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1 Introduction

Financial economists seek to understand the sources underlying risk and return in the economy. In

equilibrium models this endeavor hinges on the preference specification and the joint dynamics of

cash flows, which in an endowment economy correspond to consumption and dividends. There are

many equilibrium models that appeal to low-frequency components in these cash flows as well as

important time variation in the fundamentals (e.g., models of long-run risks (LRR) as in Bansal

and Yaron (2004), and models of rare disasters as in Barro (2009)). Identifying both of these

components is challenging. To measure the small persistent component in, say, consumption and

dividend growth one would want the longest span of data. On the other hand, to estimate the time

variation in second moments of cash flows one would ideally like to use high-frequency data. The

empirical analysis is constrained by the availability of consumption data. For the U.S., the longest

span of available data for consumption growth is at the annual frequency starting in 1929. The

highest-frequency consumption data is available at the monthly frequency from 1959. To exploit

all the available information in mixed-frequency data, this paper develops a Bayesian state-space

model that prominently features stochastic volatility and time-aggregates consumption whenever

it is observed only at a low frequency.

Our state-space model is designed to capture the joint dynamics of consumption, dividend growth,

and asset returns. Building on the work of Bansal and Yaron (2004), the core of our model con-

sists of an endowment economy that is, in part, driven by a common predictable component for

consumption and dividend growth. Our model distinguishes itself from the existing LRR litera-

ture in several important dimensions. First, our state-space representation contains measurement

equations that time-aggregate consumption to the observed frequency, yet allow us to maintain

the likelihood representation (see Bansal, Kiku, and Yaron (2012b) for a generalized methods-of-

moments (GMM) approach using time aggregation). Our measurement-error specification accounts

for different types of measurement errors at monthly and annual frequencies while respecting the

constraint that monthly growth rates have to be consistent with annual growth rates.

Second, we generalize the volatility dynamics of Bansal and Yaron (2004)’s model specification by

allowing for three separate volatility processes — one capturing long-run consumption innovations,

one capturing short-run consumption innovations, and a separate process for dividend dynamics.

We do so since our estimation procedure, which focuses on the joint distribution of consumption,

dividends, and asset prices, requires separate stochastic volatility processes to fit the data. Third,

we specify an additional process for variation in the time rate of preference as in Albuquerque,

Eichenbaum, and Rebelo (2012), which generates risk-free rate variation that is independent of

cash flows and leads to an improved fit for the risk-free rate.
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The estimation of the state-space model generates several important empirical findings. First,

we find strong evidence for a small predictable component in consumption growth. This evidence

consists of two parts. We begin by estimating the state-space model on cash flow growth data

only.1 Our carefully specified measurement-error model for cash flow data allows us to measure

this component which otherwise is difficult to detect. We then proceed by adding asset return data

to the estimation and, in line with the existing LRR literature, find even stronger evidence for this

predictable component. The Bayesian approach allows us to characterize the uncertainty about the

persistence of the conditional mean growth process. We find that in spite of using a prior with a

mean of 0.9 and a standard deviation of 0.5 our estimation yields a posterior distribution that is

tightly centered around 0.99. Second, our estimated measurement errors for consumption growth

are consistent with the common view (see Wilcox (1992)) that consumption growth is measured

more precisely at an annual rather than monthly frequency.

Third, all three stochastic volatility processes display significant time variation yet behave dis-

tinctly over time. The volatility processes partly capture heteroskedasticity of innovations, and

in part they break some of the tight links that the model imposes on the conditional mean dy-

namics of asset prices and cash flows. This feature significantly improves the model implications

for consumption and return predictability. As emphasized by the LRR literature, the volatility

processes have to be very persistent in order to have significant quantitative effects on asset prices.

An important feature of our estimation is that the likelihood focuses on conditional correlations

between the risk-free rate and consumption — a dimension often not directly targeted in the lit-

erature. We show that because consumption growth and its volatility determine the risk-free rate

dynamics, one requires another independent volatility process to account for the weak correlation

between consumption growth and the risk-free rate. In the generalized specification of the model

in which there are independent time rate of preference shocks, this correlation is further muted and

the model fit for the dynamics of the risk-free rate is improved.

Fourth, it is worth noting that the median posterior estimate for risk aversion is 10-11 while it is

around 1.5 for the intertemporal elasticity of substitution (IES). These estimates are broadly con-

sistent with the parameter values highlighted in the LRR literature (see Bansal and Yaron (2004),

Bansal, Kiku, and Yaron (2012a), and Bansal, Kiku, and Yaron (2012b)). Fifth, at the estimated

preference parameters and those characterizing the consumption and dividend dynamics, the model

is able to successfully generate many key asset-pricing moments, and improve model performance

relative to previous LRR models along several dimensions. In particular, the posterior median of

1Related evidence based on estimation is provided by Bansal and Yaron (2000) (ARMA(1,1) model for dividend

growth); by Bansal, Dittmar, and Lundblad (2005) (cointegration model for consumption and dividends); and Hansen,

Heaton, and Li (2008) (VAR for log consumption and earnings with cointegration restrictions).
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the equity premium is 6%, while the model’s posterior predictive distribution is consistent with

the observed large volatility of the price-dividend ratio at 0.45, and the R-squares from predicting

returns and consumption growth by the price-dividend ratio.

Our paper also contains a number of technical innovations. First, in the specification of our

state-space model we follow the stochastic volatility literature and assume that volatilities evolve

according to exponential Gaussian processes that guarantee nonnegativity. In order to solve the

model, we approximate the exponential Gaussian volatility processes by linear Gaussian processes

such that the standard analytical solution techniques that have been widely used in the LRR

literature can be applied. However, the approximation of the exponential volatility process is used

only to derive the coefficients in the law of motion of the asset prices.

Second, we use a Markov chain Monte Carlo (MCMC) algorithm to generate parameter draws

from the posterior distribution. This algorithm requires us to evaluate the likelihood function of our

state-space model with a nonlinear filter. Due to the high-dimensional state space that arises from

the mixed-frequency setting, this nonlinear filtering is a seemingly daunting task. We show how to

exploit the partially linear structure of the state-space model to derive a very efficient sequential

Monte Carlo (particle) filter.

Our paper is related to several strands of the literature. In terms of the LRR literature, our paper

is closely related to that of Bansal, Kiku, and Yaron (2012b) who utilize time aggregation and GMM

to estimate the LRR model (see also Bansal, Gallant, and Tauchen (2007) for an approach using

the efficient method of moments (EMM) and Hansen, Heaton, and Li (2008) for a VAR-based

approach). As noted above, our likelihood-based approach provides evidence which is broadly

consistent with the results highlighted in that paper and other calibrated LRR models (see Bansal,

Kiku, and Yaron (2012a)). Our likelihood function implicitly utilizes a broader set of moments

than earlier GMM or EMM estimation approaches. These moments include the entire sequence of

autocovariances as well as higher-order moments of the time series used in the estimation and let

us measure the time path of the predictable component of cash flows as well as the time path of the

innovation volatilities. Rather than asking the model to fit a few selected moments, we are raising

the bar and force the model to track cash flow and asset return time series.

To implement Bayesian inference, we embed a particle-filter-based likelihood approximation into a

Metropolis-Hastings algorithm as in Fernández-Villaverde and Rubio-Ramı́rez (2007) and Andrieu,

Doucet, and Holenstein (2010). Since our state-space system is linear conditional on the volatility

states, we can use Kalman-filter updating to integrate out a subset of the state variables. The

genesis of this idea appears in the auxiliary particle filter of Pitt and Shephard (1999) and Chen

and Liu (2000) and is recently discussed in Shephard (2013). Particle filter methods are also utilized
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in Johannes, Lochstoer, and Mou (2013), who estimate an asset pricing model in which agents have

to learn about the parameters of the cash flow process from consumption growth data. While

Johannes, Lochstoer, and Mou (2013) examine the role of parameter uncertainty for asset prices,

which is ignored in our analysis, they use a more restrictive version of the cash flow process and do

not utilize mixed-frequency observations.

Our state-space setup makes it relatively straightforward to utilize data that are available at

different frequencies. The use of state-space systems to account for missing monthly observations

dates back to at least Harvey (1989) and has more recently been used in the context of dynamic

factor models (see, e.g., Mariano and Murasawa (2003) and Aruoba, Diebold, and Scotti (2009))

and VARs (see, e.g., Schorfheide and Song (2012)). Finally, there is a growing and voluminous

literature in macro and finance that highlights the importance of volatility for understanding the

macroeconomy and financial markets (see, e.g., Bansal, Khatacharian, and Yaron (2005), Bloom

(2009), Fernández-Villaverde and Rubio-Ramı́rez (2011), Bansal, Kiku, and Yaron (2012a), and

Bansal, Kiku, Shaliastovich, and Yaron (2013)). Our volatility specification that accommodates

three processes further contributes to identifying the different uncertainty shocks in the economy.

The remainder of the paper is organized as follows. Section 2 introduces the model environment

and describes the model solution. Section 3 presents the empirical state-space model and describes

the estimation procedure. Section 4 discusses the empirical findings and Section 5 provides con-

cluding remarks.

2 The Long-Run Risks (LRR) Model

Our baseline LRR model is described in Section 2.1. The solution of the model is outlined in

Section 2.2. Section 2.3 presents a generalized version of the LRR with an exogenous shock to the

time rate of preference.

2.1 Model Statement

We consider an endowment economy with a representative agent that has Epstein and Zin (1989)

recursive preferences and maximizes her lifetime utility,

Vt = max
Ct

[
(1− δ)C

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

subject to the budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,
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where Wt is the wealth of the agent, Rc,t+1 is the return on all invested wealth, γ is risk aversion,

θ = 1−γ
1−1/ψ , and ψ is intertemporal elasticity of substitution.

Following Bansal and Yaron (2004),we decompose consumption growth, gc,t+1, into a persistent

component, xt, and a transitory component, σc,tηc,t+1. The dynamics for the persistent conditional

mean follow an AR(1) with its own stochastic volatility process. Dividend streams have levered

exposures to both the persistent and transitory component in consumption which is captured by

the parameters φ and π, respectively. We allow σd,tηd,t+1 to capture idiosyncratic movements in

dividend streams. Overall, the dynamics for the cash flows are

gc,t+1 = µc + xt + σc,tηc,t+1 (1)

xt+1 = ρxt + σx,tηx,t+1

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1,

where the conditional volatilities evolve according to2

σi,t = ϕiσ̄ exp(hi,t), hi,t+1 = ρhihi,t + σhi

√
1− ρ2hiwi,t+1, i = {c, x, d} (2)

and the shocks are assumed to be

ηi,t+1, wi,t+1 ∼ N(0, 1), i = {c, x, d}.

Relative to Bansal and Yaron (2004), the volatility dynamics contain three separate volatility

processes. More importantly, the logarithm of the volatility process is assumed to be normal,

which ensures that the standard deviation of the shocks remains positive at every point in time.

2.2 Solution

The Euler equation for any asset ri,t+1 takes the form

Et [exp (mt+1 + ri,t+1)] = 1, (3)

where mt+1 = θ log δ− θ
ψgc,t+1 + (θ−1)rc,t+1 is the log of the real stochastic discount factor (SDF),

and rc,t+1 is the log return on the consumption claim. We reserve rm,t+1 for the log market return

— the return on a claim to the dividend cash flows. Given the cash flow dynamics in (1) and

2Strictly speaking, to guarantee the existence of conditional moments involved in key equilibrium conditions, the

exponential function needs to be spliced together with a non-exponential function, e.g., a square-root function, for

volatilities exceeding some large threshold h̄i. See Chernov, Gallant, Ghysels, and Tauchen (2003) and Andreasen

(2010).
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the Euler equation (3), we derive asset prices using the approximate analytical solution described

in Bansal, Kiku, and Yaron (2012a) which utilizes the Campbell and Shiller (1988a) log-linear

approximation for returns.3

However, since the volatility processes in (2) do not follow normal distributions, an analytical

expression to (3) is infeasible. To accommodate an analytical solution, we utilize a linear approxi-

mation to (2) and express volatility in (4) as a process that follows Gaussian dynamics:

σ2i,t − (ϕiσ̄)2 = 2(ϕiσ̄)2hi,t +O(|h2i,t|), hi,t+1 = ρhihi,t + σhi

√
1− ρ2hiwi,t+1

σ2i,t+1 ≈ (ϕiσ̄)2(1− ρhi) + ρhiσ
2
i,t + (2(ϕiσ̄)2σhi

√
1− ρ2hi)wi,t+1

= (ϕiσ̄)2(1− νi) + νiσ
2
i,t + σwiwi,t+1, i = {c, x, d}. (4)

The analytical solution afforded via this pseudo-volatility process is important since it facilitates

estimation (see details below).

The solution to the log price-consumption ratio follows, pct = A0 +A1xt +A2,cσ
2
c,t +A2,xσ

2
x,t. As

discussed in Bansal and Yaron (2004), A1 =
1− 1

ψ

1−κ1ρ
, the elasticity of prices with respect to growth

prospects, will be positive whenever the IES, ψ, is greater than 1. Further, the elasticity of pct with

respect to the two volatility processes σ2c,t and σ2x,t is θ
2

(1− 1
ψ
)2

1−κ1νc
and θ

2
(κ1A1)2

1−κ1νx
respectively; both will

be negative — namely, prices will decline with uncertainty — whenever θ is negative. A condition

that guarantees a negative θ is that agents have a preference for early resolution of uncertainty.

State prices in the economy are reflected in the innovations to the stochastic discount factor

(SDF),

mt+1 − Et [mt+1] = λcσc,tηc,t+1︸ ︷︷ ︸
short-run consumption risk

+ λxσx,tηx,t+1︸ ︷︷ ︸
long-run growth risk

+λwxσwxwx,t+1 + λwcσwcwc,t+1︸ ︷︷ ︸
volatility risks

,

where the derivation and λs are given in Appendix A. It is instructive to note that λc = −γ, λx =
−(γ− 1

ψ
)κ1

1−κ1ρ
(and λwc and λwx) is negative (positive) whenever preferences exhibit early resolution

of uncertainty γ > 1/ψ. Furthermore the λs (except λc) will be zero when preferences are time

separable, namely, when θ = 1.

Risk premia are determined by the negative covariation between the innovations to returns and

the innovations to the SDF. It follows that the risk premium for the market return, rm,t+1, is

Et(rm,t+1 − rf,t) +
1

2
vart(rm,t+1) = −covt(mt+1, rm,t+1) (5)

= βm,cλcσ
2
c,t︸ ︷︷ ︸

short-run risk

+ βm,xλxσ
2
x,t︸ ︷︷ ︸

long-run growth risk

+βm,wxλwxσ
2
wx + βm,wcλwcλcσ

2
wc︸ ︷︷ ︸

volatility risks

,

3See Hansen, Heaton, and Li (2008) for an alternative approximation set around an IES that is equal to one.
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where the βs are given in Appendix A and reflect the exposures of the market return to the

underlying consumption risks. Equation (5) highlights that the conditional equity premium can be

attributed to (i) short-run consumption growth, (ii) long-run growth, (iii) short-run and long-run

volatility risks.

A key variable for identifying the model parameters is the risk-free rate. Under the assumed

dynamics in (1), the risk-free rate is affine in the state variables and follows

rf,t = B0 +B1xt +B2,cσ
2
c,t +B2,xσ

2
x,t,

where the Bs are derived in Appendix A. It is worth noting that B1 = 1
ψ > 0 and the risk-free rate

rises with good economic prospects, while under ψ > 1, γ > 1 and whenever preferences exhibit

early resolution of uncertainty, B2,c = −1
2(γ−1ψ + γ) and B2,x = −

(1− 1
ψ
)(γ− 1

ψ
)κ2

1

2(1−κ1ρ)2
are negative so the

risk-free rate declines with a rise in economic uncertainty.

2.3 Generalized Model

In this section we augment the baseline model, as highlighted in Albuquerque, Eichenbaum, and

Rebelo (2012), by allowing for a preference shock to the time rate of preference. Specifically, now

the utility function contains a time rate of preference shock, λt, so the lifetime utility is

Vt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

.

The resulting SDF equals the SDF described above plus the term θxλ,t, where xλ,t = λt+1/λt is

the growth rate of the preference shock. xλ is assumed to follow an AR(1) process with persistence

parameter ρλ and innovation shocks that are independent of other model shocks.

which is assumed to follow an AR(1) process with persistence parameter ρλ (see Appendix A.6 for

derivation of this augmented SDF). Since xλ,t is known at time t, the risk-free rate will incorporate

its values and consequently allow this generalized model to fit the risk-free rate dynamics better

than the benchmark model.

3 State-Space Representation of the LRR Model

In order to conduct our empirical analysis, we cast the LRR model of Section 2 into state-space form.

The state-space representation consists of a measurement equation that expresses the observables
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as a function of underlying state variables and a transition equation that describes the law of motion

of the state variables. The measurement equation takes the form

yt+1 = At+1

(
D + Zst+1 + Zvsvt+1 + Σuut+1

)
, ut+1 ∼ iidN(0, I). (6)

In our application, yt+1 consists of consumption growth, dividend growth, market returns, and the

risk-free rate. The vector st+1 stacks state variables that characterize the level of cash flows. The

vector svt+1 is a function of the log volatilities of cash flows, ht and ht+1, in (2). Finally, ut+1 is a

vector of measurement errors and At+1 is a selection matrix that accounts for deterministic changes

in the data availability. The solution of the LRR model sketched in Section 2.2 provides the link

between the state variables and the observables yt+1.

The state variables themselves follow vector autoregressive processes of the form

st+1 = Φst + vt+1(ht), ht+1 = Ψht + Σhwt+1, wt+1 ∼ iidN(0, I), (7)

where vt+1(·) is an innovation process with a variance that is a function of the log volatility process

ht and wt+1 is the innovation of the stochastic volatility process. Roughly speaking, the vector st+1

consists of the persistent cash flow component xt (see (1)) as well as xλ,t in the generalized model

of Section 2.3. However, in order to express the observables yt+1 as a linear function of st+1 and

to account for potentially missing observations, it is necessary to augment st+1 by lags of xt and

xλ,t as well as the innovations for the cash flow process. Since the details are cumbersome and at

this stage non essential, a precise definition of st+1 is relegated to the appendix.

A novel feature of our empirical analysis is the mixed-frequency approach. While dividend growth,

equity return, and risk-free rate data are available at a monthly frequency from 1929 onwards,

consumption data prior to 1959 are not available at a monthly frequency. Moreover, post-1959

monthly consumption growth data are subject to sizeable measurement errors, which is why many

authors prefer to estimate consumption-based asset pricing models based on time-aggregated data.

Our state-space approach avoids the loss of information due to time aggregation, yet we can allow

for imprecisely measured consumption data at a monthly frequency. We discuss the measurement

equations for consumption in Section 3.1 and the other observables in Section 3.2. Section 3.3

describes the implementation of Bayesian inference.

3.1 A Measurement Equation for Consumption

In our empirical analysis we use annual consumption growth rates prior to 1959 and monthly

consumption growth rates subsequently.4 The measurement equation for consumption in our state-

4In principle we could utilize the quarterly consumption growth data from 1947 to 1959, but we do not in this

version of the paper.
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space representation has to be general enough to capture two features: (i) the switch from annual to

monthly observations in 1959, and (ii) measurement errors that are potentially larger at a monthly

frequency than an annual frequency. To describe the measurement equation for consumption growth

data, we introduce some additional notation. We use the superscript o to distinguish observed con-

sumption and consumption growth, Cot and goc,t, from model-implied consumption and consumption

growth, Ct and gc,t. Moreover, we represent the monthly time subscript t as t = 12(j − 1) + m,

where m = 1, . . . , 12. Here j indexes the year and m the month within the year.

We define annual consumption as the sum of monthly consumption over the span of one year,

i.e.:

Ca(j) =

12∑
m=1

C12(j−1)+m.

Log-linearizing this relationship around a monthly value C∗ and defining lowercase c as percentage

deviations from the log-linearization point, i.e., c = logC/C∗, we obtain

ca(j) =
1

12

12∑
m=1

c12(j−1)+m.

Thus, monthly consumption growth rates can be defined as

gc,t = ct − ct−1

and annual growth rates are given by

gac,(j) = ca(j) − c
a
(j−1) =

23∑
τ=1

(
12− |τ − 12|

12

)
gc,12j−τ+1. (8)

We assume a multiplicative iid measurement-error model for the level of annual consumption,

which implies that, after taking log differences,

ga,oc,(j) = gac,(j) + σaε
(
εa(j) − ε

a
(j−1)

)
. (9)

Moreover, consistent with the practice of the Bureau of Economic Analysis, we assume that the

levels of monthly consumption are constructed by distributing annual consumption over the 12

months of a year. This distribution is based on an observed monthly proxy series zt that is assumed

to provide a noisy measure of monthly consumption. The monthly levels of consumption are

determined such that the growth rates of monthly consumption are proportional to the growth rates

of the proxy series and monthly consumption adds up to annual consumption. A measurement-error
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model that is consistent with this assumption is the following:

goc,12(j−1)+1 = gc,12(j−1)+1 + σε
(
ε12(j−1)+1 − ε12(j−2)+12

)
(10)

− 1

12

12∑
m=1

σε
(
ε12(j−1)+m − ε12(j−2)+m

)
+ σaε

(
εa(j) − ε

a
(j−1)

)
goc,12(j−1)+m = gc,12(j−1)+m + σε

(
ε12(j−1)+m − ε12(j−1)+m−1

)
, m = 2, . . . , 12

The term ε12(j−1)+m can be interpreted as the error made by measuring the level of monthly con-

sumption through the monthly proxy variable, that is, in log deviations c12(j−1)+m = z12(j−1)+m +

ε12(j−1)+m. The summation of monthly measurement errors in the second line of (10) ensures

that monthly consumption sums up to annual consumption. It can be verified that converting the

monthly consumption growth rates into annual consumption growth rates according to (8) averages

out the measurement errors and yields (9).

We operate under the assumption that the agents in the model observe consumption growth,

dividend growth, and asset returns in every period. As econometricians who are estimating the

model, we have to rely on the statistical agency to release the consumption growth data. While the

statistical agency may have access to the monthly proxy series zt in real time, it can only release

the monthly consumption series that is consistent with the corresponding annual consumption

observation at the end of each year. Thus, for months m = 1, . . . , 11 the vector y12(j−1)+m in (6)

does not contain any observations on consumption growth. At the end of each year, in month

m = 12, the vector y12(j−1)+m contains the 12 monthly growth rates of year j and (10) provides

the portion of the measurement equation for the consumption data. The vector st has to contain

sufficiently many lags of the model states as well as some lagged measurement errors such that it is

possible to write (10) as a linear function of st. For the earlier part of the sample in which monthly

consumption growth observations are not available, (10) is replaced by (8) and (9). The matrix At

in (6) adapts the system to the availability of consumption data and the changing dimension of the

vector yt. Further details are provided in the appendix.

3.2 Measurement Equations for Dividend Growth and Asset Returns

It is reasonable to believe that consumption measurement errors are large, but those for financial

variables (e.g., dividend streams, market returns, risk-free rates) are negligible. However, to be

chary, we introduce idiosyncratic components for dividend growth, market returns, and the risk-
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free rate as well:

god,t+1 = gd,t+1 + σdε εd,t+1 (11)

rom,t+1 = rm,t+1 + σrmε εrm,t+1

rof,t+1 = rf,t+1 + σ
rf
ε εrf ,t+1.

In the subsequent empirical analysis we consider a version of the model in which only the risk-free

rate is measured with error, i.e., σdε = 0, σrmε = 0, σ
rf
ε > 0. We believe that aggregate dividend

growth and stock market data are measured relatively cleanly and do not want to deviate too far

from the existing asset pricing literature.

3.3 Bayesian Inference

Equations (6) and (7) define a nonlinear state-space system in which the size of the vector of ob-

servables yt changes in a deterministic manner. The system matrices are functions of the parameter

vector

Θ =

(
δ, ψ, γ, ρ, φ, ϕx, ϕd, σ̄, µ, µd, π, σε, σ

a
ε , ρλ, σλ, σ

rf
ε , ρhc , σhc , ρhx , σhx , ρhd , σhd

)
. (12)

We will use a Bayesian approach to make inference about Θ and to study the implications of our

model. Bayesian inference requires the specification of a prior distribution p(Θ) and the evaluation

of the likelihood function p(Y |Θ). The posterior can be expressed as

p(Θ|Y ) =
p(Y |Θ)p(Θ)

p(Y )
. (13)

We will use MCMC methods to generate a sequence of draws {Θ(s)}nsims=1 from the posterior distri-

bution.

To generate the draws from the posterior distribution, we need to be able to numerically evaluate

the prior density and the likelihood function p(Y |Θ). Since our state-space system is nonlinear, it is

not possible to evaluate the likelihood function using the Kalman filter. Instead, we use a sequential

Monte Carlo procedure also known as particle filter. The particle filter creates an approximation

p̂(Y |Θ) of the likelihood function p(Y |Θ). It has been shown in Andrieu, Doucet, and Holenstein

(2010) that the use of p̂(Y |Θ) in MCMC algorithms can still deliver draws from the actual posterior

p(Θ|Y ) because these approximation errors essentially average out as the Markov chain progresses.

Capturing the annual release schedule for the monthly consumption data described in Section 3.1

requires a high-dimensional state vector st. This creates a computational challenge for the eval-

uation of the likelihood function because the accuracy of particle filter approximations tends to
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decrease as the dimension of the latent state vector increases. In order to obtain a computation-

ally efficient filter, we exploit the fact that our state-space model is linear and Gaussian condi-

tional on the volatility states (ht, ht−1). We use a swarm of particles to represent the distribu-

tion of (ht, ht−1)|Y1:t and employ the Kalman filter to characterize the conditional distribution of

st|(ht, ht−1, Y1:t). This idea has been used by Chen and Liu (2000) and more recently by Shephard

(2013). A full description of the particle filter is provided in the appendix. We embed the likelihood

approximation in a fairly standard random-walk Metropolis algorithm that is widely used in the

DSGE model literature; see for instance Del Negro and Schorfheide (2010).

4 Empirical Results

The data set used in the empirical analysis is described in Section 4.1. The subsequent analysis is

divided into two parts. In Section 4.2 we use consumption and dividend growth data to estimate

the persistent components in conditional mean and volatility dynamics of cash flows. In Section 4.3

we include the market return and risk-free rate data in the estimation and analyze the asset pricing

implications of our model.

4.1 Data

We use the per capita series of real consumption expenditure on nondurables and services from the

NIPA tables available from the Bureau of Economic Analysis. Annual observations are available

from 1929 to 2011, quarterly from 1947:Q1 to 2011:Q4, and monthly from 1959:M1 to 2011:M12.

We also use monthly observations of returns, dividends, and prices of the CRSP value-weighted

portfolio of all stocks traded on the NYSE, AMEX, and NASDAQ. Price and dividend series are

constructed on the per share basis as in Campbell and Shiller (1988b) and Hodrick (1992). The

stock market data are converted to real using the consumer price index (CPI) from the Bureau

of Labor Statistics. Finally, the ex ante real risk-free rate is constructed as a fitted value from

a projection of the ex post real rate on the current nominal yield and inflation over the previous

year. To run the predictive regression, we use monthly observations on the three-month nominal

yield from the CRSP Fama Risk Free Rate tapes and CPI series. A more detailed explanation

of the data sources is provided in Appendix B. Growth rates of consumption and dividends are

constructed by taking the first difference of the corresponding log series. The time-series span of

the stock market data and the risk-free rate is from 1929:M1 to 2011:M12.

Table 1 presents descriptive statistics for aggregate consumption growth, dividend growth, ag-

gregate stock market returns, the risk-free rate, and the log price-dividend ratio. The statistics are
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Table 1: Descriptive Statistics - Data Moments

Annual Frequency: 1930 to 2011

∆c ∆d rm rf pd

Mean 1.83 0.98 5.43 0.46 3.36

StdDev 2.19 11.24 19.98 2.78 0.43

AC1 0.48 0.21 0.01 0.72 0.90

AC2 0.18 -0.21 -0.16 0.40 0.81

AC3 -0.07 -0.15 0.01 0.31 0.75

Corr 1.00 0.56 0.12 -0.26 0.07

Monthly Frequency: 1929:M1 to 2011:M12

∆c ∆d rm rf pd

Mean - 0.09 0.45 0.04 3.36

StdDev - 1.68 5.50 0.24 0.44

AC1 - 0.20 0.11 0.98 0.99

Monthly Frequency: 1959:M2 to 2011:M12

∆c ∆d rm rf pd

Mean 0.16 0.11 0.43 0.10 3.57

StdDev 0.34 1.26 4.55 0.14 0.39

AC1 -0.16 -0.01 0.10 0.96 0.99

Corr 1.00 0.04 0.16 0.13 0.00

Notes: We report descriptive statistics for aggregate consumption growth (∆c), dividend growth (∆d), log returns

of the aggregate stock market (rm), the log risk-free rate (rf ), and log price-dividend ratio (pd). It shows mean,

standard deviation, sample autocorrelations up to order three, and correlation with aggregate consumption growth.

Means and standard deviations are expressed in percentage terms.

computed for a sample of annual observations from 1930 to 2011, a sample of monthly observations

from 1929:M1 to 2011:M12, and a sample of monthly observations from 1959:M2 to 2011:M12.

Consumption data is only available for the shorter of the two monthly samples. For our subsequent

analysis, a few features of the data turn out to be important. First, the sample first autocorrela-

tion function of monthly and annual consumption have different signs. Second, consumption and

dividend growth are highly correlated at the low (annual) frequency but not at the high (monthly)

frequency. Third, the sample standard deviations for the long monthly sample starting in 1929:M1

are larger than the sample standard deviations for the post-1958 sample.



Schorfheide, Song, and Yaron (2014): June 24, 2014 14

4.2 Estimation with Cash Flow Data Only

We begin by estimating the state-space model described in Section 3 based only on consumption

and dividend growth data, dropping market returns and the risk-free rate from the measurement

equation. We employ the mixed-frequency approach by utilizing annual consumption growth data

from 1929 to 1959 and monthly data from 1960:M1 to 2011:M12.

Prior Distribution. We begin with a brief discussion of the prior distribution for the parameters

of the cash flow process specified in (1) and (2). In general, our prior attempts to restrict parameter

values to economically plausible magnitudes. The judgment of what is economically plausible is,

of course, informed by some empirical observations, in the same way the choice of the model

specification is informed by empirical observations. Percentiles of marginal prior distributions are

reported in Table 2.

The prior 90% credible intervals for average annualized consumption and dividend growth range

from approximately ± 7%. In view of the sample statistics reported in Table 1, this range is

fairly wide and agnostic. The prior distribution for the persistence of the predictable cash flow

growth component xt is a normal distribution centered at 0.9 with a standard deviation of 0.5,

truncated to the interval (−1, 1). The corresponding 90% credible interval ranges from -0.1 to 0.97,

encompassing values that imply iid cash flow growth dynamics as well as very persistent local levels.

The priors for φ and π, parameters that determine the comovement of cash flows, are centered at

zero and have large variances. σ̄ is, roughly speaking, the average standard deviation of the iid

component of consumption growth. At an annualized rate, our 90% credible interval ranges from

1.2% to 7.2%. For comparison, the sample standard deviation of annual consumption growth and

annualized monthly consumption growth are approximately 2% and 4%, respectively (see Table 1).

The parameters ϕd and ϕx capture the magnitude of innovations to dividend growth and the

persistent cash flow component relative to the magnitude of consumption growth innovations. The

prior for the former covers the interval 0.2 to 12, whereas the prior for the latter captures the

interval 0 to 0.11. Thus, a priori we expect dividends to be more volatile than consumption and

the persistent component of cash flow growth to be much smoother than the iid component. Our

prior interval for the persistence of the volatility processes ranges from -0.1 to 0.97 and the prior

for the standard deviation of the volatility process implies that the volatility may fluctuate either

relatively little, over the range of 0.67 to 1.5 times the average volatility, or substantially, over the

range of 0.1 to 7 times the average volatility.

Posterior Distribution. Percentiles of the posterior distribution are also reported in Table 2.

The most important result for the subsequent analysis of the asset pricing implications of the LRR
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Table 2: Posterior Estimates: Cashflows Only

Prior Posterior Prior Posterior

Distr. 5% 95% 5% 50% 95% Distr. 5% 95% 5% 50% 95%

Consumption Process Dividend Process

µc N [-.006 .006] .0014 .0016 .0019 µd N [-.007 .006] .0000 .0006 .0013

ρ NT [-0.08 0.97] 0.95 0.97 0.98 φ N [-13.1 13.4] 2.04 2.11 2.20

ϕx G [ 0.00 0.11] 0.17 0.20 0.22 π N [-1.68 1.63] - 0.18 0.03 0.14

σ̄ IG [ .001 .006] .0021 .0024 .0026 ϕd G [ 0.22 11.9] 4.92 5.30 5.78

ρhc NT [-0.08 0.97] .993 .995 .997 ρhd NT [-0.08 0.97] 0.83 0.89 0.94

σhc IG [0.22 1.03] 0.31 0.39 0.49 σhd IG [0.22 1.03] 0.47 0.53 0.61

ρhx NT [-0.08 0.97] .979 .992 .998

σhx IG [0.22 1.03] 0.23 0.43 1.07

Notes: We utilize the mixed-frequency approach in the estimation: For consumption we use annual data from 1929 to

1959 and monthly data from 1960:M1 to 2011:M12; we use monthly dividend growth data from 1929:M1 to 2011:M12.

For consumption we adopt the measurement error model of Section 3.1. We fix ϕc in (2) at ϕc = 1. N , NT , G,

and IG denote normal, truncated (outside of the interval (−1, 1)) normal, gamma, and inverse gamma distributions,

respectively.

model is the large estimate of ρ, the autocorrelation coefficient of the persistent cash flow component

xt. The posterior median of ρ is 0.97. Thus, according to our estimate, cash flow growth dynamics

are very different from iid dynamics; the half-life of the persistent component is about three years;

and the magnitude of the parameter estimate is quite close to the values used in the LRR literature

as, for example, in Bansal, Kiku, and Yaron (2012a)).5

At first glance, the large estimate of ρ may appear inconsistent with the negative sample au-

tocorrelation of consumption growth and the near-zero autocorrelation of dividend growth at the

monthly frequency reported in the third panel of Table 1. However, these sample moments con-

found the persistence of the “true” cash flow processes and the dynamics of the measurement

errors. Our state-space framework is able to disentangle the various components of observed cash

flow growth, thereby detecting a highly persistent predictable component xt that is hidden under a

layer of measurement errors. Based on our measurement-error model, we can compute the fraction

of the variance of observed consumption growth that is due to measurement errors. In a constant-

volatility version of our state-space model, 46% of the observed consumption growth variation at

the monthly frequency is due to measurement errors. For annualized consumption growth data,

this fraction drops below 1%.

5Hansen, Heaton, and Li (2008) provide a related measure of the long-run component based on their estimated

cointegration model.
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The estimation results also provide strong evidence for stochastic volatility. According to the

posteriors reported in Table 2, both σc,t and σd,t exhibit significant time variation. The posterior

medians of ρhc and ρhd are .995 and 0.89, respectively, and the unconditional volatility standard

deviations σhc and σhd are 0.39 and 0.53, respectively. Also, the volatility of the growth prospect

component, σx,t, shows clear evidence for time variation: the posterior medians of ρhx and σhx are

0.992 and 0.43, respectively. It is evident that the estimation supports three independent volatility

processes for consumption growth and dividend growth.

Robustness. The evidence for a persistent component in consumption and dividend growth is

robust to the choice of estimation sample. We shift the beginning of our estimation sample from

1929:M1 to 1959:M1 and use only monthly data. Given that this shorter sample is dominated by

the Great Moderation and does not contain the fluctuations associated with the Great Depression,

this sample should be conservative in terms of providing evidence for predictable component and

aggregate stochastic volatility. Interestingly, we obtain similar estimates of ρ and find that changes

in the estimates of the other parameters are generally small.6 In all, this sample also provides

strong evidence for a predictable component as well as stochastic volatility in consumption and

dividends.

4.3 Estimation with Cash Flow and Asset Return Data

We now include data on market returns and the risk-free rate in the estimation of our state-space

model. Recall from Section 2 that we distinguish between a benchmark model and a generalized

model that allows for a shock to the time rate of preference. We will report estimates for both

specifications and discuss the role played by the preference shock in fitting our observations.

Prior Distribution. The prior distribution for the parameters associated with the exogenous

cash flow process are the same as the ones used in Section 4.2. Thus, we focus on the preference

parameters that affect the asset pricing implications of the model. Percentiles for the prior are

reported in the left-side columns of Table 3. The prior for the discount rate δ reflects beliefs about

the magnitude of the risk-free rate. For the asset pricing implications of our model, it is important

whether the IES is below or above 1. Thus, we choose a prior that covers the range from 0.3 to 3.5.

The 90% prior credible interval for the risk-aversion parameter γ ranges from 3 to 15, encompassing

the values that are regarded as reasonable in the asset pricing literature. We also use the same prior

for the persistence and the innovation standard deviation of the preference shock as we did for the

cash flow parameters ρ and σ̄. Finally, we assume that consumption growth is measured without

6For brevity these results are not displayed, but they are available upon request.
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Table 3: Posterior Estimates

Benchmark Model Generalized Model

Prior Posterior Posterior

Distr. 5% 95% 5% 50% 95% 5% 50% 95%

Preferences

δ B [.9951 .9999] .9992 .9996 .9998 .9990 .9992 .9996

ψ G [0.31 3.45] 1.62 1.70 1.75 1.33 1.36 1.44

γ G [2.74 15.45] 10.14 10.84 11.37 9.88 9.97 10.32

ρλ NT [-0.08 0.97] - - - .935 .936 .938

σλ IG [.001 .006] - - - .0003 .0004 .0005

Consumption

µc N [-.006 .006] - .0016 - - .0016 -

ρ NT [-0.08 0.97] .989 .993 .994 .990 .992 .994

ϕx G [0.00 0.11] 0.03 0.04 0.04 0.02 0.02 0.03

σ̄ IG [.001 .006] .004 .005 .006 .003 .004 .005

ρhc NT [-0.08 0.97] .944 .956 .967 0.943 .946 .951

σhc IG [0.22 1.03] 0.55 0.60 0.67 0.83 0.84 0.84

ρhx NT [-0.08 0.97] .981 .990 .993 .990 .992 .994

σhx IG [0.22 1.03] 0.50 0.53 0.54 0.56 0.57 0.57

Dividend

µd N [-.007 .006] - .0010 - - .0010 -

φ N [-13.07 13.40] 3.01 3.20 3.45 3.09 3.11 3.13

π N [-1.68 1.63] 1.08 1.17 1.25 1.13 1.19 1.31

ϕd G [0.22 11.90] 5.39 5.46 5.68 6.27 6.30 6.48

ρhd NT [-0.08 0.97] .936 .940 .947 .939 .949 .952

σhd IG [0.22 1.03] 0.44 0.45 0.46 0.56 0.57 0.57

Notes: The estimation results are based on annual consumption growth data from 1930 to 1960 and monthly con-

sumption growth data from 1960:M1 to 2011:M12. For the other three series we use monthly data from 1929:M1 to

2011:M12. We fix µc = 0.0016, µd = 0.0010, and ϕc = 1 in the estimation. B, N , NT , G, and IG are beta, normal,

truncated (outside of the interval (−1, 1)) normal, gamma, and inverse gamma distributions, respectively.

error at the annual frequency. We estimate measurement errors only for monthly consumption

growth rates and the risk-free rates, using the same prior distributions as for σ̄.

Posterior Distribution. The remaining columns of Table 3 summarize the percentiles of the

posterior distribution for the parameters of the benchmark model and the generalized model. While
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the estimated cash flow parameters are, by and large, similar to those reported in Table 2 when

asset prices are not utilized, a few noteworthy differences emerge. The estimate of ρ, the persistence

of the predictable cash flow component, increases from 0.97 to 0.99 to capture part of the equity

premium. The time variation in the volatility of the long-run risk innovation, σhx , also increases,

reflecting the information in asset prices about growth uncertainty. The estimate of ϕx drops

from 0.20 to 0.03, which reduces the model-implied predictability of asset returns and consumption

growth and brings it more in line with the data. Finally, the estimate of σ̄ increases by a factor of

2 to explain the highly volatile asset prices data.

Overall, the information from the market returns and risk-free rate reduces the posterior un-

certainty about the cash flow parameters and strengthens the evidence in favor of a time-varying

conditional mean of cash flow growth rates as well as time variation in the volatility components.

Table 3 also provides the estimated preference parameters. The IES is estimated above 1 with a

relatively tight credible band. Risk aversion is estimated at 11 for the benchmark model and 10

for the generalized model.

Matching First and Second Moments. Much of the asset pricing literature, e.g., Bansal,

Gallant, and Tauchen (2007), Bansal, Kiku, and Yaron (2012a), and Beeler and Campbell (2012),

uses unconditional moments to calibrate or estimate model parameters and judge model fit. While

these moments implicitly enter the likelihood function of our state-space model, it is instructive to

examine the extent to which sample moments implied by the estimated state-space model mimic the

sample moments computed from our actual data set. To do so, we conduct a posterior predictive

check (see, for instance, Geweke (2005) for a textbook treatment). We use previously generated

draws Θ(s), s = 1, . . . , nsim, from the posterior distribution of the model parameters p(Θ|Y ) and

simulate for each Θ(s) the benchmark and the generalized LLR models for 996 periods, which

corresponds to the number of monthly observations in our estimation sample.7 This leads to nsim

simulated trajectories, which we denote by Y (s). For each of these trajectories, we compute various

sample moments, such as means, standard deviations, cross correlations, and autocorrelations.

Suppose we denote such statistics generically by S(Y (s)). The simulations provide a characterization

of the posterior predictive distribution p(S(Y (s))|Y ). Percentiles of this distribution for various

sample moments are reported in Table 4. The table also lists the same moments computed from U.S.

data. “Actual” sample moments that fall far into the tails of the posterior predictive distribution

provide evidence for model deficiencies. The moments reported in Table 4 are computed for year-

on-year cash flow growth rates. Market returns, the risk-free rate, and the price-dividend ratio are

12-month averages.

7To generate the simulated data, we also draw measurement errors.
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Table 4: Moments of Cash Flow Growth and Asset Prices

Data Benchmark Model Generalized Model

5% 50% 95% 5% 50% 95%

Mean (∆c) 1.83 0.91 1.89 2.79 0.88 1.93 2.86

StdDev (∆c) 2.19 1.65 2.19 2.99 1.52 2.22 3.49

AC1 (∆c) 0.48 0.09 0.32 0.56 0.08 0.33 0.57

Mean (∆d) 1.00 -2.55 1.02 4.61 -2.27 1.30 4.68

StdDev (∆d) 11.15 11.01 13.29 16.60 10.35 12.97 16.99

AC1 (∆d) 0.20 -0.19 0.03 0.23 -0.20 0.03 0.27

Corr (∆c,∆d) 0.55 0.12 0.32 0.51 0.13 0.34 0.56

Mean (rm) 5.71 1.88 5.10 8.46 2.40 5.61 9.64

StdDev (rm) 19.95 14.70 20.30 38.04 13.38 19.99 46.21

AC1 (rm) -0.01 -0.28 -0.06 0.17 -0.28 -0.05 0.17

Corr (∆c, rm) 0.12 -0.03 0.18 0.39 -0.06 0.17 0.40

Mean (rf ) 0.44 -0.44 0.46 1.21 -0.39 0.67 1.49

StdDev (rf ) 2.88 2.47 2.87 3.45 1.26 1.96 4.29

AC1 (rf ) 0.64 -0.13 0.07 0.30 0.13 0.43 0.66

Mean (pd) 3.36 2.90 3.24 3.41 2.72 3.15 3.36

StdDev (pd) 0.45 0.15 0.27 0.64 0.13 0.27 0.86

AC1 (pd) 0.86 0.50 0.74 0.87 0.47 0.74 0.89

Notes: We present descriptive statistics for aggregate consumption growth (∆c), dividends growth (∆d), log returns

of the aggregate stock market (rm), the log risk-free rate (rf ), and the log price-dividend ratio (pd). We report means

(Mean), standard deviations (StdDev), first-order sample autocorrelations (AC1), and correlations (Corr). Cash flow

growth rates are year-on-year (in percent); market returns, the risk-free rate, and the price-dividend ratio refer to

12-month averages (in percent).

We first focus on the results from the benchmark model. Except for the first-order autocorrelation

(AC1) of the risk-free rate rf , all of the “actual” sample moments are within the 5th and the 95th

percentile of the corresponding posterior predictive distribution. The variance of the posterior

predictive distribution reflects the uncertainty about model parameters as well as the variability

of the sample moments. The 90% credible intervals for the consumption growth and risk-free rate

moments are much smaller than the intervals for the dividend growth and market-return moments,

indicating that much of the uncertainty in the posterior predictive moments is due to the variability
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of the sample moments themselves. The high volatility of dividend growth and market returns

translates into a large variability of their sample moments.

More specifically, the benchmark model replicates well the first two moments of consumption

and dividend growth and their correlation. The benchmark model also generates a sizable equity

risk premium with a median value of 6%. The model’s return variability is about 20% with the

market return being not highly autocorrelated. As in the data, the model generates both a highly

variable and persistent price-dividend ratio. It is particularly noteworthy that the median and 95th

percentile of the price-dividend volatility distribution are significantly larger than in other LRR

calibrated models with Gaussian shocks. This feature owes in part to the fact that the models

contain three volatility components with underlying log-volatility dynamics, thus accommodating

some non-Gaussian features.

The sample moments implied by the generalized model are very similar to those of the benchmark

model, except for the moments associated with the risk-free rate. Most notably, the benchmark

model generates a slightly negative autocorrelation of the risk-free rate, whereas the generalized

model with the preference shock is able to reproduce the strongly positive serial correlation in the

data.

Risk-Free Rate Dynamics. Our estimated state-space model can be used to decompose the

observed risk-free rate into the “true” risk-free rate and a component that is due to measurement

errors. Figure 1 overlays the actual risk rate and the smoothed “true” or model-implied risk-free

rate. It is clear from the top panel of the figure that the model has difficulties generating the high

volatility of the risk-free rate in the pre-1960 sample, the 1980s, and the period since 2002. The

benchmark model attributes these fluctuations to measurement errors. Recall that the risk-free

rate series is constructed by subtracting random-walk inflation forecasts from a nominal interest

rate series, which makes the presence of measurement errors plausible. In particular, our nominal

interest rate series includes several periods with negative nominal yields in the period from 1938

to 1941. The pre-1960 sample also contains periods with artificially large inflation rates, which are

partly due to price adjustments following price controls after World War II. Overall, the estimated

benchmark model implies that about 70-80% of the fluctuations in the risk-free rate are due to

measurement errors.

The generalized model with the preference shock λt is able to track the risk-free rate much

better than the benchmark model. By construction, λt generates additional fluctuations in the

model-implied expected stochastic discount factor and hence the model-implied risk-free rate. The

likelihood-based estimation procedure reverses this logic. Persistent movements in the observed

risk-free rate suggest that λt fluctuated substantially between 1929 and 2011. The fraction of the
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Figure 1: Model-Implied Risk-Free Rate

(a) Benchmark Model

(b) Generalized Model

Notes: Blue lines depict the actual risk-free rate, and black lines depict the smoothed, model-implied risk-free rate

without measurement errors.

fluctuations in the risk-free rate attributed to measurement errors is now much smaller. In fact,

the bottom panel of Figure 1 illustrates that the difference between the observed series and the

smoothed, model-implied series is now very small. This is consistent with the predictive checks

reported in Table 4. Since the generalized model is more successful at tracking the observed risk-

free rate, we focus on the model specification with preference shock in the remainder of this section

unless otherwise noted.8

Smoothed Mean and Volatility States. Figure 2 depicts smoothed estimates of the predictable

component xt and the preference shock process xλ,t. Since the estimate of xt is, to a large extent,

determined by the time path of consumption, the 90% credible bands are much wider prior to 1960,

when only annual consumption growth data were used in the estimation. Post 1959, xt tends to

8An alternative way to interpret the preference shocks is that the model requires correlated measurement errors

to capture the time series dynamics of the real risk-free rate.
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Figure 2: Smoothed Mean States

Notes: Black lines represent posterior medians of smoothed states and gray-shaded areas correspond to 90% credible

intervals. In the top panel we overlay the smoothed state xt obtained from the estimation without asset prices (red

dashed line) and monthly consumption growth data (blue solid line). In the bottom panel we overlay a standardized

version of the risk-free rate (blue solid line). Shaded bars indicate NBER recession dates.

fall in recessions (indicated by the shaded bars in Figure 2), but periods of falling xt also occur

during expansions. We overlay the smoothed estimate of xt obtained from the estimation without

asset price data (see Section 4.2). It is very important to note that the two estimates are similar,

which highlights that xt is, in fact, detectable based on cash flow data only. We also depict the

monthly consumption growth data post 1959, which confirms that xt indeed captures low-frequency

movements in consumption growth. A visual comparison of the smoothed xλ,t process with the

standardized risk-free rate in the bottom panel of Figure 2 confirms that the preference shock in

the generalized model mainly helps track the observed risk-free rate.

The smoothed volatility processes are plotted in Figure 3. Recall that our model has three

independent volatility processes, hc,t, hd,t, and hx,t, associated with the innovations to consumption

growth, dividend growth, and the predictable component, respectively. The most notable feature of

hc,t is that it captures a drop in consumption growth volatility that occurred between 1950 and 1965.

In magnitude, this drop in volatility is much larger than a subsequent decrease around 1984, the

year typically associated with the Great Moderation. The stochastic volatility process for dividend

growth shows a drop around 1955, but it also features an increase in volatility starting in 2000,

which is not apparent in hc,t. Overall, the smoothed hd,t seems to exhibit more medium- and high-
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Figure 3: Smoothed Volatility States

Notes: Black lines represent posterior medians of smoothed states and gray-shaded areas correspond to 90% credible

intervals. Shaded bars indicate NBER recession dates.

frequency movements than hc,t. Finally, the volatility of the persistent component, hx,t, exhibits

substantial fluctuations over our sample period, and it tends to peak during NBER recessions.

Determinants of Asset Price Fluctuations. After a visual inspection of the latent mean and

volatility processes in Figures 2 and 3, we now examine their implications for asset prices. In

equilibrium, the market returns, the risk-free rate, and the price-dividend ratios are functions of

the mean and volatility states. Figure 4 depicts the contribution of various risk factors: namely,

the variation in growth prospects, xt, the preference shock, xλ,t, and the conditional variability of

growth prospects, σx,t, to asset price volatility. Given the posterior estimates of our state-space

model, we can compute smoothed estimates of the latent asset price volatilities at every point

in time. Moreover, we can also generate counterfactual volatilities by shutting down xt, xλ,t, or

σx,t. The ratio of the counterfactual and the actual volatilities measures the contribution of the

non-omitted risk factors. If we subtract this ratio from 1, we obtain the relative contribution of

the omitted risk factor, which is shown in Figure 4.
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Figure 4: Variance Decomposition for Market Returns and Risk-Free Rate

(a) Market Returns: rm

(b) Log Price Dividend Ratio: pd

(c) Risk-Free Rate: rf

Notes: Fraction of volatility fluctuations (in percent) in the market returns, the price-dividend ratio, and the risk-free

rate that is due to xt, xλ,t, and σ2
x,t, respectively. We do not present the graphs for σ2

c,t, σ
2
d,t since their time-varying

shares are less than 1% on average. See the main text for computational details.

While the preference shocks are important for the risk-free rate, they contribute very little to

the variance of the price-dividend ratio and the market return. The figure shows that most of the

variability of the price-dividend ratio is, in equal parts, due to the variation in xt and σx,t. As
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Appendix A shows, the risk premium on the market return is barely affected by the preference

shocks and consequently its variation is almost entirely attributable to the time variation in the

stochastic volatility σ2x,t and the growth prospect xt. The remaining risk factors σ2c,t and σ2d,t have

negligible effects (less than 1% on average) on asset price volatilities.

We assumed that in our endowment economy the preference shock is uncorrelated with cash flows.

In a production economy this assumption will typically not be satisfied. Stochastic fluctuations

in the discount factor generate fluctuations in consumption and investment, which in turn affect

cash flows. To assess whether our assumption of uncorrelated shocks is contradicted by the data,

we computed the correlation between the smoothed preference shock innovations ηλ,t and the cash

flow innovations ηc,t and ηx,t. We can do so for every parameter draw Θ(s) from the posterior

distribution. The 90% posterior predictive intervals range from -0.09 to 0.03 for the correlation

between ηλ,t and ηc,t and from 0 to 0.2 for the correlation between ηλ,t and ηx,t. Based on these

results we conclude that there is no strong evidence that contradicts the assumption of uncorrelated

preference shocks.

Predictability. One aspect of the data that is often discussed in the context of asset pricing models

— and in particular, in the context of models featuring long-run risks — is the low predictability

of future consumption growth by the current price-dividend ratio. Another key issue in the asset

pricing literature is return predictability by the price-dividend ratio (e.g., Hodrick (1992)). We

address these two issues in Figure 5 where we regress cumulative consumption growth and multi-

period excess returns on the current price-dividend ratio using OLS:

H∑
h=1

∆ct+h = α+ βpdt + residt+H

H∑
h=1

(rm,t+h − rf,t+h−1) = α+ βpdt + residt+H .

The results are presented as posterior predictive checks, similar to those in Table 4, but now

depicted graphically. The statistics S(Y ) considered are the R2 values obtained from the two

regressions. The top and bottom ends of the boxes correspond to the 5th and 95th percentiles,

respectively, of the posterior predictive distribution, and the horizontal bars signify the medians.

The contribution of parameter uncertainty to the posterior predictive distribution is negligible.

The predictive intervals reflect the fact that we are repeatedly generating data from the model and

computing the sample statistics S(Y ) for each of these simulated trajectories. Finally, the small

squares correspond to statistics computed from “actual” U.S. data.

The left panel of Figure 5 documents the predictability of consumption growth. While the model’s

median R2 value is somewhat larger (red lines) than the corresponding data estimate, the model’s
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Figure 5: Univariate Predictability Checks

Consumption Growth Excess Returns

Notes: Black boxes indicate regression R2 values from actual data. Figure also depicts medians (red lines) and 90%

credible intervals (top and bottom lines of boxes) of distribution of R2 values obtained with model-generated data.

finite sample R2 distribution for consumption growth encompasses the low data estimate. In terms

of return predictability, depicted in the right panel of Figure 5, the model’s median R2 for the

five-year horizon R2 is large at 15%, with a 95 percentile value of 47% that clearly contains the

data estimate. These model-implied R2s are larger than what is typically found in models with

long-run risks (e.g., Bansal, Kiku, and Yaron (2012a)) — a feature attributable to the presence of

the three exponential volatility processes that allow this model specification for an improved fit.

One may wonder whether the large predictive intervals depicted in Figure 5 are an artifact of the

LRR model used in our empirical analysis. To investigate this issue, we replaced the model-implied

structural relationship between the price-dividend ratio and our state variables by a reduced-form

relationship that was obtained by regressing the price-dividend ratio on the smoothed states using

an unrestricted OLS regression. We used the Campbell-Shiller approximation to map the predicted

price-dividend ratio into market returns. A predictive check based on the reduced-form relationship

yields credible intervals that were of similar size as the ones depicted in Figure 5. We concluded

from this exercise that it is not the LRR mechanism that generates the sampling uncertainty of the

R2 but the fact that the R2 values are obtained from regressions in which the persistent component

of the dependent variable (consumption growth or excess returns) is dominated by iid shocks and

the right-hand-side regressor is highly persistent. In fact, Valkanov (2003) derived an asymptotic

distribution of the R2 under the assumption that the regressor follows a local-to-unity process. He

shows that the goodness-of-fit measure converges to a random limit as the sample size increases. The

predictive intervals in Figure 5 essentially capture the quantiles of this limit distribution because

the effect of posterior parameter uncertainty on the predictive distribution is very small and our
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Figure 6: VAR Predictability Checks

Consumption Growth Excess Returns

Notes: Black boxes indicate VAR R2 values from actual data. The figure also depicts medians (red lines) and 90%

credible intervals (top and bottom lines of boxes) of distribution of R2 values obtained with model-generated data.

sample size is large.

It is well known that, in the data, the price-dividend ratio is very persistent, a feature that

can render the aforementioned regressions spurious (see Hodrick (1992) and Stambaugh (1999)).

In the model, and possibly in the data, the price-dividend ratio reflects multiple state variables.

Consequently, a VAR-based predictive regression may offer a more robust characterization. As in

Bansal, Kiku, and Yaron (2012a), Figure 6 displays the predictability of consumption growth and

the market excess returns based on a first-order VAR that includes consumption growth, the price-

dividend ratio, the real risk-free rate, and the market excess return. The first thing to note is that,

with multiple predictive variables, consumption growth is highly predictable. The VAR provides

quite a different view on consumption predictability relative to the case of using the price-dividend

ratio as a univariate regressor. In particular, now consumption growth predictability at the one-

year horizon is very large with an R2 of about 55% (see also Bansal, Kiku, Shaliastovich, and Yaron

(2013)). While the predictability diminishes over time, it is still nontrivial with an R2 of 14% at

the 10-year horizon. It is important to note that the model-based VAR yields very comparable

results (and in fact yields a median R2 for the one-year horizon that is somewhat lower than its

data estimate). On the other hand, since long-horizon return predictability is highly influenced

by the price-dividend ratio, the VAR-based implications for excess return predictability do not

change much relative to the univariate estimates. Nonetheless, the model performs well along this

dimension and its generated VAR-based R2s are closer to their VAR data estimates, relative to the

R2s based on univariate price-dividend regressor.
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Figure 7: Correlation between Market Return and Growth Rates of Fundamentals

Corr(
∑H

h=1 rm,t+h,
∑H

h=1 ∆ct+h) Corr(
∑H

h=1 rm,t+h,
∑H

h=1 ∆dt+h)

Notes: Black boxes indicate sample correlations of actual data. The figure also depicts medians (red lines) and 90%

credible intervals (top and bottom lines of boxes) of distribution of sample correlations obtained with model-generated

data.

One additional feature in which the generalized model performance is improved relative to the

benchmark model is the correlation between long-horizon return and long-horizon dividend and

consumption growth. Figure 7 presents these correlations in the data and the model. In the model,

the 10-year consumption growth and 10-year return have a correlation of 0.3, but with enormous

standard deviations that encompass -0.3 to 0.7, which contain the data estimate. The analogous

correlations for dividend growth are 0 to 0.9 with the data at 0.5 close to the model median estimate.

In the benchmark model, without the xλ process, this last correlation will be quite a bit larger for

all percentiles and would be a challenging dimension for the model.

IES Parameter. It is well understood that whether the IES parameter is above or below 1

plays a significant role in the asset pricing implication of the model. One common approach for

estimating the IES has been to regress the growth rate of consumption on the risk-free rate (e.g., Hall

(1988)). Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012a) show that this regression is

misspecified in the presence of stochastic volatility and leads to downward-biased estimates of the

IES. Given that our estimation formally ascribes measurement errors to both consumption and the

risk-free rate, we revisit the implication of this regression for inference on the IES. For completeness,

we also run the reverse equation of regressing the risk-free rate on consumption growth. We use

the two-year lagged consumption growth, log price-dividend ratio, market return, and risk-free rate

as instrumental variables. As shown in Table 5, in both regression approaches the data based

estimates are in fact negative, but lie well within the very wide 90% model-based credible band,

even though in all model simulations the IES was set to its median estimate of 1.36. In totality,
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Table 5: ψ (IES) from Instrumental Variables Estimation

Specification Data Generalized Model

5% 50% 95%

∆c onto rf -0.30 -0.45 0.56 1.50

rf onto ∆c -0.90 -5.53 1.26 6.80

Notes: The first row provides finite sample values of the ψ from the regression ∆ct+1 = constant+ψrf,t+1 +residt+1,

while the second row provides the ψ values from the regression rf,t+1 = constant+ 1
ψ

∆ct+1+residt+1. The instruments

are lagged (two years) consumption growth, log price-dividend ratio, market return, and risk-free rate. The “true” ψ

value in the model is 1.36 from Table 3. Regressions are implemented at an annual frequency.

this evidence shows that, with the estimated levels of measurement errors, it is very difficult to

precisely estimate the IES via this regression approach.

Term Structure of Real Yields. Next, we briefly discuss the model implications for the term

structure of real yields. The evidence on the slope of the term structure of real bonds is mixed.

The data for the U.K., the longest sample available for real bond data, suggests the real yield

curve is downward sloping (see Evans (2003)). The evidence for the U.S. suggests a slight upward

sloping curve (see Gurkaynak, Sack, and Wright (2010)). However, it is well recognized that the

U.S. sample is very short and that the Treasury Inflation-Protected Securities (TIPS) market is

relatively illiquid. Posterior predictive distributions for average real yields are depicted in Figure 8.

The right panel of the figure is based on the generalized model with preference shock, whereas we

set xλ,t = 0 to generate the results presented in the left panel. We show predictive distributions

for the level of the 1-year yield and consider yield spreads of 5-year, 10-year, and 30-year securities

relative to the 1-year bond. The benchmark model, which abstracts from preference shocks, leads to

a very mild downward sloping real yield curve (model’s median estimates across simulations display

a decline of 50 basis points (bps) from the 1 year to the 30 year yield respectively). This feature

of the long-run risk model is well recognized (see Bansal, Kiku, and Yaron (2012a)) as well as the

fact that an upward nominal term structure will result if consumption growth and inflation are

negatively correlated as is the case in the data (see Piazzesi and Schneider (2006) and Bansal and

Shaliastovich (2013)). Our generalized model leads to a slight upward sloping real term structure

(an increase of about 100 bps when comparing the 30-year to the 1-year yield).

We can use our state-space model to compute a time-path for the bond yields conditional on

the smoothed states. The results for 5, 10, and 20-year yields are depicted in Figure 9. We also

plot actual yields based on TIPS data obtained from the Board of Governors. Before and after the

Great Recession, the model tracks the TIPS data very well, despite the fact that they have not
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Figure 8: Term Structure of Real Yields

Model with xλ,t = 0 Generalized Model
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Notes: Boxes indicate 90% credible intervals for the posterior predictive distribution of the average 1-year yield and

three term spreads. Horizontal red lines indicate actuals computed from TIPS data of Gurkaynak, Sack, and Wright

(2010) updated by the Board of Governors.

Figure 9: Model-Implied vs. Actual Real Bond Yields

Notes: Black lines represent posterior medians of smoothed states and gray-shaded areas correspond to 90% credible

intervals. Blue lines indicate TIPS data from Gurkaynak, Sack, and Wright (2010). Shaded bars indicate NBER

recession dates.

been used to estimate the latent states. During the Great Recession, model predictions and actual

data move in the opposite direction. At that time the TIPS market was very illiquid and perhaps

mispriced (see, e.g. Lustig, Longstaff, and Fleckenstein (2014)), which can account for the artificial

low prices and high yields.
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5 Conclusion

We developed a nonlinear state-space model to capture the joint dynamics of consumption, divi-

dend growth, and asset returns. Building on Bansal and Yaron (2004), our model consists of an

economy containing a common predictable component for consumption and dividend growth and

multiple stochastic volatility processes. To maximize the economic span of the data for recovering

the predictable components and maximizing the frequency of data for efficiently identifying the

volatility processes, we use mixed-frequency data. Our econometric framework is general enough

to encompass other asset pricing models that can be written as state-space models that are linear

conditional on the volatility states. A careful modeling of measurement errors in consumption

growth reveals that the predictable cash flow component can be identified from consumption and

dividend growth data only. The additional inclusion of asset prices sharpens the inference. The

inclusion of two additional volatility processes improves the model fit considerably. The preference

shock included in the generalized version of our model mostly captures the dynamics of the risk-free

rate, but has little effect on market returns and price-dividend ratios. Overall, the estimated model

is able to capture key asset-pricing facts of the data.
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Appendix

A Solving the Long-Run Risks Model

This section provides solutions for the consumption and dividend claims for the endowment process:

gc,t+1 = µc + xt + σc,tηc,t+1 (A.1)

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1

xt+1 = ρxt + σx,tηx,t+1

xλ,t+1 = ρλxλ,t + σληλ,t+1

σ2c,t+1 = (1− νc)(ϕcσ̄)2 + νcσ
2
c,t + σwcwc,t+1

σ2x,t+1 = (1− νx)(ϕxσ̄)2 + νxσ
2
x,t + σwxwx,t+1

σ2d,t+1 = (1− νd)(ϕdσ̄)2 + νdσ
2
d,t + σwdwd,t+1

ηi,t+1, ηλ,t+1, wi,t+1 ∼ N(0, 1), i ∈ {c, x, d}.

The Euler equation for the economy is

Et [exp (mt+1 + ri,t+1)] = 1, i ∈ {c,m} , (A.2)

where

mt+1 = θ log δ + θxλ,t+1 −
θ

ψ
gc,t+1 + (θ − 1)rc,t+1 (A.3)

is the log of the real stochastic discount factor (SDF), rc,t+1 is the log return on the consumption

claim, and rm,t+1 is the log market return. (A.3) is derived in Section A.6 below. Returns are given

by the approximation of Campbell and Shiller (1988a):

rc,t+1 = κ0 + κ1pct+1 − pct + gc,t+1 (A.4)

rm,t+1 = κ0,m + κ1,mpdt+1 − pdt + gd,t+1.

The risk premium on any asset is

Et(ri,t+1 − rf,t) +
1

2
V art(ri,t+1) = −Covt(mt+1, ri,t+1). (A.5)

In Section A.1 we solve for the law of motion for the return on the consumption claim, rc,t+1. In

Section A.2 we solve for the law of motion for the market return, rm,t+1. The risk-free rate is

derived in Section A.3. All three solutions depend on linearization parameters that are derived in

Section A.4. Finally, as mentioned above, the SDF is derived in Section A.6.
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A.1 Consumption Claim

In order to derive the dynamics of asset prices, we rely on approximate analytical solutions. Specif-

ically, we conjecture that the price-consumption ratio follows

pct = A0 +A1xt +A1,λxλ,t +A2,cσ
2
c,t +A2,xσ

2
x,t (A.6)

and solve for A’s using (A.1), (A.2), (A.4), and (A.6).

From (A.1), (A.4), and (A.6)

rc,t+1 =
{
κ0 +A0(κ1 − 1) + µc + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
(A.7)

+
1

ψ
xt +A1,λ(κ1ρλ − 1)xλ,t +A2,x(κ1νx − 1)σ2x,t +A2,c(κ1νc − 1)σ2c,t

+ σc,tηc,t+1 + κ1A1σx,tηx,t+1 + κ1A1,λσληλ,t+1 + κ1A2,xσwxwx,t+1 + κ1A2,cσwcwc,t+1

and from (A.1), (A.2), (A.4), and (A.6)

mt+1 = (θ − 1)
{
κ0 +A0(κ1 − 1) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
(A.8)

− γµ+ θ log δ − 1

ψ
xt + ρλxλ,t + (θ − 1)A2,x(κ1νx − 1)σ2x,t + (θ − 1)A2,c(κ1νc − 1)σ2c,t

− γσc,tηc,t+1 + (θ − 1)κ1A1σx,tηx,t+1 + {(θ − 1)κ1A1,λ + θ}σληλ,t+1

+ (θ − 1)κ1A2,xσwxwx,t+1 + (θ − 1)κ1A2,cσwcwc,t+1.

The solutions for A’s that describe the dynamics of the price-consumption ratio are determined

from

Et [mt+1 + rc,t+1] +
1

2
V art [mt+1 + rc,t+1] = 0

and they are

A1 =
1− 1

ψ

1− κ1ρ
, A1,λ =

ρλ
1− κ1ρλ

, A2,x =
θ
2(κ1A1)

2

1− κ1νx
, A2,c =

θ
2(1− 1

ψ )2

1− κ1νc
(A.9)

and A0 =
A1

0+A
2
0

1−κ1
, where

A1
0 = log δ + κ0 + µ(1− 1

ψ
) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

A2
0 =

θ

2

{
(κ1A1,λ + 1)2σ2λ + (κ1A2,xσwx)2 + (κ1A2,cσwc)

2
}
.

For convenience, (A.8) can be rewritten as

mt+1 − Et[mt+1] = λcσc,tηc,t+1 + λxσx,tηx,t+1 + λλσληλ,t+1 + λwxσwxwx,t+1 + λwcσwcwc,t+1.
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Note that λs represent the market price of risk for each source of risk. To be specific,

λc = −γ, λx = −(γ − 1

ψ
)

κ1
1− κ1ρ

, λλ =
θ − κ1ρλ
1− κ1ρλ

, (A.10)

λwx = −
θ(γ − 1

ψ )(1− 1
ψ )κ1

2(1− κ1νx)
(

κ1
1− κ1ρ

)2, λwc = −
θ(γ − 1

ψ )(1− 1
ψ )κ1

2(1− κ1νc)
.

Similarly, rewrite (A.7) as

rc,t+1 − Et[rc,t+1] = −βc,cσc,tηc,t+1 − βc,xσx,tηx,t+1 − βc,λσληλ,t+1 − βc,wxσwxwx,t+1 − βc,wcσwcwc,t+1

where

βc,c = −1, βc,x = −κ1A1, βc,λ = −κ1A1,λ, βc,wx = −κ1A2,x, βc,wc = −κ1A2,c. (A.11)

The risk premium for the consumption claim is

Et(rc,t+1 − rf,t) +
1

2
V art(rc,t+1) = −Covt(mt+1, rc,t+1) (A.12)

= βc,xλxσ
2
x,t + βc,cλcσ

2
c,t + βc,λλλσ

2
λ + βc,wxλwxσ

2
wx + βc,wcλwcσ

2
wc .

A.2 Market Return

Similarly, using the conjectured solution to the price-dividend ratio

pdt = A0,m +A1,mxt +A1,λ,mxλ,t +A2,x,mσ
2
x,t +A2,c,mσ

2
c,t +A2,d,mσ

2
d,t (A.13)

the market return can be expressed as

rm,t+1 = κ0,m +A0,m(κ1,m − 1) + µd + κ1,mA2,x,m(1− νx)(ϕxσ̄)2 (A.14)

+ κ1,mA2,c,m(1− νc)(ϕcσ̄)2 + κ1,mA2,d,m(1− νd)(ϕdσ̄)2 + {φ+A1,m(κ1,mρ− 1)}xt

+ (κ1,mρλ − 1)A1,λ,mxλ,t +A2,x,m(κ1,mνx − 1)σ2x,t +A2,c,m(κ1,mνc − 1)σ2c,t

+ A2,d,m(κ1,mνd − 1)σ2d,t + πσc,tηc,t+1 + σd,tηd,t+1 + κ1,mA1,mσx,tηx,t+1 + κ1,mA1,λ,mσληλ,t+1

+ κ1,mA2,x,mσwxwx,t+1 + κ1,mA2,c,mσwcwc,t+1 + κ1,mA2,d,mσwdwd,t+1.
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Given the solution for A’s, Am’s can be derived as follows:

A0,m =
A1st

0,m +A2nd
0,m

1− κ1,m
(A.15)

A1,m =
φ− 1

ψ

1− κ1,mρ

A1,λ,m =
ρλ

1− κ1,mρλ

A2,x,m =
1
2 {(θ − 1)κ1A1 + κ1,mA1,m}2 + (θ − 1)(κ1νx − 1)A2,x

1− κ1,mνx

A2,c,m =
1
2(π − γ)2 + (θ − 1)(κ1νc − 1)A2

1− κ1,mνc

A2,d,m =
1
2

1− κ1,mνd
,

where

A1st
0,m = θ log δ + (θ − 1)

{
κ0 +A0(κ1 − 1) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
− γµ+ κ0,m + µd + κ1,mA2,x,m(1− νx)(ϕxσ̄)2 + κ1,mA2,c,m(1− νc)(ϕcσ̄)2

+ κ1,mA2,d,m(1− νd)(ϕdσ̄)2

A2nd
0,m =

1

2

(
κ1,mA2,x,mσwx + (θ − 1)κ1A2,xσwx

)2

+
1

2

(
κ1,mA2,c,mσwc + (θ − 1)κ1A2,cσwc

)2

+
1

2

(
κ1,mA2,d,mσwd

)2

+
1

2

(
κ1,mA1,λ,mσλ + (θ − 1)κ1A1,λσλ + θσλ

)2

.

Rewrite market-return equation (A.14) as

rm,t+1 − Et[rm,t+1] = −βm,cσc,tηc,t+1 − βm,xσx,tηx,t+1 − βm,λσληλ,t+1 − βm,wxσwxwx,t+1 − βm,wcσwcwc,t+1,

where

βm,c = −π, βm,x = −κ1,mA1,m, βm,λ = −κ1,mA1,λ,m, (A.16)

βm,wx = −κ1,mA2,x,m, βm,wc = −κ1,mA2,c,m.

The risk premium for the dividend claim is

Et(rm,t+1 − rf,t) +
1

2
V art(rm,t+1) = −Covt(mt+1, rm,t+1) (A.17)

= βm,xλxσ
2
x,t + βm,cλcσ

2
c,t + βm,λλλσ

2
λ + βm,wxλwxσ

2
wx + βm,wcλwcσ

2
wc .
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A.3 Risk-Free Rate

The model-driven equation for the risk-free rate is

rf,t = −Et [mt+1]−
1

2
vart [mt+1] (A.18)

= −θ log δ − Et [xλ,t+1] +
θ

ψ
Et [gc,t+1] + (1− θ)Et [rc,t+1]−

1

2
vart [mt+1] .

Subtract (1− θ)rf,t from both sides and divide by θ,

rf,t = − log δ − 1

θ
Et [xλ,t+1] +

1

ψ
Et [gc,t+1] +

(1− θ)
θ

Et [rc,t+1 − rf,t]−
1

2θ
vart [mt+1] (A.19)

From (A.1) and (A.8)

rf,t = B0 +B1xt +B1,λxλ,t +B2,xσ
2
x,t +B2,cσ

2
c,t,

where

B1 =
1

ψ
, B1,λ = −ρλ, B2,x = −

(1− 1
ψ )(γ − 1

ψ )κ21

2(1− κ1ρ)2
, B2,c = −1

2
(
γ − 1

ψ
+ γ) (A.20)

and

B0 = −θ log δ − (θ − 1)
{
κ0 + (κ1 − 1)A0 + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
+ γµ− 1

2
{(θ − 1)κ1A2,xσwx}

2 − 1

2
{(θ − 1)κ1A2,cσwc}

2 − 1

2

{
((θ − 1)κ1A1,λ + θ)2σ2λ

}
.

A.4 Linearization Parameters

For any asset, the linearization parameters are determined endogenously by the following system

of equations:

p̄di = A0,i(p̄di) +
∑

j∈{c,x,d}

A2,i,j(p̄di)× (ϕj σ̄)2

κ1,i =
exp(p̄di)

1 + exp(p̄di)

κ0,i = log(1 + exp(p̄di))− κ1,ip̄di.

The solution is determined numerically by iteration until reaching a fixed point of p̄di.
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A.5 Zero-Coupon Real Bonds

Let pn,t be the log t-price of an n-period zero-coupon real bond. Conjecture that pn,t is a linear

function of state variables

pn,t = Cn,0 + Cn,1xt + Cn,1λxλ,t + Cn,2xσ
2
x,t + Cn,2cσ

2
c,t. (A.21)

The pricing equation implies

pn,t = Et [pn−1,t+1 +mt+1] +
1

2
V art [pn−1,t+1 +mt+1] . (A.22)

The coefficients of the pricing equation are expressed recursively as

Cn,1 = Cn−1,1ρ−
1

ψ
(A.23)

Cn,1λ = Cn−1,1λρλ + ρλ

Cn,2x = Cn−1,2xνx + (θ − 1)A2,x(κ1νx − 1) +
1

2
{Cn−1,1 + (θ − 1)κ1A1}2

Cn,2c = Cn−1,2cνc + (θ − 1)A2,c(κ1νc − 1) +
1

2
γ2

Cn,0 = θ log δ + (θ − 1)
{
κ0 + (κ1 − 1)A0 + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
−γµ+ Cn−1,0 + Cn−1,2x(1− νx)(ϕxσ̄)2 + Cn−1,2c(1− νc)(ϕcσ̄)2

+
1

2

(
Cn−1,1λ + {(θ − 1)κ1A1,λ + θ}

)2

σ2λ +
1

2

(
(θ − 1)κ1A2,x + Cn−1,2x

)2

σ2wx

+
1

2

(
(θ − 1)κ1A2,c + Cn−1,2c

)2

σ2wc

with initial conditions that C0,1 = C0,1λ = C0,2x = C0,2c = C0,0 = 0. However, in order to develop

economic intuition, it is useful to express them in a non-recursive fashion:

Cn,1 = − 1

ψ

(1− ρn)

(1− ρ)
, n ≥ 1

Cn,1λ = ρλ
(1− ρnλ)

(1− ρλ)
, n ≥ 1

Cn,2x =

(
(θ − 1)A2,x(κ1νx − 1) +

1

2

{
− 1

ψ

(1− ρn−1)
(1− ρ)

+ (θ − 1)κ1A1

}2)
(1− νnx )

(1− νx)
, n ≥ 2

Cn,2c =

(
(θ − 1)A2,c(κ1νc − 1) +

1

2
γ2
)

(1− νnc )

(1− νc)
, n ≥ 1.

Define return on an n-period zero-coupon bond as

rn,t+1 = pn−1,t+1 − pn,t.
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The risk premium for the bond return is

Et(rn,t+1 − rf,t) +
1

2
V art(rn,t+1) (A.24)

= −covt(mt+1, rn,t+1)

= −(θ − 1)κ1A2,cCn−1,2cσ
2
wc − (θ − 1)κ1A2,xCn−1,2xσ

2
wx − {(θ − 1)κ1A1,λ + θ}Cn−1,1λσ2λ

−(θ − 1)κ1A1Cn−1,1σ
2
x,t.

A.6 Deriving the Intertemporal Marginal Rate of Substitution (MRS)

We consider a representative-agent endowment economy modified to allow for time-preference

shocks. The representative agent has Epstein and Zin (1989) recursive preferences and maximizes

her lifetime utility

Vt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

subject to budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,

where Wt is the wealth of the agent, Rc,t+1 is the return on all invested wealth, γ is risk aversion, θ =
1−γ

1−1/ψ , and ψ is intertemporal elasticity of substitution. The ratio λt+1

λt
determines how agents trade

off current versus future utility and is referred to as the time-preference shock (see Albuquerque,

Eichenbaum, and Rebelo (2012)).

First conjecture a solution for Vt = φtWt. The value function is homogenous of degree 1 in wealth;

it can now be written as

φtWt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[(φt+1Wt+1)

1−γ ]
) 1
θ

] θ
1−γ

(A.25)

subject to

Wt+1 = (Wt − Ct)Rc,t+1.

Epstein and Zin (1989) show that the above dynamic program has a maximum.

Using the dynamics of the wealth equation, we substitute Wt+1 into (A.25) to derive

φtWt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ(Wt − Ct)
1−γ
θ
(
Et[(φt+1Rc,t+1)

1−γ ]
) 1
θ

] θ
1−γ

. (A.26)

At the optimum, Ct = btWt, where bt is the consumption-wealth ratio. Using (A.26) and shifting

the exponent on the braces to the left-hand side, and dividing by Wt, yields

φ
1−γ
θ

t = (1− δ)λt
(
Ct
Wt

) 1−γ
θ

+ δ

(
1− Ct

Wt

) 1−γ
θ (

Et[(φt+1Rc,t+1)
1−γ ]

) 1
θ (A.27)
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or simply

φ
1−γ
θ

t = (1− δ)λtb
1−γ
θ

t + δ(1− bt)
1−γ
θ
(
Et[(φt+1Rc,t+1)

1−γ ]
) 1
θ . (A.28)

The first-order condition with respect to the consumption choice yields

(1− δ)λtb
1−γ
θ
−1

t = δ(1− bt)
1−γ
θ
−1(Et[(φt+1Rc,t+1)

1−γ ]
) 1
θ . (A.29)

Plugging (A.29) into (A.28) yields

φt = (1− δ)
θ

1−γ λ
θ

1−γ
t

(
Ct
Wt

) 1−γ−θ
1−γ

= (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t

(
Ct
Wt

) 1
1−ψ

. (A.30)

The lifetime value function is φtWt, with the solution to φt stated above. This expression for φt is

important: It states that the maximized lifetime utility is determined by the consumption-wealth

ratio.

(A.29) can be rewritten as

(1− δ)θλθt
(

bt
1− bt

)− θ
ψ

= δθEt[(φt+1Rc,t+1)
1−γ ]. (A.31)

Consider the term φt+1Rc,t+1:

φt+1Rc,t+1 = (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t+1

(
Ct+1

Wt+1

) 1
1−ψ

Rc,t+1. (A.32)

After substituting the wealth constraint, Ct+1

Wt+1
= Ct+1/Ct

Wt/Ct−1 ·
1

Rc,t+1
= Gt+1

Rc,t+1
· bt
1−bt , into the above

expression, it follows that

φt+1Rc,t+1 = (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t+1

(
bt

1− bt

) 1
1−ψ
(
Gt+1

Rc,t+1

) 1
1−ψ

Rc,t+1. (A.33)

After some intermediate tedious manipulations,

δθ(φt+1Rc,t+1)
1−γ = δθ(1− δ)θλθt+1

(
bt

1− bt

)− θ
ψ

G
− θ
ψ

t+1R
θ
c,t+1. (A.34)

Taking expectations and substituting the last expression into (A.31) yields

δθEt[
(
λt+1

λt

)θ
G
− θ
ψ

t+1R
θ−1
c,t+1Rc,t+1] = 1. (A.35)

From here we see that the MRS in terms of observables is

Mt+1 = δθ
(
λt+1

λt

)θ
G
− θ
ψ

t+1R
θ−1
c,t+1. (A.36)

The log of MRS is

mt+1 = θ log δ + θxλ,t+1 −
θ

ψ
gt+1 + (θ − 1)rc,t+1, (A.37)

where xλ,t+1 = log(λt+1

λt
).
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B Data Source

B.1 Nominal PCE

We download seasonally adjusted data for nominal PCE from NIPA Tables 2.3.5 and 2.8.5. We

then compute within-quarter averages of monthly observations and within-year averages of quarterly

observations.

B.2 Real PCE

We use Table 2.3.3., Real Personal Consumption Expenditures by Major Type of Product, Quantity

Indexes (A:1929-2011)(Q:1947:Q1-2011:Q4) to extend Table 2.3.6., Real Personal Consumption

Expenditures by Major Type of Product, Chained Dollars (A:1995-2011) (Q:1995:Q1-2011:Q4).

Monthly data are constructed analogously using Table 2.8.3. and Table 2.8.6.

B.3 Real Per Capita PCE: ND+S

The LRR model defines consumption as per capita consumer expenditures on nondurables and

services. We download mid-month population data from NIPA Table 7.1.(A:1929-2011)(Q:1947:Q1-

2011:Q4) and from Federal Reserve Bank of St. Louis’ FRED database (M:1959:M1-2011:M12).

We convert consumption to per capita terms.

B.4 Dividend and Market Returns Data

Data are from the Center for Research in Security Prices (CRSP). The three monthly series from

CRSP are the value-weighted with-, RNt, and without-dividend nominal returns, RXt, of CRSP

stock market indexes (NYSE/AMEX/NASDAQ/ARCA), and the CPI inflation rates, πt. The

sample period is from 1928:M1 to 2011:M12. The monthly real dividend series are constructed as

in Hodrick (1992):

1. A normalized nominal value-weighted price series is produced by initializing P0 = 1 and

recursively setting Pt = (1 +RXt)Pt−1.

2. A normalized nominal divided series, dt, is obtained by recognizing that dt = (RNt −
RXt)Pt−1.

3. The annualized dividend is Dt =
∑11

j=0 dt−j , which sums the previous 11 months of dividends

with the current dividend. The first observation is 1928:M12.
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Both dividend growth, log(Dt+1

Dt
), and market returns, RNt+1, are converted from nominal to real

terms using the CPI inflation rates, which are denoted by gd,t+1 and rm,t+1 respectively. They are

available from 1929:M1 to 2011:M12.

B.5 Ex Ante Risk-Free Rate

The ex ante risk-free rate is constructed as in the online appendix of Beeler and Campbell (2012).

Nominal yields to calculate risk-free rates are the CRSP Fama Risk Free Rates. Even though our

model runs in monthly frequencies, we use the three-month yield because of the larger volume and

higher reliability. We subtract annualized three-month inflation, πt,t+3, from the nominal yield,

if,t, to form a measure of the ex post (annualized) real three-month interest rate. The ex ante real

risk-free rate, rf,t, is constructed as a fitted value from a projection of the ex post real rate on the

current nominal yield, if,t, and inflation over the previous year, πt−12,t :

if,t − πt,t+3 = β0 + β1if,t + β2πt−12,t + εt+3

rf,t = β̂0 + β̂1if,t + β̂2πt−12,t.

The ex ante real risk-free rates are available from 1929:M1 to 2011:M12.
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C The State-Space Representation of the LRR Model

C.1 Measurement Equations

In order to capture the correlation structure between the measurement errors at monthly frequency,

we assumed in the main text that 12 months of consumption growth data are released at the end

of each year. We will now present the resulting measurement equation. To simplify the exposition,

we assume that the monthly consumption data are released at the end of the quarter (rather than

at the end of the year). In the main text, the measurement equation is written as

yt+1 = At+1

(
D + Zst+1 + Zvsvt+1 + Σuut+1

)
, ut+1 ∼ N(0, I). (A.38)

The selection matrix At+1 accounts for the deterministic changes in the vector of observables, yt+1.

Recall that monthly observations are available only starting in 1959:M1. For the sake of exposition,

suppose prior to 1959:M1 consumption growth was available at a quarterly frequency. Then:

1. Prior to 1959:M1:

(a) If t+ 1 is the last month of the quarter:

yt+1 =


gqc,t+1

gd,t+1

rm,t+1

rf,t

 , At+1 =


1
3

2
3 1 2

3
1
3 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 .

(b) If t+ 1 is not the last month of the quarter:

yt+1 =


gd,t+1

rm,t+1

rf,t

 , At+1 =


0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 .
2. From 1959:M1 to present:

(a) If t+ 1 is the last month of the quarter:

yt+1 =



gc,t+1

gc,t

gc,t−1

gd,t+1

rm,t+1

rf,t


, At+1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


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(b) If t+ 1 is not the last month of the quarter:

yt+1 =


gd,t+1

rm,t+1

rf,t

 , At+1 =


0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 .
The relationship between observations and states (ignoring the measurement errors) is given by

the approximate analytical solution of the LRR model described in Section A:

gc,t+1 = µc + xt + σc,tηc,t+1 (A.39)

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1

rm,t+1 = {κ0,m + (κ1,m − 1)A0,m + µd}

+ (κ1,mA1,m)xt+1 + (φ−A1,m)xt + (κ1,mA1,λ,m)xλ,t+1 −A1,λ,mxλ,t + πσc,tηc,t+1 + σd,tηd,t+1

+ (κ1,mA2,x,m)σ2x,t+1 −A2,x,mσ
2
x,t + (κ1,mA2,c,m)σ2c,t+1 −A2,c,mσ

2
c,t + (κ1,mA2,d,m)σ2d,t+1 −A2,d,mσ

2
d,t

rf,t = B0 +B1xt +B1,λxλ,t +B2,xσ
2
x,t +B2,cσ

2
c,t

ηi,t+1, ηλ,t+1, wi,t+1 ∼ N(0, 1), i ∈ {c, x, d}.

In order to reproduce (A.39) and the measurement-error structure described in Sections 3.1 and 3.2,

we define the vectors of states st+1 and svt+1 as
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st+1 =



xt+1

xt

xt−1

xt−2

xt−3

xt−4

σc,tηc,t+1

σc,t−1ηc,t

σc,t−2ηc,t−1

σc,t−3ηc,t−2

σc,t−4ηc,t−3

σεεt+1

σεεt

σεεt−1

σεεt−2

σεεt−3

σεεt−4

σqε ε
q
t+1

σqε ε
q
t

σqε ε
q
t−1

σqε ε
q
t−2

σd,tηd,t+1

xλ,t+1

xλ,t



, svt+1 =



σ2
x,t+1

σ2
x,t

σ2
c,t+1

σ2
c,t

σ2
d,t+1

σ2
d,t


. (A.40)

It can be verified that the coefficient matrices D, Z, Zv, and Σe are given by

Z =



0 1 0 0 0 0 1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 − 1
3

− 1
3

2
3

− 2
3

1
3

1
3

1 0 0 −1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 −1 0 0 0 0 0 0 0

0 φ 0 0 0 0 π 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

µr,1 µr,2 0 0 0 0 µr,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 µr,4 µr,5 µr,6

0 B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B1,λ



Z
v

=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

µr,7 µr,8 µr,9 µr,10 µr,11 µr,12

0 B2,x 0 B2,c 0 0


, D =



µ

µ

µ

µ

µ

µd

µr,0

B0


, Σ

u
=



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 σ
rf
ε


.
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The coefficients µr,0 to µr,12 are obtained from the solution of the LRR model:

µr,0

µr,1

µr,2

µr,3

µr,4

µr,5

µr,6


=



κ0,m +A0,m(κ1,m − 1) + µd

κ1,mA1,m

φ−A1,m

π

1

κ1,mA1,λ,m

−A1,λ,m


,



µr,7

µr,8

µr,9

µr,10

µr,11

µr,12


=



κ1,mA2,x,m

−A2,x,m

κ1,mA2,m

−A2,m

κ1,mA2,d,m

−A2,d,m


.

C.2 State Transition Equations

Using the definition of st+1 in (A.40), we write the state-transition equation as

st+1 = Φst + vt+1(ht). (A.41)

Conditional on the volatilities ht, this equation reproduces the law of motion of the two persistent

conditional mean processes

xt+1 = ρxt + σx,tηx,t+1 (A.42)

xλ,t+1 = ρλxλ,t + σληλ,t+1

and it contains some trivial relationships among the measurement-error states. The matrices Φ

and vt+1(ht) are defined as

Φ =



ρ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρλ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



and
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vt+1(ht) =



σx,tηx,t+1

0

0

0

0

0

σc,tηc,t+1

0

0

0

0

σεεt+1

0

0

0

0

0

σqε ε
q
t+1

0

0

0

σd,tηd,t+1

σληλ,t+1

0



.

The law of motion of the three persistent conditional log volatility processes is given by

ht+1 = Ψht + Σhwt+1, (A.43)

where

ht+1 =


hx,t+1

hc,t+1

hd,t+1

 , Ψ =


ρhx 0 0

0 ρhc 0

0 0 ρhd



Σh =


σhx

√
1− ρ2hx 0 0

0 σhc

√
1− ρ2hc 0

0 0 σhd

√
1− ρ2hd

 , wt+1 =


wx,t+1

wc,t+1

wd,t+1

 .
We express

σx,t = ϕxσ̄ exp(hx,t), σc,t = ϕcσ̄ exp(hc,t), σd,t = ϕdσ̄ exp(hd,t),

which delivers the dependence on ht in the above definition of vt+1(·).
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D Posterior Inference

As discussed in the main text, we use a particle-filter approximation of the likelihood function and

embed this approximation into a fairly standard random walk Metropolis algorithm.

D.1 Particle Filter

Our state-space representation, given by equations (A.38), (A.41), and (A.43), is linear conditional

on the volatility states ht. Thus, following Chen and Liu (2000), we update st+1 conditional on ht

using Kalman filter iterations, which improves the efficiency of the filter substantially. In the sub-

sequent exposition we omit the dependence of all densities on the parameter vector Θ. The particle

filter approximates the sequence of distributions {p(zt|Y1:t)}Tt=1 by a set of pairs
{
z
(i)
t , π

(i)
t

}N
i=1

,

where z
(i)
t is the i′th particle vector, π

(i)
t is its weight, and N is the number of particles. As a

by-product, the filter produces a sequence of likelihood approximations p̂(yt|Y1:t−1), t = 1, . . . , T .

• Initialization: We generate the particle values z
(i)
0 by drawing the volatilities (h0, h−1) from

the unconditional distribution associated with (A.43). Conditional on the volatility state

(h
(i)
0 , h

(i)
−1), s

(i)
0 is generated from the unconditional distribution associated with (A.41). We

set π
(i)
0 = 1/N for each i.

• Propagation of particles: We simulate (A.43) forward to generate (h
(i)
t , h

(i)
t−1) conditional

on (h
(i)
t−1, h

(i)
t−2). Taking s

(i)
t−1 and (h

(i)
t , h

(i)
t−1) as given, for each particle we run one iteration

of the Kalman filter based on the linear state-space system comprised of (A.38)and (A.41) to

determine p(st|yt, s(i)t−1, h
(i)
t , h

(i)
t−1). This distribution is normal with mean s

(i)
t|t and P

(i)
t|t . We

sample s
(i)
t from N

(
s
(i)
t|t , P

(i)
t|t ). We use q(zt|z(i)t−1, yt) to represent the distribution from which

we draw z
(i)
t .

• Correction of particle weights: Define the unnormalized particle weights for period t as

π̃
(i)
t = π

(i)
t−1 ×

p(yt|z(i)t )p(z
(i)
t |z

(i)
t−1)

q(z
(i)
t |z

(i)
t−1, yt)

(A.44)

= π
(i)
t−1 ×

p(yt|z(i)t )p(z
(i)
t |z

(i)
t−1)

p(s
(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1, yt)q(h

(i)
t |h

(i)
t−1)

= π
(i)
t−1 ×

p(yt|z(i)t )p(s
(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1)p(h

(i)
t |h

(i)
t−1)

p(s
(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1, yt)q(h

(i)
t |h

(i)
t−1)

= π
(i)
t−1 ×

p(yt|z(i)t )p(s
(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1)

p(s
(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1, yt)

.
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The term π
(i)
t−1 is the initial particle weight and the ratio p(yt|z(i)t )p(z

(i)
t |z

(i)
t−1)/q(z

(i)
t |z

(i)
t−1, yt)

is the importance weight of the particle. The second equality is obtained by factorizing

q(z
(i)
t |z

(i)
t−1, yt) into the density of h

(i)
t associated with the forward simulation of the volatility

states, and the conditional density of st|(yt, s(i)t−1, h
(i)
t , h

(i)
t−1) is obtained from the Kalman filter

updating step. The third equality is obtained by factorizing the joint density of (s
(i)
t , h

(i)
t ),

p(z
(i)
t |z

(i)
t−1), into a marginal density for h

(i)
t and a conditional density for s

(i)
t |h

(i)
t . The last

equality follows from the fact that we chose q(h
(i)
t |h

(i)
t−1) = p(h

(i)
t |h

(i)
t−1). We further simplify

the expression in the last line of (A.44) in the next subsection.

The log likelihood function approximation is given by

log p̂(yt|Y1:t−1) = log p̂(yt−1|Y1:t−2) + log

(
N∑
i=1

π̃
(i)
t

)
.

• Resampling: Define the normalized weights

π
(i)
t =

π̃
(i)
t∑N

j=1 π̃
(j)
t

and generate N draws from the distribution {s(i)t , π
(i)
t }Ni=1 using multinomial resampling. In

slight abuse of notation, we denote the resampled particles and their weights also by s
(i)
t and

π
(i)
t , where π

(i)
t = 1/N .

D.2 Further Details on the Correction and Updating Step

We now derive the density p(st|yt, s(i)t−1, h
(i)
t , h

(i)
t−1) as well as a simplified expression for the density

ratio in the last line of (A.44). Recall that, conditional on the volatilities (ht, ht−1), the state-space

representation of our model takes the form

yt = At
(
D + Zst + Zvsvt + Σuut

)
, ut ∼ N(0, I) (A.45)

st = Φst−1 + vt(ht−1). (A.46)

We now proceed with a Kalman filter forecasting and updating step. Conditional on (s
(i)
t−1, h

(i)
t , h

(i)
t−1),

the state-transition equation can be used to forecast st:

st
∣∣(s(i)t−1, h(i)t , h(i)t−1) ∼ N(s(i)t|t−1, P (i)

t|t−1
)
,

where

s
(i)
t|t−1 = Φs

(i)
t−1, P

(i)
t|t−1 = E[vt(h

(i)
t−1)v

′
t(h

(i)
t−1)].
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Using the measurement equation we can forecast yt, conditional on (s
(i)
t−1, h

(i)
t , h

(i)
t−1), as follows:

yt
∣∣(s(i)t−1, h(i)t , h(i)t−1) ∼ N(ŷ(i)t|t−1, F (i)

t|t−1
)
, (A.47)

where

ŷ
(i)
t|t−1 = At

(
D + Zs

(i)
t|t−1 + Zvsvt (h

(i)
t , h

(i)
t−1)

)
, F

(i)
t|t−1 = (AtZ)P

(i)
t|t−1(AtZ)′ + (AtΣ

u)(AtΣ
u)′.

Finally, we can apply the Kalman filter updating step to obtain

st
∣∣(yt, s(i)t−1, h(i)t , h(i)t−1) ∼ N(s(i)t|t , P (i)

t|t
)
, (A.48)

where

s
(i)
t|t = s

(i)
t|t−1 + (AtZP

(i)
t|t−1)

′(F
(i)
t|t−1)

−1(yt − ŷ(i)t|t−1)

P
(i)
t|t = P

(i)
t|t−1 − (AtZP

(i)
t|t−1)

′(F
(i)
t|t−1)

−1(AtZP
(i)
t|t−1).

Define F (i) = {h(i)t , h
(i)
t−1, s

(i)
t−1} and consider the density ratio used to update the particle weights:

p(yt|z(i)t )p(s
(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1)

p(s
(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1, yt)

=
p(yt|s(i)t ,F (i))p(s

(i)
t |F (i))

p(s
(i)
t |yt,F (i))

(A.49)

=
p(s

(i)
t |yt,F (i))p(yt|F (i))

p(s
(i)
t |yt,F (i))

= p(yt|F (i)).

The first equality in (A.49) follows from

p(yt|z(i)t ) = p(yt|s(i)t , h
(i)
t , h

(i)
t−1) = p(yt|s(i)t , h

(i)
t , h

(i)
t−1, s

(i)
t−1)

and the second equality in (A.49) is an application of Bayes’ Theorem. The expression for p(yt|F (i)

was previously derived in (A.47).
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E The Measurement-Error Model for Consumption

E.1 Monthly Interpolation and Adjustment of Consumption

For expositional purposes, we assume that the accurately measured low-frequency observations are

available at quarterly frequency (instead of annual frequency as in the main text). Correspondingly,

we define the time subscript t = 3(j − 1) +m, where month m = 1, 2, 3 and quarter j = 1, . . .. We

use uppercase C to denote the level of consumption and lowercase c to denote percentage deviations

from some log-linearization point. Growth rates are approximated as log differences and we use a

superscript o to distinguish observed from “true” values.

The measurement-error model presented in the main text can be justified by assuming that the

statistical agency uses a high-frequency proxy series to determine monthly consumption growth

rates. We use Z3(j−1)+m to denote the monthly value of the proxy series and Zq(j) the quarterly

aggregate. Suppose the proxy variable provides a noisy measure of monthly consumption. More

specifically, we consider a multiplicative error model of the form

Z3(j−1)+m = C3(j−1)+m exp(ε3(j−1)+m). (A.50)

The interpolation is executed in two steps. In the first step we construct a series C̃o3(j−1)+m, and

in the second step we rescale the series to ensure that the reported monthly consumption data add

up to the reported quarterly consumption data within the period. In Step 1, we start from the

level of consumption in quarter j − 1, Cq(j−1), and define

C̃o3(j−1)+1 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)
(A.51)

C̃o3(j−1)+2 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)(
Z3(j−1)+2

Z3(j−1)+1

)
= Cq,o(j−1)

(
Z3(j−1)+2

Zq(j−1)

)

C̃o3(j−1)+3 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)(
Z3(j−1)+2

Z3(j−1)+1

)(
Z3(j−1)+3

Z3(j−1)+2

)
= Cq,o(j−1)

(
Z3(j−1)+3

Zq(j−1)

)
.

Thus, the growth rates of the proxy series are used to generate monthly consumption data for

quarter q. Summing over the quarter yields

C̃q,o(j) =

3∑
m=1

C̃o3(j−1)+m = Cq,o(j−1)

[
Z3(j−1)+1

Zq(j−1)
+
Z3(j−1)+2

Zq(j−1)
+
Z3(j−1)+3

Zq(j−1)

]
= Cq,o(j−1)

Zq(j)

Zq(j−1)
. (A.52)
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In Step 2, we adjust the monthly estimates C̃o3(j−1)+m by the factor Cq,o(j)/C̃
q,o
(j) , which leads to

Co3(j−1)+1 = C̃o3(j−1)+1

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+1

Zq(j)
(A.53)

Co3(j−1)+2 = C̃o3(j−1)+2

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+2

Zq(j)

Co3(j−1)+3 = C̃o3(j−1)+3

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+3

Zq(j)

and guarantees that

Cq,o(j) =

3∑
m=1

Co3(j−1)+m.

We now define the growth rates goc,t = logCot − logCot−1 and gc,t = logCt − logCt−1. By taking

logarithmic transformations of (A.50) and (A.53) and combining the resulting equations, we can

deduce that the growth rates for the second and third month of quarter q are given by

goc,3(j−1)+2 = gc,3(j−1)+2 + ε3(j−1)+2 − ε3(j−1)+1 (A.54)

goc,3(j−1)+3 = gc,3(j−1)+3 + ε3(j−1)+3 − ε3(j−1)+2.

The derivation of the growth rate between the third month of quarter j − 1 and the first month of

quarter j is a bit more cumbersome. Using (A.53), we can write the growth rate as

goc,3(j−1)+1 = logCq,o(j) + logZ3(j−1)+1 − logZq(j) (A.55)

− logCq,o(j−1) − logZ3(j−2)+3 + logZq(j−1).

To simplify (A.55) further, we are using a log-linear approximation. Suppose we log-linearize an

equation of the form

Xq
(j) = X3(j−1)+1 +X3(j−1)+2 +X3(j−1)+3

around Xq
∗ and X∗ = Xq

∗/3, using lowercase variables to denote percentage deviations from the

log-linearization point. Then,

xq(j) ≈
1

3
(x3(j−1)+1 + x3(j−1)+2 + x3(j−1)+3).

Using (A.50) and the definition of quarterly variables as sums of monthly variables, we can apply

the log-linearization as follows:

logCq,o(j) − logZq(j) = log(Cq∗/Z
q
∗) + εq(j) −

1

3

(
ε3(j−1)+1 + ε3(j−1)+2 + ε3(j−1)+3

)
. (A.56)
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Substituting (A.56) into (A.55) yields

goc,3(j−1)+1 = gc,3(j−1)+1 + ε3(j−1)+1 − ε3(j−2)+3 + εq(j) − ε
q
(j−1) (A.57)

−1

3

(
ε3(j−1)+1 + ε3(j−1)+2 + ε3(j−1)+3

)
+

1

3

(
ε3(j−2)+1 + ε3(j−2)+2 + ε3(j−2)+3

)
.

An “annual” version of this equation appears in the main text.


