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ABSTRACT

In Sub-Saharan Africa, 600 million people live without electricity. Despite ambitions of 
governments and donors to invest in rural electrification, decisions about how to extend electricity 
access are being made in the absence of rigorous evidence. Using a novel dataset of 20,000 geo-
tagged structures in rural Western Kenya, we provide descriptive evidence that electrification rates 
remain very low despite significant investments in grid infrastructure. This pattern holds across 
time and for both poor and relatively well-off households and businesses. We argue that if 
governments wish to leverage existing infrastructure and economies of scale, subsidies and new 
approaches to financing connections are necessary.
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I. Introduction 

In Sub-Saharan Africa nearly 600 million people—or 70% of the population—live without 

electricity (IEA 2013). This region contains nearly half of the unelectrified households in the 

world and decisions about how to increase energy access will have major implications for 

poverty alleviation and global climate change. Yet there is limited evidence on even the most 

basic patterns of energy demand and the socio-economic impacts of electrification in Africa. 

Policy makers, non-governmental organizations, and donors often assume that the majority of the 

unelectrified are “off grid,” or too far away to realistically connect to a national electricity 

network. The International Energy Agency constructs its World Energy Outlook forecasts using 

an assumption that mini-grids and small, stand-alone off-grid solutions will be required for 70% 

of all rural areas in developing countries (IEA 2012). As a result, there is growing support for 

off-grid, distributed energy approaches, most of which are best suited for regions without access 

to grid power. At the same time, the cost-benefit calculations driving large-scale energy 

infrastructure investments tend to be based on the assumption that “if you build it, they will 

come.” In this view, expanding high voltage distribution networks and building out greater 

generation capabilities should translate into increased connectivity for rural households and 

businesses. 

In this paper, we present novel descriptive evidence to address both of these assumptions using 

an original dataset of over 20,000 geo-tagged structures located across 150 rural communities in 

Western Kenya. Our study focuses on a region in which we would expect to find evidence of 

rapid growth in rural connectivity. Since 2007, Kenya has experienced a period of economic 

growth. In addition, the recent push to expand rural grid coverage nationwide has resulted in 

higher levels of electricity access, particularly in the densely populated counties of Western 

Kenya. Keeping these factors in mind, we collected rich spatial and economic data in each of our 

sample communities on the universe of rural structures, including households, businesses, and 

public facilities, to produce a unique high-resolution dataset illustrating local electrification rates 

in this region. We are not aware of any other comparable dataset with a similar level of detail in 

a low-income setting. 
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Using our high-resolution data, we estimate local household and business electrification rates 

and identify the correlates of household connectivity. We also combine our household-level data 

with detailed geo-coded information on the local distribution network, in terms of transformers 

and connection points, to generate relevant statistics on the location or households with respect 

to the grid. In addition, we create a new distinction between households that are “off grid,” 

meaning that they are too far away to connect to the national electrical grid without significant 

additional investments, and households that are “under grid,” meaning that they are close enough 

to connect to a low-voltage line at a relatively low cost. 

We demonstrate that even in a seemingly ideal setting, where there is high population density 

and extensive grid coverage, electrification rates remain very low, averaging 5% for rural 

households and 22% for rural businesses. This pattern holds across time and is observed for both 

poor and relatively well-off households and businesses. Furthermore, we find that half of the 

unconnected households in our sample are “under grid,” or clustered within just 200 meters of a 

low-voltage power line. We argue that if governments wish to leverage existing grid 

infrastructure, subsidies and new approaches to financing are necessary. In regions that have yet 

to build out grid or off-grid infrastructure, we highlight the need for forward-looking policies 

that consider household and business demand for connections, as well as potential economies of 

scale in costs. 

Our work is related to the literature that estimates the impact of electrification on development 

outcomes. Several studies suggest that rural electrification drives improvements in employment, 

health, agricultural productivity, and education (see, e.g., Dinkelman 2011; Khandker et al. 2012; 

Kitchens and Fishback 2013; Lipscomb et al. 2013; Barron and Torero 2014). Additionally, most 

of the growth in energy demand over the coming decade is predicted to come from low-income 

countries (Wolfram et al. 2012). For these reasons, policy makers have begun to view energy 

poverty with an increasing sense of urgency. The challenge to electrify Africa rapidly while 

minimizing environmental impacts has led to the formation of high profile efforts to achieve 

universal energy access, including Sustainable Energy for All, a joint venture of the United 

Nations and the World Bank, and President Obama’s Power Africa initiative. Similarly, there is 

increasing momentum in the private sector to finance and commercialize off-grid solutions that 
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can provide rural households with enough renewable power to light a room or charge a mobile 

phone. 

While academics and policymakers agree that modern energy is a key input to development, 

there are fundamental disagreements concerning how best to expand energy access in rural areas. 

A number of organizations promote off-grid solutions—such as solar lanterns, solar home 

systems, and microgrids—over the alternative of existing grid infrastructure under the 

presumption that these alternatives would be less environmentally damaging.1 Others remain 

critical of this approach. For example, The Breakthrough Institute describes it as, “a vision of, at 

best, charity for the world’s poor, not the kind of economic development that results in longer 

lives, higher standards of living, and stronger and more inclusive socioeconomic institutions.”2 

These debates, however, take place in a data vacuum that this paper seeks to fill. We document 

that there are a number of households in Western Kenya that remain unconnected, even though 

there are electricity lines nearby. Moreover, the presumption that increasing the number of grid-

connected households would lead to environmental damage may not necessarily hold in Kenya, 

where over 60% of current installed generation capacity (roughly 1,700 MW) comes from non 

fossil fuel sources such as hydro and geothermal. Furthermore, there are plans to build an 

additional 5,000 MW of capacity by 2017 of which more than 50% will be comprised of 

geothermal and wind sources. With its relatively “green grid,” it may be possible for Kenya to 

substantially raise rural energy access without leaning too heavily on increases in fossil fuel 

consumption. 

Our findings also relate to existing work on technology adoption that highlights the importance 

of social, behavioral, and other factors in influencing take-up of new technologies in Africa (see, 

e.g., Kremer and Miguel 2007; Duflo, Kremer and Robinson 2011; Jack and Suri 2011). 

However, grid electricity differs from previously studied technologies such as deworming, 

fertilizers and perhaps even mobile phones in that physical structures must be individually 

integrated into a wider network—in order to connect to power, there must be an electric line 
                                                
1 Examples of organizations promoting off-grid solutions include the IEA and the Sierra Club. 
2 Trembath, Alex. 2014. The Low-Energy Club. The Breakthrough Institute. Available at http://thebreakthrough.org-
/index.php/programs/energy-and-climate/the-low-energy-club. 
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nearby. Furthermore, the interconnected physical electrical network has important economies of 

scale in terms of cost. When one household connects, it becomes far cheaper for neighboring 

households to connect, pointing to the existence of a positive externality associated with each 

new connection. In standard economic theory, externalities provide a rationale for providing 

public subsidies to achieve socially desirable outcomes.  

This paper is organized as follows. Section II provides a brief background on rural electrification 

in Kenya. Section III describes our data collection strategy. Section IV provides a summary of 

the leading patterns that emerge from our dataset. Section V discusses the implications of our 

results. 

II. Background 

In Kenya, rural electrification first became a public priority in 1973 with the establishment of the 

Rural Electrification Programme, a government plan to subsidize the cost of electricity supply in 

rural areas. Under this initial setup, rural electrification was the joint responsibility of the 

Ministry of Energy and its implementing partner, Kenya Power (KPLC), the country's regulated 

monopoly transmission, distribution, and retail company.3 Over the next few decades, however, 

the pace of rural electrification remained stagnant. The cost of grid expansion was prohibitively 

high and there was a general perception that demand for energy in rural areas was too low to be 

financially viable.  

In recent years, there has been a dramatic increase in the coverage of the national electricity grid. 

In 2003, a mere 285 public secondary schools across the country were connected to electricity. 

By November 2012, Kenyan newspapers were projecting that 100% of the country’s 8,436 

secondary schools would soon be connected. This recent big push to electrify rural Kenya began 

with the ratification of the Energy Act of 2006, which restructured the country’s electricity sector 

and created the Rural Electrification Authority (REA), an agency that would operate 

independently of Kenya Power, and would be in charge of accelerating the pace of rural 

                                                
3 Initially, KPLC was also the largest power-producing company in Kenya. The Kenya Electricity Generating 
Company (KenGen), the country’s main power producer, was established in 1998 in a spin-off of KPLC. 
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electrification. Almost immediately, REA announced a strategy to prioritize the connection of 

three major types of rural public facilities—markets, secondary schools and health clinics. In the 

densely populated regions of Central and Western Kenya, where the majority of the population 

lives, it is widely believed that households are within walking distance of multiple public 

facilities, although detailed data verifying these claims are lacking. By following this strategy, 

public facilities would not only benefit from electricity but could also serve as community 

connection points, bringing previously off-grid homes and businesses within reach of the grid. 

By 2013, REA announced that 90% of the country’s public facilities had been electrified 

suggesting that a large share of the population had access to the electricity grid. Despite this 

success, estimates of the national household electrification rate remain just between 18 and 

26%.4 This gap—between those who are believed to live within range of power and those who 

are connected to power—suggests that “last-mile” grid connections could be important moving 

forward. 

III. Data collection strategy 

Estimates of grid coverage and grid connectivity in developing countries suffer from uncertainty 

and measurement error. There is a need for better data on the extent to which unelectrified rural 

households and businesses are truly “off grid,” and the barriers to last-mile electrification where 

grid infrastructure is already present. We examine these questions by first defining a basic spatial 

unit—what we refer to as a “transformer community”—to include all buildings within 600 

meters of a transformer (the distance at which the utilities deem a building eligible to apply for a 

grid connection). Our analysis focuses on 150 transformer communities that had transformers 

installed by REA between 2008 and 2013. All of these communities are located in Busia and 

Siaya, two Western counties that are broadly representative of rural Kenya in terms of 

electrification rates and socio-economic development. Given the high population density in this 

region, the potential for rapid rural electrification is high. After defining our transformer 

communities, we conducted a census of all households, businesses and public facilities to 
                                                
4 The 18% figure comes from The World Bank Databank (available at: http://data.worldbank.org/); the 26% figure 
comes from REA (available at: http://www.rea.co.ke/index.php?option=com_docman&task=cat_view&gid=4&-
Itemid=505). 
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determine electrification status and collect data on observable attributes of each building. 

Community selection 

In August 2013 local representatives of REA provided us with a master list of 241 unique REA 

projects, consisting of roughly 370 individual transformers spread across the ten constituencies 

of Busia and Siaya. Each project featured the electrification of a major public facility (market, 

secondary school, or health clinic), and involved a different combination of high and low voltage 

lines and transformers. Projects that were either too recent, or not commissioned, were not 

included in this master list.5 

In September 2013 we randomly selected 150 transformers using the following procedure: 1) in 

each constituency, individual transformers were listed in a random order, 2) the transformer with 

the highest ranking in each constituency was then selected into the study, and 3) any remaining 

transformers located less than 1.6 km (or 1 mile) from, or belonging to the same REA project as 

one of the selected transformers, were then dropped from the remaining list. We repeated this 

procedure, cycling through all ten constituencies, until we were left with a sample of 150 

transformers for which: 1) the distance between any two transformers was at least 1.6 km, and 2) 

each transformer represented a unique REA project. In our final sample, there are 85 and 65 

transformers in Busia and Siaya counties, respectively, with the number of transformers in each 

of the ten constituencies ranging from 8 to 23.6 

Sample representativeness 

Table 1 presents a basic comparison between the sample counties, and all other counties in 

Kenya, excluding Nairobi and Mombasa, which are entirely urban. In general, counties in 

Western Kenya tend to have higher population densities with a higher share of rural homes. For 

example, the population per square kilometer in the sample region is 375.4 compared to the 

nationwide county-level median of 183.2. The population density of the 150 transformer 

                                                
5 Since the primary objective was to estimate local electrification rates, projects that were funded after February 
2013 were excluded to ensure that each community had reached a stable point in terms of electricity take-up. 
6 This variation can be attributed to differences across constituencies in land size and population density. In smaller 
constituencies, or constituencies where transformers were bundled closely together, our list of potential sites was 
exhausted before the selection process was complete. 
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communities in our sample, however, is lower, averaging 238.1 people per square kilometer.  

Although population and household density are relatively high, Busia and Siaya are broadly 

representative of—or lag just behind—other parts of rural Kenya in terms of basic education and 

income indicators. For example, the proportion of people with a secondary school education is 

10.4% in our sample region, just below the nationwide county-level median, and the proportion 

of buildings with high quality walls (i.e. those made of brick, cement, or stone) is 32.5%, just 

above the nationwide county-level median. With respect to the number of public facilities (i.e. 

secondary schools, markets, and health clinics), the sample region has 0.81 public facilities per 

1,000 people, which is slightly above the nationwide county-level median of 0.75. Even though 

the sample region is highly populated, there is a similar density of public facilities compared to 

the rest of Kenya.  

Based on the 2009 Kenya Population and Housing Census, rural and urban electrification rates in 

Busia and Siaya are low compared to other parts of Kenya, perhaps because these are relatively 

rural counties. A more appropriate question would address whether our sample is representative 

in terms of grid penetration. Would the “under grid” observation apply to other parts of the 

country? By July 2013, REA had identified 26,070 rural public facilities, located across the 46 

non-Nairobi counties in Kenya, of which 22,860 were deemed to be electrified. This implied a 

national public facility electrification rate of 87.7% and a median county-level rate of 88.2%. In 

comparison, public facility connectivity in our sample region was 84.1%. Levels of grid 

penetration in Busia and Siaya are therefore similar to those found in other parts of the country. 

Data collection 

Between September and December 2013, teams of Innovations for Poverty Action (IPA) 

surveyors visited each of the 150 transformer communities to geotag each structure within 600 

meters of the central transformer and to determine whether the structure had a visible electricity 

connection at the time of the visit. We identified households at the level of the residential 

compound, which is a unit known locally as a boma. In Western Kenya, it is common for related 

families to live in different households but share the same compound. In our sample of 13,107 

compounds, 29% consist of multiple households. Throughout this paper, we refer to these 
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compounds as households. In each community, we were assisted by local guides to quickly 

capture basic socio-economic indicators for each structure, such as building quality, household 

size, and whether there was a known business operating inside the household.  

Data visualization 

We create a series of maps, presented in Figure 1 (and Figures A1 to A3 in the Appendix), to 

illustrate the degree to which rural Kenyans are living close to existing national grid 

infrastructure. In these maps, the white circle labeled “T” in the center identifies the location of 

the REA transformer. The larger white outline demarcates the 600-meter radius boundary. Green 

circles represent unconnected households; purple squares represent unconnected businesses; and 

blue triangles represent unconnected public facilities. Yellow circles, squares, and triangles 

indicate households, businesses, and public facilities with visible electricity connections, 

respectively. Household markers are scaled by household size, with the largest indicating 

households with more than ten members, and the smallest indicating households with single 

members.  

Our maps depict several patterns. For example, businesses and public facilities (squares and 

triangles) appear to be located along the roads, while households (circles) tend to be scattered 

across the countryside. Also, across the communities depicted in Figures 1 (and Figures A1 to 

A3), it is readily apparent that a large proportion of unconnected households (green circles) are 

located near existing connection points (yellow circles, squares, and triangles).  

IV. Findings 

In this section, we discuss three leading patterns that emerge from our data. 

1. Despite large investments in grid infrastructure, electrification rates remain low even up to 

five years after infrastructure has been built. 

Extending the grid across rural Kenya has been costly. A typical REA project involves the 

construction of 11,000 V (11 kV) high-voltage lines, secondary distribution transformers, single 
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and three-phase low-voltage lines, and drop-down lines for last-mile connections. Since these 

projects are implemented in remote areas, additional costs associated with transportation, 

surveying and design, and temporary shutdowns tend to be high. In our sample, the median cost 

of a single REA project is KSh 2.5 million, or $29,548.7 If we divide the cost of each REA 

project by the number of transformers in the project, the estimated median cost of each deployed 

transformer in our sample is $21,820.8 

This high cost could potentially be justified if many of the surrounding households and 

businesses were connected to the grid.9 The majority of households in our sample region are 

willing to pay for an electricity connection. Based on a random sub-sample of 265 unconnected 

households, 55% state that they would connect if the prices were just 30% lower. Nonetheless, 

local electrification rates remain low, averaging 5.5% and 22.3% for households and businesses 

in our sample of transformer communities, respectively.10 By dividing the estimated cost of each 

transformer by the total number of observed connections—including households, businesses and 

public facilities—we highlight the degree to which this infrastructure is currently underutilized. 

In our sample, the median infrastructure investment per connection is $2,427. Yet if every 

structure within each transformer community were to connect, this figure would drop to $210.  

It is possible that electrification rates are low because the communities we analyze were 

electrified only recently; connectivity may naturally increase over time. In order to assess 

whether electrification rates remain low over time, we categorize our sample of transformers by 

REA project year and compare electrification rates. The REA project year is the fiscal year in 

which each project was nominated for electrification by the local Constituency Development 

Fund and funded in the REA system. Typically, transformers are commissioned within several 

                                                
7 For all currency conversions, we assume an exchange rate of 85 KSh per U.S. dollar. 
8 These estimates are based on actual cost data supplied by REA. We were provided with budgetary estimates for 
127 projects and actual expenditures for 121 projects in our sample. Most of the projects with missing data were 
funded in 2008-09 and the data were not recorded in the latest database. 
9 In our sample, there are an average of 85 households and 19 businesses in each transformer community. 
10 We estimate local electrification rates by dividing the total number of structures with a visible electricity 
connection by the total number of structures observed within the boundaries of the transformer community.  
Household electrification refers to connectivity at the compound level. 
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months of being funded.11  

In Figure 2, we plot average rates for communities grouped by year, with the most recently 

connected group appearing on the left. The figure illustrates that electrification rates have 

steadily increased over time for both households and businesses but remain at relatively low 

levels, even after five years. Even for the oldest transformers in our sample, those funded during 

2008-09, the average household electrification rate is 8.9%. Selection issues, however, may 

confound our interpretation of these results. Communities with higher take-up potential may 

have been electrified first, resulting in upward sloping curves. Yet even if we acknowledge this 

selection issue, electrification rates remain low. 

In our sample of 2,824 businesses, 33.6% are visibly connected to power. In Table 2, we report 

the average electrification rate and number of observations for the ten most commonly observed 

types of rural businesses. There is considerable variation across types. Connectivity is the lowest 

for small food stands at 5.7% and the highest for barbershops and salons at 63.2%. These 

differences form a snapshot of the demand for business electrification in rural areas. Barbershops 

and hair salons cannot operate effectively without power, and given the relatively low cost of 

related electrical appliances, connectivity is quite high. Surprisingly, connectivity is low for the 

more energy-intensive business types. Only 13.3% of cornmeal “posho” mills—the business type 

that is found across the largest number of communities—are visibly connected, suggesting that 

the majority of millers are still operating diesel motors. Similarly, connectivity for welding, 

carpentry and workshops is relatively low at 39.2%. 

2. Connectivity is low even for relatively well-off rural households and businesses. 

Should low levels of connectivity be attributed to a technical or an economic constraint? On the 

one hand, since it is technically easier to supply a connection to a building that is close to a 

transformer, connectivity should be lower for households that are further away from a 

transformer. On the other hand, the current connection price of KSh 35,000, or $412, may not be 

                                                
11 There is no reliable data on precise transformer commissioning dates in Western Kenya. 
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affordable for poor, rural households in a country where the GNI per capita (PPP) is $1,730.12 

Connectivity should be lower for households with visible markers of poverty, such as low-

quality building materials. 

In our dataset of over 13,000 households, 76.4% have low-quality walls, made of mud, reeds, 

wood, or iron, and 23.6% have high-quality walls, made of brick, cement, or stone. For each 

structure, we use the GPS coordinates to calculate straight-line distances to the central 

transformer, as well as the nearest distance to any type of connected structure to approximate 

distances to low-voltage lines. In Figure 3, we plot locally weighted regressions of connection 

status on distance to the central transformer for businesses and households with high and low-

quality walls. While the likelihood of being connected improves slightly with proximity to the 

transformer, there is a much larger improvement when households have better walls. 

In Table 3, we report ordinary least squares regression results using connection status as the 

outcome variable, and distance, wall quality and their interaction as the explanatory variables. 

These coefficients are estimated using the regression model 

𝑦!" = 𝛽!𝑑!" + 𝛽!𝑤!" + 𝛽!𝑑!"×𝑤!" +   𝜆! + 𝜀!" 

where yic is an indicator variable for whether or not structure i in community c was visibly 

connected to electricity, d is the straight line distance between the structure and the central 

transformer (in 100 meter units), w is an indicator variable for whether or not the structure had 

high-quality walls (e.g. brick, cement, or stone), and λc captures community fixed effects to 

account for site-level differences in market status or geography. The coefficients in column 2 

suggest that a household with high-quality walls is 3% more likely to be connected if it is 20 

meters away than if it is 200 meters away. In comparison, at 200 meters, a household with high-

quality walls is 22% more likely to be connected compared to a household with low-quality 

walls. 

                                                
12 In March 2014, Kenya Power, the national utility, stated that it will continue to charge eligible customers $412 for 
single-phase power connections, as long as the cost of connection does not exceed $1,588, inclusive of VAT. 
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Nonetheless, connectivity is under 30% for these relatively well-off households, most likely 

because the majority of these households are still poor. While high-quality walls correlate with 

being better off, the difference in primary economic activity between households with high and 

low-quality walls in our sample is not large. Based on a sub-sample of 1,737 households in our 

transformer communities, 70% of households with high-quality walls list small-scale farming as 

a primary economic activity, compared to 77% of households with low-quality walls. Taken 

together, the above patterns suggest that the current connection price is simply too high for rural 

households and businesses. In ongoing work, we are experimentally varying the connection cost 

to assess this hypothesis directly. 

3. Half of the unconnected households in our sample are “under grid,” or clustered within 200 

meters of a low-voltage line, and could be connected at a relatively low-cost. 

Taking advantage of the spatial nature of our data, we calculate the shortest distance between 

unconnected households and the nearest connection point or transformer to approximate the 

extent to which each household is “under grid.” These estimates are conservative. Since our data 

are limited to the 600-meter circles drawn around each transformer, these are upper bounds on 

the actual distance because there may be other low-voltage lines immediately beyond our 

mapped boundaries. In Figure 4, we plot the density of the 12,001 unconnected households and 

1,875 unconnected businesses in our data set using this metric along the horizontal axis. 

Although every structure within a transformer community is eligible to apply for a connection, 

this is not enough to guarantee that an application will be immediately fulfilled by the local 

utilities. From the supplier’s perspective, it is preferable to connect buildings that are no more 

than a few service poles away from a low-voltage line because the installation costs associated 

with single, distant connections are much higher.13 

According to REA, service poles are required for every 50 meters of line; three or four service 

poles would therefore imply a maximum distance of 150 to 200 meters. We conservatively 

estimate the incremental cost of supplying an electricity connection to a single household 200 

                                                
13 This is based on multiple discussions with REA and Kenya Power representatives that took place between July 
2013 and March 2014.  
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and 100 meters away from a low-voltage line to be $1,940 and $1,058, respectively, inclusive of 

material and transportation costs, as well as a 25% contractor markup.14 Once connected, 

households pay the utility an electricity tariff that is structured to cover the cost of additional 

power generation. 

These cost estimates, however, do not account for the significant economies of scale that could 

be achieved by connecting multiple households along the same length of line at the same time. In 

Figure 5, we plot estimates of the cost economies of scale based on the number of connections 

and the distance to a low voltage line. For example, if two neighboring households were to 

connect, the above per household costs would fall by roughly 47%, to $1,021 and $580 for 

distances of 200 and 100 meters, respectively. These households could be located as far as 30 

meters away from either side of the line. The average cost does not decrease by 50% because 

each household would still require its own service line. If six households were to connect, these 

estimates would drop to $409 and $262, respectively. While we do not have adequate data to 

estimate marginal costs in a mass connection program, the costs would presumably be much 

lower. For instance, if we ignore transportation costs and assume that there is no need to build 

any additional distribution lines, the marginal cost of a single connection would theoretically fall 

to $80, the cost of a single-service line. Our cost estimates, presented in Figure 5, are in line with 

previous work on the costs of rural electrification in Kenya (see, e.g., Parshall et al. 2009). 

There are no precise estimates of the overall value of electricity to a household. However, if we 

assume that a connection generates benefits well into the future and apply an annualized interest 

rate of 12%, then an $80 cost of connection need only generate the equivalent of $10 per 

household per year in monetary and non-monetary benefits—or 0.6% of the GNI per capita—to 

be welfare improving.15 For instance, these benefits could come in the form of higher net profits 

                                                
14 This excludes additional last-mile costs of household wiring and the meter deposit that households pay to the 
utility. We conservatively estimate the physical cost of supplying last-mile connection costs, as well as potential 
economies of scale, using the following assumptions provided by REA: (a) low-voltage single-phase two-wire 
overhead lines costing $7.06 per meter; (b) single-phase service lines costing $81.92 per connection; (c) 
transportation costing $1.18 per kilometer for a single lorry traveling over an average distance of 50 km; and (d) 
contractor costs equal to 25% of all material and transportation costs. Since each truck can carry a maximum of 30 
poles, a single vehicle would be sufficient to transport the materials for small groups of neighboring households 600 
meters away from a transformer. 
15 The Kenya Government Bond 10 year rate was 11.44% in March 2014. 
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for household businesses or improved educational outcomes for children. Applying a 200-meter 

threshold, we find that 47.2% of the 12,386 unconnected households in our sample could be 

deemed “under grid.” These households are clustered together and are, on average, 115 meters 

away from a connection point. Based on our data, this represents 36,800 individuals who lack 

modern energy yet live within range of connecting to the grid at a relatively low cost. 

V. Conclusion 

We demonstrate that even in a seemingly ideal setting, where there is high population density 

and extensive grid coverage, electrification rates for rural households and businesses remain very 

low. This pattern holds across time and is observed for both poor and relatively well-off 

households and businesses. Clearly, under the status quo pricing policies, significant investments 

in grid infrastructure in Western Kenya have not translated into equally high rates of rural 

electrification. Our data does however highlight an opportunity that may inform future policies. 

Half of the unconnected households in our sample are “under grid,” or clustered within 200 

meters of a low-voltage line, and could potentially be connected at relatively low marginal cost. 

If this pattern were to hold across transformer communities nationwide, then given that over 90% 

of Kenya’s major public facilities (i.e. markets, secondary schools and health clinics) are now 

electrified, and that these structures are spatially distributed across the country, there is a 

potential opportunity for millions of new connections.16 

There are at least three ways in which our results could be useful in designing future 

electrification strategies. First, governments may wish to subsidize mass connection programs. 

There may be a natural redistributive motive behind this strategy. The fact that connectivity 

remains so low in “under grid” Kenyan communities indicates that a $412 connection price is too 

high for poor, rural households to face alone. Furthermore, each new connection expands the 

geographic reach of the electricity network bringing more and more structures “under grid.” In 

theory, subsidies can be useful in the presence of these types of externalities. Second, 

                                                
16 For example, based on REA’s estimates of 8.8 million households and 26% household electrification (http://-
www.rea.co.ke/index.php?option=com_docman&task=cat_view&gid=4&Itemid=505), then the 50% “under grid” 
result would point to an opportunity for 3.3 million new connections 



16 
 

governments may wish to support innovative financing and payment approaches to raising 

connectivity. The lack of a vibrant credit sector serving poor, rural households in developing 

countries is well documented (see, e.g., Karlan et al. 2013). Providing access to credit or 

financing options could help rural households meet the up-front cost associated with 

electrification. Third, governments may wish to support group-based subsidies that are tied to the 

number of applicants. When take-up is higher, it is cheaper for utilities to connect households 

because transportation costs are lower and it is possible to design lower-cost local distribution 

networks. This strategy would therefore take advantage of existing infrastructure and economies 

of scale. Coordinating household connections, however, poses a collective action problem that 

would need to be solved through government policies such as mass connection programs. 

The idea of subsidizing last-mile electricity connections to households is, of course, nothing new. 

Between 1935 and 1939 the United States implemented its own rural electrification program, 

issuing roughly 0.3% of GDP—or $16 billion in chained 2009 dollars—in government 

subsidized loans for rural electrification. Within two decades the proportion of electrified farms 

in the U.S. increased from 10% to over 90% (Kitchens and Fishback 2013). Similarly, the 

Tennessee Valley Authority Program, which featured major public investments in a series of 

hydroelectric dams, has been attributed to persistent growth in regional manufacturing (Kline 

and Moretti 2013). 

Our results highlight an opportunity to greatly reduce energy poverty in Sub-Saharan Africa by 

targeting last-mile connections in “under grid” communities. In regions that have yet to build out 

grid or off-grid infrastructure, we highlight the need for forward-looking policies that take into 

account household and business demand for connectivity, as well as potential economies of scale 

in costs. In Sub-Saharan Africa, there has been a growing focus on expanding renewable 

generation capacity. In countries like Kenya, where there is a relatively “green grid,” the usual 

tradeoff between energy access and environmental damage is not as salient. As governments and 

donors embark on the ambitious task of electrifying hundreds of millions of African households 

over the coming years, the novel results in this paper call for further research on the demand for 

and impacts of electrification as well as the potential of various financing mechanisms. 
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Table 1. Comparison of socio-economic indicators between sample region and nationwide counties.

Nationwide county percentiles

Sample region 25th 50th 75th

Total population 1,586,250 528,054 724,186 958,791

per square kilometer 375.4 39.5 183.2 332.9

% rural 85.7 71.6 79.5 84.4

% at school 44.7 37.0 42.4 45.2

% in school with secondary education 10.3 9.7 11.0 13.4

Total households 353,259 103,114 154,073 202,291

per square kilometer 83.6 7.9 44.3 78.7

% with high quality roof 59.7 49.2 78.5 88.2

% with high quality floor 27.7 20.6 29.7 40.0

% with high quality walls 32.2 20.3 28.0 41.7

% with piped water 6.3 6.9 14.2 30.6

Total public facilities 1,288 356 521 813

per capita (000s) 0.81 0.59 0.75 0.98

Electrification rates

Rural (%) 2.3 1.5 3.1 5.3

Urban (%) 21.8 20.2 27.2 43.2

Public facilities (%) 84.1 79.9 88.1 92.6

Note: Sample region column presents aggregate and weighted-average statistics (where applicable) for Bu-
sia and Siaya counties. Demographic and socio-economic data obtained from 2009 Kenya Population and
Housing Census. Public facility electrification data obtained from the Rural Electrification Authority (REA).
Rural and urban electrification rates represent the proportion of households who stated that electricity was
their main source of lighting during the 2009 census. National county percentiles exclude the urban coun-
ties of Nairobi and Mombasa.
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Table 2. Electrification rates for businesses of various types. 

% N 

(1) (2)

All businesses 33.6 2,824

Small retail 36.2 1,163

Posho mill 13.3 294

Barber shop / salon 63.2 209

Restaurant 31.3 182

Tailor 26.5 162

Guesthouse 14.2 155

Food stand 5.7 140

Bar / cinema / television hall 62.9 105

Butcher 29.7 91

Welding / carpentry / workshop 39.2 74

Other 42.2 249

Note: Column (1) reports the average electrification rate; (2) 

reports the total number of observations.
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Table 3. Predictors of electrification.

Households Businesses

(1) (2) (3) (4) (5) (6)

Distance -0.69
***

(0.14) -0.14 (0.15) -0.19 (0.16) -2.71
***

(0.55) -2.11
**

 (0.89) -1.39 (1.06) 

Walls 25.33
***

 (1.26) 24.98
***

 (1.26) 29.19
***

 (2.83) 27.69
***

 (3.03) 

Walls*Distance -1.57
***

(0.31) -1.54
***

(0.31) 0.79 (1.11) 0.08 (1.21) 

Fixed effects No No Yes No No Yes

Mean of dep. var. 5.47 5.47 5.47 33.58 33.58 33.58

Observations 12,666 12,666 12,666 2,823 2,823 2,823

R-squared 0.00 0.13 0.16 0.01 0.09 0.20

Note: All columns report OLS regressions. The dependent variable is an indicator variable for household connection status. 

Columns (1) to (3) report results for households; Columns (4) to (6) report results for businesses. Definitions: (a) Distance is the 

straight line distance to the central transformer (in 100 meter units); (b) Walls is equal to 1 for buildings with high-quality walls 

(e.g. brick, cement, or stone) and is equal to 0 otherwise; (c) Walls*Distance is the interaction between Distance and Walls. All 

coefficients are multiplied by 100. Columns (3) and (6) report community fixed effects regressions. Asterisks indicate coefficient 

significance level (2-tailed): * P < 0.10; ** P < 0.05; *** P < 0.01.



Figure 1: Visualizing the proportion of households and businesses that are “under grid.”

Note: In these maps, the white circle labeled “T” in the center identifies the location of the REA transformer. The
larger white outline demarcates the 600-meter radius boundary. Green circles represent unconnected households;
purple squares represent unconnected businesses; and blue triangles represent unconnected public facilities. Yel-
low circles, squares, and triangles indicate households, businesses, and public facilities with visible electricity con-
nections, respectively. Household markers are scaled by household size, with the largest indicating households
with more than ten members, and the smallest indicating single-member households. Residential rental units are
categorized as households. The figures illustrate the large proportion of unconnected households (green circles)
that are located near existing connection points (yellow circles, squares, and triangles). (Left) The transformer was
funded/installed in 2008-09 at a secondary school (although the school itself is unconnected). Connectivity is 14%
for households and 53% for businesses, and 84% of all unconnected households in this community are “under grid,”
or within 200 meters of a connection point. (Right) The transformer was funded/installed in 2012-13 and located
in a market center. The dark region in the upper left of the figure is Lake Victoria. Connectivity is 8% for house-
holds and 45% for businesses, and 75% of all unconnected households are “under grid.” Maps of 18 additional
transformer communities are presented in Figures A1 to A3 in the Appendix.
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Figure 2: Median transformer community electrification rates by structure type and fund-
ing/installation year.

Note: Transformer communities are grouped by REA project year. The REA project year is
the fiscal year in which each project was nominated and funded for electrification. There are
12, 37, 22, 58, and 21 projects in the 1 Year (2012-13), 2 Years (2011-12), 3 Years (2010-11), 4
Years (2009-10), and 5 Years (2008-09) groups, respectively. Structures with high-quality walls
are defined as those made of brick, cement, or stone. Structures with low-quality walls are
defined as those made of mud, reeds, wood, or iron. The figure illustrates that electrification
rates have steadily increased over time for both households and businesses but remain at
relatively low levels, even after five years.
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Figure 3: Connection rates by distance to the central transformer.

Note: In this figure, we plot locally weighted regressions (bandwidth 5) of the connection
status on the distance to the transformer for businesses and households with high and low-
quality walls. As in Fig. 2, high-quality walls are defined as those made of brick, cement, or
stone. Low-quality walls are defined as those made of mud, reeds, wood, or iron. The figure
illustrates that: (1) electrification rates are correlated with both distance from transformer,
and quality of walls, for both businesses and households, and (2) even for the relatively well-
off households, connectivity remains low.
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Figure 4: Kernel densities of unconnected households and businesses by distance from low-
voltage line.
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Note: In this figure, we plot Epanechnikov kernels (bandwidth 12). The horizontal axis repre-
sents the distance of the unconnected household or business to the nearest connection point
or transformer. The vertical axis scale applies to household density only. The peak density
for businesses is 0.016. The figure illustrates that: (1) the mass of unconnected households is
within 100 and 200 meters of a low-voltage line, and (2) the mass of unconnected businesses
is within 50 meters of a low-voltage line (since businesses tend to be clustered in market
centers).
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Figure 5: Economies of scale in the cost of providing household electricity connections.
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Note: In this figure, we plot the cost of supplying a single-phase connection as a function of
distance and the number of neighboring households connecting to the same length of low-
voltage line. These neighboring households can be located as far as 30 meters away from
either side of the line. Our estimates are based on actual assumptions used by REA for bud-
getary purposes. The horizontal axis can be interpreted as either the distance to the nearest
low-voltage line or the distance to the central transformer. The figure illustrates that the cost
per household drops dramatically when multiple structures are connected simultaneously
due to the fact that they can share some of the infrastructure.
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Figure A1: Maps of transformer communities 1 to 6.

Note: The white circle labeled “T” in the center identifies the location of the REA transformer. The larger white out-
line demarcates the 600-meter radius boundary. Green circles represent unconnected households; purple squares
represent unconnected businesses; and blue triangles represent unconnected public facilities. Yellow circles, squares,
and triangles indicate households, businesses, and public facilities with visible electricity connections, respectively.
Household markers are scaled by household size, with the largest indicating households with more than ten mem-
bers, and the smallest indicating single-member households. Residential rental units are categorized as households.
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Figure A2: Maps of transformer communities 7 to 12.

Note: The white circle labeled “T” in the center identifies the location of the REA transformer. The larger white out-
line demarcates the 600-meter radius boundary. Green circles represent unconnected households; purple squares
represent unconnected businesses; and blue triangles represent unconnected public facilities. Yellow circles, squares,
and triangles indicate households, businesses, and public facilities with visible electricity connections, respectively.
Household markers are scaled by household size, with the largest indicating households with more than ten mem-
bers, and the smallest indicating single-member households. Residential rental units are categorized as households.
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Figure A3: Maps of transformer communities 13 to 18.

Note: The white circle labeled “T” in the center identifies the location of the REA transformer. The larger white out-
line demarcates the 600-meter radius boundary. Green circles represent unconnected households; purple squares
represent unconnected businesses; and blue triangles represent unconnected public facilities. Yellow circles, squares,
and triangles indicate households, businesses, and public facilities with visible electricity connections, respectively.
Household markers are scaled by household size, with the largest indicating households with more than ten mem-
bers, and the smallest indicating single-member households. Residential rental units are categorized as households.
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