of time-

invariant spatial dependence is rejected, which indicates that the sandwich variance estimator

is inconsistent. Failing to reject the null hypothesis indicates both the sandwich and spatial

variance estimators are consistent. In that case, there is either no spatial dependence or

spatial dependence is time-invariant.

5 Applications

In this section, we illustrate the estimates and test-statistic with the examples of Hall,

Griliches and Hausman (1986)’s analysis of patent counts, and Furman and Stern (2011)’s

analysis of journal citations. In these examples, the differences between the sandwich and the

spatial variance estimates are small; values of the test statistic fail to reject time-invariance

spatial dependence which is consistent with small differences between spatial and sandwich

variance estimates.

6It is unfeasible to compute Θ̂ if Γ̂ or Ŵ are not invertible. This may be the case when K∗ is large

compared to the sample size N . Choosing to regress a number smaller than K of elements of the score

vector Y does not affect the limiting distribution of T̂ except for the smaller number of degrees of freedom.
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5.1 Application to Hall, Griliches and Hausman (1986)

Hall, Griliches and Hausman (1986) use patent counts to investigate whether patenting

responds to contemporaneous investment in R&D or whether it responds with a lag. Their

analysis of patent counts and R&D expenditures for 642 U.S. firms between 1972 and 1979

indicates that patenting is most responsive to contemporaneous expenditures in R&D. A

plot of the spatial component of their data reveals evidence of spatial dependence for firms

with more than 100 patent applications per year (Figure 1). In this section, we replicate the

analysis of Hall, Griliches and Hausman (1986) to examine whether Poisson estimates are

compromised by spatial dependence. Specifically, we replicate Table 6 (on p. 279 of their

paper) as a PCFE with firm fixed effects:

E[pi,t|Ri,t, · · · , Ri,t−3, φi] = φi exp

(
3∑

τ=0

βτ logRi,t−τ + αt

)
(6)

where

• pi,t is the number of patent applications by firm i in year t;

• Ri,t measures R&D expenditures in millions of 1972 US dollars;

• αt are year fixed effects;

• φi are firm fixed effects.

In these data, patent applications may be correlated across space, because the unobserv-

able factors that influence patenting, such as the supply of high-skilled labor, specialized

inputs, or knowledge spillovers, are correlated across space. Theorem 1 implies that the

sandwich variance estimator is consistent in the presence of such spatial dependence, as long

as the structure of spatial dependence is time-invariant. For example, the geographic loca-

tion of high-skilled workers may vary with the supply of amenities that attract them, such as
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cultural goods, high-quality restaurants or schools. If access to these amenities is constant

during the sample period, then the structure of spatial dependence is time-invariant.

To construct a measure for the geographic proximity between patent applications, we use

information from the CUSIP (Committee on Uniform Security Identification Procedures)

codes of firms who apply for patents to obtain information on their street addresses from

COMPUSTAT.7 Address data are available from COMPUSTAT for 460 of 642 firms. We

then convert addresses to latitude and longitude coordinates, and calculate distances between

coordinates.

Figure 2: Location of Patentees in Hall, Griliches and Hausman (1986)
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Notes: Squares represent three bandwidth choices (the 10th, 25th, and 50th quantile of the distribution of
the distance computed along the latitude and longitude coordinates). These bandwidths define nearness
to the firms in the center of the three squares. For example, firms inside the largest square (for the 50th
quantile of the distance distribution) are located in Colorado(center), Kansas, and Nebraska.

7 Available at www.compustat.com, accessed on August, 2012. Figure 2 excludes one firm that is located

in Singapore.
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Table 1: Sandwich and spatial standard errors based on Hall, Griliches and Hausman (1986),
Table 6-1

Log R&D investment in time t

β̂0 0.2468
sandwich s.e. 0.0786***
spatial s.e. 0.0946*** 0.0887*** 0.0899***
bandwidth 10th 25th 50th

Log R&D investment in time t− 1

β̂1 -0.0930
sandwich s.e. 0.0797
spatial s.e. 0.0792 0.0757 0.0774
bandwidth 10th 25th 50th

Log R&D investment in time t− 2

β̂2 0.0687
sandwich s.e. 0.0630
spatial s.e. 0.0623 0.0601 0.0548
bandwidth 10th 25th 50th

Log R&D investment in time t− 3

β̂3 -0.0224
sandwich s.e. 0.0704
spatial s.e. 0.0648 0.0622 0.0676
bandwidth 10th 25th 50th

T̂ 17.85 10.7 7.34
Firms 413
Years 5

Observations 2065

Notes: Poisson Conditional Fixed-Effect Maximum Likelihood estimates of equation 6 with sandwich stan-
dard errors (equation 3) and spatial standard errors (equation 5). The estimation excludes three years of
observations to allow for three lags in Ri,t, and 47 firms without patents during the sample period. There

are four year dummies for 1976-1979. The test-statistic T̂ has an asymptotic Chi-square distribution with
36 degrees of freedom under the null hypothesis of time-invariant spatial dependence. We compute the
spatial s.e. and the test-statistic for different bandwidth choices chosen to be the different quantiles of the
distribution of distances. Significance of 1%, 5%, 10% is indicated with ***, **, * respectively.

Table 1 reports sandwich and spatial estimates for the variance of the PCFE. The sta-

tistically insignificant value of 10.7 for the test statistic (for the 25th quantile bandwidth)

indicates that variance estimates are robust to allowing for spatial dependence. Consistent

with time-invariant spatial dependence, the difference between the sandwich estimate and
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the spatial estimate of the standard errors is small. This result suggests that the sandwich

estimator of the standard errors is consistent. As a kernel estimator, the estimated value of

the spatial standard error depends on the researcher’s choice of a bandwidth. Table 1 reports

estimates for spatial standard errors using different choices of the bandwidth, defined by the

10th, 25th, and 50th quantile of nearness along coordinates of latitude and longitude; results

are robust to these alternative choices of the bandwidth.

5.2 Application to Furman and Stern (2011)

Furman and Stern use citation counts to investigate whether the creation of a biologi-

cal research center (BRC), which certified and catalogued information about biomaterials,

helped to amplify the cumulative impact of scientific discoveries. In the United States,

the “American Culture Collection” (ATCC) is the largest BRC; Furman and Stern exploit

exogenous transfers of biomaterials to the ATCC to investigate whether materials in the

ATCC became more heavily cited after they became certified and catalogued by the ATCC.

Baseline specifications compare changes in citations to publications that use materials that

were transferred to the ATCC with other materials that were not transferred to the ATCC

(Furman and Stern (2011), p. 1949, specification 2):

FORWARD CITATIONSi,t

= f (εi,t; γi + βt + δt-pubyear + ψWINDOW BRC-ARTICLE×WINDOW PERIODi,t

+ψ BRC-ARTICLE× POST-DEPOSITi,t) (7)

where :

• FORWARD CITATIONSi,t is the number of citations to article i in year t;

• BRC-ARTICLE ×WINDOW PERIODi,t is a dummy variable that equals 1 if article
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i is referenced by a BRC deposit and year t is equal to the year of the deposit or the

year of the deposit plus or minus 1;8

• BRC-ARTICLE× POST-DEPOSITi,t is a dummy variable that equals 1 if article i is

referenced by a BRC deposit and YEAR > DEPOSIT YEAR + 1 (i.e., deposit has

already occurred and deposit WINDOW PERIOD already passed);

• γi denote article fixed effects;

• βt denote year fixed effects;

• δt-pubyear are fixed effects for the age of articles.

Under the assumption that - without the transfers - changes in citations would have been

identical for publications about materials that were transferred and other materials that

were not transferred, the coefficient ψ measures the impact of the transfers on citations, as

a measure of knowledge flows. Using a balanced panel of 99 articles and 23 periods between

1979 and 2001, with a total of 2,277 observations, we estimate equation 7 (Table 3, column

4 in Furman and Stern (2011), p. 1948).9

Citations to articles may, however, be affected by unobservable factors, such as scientific

breakthroughs or the invention of new research tools, which increase research productivity

across related fields. Intuitively, scientific breakthroughs are more likely to increase the

speed of innovation in fields that are more closely related to the original field in which the

breakthrough occurred than in other distant fields. Similarly, research tools, which have

been developed for a specific field may encourage cumulative innovation in related fields but

are less likely to benefit fields that are more distant in knowledge space. Results in section 3

8 The authors allow for a one-year window after the deposit, because the exact length of the lag between

the date of the deposit and the date when materials become accessible is unknown.
9 Furman and Stern (2011) estimate specification (7) using the negative binomial model for an unbalanced

panel of 216 articles and 32 periods with a total of 4,857 observations. The difference between spatial and

sandwich standard errors is also small when we estimate the Poisson model using the unbalanced panel.
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imply that the standard sandwich estimator is consistent - even in the presence of spatial de-

pendence in idea space - as long as this dependence remains substantially unchanged during

the sample period. For example, results in section 3 imply that the standard sandwich esti-

mator is consistent - even if research output is correlated across related fields - as long as the

way in which related fields are affected by common shocks (such as scientific breakthroughs

or research tools) does not change during the sample period.

Table 2: Measures of Distance

Variable Definition Measure of Distance
pair num id number for treatment-control pairs difference in id numbers
collectn biological material’s collection zero if same collection
atcccode ATCC code and collection of material difference in codes
price price of the referenced biological material difference in price
journ abb journal where the article was published zero if same value
author article’s author zero if same value
authinst author’s institution zero if same value
country country of institution zero if same value
pub year publication year of article difference in years

Notes: For the qualitative variables collectn, journ abb, author, authinst, country, each distance is zero if
two different articles have the same value for the corresponding variable, or one if different values. For the
numeric variables pair num, atcccode, price, pub year, each distance is equal to the absolute value of the
difference of the corresponding variable for two different articles. This difference is normalized to be at most
one. For a given pair of articles, if a variable has a missing value, this distance is dropped from the averaging.
The variable atcccode is considered missing if two different articles are from different collections. 126 of 216
articles have missing values for at least one of the nine variables, and all of the articles have observed values
for at least five variables.

To illustrate these results, we create a new measure of distance in idea space based on the

analysis of journal citations in Furman and Stern (2011). Specifically, we create a proxy for

distance in knowledge space based on the average distance for nine variables that Furman

and Stern (2011) use to characterize articles (Table 2). This proxy allows us to generate

coordinates, which we use to illustrate distance in knowledge space (Figure 3).
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Figure 3: Dispersion of papers in idea space and bandwidth choices
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Notes: Squares with dotted lines represent three bandwidth choices (the 10th, 25th, and 50th quantile of the
distribution of the distance computed along the x and y coordinates). These bandwidths define nearness to
the article in the center of the three squares. For example, two articles in the smallest square (for the 10th
quantile of the distance distribution) share the same collection and similar publication year with the article
that is at the center of that square.

Table 3 reports estimation results for the PCFE and its variance by the standard sandwich

estimator (equation 3) and spatial estimator that accounts for spatial dependence (equation

5). Insignificant values for the test statistic in the range of 6.68 to 25.9 (for bandwidths

between the 10th and 50th quantile) indicate that variance estimates are robust to allowing

for spatial dependence. Consistent with time-invariant spatial dependence, the difference

between the sandwich estimate and the spatial estimate of the standard errors is small.

These results suggest that the sandwich estimator of the standard error is consistent.
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Table 3: Sandwich and spatial standard errors based on Furman and Stern (2011), Table 3-4

BRC-ARTICLE × WINDOW PERIOD

ψ̂WINDOW 0.4089
sandwich s.e. 0.1657**
spatial s.e. 0.1728** 0.1873** 0.2260*
bandwidth 10th 25th 50th

BRC-ARTICLE × POST-DEPOSIT

ψ̂ 0.5959
sandwich s.e. 0.2802**
spatial s.e. 0.3058* 0.3110* 0.3418*
bandwidth 10th 25th 50th

T̂ 25.9 15.37 6.68
Articles 96
Years 23

Observations 2208

Notes: Poisson Conditional Fixed-Effect Maximum Likelihood estimates of equation 7 with sandwich stan-
dard errors (equation 3) and spatial standard errors (equation 5). We exclude 3 articles that do not have
any citations from the sample. There are year dummies for every year except 1979 and 1990, and 30 age
dummies. The test-statistic T̂ has an asymptotic Chi-square distribution with 45 degrees of freedom under
the null hypothesis of time-invariant spatial dependence. We use the first nine elements of the score vector
to calculate the test-statistic because it is not possible to compute the test-statistic using all elements of
the score vector due to the large number of regressors in equation 7. We compute the spatial s.e. and
the test-statistic for different bandwidth choices chosen to be the different quantiles of the distribution of
distances. Significance of 1%, 5%, 10% is indicated with ***, **, * respectively.

6 Conclusion

Count data, such as patents, unemployed workers, or hospital visits, play an important

role in empirical analyses across a broad range of research fields. Due to its robustness to

misspecification of the Poisson distribution and to time dependence, the Poisson (PCFE)

estimator has become a standard approach to analyze count data. Count data may, however,

also be affected by cross-sectional dependence. For example, changes in patent counts for

firms that are geographically close may be correlated if they are affected by geographically

localized unobservable factors, such as knowledge spillovers or changes in the supply of inputs

and skilled workers. Similarly, changes in research output may be correlated across related
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research fields, if they benefit from the same scientific advances.

This paper extends the robustness properties of the PCFE to the case of spatial de-

pendence in the cross-section. We show that the asymptotic distribution of the PCFE –

derived by Wooldridge (1999) under the assumption of cross-sectional independence – is ro-

bust to cross-sectional dependence, as long as cross-sectional dependence is time-invariant.

The sandwich variance estimator is consistent if spatial dependence is time invariant. We

construct a test statistic to detect time-variant spatial dependence, and provide a spatial

variance estimator for the PCFE that is consistent under time-invariant and time-variant

spatial dependence. We provide new commands for STATA and MATLAB that compute

the sandwich and spatial variance estimates for the PCFE, as well as the test statistic. We

illustrate the revised estimates through empirical examples based on Hall, Griliches and

Hausman (1986) and Furman and Stern (2011). In these applications, the test statistic

does not indicate time-variance spatial dependence suggesting that the sandwich variance

estimator is consistent.
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7 Appendix

7.1 Code for Estimation

The command ‘xtpsse’ computes the PCFE, the sandwich and spatial variance estimator,

and the test statistic for the null hypothesis of time-invariant spatial dependence. Each

cross-sectional unit in the data must have coordinate information in R2 space. The files are

available online at:

• www.stanford.com/˜bertanha/xtpsse stata.zip;

• www.stanford.com/˜bertanha/xtpsse matlab.zip.

Instructions on how to use the command are available in ‘xtpsse help.txt’ inside each zip

file.

7.2 Proof of Robustness to Time-invariant Spatial Dependence

(Theorem 1)

We first prove the equivalence between time-invariance and the existence of a different

model with fixed effects φ̃s and no spatial dependence on its unobserved shocks.

Lemma 1. The following statements are equivalent:

(i) there exists {φ̃s}s strictly positive such that ys⊥(ys′ , xs′ , φ̃s′)|xs, φ̃s for every s 6= s′ and

E[ys,t|xs, φ̃s] = φ̃s exp(x′s,tβ0) for every s, t

(ii) the spatial dependence structure of εs is ‘time-invariant’.

Proof. (i) ⇒ (ii) : Make us,t = ys,t/φ̃s exp(x′s,tβ0), ηs = φ̃s/φs, and c = 1.

Note that us,t = φsεs,t/φ̃s which leads to εs,t = ηsus,t. By assumption, ys⊥(ys′ , xs′ , φ̃s′)|xs, φ̃s

makes us⊥(us′ , xs′ , ηs′φs′)|xs, φsηs for ∀s 6= s′ . Also, the assumption that E[ys,t|xs, φ̃s] =

φ̃s exp(x′s,tβ0) makes E[us,t|xs, φsηs] = c = 1.
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(i) ⇐ (ii) : Make φ̃s = φsηsc. We have ys,t = φs exp(x′s,tβ0)εs,t = φsηsc exp(x′s,tβ0)us,t/c.

The assumption that E[us,t|xs, φsηs] = c makes E[ys,t|xs, φ̃s] = φ̃s exp(x′s,tβ0). Also, the

assumption that us⊥(us′ , xs′ , φs′ηs′)|xs, φsηs makes ys⊥(ys′ , xs′ , φ̃s′)|xs, φ̃s for ∀s 6= s′ .

Now we show for every s 6= s′ that,

ys⊥(ys′ , xs′ , φ̃s′)|xs, φ̃s ⇒ ys⊥ys′|xs, φ̃s, xs′ , φ̃s′ (8)

Let the vector Ws = (xs, φ̃s), and denote W and Y denote measurable events for Ws and

ys respectively.

P (ys ∈ Y , ys′ ∈ Y ′|Ws ∈ W ,Ws′ ∈ W ′) =
P (ys ∈ Y , ys′ ∈ Y ′,Ws′ ∈ W ′|Ws ∈ W)

P (Ws′ ∈ W ′|Ws ∈ W)

=
P (ys ∈ Y|Ws ∈ W)P (ys′ ∈ Y ′,Ws′ ∈ W ′|Ws ∈ W)

P (Ws′ ∈ W ′|Ws ∈ W)

=
P (ys ∈ Y|Ws ∈ W ,Ws′ ∈ W ′)P (ys′ ∈ Y ′,Ws′ ∈ W ′|Ws ∈ W)

P (Ws′ ∈ W ′|Ws ∈ W)

= P (ys ∈ Y|Ws ∈ W ,Ws′ ∈ W ′)P (ys′ ∈ Y ′|Ws ∈ W ,Ws′ ∈ W ′, )

Define zs,t,q = xs,t−xs,q. Following Hausman, Hall and Griliches (1981), the score function

can be written as:

Ss(β) =
T∑
t=1

ys,t

∑T
q=1 exp(−z′s,t,qβ)zs,t,q∑T
u=1 exp(−z′s,t,uβ)

= S(ys, xs, β) (9)

Now, we use Lemma 1, result (8) and equation (9) to prove that COV [Ss(β0), Ss′(β0)] = 0

for every s 6= s′. If the conditional mean is correctly specified (eq. 2 holds), then E[Ss(β0)] =

EE[Ss(β0)|xs, φ̃s] = 0, and we can write the covariance between the score function of two

different individuals as:
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COV [Ss(β0), Ss′(β0)] = E [Ss(β0)Ss′(β0)
′]

= E E
[
Ss(β0), Ss′(β0)

∣∣∣xs, φ̃s, xs′ , φ̃s′ ]

= E E
[
S(ys, xs, β0)S(ys′ , xs′ , β0)

′|xs, φ̃s, xs′ , φ̃s′
]

= E
{
E
[
S(ys, xs, β0)|xs, φ̃s, xs′ , φ̃s′

]
E
[
S(ys′ , xs′ , β0)

′|xs, φ̃s, xs′ , φ̃s′
] }

= E
{
E
[
S(ys, xs, β0)|xs, φ̃s

]
E
[
S(ys′ , xs′ , β0)|xs′ , φ̃s′

] }
= E

{
E
[
Ss(β0)|xs, φ̃s

]
E
[
Ss′(β0)|xs′ , φ̃s′

] }
= 0

Therefore, COV [Ss(β0), Ss′(β0)] = 0 for every s 6= s′, which implies COV [Yp(β0), Yq(β0)] =

0 for every p 6= q, and that C0 = B0 under spatial dependence. Using this in (4) gives
√
N
(
β̂ − β0

)
d→ N

(
0, A−10 B0A

−1
0

)
, and the sandwich estimator given in equation 3 is con-

sistent for the variance of the PCFE.

It is useful for the proof of Theorem 2 to show that E[∇β′Ss(β0)Ss′(β0)] = 0 for every

s 6= s′ holds under time-invariance. The expression for ∇β′Ss(β) is:

∇β′Ss(β) =
T∑
t=1

ys,t 1

(
∑T

q=1 exp(−z′s,t,qβ))
2

(∑T
q=1 exp(−z′s,t,qβ)zs,t,q

)(∑T
q=1 exp(−z′s,t,qβ)zs,t,q

)′
− 1∑T

q=1 exp(−z′s,t,qβ)

∑T
q=1 exp(−z′s,t,qβ)zs,t,qz

′
s,t,q


= H(ys, xs, β)
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Using the same results that led to E[Ss(β0)Ss′(β0)
′] = 0, we have that:

E[∇β′Ss(β0)Ss′(β0)] = E[H(ys, xs, β0)S(ys′ , xs′ , β0)]

= EE[H(ys, xs, β0)S(ys′ , xs′ , β0)|xs, φ̃s, xs′ , φ̃s′ ]

= E
{
E[H(ys, xs, β0)|xs, φ̃s, xs′ , φ̃s′ ] E[S(ys′ , xs′ , β0)|xs, φ̃s, xs′ , φ̃s′ ]

}
= E

{
E[H(ys, xs, β0)|xs, φ̃s] E[Ss′(β0)|xs′ , φ̃s′ ]

}
= 0

7.3 Proof of Identification: E[Ss(β)] = 0 ⇐⇒ β = β0

We refer to Conley (1999) for the complete set of assumptions behind his results of

consistency and normality of β̂, and consistency of Ĉ. In this section, we demonstrate that

using the PCFE score function as a moment condition satisfies the identification assumption

in Conley (1999). It is straightforward to verify that this moment condition also satisfies his

other assumptions under standard regularity conditions.

Lemma 2. E [Ss (β)] = 0 ⇔ β = β0, where β0 ∈ int (B) with B ⊆ RK compact.

Proof. Correct specification of the conditional mean, E [yst|xs, φs] = φs exp (x′stβ0), plus

uniqueness of a global maximum leads to this result. Hausman, Hall and Griliches (1981)

show global concavity of this log-likelihood function. We use the same arguments to show

global concavity of the expected value of the log-likelihood function and that β0 is the unique

zero of E [Ss (β)] = 0. The conditional expectation of the log-likelihood is:

E[`s(β)|φs, xs] = φs

T∑
t=1

exp(x′stβ0) log

(
exp(x′stβ)∑T
q=1 exp(x′sqβ)

)

= −φs
T∑
t=1

exp(x′stβ0) log

(
T∑
q=1

exp(−(xst − xsq)′β)

)

= −φs
T∑
t=1

exp(x′stβ0) log

(
T∑
s=1

exp(−z′stqβ)

)
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where zstq = xst − xsq. Looking at the first and second derivatives:

∂

∂β
E[`s(β)|φs, xs] = φs

T∑
t=1

exp(x′stβ0)∑T
q=1 exp(−z′stqβ)

T∑
q=1

exp(−z′stqβ)zstq

∂2

∂β∂β′
E[`s(β)|φs, xs] = φs

T∑
t=1

exp(x′stβ0) 1

(
∑T

q=1 exp(−z′stqβ))
2

(∑T
q=1 exp(−z′stqβ)zstq

)(∑T
q=1 exp(−z′stqβ)zstq

)′
− 1∑T

q=1 exp(−z′stqβ)

∑T
q=1 exp(−z′stqβ)zstqz

′
stq


In order to see that this second derivative is negative definite, for any given s, t, and

β, call vq = zstq and aq =
[
exp(−z′stqβ)

]
/
[∑T

j=1 exp(−z′stjβ)
]
. Note that aq ∈ (0, 1) and∑T

q=1 aq = 1. Rewriting the term in square brackets above gives:

(
T∑
q=1

aqvq

)(
T∑
q=1

aqvq

)′
−

T∑
q=1

aqvqv
′
q

= −
T∑
q=1

aq [vq − (Σaqvq)] [vq − (Σaqvq)]
′

which is simply the negative weighted sample variance of vq. This is negative definite be-

cause xs’s are not constant across time which makes the vq vary across q. Therefore, since

φsexp(x
′
stβ0) > 0, we conclude that the second derivative is negative definite, i.e. the func-

tion is strictly concave. This is true for any (xs, φs), so it is true for the unconditional

expectation of the log-likelihood.

Given that the domain B is compact, there is a unique maximum and critical point. If

the conditional mean is correctly specified, β0 makes the expected value of the score function
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zero:

E [Ss (β) |xs, φs] = ∇βp (xs, β)′W (xs; β)E [us (β) |xs, φs]

where

E [ust (β) |xs, φs] = E [yst|xs, φs]− E [pt (xs, β)ns|xs, φs]

= φs exp (x′stβ0)− φs
exp (x′stβ0)∑T
k=1 exp (x′skβ)

T∑
k=1

exp (x′skβ0)

= φs exp (x′stβ0)

[
1−

∑T
k=1 exp (x′skβ0)∑T
k=1 exp (x′skβ)

]

If β = β0, then E [us (β0) |xs, φs] = 0, which implies that E [Ss (β0)] = 0 using iterated

expectations.

7.4 Proof of the Asymptotic Distribution of the Test Statistic

(Theorem 2)

First, consider the unfeasible estimator Θ̃ =
(∑

p Zp(β0)Zp(β0)
′
)−1∑

p Zp(β0)Yp(β0),

where we use the following notation: p = (m,n),
∑

p =
∑

m,n, K∗ = K(K + 1)/2, and:

Zp(β)K∗×K = diag
{
Ȳ

(1:k)
p,l (β)

}K
k=1

Ȳ
(1:k)
p,l (β)k×1 =

[
Ȳ

(1)
p,l (β), · · · , Ȳ (k)

p,l (β)
]′

For a fixed choice of spatial lags l = (l1, l2), the set N(p, l) is non-random and remains

fixed as the sample size increases. Using the GMM framework of Conley (1999), we can find
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the asymptotic distribution of Θ̃ under the null hypothesis of time-invariance:

W̃−1/2
√
N Θ̃ = W̃−1/2Γ̃−1

1√
N

∑
p

Zp(β0)Yp(β0)
d→ N(0; IK∗) (10)

where

W̃K∗×K∗ = Γ̃−1Ω̃Γ̃−1

Ω̃K∗×K∗ =
1

N

LD1
−1∑

j=−LD1
+1

LD2
−1∑

k=−LD2
+1

D1∑
m=1

st 1≤m+j≤D1

D2∑
n=1

st 1≤n+k≤D2

KD1,D2 (j, k)
[
Zm,n(β0)Ym,n(β0)Ym+j,n+k(β0)

′Zm+j,n+k (β0)
′]

Γ̃K∗×K∗ = − 1

N

∑
p

Zp(β0)Zp(β0)
′

Our goal is to use (10) to show asymptotic normality of the feasible estimator Θ̂:

Ŵ−1/2
√
N Θ̂ = Ŵ−1/2Γ̂−1

1√
N

∑
p

Zp(β̂)Yp(β̂)
d→ N(0; IK∗)

where Γ̂ and Ŵ have been defined in the main text. It suffices to show that
∥∥∥Γ̂− Γ̃

∥∥∥ p→ 0,∥∥∥Ω̂− Ω̃
∥∥∥ p→ 0, and N−1/2

∥∥∥∑p Zp(β̂)Yp(β̂)− Zp(β0)Yp(β0)
∥∥∥ p→ 0.

Step 1: Under the null hypothesis of time-invariance, the proof of Theorem 1 shows that
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E
[
∇βY

(i)
p (β0)Y

(j)
q (β0)

]
= 0 for every p 6= q and i, j ∈ {1, . . . , K}. Hence,

E
[
∇β

{
Ȳ

(i)
p,l Y

(j)
p (β0)

}]
= E

N−1l ∑
q∈N(p,l)

∇βY
(i)
q,l (β0)Y

(j)
p (β0)

+ E

∇βY
(j)
p (β0)N

−1
l

∑
q∈N(p,l)

Y
(i)
q,l (β0)


= N−1l

∑
q∈N(p,l)

E
[
∇βY

(i)
q,l (β0)Y

(j)
p (β0)

]
+N−1l

∑
q∈N(p,l)

E
[
∇βY

(j)
p (β0)Y

(i)
q,l (β0)

]
= 0

and N−1
∑

p∇β

{
Ȳ

(i)
p,l Y

(j)
p (β0)

}
= op(1). We can show that the same is true when we

replace β0 with β∗
p→ β0. Assuming bounded moments of the data, and using the facts

that Yp(β) has smooth derivatives, and that β∗ belongs to a compact set with probability

approaching one, we arrive at:

∥∥∥∥∥ 1

N

∑
p

∇β

{
Ȳ

(i)
p,l Y

(j)
p (β∗)

}∥∥∥∥∥ = op(1) (11)∥∥∥∥∥ 1

N

∑
p

∇β

{
Ȳ

(i)
p,l Ȳ

(j)
p,l (β∗)

}∥∥∥∥∥ = op(1) (12)

Similarly, we have that for any i0, i1, j0, j1 ∈ {1, . . . , K}:

1

N

LD1
−1∑

j=−LD1
+1

LD2
−1∑

k=−LD2
+1

D1∑
m=1

st 1≤m+j≤D1

D2∑
n=1

st 1≤n+k≤D2

KD1,D2 (j, k)
∥∥∥∇β

{
Ȳ

(i0)
(m,n),lY

(i1)
m,nY

(j1)
m+j,n+kȲ

(j0)
(m+j,n+k),l(β

∗)
}∥∥∥ = Op(1) (13)

Step 2:
∥∥∥Γ̂− Γ̃

∥∥∥ p→ 0

Let (i, j) denote an arbitrary element of the K∗ ×K∗ matrix Γ. Let i0 and j0 index the
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elements in Ȳp,l that are used to compute Γi,j. Using (12) we can show that:

∣∣∣Γ̂i,j − Γ̃i,j

∣∣∣ =

∣∣∣∣∣ 1

N

∑
p

Ȳ
(i0)
p,l (β̂)Ȳ

(j0)
p,l (β̂)− Ȳ (i0)

p,l (β̃)Ȳ
(j0)
p,l (β0)

∣∣∣∣∣
≤ ‖β̂ − β0‖

∥∥∥∥∥ 1

N

∑
p

∇β

{
Ȳ

(i0)
p,l Ȳ

(j0)
p,l (β∗)

}∥∥∥∥∥
= op(1)op(1) = op(1).

Step 3:
∥∥∥Ω̂− Ω̃

∥∥∥ p→ 0

Let (i, j) denote an arbitrary element of the K∗ ×K∗ matrix Ω. Let i0 and i1 index the

elements in Ȳp,l, and j0 and j1 index the elements in Yp that are used to compute Ωi,j. Using

(13) we can show that:

∣∣∣Ω̂i,j − Ω̃i,j

∣∣∣
≤ ‖β̂ − β0‖

1

N

LD1
−1∑

j=−LD1
+1

LD2
−1∑

k=−LD2
+1

D1∑
m=1

st 1≤m+j≤D1

D2∑
n=1

st 1≤n+k≤D2

KD1,D2 (j, k)
∥∥∥∇β

{
Ȳ

(i0)
(m,n),lY

(i1)
m,nY

(j1)
m+j,n+kȲ

(j0)
(m+j,n+k),l(β

∗)
}∥∥∥

= op(1)Op(1) = op(1).

Step 4: N−1/2
∥∥∥∑p Zp(β̂)Yp(β̂)− Zp(β0)Yp(β0)

∥∥∥ p→ 0

Let i denote an arbitrary element of the K∗× 1 vector ZpYp. Let i0 index the element in

Ȳp,l, and i1 index the element in Yp that are used to compute {ZpYp}i. Using (11), we can

show that:
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N−1/2

∣∣∣∣∣∑
p

{
Zp(β̂)Yp(β̂)− Zp(β0)Yp(β0)

}
i

∣∣∣∣∣
= N−1/2

∣∣∣∣∣∑
p

Ȳ
(i0)
p,l (β̂)Y (i1)

p (β̂)− Ȳ (i0)
p,l (β0)Y

(i1)
p (β0)

∣∣∣∣∣
≤
√
N‖β̂ − β0‖

∥∥∥∥∥ 1

N

∑
p

∇β

{
Ȳ

(i0)
p,l Y

(i1)
p (β∗)

}∥∥∥∥∥
= Op(1)op(1) = op(1)

Therefore, Ŵ−1/2
√
N Θ̂

d→ N(0; IK∗), and T̂ = N Θ̂′Ŵ−1Θ̂
d→ χ2

K∗ .
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