
NBER WORKING PAPER SERIES

CORRUPTION, INTIMIDATION, AND WHISTLE-BLOWING:
A THEORY OF INFERENCE FROM UNVERIFIABLE REPORTS

Sylvain Chassang
Gerard Padró i Miquel

Working Paper 20315
http://www.nber.org/papers/w20315

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2014

We are grateful to Johannes H\H orner for a very helpful discussion. We are indebted to Nageeb Ali,
Abhijit Banerjee, Michael Callen, Yeon Koo Che, Hans Christensen, Ray Fisman, Matt Gentzkow,
Bob Gibbons, Navin Kartik, David Martimort, Andrea Prat, Jesse Shapiro, as well as seminar audiences
at Berkeley, Columbia, Essex,  Hebrew University, the Institute for Advanced Study, the 2013 Winter
Meeting of the Econometric Society,  MIT, MIT Sloan, the Nemmers Prize Conference, NYU, NYU
IO day, Paris School of Economics, Pompeu Fabra, ThReD, and the UCSD workshop on Cellular
Technology, Security and Governance for helpful conversations. Chassang gratefully acknowledges
the hospitality of the University of Chicago Booth School of Business, as well as support from the
Alfred P. Sloan Foundation and the National Science Foundation under grant SES-1156154. Padro
i Miquel acknowledges financial support from the European Union's Seventh Framework Programme
(FP/2007-2013) / ERC Starting Grant Agreement no. 283837. The views expressed herein are those
of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2014 by Sylvain Chassang and Gerard Padró i Miquel. All rights reserved. Short sections of text,
not to exceed two paragraphs, may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.



Corruption, Intimidation, and Whistle-blowing: a Theory of Inference from Unverifiable Reports
Sylvain Chassang and Gerard Padró i Miquel
NBER Working Paper No. 20315
July 2014
JEL No. D73,D82,D86

ABSTRACT

We consider a game between a principal, an agent, and a monitor in which the principal would like
to rely on messages by the monitor to target intervention against a misbehaving agent. The difficulty
is that the agent can credibly threaten to retaliate against likely whistleblowers in the event of an
intervention. In this setting intervention policies that are very responsive to the monitor's message
provide very informative signals to the agent, allowing him to shut down communication channels.
Successful intervention policies must garble the information provided by monitors and cannot be
fully responsive. We show that even if hard evidence is unavailable and monitors have heterogeneous
incentives to (mis)report, it is possible to establish robust bounds on equilibrium corruption using
only non-verifiable reports. Our analysis suggests a simple heuristic to calibrate intervention policies:
first get monitors to complain, then scale up enforcement while keeping the information content of
intervention constant.

Sylvain Chassang
Department of Economics
Bendheim Hall 316
Princeton University
Princeton, NJ 08544-1021
chassang@princeton.edu

Gerard Padró i Miquel
STICERD
London School of Economics
Houghton Street
London, WC2A 2AE
UNITED KINGDOM
and NBER
g.padro@lse.ac.uk



1 Introduction

This paper explores anti-corruption mechanisms in which a principal relies on messages by

an informed monitor to target intervention against a potentially misbehaving agent.1 The

difficulty is that the agent can credibly threaten to retaliate against likely whistleblowers.

When messages are exogenously informative, intervention policies that are more responsive

to the monitor’s messages naturally provide greater incentives for the agent to behave well.

However, when messages are endogenous, making intervention responsive to the monitor’s

message facilitates effective retaliation by corrupt agents and limits information provision.

This generates a novel trade-off between eliciting information and using that information

efficiently. In addition, this makes evaluating intervention policies difficult: imagine that no

corruption is reported; does this mean that there is no underlying corruption, or does it mean

that would-be whistleblowers are being silenced by threats and intimidation? We investigate

the relationship between intervention, corruption, and whistleblowing, and suggest ways to

identify effective intervention strategies using only unverifiable reports.

The paper considers a dynamic game played by a principal, an agent and a monitor.

Both the principal and the agent have commitment power, and they act sequentially. The

principal first commits to an intervention strategy as a function of the information obtained

from the monitor, i.e. to a likelihood of intervention as a function of messages “corrupt” and

“non-corrupt.” The agent then commits to a retaliation strategy against the monitor as a

function of subsequent observables — including whether or not an intervention is triggered

by the principal — and makes a binary corruption decision. The monitor observes the

corruption behavior of the agent and chooses what message to send to the principal. Finally,

intervention and retaliation are realized according to the commitments of both the principal

and the agent.

Our modeling approach emphasizes three issues that are important in practical applica-

tions. First, we take seriously the idea that in the long run, corrupt agents will undermine

the effectiveness of institutions by side-contracting with the monitors in charge of evaluating

1Throughout the paper we refer to the principal and monitor as she, and to the agent as he.
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them. In our model, this side-contracting takes the form of contingent retaliation profiles.

Second, departing from much of the literature on collusion, we do not assume that mes-

sages are verifiable, reflecting the fact that hard measures of corruption are rarely available.2

When it comes to anti-corruption policy, the outcome of interest need not be directly mea-

surable, and policies may have to be evaluated using non-verifiable messages. Third, we

do not assume that the principal has precise control over the payoffs of the agent and the

monitor following intervention: rewards and punishment may be determined by imperfect

and stochastic institutional processes; whistleblower protection schemes may not fully shield

the monitor against ostracism, or harassment; supposedly anonymous information may be

leaked; the judiciary may fail to act against corrupt agents, and so on. Finally, we do not

think it is realistic to assume that the principal has prior knowledge of the agent and the

monitor’s payoffs, and therefore our model allows for rich heterogeneity. In particular, our

framework allows for “malicious” monitors who benefit from triggering intervention against

honest agents. Hence, the principal should be concerned that measures taken to protect

whistleblowers may end up empowering scoundrels.

We provide two main sets of results. The first is that any effective intervention strategy

must limit its responsiveness to the monitor’s messages. Indeed, consider a principal’s strat-

egy that launches an intervention with high probability when receiving message “corrupt”,

and launches it with low probability when the message is “not corrupt”. Under such a strat-

egy, if there is an intervention, the agent knows that it is likely due to a monitor’s accusing

message. In this case we say that the information content of intervention — measured by the

ratio of intervention rates under the two messages — is high. This simplifies the incentive

problem of the agent: committing to very painful retaliation conditional on intervention

ensures that the monitor never reports corruption at little equilibrium cost. It follows that if

the principal wants to receive informative messages from the monitor, the information con-

tent of intervention cannot be too high. In particular, the likelihood of intervention against

agents reported as not corrupt must be bounded away from zero. In addition, it may be

2See Bertrand et al. (2007) or Olken (2007) for innovative approaches to measuring corruption.
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optimal not to always intervene against agents reported as corrupt. This allows the principal

to reduce intervention on non-corrupt agents, which is costly in equilibrium, and still keep

the information content of intervention low. The basic take-away is that since collusion is a

side-contracting problem, it can be addressed by exploiting imperfect-monitoring contracting

frictions between colluding parties.

Our second set of results shows how to use equilibrium properties of corruption and re-

porting decisions to infer bounds on the underlying levels of corruption using non-verifiable

reports alone. We show that for any given type of the agent, the region of the intervention-

strategy space in which corruption occurs is star-shaped around the origin. Moreover, keeping

corruption behavior constant, the messages sent by monitors depend only on the information

content of intervention (the ratio of intervention rates), and not on the intensity of inter-

vention (the absolute values of intervention rates). Using these properties, we show that

policy experiments which vary the level of intensity while keeping the information content of

intervention constant yield bounds on unobservable corruption. These bounds can be used

for prior-free policy design and suggest the following rule-of-thumb: first provide enough

plausible deniability so that monitors are willing to complain, and then scale up intensity

while keeping the information content of intervention constant.

This paper speaks to a growing class of information technology (IT) policy interventions

that hope to reduce corruption by improving the recording and transmission of complaints.3

A recent example is Punjab’s Citizen Feedback Model under which Punjabi citizens availing

themselves of a broad class of public services get surveyed on whether they experienced cor-

ruption or not.4 The data is then analyzed by the Punjabi Information Technology Board

which brings up particularly suspect cases to the attention of relevant authorities.5 In a re-

cent field experiment also taking place in Punjab, Callen et al. (2013) study absenteeism in

3As is reflected in our modeling choices, our analysis is orthogonal to that of policies designed to directly
change the payoffs of involved parties – for instance the large cash rewards awarded by the SEC’s Office of
the Whistleblower in exchange for actionable high-quality information.

4See http://www.punjabmodel.gov.pk/ as well as Callen and Hasanain (2013) and the Economist (2013)
for recent descriptions and discussions of the program. The website www.ipaidabribe.com functions along
a similar spirit although the data it generates is not formally tied to institutional interventions.

5See http://www.pitb.gov.pk/.
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public health clinics and evaluate the impact of sending senior health officials reports high-

lighting poorly performing facilities. They find that flagging out a facility reduces subsequent

absenteeism by 18%. We share the belief that IT represents a first-order opportunity for

anti-corruption efforts. Still, we raise the concern that in the long run, such schemes may be

undermined by side-contracting between agents and monitors (here in the form of retaliation

threats).6 Our analysis provides operational guidelines on how to address this issue.

This paper contributes to a growing effort to understand the effectiveness of counter-

corruption measures. In recent years, the World Bank, the OECD and the United Nations

have launched new initiatives to improve governance, in the belief that a reduction in corrup-

tion can improve the growth trajectory of developing countries.7 Growing micro-economic

evidence confirms the importance of corruption issues affecting public service provision and

public expenditure in education or health (see Olken and Pande (2012) and Banerjee et al.

(2012) for recent reviews), and recent experimental evidence suggests that appropriate in-

centive design can reduce misbehavior (Olken (2007), Duflo et al. (2012, 2013)). In our view,

a key aspect of corruption is that although there is strong suspicion that it is occurring,

there is generally little direct and actionable evidence flowing back to the relevant principals

due to implicit threats of retaliation.8 We show that correct policy design is essential to

keep information channels open under these threats. Relying on robust implications from

our structural model, we provide a method to measure underlying corruption using only

unverifiable messages generated by appropriately chosen policy experiments. In this respect,

we contribute to a growing literature which takes a structural approach to experiment design

6eBay’s feedback mechanism is an example of an initially promising monitoring scheme that was rendered
essentially uninformative by retaliatory threats (in their analysis of eBay feedback, Resnick and Zeckhauser
(2002) find 99.1% of positive feedback, versus .9% of neutral and negative feedback). See Appendix A for
additional anecdotal evidence.

7See Mauro (1995) for early work highlighting the association of corruption and lack of growth. Shleifer
and Vishny (1993) and Acemoglu and Verdier (1998, 2000) provide theories of corruption that introduce
distortions above and beyond the implicit tax that corruption imposes.

8See for instance Ensminger (2013) who emphasizes the role of threats and failed information channels in
recent corruption scandals affecting community driven development projects. Also, in a discussion of why
citizens fail to complain about poor public service, Banerjee and Duflo (2006) suggest that “the beneficiaries
of education and health services are likely to be socially inferior to the teacher or healthcare worker, and a
government worker may have some power to retaliate against them.”

5



in order to make inferences about unobservables.9

This paper also contributes to the contract theory literature on collusion in organizations

(see for instance Tirole (1986), Laffont and Martimort (1997, 2000), Prendergast (2000), or

Faure-Grimaud et al. (2003)).10 Our insight is that whenever collusion is an issue, then it

will be in the principal’s interest to make side-contracting between the agent and the monitor

difficult. The forces that make contracting difficult are well known: adverse selection and

moral hazard. Here we focus on the latter, and show how the principal can make the

agent’s own incentive provision problem more difficult by garbling the information content

of the monitor’s responses.11 This creates a novel practical rationale for the use of random

mechanisms, and we believe that this simple idea has applications in other settings, for

instance to fight collusion in auctions. Our paper also emphasizes a novel set of questions

in this literature. Rather than solving for optimal contracts in a Bayesian environment,

we study the inference of unobserved but payoff-relevant behavior, and the extent to which

unverifiable message data can be used for prior-free policy design.12

Finally, our work is related to that of Myerson (1986) or more recently Rahman (2012)

who consider mechanism design problems with non-verifiable reports, and emphasize the

value of random recommendation-based incentives to jointly incentivize mutliple agents, and

in particular to incentivize both effort provision and the costly monitoring of effort. The

key difference is that this strand of literature excludes the possibility of side contracting

between players. As a result, the role of mixed strategies in our work is entirely different:

monitoring itself is costless and randomization occurs only to garble the information content

of the principal’s intervention behavior and make side-contracting between the agent and

the monitor difficult.13 Our work also shares much of its motivation with the seminal work

9See for instance Karlan and Zinman (2009) or Chassang et al. (2012).
10A particularly active theoretical and empirical strand of this literature focuses on collusion in auctions.

See, among others, Skrzypacz and Hopenhayn (2004), Che and Kim (2006, 2009) or Asker (2010).
11This echoes the point made by Dal Bó (2007) in a legislative context, that making votes anonymous can

help prevent influence activities and vote-buying.
12Our perspective here echoes that developed in work by Hurwicz and Shapiro (1978), Segal (2003),

Hartline and Roughgarden (2008), Madarász and Prat (2010), Chassang (2013), Frankel (2014), Carroll
(2013).

13Eeckhout et al. (2010) propose a different theory of optimal random intervention based on budget
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of Warner (1965) on the role of plausible deniability in survey design, and the recent work

of Izmalkov et al. (2011), Ghosh and Roth (2010), Nissim et al. (2011), or Gradwohl (2012)

on privacy in mechanism design.

The paper is structured as follows: Section 2 introduces our framework and presents the

main points of our analysis in the context of a simple example; Section 3 introduces our

general framework; Section 4 establishes robust properties of corruption and reporting in

equilibrium, and shows how they can be exploited to form estimates of underlying corrup-

tion levels as well as make policy recommendations; Section 5 concludes with a discussion

of potential implementation challenges. Appendix A presents several extensions, studying

among other things settings with multiple monitors, and short-term out-of-equilibrium in-

ference. Proofs are contained in Appendix B.

2 An Example

This section introduces our framework and illustrates the mechanics of corruption, intimi-

dation and whistleblowing through a simple but detailed example. In the interest of clarity,

we make several restrictive assumptions which are relaxed in Sections 3 and 4.

2.1 Setup

Players, timing, and actions. There are three players: a principal P , an agent A and a

monitor M .14 The timing of actions is as follows.

1. The agent chooses whether to be corrupt (c = 1) or not (c = 0). The monitor observes

corruption c and sends a message m ∈ {0, 1} to the principal.15

2. The principal observes the monitor’s message m and triggers an intervention (i = 1)

constraints, and non-linear responses of criminal behavior to the likelihood of enforcement.
14See Appendix A for an extension to the case of multiple monitors.
15In this simple setting, this binary message space is without loss of efficiency: collecting messages from

the agent, or richer messages from the monitor (for instance about threats of retaliation) is not helpful. See
Appendix B, Lemma B.1 for details.
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or not (i = 0). Intervention has payoff consequences for the principal, the agent, and

the monitor that are detailed below.

3. The agent can retaliate with intensity r ∈ [0,+∞) against the monitor.

This timing of actions is associated with a specific commitment structure: the principal

commits first to an intervention policy, following which the agent commits to a retaliation

strategy (see further description below).

At this point, it is useful to illustrate the types of interactions we are interested in captur-

ing. Corruption may include bribe collection by state officials, arrangements between police

officers or judges and organized crime, fraud by sub-contractors in public good projects,

breach of fiduciary duty by a firm’s top executives, and so on. Retaliation can also take

several forms: an honest bureaucrat may be socially excluded by his colleagues and de-

nied promotion; whistleblowers may be harrassed, see their careers derailed, or get sued for

defamation; police officers suspected of collaborating with Internal Affairs may have their life

threatened by lack of prompt support, and so on.16 In many cases retaliation is facilitated by

the fact that only a few colleagues, subordinates, or frequent associates are informed about

the agent’s misbehavior. However, group punishments may also be used. For instance, entire

communities may be denied access to public services following complaints to authorities.17

In addition, monitors may fear that anonymity is not properly ensured and that imperfect

institutions may leak the source of complaints to the agent or one of his associates. In hier-

archical 360◦ evaluations, subordinates may not be willing to complain about their superior

to their superior’s boss if they worry that the two may share information. All these situa-

tions exhibit two features that are key to our analysis: (1) there is significant information

about corrupt agents which the principal wants to obtain; (2) the individuals who have this

information and are able to pass it on to the principal can be punished by the agent.

16See Punch (2009) for examples of punishment of informants in a study of police corruption.
17For instance, Ensminger (2013) suggests that egregious corruption affecting the World Bank’s arid land

program were not reported by the local Kenyan communities that suffered from it for fear of being cut off
from subsequent projects.

8



Observables and payoffs. The monitor costlessly observes the agent’s corruption decision

c ∈ {0, 1}, and can send a message m ∈ {0, 1} to the otherwise uninformed principal. The

agent does not observe the monitor’s message m, but observes whether the principal triggers

an intervention i ∈ {0, 1}.18

As a function of c ∈ {0, 1}, i ∈ {0, 1} and r ≥ 0, payoffs uA, uP and uM to the agent,

principal and monitor take the form

uM = πM × c+ vM(c,m)× i− r

uA = πA × c+ vA(c)× i− kA(r)

uP = πP × c+ vP (c)× i

where πM , πA, and πP capture the expected payoff consequences of corruption, vM , vA, and

vP capture the expected payoffs associated with intervention, r is the level of retaliation

imposed by the agent on the monitor, and kA(r) is the cost of such retaliation to the agent.

Payoffs conditional on corruption are such that πA > 0 and πP < 0. The cost of retaliation

kA(r) is strictly increasing in r, with kA(0) = 0. Payoffs are common-knowledge. We make

the following assumption.

Assumption 1. Expected continuation payoffs following intervention (i = 1) satisfy

∀m ∈ {0, 1}, vM(c = 0,m) < 0 (non-malicious monitor);

πA + vA(c = 1) < vA(c = 0) = 0 (effective intervention);

πP ≤ vP (c = 0) < 0 (optimality of intervention);

∀c ∈ {0, 1}, vM(c,m 6= c) ≤ vM(c,m = c) (weak preference for the truth);

The first three assumptions are made for simplicity and are relaxed in our general anal-

ysis. The assumption that there are no malicious monitors requires that the monitor gets a

negative continuation payoff vM(c = 0,m) < 0 following intervention on an honest agent; ef-

fective intervention requires that certain intervention does not hurt the agent if he is honest,

18Our general framework allows the agent to observe leaks from the institutional process that can be
informative of the message m sent by the monitor.
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and hurts him sufficiently when dishonest to dissuade corruption; optimality of intervention

guarantees that it is always optimal for the principal to pick an intervention profile that

induces the agent to be honest. The last assumption (weak preference for the truth) is

maintained throughout the paper. We assume that taking intervention as given, the mon-

itor is weakly better off telling the truth. This gives an operational meaning to messages

m ∈ {0, 1}. It typically comes for free in direct mechanism design problems.

Strategies and commitment. Both the principal and the agent can commit to strategies

ex ante. Though we do not provide explicit micro-foundations, we think of this commitment

power as either arising from reputational concerns, or enforced by institutions. The principal

is the first mover and commits to an intervention policy σ : m ∈ {0, 1} 7→ σm ∈ [0, 1], where

σm ≡ prob(i = 1|m) is the likelihood of intervention given message m.19 Without loss of

generality, we focus on strategies such that σ1 ≥ σ0.20

Knowing the principal’s intervention strategy σ, the agent takes a corruption decision

c ∈ {0, 1} and commits to a retaliation policy r : i ∈ {0, 1} 7→ r(i) ∈ [0,+∞) as a func-

tion of whether or not he observes intervention. The monitor moves last and chooses the

message m ∈ {0, 1} maximizing her payoffs given the strategic commitments of both the

principal and the agent.21 Note that we assume that retaliation, rather than payments, is

the side-contracting instrument available to the agent, and this plays an important role in

the analysis.22

We are interested in characterizing patterns of corruption and information transmission

as a function of the principal’s intervention policy σ. We also solve for the principal’s optimal

policy and show that it must be interior. For simplicity, we assume throughout the paper that

19We assume that the principal can commit to using a mixed strategy. Section 5 discusses credible ways
for the principal to do so. In particular, we suggest that mixing can be achieved by garbling the messages
provided by the monitor directly at the surveying stage, before it even reaches the principal.

20See Appendix B, Lemma B.1 for details.
21The order of moves is essential for the analysis. Intuitively, it reflects the various parties’ ability to make

more or less public commitments. The principal can make fully public commitments, whereas the agent can
only commit vis-à-vis the monitor: fully public commitments to retaliate would be directly incriminating.

22See Appendix A for a detailed discussion, as well as sufficient conditions for this to be optimal even if
side-payments are available, building on the fact that rewards must be paid on the equilibrium path.
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whenever the agent is indifferent, he chooses to not be corrupt, and whenever the monitor

is indifferent, she reveals the truth. This convention does not matter for any of our results.

Reduced-form payoffs. It is important to note that while we take payoffs upon inter-

vention as exogenous, this does not mean that our approach is inconsistent with a broader

mechanism design problem in which payoffs upon intervention vA and vM are also policy

instruments available to the principal. Indeed, we place few restrictions on reduced-form

payoffs, and they can be thought of as being determined in a first optimization stage, before

determining intervention patterns σ. This is especially true in the more general framework

of Section 3.

More formally, if V denotes the set of feasible payoff structures v ≡ (vA, vM), Σ the

set of possible intervention policies σ, and c∗(v, σ) an appropriate selection of the agent’s

equilibrium behavior under payoff structure v and policy σ, the principal can be thought of

as solving

max
v∈V,σ∈Σ

E[uP |σ, c∗(v, σ)] = max
v∈V

max
σ∈Σ

E[uP |σ, c∗(v, σ)].

Provided that payoffs in V satisfy Assumption 1 (or the more general assumption made

in Section 3), our analysis applies within the broader mechanism design problem in which

payoffs are endogenously determined by the principal. In particular, our reduced-form payoffs

capture schemes under which the monitor receives reward vM(c = 1,m = 1) > 0 for correctly

informing the principal that the agent is corrupt, and is instead punished for erroneous

statements: vM(c,m 6= c) ≤ 0.

Our decision to eschew endogenizing payoffs reflects what we perceive as great heterogene-

ity in the ability of principals to reliably affect the payoffs of involved parties. While payoffs

are a first order determinants of behavior, they are rarely available as policy instruments.

Even powerful international organizations such as the World Bank need to go through local

judiciary systems to target corrupt agents, which severely constrains their ability to deliver

rewards and punishments. For this reason, we choose to focus on the decision to trigger

intervention, in whatever form it may take, as our main policy dimension of interest.
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2.2 The Trade-off Between Eliciting and Using Information

To frame the analysis, it is useful to contrast the effectiveness of intervention policies when

messages are exogenously informative, i.e. when the monitor is an automaton with strategy

m(c) = c, and when messages are endogenous.

Fact 1 (basic trade-off). (i) If messages are exogenously informative, i.e. m(c) =

c, setting σ0 = 0 and σ1 = 1 is an optimal policy. There is no corruption and no

retaliation in equilibrium.

(ii) If messages are endogenous, there exists λ > 1 such that for any intervention

policy σ satisfying σ1
σ0
≥ λ,

• the agent is corrupt and commits to retaliate conditional on intervention;

• the monitor sends message m = 0.

Point (i) follows from Assumption 1, which ensures that the agent refrains from cor-

ruption if intervention occurs with high enough probability. Since messages are exogenous,

intervention can be fully responsive to the monitor’s message: it provides the strongest

incentives for the agent to be honest, and avoids costly intervention on the equilibrium path.

Point (ii) shows that this is no longer the case when messages are endogenous. In this

case, when the likelihood ratio of intervention rates λ ≡ σ1
σ0

is high, intervention itself becomes

a very informative signal of which message the monitor sent. When λ is too high, the agent

can dissuade the monitor to send message m = 1 while keeping equilibrium retaliation

costs low, simply by threatening the monitor with high levels of retaliation conditional on

intervention.

To prevent corruption, the principal must therefore commit to trigger intervention with

sufficiently high probability when she receives message m = 0. This gives the monitor

plausible deniability when intervention takes place, and therefore makes the agent’s own

incentive problem vis-à-vis the monitor more costly to resolve, since retaliation must be

carried out with positive probability in equilibrium.
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2.3 Intervention, Reporting and Corruption

We now study in greater detail the patterns of corruption and information flow as a function

of intervention policy σ. We proceed by backward induction.

Reporting by the monitor. We begin by clarifying the conditions under which the

monitor will report corruption or not. Fix an intervention profile σ = (σ0, σ1), with σ0 < σ1,

and a level of retaliation r conditional on intervention.

We first note that when the agent is not corrupt (c = 0), it is optimal for the monitor

to send message m = 0 regardless of retaliation level r. Indeed, given c = 0, her expected

payoffs conditional on messages m = 1 and m = 0 necessarily satisfy

E[uA|m = 1] = σ1[vM(c = 0,m = 1)− r] ≤ σ0[vM(c = 0,m = 0)− r] = E[uA|m = 0].

As a result, a non-corrupt agent will find it optimal to set retaliation level r = 0. Note that

this relies on the assumption that the monitor is non-malicious (vM(c = 0,m = 1) ≤ 0).

When the monitor is malicious (vM(c = 0,m = 1) > 0), even honest agents may need to use

threats to ensure that message m = 0 is sent.

Consider now the case where the agent chooses to be corrupt, i.e. c = 1. The monitor

will report corruption and send message m = 1 if and only if

σ1[vM(c = 1,m = 1)− r] ≥ σ0[vM(c = 1,m = 0)− r].

This holds whenever

r ≤ rσ ≡
[
σ1vM(c = 1,m = 1)− σ0vM(c = 1,m = 0)

σ1 − σ0

]+

(1)

where x+ ≡ max{x, 0} by convention. Note that whenever vM(c = 1,m = 1) < 0 (i.e. the

monitor suffers from intervention against a corrupt agent), there will be intervention profiles

σ such that rσ = 0: the monitor prefers to send message m = 0 even in the absence of
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retaliation. This possibility is a concern in the context of foreign aid if corruption scandals

cause aid to be withheld (Ensminger, 2013).

Information manipulation and corruption. We now characterize the agent’s decisions.

Note first that rσ can be expressed as a function of likelihood ratio λ ≡ σ1
σ0

:

rσ = rλ ≡
[
λvM(c = 1,m = 1)− vM(c = 1,m = 0)

λ− 1

]+

.

Threshold rλ is decreasing in λ: when the information content of intervention is large,

moderate threats of retaliation are sufficient to shut down reporting.

Consider now the agent’s incentives to influence reporting conditional on being corrupt

(c = 1). Since retaliation r is costly to the agent, he either picks r = 0 and lets the monitor

send her preferred message, or picks r = rσ and induces message m = 0 at the lowest possible

cost. Hence, the agent will manipulate messages through the threat of retaliation if and only

if:

σ1vA(c = 1) ≤ σ0[vA(c = 1)− kA(rσ)]

⇐⇒ λvA(c = 1) ≤ vA(c = 1)− kA(rλ). (2)

Whenever the information content of intervention λ is high enough, the agent will induce

message m = 0, and there will be unreported corruption.

Fact 2 (unreported corruption). There exists λ0 ≥ 1 such that a corrupt agent induces

message m = 0 if and only if σ1
σ0
> λ0.

Altogether, the agent will choose to be corrupt if and only if

σ0vA(c = 0) < πA + max{σ1vA(c = 1), σ0[vA(c = 1)− kA(rσ)]}. (3)

This can be further simplified, since by Assumption 1, vA(c = 0) = 0.
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Optimal intervention. It is now straightforward to characterize the optimal intervention

profile. One notable property is that it involves interior rates of intervention conditional on

both messages m = 0 and m = 1. The reason for this is that by setting σ1 < 1 one can

lower baseline intervention rate σ0, while keeping the likelihood-ratio of intervention σ1
σ0

low

enough that messages from the monitor are informative.

Fact 3 (optimal intervention). The optimal intervention profile σ∗ satisfies (2) and (3) with

equality:

σ∗1 =
πA

−vA(c = 1)
and σ∗0 =

σ∗1
λ0

.

Profile σ∗ is interior: σ∗0 ∈ (0, 1) and σ∗1 ∈ (0, 1). Under policy σ∗, there is no corruption

and no retaliation on the equilibrium path.

Inference, and data-driven policy design. We now ask whether it is possible to make

inferences about underlying corruption c on the basis of unverifiable messages m alone.

It turns out that even though messages are unverifiable and unreported corruption is a

possibility, variation in messages across different policy choices provides sharp information

about underlying levels of corruption.

Consider old and new intervention profiles σO and σN such that

σO0 < σN0 , σO1 ≤ σN1 , and
σN1
σN0
≤ σO1
σO0

. (4)

We think of these two intervention profiles as policy experiments implemented on differ-

ent subsamples of a population of agents and monitors.23 Intervention profile σN involves

strictly more intervention than σO while having a lower information content of intervention

λ. As a result it may reasonably be expected to yield both less corruption and more reliable

messages. Let cO, cN and mO, mN denote the respective corruption and reporting decisions

in equilibrium conditional on σO and σN .

23Taking seriously this population view of the agency problem, we allow for heterogeneity across agents
and monitors in Sections 3 and 4.
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Patterns of corruption and reporting implied by conditions (2) and (3) are illustrated in

Figure 1. The following property holds.

Fact 4. For every pair of policies σO, σN satisfying (4)

cO ≥ mO; (5)

cO ≥ cN ; (6)

mO > mN ⇒ cO > cN . (7)

In words, across policy changes that increase the frequency of intervention while also

decreasing the information content of intervention: (i) reported corruption is always a weak

underestimate of true corruption; (ii) the amount of underlying corruption can only diminish;

and (iii) drops in reported corruption are a reliable indicator of drops in true corruption.

Figure 1: corruption and messages (c,m) as a function of intervention profiles (σ0, σ1); payoff
specification πA = 5, vA(c) = −10c, vM(c,m) = −2 + c(3 + 3m), kA(r) = 20r.

Fact 4 implies that messages and changes in messages can be used to make sharp infer-

ences about underlying levels of corruption. A corollary is that one can identify the optimal

intervention policy using unverifiable message data. Denote by m∗(σ) equilibrium reports
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at policy profile σ.

Fact 5. The optimal policy σ∗ solves

min
σN
{σN0 | with σN s.t. m∗(σN) = 0 and ∃σO satisfying (4) s.t. m∗(σO) = 1}. (8)

In words, the optimal policy is the one that requires the lowest level of baseline interven-

tion σ∗0 consistent with: (1) message m = 0 being sent at σ∗; (2) message m = 1 being sent

at an intervention profile that involves less frequent intervention and a higher information

content of intervention λ. Point (2) ensures that there is no unreported corruption occurring

at σ∗ and that reports of no-corruption can be trusted.

Fragility. Some of the properties highlighted in Facts 4 and 5 are intuitive and seem

like they should be robust: maintaining or increasing intervention levels, greater plausible

deniability should diminishes corruption; and once there is sufficient plausible deniability that

monitors report corruption, drops in reported corruption should be reliable. Unfortunately,

it turns out that these useful properties do not extend to more general environments, and

the following possibility results should serve as cautionary tales for policy design. Consider

policies σO and σN satisfying (4). The following can happen:

discouraging the honest – if vA(c = 0) < 0, i.e. intervention is costly to an honest agent,

it may be that cO = 0 < cN = 1: corruption increases with policy σN ; this may happen

if corrupt agents are being reported under σO, so that increasing baseline intervention

rate σ0 does not affect the payoff of corrupt agents but diminishes that of honest ones;

empowering the scoundrels – if vM(c = 0,m = 1) > 0, i.e. the monitor is malicious and

benefits from intervention against non-corrupt agents, it may be that cO < mO (there

is over-reporting) and that mO > mN 6⇒ cO > cN (drops in complaints do not imply

drops in corruption); indeed, greater plausible deniability may help malicious monitors

send inaccurate messages about honest agents;
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unreliable drops in reports – with malicious monitors and uncertainty over payoffs, it

may be that E[mO] > E[mN ] and E[cO] < E[cN ], i.e. drops in complaints are unreliable:

average complaint rates can decrease while underlying levels of corruption increase.

See Appendix A for examples illustrating these different possibilities. Our general framework

allows us to tackle these challenges head-on, and identify robust ways in which unverifiable

messages can serve to inform policy decisions.

3 General Framework

In order to better assess the robust inferences that can be drawn from our model, we gen-

eralize the framework of Section 2 in three important ways: first, we allow for arbitrary

incomplete information over the types of the agent and the monitor; second we allow for

the possibility of malicious monitors, i.e. monitors who benefit from intervention against an

honest agent; third we allow for the possibility of leaks which may reveal information over

messages sent by the monitor following intervention.

Types. Payoffs take the same general form as in Section 2, but we relax the complete

information assumption of Section 2 and allow for rich incomplete information. Monitors and

agents have types τ = (τM , τA) ∈ TM × TA = T such that the monitor’s type τM determines

her payoffs (πM , vM), while the agent’s type τA determines his payoffs (πA, vA, kA), and his

belief over the type τM of the monitor, which we denote by Φ(τM |τA) ∈ ∆(TM). We assume

that TM is a compact subset of Rn. The only assumptions imposed on the model are the

following common knowledge restriction on payoffs.

Assumption 2 (general payoffs). It is common-knowledge that payoffs satisfy

πA ≥ 0;

∀c ∈ {0, 1}, vA(c) ≤ 0;

∀c ∈ {0, 1}, vM(c,m = c) ≥ vM(c,m 6= c).
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We note that under Assumption 2, a positive mass of agents may get no benefits from

corruption (πA = 0), the certainty of intervention need not dissuade corruption (πA+vA(c =

1) > vA(c = 0)), and monitors may be malicious in that they benefit from intervention

happening against an honest agent (vM(c = 0,m = 1) > 0). We continue to assume that

conditional on intervention, monitors have weak preferences for telling the truth. Note

that this doesn’t preclude the possibility of malicious monitors. In accordance with this

assumption, we consider policy profiles such that σ1 ≥ σ0.

We denote by µT ∈ ∆(T ) the true distribution of types τ ∈ T in the population. Dis-

tribution µT may exhibit arbitrary correlation between the types of the monitor and the

agent, and is unknown to the principal. We think of this underlying population as a large

population from which it is possible to sample independent (agent, monitor) pairs.

Leaks. We generalize the assumption that the agent can observe the principal’s interven-

tion decisions. The agent now observes an abstract signal z ∈ Z ∪ {∅} on which he can

condition his retaliation policy. We think of signal z as leaks from the institutional pro-

cess triggered by intervention. We assume that z = ∅ conditional on no intervention and

follows some distribution F (·|m, c) conditional on intervention. Note that ∅ remains a pos-

sible outcome conditional on intervention. In that case intervention yields no observable

consequences.

The only restriction we impose on F is that for all c ∈ {0, 1},

probF (z = ∅|m = 0, c) ≥ probF (z = ∅|m = 1, c),

that is, message m = 0 is weakly more likely to lead to no consequences. This ensures that

in equilibrium, retaliation only occurs if intervention has been triggered. Allowing for leaks

makes our analysis applicable to settings in which investigating institutions are not entirely

trustworthy, resulting in information being revealed to the agent. Note that since leaks are

possible, the principal has only limited commitment power and the revelation principle does
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not apply.24 This is inherently an indirect mechanism design problem where messages have

hard-wired institutional meaning.

4 Patterns of Corruption and Reporting

4.1 The Basic Trade-off

The basic trade-off between using information efficiently and keeping information channels

open is the same as in Section 2. Denote by c∗(σ, τA) the optimal corruption decision by an

agent of type τA under policy σ, and by m∗(σ, τ) the optimal message sent by a monitor

of type τM facing an agent of type τA under policy σ. As before, let λ = σ1
σ0

denote the

likelihood ratio of intervention rates.

Proposition 1. Assume that messages are exogenously informative, i.e. that the monitor

is an automaton following strategy m(c) = c. Any optimal intervention profile σ∗ 6= 0 must

be such that σ∗0 = 0 and σ∗1 > 0.25

If instead messages are endogenous, we have that

lim inf
λ→∞

∫
TA

c∗(σ, τA)dµT (τA) ≥ probµT (πA > 0);

∀τA s.t. vA(·) < 0, lim
λ→∞

∫
TM

m∗(σ, τ)dΦ(τM |τA) = 0.

As λ = σ1
σ0

gets arbitrarily large, all agents with strictly positive value for being corrupt

choose to be corrupt, and all agents who suffer strictly from intervention shut down reporting

(from either malicious or non-malicious monitors).

24See Bester and Strausz (2001) for a partial extension of the revelation principle in principal-agent settings
where the principal does not have commitment power. Note that in our setting leaks are not under the control
of the principal.

25The optimal intervention policy σ∗ may be equal to zero if the equilibrium cost of intervention overwhelms
the gains from dissuading corruption.
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4.2 The Geometry of Corruption and Reporting

Consider a given agent of type τA. Without loss of generality, we can restrict attention to

retaliation schemes that involve retaliation only conditional on intervention leading to some

consequences, i.e. z 6= ∅.26

A retaliation profile r : Z → [0,+∞) and a corruption decision c induce a messaging

profile m : TM → {0, 1} such that for all τM ∈ TM ,

m(τM) ∈ arg max
m̂∈{0,1}

σm̂[vM(c, m̂)− E(r|c, m̂)]. (9)

We denote by M = {0, 1}TM the set of message profiles, and for any message m ∈ {0, 1}

define ¬m to be the other message. For any corruption decision c, and any message profile

m ∈M, consider the normalized cost KτA
c,m(σ) of implementing report profile m defined by

KτA
c,m(σ) =

1

σ0

inf
r:Z→[0,+∞)

∫
Z×TM

σm(τM )kA(r(z))dF (z|c,m(τM))dΦ(τM |τA) (10)

s.t. ∀τM , m ≡m(τM) satisfies,

σm [E(vM |m, c)− E(r|m, c)] ≥ σ¬m [E(vM |¬m, c)− E(r|¬m, c)]

By convention, this cost is infinite whenever message profile m is not implementable, i.e.

when there is no retaliation profile r such that (9) holds for all τM ∈ TM . Noting that for

all m ∈ {0, 1}, σm
σ0

= λm and σm
σ¬m

= λ2m−1, it follows that the cost KτA
c,m(σ) of implementing

message profile m can expressed as a function KτA
c,m(λ) of the likelihood ratio λ of intervention

rates. Altogether, an agent with type τA will choose to be honest if and only if

πA + σ0 sup
m∈M

{∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

}
≤ σ0 sup

m∈M

{∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)

}
. (11)

This implies several useful properties of corruption and reporting decisions in equilibrium.

26See Lemma B.2 for a proof.
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Proposition 2 (patterns of manipulation and corruption). (i) Pick an agent of

type τA and consider old and new intervention profiles σO, σN such that σO =

ρσN , with ρ > 0. Denote by cO, cN and mO,mN the corruption decisions and

message profiles implemented by the agent in equilibrium at σO and σN . If cO =

cN , then mO = mN .

(ii) Consider an agent of type τA. The set of intervention profiles σ such that

the agent chooses to be corrupt is star-shaped around (0, 0): if c∗(σ, τA) = 1, then

c∗(ρσ, τA) = 1 for all ρ ∈ [0, 1].

(iii) Fix the ratio of intervention rates λ ≥ 1 and consider the ray {(σ0, λσ0) with σ0 ∈

[0, 1]}. Along this ray, under the true distribution µT , the mass of corrupt agents

∫
TA

c∗(σ, τA)dµT (τA)

is decreasing in baseline intervention rate σ0.

In words, point (i) states that whenever intervention profiles have the same information

content λ, message profiles change if and only if the underlying corruption behavior of the

agent changes. Points (ii) and (iii) show that keeping the information content of intervention

λ constant, agents are less likely to be corrupt as the intensity of intervention increases.

4.3 Inference and Policy Evaluation from Unverifiable Reports

We now investigate the extent to which unverifiable reports can be used to make inferences

about the underlying levels of corruption, and to inform policy choices. Note that the only

data observable to the principal is the aggregate mass of corruption messages

∫
T

m∗(σ, τ)dµT (τ).

We first highlight that in our rich environment, unverifiable messages at a single policy profile

σ imply no restrictions on underlying levels of corruption.
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Proposition 3. Take as given any interior policy profile σ, and a true distribution µT

yielding aggregate complaint rate
∫
T

m∗(σ, τ)dµT (τ). We have that

{∫
T

c∗(σ, τA)dµ̂T (τ), for µ̂T s.t

∫
T

m∗(σ, τ)dµ̂T (τ) =

∫
T

m∗(σ, τ)dµT (τ)

}
= [0, 1].

In words, taking as given a policy profile and an observable level of aggregate complaints,

one can find an underlying environment that rationalizes both the given level of complaints

and any arbitrary underlying degree of corruption.

While reports at a single policy profile are uninformative, we now show that variation in

the mass of corruption messages across appropriately chosen policy profiles can imply useful

bounds on the underlying levels of corruption.

Proposition 4. Consider policies σO and σN such that σN = ρσO, with ρ > 1. For all

possible true distributions µT ∈ ∆(T ), we have that

∫
T

[
c∗(σO, τA)− c∗(σN , τA)

]
dµT (τ) ≥

∣∣∣∣∫
T

[m∗(σN , τ)−m∗(σO, τ)]dµT (τ)

∣∣∣∣ .
When policy profiles move along a ray, observable changes in message patterns provide a

lower bound for changes in underlying levels of corruption. An immediate corollary is that

changes in aggregate complaint levels
∣∣∫
T

[m∗(σN , τ)−m∗(σO, τ)]dµT (τ)
∣∣ provide a lower

bound for both the mass
∫
T

[1 − c∗(σN , τA)]dµT (τ) of honest agents at policy σN as well as

a lower bound for the mass
∫
T
c∗(σO, τA)dµT (τ) of corrupt agents at policy σO.

We now show that Proposition 4 can be used to inform policy design. Imagine that

some set of policy experiments σ ∈ Σ can be performed, where Σ is a set of feasible policy

profiles. Proposition 4 suggests the following heuristic to specify intervention policies. Define

vP = minc∈{0,1} vP (c), and denote by Ĉ : [0, 1]2 → [0, 1] the function defined by

∀σ ∈ [0, 1]2, Ĉ(σ) ≡ 1−max

{∣∣∣∣∫
T

[m∗(σ, τ)−m∗(σ′, τ)]dµT (τ)

∣∣∣∣
∣∣∣∣∣σ′ ∈ Σ ∩ {ρσ|ρ ∈ [0, 1]}

}
.

From Proposition 4 we know that Ĉ(σ) is an upper bound to the amount of underlying

23



corruption at σ. Noting that for a given intervention profile σ, the principal’s payoff is

EµT [uP |c∗,m∗, σ] = πP

∫
T

c∗(σ, τA)dµT (τ) +

∫
T

vP (c∗(σ, τA))σm∗(σ,τ)dµT (τ),

we obtain the following corollary.

Corollary 1. For any intervention profile σ, we have that

EµT [uP |c∗,m∗, σ] ≥ πP Ĉ(σ) + vP

[
σ0 + (σ1 − σ0)

∫
T

m∗(σ, τ)dµT (τ)

]
.

Furthermore, if Σ = [0, 1]2, then the data-driven heuristic policy σ̂(µT ) defined by

σ̂(µT ) ∈ arg max
σ∈[0,1]2

πP Ĉ(σ) + vP

[
σ0 + (σ1 − σ0)

∫
T

m∗(σ, τ)dµT (τ)

]

is a weakly undominated strategy with respect to the unknown true distribution µT .

While finding policy σ̂(µT ) requires many policy experiments, the underlying logic can

be exploited in more practical ways. The basic insight is to first, find an intervention profile

with information content λ low enough that monitors are willing to send complaints; second,

scale up intervention rates, keeping the information content of intervention λ constant, until

complaints diminish by a sufficient amount.

5 Discussion

5.1 Summary

We model the problem of a principal who relies on messages from informed monitors to target

intervention against a possibly corrupt agent. The difficulty is that the agent can dissuade the

monitor from informing the principal by threatening to retaliate conditional on observables.

In this setting, intervention becomes a signal which the agent can exploit to effectively

dissuade the monitor from complaining. As a consequence, effective intervention strategies
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must garble the information content of messages. In particular, there needs to be a positive

baseline rate of intervention following the message “non-corrupt”. This creates an imperfect

monitoring problem between the agent and the monitor which limits the effectiveness with

which they can side-contract.

Because hard-evidence of corruption is hard to come by, we explore the extent to which

one can make inferences about unobservable corruption, as well as evaluate policies, on the

basis of unverifiable messages alone. We consider a general framework wich allows for near

arbitrary incomplete information and heterogeneity across agents and monitors. We establish

general properties of reporting and corruption patterns which can be exploited to derive

bounds on underlying corruption as a function of unverifiable reports. These bounds suggest

heuristics to identify robust intervention policies which can be described as follows: first find

intervention profiles that guarantee sufficient plausible deniability for monitors to complain,

then increase intervention rates proportionally until complaints fall to an acceptable level.

5.2 Implementation

A strength of our analysis is that it does not presume that the principal has extensive control

over the payoffs of the agent and the monitor. This accommodates environments in which

the relevant principal has to rely on existing institutional channels to carry out interventions.

This scenario is particularly relevant for IT-driven counter-corruption policies, for instance

Punjab’s Citizen Feedback Model, or policies similar to the one studied in Callen et al.

(2013). Still our policy suggestions raise some practical concerns.

Commitment to mixed strategies. Our analysis assumes the principal is able to commit

to mixed strategies which is admittedly more demanding than committing to pure strate-

gies. One way to justify this assumption is to invoke reputational concerns in an unmodelled

continuation game, committing to mixed strategies being equivalent to forming a reputation

under imperfect public monitoring (Fudenberg and Levine, 1992). A more practical obser-

vation is that commitment to mixed strategies can be achieved through hard-wired garbling
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of messages at the surveying stage. Specifically, instead of recording messages directly, the

principal may record the outcomes of two Bernoulli lotteries l0 and l1 such that

l0 =

 1 with proba σ0

0 with proba 1− σ0

and l1 =

 1 with proba σ1

0 with proba 1− σ1.

The monitor communicates by privately picking a lottery, with observed realized outcome y.

Conditional on y the principal intervenes according to pure strategy i(y) = y. This approach

has the benefit of making plausible deniability manifest to participating monitors. Crucially,

one can recover aggregate submitted reports from outcome y data alone: for any mapping

m : T → {0, 1}, ∫
T

m(τ)dµT (τ) =

∫
T
y(τ)dµT (τ)− σ0

σ1 − σ0

.

Hence the analysis of Section 4 continues to apply as is. Note that this implementation

of mixed strategies is closely related to the randomized response techniques introduced by

Warner (1965).27

Destroying information. A salient concern with the policies we consider is that they

require the government to explicitly garble valuable information. In particular, we show

that the optimal policy may involve σ1 < 1 and σ0 > 0, i.e. triggering intervention against

agents for whom there have been no complaints, while not investigating all agents against

which a complaint has been filed. This is supect behavior that governments may prefer to

avoid. This reinforces the argument that garbling should occur at the recording stage, with

the caveat that the garbling procedure needs to appear natural and legitimate to participants.

In addition, one may choose to focus on the subset of policies such that σ1 = 1, so that the

government cannot be suspected of abetting corruption.

27The main difference is that typical randomized response techniques simply enjoin the monitor to garble
his response, but the monitor can always guarantee his preferred message. Hence, in our fully rational
framework, traditional randomized response techniques do not guarantee plausible deniability in all equilibria.
This difference is important when messages are used for equilibrium incentive design, rather than for one-shot
surveys.
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Validating structural inference. Our analysis emphasizes the possibility of making

structural inferences over underlying corruption on the basis of “soft” unverifiable mes-

sages. This is motivated by the fact that in many environments corruption itself is very

difficult to observe. While it is encouraging that in a fairly general setting, theory allows us

to place bounds on underlying corruption on the basis of unverifiable messages alone, it is

legitimate to worry whether equilibrium inferences from our model can be trusted. In this

respect, obtaining “hard” direct measures of corruption is valuable, even though cost limits

their scalability. Indeed, even a limited sample of direct measures could be used to calibrate

the meaning of unverifiable messages obtained from agents, as well as confirm or not the

structural implications of our analysis.

Appendix - For Online Publication

A Extensions

A.1 Examples

In this appendix we explicitly solve the model in the case where payoffs are complete informa-

tion between the agent and the monitor, but allow for the more general payoffs described in

Assumption 2. Specifically, intervention may be costly even to honest agents (vA(c = 0) < 0)

and monitors may be malicious (vM(c = 0,m = 1) > 0). We describe explicitly environments

for which the possibility results discussed at the end of Section 2 are true. Again, the model

is solved by backward induction.

Reporting by the monitor. Take as given an intervention profile σ = (σ0, σ1), with

σ0 < σ1, and a level of retaliation r conditional on intervention.

When the agent is not corrupt (c = 0), the monitor sends message m = 0 if and only if

σ1[vM(c = 0,m = 1)− r] < σ0[vM(c = 0,m = 0)− r].
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This holds if and only if

r ≥ r0
σ ≡

[
σ1vM(c = 0,m = 1)− σ0vM(c = 0,m = 0)

σ1 − σ0

]+

.

Because the monitor is malicious, a non-corrupt agent may now have to threaten the monitor

with positive retaliation r0
σ to induce the monitor to send message m = 0.

When the agent is corrupt, i.e. c = 1, the monitor will report corruption and send

message m = 1 if and only if

σ1[vM(c = 1,m = 1)− r] ≥ σ0[vM(c = 1,m = 0)− r].

This will hold whenever

r ≤ r1
σ ≡

[
σ1vM(c = 1,m = 1)− σ0vM(c = 1,m = 0)

σ1 − σ0

]+

.

As before, r1
σ is decreasing in the ratio σ1

σ0
. In addition r0

σ is decreasing in σ1
σ0

over the range

of ratios σ1
σ0

such that r0
σ > 0. As before, the information content of intervention affects the

level of retaliation needed to influence messaging.

Information manipulation and corruption. We now examine the agent’s behavior.

Consider the agent’s incentives to manipulate information given a corruption decision c ∈

{0, 1}. Since retaliation r is costly to the agent, he either picks r = 0 and does not influence

the monitor, or picks r = rcσ and induces message m = 0 at the lowest possible cost. Hence,

the agent will induce a message m(σ, c) such that

m(σ, c) ∈ arg max
m∈{0,1}

σm[vA(c)− 1m=0kA(rcσ)]. (12)
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It follows that the agent will choose not to be corrupt if and only if

πA + max{σ1vA(c = 1), σ0[vA(c = 1)− kA(r1
σ)]} ≤ max{σ1vA(c = 0), σ0[vA(c = 0)− kA(r0

σ)]}.

(13)

We can now provide explicit illustrations of the possibility results discussed in Section 2.

Consider policies σO and σN satisfying condition (4). Figure 2(a) illustrates the fact that

when vA(c = 0) < 0, it may be that increasing intervention (even without increasing the

likelihood ratio of intervention rates) can result in greater corruption. In this example,

increasing the baseline intervention rate σ0 diminishes the payoffs of non-corrupt agents

without affecting the payoffs of corrupt ones.

Figures 2(b) and 2(c) show that when the monitor is malicious, messages of corruption

are no longer a lower bound to true corruption. In fact, policy changes from σO to σN

can generate both increases and decreases in reports without corresponding changes in the

underlying level of corruption.

Finally, the environments of Figures 2(a) and 2(b) can be used to construct a stochastic

example in which a policy change from σO to σN induces a strict drop in reported cor-

ruption and a strict increase in underlying corruption. Indeed imagine that while payoffs

(vM , vA, πA) are common-knowledge between the agent and the monitor, they are uncertain

for the principal. In particular, say that with probability .3 payoffs are those of Figure 2(a)

and with probability .7 payoffs are those of Figure 2(b). Then one can pick policies σO and

σN satisfying condition (4) such that E[mO] = .7 and E[cO] = 0, while E[mN ] = .3 and

E[cN ] = .3. In this case, a strict drop in complaints is associated with a strict increase in

corruption.

A.2 Multiple Monitors

Our analysis can be extended to settings with multiple monitors. Imagine that there are

now L monitors indexed by i ∈ {1, · · · , L}, each of which observes the agent’s corruption

decision c ∈ {0, 1} and can send a binary message mi ∈ {0, 1} to the principal. We denote by

29



(a) unproductive intervention: vA(c = 1) =
−4.5− 5.5c, vM (c,m) = −2 + c(3 + 3m)
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(b) malicious monitor 1: vA(c = 1) = −10c,
vM (c,m) = 2 + c(−1 + 2.5m)
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(c) malicious monitor 2: vA(c = 1) = −2− 8c,
vM (c,m) = 2 + c(−1 + 2.5m)

Figure 2: Corruption decisions and messages (c,m) as a function of intervention profiles
(σ0, σ1); common parameters: πA = 5, kA(r) = 20r.
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−→m ∈ {0, 1}L the vector of messages sent by the monitors. We abuse notation and denote by 0

the message profile in which all monitors report mi = 0, and by 1 the message profile in which

all monitors report mi = 1. An intervention policy σ is now a map σ : {0, 1}L → [0, 1]. For

example, likelihood of intervention may be an affine function of the number of complaints,

σ−→m = σ0 + (σ1 − σ0) 1
L

∑L
i=1 mi. Alternatively, it may follow a threshold rule, with threshold

Θ ∈ N, i.e. σ−→m = σ0 + (σ1 − σ0)1∑L
i=1mi>Θ. For simplicity, we consider intervention policies

such that for all −→m, σ−→m ≥ σ0

As in Section 3, the agent and monitors have arbitrary types, except for the fact that

Assumption 2 is common knowledge among players. We assume that each monitor i’s value

conditional on intervention vi,M depends only on c and her own message mi. The agent now

commits to a profile of vector-valued retaliation intensities −→r : Z → [0,+∞)L associated

with a cost function kA(−→r ) that is increasing in all components of −→r .

The vector of monitors’ types is denoted by −→τM = (τi,M)i∈{1,··· ,L}. Note that now, each

monitor’s type must include a belief over other monitors’ types. Furthermore, the agent’s

belief over −→τM is now a joint distribution over (TM)L. Finally, the distribution of leaks z may

depend on the vector of messages −→m. We denote by −→m ∈
(
{0, 1}TM

)L
profiles of message

vectors as a function of the monitors’ types. Note that for all i ∈ {1, · · · , L} monitor i’s

message profile mi(τi,M) is only a function of monitor i’s type (i.e. we don’t consider richer

mechanisms that would let monitors’ exchange information about their type).

The main properties identified in Section 4 continue to hold: for messages to be infor-

mative, it must be that all likelihood ratios of intervention rates be bounded away from

0; when policies σ are ordered along a ray, message profiles change only when corruption

decisions change, and corruption must decrease along a ray going away from the origin. One

difficulty is that there may now be multiple messaging equilibria among agents conditional

on a given retaliation policy. We work under the assumption that given a retaliation policy,

the agent is able to select the equilibrium that most benefits him, and that this equilibrium is

unique. We continue to think of the agent as selecting a message profile −→m under constraints

corresponding to the monitors’ incentive compatibility conditions.
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Fact A.1. If σ0 = 0 then all agents that benefit from corruption will be corrupt, and induce

message profile −→m = 0.

Proof. The proof is identical to that of Proposition 1. By setting r(z = ∅) = 0 and r(z 6=

0) = r arbitrarily high, the agent is able to induce message −→m = 0 at no cost in equilibrium,

which insures that there is no intervention.

Given an interior intervention profile σ, define
−→
λ =

(
σ−→m
σ0

)
−→m∈{0,1}L

the vector of likelihood

ratios of intervention.

Proposition A.1. Fix a vector of intervention ratios
−→
λ and consider the ray of intervention

policies {σ0

−→
λ for σ0 ∈ [0, 1]}. Along this ray the following properties hold:

(i) conditional on a corruption decision c, the message profile −→m that a given

agent chooses to induce is constant along the ray;

(ii) the agent’s decision to be corrupt is decreasing in σ0 along the ray.

Proof. The proof is essentially identical to that of Proposition 2. Let us begin with point

(i). Conditional on a corruption decision c ∈ {0, 1}, for any message profile −→m, we define

the cost KτA
c,−→m(σ) of inducing message profile −→m as

KτA
c,−→m(σ) =

1

σ0

inf
r:Z→[0,+∞)

∫∫
Z×TL

M

σ−→m(−→τM )kA(r(z))dF (z|c,−→m(−→τM))dΦ(−→τM |τA)

s.t. ∀−→τM = (τi,M)i∈{1,··· ,L}, (mi)i∈{1,··· ,L} = −→m(τi,M) satisfies

∀i ∈ {1, · · · , L},

E
[
σ(mi,

−→m−i)vi,M(mi, c)− ri
∣∣mi,
−→m−i, c

]
≥ E

[
σ(¬mi,

−→m−i)vi,M(¬mi, c)− ri
∣∣¬mi,

−→m−i, c
]
.

It follows from inspection that KτA
c,−→m is a function of

−→
λ only. By convention KτA

c,−→m is set to

+∞ whenever message profile −→m is not implementable. Given a corruption decision c, the

agent chooses to induce the message profile −→m solving

σ0 max−→m

{
E
[−→
λ −→m(−→τM )vA(c)

]
−KτA

c,−→m(
−→
λ )
}
.
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It follows that the optimal message induced by the agent is a function of
−→
λ only, and

therefore remains constant along rays.

We now turn to point (ii). An agent chooses to be non-corrupt if and only if

πA + σ0 max−→m

{
E
[−→
λ −→m(−→τM )vA(1)

]
−KτA

1,−→m(
−→
λ )
}
≤ σ0 max−→m

{
E
[−→
λ −→m(−→τM )vA(0)

]
−KτA

0,−→m(
−→
λ )
}
. (14)

Since πA ≥ 0 it follows that whenever (14) holds for σ0, it must also hold for all σ′0 ≥ σ0.

This proves point (ii).

An implication is that changes in reporting patterns along a ray can be assigned to

changes in corruption. Consider two policies σO, σN such that
−→
λ O =

−→
λ N =

−→
λ and

σO0 < σN0 . For any function X : −→m ∈ {0, 1}L 7→ x ∈ Rn computing a summary statis-

tic of messages, denote by µ̂σX the distribution over x ∈ X({0, 1}L) defined by µ̂σX(x) =∫
T

1X(−→m∗(σ,τ))=xdµT (τ), where −→m∗(σ, τ) is the equilibrium vector of messages for a real-

ized profile of types τ = (τA,
−→τ M) given intervention policy σ. Given policies σO, σN ,

let D denote the distance between message distributions induced by σO and σN defined by

D ≡ 1
2

∑
x∈X({0,1}L) |µσ

N

X (x) − µσ
O

X (x)|. Note that D can be computed from message data

alone. Proposition 4 extends as follows.

Proposition A.2 (inference). For all possible true distributions µT , we have that

∫
T

[
c∗(σO, τA)− c∗(σN , τA)

]
dµT (τ) ≥ D

which implies that D is a lower bound for the mass
∫
T

[1−c∗(σN , τA)]dµT (τ) of honest agents

at policy σN as well as a lower bound for the mass
∫
T
c∗(σO, τA)dµT (τ) of corrupt agents at

policy σO.

Proof. The proof is essentially identical to that of Proposition 4. From Proposition A.1, it
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follows that

∫
T

[c∗(σO, τA)−c∗(σN , τA)]dµT (τ) ≥
∫
T

1−−−→mτA
∗(σO)6=−−−→mτA

∗(σN )dµT (τA)

≥
∫
TA

max
x∈X

{
1∫

τM
1
X(−−−→mτA

∗(σO,−−→τM ))=x
dµT (τM |τA)6=

∫
τM

1
X(−−−→mτA

∗(σN,−−→τM ))=x
dµT (τM |τA)

}
dµT (τA)

≥ 1

2

∫
TA

∑
x∈X

∣∣∣∣∫
τM

1X(−−−→mτA
∗(σO,−→τM ))=xdµT (τM |τA)−

∫
τM

1X(−−−→mτA
∗(σN ,−→τM ))=xdµT (τM |τA)

∣∣∣∣dµT (τA)

≥ D

which concludes the proof.

A.3 Retaliation and Side Payments

The paper assumes that the agent uses only retaliation to provide incentives to the mon-

itor. It is immediate that the analysis of Section 4 can be extended to allow for side-

payments (modeled as r(z) < 0), provided that there are no rewards given conditional on

no-intervention, i.e. provided that r(z = ∅) = 0.

We now provide sufficient conditions for this to be true in the general framework of Section

3, even if we allow for retaliation as well as side payments, i.e. r ∈ R. The cost of retaliation

kA(·) ≥ 0 is extended over R. For simplicity, we assume that kA is everywhere differentiable,

except at r = 0, where there is a kink: k′A(0−) < 0 ≤ k′A(0+). Recall that state z = ∅ occurs

with probability 1 if there is no intervention, and with probability probF (z = ∅|c,m) if there

is intervention. Let us define p = min(c,m)∈{0,1}2 probF (z = ∅|c,m). The following holds.

Proposition A.3. Whenever

−p× sup
r<0

k′A(r) > (1− p)× sup
r>0

k′A(r) > 0, (15)

for any intervention profile σ and any type τA, the agent’s optimal retaliation strategy is such

that r(∅) = 0.

Whenever the marginal cost of retaliation is low and the probability of intervention

yielding additional information is low, it is optimal for the agent never to give out rewards
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when there are no observed consequences, i.e. z = ∅. Note that it may still be optimal for

the agent to give out rewards, for instance if he gets a particularly informative signal z that

the monitor sent message m = 0.

Proof. By an argument identical to that of Lemma B.2 (see Appendix B), it follows that

at any optimal retaliation profile, r(∅) ≤ 0. Assume that r(∅) < 0. We show that for

ε > 0 small enough, it is welfare improving for the agent to reduce rewards by ε conditional

on z = ∅, and increase retaliation by ε at all states z 6= ∅, i.e. to use retaliation policy

rε(·) ≡ r(·) + ε.

We first show that this change in retaliation policy induces the same messages from

monitors. This is immediate since payoffs have been shifted by a constant: for all m ∈ {0, 1},
we have

−(1− σm)rε(∅) + σm [vM (c,m)− E(rε|i = 1,m, c)] = −(1− σm)r(∅) + σm [vM (c,m)− E(r|i = 1,m, c)]− ε,

which implies that the monitor’s IC constraints are unchanged, and retaliation profile rε

induces the same message profile as r.

We now show that using rε rather than r reduces the agent’s expected retaliation costs.

Indeed, the change in the agent’s retaliation costs is given by

∫∫
TM×Z

[kA(rε(z))− kA(r(z))]f(z|m∗(τM ), c)dzdΦA(τM ) ≤ ε
[
p sup
r<0

k′A(r) + (1− p) sup
r>0

k′A(r)

]
< 0

where we used condition (15). This implies that it is not optimal for the agent to choose a retaliation

strategy such that r(∅) < 0.

A.4 An Anecdote

A basic implication from our paper is that a strictly positive baseline rate of intervention

σ0 > 0 is needed to ensure that information will flow from the monitor to the principal. This

provides the monitor with plausible deniability should her message lead to an intervention,

which makes incentive provision by the agent harder.
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We use anecdotal evidence from recent changes in British accounting-oversight policy to

provide a plausible illustration of how this mechanism may play out in practice.28 We em-

phasize that the goal here is only to describe the trade-off identified in Fact 1 and Proposition

1 sufficiently realistically that it can be used to rationalize existing data. This, however, is

merely a suggestive anecdote and there are clearly alternative interpretations of the data we

discuss.29

Between 2004 and 2005 the UK’s Financial Reporting Review Panel — the regulatory

authority in charge of investigating the accounts of publicly owned firms — radically changed

its investigation policy. It moved from a purely reactive policy — in which investigations

were only conducted in response to complaints filed by credible agents (in our terminology,

σ0 = 0) — to a proactive policy, under which a significant number of firms were investigated

each year regardless of whether complaints were filed or not (i.e. σ0 > 0); credible complaints

continuing to be investigated as before (Financial Reporting Council, 2004). The change in

the number of complaints is large, going from an average of 4 a year in the period from 1999

to 2004, to an average of 50 a year in the period from 2005 to 2011.30

This striking pattern can be mapped to our framework as follows. The natural monitor

of a firm’s aggregate accounting behavior is the firm’s own auditor. Under a purely reactive

system, following intervention, the firm knows that its auditor must have reported it. Of

course, this puts the auditor in a difficult position, and is likely to disrupt future business.

In contrast, under a proactive system, baseline intervention rates give the auditor plausi-

ble deniability should its client be investigated, thereby limiting the damages to long-run

relationships. As a consequence, proactive investigations result in higher rates of complaints.

28We are grateful to Hans Christensen for suggesting this example.
29In fact, concurrent changes make this example unsuitable for proper identification. For instance, over a

time period covering the data we bring up, accounting standards were being unified across Europe.
30The data is obtained from Brown and Tarca (2007) for years 1999 to 2004, and from the Financial

Reporting Review Panel (2005–2011) for years 2005 to 2011.
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A.5 Short-run inference

The analysis of Section 4 emphasized inference in equilibrium. We now study inference under

a partial equilibrium in which the monitor adjusts her behavior, while the corruption and

retaliation decisions of the agent remain fixed. It is plausible that this partial equilibrium

model may be better suited to interpret data collected in the short-run.

We assume that corruption, retaliation, and reporting policies (cO, rO,mO) under policy

σO are at equilibrium. Under the new policy σN , we consider the short-run partial equi-

librium in which the agent’s behavior is kept constant equal to cO, rO, while the monitor’s

reporting strategy mN
SR is a best-reply to cO, rO under the new policy σN .

We first note that in the short run, the policy experiment considered in Section 4 is

uninformative.

Fact A.2 (no short-run inferences). Consider policies σO and σN such that σN = ρσO with

ρ > 1. In the short-run equilibrium, message patterns are not affected by new policy σN :

∀τ ∈ T,
∫
T

mO(τ)dµT (τ) =

∫
T

mN
SR(τ)dµT (τ).

Proof. The result follows from the fact that given a retaliation strategy, the monitor’s report-
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ing decision, described by (9), depends only on the likelihood ratio of intervention rates.

This is not necessarily a negative result: it can serve as a test of whether the short-run

or long-run equilibrium is most suited for analysis. It also implies that the bounds given in

Proposition 4 remain valid if players play a mixture of long-run and short-run equilibria. We

now show that under additional assumptions, other experimental variation may be used to

extract useful information from short-run data. We first describe variation useful to place

bounds on unreported corruption.

Proposition A.4 (a lower bound on unreported corruption). Consider policies σO and σN

such that σO0 < σN0 and σO1 = σN1 . Under the assumption that there are no malicious monitors

and agents know it, we have that

∫
T

cO(τA)[1−mO(τ)]dµT (τ) ≥
∫
T

[mN
SR(τ)−mO(τ)]dµT (τ).

In words, the increase in reports is a lower bound for the amount of unreported corruption.

Proof. The fact that there are no malicious monitors and the agent knows it implies that

conditional on being non-corrupt, i.e. choosing c = 0, the agent never threatens to retaliate,

i.e. r(·) = 0. In addition, since there are no malicious monitors, it must be that mN
SR(τ) = 1

implies cO(τA) = 1. As a consequence, whenever mN
SR(τ) − mO(τ) > 0, it must be that

mO(τ) = 0 and cO(τA) = 1. Therefore cO(τA)(1 − mO(τ)) ≥ mN
SR(τ) − mO(τ). This

concludes the proof.

We now describe variation allowing to obtain a bound on the number of malicious mon-

itors.

Proposition A.5 (a lower bound on the mass of malicious monitors). Assume that there

are no leaks, i.e. f(z|c = 1,m) = f(z|c = 1). Consider policies σO and σN such that

σO0 = σN0 and σO1 < σN1 . We have that

∫
T

1vM (c=0,m=1)>0dµT (τ) ≥
∫
T

[
mN
SR(τ)−mO(τ)

]
dµT (τ).
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Proof. Whenever mN
SR(τ) − mO(τ) > 0, it must be that mN

SR(τ) = 1 and mO(τ) = 0. We

show that this can only occur when c = 0 and vM(c = 0,m = 1) > 0.

Indeed, consider first the case where c = 0 and vM(c = 0,m = 1) ≤ 0. The fact that

mO(τ) = 0 implies that

σO1 [vM(c = 0,m = 1)− E(r|m = 1, c = 0)] ≤ σO0 (vM(c = 0,m = 0)− E[r|m = 0, c = 0]) .

Since in this case vM(c = 0,m = 1) − E[r|m = 1, c = 0] ≤ 0, the fact that σN1 > σO1 and

σN0 = σO0 implies

σN1 [vM(c = 0,m = 1)− E(r|m = 1, c = 0)] ≤ σN0 [vM(c = 0,m = 0)− E(r|m = 0, c = 0)] .

Hence we also obtain that mN
SR(τ) = 0.

Consider now the case where c = 1. Using the fact that f(z|c = 1,m = 1) = f(z|c =

1,m = 0), the fact that mO(τ) = 0 implies that

σO1 [vM(c = 1,m = 1)− E(r|c = 1])] ≤ σO0 (vM(c = 1,m = 0)− E[r|c = 1]) . (16)

By Assumption 2, we have that vM(c = 1,m = 1) ≥ vM(c = 1,m = 0). Given that σO1 > σO0 ,

condition (16) can only hold if vM(c = 1,m = 1) − E[r|c = 1] ≤ 0. This implies that

necessarily,

σN1 [vM(c = 1,m = 1)− E(r|c = 1])] ≤ σN0 (vM(c = 1,m = 0)− E[r|c = 1]) .

We have now established that mN
SR(τ) − mO(τ) > 0 implies vM(c = 0,m = 1) > 0.

Proposition A.5 follows by integration over τ ∈ T .
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B Proofs

B.1 Proofs for Section 2

We begin by establishing the simplifying claims made in Section 2.

Lemma B.1. It is without loss of efficiency for the principal to: (i) not elicit messages from

the agent; (ii) offer the monitor only binary messages 0, 1; (iii) use an intervention policy

satisfying σ0 ≤ σ1.

Proof. We begin by showing point (i): it is without loss of efficiency not to elicit messages

from the agent. The agent has commitment power and therefore can commit to the messages

he sends. When the agent sends a message, we can think of him as choosing the intervention

profile σ that he will be facing, as well as the messages sent by the monitor. If a non-corrupt

agent chooses intervention profile σ, then giving additional choices can only increase the

payoffs of a corrupt agent. Hence the principal can implement the same outcome by offering

only the profile σ chosen by a non-corrupt agent.

We now turn to point (ii) and consider enlarging the set of messages submitted by the

monitor. The monitor observes only two pieces of information: the corruption status c ∈

{0, 1} of the agent, and the level of retaliation r ∈ R that he is threatened with in the event

of intervention. A priori, the principal may elicit messages (m, ρ) ∈ {0, 1} × [0,+∞) about

both the corruption status of the agent and the retaliation level she has been threatened

with. This means that intervention rates now take the form σm,ρ ∈ [0, 1].

Take as given an intervention profile σ = (σm,ρ)m∈{0,1},ρ∈[0,+∞). First, note that we can

focus on the case where the agent’s optimal decision is to be non-corrupt, otherwise no-

intervention is the optimal policy. Second, noting that the value of ρ submitted by the

monitor must solve maxρ∈[0,+∞) σm,ρ(vM(c,m)− r) it follows that without loss of generality

one can focus on binary values of ρ ∈ {−,+} such that σm,− = infρ∈[0,+∞) σm,ρ and σm,+ =

supρ∈[0,+∞) σm,ρ.
31 Finally, without loss of efficiency, one can consider intervention profiles

31When the monitor is indifferent, she must be inducing the lowest possible intervention rate, otherwise
the agent would increase retaliation by an arbitrarily small amount.
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such that for all ρ ∈ {−,+}, σ0,ρ ≤ σ1,ρ. Indeed, given ρ, define σ = maxm∈{0,1} σm,ρ and

σ = minm∈{0,1} σm,ρ, as well as m and m the corresponding messages. Given ρ, the level of

retaliation needed to induce σ rather than σ must satisfy

σ(vM(c,m)− r) ≤ σ(vM(c,m)− r) ⇐⇒ r ≥
[
σvM(c,m)− σvM(c,m)

σ − σ

]+

.

setting m = 1 and m = 0 maximizes the cost of inducing σ for the corrupt agent and

minimizes the cost of inducing σ for the non corrupt agent. Note that this proves point (iii).

Given a profile σ satisfying the properties established above, we now establish the exis-

tence of a binary intervention profile σ̂ = (σ̂m)m∈{0,1} which keeps the payoff of a non-corrupt

agent the same and can only decrease the payoff of a corrupt agent. Specifically set σ̂0 = σ0,−

and set σ̂1 as the intervention rate that would occur under σ if a corrupt agent chose retali-

ation level r = 0. First note that the assumption that the monitor is not malicious implies

that a non-corrupt agent will induce intervention rate σ0,− without using retaliation under

both σ and σ̂. Hence the payoff of a non-corrupt agent remains unchanged, and the equi-

librium intervention rate remains the same in both settings. Consider now the problem of

the corrupt agent under σ̂. The respective costs of inducing intervention rates σ0,− and σ̂1

haven’t changed. However the agent now has less choice regarding the intervention rates she

can induce. It follows that the corrupt agent must be weakly worse-off. Hence profile σ̂ also

induces the agent to be non-corrupt. This concludes the proof.

Proof of Fact 1: We begin with point (i). Note that 0 is the highest payoff the principal

can attain. Under intervention policy σ0 = 0, σ1 = 1, Assumption 1 implies that it is optimal

for the agent to choose c = 0. As a result, there will be no intervention on the equilibrium

path. Hence the principal attains her highest possible payoff, and σ0 = 0, σ1 = 1 is indeed

an optimal intervention policy.

Let us turn to point (ii). Consider policies σ such that σ1
σ0
> 2 and the retaliation profile

under which the agent retaliates by an amount r ≡ 2vM(c = 1,m = 1)− vM(c = 1,m = 0).
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Retaliation level r is chosen so that whenever the agent is corrupt, the monitor prefers to

send message m = 0. Indeed, the monitor prefers to send message m = 0 if and only if

σ1[vM(c = 1,m = 1)− r] ≥ σ0[vM(c = 1,m = 0)− r]

⇐⇒ r ≥ λvM(c = 1,m = 1)− vM(c = 1,m = 0)

λ− 1
(17)

where λ = σ1
σ0

. Noting that the right-hand side of (17) is decreasing in λ and that λ > 2, we

obtain that the monitor indeed sends message m whenever r ≥ 2vM(c = 1,m = 1)− vM(c =

1,m = 0).

It follows that a corrupt agent’s expected payoff under this retaliation strategy is

πA + σ0[vA(c = 1)− kA(r)] ≥ πA +
1

λ
[vA(c = 1)− kA(r)].

Since πA > 0, it follows that this strategy guarantees the agent a strictly positive payoff for

λ sufficiently large. Given that the highest possible payoff for an agent choosing c = 0 is

equal to 0, it follows that for λ large enough the agent will be corrupt.

Given corruption, we now show that the agent will also use retaliation. Under no retali-

ation the agent obtains an expected payoff equal to πA + σ1vA(c = 1). Under the retaliation

strategy described above, the agent obtains a payoff equal to πA + σ1
λ

[vA(c = 1) − kA(r)].

Since vA(c = 1) < 0 it follows that for λ large enough, it is optimal for the agent to commit

to retaliation. �

Proof of Fact 2: Recall that λ = σ1
σ0

. As shown in the text, the corrupt agent induces

message m = 0 if and only if (2) holds, i.e. if

λvA(c = 1) ≤ vA(c = 1)− kA(rλ).

From the fact that rλ is decreasing in λ and vA(c = 1) < 0, it follows that there exists λ0

such that (2) holds if and only if λ > λ0. �
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Proof of Fact 3: By Assumption 1, the optimal intervention profile must discourage cor-

ruption in equilibrium (σ0 = σ1 = 1 guarantees no corruption and is preferred to corruption

in spite of high intervention costs). Since there won’t be corruption in equilibrium, the equi-

librium rate of intervention is σ0. The principal’s problem is therefore to find the smallest

value of σ0 for which there exists σ1 ≥ σ0 satisfying

πA + max{σ1vA(c = 1), σ0[vA(c = 1)− kA(rλ)]} ≤ σ0vA(c = 0). (18)

Let us first show that at the optimal policy, it must be that σ1vA(c = 1) = σ0[vA(c =

1) − kA(rλ)]. Indeed, if we had σ1vA(c = 1) > σ0[vA(c = 1) − kA(rλ)], then one could

decrease σ0 while still satisfying (18), which contradicts optimality. If instead we had that

σ1vA(c = 1) < σ0[vA(c = 1) − kA(rλ)], then diminishing σ1 increases rλ which allows to

diminish σ0 while still satisfying (18). Hence it must be that σ1vA(c = 1) = σ0[vA(c =

1)− kA(rλ)]. By definition of λ0, this implies that σ1 = λ0σ0.

Hence (18) implies that πA+σ1vA(c = 1) ≤ σ0vA(c = 0). Furthermore this last inequality

must be an equality, otherwise one would again be able to diminish the value of σ0 while

satisfying (18). This implies that πA +σ1vA(c = 1) = σ0vA(c = 0). This proves the first part

of Fact 3.

We now show that this optimal policy is necessarily interior. We know that σ0 ∈ (0, 1)

from Fact 1 and the assumption that πA + vA(c = 1) < vA(c = 0). Let us show that σ1 < 1.

The first part of Fact 3 allows us to compute σ1 explicitly as

σ1 =
πA

−vA(c = 1)

1

1− vA(c=0)
λ0vA(c=1)

≤ πA
−vA(c = 1)

1

1− vA(c=0)
vA(c=1)

≤ πA
−vA(c = 1) + vA(c = 0)

< 1,

where the last inequality uses the assumption that πA + vA(c = 1) < vA(c = 0). This con-

cludes the proof of Fact 3. �

43



Proof of Fact 4: Condition (5) follows from the proof the fact that since there are no

malicious monitors, an non-corrupt agent can induce message m = 0 at no retaliation cost.

Let us now show that if cN = 1 then cO = 1. It follows from (5) that mN = 1 implies

cN = 1. Let us define λN ≡ σN
1

σN
0

and λO ≡ σO
1

σO
0
. Assume that cN = 1. Since corruption is

optimal for the agent at σN , we obtain that

πA + max{σN1 vA(c = 1), σN0 [vA(c = 0)− kA(rλN )]} ≥ 0.

Since λN < λO, rλ is decreasing in λ, vA(·) ≤ 0 and σN > σO for the usual vector order, we

obtain that

πA + max{σO1 vA(c = 1), σO0 [vA(c = 0)− kA(rλO)]} ≥ 0.

Hence, it must be optimal for the agent to be corrupt at σO: cO = 1.

Finally, we prove (7). Since mO = 1, we know that cO = 1. Since the agent chooses not

to induce message m = 0 at σO, it must be that λO ≤ λ0, where λ0 was defined in Fact

2. Since λN < λO, it follows from point (i) above that a corrupt agent would not induce

message m = 0 at σN . Hence, it must be that cN = 0. �

Proof of Fact 5: Fact 4 implies that any profile σN satisfying the condition in (8) is such

that c(σN) = 0.

We now show that there exists a sequence of intervention profiles converging to optimal

policy σ∗ that satisfies the conditions in (8). We know from Fact 3 that policy σ∗ satisfies

m∗(σ∗) = 0 and σ∗1 = λ0σ
∗
0. Consider sequences (σOn )n∈N and (σNn )n∈N such that

σN0,n =

(
1 +

1

n

)
σ∗0 , σO0,n =

(
1− 1

n

)
σ∗0 ,

σN1,n = λ0

(
1− 1

n

)
σN0,n , σO1,n = λ0

(
1 +

1

n

)
σO0,n.
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For n sufficiently large, the pair (σOn , σ
N
n ) satisfies the condition in (8), and sequence (σNn )n∈N

converges to σ∗. This concludes the proof. �

B.2 Proofs for Section 4

Proof of Proposition 1: Consider the case where the monitor is an automaton sending

exogenously informative messages m(c) = c. We show that it is optimal to set σ0 = 0.

Since messages are exogenous, it is optimal for the agent not to engage in retaliation

regardless of his type. Therefore the agent will be corrupt if and only if

πA + σ1vA(c = 1) ≥ σ0vA(c = 0).

Hence we obtain that the principal’s payoff is

∫
T

1πA+σ1vA(c=1)≤σ0vA(c=0)σ0vP (c = 0)dµT +

∫
T

1πA+σ1vA(c=1)>σ0vA(c=0)[πP + vP (c = 1)σ1]dµT

≤
∫
T

1πA+σ1vA(c=1)>σ0vA(c=0)[πP + vP (c = 1)σ1]dµT ,

where we used the assumption that vA(c) ≤ 0 for all c ∈ {0, 1}, and πP < 0. Hence it follows

that setting σ0 = 0 is optimal for the principal when messages are exogenously informative.

We now consider the case where messages are endogenous. A proof identical to that of

Fact 1 shows that whenever πA > 0 for λ sufficiently high, c∗(σ, τA) = 1. Hence by dominated

convergence, it follows that

lim
λ→∞

∫
T

c∗(σ, τA)dµT (τ) ≥ probµT (πA > 0).

We now show that for all types τA such that vA(·) < 0, the agent will induce the monitor

to send message m = 0. The proof is by contradiction. Consider an agent of type τA and
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assume that there exists ε > 0 such that for λ arbitrarily large,

∫
TM

m∗(σ, τ)dΦ(τM |τA) > ε.

This implies that given a corruption decision c, the agent’s payoff is bounded above by

πA × c+

[
σ0 + (σ1 − σ0)

∫
TM

m∗(σ, τ)dΦ(τM |τA)

]
vA(c) < πA × c+ σ0[1 + (λ− 1)ε]vA(c).

Consider the alternative strategy in which the agent chooses corruption status c but commits

to retaliate with intensity

r = sup
vM∈suppΦ(·|τA)

[2vM(c,m = 1)− vM(c,m = 0)]
1

minm,c probF (z 6= ∅|m, c)

whenever z 6= ∅. This retaliation strategy ensures that all types τM in the support of Φ(·|τA)

choose to send message m = 0. Under this strategy the agent obtains a payoff greater than

πA × c+ σ0[vA(c)− kA(r)].

For λ sufficiently large that (λ − 1)εvA(c) ≥ kA(r), this contradicts the hypothesis that

m∗ is an optimal message manipulation strategy for the agent. Hence it must be that

limλ→∞
∫
TM

m∗(σ, τ)dΦ(τM |τA) = 0. This concludes the proof of Proposition 1. �

Lemma B.2. For any corruption decision c, it is optimal for the agent to retaliate only

conditional on intervention: for any intervention policy σ, the agent’s optimal retaliation

policy is such that r(∅) = 0.

Proof of Lemma B.2: Taking a corruption decision c as given, the agent’s expected
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payoff under an optimal retaliation profile r : Z → [0,+∞) is

πA × c+ prob(m = 0|r, c, σ)σ0[vA(c)− E(kA(r)|m = 0, c)]

+ prob(m = 1|r, c, σ)σ1[vA(c)− E(kA(r)|m = 1, c)].

Therefore, if it is optimal for the agent to engage in a positive amount of retaliation, it must

be that

σ0[vA(c)− E(kA(r)|m = 0, c)] ≥ σ1[vA(c)− E(kA(r)|m = 1, c)],

since otherwise, no retaliation would guarantee the agent a greater payoff. We now show

that setting r(∅) to 0 increases the probability with which the monitor sends message m = 0.

Since it also reduces the cost of retaliation, it must increase the agent’s payoff.

A monitor sends a message m = 0 if and only if

−(1− σ0)r(∅) + σ0[vM(c,m = 0)− E(r|m = 0, z 6= ∅, c)probF (z 6= ∅|m = 0, c) (19)

− r(∅)prob(z = ∅|m = 1, c)]

≥ −(1− σ1)r(∅) + σ1[vM(c,m = 1)− E(r|m = 1, z 6= ∅, c)probF (z 6= ∅|m = 1, c)

− r(∅)prob(z = ∅|m = 1, c)].

Since σ1 ≥ σ0 and, by assumption, probF (z 6= ∅|m = 1, c) ≥ probF (z 6= ∅|m = 0, c), it

follows that whenever (19) holds for a retaliation profile such that r(∅) > 0, it continues

to hold when r(∅) is set to 0, everything else being kept equal. Hence optimal retaliation

profiles are such that r(∅) = 0. �

Proof of Proposition 2: We begin with point (i). We know from Section 4 that the

agent’s payoff conditional on a corruption decision c and a message profile m can be written

as

πA × c+ σ0

{∫
TM

λm(τM )vA(c)dΦ(τM |τA)−KτA
c,m(λ)

}
.

It follows that given a corruption decision c, the agent induces a message profile m that
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solves

max
m∈M

∫
TM

λm(τM )vA(c)dΦ(τM |τA)−KτA
c,m(λ).

Since this problem depends only on ratio λ = σ1
σ0

, it follows that mO = mN .

Let us turn to point (ii). Assume that it is optimal for the agent to take decision c = 0

at intervention profile σ. It must be that

πA + σ0

{∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

}
≤ σ0

{∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)

}
.

Since πA ≥ 0, this implies that

∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)−

(∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

)
≥ 0,

which implies that keeping λ constant

πA + σ′0

{∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

}
≤ σ′0

{∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)

}
.

for any σ′0 ≥ σ0. This implies that the agent will choose not to be corrupt at any profile ρσ,

with ρ > 1.

Point (iii) follows from point (ii). For any σO, σN such that σN = ρσO with ρ > 1, we

have that for all types τA ∈ TA, c∗(σO, τA) ≥ c∗(σN , τA). Integrating against µT yields point

(iii). �

Proof of Proposition 3: Fix σ and a distribution µT such that
∫
T

m∗(σ, τ)dµT (τ) =

M ∈ [0, 1]. Fix C ∈ [0, 1]. We show that there exists µ̂T such that
∫
T

m∗(σ, τ)dµ̂T (τ) = M

and
∫
T
c∗(σ, τA)dµT (τ) = C.

It is sufficient to work with type spaces such that the agent knows the type of the monitor,
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provided we allow payoffs to be correlated. A possible environment is as follows. The agent

observes intervention and no other signal. With probability C, the agent gets a strictly

positive payoff πA > 0 from corruption. Conditional on πA > 0, with probability α, the

monitor has positive value for intervention against corrupt agents, i.e. vM(c = 1,m) = v >

0 = vM(c = 0,m); with probability 1 − α, the monitor has a low value for intervention on

corrupt agents: vM(c,m) = 0 for all (c,m) ∈ {0, 1}2. The cost of retaliation for the agent is

such that kA is convex and strictly increasing. For vA(c = 1) > 0 appropriately low, it will

be optimal for the agent to be corrupt, and commit to an arbitrarily low retaliation profile

so that the monitor with a low value for intervention sends message m = 0 and the monitor

with a high value for intervention sends message m = 1.

With complementary probability 1 − C the agent gets a payoff πA = 0 from corruption

and has an arbitrarily high cost of retaliation. The agent’s values upon intervention are

such that vA(c = 1) < vA(c = 0). With probability β, the monitor has negative value for

intervention against a non-corrupt agent vM(c = 0,m) < 0. With probability 1 − β the

monitor gets a positive payoff v > 0 from intervention against the agent, regardless of his

corruption status. For v and a cost of retaliation kA sufficiently high, the agent will choose

not to be corrupt, the non-malicious monitor will send message m = 0, and the malicious

monitor will send message m = 1.

For any C ∈ [0, 1] and M ∈ [0, 1], one can find α and β such that Cα + (1− C)β = M.

This concludes the proof. �

Proof of Proposition 4: From Proposition 2 (ii), we obtain that c(σO, τA)− c(σN , τA) ∈

{0, 1}. Using Proposition 2 (i), this implies that c(σO, τA) − c(σN , τA) ≥ |m(σO, τ) −

m(σN , τ)|. Integrating against µT implies that

∫
T

|m(σO, τ)−m(σN , τ)|dµT (τ) ≤
∫
TA

[c(σO, τA)− c(σN , τA)]dµT (τA)

⇒
∣∣∣∣∫
T

m(σO, τ)−m(σN , τ)dµT (τ)

∣∣∣∣ ≤ ∫
TA

[c(σO, τA)− c(σN , τA)]dµT (τA).
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This concludes the proof. �

Proof of Corollary 1: The first part of the corollary follows directly from Proposition

4. The second part of the corollary follows from Fact 5. Indeed, the strategy profile σ̂(µT )

coincides with the optimal strategy profile whenever payoffs are complete information and

Assumption 1 holds. �
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