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Fixed effects are a common means to “control for” unobservable differences among observations

based upon observable characteristics; examples include age, year, or location in cross-sectional

studies or individual or firm effects in panel data. While fixed effects permit different mean outcomes

among groups, the estimates of treatment effects are typically required to be the same; in more

colloquial terms, the intercepts of the conditional expectation functions may differ, but not the

slopes.

Our main contribution is considering the empirical importance of heterogeneity in these

slopes (i.e., treatment effects) across fixed effects groups. In particular, we compare treatment

effect estimates using a fixed effects estimator (FE) to the average treatment effect (ATE) by

replicating eight influential papers from the American Economic Review published between 2004

and 2009.1 Using these examples, we consider a randomized experiment in Section 1 as a case study

and, in Section 3, we show generally that heterogeneous treatment effects are common and that the

FE and ATE are often different in statistically and economically significant degrees. In all but one

paper, there is at least one statistically significant source of treatment effect heterogeneity. In five

papers, this heterogeneity induces the ATE to be statistically different from the FE estimate at the

5% level (7 of 8 are statistically different at the 10% level). Five of these differences are economically

significant, which we define as an absolute difference exceeding 10%. Based upon these results, we

conclude that methods that consistently estimate the ATE offer more interpretable results than

standard FE models.

In Section 2, we provide a formal framework to establish the theoretical bias of the FE

estimator in the presence of heterogenous treatment effects. We derive the probability limit of the

FE under heterogeneous treatment effects and provide an interpretation as a weighted average of

group-specific effects. We propose two alternative estimators that are able to consistently estimate

the ATE under group-specific heterogeneity and derive the joint asymptotic distribution of these

estimators with the FE.

One approach to incorporate heterogeneous marginal effects into a regression framework is

the correlated random coefficients model (CRC). Our paper explores the empirical relevance of CRC

1See Murphy and Topel (1985), Gentzkow and Shapiro (2013), and Oster (2014) for other examples of papers
that replicate published studies to elucidate a methodological point. We only analyze the data that the authors
openly provide on the EconLit website. Though some of these papers include both OLS and instrumental variables
approaches, we consider the implications of heterogeneous treatment effects for the OLS specifications only to focus
on the weighting scheme applied by this common procedure.
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models by considering a simplified version: a fixed effects regression that includes group-specific

marginal effects. This assumption corresponds to the following data-generating process:

yi = xiβg(i) + z′iγ + εi, (1)

where yi is the outcome for observation i among N , xi is treatment or another variable of interest,

and zi contains control variables, including group-specific fixed effects. The treatment effects are

group-specific for each of the g = 1, . . . , G groups, where group membership is known for each

observation. Lastly, εi is mean 0 with variance-covariance matrix Ω. Our analysis of this model

can be viewed as a special case of the results in Chernozhukov, Fernández-Val, Hahn and Newey

(2013).

There is a long tradition in the econometrics literature considering average partial effects

(see, e.g., Chamberlain, 1980, 1982, 1984, 1992, Wooldridge, 1997, 2005, Blundell and Powell, 2003,

Graham and Powell, 2012, Chernozhukov et al., 2013).2

Definition 1 (Average treatment effect (ATE)). The average treatment effect (ATE) for Equation 1

is defined as

βATE ≡
∑
g

πgβg,

where πg is population frequency of group g.

An established result is that fixed effects regressions average the group-specific slopes pro-

portional to both the sample frequency of the group and the conditional variance of treatment, an

average that generally does not coincide with the average treatment effect.3 Though this theoretical

result is well established, there has been little guidance for the applied researcher regarding the

empirical importance of the difference. We find that the difference can be large.

Comparison to the literature. Our approach is similar to the CRC model of Chamberlain

(1982) (see also Chamberlain, 1984, 1992). The primary differences between our setting and that

of the CRC is that (i) we focus on cross-sectional data, whereas the CRC is based on panel data; and

(ii) we employ fixed, rather than random effects. Because of the general similarities, our approach

is related to the large literature analyzing non-separable correlated heterogeneity in panel data

2We assume that the sample is representative of the population of interest for the ATE; specifically, Ng/N → πg.
3See, e.g., Angrist and Krueger (1999), Wooldridge (2005), Angrist and Pischke (2009).

2



contexts. Closest to our derivation, Wooldridge (2005) shows conditions under which the FE

provides consistent estimates of the average partial effect. Our analysis builds upon this derivation

for the case of fixed coefficients and offers a different interpretation of the necessary conditions for

this result. Graham and Powell (2012) study the identification and estimation of average partial

effects under “irregularity” conditions where the information bound may be singular and Arellano

and Bonhomme (2012) study the identification and estimation of distributions of coefficients in

CRC models.

Another important example is Chernozhukov et al. (2013), who study average and quantile

treatment effects and derive results that nest our approach. In particular, while we focus on

cross-sectional settings, our models are relevant for panel models with discrete regressors, as in

Chernozhukov et al. (2013). Ghanem (2017) studies testable implications of the assumptions made

in these non-separable panel data models. Finally, Imai and Kim (2016) study the linear fixed

effect model from a matching perspective, reformulate our result from this perspective, and study

dynamic extensions. While these papers provide a strong theoretical reason to believe that FE does

not provide sample-weighted estimates, we illustrate the empirical importance of this distinction

using a broad array of microeconometric questions.

In the presence of heterogeneous treatment effects, the FE gives a weighted average of these

effects. The weights depend not only on the frequency of the groups, but also upon sample variances

within the groups. Angrist and Krueger (1999) compare the results from regression and matching

estimators to demonstrate that the effects of a dichotomous treatment are averaged using different

weights under each procedure. Many empirical studies, including many of those that we replicate

in this paper, run separate regressions by group out of concern for the presence of treatment effect

heterogeneity. Less common are the more parsimonious interacted model or weighted regression

approaches that we propose, but which assume that there is no heterogeneity in coefficients for

other predictors. A related approach is the random growth model, which uses individual-specific

time trends to control for differing growth rates (see, e.g., Heckman and Hotz, 1989, Papke, 1994,

Friedberg, 1998). This heterogeneity is used to control for omitted variables, rather than to model

the treatment effect of interest itself, however. Solon, Haider and Wooldridge (2015) declare that

the FE may be biased in the presence of heterogeneous treatment effects and note that weighted

least squares can be used to recover the average partial effect. We build upon their discussion by
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deriving the necessary weights and providing applications to illustrate empirically the importance

of the difference between weighted and FE estimates.

1 A Case Study: Karlan and Zinman (2008)

Even if an experiment ensures that treatment is independent of any other covariates, the FE might

not be a consistent estimator of the ATE. Among our AER replications, there is one experiment

that can be used to illustrate this point: Karlan and Zinman (2008). In this paper, the authors

randomize the interest rate offered for a microloan across a population of South Africans and

estimate the credit elasticity. One set of fixed effects that the authors use is the “pre-approved

risk category” of the borrower (low, medium, or high). To offer interest rates commensurate with

prevailing market rates, the authors charge higher rates to higher risk individuals. As we will

show, however, that differing means in treatment do not drive the difference between the FE and

ATE estimates, but rather differences in variances. To this point, the authors offer not only higher

rates to riskier borrowers, but also offer a greater range of rates to this group and, as a result, the

variance of treatment differs across the groups. Thus, the FE estimate will not be equal to the

ATE if the responsiveness to interest rates varies across risk groups.

The FE weights are given in column 2 of Table 1. These are the relative variances of

treatment by group multiplied by the sample frequency of that group (see Proposition 1). Using

these weights and the group effect estimated using an interacted model (given in column 4 of

Table 1), we calculate the FE estimate in the bottom row of the table in the “FE weight” column.

Compare the weights from the FE model to the sample frequencies used to calculate the ATE. Note

that high risk individuals are over-weighted in the FE model due to their relatively high variance

in treatment and the low and medium risk individuals are under-weighted.

We find that high-risk borrowers are much less responsive to the interest rate than low-risk

borrowers. Because high-risk individuals are over-weighted and have a smaller (in absolute value)

treatment effect, the FE estimate underestimates the sample-weighted responsiveness of individuals

to the interest rate by over 60%.
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Table 1: Karlan and Zinman (2008) treatment effect weighting

Weight

Risk group Effect FE Sample

Low -32.4 0.044 0.125
Medium -9.9 0.058 0.092
High -2.7 0.898 0.783

Average −4.393 −7.047
Std. error (1.129) (1.917)

Notes: The ATE estimated is the IWE estimator. The FE estimate here, −4.40, does not precisely equal the FE
estimate of −4.37 reported in the paper due to slight correlation between mailer wave fixed effects, excluded from
this simplified exposition, and the interest rate. Subsequent replication results in our paper do recover the actual
values reported in the replicated papers, including this one, unless otherwise noted.

2 Estimating the Average Treatment Effect

In this section, we first derivate the bias of the FE estimator under treatment effect heterogeneity.

Based upon those results, we provide two alternative estimators that eliminate this bias. We also

discuss testing procedures related to our proposed estimators.

2.1 Bias of the Fixed Effects Estimator

One way to parameterize the treatment effect heterogeneity in Equation 1 is by interacting the fixed

effects with treatment; call this vector ai.
4 Then, the data-generating process can be rewritten as:

yi = a′iβ + z′iγ + εi, (2)

where β is now a vector of coefficients. Further define the N × 1 column vector forms Y, X,

and ε as vectors across the N observations and A and Z as matrices across observations. Define

M = IN − Z (Z′Z)−1 Z′ as the annihilator matrix for Z; Ỹ, X̃, and Ã are annihilated versions.

Notably, x̃i is a value in the X̃ vector.

As a baseline case, consider an OLS model with fixed effects that does not account for

treatment effect heterogeneity, which we call the fixed effects estimator.

4Consider ai having first xi, followed by xi interacted with G− 1 fixed effects.
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Definition 2 (Fixed effects estimator (FE)). Define the standard fixed effect estimator (FE) as:

b̂FE =
(
X̃′X̃

)−1
X̃′Ỹ.

In general, the FE is a biased and inconsistent estimator of the ATE.

Proposition 1 (Bias and inconsistency of FE). Under the usual assumptions for Equation 1 (see

Appendix A), the expected value of the FE is:

E
[
b̂FE

∣∣∣X,Z,A] =

[∑
i

x̃2
i

]−1∑
i

x̃iã
′
iβ = βATE +

∑
g

Ng

N
βg

[
V̂ar (x̃i | g(i) = g)

V̂ar (x̃i)
− 1

]
+ op(1),

where V̂ar(·) is the sample variance and Ng is the number of observations in group g. Further, the

FE converges in probability to:

b̂FE p−−−→
n→∞

βATE +
∑
g

πgβg

[
Var (x̃i | g(i) = g)

Var (x̃i)
− 1

]
.

Hence, if the variance of xi conditional on zi varies across groups and treatment effects also vary

across groups, then the FE is a biased and inconsistent estimator for the ATE.

Proposition 1 reveals that, while the FE is an average of the group-specific effects, the

weights generally do not coincide with sample frequencies. Instead, FE upweights groups with high

variance in treatment conditional upon other covariates and downweights groups with low variance

in treatment. This is an efficient approach if the treatment effect is the same for all groups, but leads

to biased and inconsistent estimates of the ATE when the treatment effect varies across groups.

An example where FE would give unbiased results is a regression using data from a perfectly

randomized experiment where treatment has the same variance across groups. Such perfection is

likely unattainable in observational or experimental settings, however. Indeed, in Section 1, we

replicated a randomized experiment from Karlan and Zinman (2008) as a case study. In that

experiment, treatment is randomized within different fixed effects groups, but the variances of

treatment are not the same across groups. There, we found that the ATE differs from the FE

estimate by over 60%.
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2.2 Alternative Estimators

We offer two alternative estimators for the ATE that, unlike the FE, are unbiased and consistent.

For the first estimator, Equation 2 hints that an interacted model could be used to estimate the

treatment effect for each group; the resulting group-specific estimates are averaged to provide the

ATE. This is the interaction-weighted estimator.

Definition 3 (Interaction-weighted estimator (IWE)). The interaction-weighted estimator is found

by estimating β from Equation 2 using an interacted model, then using these estimates to calculate

the ATE. Thus, the IWE is given by:

b̂IWE = f̂
(
Ã′Ã

)−1
Ã′Ỹ,

where5

f̂ =
1

N

[
N N1 · · · NG−1

]
.

Proposition 1 shows that, while FE provides a weighted average of the treatment effects,

these weights do not equal sample frequencies. The regression-weighted estimator re-weights each

observation to undo the FE weighting and applies the frequency weighting of the ATE. A potential

advantage of this approach is that it does not require estimating each group’s treatment effect.

Definition 4 (Regression-weighted estimator (RWE)). The regression-weighted estimator re-weights

each observation according to

ŵi =
[
V̂ar (x̃j | g(j) = g(i))

]−1/2
; (3)

that is, inversely proportional to the standard deviation of the conditional treatment values within

its group. Let Ŵ be a diagonal matrix of these values squared. Then, the RWE is given by:

b̂RWE =
(
X̃′ŴX̃

)−1
X̃′ŴỸ.

To calculate the RWE, first estimate the annihilator matrix M. Then, calculate the weights

according to Equation 3. Then, perform weighted least squares using the annihilated data. Note

5These weights are designed to align with the definition of ai; see footnote 4.
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that the RWE can be re-written as:

b̂RWE =

(∑
i

x̃2
i

V̂ar (x̃i | g(j) = g(i))

)−1∑
i

x̃iỹi

V̂ar (x̃j | g(j) = g(i))
=

1

N

∑
g

Ng
Ĉov (x̃i, ỹi | g(i) = g)

V̂ar (x̃i | g(i) = g)
.

The IWE and RWE can be compared to the FE. First, it should be noted that, unlike the FE,

both the IWE and the RWE are unbiased estimators of the ATE (see Appendix A). Furthermore,

they are consistent, which we illustrate by deriving the joint asymptotic distribution of the three

estimators.6 To do so, we first define Ω̂ to be the variance-covariance matrix of ε, which may be

defined following standard heteroskedastic- or cluster-robust approaches.

Proposition 2 (Asymptotic distribution of the estimators). Under standard assumptions for the

data-generating process given by Equation 1 (see Appendix A and, e.g., Wooldridge (2001)), the

asymptotic distribution of the estimators is

√
N


b̂FE − βFE

b̂IWE − βATE

b̂RWE − βATE

 d−→ N

0,


ΣFE Σ12 Σ13

Σ′12 ΣIWE Σ23

Σ′13 Σ′23 ΣRWE


 ,

where

VX̃ = E
[
x̃2
i

]
VÃ = E [ã′iãi]

VW
X̃

= E
[
w2
i x̃

2
i

]
= 1 f = [1 π1 . . . πG−1]

ΣFE = V−1
X̃

[
plim X̃′Ω̂X̃

N

]
V−1

X̃
Σ12 = V−1

X̃

[
plim X̃′Ω̂Ã

N

]
V−1

Ã
f ′

ΣIWE = f V−1
Ã

[
plim Ã′Ω̂Ã

N

]
VÃf ′ Σ13 = V−1

X̃

[
plim X̃′Ω̂WX̃

N

] [
VW

X̃

]−1

ΣRWE =
[
VW

X̃

]−1 [
plim X̃′WΩ̂WX̃

N

] [
VW

X̃

]−1
Σ23 = fV−1

Ã

[
plim Ã′Ω̂WX̃

N

] [
VW

X̃

]−1
.

Remarks.

1. Identification is achieved if the FE model is identified and Var(x̃i | g(i) = g) > 0 ∀ g, that is,

if there is variation in treatment (either in level or assignment status) within each group.

2. The IWE estimates the treatment effect for each group, allowing the researcher to examine

6The fixed effects that we consider denote group membership and the sizes of these groups grow with overall
sample size—i.e., Ng → ∞ ∀ g ∈ 1, . . . , G, G fixed. This is somewhat opposite of the typical configuration in panel
data problems.

8



the various treatment effects, which themselves may be of interest. The RWE does not

estimate the group-level effects, which is an advantage if the sample size is relatively small.

The effective sample size is often small when clustered standard errors are employed and

the RWE may be more successful in this situation. This is particularly true if the level of

heterogeneity and the level of clustering are the same or colinear.7

3. In the presence of heterogeneous treatment effects, the IWE may reduce standard errors by

modeling the effects directly. The IWE may also be more robust to model misspecification.

4. We only consider heterogeneity in β and assume constant γ coefficients across groups. Under

this assumption, the IWE estimator is a more parsimonious version of a fully saturated

model estimated separately for each group. The econometrician must decide whether this

assumption is acceptable for his or her particular application.

5. When the IWE is estimated, a standard Wald test can be used to test for the presence

of heterogeneous treatment effects. When the IWE and its associated interactions are not

estimated, a score test based on the FE can be used instead.

6. Given the asymptotic result in Proposition 2, it is straightforward to perform a test of equality

between either estimate of the ATE and the FE estimate.

7. These results can be confirmed using a Monte Carlo simulation; see Appendix B.

2.3 Testing for Heterogeneous Treatment Effects

Armed with two estimators of the ATE, we next consider testing. First, we derive tests for the

presence of heterogeneous treatment effects using both Wald and score tests. Then, we offer a

specification test for equality between the ATE and the FE. These tests are implemented by Stata

commands and an R package available from the authors, as discussed in Appendix C.

7The RWE estimator is identified in this situation because the model form is the same as the FE model, which
is identified and the clustered variance-covariance matrix is well-defined, but observations are differentially weighted
based on covariates, rather than features of the error structure.
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2.3.1 Wald Test for Modeled Heterogeneity

If the IWE is estimated following Equation 2, then testing for the presence of heterogeneous treat-

ment effects is straightforward. Standard or robust methods can be used to test for the joint

significance of the interaction terms.

Proposition 3 (Wald test for modeled heterogeneity). The Wald test statistic for heterogeneous

treatment effects is calculated according to

TW = pVINTp′,

where

VINT =
(
Ã′Ã

)−1
Ã′Ω̂Ã

(
Ã′Ã

)−1

and the (G− 1)×G matrix

p =

[
0 1G−1

]
.

Asymptotically, this test statistic has a χ2
G−1 distribution under the null hypothesis.

2.3.2 Score Test for Unmodeled Heterogeneity

If the RWE is estimated, the researcher may not be interested in or able to estimate the treatment

effects by group. Nonetheless, the presence of heterogeneous treatment of the form modeled by the

IWE can be tested.

This procedure begins by obtaining the residual from the FE model for each observation

ei.
8 The score is calculated according to

s
(
yi; ai, zi, b̂

FE
)

= ei

 zi

ai

 .
Proposition 4 (Score test for unmodeled heterogeneity). A score test statistic for the presence of

8e = MY −MXb̂FE .
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heterogeneous treatment effects has the form9

TS = N

(
1

N

N∑
i=1

s
(
yi; ai, zi, b̂

FE
))′

S−1
0 C′

(
CS−1

0 C′
)−1

CS−1
0

(
1

N

N∑
i=1

s
(
yi; ai, zi, b̂

FE
))

,

where

S0 =
1

N

N∑
i=1

s
(
yi; ai, zi, b̂

FE
)

s
(
yi; ai, zi, b̂

FE
)′

and

C =

[
0(G−1)×(K+1) IG−1

]
(see, e.g., Wooldridge, 2001). If clustering is desired, with C clusters and Nc observations in

cluster c, then instead we have

S0 =
1

C

C∑
c=1

Nc∑
j=1

Nc∑
i=1

s
(
yi; ai, zi, b̂

FE
)

s
(
yi; ai, zi, b̂

FE
)′
.

Like the Wald test above, this test statistic has an asymptotic χ2
G−1 distribution under the null

hypothesis.10

2.3.3 Test for Equality Between the ATE and FE Estimates

Even if heterogeneous treatment effects are present, the ATE and FE may be equal or at least

statistically indistinguishable. In this subsection, we derive a test that is able to distinguish between

the two estimates. The same approach can be applied for either estimator of the ATE (i.e., RWE

or IWE) and we refer to the chosen estimator as b̂ATE .

Proposition 5 (Specification test of the differences between the FE and ATE estimates). The test

of the following null hypothesis

H0 : βATE − βFE = 0

Ha : βATE − βFE 6= 0

9This form assumes that the information matrix equality holds, which is true under standard regularity conditions
and correct specification under the null (see Cameron and Trivedi, 2005).

10This test may outperform the Wald test when a clustered variance-covariance matrix is used (Kline and Santos,
2012).
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can be conducted using a Hausman-style test. Note that the Wald test statistic

TE =

(
b̂ATE − b̂FE

)2

Var
[
b̂ATE − b̂FE

]
has an asymptotic χ2(1) distribution under H0. The variance term is easily computed using the

joint asymptotic distribution given in Proposition 2.

3 Comparing FE and ATE Estimates: An AER Investigation

To consider the empirical relevance of the distinction between the FE and ATE estimators, we

turn to highly-cited papers published in the American Economic Review between 2004 and 2009.

The papers that we choose are well known in their respective fields and rightfully serve as prime

examples of respected empirical work. We find the eight most-cited papers that use fixed effects

in an OLS model as part of their primary specification and meet additional requirements that

serve to limit our scope to papers in applied microeconomics with a clear effect of interest. These

papers are listed in Table 2 along with the outcomes, effects of interest, fixed effects considered,

and models replicated as identified by the table and column number of appearance in the original

paper. A complete description of the process that we follow to identify these papers can be found

in Appendix D.1.

To consider whether the difference between the FE and ATE estimators is empirically

important, we test for heterogeneous treatment effects and for a difference between the FE and

ATE estimates.11 Our results are summarized in Table 3. For each paper, we list the groups

that we consider as potential dimensions of treatment effect heterogeneity along with a test for

the presence of heterogeneity, a specification test comparing the ATE and FE estimates, and the

percent difference in the two estimates. In the final column, we indicate whether the author

considers treatment effect heterogeneity among the groups. These statistics all use the RWE and

we compute standard errors following the level of clustering used by the original author.12 The

11We develop a Stata command and R package to perform these analyses. See Appendix C. We have posted these
resources online for researchers interested in implementing these tests.

12In Appendix D.3, we provide both the clustered and non-clustered heteroskedasticity-robust results. If the fixed
effects groups are colinear with the clustering term, we are not able to cluster the IWE estimator. This is the case
for the coastal interaction in Banerjee and Iyer (2005) and in the models of Oreopoulos (2006). Because the RWE
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results for the IWE are generally very similar, as we would expect, and these results are included

in the detailed tables of Appendix D.3.

Column (3) shows that all but one paper has at least one set of fixed effects groups that

exhibit treatment effect heterogeneity. This heterogeneity translates into significant differences

between the ATE and FE estimates for five papers at the 5% level and seven papers at the 10%

level, as seen in Column (4). Defining a difference to be “economically significant” if it exceeds

10%, Column (5) shows that five papers have economically significant differences between the ATE

and FE estimates. The average of the largest deviation for each paper that we consider is 21%.

As a comparison, Graham and Powell (2012) find a 25% difference between their CRC and FE

estimates.

The weighting scheme employed by FE yields a more efficient estimator in the absence of

heterogeneous treatment effects. This suggests that FE may be more efficient if heterogeneity is

relatively unimportant. As we have shown, however, the FE is generally an inconsistent estimator

of the ATE. This presents a bias-variance trade-off. Figure 1 shows the relationship between the

largest absolute difference between the FE and RWE estimates for each paper and compares that to

the percent difference in the standard errors of the two estimators.13 The ATE estimator exhibits

standard errors that are less than ten percent larger than those for the FE in six of eight cases.14

Overall, the results indicate that there is not generally a strong bias-variance trade-off unless the

differences between the estimates are great. But, if the difference between the estimates is great

(i.e., the bias is high), then the ATE should be preferred for policy and interpretablity reasons.

estimator does not require estimating the interactions, clustering is possible in these cases. We choose to present the
RWE results in Table 3 for this reason.

13If the difference in the standard errors is positive, the RWE has a larger standard error.
14It is perhaps not surprising that the standard errors for Karlan and Zinman (2008) increase substantially given

the large change in the estimate (over 60% for the RWE). But the t-statistics are similar: −4.00 using FE and −3.94
using the RWE.
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Table 2: Papers from the AER used in the meta-analysis

Citation Outcome Effect of interest Fixed effects Table Column

Banerjee and Iyer (2005) Fertilizer use Proportion non-landlord land Coastal dummy, year 3 1
Proportion irrigated
Proportion other cereals
Proportion rice
Proportion wheat
Proportion white rice
Rice yield (log)
Wheat yield (log)

Bedard and Deschênes (2006) Smoking dummy Veteran status Age, education, race, region 5 1

Card et al. (2008) Saw doctor dummy Age over 65 dummy Ethnicity, gender, region, year, 3 6, 8
Was hospitalized dummy education level

Karlan and Zinman (2008) Loan size Interest rate (log) Mailer wave, risk category 4 1

Lochner and Moretti (2004) Imprisonment Education Race, age, year 3 1

Meghir and Palme (2005) Wage (log; change in) Education reform High ability dummy, high father’s 2 1 (row 1)
education dummy, sex, year

Oreopoulos (2006) Wage (log) Education Age, Northern Ireland dummy 2 3

Pérez-González (2006) Market-book ratio CEO heir inheritance High family ownership dummy, 9 1, 6
Operating returns year

Notes: Additional details on our replications are found in Appendix D.
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Table 3: AER replication results

Citation Fixed effect Joint test Diff. test Percent In paper
(p-value) (p-value) diff.

(1) (2) (3) (4) (5) (6)

Banerjee and Iyer (2005) Coastal 0.065* 0.013** -31.7†
(Proportion irrigated) Year 0.000*** 0.896 0.0

Bedard and Deschênes (2006) Age 0.942 0.830 -0.2
Education 0.002*** 0.875 -0.1
Race 0.080* 0.084* 0.5
Region 0.697 0.392 0.1

Card et al. (2008) Ethnicity (outcome: saw doctor) 0.000*** 0.211 -0.5 X
Gender 0.000*** 0.582 -0.4
Region 0.028** 0.258 0.3
Year 0.229 0.603 0.8
Education (whites only) 0.028** 0.278 -2.0 X
Education (non-whites only) 0.967 0.798 -0.4 X

Ethnicity (outcome: hospitalized) 0.001*** 0.614 -0.1 X
Gender 0.000*** 0.068* -0.5
Region 0.004*** 0.301 0.2
Year 0.383 0.436 -1.3
Education (whites only) 0.096* 0.431 1.0 X
Education (non-whites only) 0.743 0.296 3.3 X

Karlan and Zinman (2008) Mailer wave 0.234 0.782 0.2
Risk category 0.005*** 0.003*** 69.7†

Lochner and Moretti (2004) Race (all) 0.000*** 0.000*** -1.7 X
Age (blacks only) 0.000*** 0.000*** 32.6†
Year (blacks only) 0.000*** 0.000*** 1.6
Age (whites only) 0.000*** 0.000*** 29.0†
Year (whites only) 0.005*** 0.095* -0.2

Meghir and Palme (2005) High father’s education 0.000*** 0.000*** 15.5† X
Gender 0.344 0.514 0.3 X
Year 0.000*** 0.337 0.1

Oreopoulos (2006) N.Ireland 0.000*** 0.001*** 0.8 X
Age (Great Britain) 0.242 0.006*** 1.8
Age (N. Ireland) 0.590 0.275 0.8
Age (N. Ireland & Great Britain) 0.005*** 0.053* 1.2

Pérez-González (2006) Year (outcome: MB) 0.143 0.327 -11.3†
High family ownership 0.135 0.510 9.2
Year (outcome: OR) 0.111 0.491 -7.5
High family ownership 0.423 0.503 9.4

Notes: All results are using the RWE estimator. Column 3 gives the p-value for the test of the joint significance of
the interaction terms using a score test. Column 4 gives the p-value for a t test of the difference between the ATE
and FE estimates. Column 5 gives the percent difference between these two estimates. The last column indicates
whether the author considers heterogeneity among these groups. A single star indicates significance at the 10 percent
level, two stars indicate significance at the 5 percent level, and three stars indicate significance at the 1 percent level.
A dagger indicates a difference of more than 10 percent between the two estimates.
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Figure 1: The relationship between the difference in the estimates and the change in variance
among the AER replications

Notes: Figure is based on the full results presented in Appendix D.3. Figure plots estimates from the RWE and
corresponding standard errors at the level of clustering used by the original authors, where applicable.

4 Conclusion

We show that, in the presence of heterogeneous treatment effects, OLS with group fixed effects

generally offers a biased estimator of the average treatment effect, a result that has relevance for a

variety of fields, including labor, development, health, public finance, and corporate finance. Based

on this evidence, we suggest that researchers explore the impact that heterogeneous treatment

effects may have on their estimates by considering the interaction-weighted or regression-weighted

estimators or by analyzing the group-specific weights implied by OLS with fixed effects. We believe

that reporting average treatment effects will make estimates more interpretable for individual papers

and, perhaps more importantly, across academic studies without increasing the variance of the

estimates.

The methods employed in this paper, however, are subject to three notable limitations.

First, when clustered standard errors are used, small-sample issues may arise when the number
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of groups grows close to the number of clusters. When this situation arises, researchers must

choose between estimating conservative standard errors and providing a treatment effect that is

representative of the whole sample. The optimal solution is inherently application specific.

Second, our discussion has been limited to the case of OLS and we have ignored issues of

endogeneity. In cases where the treatment of interest can be assumed to be “as-good-as-random,”

as in the cases of a randomized or natural experiment, regression discontinuity, or difference-

in-differences identification strategies, our methods may be applied directly. When instrumental

variables are used, however, our methods will be complicated by the weights inherent in local average

treatment effect estimation (Abadie, 2002, Kling, 2001); in particular, see Wooldridge (1997) for

an analysis of CRC models in the context of instrumental variables estimation.

Finally, our focus in this paper has been to analyze heterogeneity in treatment effects across

observable groups. Heterogeneity may also arise along unobservable margins (see, e.g., Bitler,

Gelbach and Hoynes, 2014).
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For Online Publication

In this appendix, we first provide the asymptotic distribution of our estimators in Ap-
pendix A. Next, we give Monte Carlo simulation results as evidence for their reliability in Ap-
pendix B. Appendix C provides implementation details for our estimators in R and Stata. The final
section, Appendix D provides details on our replication approach, including our selection procedure,
details for the models in those papers, then detailed replication results for our estimators.

A Asymptotic Distribution

In this appendix, we derive the asymptotic distribution of our estimators. We use standard as-
sumptions for our data-generating process (see, e.g., Wooldridge, 2001).

Assumptions. Consider the following assumptions for the model defined by Equation 1:

1. Exogeneity: E [ε | A,Z] = 0

2. Identification:

(a) V̂ar (x̃i | g(i) = g) > 0 ∀ g ∈ 1, . . . , G, G fixed (i.e., there is variation in treatment for
all groups)

(b) Z′Z is invertible

3. Random sampling:

(a) (Heteroskedasticity-robust standard errors) {(yi,ai, zi)}Ni=1 are i.i.d. draws from a dis-
tribution that satisfies Equation 1.

(b) (Cluster-robust standard errors) In the case of a clustered variance-covariance matrix
Ω̂, {(Yc,Ac,Zc)}Cc=1, where Yc is a vector of outcomes for observations in cluster c,
with Ac and Zc defined similarly and C fixed, are i.i.d. draws from a distribution that
satisfies Equation 1.

4. Convergence of the variance-covariance matrix: The fourth moments of yi, ai, and zi exist.

We note that the IWE and RWE are both unbiased estimators of the ATE.

Proposition 6 (Unbiasedness of IWE). Under the assumptions above, the IWE for Equation 1 is
unbiased:

E
[
b̂IWE

]
= fβ = βATE .

Proposition 7 (Unbiasedness of RWE). Under the assumptions above, the RWE for Equation 1
is unbiased:

E
[
b̂RWE

]
=
∑
g

πgβg = βATE

Given these assumptions, standard law of large number and central limit theorem results
demonstrate that the estimators converge to their respective expected values and have the asymp-
totic variances given in Proposition 2 and below (see, e.g., Wooldridge, 2001).

Proposition 8 (Variances of the estimators). The variances of the estimators are:
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• For the FE model:

Var
(
b̂FE

∣∣∣X,Z) =



1
N σ̂

2

[
1
N

∑
i

x̃2i

]−1
under homoskedasticity

1
N

[
1
N

∑
i

x̃2i

]−2 [
1
N

∑
i

x̃2i e
2
i

]
for a robust estimator

1
N

[
1
N

∑
i

x̃2i

]−2 [
1
N

∑
c∈C

∑
j∈c

∑
i∈c

[x̃j x̃iejei]

]
for a clustered estimator

• For the IWE:
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ã′iãi
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• For the RWE:

Var
(
b̂RWE
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2
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for a cluster-robust estimator

where ei is the residual for observation i under the corresponding estimation approach.

B Monte Carlo Results

This appendix explores the properties of the three estimators that we consider (i.e., FE, RWE,
IWE) using Monte Carlo experiments. We generate 1000 simulated datasets with 1000 observations
according to the following equation:

yi = αg + xiβg + ziγ + εi,

where αg is one of five group fixed effects with each group having an equal fraction of observations.
xi and zi are each scalars.

We first analyze the case where the true data generating process is a model of homogenous
treatment effects and show that all estimators provide consistent estimates. In particular, we set
βg = 3.5 for all g, γ = 0.75, let Cov (xi, zi) = 0.3, and allow the variance of xi to depend on g as
follows:

Var (xi|g(i) = g) =


58.33 if g = 1
15.03 if g = 2
7.39 if g = 3
4.57 if g = 4
2.18 if g = 5.

Panel A of Table 4 displays the means and standard deviations of the estimates and analytic
standard errors for each of the estimators. The mean estimate of β is very close to the true value
for all three approaches when treatment effects are heterogeneous. The mean analytic standard
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errors are also close to the Monte Carlo estimates of those statistics (i.e., the standard deviation of
the βs). Note that, under correct specification, the FE has smaller standard errors than the IWE
and RE estimators.

We now explore the effect of allowing βg to vary by group as follows:

βg =


-0.5 if g = 1
1.5 if g = 2
3.5 if g = 3
5.5 if g = 4
7.5 if g = 5.

Because each group has the same number of observations, the ATE is still 3.5. Since the variance
of xi is greater for groups with below-mean βg’s, however, the FE will be biased downwards. Panel
B of Table 4 displays the results from this exercise and confirms this result. Note that the standard
errors of the IWE and RWE estimators are very similar, thus it does not appear that either is
preferred on efficiency grounds under this data-generating process.

Table 4: Monte Carlo results

Panel A: Homogeneous Effects
Mean Std. dev.

Fixed Effect: β 3.502 0.071
Fixed Effect: SE 0.069 0.002

IWE: β 3.501 0.119
IWE: SE 0.116 0.006

RWE: β 3.502 0.119
RWE: SE 0.117 0.006

Panel B: Heterogeneous Effects
Mean Std. dev.

Fixed Effect: β 0.715 0.071
Fixed Effect: SE 0.096 0.002

IWE: β 3.501 0.119
IWE: SE 0.116 0.006

RWE: β 3.503 0.119
RWE: SE 0.119 0.008

Number of observations 1000
Number of simulations 1000

C Implementation of the Estimators and Tests in Stata and R

As a companion to this paper, we develop Stata commands and an R package that tests for het-
erogeneity using both the Wald and score tests, estimates the FE, IWE, and RWE, performs the
specification test for each ATE estimator, and computes the percentage difference between each
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ATE estimate and the OLS estimate. These packages are available from the authors; basic syntax
is discussed below.

C.1 Stata Commands

The ado file GSSUtest.ado contains the command GSSUtest, which estimates the IWE and per-
forms the Wald test and the specification test of equality between the OLS estimate and the IWE.
The command has the syntax:

GSSUtest y Tr FEg [varlist] [if] [in] [, vce(string) cluster(clustervar)]

where

• y is the dependent variable;

• Tr is the independent variable of interest (e.g., treatment); and

• FEg is a categorical variable indexing the fixed effect group.

Other predictors can be included in varlist. For homoskedastic errors, ignore the vce() and
cluster() options. For heteroskedastic-robust standard errors, use the option vce(robust) and
for cluster-robust standard errors, specify cluster(clustervar).

The ado file GSSUwtest.ado contains the command GSSUwtest, which has the same syntax
as above and estimates the RWE and performs the specification test of equality between the OLS
estimate and the RWE. Standard errors can be computed to be robust or cluster-robust.

The intscoretest command in the ado file intscoretest.ado has the same syntax and
performs the score test on the interactions between the treatment variable and the fixed effects.
Standard errors can be computed to be heteroskedastic robust.

The ado file GSSUgetrdone.ado offers the command GSSUgetrdone, which has the same
syntax and runs all three commands above and displays the results. GSSUgetrdone automatically
uses robust standard errors in its calculations.

The results from all of the commands can be accessed through matrices stored after execu-
tion. Type ereturn list to list them.

The Stata package can be installed using the following commands:

* Loads website

net from http://www.jcsuarez.com/GSSU

* Describes package

net describe GSSU

* Installs commands

net install GSSU

* Downloads example data

net get GSSU

* Installs required package for GSSUgetrdone.ado

ssc install estout, replace

C.2 R Package

To estimate the IWE, use the function:

EstimateIWE(y, treatment, group, controls, fe.other, data, subset,

cluster.var, is.robust, is.data.returned)
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The RWE is estimated analogously:

EstimateRWE(y, treatment, group, controls, fe.other, data, subset,

cluster.var, is.robust, is.data.returned)

where, for both:

• y is the name of the outcome variable;

• treatment is the name of the treatment variable;

• group is the name of the fixed effect group of interest;

• controls is a character vector of the names of other control variables;

• fe.other is a character vector of the names of other fixed effects in the model;

• data is the data frame to be used for estimation;

• subset is an optional subset declaration;

• cluster.var is the name of the variable used for clustered standard errors;

• is.robust is a logical indicating whether robust standard errors should be used; and

• is.data.returned is a logical indicating whether the data data frame should be returned
with the estimation results.

For either estimation procedure, a specification test and the score test(see Appendix 2.3)
are conducted by:

SpecTest(model, data)

ScoreTest(model, data)

where model is the result of one of the estimation procedures above and data is the corresponding
data frame. The Wald test (see Section 2.3.1) is only conducted for the IWE estimator and has
the form

WaldTestIWE(model)

The R package can be installed using the following commands:

install.packages(’http://cgibbons.us/research/packages/GSSU.tar.gz’,

type = ’source’, repos = NULL)

D AER Replications

D.1 Paper Selection

In this paper, our goal is to determine whether the difference between an estimator of the ATE and
the FE estimator is empirically important. We do this by replicating high quality papers from the
AER. We examine a breadth of papers that covers several fields, several years, and several units
of analysis and thus they serve as a decent representation of the use of fixed effects in the applied
econometrics literature.

Our guidelines for paper selection are:
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• The paper must have been published in the American Economic Review. We choose this
qualification in order to limit our universe of analysis both in terms of quantity and quality
of papers considered and to guarantee easy access to the necessary data.

• The paper must be published in the March 2004 issue or later (to March 2009, the issue
predating our literature search). The AER policy during this period requires that, barring
any acceptable restriction, the data for these papers be posted to the EconLit website. This
leads to the condition that:

• The data necessary to replicate the main specification(s) of the paper must be readily available
on the EconLit website.15 We use these data and direct those interested to the EconLit website
to obtain these files.

• The main specification(s) of the paper must have a specific effect of interest.16

• The main specification(s) of the paper must use some type of fixed effect. We identify papers
meeting this qualification by searching the PDF files of the published papers for the terms
“fixed effect” (which captures the plural “effects” as well) and for “dumm” (which captures
“dummy” or “dummies,” common synonyms for fixed effects).

• We limit ourselves to microeconomic analyses and do not consider papers based on financial
economics issues.

• We ignore papers that require special methods to handle time series issues.

We choose to replicate a total of eight papers in our analysis. To order our search, we consider
papers in order of citations per year since publication. First, we use the citation counts provided
by the ISI Web of Science on July 16, 2009. We limit our search to the American Economic
Review and the years 2004–2009, as outlined above. Unfortunately, the Web of Science does not
provide the volume for the papers contained therein. Instead, we create an algorithm that assigns a
volume number to a paper based upon its page number; these assignments are verified as papers are
considered. The total number of citations are divided by the years since publication. For example,
in June 2009, a paper published in June 2004 was published 5 years before and a paper published
in September 2004 was published 4.75 years before.

Citation counts are very noisy in the short time after publication that we consider here. Our
citations-per-year metric might overweight later papers.17 Nonetheless, the eight selected papers
are drawn from a universe that includes all papers in this period with over 20 citations and 86%
of all papers with 15 or more citations. It appears that we screen most of the highly-cited papers
from this period and do not ignore the most recent papers, as would occur using the gross citation
count.

Before estimating the ATE for the papers that we consider, we first ensure that we can
replicate the results obtained by the authors as given in their respective papers. We can provide
Stata DO and log files that generate and produce these results. We add our estimation procedures
to these files as well.18

15We determine which specifications are the “main” ones by considering the discussion of the effects in the text by
the authors and ignore those specifications identified as robustness checks.

16In a previous version of this paper, we included a paper by Griffith, Harrison and Van Reenen (2006). Upon
reflection, this paper does not satisfy this criterion and has been removed from consideration.

17In June 2009, 1 citation for a paper published in March 2009 is equal to 4 for a paper published in June 2008
and 20 for a paper published in June 2004.

18See Section C.
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In choosing the fixed effects groups to consider when there are several fixed effects in the
regressions, we choose such that the number of groups is not unruly (U.S. states, for example,
may produce too many terms to be informative). Our interacted regressions preserve all other
features of the replicated specifications (e.g., clustering, robust standard errors, and inclusion of
other covariates) unless otherwise noted in the text.

We do not claim that the source of heterogeneity that we consider is the most salient within
the given economic situation. Additionally, we do not suggest that modeling treatment effect
heterogeneity is the first-order extension of the analysis in the papers that we examine. We make
no effort to search the subsequent literature to identify other areas of concern in these papers.
Lastly, many of these papers employ instrumental variables to combat endogeneity. In these cases,
we use the base OLS case to illustrate our point.

D.2 Replication Details

We replicate the specifications cited in Table 2. Some of these authors include fixed effects inter-
actions or run regressions separately for subgroups; we list these practices in Table 5. In Banerjee
and Iyer (2005), the authors have eight separate outcomes of interest. In the body of the paper,
we give results only for a subset of these results.
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Table 5: Fixed effects interactions and regressions by subgroup conducted in the original papers

Citation Separate regressions Interactions

Banerjee and Iyer (2005) Entire country, subregion

Bedard and Deschênes (2006)

Card, Dobkin and Maestas (2008) Race × education Age, age-squared

Karlan and Zinman (2008)

Lochner and Moretti (2004) Race (black, white)

Meghir and Palme (2005) Sex (male, female) Sex (male, female in full sample OLS)
Father’s education (low, high)
Ability (low, high)
Ability × father’s education × sex

Oreopoulos (2006) Country

Pérez-González (2006) Less selective college attendance dummy
Graduate school attendance dummy
Positive R&D expenditure dummy

Notes: Separate regressions and interaction terms only listed for specifications based upon the one given in Table 2. Pérez-González (2006) does not include the
dummy variables that he subsequently interacts with treatment in his base regression; hence, we do not test their interactions here.
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D.3 Detailed Results

In this subsection, we presented detailed results for each paper. Because the IWE and RWE
results are similar, we discuss only the RWE results in the body of the paper; here, we present
both sets. If clustering was used by the paper’s author, we provide both the clustered and non-
clustered heteroskedasticity-robust results.19 The estimates are given along with standard errors
in parentheses. A single star indicates significance at the 10% level, two stars significance at the
5% level, and three stars indicate significance at the 1% level.

In each table, tests for heterogeneous treatment effects are given. The Wald test is used
for the IWE estimator and the score test is used for the RWE estimator.20 Specification tests for
the difference between the ATE and FE estimates are conduced using the Wald statistic and an
asymptotic normal approximation.

Lastly, we note that we are not able to replicate the point estimate that Oreopoulos (2006)
provides for his regression of Northern Ireland and Great Britain combined; we use the specification
that he provides and base our results on this model.

19Bedard and Deschênes (2006) and Pérez-González (2006) do not use clustered standard errors.
20The Wald test is natural when the interaction coefficients are actually calculated, whereas the score test is natural

when they are not, hence the pairings chosen here.
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Table 6: Banerjee and Iyer (2005)

(a) Fertilizer with coastal interaction

Clustering No clustering

FE IWE RWE FE IWE RWE

10.708∗∗∗ 10.867∗∗∗ 10.333∗∗∗ 10.708∗∗∗ 10.867∗∗∗ 10.333∗∗∗

(3.345) (3.309) (3.588) (1.020) (0.907) (1.008)

Het. test stat. 0.278 0.787 3.180 0.787
Het. test p-value 0.598 0.375 0.075 0.375
Spec. test stat. 0.483 0.178 1.726 2.045
Spec. test p-value 0.629 0.673 0.084 0.153
Percent change 1.489 −3.502 1.489 −3.502

(b) Fertilizer with year interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

10.708∗∗∗ 10.740∗∗∗ 10.738∗∗∗ 10.708∗∗∗ 10.740∗∗∗ 10.738∗∗∗

(3.345) (3.338) (3.342) (1.020) (0.895) (0.922)

Het. test stat. 124.522 139.293 263.139 139.293
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. 0.563 7.230 0.172 77.485
Spec. test p-value 0.573 0.007 0.863 0.000
Percent change 0.304 0.287 0.304 0.287

(c) Log total yield with coastal interaction

Clustering No clustering

FE IWE RWE FE IWE RWE

0.157∗∗ 0.151∗∗ 0.142∗ 0.157∗∗∗ 0.151∗∗∗ 0.142∗∗∗

(0.071) (0.070) (0.074) (0.015) (0.015) (0.015)

Het. test stat. 1.156 5.487 26.277 5.487
Het. test p-value 0.282 0.019 0.000 0.019
Spec. test stat. −0.873 0.881 −4.386 21.152
Spec. test p-value 0.383 0.348 0.000 0.000
Percent change −4.239 −9.611 −4.239 −9.611
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(d) Log total yield with year interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.157∗∗ 0.157∗∗ 0.157∗∗ 0.157∗∗∗ 0.157∗∗∗ 0.157∗∗∗

(0.071) (0.071) (0.071) (0.015) (0.015) (0.015)

Het. test stat. 274.215 126.335 82.683 126.335
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. 0.275 9.096 0.002 4.412
Spec. test p-value 0.783 0.003 0.998 0.036
Percent change 0.003 0.012 0.003 0.012

(e) Log rice yield with coastal interaction

Clustering No clustering

FE IWE RWE FE IWE RWE

0.171∗∗ 0.165∗∗ 0.171∗∗ 0.171∗∗∗ 0.165∗∗∗ 0.171∗∗∗

(0.081) (0.080) (0.080) (0.017) (0.020) (0.020)

Het. test stat. 1.314 1.936 18.466 1.936
Het. test p-value 0.252 0.164 0.000 0.164
Spec. test stat. −0.881 0.000 −3.765 0.000
Spec. test p-value 0.378 0.997 0.000 0.988
Percent change −3.296 0.031 −3.296 0.031

(f) Log rice yield with year interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

nland 0.171∗∗ 0.170∗∗ 0.170∗∗ 0.171∗∗∗ 0.170∗∗∗ 0.170∗∗∗

(0.081) (0.081) (0.081) (0.017) (0.020) (0.020)

Het. test stat. 171.874 123.681 103.150 123.681
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. −0.559 6.281 −0.074 6.626
Spec. test p-value 0.576 0.012 0.941 0.010
Percent change −0.123 −0.123 −0.123 −0.123

(g) Percent HYV cereals with coastal interaction

Clustering No clustering

FE IWE RWE FE IWE RWE

0.057∗ 0.058∗ 0.059∗ 0.057∗∗∗ 0.058∗∗∗ 0.059∗∗∗

(0.031) (0.031) (0.032) (0.010) (0.009) (0.010)

Het. test stat. 0.045 0.170 0.391 0.170
Het. test p-value 0.832 0.680 0.532 0.680
Spec. test stat. 0.212 0.058 0.629 0.413
Spec. test p-value 0.832 0.809 0.529 0.520
Percent change 1.131 3.281 1.131 3.281
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(h) Percent HYV cereals with year interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.057∗ 0.057∗ 0.057∗ 0.057∗∗∗ 0.057∗∗∗ 0.057∗∗∗

(0.031) (0.031) (0.031) (0.010) (0.009) (0.009)

Het. test stat. 78.041 88.748 65.746 88.748
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. 0.330 0.313 0.092 0.678
Spec. test p-value 0.742 0.576 0.926 0.410
Percent change 0.173 −0.191 0.173 −0.191

(i) Percent HYV rice with coastal interaction

Clustering No clustering

FE IWE RWE FE IWE RWE

0.079∗ 0.080∗ 0.078∗ 0.079∗∗∗ 0.080∗∗∗ 0.078∗∗∗

(0.044) (0.043) (0.042) (0.012) (0.012) (0.012)

Het. test stat. 0.120 0.041 1.231 0.041
Het. test p-value 0.729 0.840 0.267 0.840
Spec. test stat. 0.337 0.055 1.095 0.467
Spec. test p-value 0.736 0.815 0.274 0.494
Percent change 1.099 −1.725 1.099 −1.725

(j) Percent HYV rice with year interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.079∗ 0.079∗ 0.079∗ 0.079∗∗∗ 0.079∗∗∗ 0.079∗∗∗

(0.044) (0.044) (0.043) (0.012) (0.012) (0.012)

Het. test stat. 108.783 76.353 280.287 76.353
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. −0.205 0.005 −0.026 0.004
Spec. test p-value 0.838 0.945 0.979 0.950
Percent change −0.079 −0.018 −0.079 −0.018

(k) Percent HYV wheat with coastal interaction

Clustering No clustering

FE IWE RWE FE IWE RWE

0.092∗∗ 0.080∗ 0.072 0.092∗∗∗ 0.080∗∗∗ 0.072∗∗∗

(0.046) (0.046) (0.047) (0.012) (0.013) (0.014)

Het. test stat. 7.583 0.526 82.283 0.526
Het. test p-value 0.006 0.468 0.000 0.468
Spec. test stat. −1.285 3.468 −5.412 37.519
Spec. test p-value 0.199 0.063 0.000 0.000
Percent change −13.337 −21.610 −13.337 −21.610
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(l) Percent HYV wheat with year interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.092∗∗ 0.091∗∗ 0.091∗∗ 0.092∗∗∗ 0.091∗∗∗ 0.091∗∗∗

(0.046) (0.045) (0.046) (0.012) (0.013) (0.013)

Het. test stat. 179.014 69.347 126.897 69.347
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. −0.581 5.273 −0.311 2.227
Spec. test p-value 0.561 0.022 0.756 0.136
Percent change −0.793 −0.514 −0.793 −0.514

(m) Irrigation with coastal interaction

Clustering No clustering

FE IWE RWE FE IWE RWE

0.065∗ 0.061∗ 0.045 0.065∗∗∗ 0.061∗∗∗ 0.045∗∗∗

(0.034) (0.034) (0.036) (0.008) (0.007) (0.008)

Het. test stat. 1.433 3.414 34.449 3.414
Het. test p-value 0.231 0.065 0.000 0.065
Spec. test stat. −0.873 6.219 −4.402 147.436
Spec. test p-value 0.383 0.013 0.000 0.000
Percent change −6.785 −31.655 −6.785 −31.655

(n) Irrigation with year interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.065∗ 0.065∗ 0.065∗ 0.065∗∗∗ 0.065∗∗∗ 0.065∗∗∗

(0.034) (0.034) (0.034) (0.008) (0.007) (0.007)

Het. test stat. 84.841 80.741 7.622 80.741
Het. test p-value 0.000 0.000 1.000 0.000
Spec. test stat. 0.053 0.017 0.010 0.017
Spec. test p-value 0.958 0.896 0.992 0.897
Percent change 0.006 0.005 0.006 0.005
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Table 7: Bedard and Deschenes (2006)

(a) Age interactions

FE IWE RWE

0.078∗∗∗ 0.078∗∗∗ 0.077∗∗∗

(0.005) (0.006) (0.006)

Het. test stat. 11.090 11.142
Het. test p-value 0.944 0.942
Spec. test stat. 0.108 0.046
Spec. test p-value 0.914 0.830
Percent change 0.111 −0.223

(b) Education interactions

FE IWE RWE

0.078∗∗∗ 0.078∗∗∗ 0.078∗∗∗

(0.005) (0.006) (0.006)

Het. test stat. 14.788 14.918
Het. test p-value 0.002 0.002
Spec. test stat. 0.890 0.025
Spec. test p-value 0.374 0.875
Percent change 0.712 −0.124

(c) Race interactions

FE IWE RWE

0.078∗∗∗ 0.078∗∗∗ 0.078∗∗∗

(0.005) (0.005) (0.005)

Het. test stat. 3.069 3.073
Het. test p-value 0.080 0.080
Spec. test stat. 1.700 2.978
Spec. test p-value 0.089 0.084
Percent change 0.524 0.494

(d) Region interactions

FE IWE RWE

0.078∗∗∗ 0.078∗∗∗ 0.078∗∗∗

(0.005) (0.005) (0.005)

Het. test stat. 5.514 5.557
Het. test p-value 0.701 0.697
Spec. test stat. 1.231 0.734
Spec. test p-value 0.218 0.392
Percent change 0.245 0.075
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Table 8: Card et al. (2008)

(a) Hospitalized; education interactions (whites only)

Clustering No clustering

FE IWE RWE FE IWE RWE

0.012∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗ 0.012∗∗ 0.012∗∗

(0.005) (0.004) (0.004) (0.006) (0.006) (0.006)

Het. test stat. 14.526 6.350 11.513 6.350
Het. test p-value 0.002 0.096 0.009 0.096
Spec. test stat. 2.105 0.619 1.891 0.665
Spec. test p-value 0.035 0.431 0.059 0.415
Percent change 1.601 1.045 1.601 1.045

(b) Hospitalized; education interactions (non-whites only)

Clustering No clustering

FE IWE RWE FE IWE RWE

0.013 0.013∗∗ 0.013∗∗ 0.013 0.013 0.013
(0.010) (0.006) (0.006) (0.010) (0.010) (0.010)

Het. test stat. 0.609 1.242 0.661 1.242
Het. test p-value 0.894 0.743 0.882 0.743
Spec. test stat. 0.720 1.090 0.765 1.262
Spec. test p-value 0.472 0.296 0.444 0.261
Percent change 1.462 3.332 1.462 3.332

(c) Hospitalized; ethnicity interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗ 0.012∗∗ 0.012∗∗

(0.003) (0.003) (0.003) (0.005) (0.005) (0.005)

Het. test stat. 16.479 16.798 15.917 16.798
Het. test p-value 0.001 0.001 0.001 0.001
Spec. test stat. 0.623 0.254 0.716 0.132
Spec. test p-value 0.533 0.614 0.474 0.717
Percent change 0.354 −0.142 0.354 −0.142
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(d) Hospitalized; gender interaction

Clustering No clustering

FE IWE RWE FE IWE RWE

0.012∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗ 0.012∗∗ 0.012∗∗

(0.005) (0.003) (0.003) (0.005) (0.005) (0.005)

Het. test stat. 22.513 22.838 22.119 22.838
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. −2.125 3.335 −1.792 3.632
Spec. test p-value 0.034 0.068 0.073 0.057
Percent change −0.954 −0.485 −0.954 −0.485

(e) Hospitalized; region interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.012∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗ 0.012∗∗ 0.012∗∗

(0.005) (0.003) (0.003) (0.005) (0.005) (0.005)

Het. test stat. 10.712 13.392 10.034 13.392
Het. test p-value 0.013 0.004 0.018 0.004
Spec. test stat. 0.455 1.068 0.427 1.319
Spec. test p-value 0.649 0.301 0.670 0.251
Percent change 0.145 0.179 0.145 0.179

(f) Hospitalized; year interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.012∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗ 0.012∗∗ 0.012∗∗

(0.005) (0.003) (0.003) (0.005) (0.005) (0.005)

Het. test stat. 8.886 11.751 12.256 11.751
Het. test p-value 0.632 0.383 0.345 0.383
Spec. test stat. 0.320 0.606 0.327 0.734
Spec. test p-value 0.749 0.436 0.743 0.392
Percent change 0.259 −1.250 0.259 −1.250

(g) Saw doctor; education interactions (whites only)

Clustering No clustering

FE IWE RWE FE IWE RWE

0.008 0.008 0.008 0.008 0.008 0.008
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Het. test stat. 16.643 9.133 19.725 9.133
Het. test p-value 0.001 0.028 0.000 0.028
Spec. test stat. −2.783 1.179 −2.414 1.752
Spec. test p-value 0.005 0.278 0.016 0.186
Percent change −4.283 −2.008 −4.283 −2.008
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(h) Saw doctor; education interactions (non-whites only)

Clustering No clustering

FE IWE RWE FE IWE RWE

0.038∗∗∗ 0.037∗∗∗ 0.038∗∗∗ 0.038∗∗∗ 0.037∗∗∗ 0.038∗∗∗

(0.014) (0.011) (0.011) (0.014) (0.014) (0.014)

Het. test stat. 4.999 0.262 4.094 0.262
Het. test p-value 0.172 0.967 0.252 0.967
Spec. test stat. −1.757 0.066 −1.722 0.062
Spec. test p-value 0.079 0.798 0.085 0.804
Percent change −1.652 −0.370 −1.652 −0.370

(i) Saw doctor; ethnicity interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.016∗∗ 0.016∗∗ 0.016∗∗ 0.016∗∗ 0.016∗∗ 0.016∗∗

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Het. test stat. 27.968 27.804 31.706 27.804
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. −1.103 1.567 −1.144 1.416
Spec. test p-value 0.270 0.211 0.253 0.234
Percent change −0.868 −0.501 −0.868 −0.501

(j) Saw doctor; gender interaction

Clustering No clustering

FE IWE RWE FE IWE RWE

d65 0.016∗ 0.015∗∗ 0.016∗∗ 0.016∗∗ 0.015∗∗ 0.016∗∗

(0.009) (0.006) (0.006) (0.006) (0.006) (0.006)

Het. test stat. 103.383 53.782 140.021 53.782
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. −2.251 0.302 −2.190 0.812
Spec. test p-value 0.024 0.582 0.029 0.368
Percent change −3.221 −0.371 −3.221 −0.371

(k) Saw doctor; region interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.016∗∗ 0.016∗∗ 0.016∗∗ 0.016∗∗ 0.016∗∗ 0.016∗∗

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Het. test stat. 6.137 9.083 6.637 9.083
Het. test p-value 0.105 0.028 0.084 0.028
Spec. test stat. 0.231 1.279 0.165 1.196
Spec. test p-value 0.817 0.258 0.869 0.274
Percent change 0.053 0.261 0.053 0.261
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(l) Saw doctor; year interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.016∗∗ 0.016∗∗ 0.016∗∗ 0.016∗∗ 0.016∗∗ 0.016∗∗

(0.007) (0.006) (0.006) (0.006) (0.006) (0.006)

Het. test stat. 10.219 14.077 8.602 14.077
Het. test p-value 0.511 0.229 0.659 0.229
Spec. test stat. −0.937 0.271 −0.927 0.424
Spec. test p-value 0.349 0.603 0.354 0.515
Percent change −0.667 0.805 −0.667 0.805
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Table 9: Karlan and Zinman (2008)

(a) Risk interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

−4.368∗∗∗ −7.047∗∗∗ −7.410∗∗∗ −4.368∗∗∗ −7.047∗∗∗ −7.410∗∗∗

(1.093) (1.917) (1.883) (1.229) (1.880) (1.866)

Het. test stat. 8.259 10.518 6.177 10.518
Het. test p-value 0.016 0.005 0.046 0.005
Spec. test stat. −2.569 8.995 −2.407 7.758
Spec. test p-value 0.010 0.003 0.016 0.005
Percent change 61.323 69.652 61.323 69.652

(b) Wave interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

−4.368∗∗∗ −4.319∗∗∗ −4.377∗∗∗ −4.368∗∗∗ −4.319∗∗∗ −4.377∗∗∗

(1.093) (1.084) (1.091) (1.229) (1.026) (1.025)

Het. test stat. 2.215 2.905 1.156 2.905
Het. test p-value 0.330 0.234 0.561 0.234
Spec. test stat. 0.206 0.077 0.917 0.070
Spec. test p-value 0.837 0.782 0.359 0.791
Percent change −1.123 0.211 −1.123 0.211
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Table 10: Lochner and Moretti (2004)

(a) Age (whites only)

Clustering No clustering

FE IWE RWE FE IWE RWE

−0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Het. test stat. 1, 990.375 415.598 3, 382.355 415.598
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. 15.161 403.287 43.613 2, 070.711
Spec. test p-value 0.000 0.000 0.000 0.000
Percent change 33.597 28.992 33.597 28.992

(b) Year (whites only)

Clustering No clustering

FE IWE RWE FE IWE RWE

−0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Het. test stat. 6.539 10.609 10.340 10.609
Het. test p-value 0.038 0.005 0.006 0.005
Spec. test stat. −1.570 −2.782 −2.614 −6.955
Spec. test p-value 0.117 0.095 0.009 0.008
Percent change −0.169 −0.166 −0.169 −0.166

(c) Age (blacks only)

Clustering No clustering

FE IWE RWE FE IWE RWE

−0.004∗∗∗ −0.005∗∗∗ −0.005∗∗∗ −0.004∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Het. test stat. 867.312 38.446 1, 424.575 38.446
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. 13.171 483.568 30.781 1, 367.197
Spec. test p-value 0.000 0.000 0.000 0.000
Percent change 34.229 32.562 34.229 32.562
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(d) Year (blacks only)

Clustering No clustering

FE IWE RWE FE IWE RWE

−0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Het. test stat. 36.508 118.706 72.706 118.706
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. 5.264 29.450 8.250 59.070
Spec. test p-value 0.000 0.000 0.000 0.000
Percent change 1.941 1.675 1.941 1.675

(e) Race (all observations)

Clustering No clustering

FE IWE RWE FE IWE RWE

−0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Het. test stat. 27.187 57.166 85.278 57.166
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. −4.592 −273.533 −9.098 −722.906
Spec. test p-value 0.000 0.000 0.000 0.000
Percent change −0.701 −1.627 −0.701 −1.627
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Table 11: Meghir and Palme (2005)

(a) Female interaction

Clustering No clustering

FE IWE RWE FE IWE RWE

0.014 0.014 0.014 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗

(0.009) (0.009) (0.009) (0.004) (0.004) (0.004)

Het. test stat 0.400 0.896 2.528 0.896
Het. test p-value 0.527 0.344 0.112 0.344
Spec. test stat. 0.3232 0.425 1.113 2.663
Spec. test p-value 0.747 0.514 0.266 0.103
Percent change 0.238 0.277 0.238 0.277

(b) Year interactions

Clustering No clustering

FE IWE RWE FE IWE RWE

0.014 0.014 0.014 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗

(0.009) (0.009) (0.009) (0.004) (0.004) (0.004)

Het. test stat 41.964 60.845 29.964 60.845
Het. test p-value 0.000 0.000 0.002 0.000
Spec. test stat. 2.486 0.922 1.090 0.926
Spec. test p-value 0.013 0.337 0.276 0.336
Percent change 0.523 0.104 0.523 0.104

(c) High father’s education interaction

Clustering No clustering

FE IWE RWE FE IWE RWE

0.014 0.017∗∗ 0.016∗ 0.014∗∗∗ 0.017∗∗∗ 0.016∗∗∗

(0.009) (0.008) (0.009) (0.004) (0.004) (0.004)

Het. test stat 46.725 61.562 149.110 61.562
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. 1.164 21.572 9.504 85.655
Spec. test p-value 0.244 0.000 0.000 0.000
Percent change 18.459 15.501 18.459 15.501
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Table 12: Oreopoulos (2006)

(a) Age interaction (Great Britain)

Clustering No clustering

FE IWE RWE FE IWE RWE

0.075∗∗∗ 0.076∗∗∗ 0.077∗∗∗ 0.075∗∗∗ 0.076∗∗∗ 0.077∗∗∗

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Het. test stat 879.854 32.831 42.601 33.740
Het. test p-value 0.000 0.242 0.038 0.210
Spec. test stat. 0.959 7.480 2.851 21.853
Spec. test p-value 0.338 0.006 0.004 0.000
Percent change 1.206 1.794 1.206 1.794

(b) Age interaction (Northern Ireland)

Clustering No clustering

FE IWE RWE FE IWE RWE

0.106∗∗∗ 0.107∗∗∗ 0.107∗∗∗ 0.106∗∗∗ 0.107∗∗∗ 0.107∗∗∗

(0.004) (0.003) (0.004) (0.002) (0.003) (0.003)

Het. test stat 148, 468.588 25.686 61.217 25.686
Het. test p-value 0.000 0.590 0.000 0.590
Spec. test stat. 0.331 1.192 0.574 1.518
Spec. test p-value 0.741 0.275 0.566 0.218
Percent change 0.500 0.760 0.500 0.760

(c) Age interaction (G.B. and N.I.)

Clustering No clustering

FE IWE RWE FE IWE RWE

0.078∗∗∗ 0.079∗∗∗ 0.079∗∗∗ 0.078∗∗∗ 0.079∗∗∗ 0.079∗∗∗

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Het. test stat 173.473 50.981 43.709 51.981
Het. test p-value 0.000 0.005 0.030 0.005
Spec. test stat. 0.684 3.753 1.887 14.200
Spec. test p-value 0.494 0.053 0.059 0.000
Percent change 0.668 1.222 0.668 1.222
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(d) N. Ireland dummy interaction (G.B. and N.I.)

Clustering No clustering

FE IWE RWE FE IWE RWE

0.078∗∗∗ 0.079∗∗∗ 0.079∗∗∗ 0.078∗∗∗ 0.079∗∗∗ 0.079∗∗∗

(0.002) (0.001) (0.002) (0.001) (0.001) (0.001)

Het. test stat 44.647 43.717 91.327 43.717
Het. test p-value 0.000 0.000 0.000 0.000
Spec. test stat. 0.725 11.004 4.831 109.906
Spec. test p-value 0.468 0.001 0.000 0.000
Percent change 0.712 0.753 0.712 0.753
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Table 13: Pérez-González (2006)

(a) Operating returns on assets (OROA), year interactions

FE IWE RWE

−0.027∗∗∗ −0.027∗∗∗ −0.025∗∗

(0.010) (0.009) (0.010)

Het. test stat. 34.878 25.540
Het. test p-value 0.010 0.111
Spec. test stat. 0.217 0.474
Spec. test p-value 0.829 0.491
Percent change −2.372 −7.464

(b) Market-to-book ratio (M-B), year interactions

FE IWE RWE

−0.256∗∗∗ −0.226∗∗∗ −0.227∗∗∗

(0.089) (0.083) (0.087)

Het. test stat. 39.777 24.390
Het. test p-value 0.002 0.143
Spec. test stat. 0.978 0.963
Spec. test p-value 0.329 0.327
Percent change −11.448 −11.278

(c) Operating returns on assets (OROA), high family ownership interaction

FE IWE RWE

−0.027∗∗∗ −0.030∗∗∗ −0.030∗∗∗

(0.010) (0.009) (0.008)

Het. test stat. 0.492 0.642
Het. test p-value 0.483 0.423
Spec. test stat. −0.693 0.449
Spec. test p-value 0.489 0.503
Percent change 10.368 9.390

(d) Market-to-book ratio (M-B), High family ownership interaction

FE IWE RWE

−0.256∗∗∗ −0.302∗∗∗ −0.279∗∗∗

(0.089) (0.079) (0.077)

Het. test stat. 1.482 2.238
Het. test p-value 0.223 0.135
Spec. test stat. −1.171 0.435
Spec. test p-value 0.243 0.510
Percent change 18.040 9.160
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