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The forward premium puzzle and the carry trade anomaly are two major stylized facts in

international economics reflecting failures of uncovered interest parity. The forward premium

puzzle is a fact about a regression coefficient, whereas the carry trade anomaly describes a

profitable trading strategy. In this paper, we introduce a series of decompositions that allows

us to show analytically how regression- and portfolio-based facts relate to each other, to test

whether they are empirically distinct, and to estimate the joint restrictions they place on

models of currency returns and exchange rates.

The forward premium puzzle arises in a bilateral regression of currency returns on forward

premia (Fama, 1984):

rxi,t+1 = αi + βfpp
i (fit − sit) + εi,t+1, (1)

where fit is the log one-period forward rate of currency i, sit is the log spot rate, and rxi,t+1 =

fit − si,t+1 is the log excess return on currency i between time t and t + 1. Under covered

interest parity, the forward premium, fit − sit, is equal to the interest differential between the

two currencies, so that we can think of the currency return simply as the interest differential

plus the rate of appreciation of the foreign currency. Although estimates of βfpp
i tend to be

noisy, the literature finds βfpp
i > 0 for most currencies. A pooled specification that constrains

all βfpp
i to be identical across currencies yields point estimates significantly larger than zero and

often larger than one.1 This fact, the forward premium puzzle (FPP), has drawn a lot of interest

from theorists because it suggests that “high-interest-rate currencies appreciate.” In a rational

model, βfpp
i > 1 requires that the risk premium on a currency must be negatively correlated

with its expected rate of depreciation and be so volatile that it plays a role in determining

expected changes in bilateral exchange rates.2 These implications are often collectively referred

to as the “Fama conditions” (Backus, Foresi, and Telmer, 2001).

The carry trade anomaly arises when sorting currencies into portfolios. It refers to the

fact that lending in currencies that have high interest rates while borrowing in currencies that

have low interest rates is a profitable trading strategy. The same is true for the somewhat less

well-known “dollar trade” anomaly, a profitable trading strategy whereby investors go long all

foreign currencies when the world average interest rate is high relative to the US interest rate,

and short all foreign currencies when it is low.

The literature has often loosely connected these anomalies, for example, by attributing the

1The same relationship is often estimated using the change in the spot exchange rate as the dependent
variable, in which case, the coefficient estimate is 1 − βfpp

i . An equivalent way of stating the FPP is thus that
1 − βfpp

i < 1.
2Throughout the paper, we follow the convention in the literature and refer to conditional expected returns

as “risk premia.” However, this terminology need not be taken literally. Our analysis is silent on whether
currency returns are driven by risk premia, institutional frictions, or other limits to arbitrage. See Burnside
et al. (2011) and Lustig et al. (2011) for a discussion.
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carry trade anomaly to the FPP.3 In this paper, we propose a decomposition that produces

an exact mapping between the three anomalies. We decompose the unconditional covariance

of expected currency returns (“risk premia”) with forward premia into a cross-currency, a

between-time-and-currency, and a cross-time component. Subject to a standard assumption

on what investors know at the time of portfolio formation, each of the three components can

be written either as the expected return to a linear trading strategy or as a function of a slope

coefficient from a regression, similar to (1), that relates variation in expected currency returns

to variation in forward premia in the corresponding dimension. These regression coefficients in

turn have a clear economic interpretation: in a rational model, they correspond to the elasticity

of currency risk premia with respect to forward premia in each of the three dimensions. We

can thus write the systematic variation driving the carry trade, the dollar trade, as well as a

number of other yet un-named trading strategies, as regression coefficients, test their statistical

significance, and link them to parameters in a generic model of currency returns. Similarly,

we can show that the FPP corresponds to a specific (also as-yet unnamed) trading strategy

that involves going long a currency when its interest rates exceeds its own long-run mean and

going short otherwise.

We first show analytically that the expected return on the carry trade is the sum of the

cross-currency and the between-time-and-currency component of the unconditional covariance

of currency returns with forward premia, whereas the FPP consists of the sum of the between-

time-and-currency and the cross-time components. The expected return on the dollar trade

equals the cross-time component. All three anomalies thus load on different dimensions of the

failure of uncovered interest parity (UIP).

Using a wide range of plausible assumptions on investors’ information sets, we then estimate

the elasticity of risk premia with respect to forward premia in each of the three dimensions.

Our results show that 44%-100% of the systematic variation driving the carry trade is in the

cross section (the cross-currency variation in αi in (1)) rather than the time series: Currencies

that have persistently higher forward premia (interest rates) pay significantly higher expected

returns than currencies with persistently lower forward premia. Some of our specifications also

show statistically significant variation in the cross-time dimension: expected returns on the

US dollar appear to fluctuate with its average forward premium against all other currencies

in the sample. This cross-time variation accounts for 100% of the dollar trade anomaly and it

also explains 64%-100% of the variation that generates the FPP. By contrast, the contribution

of the the between-time-and-currency component to all three anomalies is small. We usually

cannot reject the null that currency risk premia are inelastic with respect to variation in

forward premia in the between-time-and-currency dimension.

3Some examples include Brunnermeier et al. (2009), Verdelhan (2010), Ilut (2012), and Bacchetta and
Van Wincoop (2010).
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These results imply that the FPP, that is, the fact that βfpp
i > 0, has no statistically

significant effect on the returns to the carry trade. In this sense, the carry trade and the FPP

may require distinct theoretical explanations: explaining the carry trade primarily requires

explaining permanent or highly persistent differences in interest rates across currencies that are

partially, but not fully, reversed by predictable movements in exchange rates. (High-interest-

rate currencies depreciate, but not enough to reverse the higher returns resulting from the

interest rate differential.) By contrast, explaining the FPP primarily requires explaining the

dollar trade anomaly, that is, why the US dollar on average does not depreciate proportionately

when its interest rate is high relative to all other currencies in the world.

The reason we find only a weak link between expected returns on the carry trade and

the FPP is that the FPP itself is less informative about expected returns and risk premia

than some of the previous literature may have suggested: regressions like (1) teach us about

the elasticity of realized, but not necessarily the elasticity of expected returns. When using

portfolios to estimate expected returns on trading strategies, we naturally require that all

information used in the formation of the portfolio is available ex ante. Similarly, when we use

regressions to estimate the elasticity of behavior (demanding a risk premium) with respect to

some right-hand-side variable, this variable must be known at time t. By contrast, regressions

with currency fixed effects (the αi in (1)) do not correct for the fact that the sample mean of

each currency’s forward premium is unknown to investors ex ante, and are thus appropriately

interpreted as estimating the elasticity of realized, but not expected, returns.

This distinction is important. We show analytically that the elasticity of realized returns

reflected in the FPP is always larger than the elasticity of expected returns if investors do not

have perfect foresight about the future mean interest rates absorbed in the αi. In particular,

we find that the pooled version of (1) that constrains all βfpp
i to be equal across currencies and

uses currency fixed effects (αi) produces coefficients larger than one primarily because future

interest rates are hard to predict, and not because investors expect high interest rate currencies

to appreciate. For example, in our standard specification, the weighted average of βfpp
i is 1.81

(s.e.=0.53), whereas our preferred estimate for the elasticity of expected returns is only half

that number (0.86, s.e.=0.34). This distinction has important theoretical implications because

an elasticity of expected returns smaller than one does not require a systematic association

between variation in risk premia and expected depreciations and thus potentially eliminates

a long-standing puzzle in the literature on the FPP and the “Fama conditions:” investors

generally expect currencies with high interest rates to depreciate and not appreciate.

Having estimated the elasticity of risk premia with respect to forward premia in each of

our dimensions, we then use the variance-covariance matrix of our estimates to identify the

restrictions these different violations of UIP jointly place on models of currency returns. We

find that the simplest model that our regression-based analysis does not reject features positive

3



elasticities of risk premia with respect to forward premia in the cross-currency and cross-time

dimensions, but not necessarily in the between-time-and-currency dimension. In addition, we

cannot reject the hypothesis that all three elasticities are smaller than one, such that the model

need not generate a correlation between expected changes in exchange rates and risk premia

in any of the three dimensions.

Another interesting implication of this analysis is that the model with the best fit to the

data features a higher elasticity of risk premia in the cross-time dimension than in the between-

time-and-currency dimension, suggesting that the stochastic properties of the US dollar (the

base currency in our analysis) may be systematically different from that of the average currency

in our sample. We generalize our decomposition to show how results would differ had we chosen

a different base currency, and find that the elasticity of the risk premium on the US dollar

indeed appears large relative to that of other currencies: The US dollar appears to be one of

a small number of currencies that pays significantly higher expected returns when its interest

rate is high relative to its own currency-specific average and to the world average interest rate

at the time. Based on this decomposition, we derive a simple test of the hypothesis that the

elasticity of the risk premium on the US dollar is identical to that of an average country in

our sample. However, we narrowly fail to reject this hypothesis.

The main substantive conclusion from our analysis is that currency risk premia may be

simpler objects than previously thought. First, the most statistically significant violations of

UIP are in the cross section and appear to be highly persistent over time. Second, the FPP, a

long-standing puzzle in the literature, arises partially due to the fact that future mean interest

rates are difficult to predict. Once we make reasonable corrections for this fact, we cannot

reject the null that currency risk premia are uncorrelated with expected changes in exchange

rates, neither for the US dollar nor for the other currencies in our sample. Third, there is some

evidence that the US dollar is special and that, in particular, the dollar trade anomaly and

the FPP are very closely related phenomena.

We make four caveats to this interpretation. First, any inference on the elasticity of risk

premia requires taking a stand on the precision of investors’ expectations. Although our results

remain stable across a wide range of conventional approaches, we cannot exclude the possibility

that richer forecasting models might produce different results. Second, our methodology does

not allow us to distinguish between permanent and highly persistent differences in expected

returns across currencies, and we make no claims to that effect. Third, the fact that we do

not find statistically reliable evidence of a non-zero elasticity of risk premia with respect to

forward premia in the between-time-and-currency dimension does not mean it does not exist.

Fourth, non-linearities may exist in the functional form linking risk premia to forward premia

that are not picked up by our linear (regression-based) approach.

Two largely separate literatures have described violations of UIP using regression-based
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and portfolio-based methods.4 We contribute to this literature by providing a simple approach

to reconcile the results from these two literatures and estimate the restrictions they jointly

place on models of currency returns.

A large body of theoretical work studies the FPP in models with two ex-ante symmetric

countries.5 Our analysis relates to this literature in three ways. First, it clarifies that these

models are unlikely to explain the carry trade anomaly, unless they generate large and persis-

tent cross-sectional differences in currency risk premia. Second, some influential quantitative

applications of these models may be calibrated to an overstated version of the FPP because

they do not correct for uncertainty about future interest rates. Third, the focus on generating

a negative covariance between currency risk premia and expected depreciations in these models

may be less relevant empirically than previously thought.

Papers that offer explicit models of either permanent or highly persistent asymmetries in

currency risk premia include Martin (2012), Hassan (2013), Maggiori (2017), Richmond (2016),

and Ready, Roussanov, and Ward (2017).6 Another strand of the literature has connected

persistent currency risk premia with shocks that are themselves persistent, as in Engel and

West (2005), Colacito and Croce (2011, 2013), Gourio, Siemer, and Verdelhan (2013), and

Colacito et al. (2017).

Our work builds on papers that use portfolio-based analysis to study the cross section of

multilateral currency returns (Menkhoff et al., 2012, 2017; Koijen et al., 2018). Most closely

related is the work by Lustig, Roussanov, and Verdelhan (2011, 2014), who already document

that a large part of carry trade returns result from cross-sectional violations of UIP and identify

risk factors that explain the carry trade and the dollar trade. Our contribution is to relate

these findings to established (regression-based) puzzles in the literature, and to translate them

into restrictions on linear models of currency risk premia.

The remainder of this paper is structured as follows: Section 1 describes the data. Section

2 decomposes violations of UIP into trading strategies based on cross-currency, between-time-

and-currency, and cross-time variation in forward premia. Section 3 maps the expected returns

on each of the three trading strategies to regression coefficients and discusses the theoretical

implications of these estimates. Section 4 concludes.

4See Tyron (1979), Hansen and Hodrick (1980), Bilson (1981), Meese and Rogoff (1983), Backus et al.
(1993), Evans and Lewis (1995), Bekaert (1996), Bansal (1997), Bansal and Dahlquist (2000), Chinn (2006),
Graveline (2006), Burnside et al. (2006), Lustig and Verdelhan (2007), Brunnermeier et al. (2009), Jurek (2014),
Corte et al. (2009), Bansal and Shaliastovich (2010), Burnside et al. (2011), and Sarno et al. (2012). Hodrick
(1987), Froot and Thaler (1990), Engel (1996), Lewis (2011), and Engel (2014) provide surveys.

5Examples include Backus et al. (2001), Gourinchas and Tornell (2004), Alvarez et al. (2009), Verdelhan
(2010), Burnside et al. (2009), Heyerdahl-Larsen (2014), Evans and Lyons (2006), Yu (2013), Bacchetta et al.
(2010), and Ilut (2012).

6Also see Caballero et al. (2008), Govillot et al. (2010), Berg and Mark (2015), Farhi and Gabaix (2016),
Hassan et al. (2016), Zhang (2018), and Wiriadinata (2018).
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1 Data

Throughout the main text, we use monthly observations of US dollar-based spot and forward

exchange rates at the 1-, 6- and 12-month horizon. All rates are from Thomson Reuters

Financial Datastream. The data range from October 1983 to June 2010. For robustness

checks, we also use all UK pound-based data from the same source as well as forward premia

calculated using covered interest parity from interbank interest rate data, which are available

for longer time horizons for some currencies. Our dataset nests the data used in recent studies

on currency returns, including Lustig et al. (2011) and Burnside et al. (2011). In additional

robustness checks, we replicate our findings using only the subset of data used in these studies.

Many of the decompositions we perform require balanced samples. However, currencies

enter and exit the sample frequently, the most important example of which is the euro and

the currencies it replaced. We deal with this issue in two ways. In our baseline sample (“1

Rebalance”), we use the largest fully balanced sample we can construct from our data by

selecting the 15 currencies with the longest coverage (the currencies of Australia, Canada,

Denmark, Hong Kong, Japan, Kuwait, Malaysia, New Zealand, Norway, Saudi Arabia, Sin-

gapore, South Africa, Sweden, Switzerland, and the UK from December 1990 to June 2010).

In addition, we construct three alternative samples that allow for entry of currencies at 3, 6,

and 12 dates during the sample period, where we chose the entry dates to maximize coverage.

The “3 Rebalance” sample allows entry in December of 1989, 1997, and 2004 and covers 30

currencies. The “6 Rebalance” sample allows entry in December of 1989, 1993, 1997, 2001,

2004, and 2007 and covers 36 currencies. Our largest sample, “12 Rebalance,” allows entry

in June 1986, and in June of every second year thereafter through June 2008, and covers 39

currencies. In between each of these dates, all samples are balanced except for a small number

of observations removed by our data-cleaning procedure (see Appendix A). Currencies enter

each of the samples if their forward and spot exchange rate data are available for at least four

years prior to the rebalancing date (the reason for this prior data requirement will become

apparent below).7

Throughout the main text, we take the perspective of a US investor and calculate all

returns in US dollars. In section 3.3, we discuss how our results change when we use different

base currencies. Appendix A lists the coverage of individual currencies and describes our

data-selection and -cleaning process in detail.

7The only exception we make to this rule is for the first set of currencies entering the 12 Rebalance sample,
which become available in October 1983.
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2 Portfolio-based Decomposition of Violations of UIP

We begin by showing that the FPP, the carry trade, and the dollar trade can be thought of

as three trading strategies that capitalize on different violations of UIP. To this end, we first

introduce the carry trade and derive the trading strategy corresponding to the FPP. We then

use our decomposition to see how the two phenomena relate to each other and estimate their

relative contributions to overall violations of UIP in the data.

2.1 The Carry Trade and the Forward Premium Trade

Consider a version of the carry trade in which, at the beginning of each month during an

investment period, t = 1, ...T , we form a portfolio of all available foreign currencies, i = 1, ..N ,

weighted by the difference of their forward premia (fpit ≡ fit − sit) to the average forward

premium of all currencies at the time (fpt ≡
∑

i
1
N

fpit). Under covered interest parity, a

currency’s forward premium is equal to its interest rate differential with the US dollar, so

that the portfolio is long currencies that have a higher interest rate than the average of all

currencies at time t and short currencies that have a lower than average interest rate. We can

write the return on this portfolio as

∑
i,t

[
rxi,t+1

(
fpit − fpt

)]
, (2)

where, for convenience, we denote the double-sum over i and t as
∑

i,t:

∑
i,t xi,t ≡ (

∑N
i=1

∑T
t=1 xi,t). (3)

More generally, we maintain the convention of denoting means with an overline and by omitting

the corresponding subscripts throughout the paper:

xi ≡ 1
T

∑T
t=1 xit xt ≡ 1

N

∑N
i=1 xit x ≡ 1

NT

∑T
t=1

∑N
i=1 xit, x = fp, rx . (4)

We implement the carry trade (2) using linear portfolio weights
(
fpit − fpt

)
, because they

allow us to relate portfolio returns directly to coefficients in linear regressions (Pedersen, 2015)

and to parameters in a generic model of currency returns (as we will see below). Note however,

that our results would be very similar if we sorted currencies into a number of bins and then

analyzed the returns on a strategy that is long the bin with the highest-interest-rate currencies

and short the bin with the lowest-interest-rate currencies, as is customary in the literature. 8

8Such sorts can be thought of as non-parametric regressions (Cochrane, 2011). Appendix Table 1 shows
that the Sharpe ratio on our “linear” version of the carry trade is between 80 and 105% of that of a long-short
strategy using five bins as in Lustig et al. (2011). The table also shows mean returns and Sharpe ratios on the
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As with this alternative formulation, the carry trade portfolio is “zero-cost” (its weights sum

to zero,
∑

i

(
fpit − fpt

)
= 0) and its return is neutral with respect to the dollar, that is, it is

independent of the bilateral exchange rate of the US dollar against any other currencies. 9

Table 1 shows the annualized mean return on the carry trade portfolio in our 1 Rebalance

sample. Consistent with earlier research, we find that the carry trade is highly profitable and

yields a mean annualized net return of 4.95% with a Sharpe ratio of 0.54. However, the table

also shows that currencies which the carry trade is long (i.e., currencies with high interest

rates) on average depreciate relative to currencies with low interest rates. Our carry trade

portfolio loses 2.15 percentage points of annualized returns due to this depreciation.

As we show below, this pattern holds across a wide range of plausible variations: currencies

with high interest rates thus tend to depreciate, not appreciate.10 An obvious question is then

why the FPP appears to suggest the opposite. The answer is in the currency-specific intercepts,

αi, in Fama’s regression (1), reproduced here for convenience:

rxi,t+1 = αi + βfpp
i fpit + εi,t+1. (1)

We tend to find that βfpp
i > 1 in regressions in which currency fixed effects absorb the currency-

specific mean forward premium (fpi =
T∑

t=1

1
T
fpit). If we wanted to trade on the correlation in

the data that drives the FPP, we would thus have to buy currencies that have a higher forward

premium (interest rate differential to the US dollar) than they usually do (Cochrane, 2001;

Bekaert and Hodrick, 2008). Such a strategy, we call it the “forward premium trade,”weights

each currency with the deviation of its current forward premium from its currency-specific

mean. We can write the return on the forward premium trade as
∑

i,t

[
rxi,t+1

(
fpit − fpi

)]
.

The carry trade (2) thus exploits a correlation between currency returns and forward premia

conditional on time fixed effects (fpt), whereas the FPP describes a correlation conditional

on currency fixed effects (fpi). Figure 1 illustrates the difference between the carry trade

and the forward premium trade for the case in which a US investor considers investing in two

foreign currencies. The left panel plots the forward premium of the New Zealand dollar and the

Japanese yen over time. Throughout the sample period, the forward premium of the former

is always higher than the forward premium of the latter, reflecting the fact that New Zealand

has consistently higher interest rates than Japan. The carry trade is always long New Zealand

dollars and always short Japanese yen. By contrast, the forward premium trade evaluates the

forward premium of each currency in isolation and goes long if the forward premium is higher

equally weighted strategy in Burnside et al. (2011). However, this strategy is less comparable because it is not
neutral with respect to the US dollar.

9See Appendix B.1 for a formal proof of this statement.
10This fact is also apparent in Table 1 of Lustig et al. (2011).
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than its currency-specific mean during the investment period (shown in the right panel). As a

result, the forward premium trade is not “dollar neutral” in the sense that it may be long or

short both foreign currencies at any given point in time.

It is immediately apparent that implementing the forward premium trade may be more

difficult in practice than implementing the carry trade, because it requires an estimate of

the mean forward premium of each currency (fpi), which is not known before the end of the

investment period. In what follows, we denote investors’ ex-ante expectation of the currency-

specific and the unconditional mean forward premium as

fp
e

i ≡ Ei0

[
fpi

]
, fp

e
≡ E0

[
fp
]
.

The ex-ante implementable version of the forward premium trade (which we show below is

the version that is relevant for estimating elasticities of risk premia with respect to forward

premia) has a mean return of

∑
i,t

[
rxi,t+1

(
fpit − fp

e

i

)]
. (5)

2.2 Portfolio-based Decomposition

Having recast the FPP as a trading strategy, we can now ask how it relates to the carry trade.

The expected returns on both portfolios load on different violations of UIP, that is, different

components of the unconditional covariance between currency returns and forward premia. To

show this result, we can decompose the unconditional covariance into the sum of the expected

returns on three trading strategies plus a constant term. Adding and subtracting fpt, fp
e

i ,

and fp
e

in the second bracket and re-arranging yields

∑
i,t

[
(rxi,t+1 − rx)

(
fpit − fp

)]

=
∑

i,t

[
rxi,t+1

(
fp

e

i − fp
e
)]

︸ ︷︷ ︸
Static Trade

+
∑

i,t

[
rxi,t+1

(
fpit − fpt −

(
fp

e

i − fp
e
))]

︸ ︷︷ ︸
Dynamic Trade

+
∑

i,t

[
rxi,t+1

(
fpt − fp

e
)]

︸ ︷︷ ︸
Dollar Trade

+
∑

i,t [rx( fp
e
− fp)]

︸ ︷︷ ︸
Constant

,

(6)

where rx again refers to the mean currency return across currencies and time periods.

The “static trade” trades on the cross-currency variation in forward premia. It is long

currencies that are expected to have a high forward premium on average and short those that

are expected to have a low forward premium. We may think of it as a version of the carry

trade in which we do not update portfolio weights. We weight currencies once (at t = 0),

based on our expectation of the currencies’ future mean level of interest rates, and do not
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change the portfolio until the end of the investment period, T . The “dynamic trade” trades

on the between-time-and-currency variation in forward premia. It is long currencies that have

high forward premia relative to the average forward premium of all currencies at the time

and relative to their currency-specific mean forward premium. We may think of the mean

return on the dynamic trade as the incremental benefit of re-weighing the carry trade portfolio

every period. Finally, the “dollar trade” trades on the cross-time variation in the average

forward premium of all currencies against the US dollar. It goes long all foreign currencies

when the average forward premium of all currencies against the US dollar is high relative to its

unconditional mean and goes short all foreign currencies when it is low. This trading strategy

was recently described by Lustig et al. (2014). We follow their naming convention here.

Upon inspection, the carry trade (2) is simply the sum of the static and dynamic trades,

∑
i,t

[
rxi,t+1

(
fpit − fpt

)]

︸ ︷︷ ︸
Carry Trade

=
∑

i,t

[
rxi,t+1

(
fp

e

i − fp
e
)]

︸ ︷︷ ︸
Static Trade

+
∑

i,t

[
rxi,t+1

(
fpit − fpt −

(
fp

e

i − fp
e
))]

︸ ︷︷ ︸
Dynamic Trade

,

whereas the forward premium trade (5) is the sum of the dynamic and the dollar trades:

∑
i,t

[
rxi,t+1

(
fpit − fp

e

i

)]

︸ ︷︷ ︸
Forward Premium Trade

=
∑

i,t

[
rxi,t+1

(
fpit − fpt −

(
fp

e

i − fp
e
))]

︸ ︷︷ ︸
Dynamic Trade

+
∑

i,t

[
rxi,t+1

(
fpt − fp

e
)]

︸ ︷︷ ︸
Dollar Trade

.

The common element between the carry trade and the forward premium trade is the dynamic

trade, that is, the between-time-and-currency part of the unconditional covariance between

expected currency returns and forward premia. By contrast, the cross-currency component is

unique to the carry trade and the cross-time component is unique to the forward premium

trade. The question of whether the carry trade and the forward premium trade are related in

the data thus reduces to estimating the relative contribution of the dynamic trade. On the

other hand, the dollar trade is by construction independent of the carry trade.

2.3 Estimation

Estimating the expected return on each of the three trading strategies requires a model that

specifies how investors form expectations given the available data. We begin by assuming that

we (the econometricians) know how investors form beliefs and have access to the same data so

that we can infer their true expectations, fp
e

i :

f̂p
e

i = fp
e

i , (A1)

10



where f̂p
e

i is our estimate of investors’ expectation of fpi. In particular, we begin with the

conventional assumption in the portfolio-based literature that investors simply exp ect fpi to

be equal to the mean of fpit across all available data prior to the investment period. However,

once we re-write our decomposition in regression form in section 3, we will be able to show

that the economic interpretation of our results is more general and holds under a wide range of

more sophisticated models of investor beliefs that also allow for the possibility that we might

estimate fp
e

i with error.

Table 2 lists the mean returns and Sharpe ratios of the three strategies, as well as the mean

returns and Sharpe ratios of the carry trade and the forward premium trade. All returns are

again annualized and normalized by dividing with fp to facilitate comparison. Columns 1-4

on the top left give the results for our 1 Rebalance sample, where we use all available data

prior to December 1994 to estimate fp
e

i and fp
e
.

Column 1 shows the results for one-month forwards, without taking into account bid-ask

spreads. The mean annualized return on the static trade is 3.46% with a Sharpe ratio of 0.39.

It thus contributes 70% of carry trade returns. By contrast, the dynamic trade contributes

30%, with an annualized return of 1.50% and a Sharpe ratio of 0.24. Although the forward

premium trade is not commonly known as a trading strategy in foreign exchange markets, it

yields similar returns to the carry trade, with a mean annualized return of 4.04% and a Sharpe

ratio of 0.27. The dollar trade contributes 63% to this overall return and has a Sharpe ratio

of 0.25, with the dynamic trade contributing the remaining 37%.

Columns 2-4 replicate the same decomposition but take into account bid-ask spreads in

forward and spot exchange markets.11 Column 2 again uses one-month forward contracts,

column 3 uses 6-month contracts, and column 4 uses 12-month contracts. Once we take into

account bid-ask spreads, the mean returns on all trading strategies fall.12 In the case of the

dynamic trade, the mean return in column 2 actually turns negative. However, the same basic

pattern persists across all columns: the static trade accounts for 70%-121% of the mean returns

on the carry trade, and the dollar trade accounts for 63%-124% of the mean returns on the

forward premium trade.13 14

11We calculate returns net of transaction costs for each currency i as rxnet
i,t+1 = I[wit ≥ 0](f bid

it − sask
i,t+1) +

(1 − I[wit ≥ 0])(fask
it − sbid

i,t+1), where wit is the portfolio weight of currency i at time t, and I is an indicator
function that is one if wit ≥ 0 and zero otherwise.

12Transaction costs in currency markets are thus of the same order of magnitude as the mean returns on the
dynamic trade. See Burnside et al. (2006) for a discussion. However, bid-ask spreads reported on Datastream
may be larger than the effective inter-dealer market spreads; see Lyons (2001) and Gilmore and Hayashi (2011).

13The mean returns on the three underlying trades no longer add up to the mean returns on the carry trade
and the forward premium trade when we take into account bid-ask spreads. We thus calculate the percentage
contribution of static (dollar) trade by dividing its mean return with the maximum of zero and the sum of the
mean returns on the static (dollar) and dynamic trades.

14In a similar comparison, Lustig et al. (2011) attribute a somewhat smaller share of the static (uncondi-
tional) component in carry trade returns (53% in their standard specification). The reason for this apparent
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The only potentially sensitive assumption we make in performing this decomposition is that

investors expect fpi to be equal to the mean of fpit prior to 1995. To show that our results

do not depend on this particular base period (and the resulting selection of currencies in our 1

Rebalance sample), the remaining panels and columns repeat the same exercise using the 3, 6,

and 12 Rebalance samples. In each case, we again assume that investors use all available data

before each cutoff date to update their expectations. For example, in the 3 Rebalance sample

(allowing entry of new currencies into the sample in December of 1989, 1997, and 2004), we

calculate fp
e

i for the period 1990-1997 as the mean of fpit for each currency prior to 1990, for

the period 1998-2004 as the mean of fpit prior to 1998, and so on. In this sense, we allow

investors to update their expectations and rebalance their portfolios at three dates for the 3

Rebalance sample and at six and twelve dates for the 6 Rebalance and 12 Rebalance samples,

respectively.

The results remain broadly the same across the different samples, where the static trade

on average contributes 85.7% of the mean returns to the carry trade, and the dollar trade on

average contributes 81.3% of the mean returns on the forward premium trade. In addition,

the Sharpe ratio on the dynamic trade appears economically small or even negative in all

calculations that take into account the bid-ask spread (they range from -0.14 to 0.19). Whereas

the carry trade delivers an economically significant Sharpe ratio in all samples (ranging from

0.12 to 0.44 net of transaction costs), the forward premium trade tends to deliver somewhat

lower Sharpe ratios (ranging from 0.00 to 0.27), particularly in the samples that allow more

rebalances. Appendix Table 3 shows that these patterns also hold when we exclude currencies

with pegged exchange rates, use an extended sample of interest rate data, or use a wide range

of alternative samples of exchange rate data used in other studies. We argue below that these

patterns also continue to hold when we relax (A1). However, this additional step first requires

clarifying the relationship between portfolio returns and regression coefficients.

Our main conclusion from Table 2 is that the dollar trade accounts for the majority of

returns to the forward premium trade and the static trade accounts for the majority of returns

to the carry trade. By contrast, the dynamic trade, the common element between the carry

trade and the forward premium trade, contributes an economically small share to the returns

on the two strategies. In this sense, the FPP and the dollar trade anomaly appear intimately

linked, while the carry trade anomaly appears largely independent of the other two phenomena.

discrepancy is that in their exercise, they allow the carry trade to use up to 36 currencies, whereas the uncon-
ditional carry trade uses only 18 currencies. By contrast, our decomposition requires that we restrict all five
trading strategies to use the same set of currencies. These differences in implementation arise because their
decomposition views portfolios as the primitive (regardless of the number of their constituents), whereas our
decomposition focuses on currencies i = 1, ..N as the object of interest. See Appendix Table 2 for a detailed
comparison between the two approaches.
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3 Decomposition in Regression Form

Expected returns may vary across currencies, between-time-and-currency, and across time.

Each of these dimensions corresponds to one of the three basic trading strategies outlined above.

To test whether the variation of expected returns in each of these dimensions is statistically

significant and to understand the restrictions that the results in the previous section place

on models of currency returns, it is useful to rewrite (6) in terms of regression coefficients.

Manipulating the expected return on the static trade (the first term on the right-hand side of

(6)) yields

∑
i,t

[
rxi,t+1

(
fp

e

i − fp
e
)]

=
∑

i,t

[
(rxi,t+1 − rxt+1)

(
fp

e

i − fp
e
)]

+
∑

i,t

[
rxt+1

(
fp

e

i − fp
e
)]

︸ ︷︷ ︸
=0

= β̂
stat∑

i,t

(
fp

e

i − fp
e
)2

.

We get the first equality by adding and subtracting rxt+1. The second equality follows

from the fact that
∑

i(fp
e

i − fp
e
) is zero and does not vary across t. The third equal-

ity follows from rewriting the covariance as an OLS regression coefficient where β̂
stat

=
∑

i,t

[
(rxi,t+1 − rxt+1)

(
fp

e

i − fp
e
)]

/
∑

i,t

(
fp

e

i − fp
e
)2

is an estimate of the slope coefficient

from the specification

rxi,t+1 − rxt+1 = βstat
(
fp

e

i − fp
e
)

+ εstat
i,t+1. (7)

Appendix C.1 shows that similarly rewriting the second and third terms in (6) yields

∑
i,t

[
(rxi,t+1 − rx)

(
fpit − fp

)]

=

β̂
stat∑

i,t

(
fp

e
i − fp

e
)2

︸ ︷︷ ︸
Static Trade

+ β̂
dyn∑

i,t

(
fpi,t − fpt −

(
fp

e
i − fp

e
))2

+ α̂dyn

︸ ︷︷ ︸
Dynamic Trade

+ β̂
dol∑

i,t

(
fpt − fp

e
)2

+ α̂dol

︸ ︷︷ ︸
Dollar Trade

− α̂dol,

(8)

where β̂
dyn

and β̂
dol

are again OLS estimates of slope coefficients from pooled regressions of

currency returns on the variation in forward premia in the relevant dimension:

rxi,t+1 − rxt+1 − (rxi − rx) = βdyn
[(

fpit − fpt

)
−
(
fp

e

i − fp
e
)]

+ εdyn
i,t+1, (9)

rxi,t+1 − rx = γ + βdol
(
fpt − fp

e
)

+ εdol
i,t+1. (10)

Because the right hand side variables in these regressions depend on investors’ ex-ante ex-

pectations of future mean forward premia, fp
e

i , the three error terms εstat
i,t+1, εdyn

i,t+1, and εdol
i,t+1
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naturally capture any errors investors may make in these forecasts. These forecast errors in-

duce a structure in the error terms which is key to our empirical finding that investors do not

appear to expect high-interest rate currencies to appreciate. We discuss it in detail below (see

Appendix C.2 for a formal derivation).15

Similarly, the residuals α̂dyn =
∑

i,t[rxi(fpi−fp−(fp
e

i−fp
e
))] and α̂dol =

∑
i,t[rx(fp−fp

e
)]

in (8) measure the covariance of currency returns with these forecast errors. By contrast, the

three slope coefficients, βstat, βdyn and βdol determine the systematic part of the mean returns

calculated in Table 2. They have a simple economic interpretation. To make this interpre-

tation transparent for the most standard class of models, we henceforth use the language of

a frictionless rational model, referring to conditional expected currency returns as “currency

risk premia.”16

Definition 1 The risk premium on currency i at time t is a rational investor’s expectation of

the log return on the currency, given that all currencies’ forward premia prior to and including

period t are known, Eit[rxi,t+1].

Consider a model where forward premia evolve according to some ergodic, covariance sta-

tionary process and currencies are priced by a representative rational investor who has rational

expectations of future mean forward premia, {fp
e

i}
N
i=1, and demands compensation for holding

the static, dynamic, and dollar trade portfolios during the investment period as specified in

(7), (9), and (10).17 Taken together, these three conditions imply a simple model of currency

returns: Averaging (7) across t and (10) across i, and then adding the three equations yields

rxi,t+1 = γ + βstat
(
fp

e

i − fp
e
)

+ βdyn
[(

fpit − fpt

)
−
(
fp

e

i − fp
e
)]

+ βdol
(
fpt − fp

e
)

+ εstat
i + εdyn

i,t+1 + εdol
t+1.

(11)

In this simple model, the slope coefficients βstat, βdyn, and βdol measure the elasticity of

currency risk premia with respect to forward premia in the cross-currency, between-time-and-

currency, and cross-time dimension, respectively. They link behavior at time t (demanding a

risk premium between t and some future time period) to information investors can condition

on at time t (perceived variation in forward premia). In this sense, the three elasticities are

behavioral parameters in any model of currency returns, regardless of whether we think of (11)

15This correlation structure is also the reason why it is more convenient to estimate each coefficient separately
using (7), (9), and (10). We show in section 3.1.2 how to conduct a joint estimation.

16In this paper, forward premia are the only drivers of risk premia. However, our decomposition can be
easily generalized to account for additional drivers, as recently demonstrated by Menkhoff et al. (2017).

17More formally, the representative rational investor demands risk premia so that the error terms in (7), (9),
and (10) are mean zero, covariance stationary, asymptotically orthogonal, and unconditionally uncorrelated
with the right hand side variable in each of the three equations, E0[εstat

i (fp
e

i −fp
e
)] = E0[ε

dyn
i,t+1(

(
fpit − fpt

)
−

(fp
e

i − fp
e
))] = E0[εdol

t+1(fpt − fp
e
)] = 0. Rationality also implies that the investor’s forecasts are such that

E0[fp
e

i (fpi − fp
e

i )] = 0.
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as a generic affine model or as a first-order approximation to a non-linear model of currency

returns.18

Proposition 1 The slope coefficients βstat, βdyn, and βdol measure the elasticity of currency

risk premia with respect to forward premia in the cross-currency, between-time-and-currency,

and the cross-time dimension

βstat =
cov(Eit[rxi],fp

e
i )

var(fp
e
i )

, βdyn =
cov(Eit[rxi,t+1−rxi],(fpit−fpt)−(fp

e
i−fp

e))
var((fpit−fpt)−(fp

e
i−fp

e))
, βdol =

cov(Et[rxt+1],fpt)
var(fpt)

.19

Under assumption (A1), ordinary least squares estimates of (7), (9), and (10) yield unbi-

ased estimates of these elasticities.
Proof. By the properties of linear regression, we can write βstat as

βstat = E0

[
(rxi,t+1 − rxt+1)

(
fp

e
i − fp

e
)]

var
(
fp

e
i

)−1
= E0

[
Eit

{
(rxi,t+1 − rxt+1)

(
fp

e
i − fp

e
)}]

var
(
fp

e
i

)−1

= E0

[
Eit {(rxi,t+1 − rxt+1)}

(
fp

e
i − fp

e
)]

var
(
fp

e
i

)−1
= cov

(
Eit[rxi], fp

e
i

)
var

(
fp

e
i

)−1
.

The second equality applies the law of iterated expectations. The third equality uses the fact

that fp
e

i and fp
e
are known at time t. The proofs for βdyn and βdol are analogous. The second

statement follows directly from the properties of OLS.

Which of these elasticities is statistically distinguishable from zero? Columns 1-4 of Table 3

estimate the specifications (7), (9), and (10) using our 1 Rebalance sample. As in section 2,

we use assumption (A1), calculating fp
e

i as the mean of fpit across all available data prior to

December 1994. The standard errors for βstat and βdol are clustered by currency and time,

respectively, whereas the standard errors for βdyn are Newey-West with 12, 18, and 24 lags for

the 1-, 6-, and 12-month horizons, respectively (correcting for autocorrelation in the error term

within each currency). Where appropriate, we use the Murphy and Topel (1985) procedure

to adjust all standard errors for the estimated regressors fp
e

i and fp
e

(see Appendix C.4 for

details).20

The specifications in column 1 use monthly forward contracts and show a highly statistically

significant estimate for βstat of 0.47 (s.e.=0.08). The estimate of βdyn is about the same size

18In keeping with the portfolio-based decomposition above, this model defines the returns on the three
strategies relative to a single investment period t = 1, ..., T (where fp

e

i = Ei0[fpi]). However, it is easy to
generalize this approach to allow for overlapping investment periods, where a new investment period begins at
each t and investors continuously update their expectations of future mean forward premia. Because this more
general model requires more notation but offers the same economic insights we relegate it to Appendix C.3.

19Unless otherwise indicated all variances and covariances condition on the information available to the
investor at t = 0 for the investment period starting at t: cov(Xit, Yit) = E0[(Xit −E0[Xit])(Yit −E0[Yit])]], t =
1, ..., T, i = 1, .., N.

20Where the original Murphy and Topel (1985) application assumes i.i.d. errors, we generalize their approach
to use the appropriate assumption about error structure for each application, so that our approach is overall
internally consistent.
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0.44 (s.e.=0.25) but statistically distinguishable from zero only at the 10% level, as is the much

larger estimate for βdol (3.11, s.e.=1.60).

How do these elasticities map into the behavior that drives the carry trade and the FPP?

Although, model (11) allows the elasticity of risk premia with respect to forward premia to

differ in each of the three dimensions, the logic of Proposition 1 applies even if we constrain

some of these elasticities to be equal to each other. For example, we could impose βdyn = βdol,

so that our model compactly summarizes the FPP in a single coefficient

rxi,t+1 = γ + βstat
(
fp

e

i − fp
e
)

+ βfpp
(
fpit − fp

e
)

+ εstat
i + εfpp

i,t+1 (12)

where βfpp is the elasticity of risk premia with respect to forward premia in the time series

dimension, which can be estimated using the regression

rxi,t+1 − rxi = βfpp
(
fpit − fp

e

i

)
+ εfpp

i,t+1. (13)

At the same time, this regression provides an estimate (and a standard error) for the systematic

variation in currency risk premia driving the forward premium trade. The corresponding

regression for the carry trade takes the form

rxi,t+1 − rxt+1 = βct
(
fpit − fpt

)
+ εct

i,t+1, (14)

where again the correct procedure is to regress the variation in currency returns in the relevant

dimension on the portfolio weights used to implement the trading strategy.

Table 3 shows estimates of these elasticities. Again focusing on the simplest specification

in column 1 using our 1 Rebalance sample, we find that the coefficients in both regressions

are positive and statistically significant. Importantly however, the estimate of βfpp (0.86,

s.e.=0.34) is smaller than one, and smaller than we might have expected given a focus in

the existing literature on the idea that investors expect currencies with high interest rates to

appreciate. We discuss this finding in detail below. The estimate for βct is 0.68 (s.e.=0.27).21

Having represented the carry trade anomaly as a regression coefficient, it is easy to show

that the carry trade and the FPP are linked by the elasticity of risk premia with respect to

between-time-and-currency variation in forward premia: coefficients βct and βfpp are linear

combinations of βstat and βdyn, and βdyn and βdol, respectively (shown formally in Appendix

C.5). The common element is βdyn. Using these relationships, column 1 of Table 3 reports the

partial R2 of the static trade in the carry trade regression (62%, s.e.=23%) and the partial

21In both regressions, we use Newey-West standard errors with the appropriate number of lags, following the
convention outlined above. In addition, we also adjust standard errors for βfpp for estimated regressors fp

e

i as
above.
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R2 of the dollar trade in the forward premium trade regression (90%, s.e.=23%). 22 Based on

these results, we cannot reject the null hypotheses that all of the variation driving the carry

trade originates from the static trade and all the variation driving the FPP originates from

the dollar trade.

The remaining columns report variations of the same estimates, showing that our results

are similar when we adjust for transaction costs, use forward contracts of longer maturity,

include different countries in the sample, and use different time horizons for estimating fp
e

i .

The structure of the table is identical to Table 2: columns 2-4 use returns adjusted for the

bid-ask spread and forward contracts at the 1-, 6-, and 12-month horizon. The remaining

columns and panels repeat the same estimations using our 3, 6, and 12 Rebalance samples,

where, as in Table 2, we again calculate fp
e

i as the mean of fpit for each currency using all

available data prior to each cutoff date.

The pattern that emerges from these variations is similar to the results in column 1. In

all samples, the coefficient on the static trade is a precisely estimated number between zero

and one, and this coefficient usually explains about two thirds of the variation in risk premia

driving the identification of βct. We thus always reject the null that currency risk premia do

not vary with unconditional differences in forward premia across currencies. The coefficient

on the dollar trade is imprecisely estimated and statistically distinguishable from zero at the

5% level in only one out of 16 specifications. Point estimates range from -0.23 to 3.72. We

thus rarely reject the null that no covariance exists between risk premia and forward premia

in the cross-time dimension. However, the dollar trade always explains more than half, often

more than 90% of the variation driving the identification of βfpp. The coefficient estimates of

βfpp itself are almost always smaller than one and are statistically distinguishable from zero

in 7 out of our 16 specifications. Consistent with our portfolio-based results, the effect of

the dynamic trade on both the carry trade and the FPP is statistically indistinguishable from

zero. We reject the null that βdyn = 0 in only one of our 16 specifications.

Appendix Table 4 shows that the results from Table 3 also hold across a wide range of

alternative samples used in other studies and when using interest rate data to infer missing

data on historical forward premia. In addition, Appendix Table 5 shows results using the same

15 currencies across rebalances, excluding developing countries from the sample, and adjusting

for expected inflation.23 All of these variations again yield very similar results. Focusing only

22 We calculate the partial R2 as ESSd

ESSd+ESSdyn , d ∈ {stat, dol}, where ESSdyn refers to the explained sum of
squares in specification (9) and ESSstat, ESSdol refer to the explained sum of squares in specifications (7) and
(10), respectively. The standard errors for these objects reported in the text are calculated by bootstrapping
across sample years. Because this simple bootstrap does not account for uncertainty in the estimation of
forecast errors (fp

e

i −fpi), we also repeat the same exercise in Appendix Table 6, which uses a block-bootstrap
that also randomizes over the pre-sample. In this specification we again cannot reject both null hypotheses.

23Following standard practice in the literature, this calculation assumes that investors have rational expec-

17



on developed economies accentuates the role of the dollar trade, yielding larger point estimates

for βdol and an increased partial R2 for the dollar trade in accounting for the FPP.

As an additional robustness check, we use our 12 Rebalance sample to block-bootstrap

standard errors, shown in Appendix Table 6. In this procedure, we treat each of the 12 two-

year periods in between re-balancing dates as one block and draw 100,000 random samples

with replacement from this set of histories. The table shows that this procedure produces

somewhat wider standard errors for some of our estimates. However, the basic pattern is

identical to the one in Table 3.24 Finally, Appendix C.6 shows that our estimates are unlikely

to be significantly affected by Stambaugh bias.

The following three subsections now apply these results of our decomposition to make

progress on three inter-related issues. First, we assess analytically how our assumptions about

investors’ expectations (A1) affect our results, and how they interfere with the long-standing

interpretation of the FPP that high-interest-rate currencies appreciate. Second, we use the

standard errors around the elasticities estimated above to decide more generally which kinds

of models we can reject based on regressions of currency returns on forward premia. Third,

we test formally whether our finding that βdol is instrumental in generating the FPP points to

a potentially special role of the US dollar relative to other currencies.

3.1 Decomposition for General Models of Investor Expectations

A remaining concern with our estimates of βstat, βdyn, and βfpp (as well as our estimates of the

expected returns on the corresponding trading strategies) is that they require explicit estimates

of fp
e

i as inputs and are thus contingent on a specific model of how investors form expectations

(A1). Although we have performed a number of variations in estimating these inputs, our model

of investor expectations may be misspecified or we might be estimating their expectations with

error. To address these difficulties, we first show how investors’ ability to predict fpi affects

the elasticities βstat, βdyn, and βfpp in general. We then develop a simple alternative approach

to estimating elasticities of risk premia that does not require specifying investor expectations

of fpi, but only their precision. In a last step, we then discuss how recasting the FPP in this

way qualifies its implications for models of exchange rate determination.

3.1.1 Relation to Fixed Effects Estimator

To see how assumptions on investor expectations affect the results of our decomposition, note

that the only difference between our specifications (7), (9), and (13) and standard fixed effects

tations, that is, we proxy for expected inflation with future realized inflation.
24In this specification, bootstrapping also appropriately accounts for uncertainty in the estimation of forecast

errors fp
e

i − fpi, particularly when computing standard errors for %ESS.
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estimators is that they replace fpi and fp with expectations fp
e

i and fp
e
. That is, had we

been interested in characterizing the elasticity of realized rather than expected returns, we

would have simply used currency fixed effects instead of fp
e

i in our regressions. Denoting the

slope coefficients of the corresponding fixed effects specifications as βstat
FE , βdyn

FE , and βfpp
FE we

can show the following result:

Proposition 2 The elasticities of expected returns with respect to forward premia βdyn and

βfpp are smaller in absolute terms than the elasticities of realized returns with respect to forward

premia βdyn
FE and βfpp

FE . The difference between elasticities of expected and realized returns

depends only on the relative precision of investors’ expectations of fpi,

βdyn = βdyn
FE



1 +
var

(
fpi − fp

e

i

)

var
(
fpit − fpt −

(
fpi − fp

))





−1

, (15)

and

βfpp = βfpp
FE



1 +
var

(
fpi − fp

e

i

)

var
(
fpit − fpi

)





−1

. (16)

In addition, βstat can be written as

βstat = βstat
FE

var
(
fpi

)

var
(
fp

e

i

) +
E0

[
rxi(fpi − fp − (fp

e

i − fp
e
))
]

var
(
fp

e

i

) . (17)

Proof. See Appendix C.7.

The difference between the elasticities of expected and realized returns thus depends only

on the statistical properties of the forecast error (fpi −fp
e

i ). If investors have perfect foresight

about future average forward premia, the two concepts are identical (var(fpi − fp
e

i ) = 0).

However, if they do not,
∣
∣βdyn

∣
∣ <

∣
∣
∣βdyn

FE

∣
∣
∣ and

∣
∣βfpp

∣
∣ <

∣
∣
∣βfpp

FE

∣
∣
∣. In this sense, the elasticity of

realized returns is an upper bound for the elasticity of expected returns.

The intuition for this result is akin to attenuation bias, but in reverse. Consider, for

example, equation (13). Classic attenuation bias arises when the right hand side variable in

a linear regression is measured with error, resulting in a downward bias of the coefficient.

Here, the opposite occurs: Any errors investors make when predicting fpi naturally generate

variation in the mean of εfpp
i,t+1 across currencies. (That is,

∑
t ε

fpp
i,t+1 must be positive on average

for currencies for which fpi was higher than expected and vice versa — see Appendix C.2 for a

formal derivation.) A fixed effects estimator removes all of these forecast errors from the right

hand side variable (in this sense measuring it with too little error), and assigns this variation to
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the slope. For a given elasticity of expected returns, βdyn
FE , and βfpp

FE thus mechanically increase

when there is uncertainty about future mean interest rate differentials.

Similarly, the elasticity of realized returns with respect to cross-sectional variation in for-

ward premia, βstat
FE , may differ from the elasticity of expected returns, although (in any given

sample) the sign of the difference is ambiguous. By contrast, no distinction exists between the

elasticity of realized and expected returns in the cross-time dimension. In that dimension, the

fact that investors need to estimate fp ex ante has no bearing on the estimate of the covariance

of risk premia with forward premia, because cov
(
Et[rxt+1], fpt

)
= cov(Et[rxt+1], fpt − fp

e
) =

cov(Et[rxt+1], fpt − fp), so that βdol = βdol
FE . (Equation (10) has a constant that absorbs any

errors in predicting fp.)

Table 4 compares estimates of elasticities of realized and expected returns (where the

latter are from columns 1 and 5 of Table 3). All specifications use one-month forwards and

exclude bid-ask spreads. The table shows that the difference in coefficients is considerable,

particularly for βdyn and βfpp. For example, in our 1 Rebalance sample, the estimate of βdyn
FE is

1.13 (s.e.=0.45) and highly statistically significant, whereas our estimate of βdyn is 60% smaller

and statistically insignificant (0.44, s.e.=0.25). Similarly, βfpp
FE is 1.81 (s.e.=0.53), whereas βfpp

is less than half the size and smaller than one (0.86, s.e.=0.34). Taking account of the fact

that investors may not have perfect foresight about future mean forward premia thus makes

the difference between point estimates above and below one. Before we discuss the theoretical

implications of this finding, we first probe its generality and explore how it might vary under

other reasonable assumptions about investors’ ability to forecast fpi.

3.1.2 Alternative Estimates

Equations (15) and (16) suggest that we could have calculated estimates for βdyn and βfpp

identical to those in Table 3 without taking a stand on fp
e

i , simply by using our pre-sample to

calculate directly the variance (rather than the realizations) of forecast errors across currencies,

and then backing out the elasticities of expected returns from the elasticities of realized returns.

That is, estimating βdyn and βfpp does not require taking a stand on what investors expect, but

only on the precision of these expectations. In this sense, assumption (A1) is not a necessary

condition for our estimates in Tables 3 to be consistent. Instead, it is sufficient if the variance

of forecast errors implied by our model of investor expectations converges in probability to the

true variance of investors’ forecast errors.

∑

i

1

N − 1

(
fpi − f̂p

e

i

)2
p

−→ var
(
fpi − fp

e

i

)
. (A2)
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In other words, any method for backing out investor expectations will do, as long as it gives

us the right idea of how well investors can predict fpi.

Corollary 1 Under assumption (A2), ordinary least squares estimates of (7), (9) and (13)

are consistent.

Proof. See Appendix C.8

While this corollary bolsters our confidence in the results presented so far, it also suggests

using more sophisticated methods for estimating the variance of forecast errors. Figure 2 plots

estimates of βdyn and βfpp from our 1 Rebalance sample over the variance of the forecast error.

When this variance is zero (perfect foresight) we are back to our estimates of βdyn
FE and βfpp

FE from

column 1 of Table 4 (the intercepts). The black romboids show the now familiar estimates of

βdyn and βfpp we obtained using the pre-sample means to measure investors’ expectations (col-

umn 2 of Table 4). The variance of forecast errors implied in these estimates is large compared

to the between-time-and-currency variation in forward premia (var
(
fpit − fpt − (fpi − fp)

)
)

(left panel) and the time-series variation in forward premia (var
(
fpit − fpi

)
), so that the

difference between the estimated elasticities of expected and realized returns is quite sizable.

Would more sophisticated models of investor expectations imply smaller forecast errors?

The hollow circles in the two graphs mark alternative estimates we obtain from estimating an

autoregressive process,

fpit = αi + ρ1,ifpi,t−1 + ρ2fpt−1 + εf
it, (18)

in the pre-sample data for each currency and then calculating the implied variance of the

forecast error in a sample with length T = 186 months under the assumption that the estimated

coefficients αi, ρ1,i, and ρ2 (and the standard deviations of εf
it) are known to investors and

characterize the true process governing the evolution of fpit. This calculation results in almost

identical adjustments, returning an estimate of 0.47 (s.e.=0.26) for βdyn and an estimate of 0.89

(s.e.=0.36) for βfpp. When we repeat our calculation while imposing the same autocorrelation

coefficients ρ1,i = ρ1 for all currencies and ρ2 = 0 in (18), we obtain tighter standard errors

but also a larger adjustment to both coefficients (marked with a triangle).

Of course we cannot exclude the possibility that other approaches to estimating the pre-

cision of investors’ forecasts might yield different results. Appendix Table 7 lists a range of

such variations. Perhaps the least conservative of these variations, using a GARCH model

on the full sample (rather than the pre-sample), yields estimates of 0.45 (s.e.=0.29) and 1.01

(s.e.=0.39) for βdyn and βfpp, respectively. With all of these different approaches, our conclu-

sions from Table 3 thus continue to hold: βdyn is never statistically distinguishable from zero,

whereas βfpp is usually smaller than one and statistically significantly different from zero in

some specifications.
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We draw three main conclusions from this analysis. First, the elasticities of realized and

expected returns are inherently different objects, akin to the difference between mean returns

on trading strategies that are implementable using the information available at the time and

trading strategies that rely on hindsight. Second, while we can estimate elasticities of real-

ized returns using fixed effects estimators, estimating elasticities of expected returns requires

adjusting for errors in investors’ forecasts of fpi. Third, a wide range of reasonable adjust-

ments for these errors returns results similar to those in Table 3, where we consistently obtain

point estimates for βdyn and βfpp smaller than one, and the former are usually not statistically

distinguishable from zero.

3.1.3 Currencies with High Risk Premia Need not Appreciate

Why is it important that βdyn and βfpp are below one? Most immediately, estimates below

one imply that investors do not, in fact, expect high-interest-rate currencies to appreciate.

Instead the finding that β̂
fpp

FE > 1 arises when we look at the data with hindsight, conditioning

on information not available ex-ante.

To illustrate this point, consider a Monte Carlo exercise where exchange rates, conditional

on investors’ information sets, are unpredictable such that βfpp = 1. For concreteness, also

suppose that forward premia are governed by the process (18) with ρ2 = 0, and parameters

for ρ1,i and αi, as well as the variance of errors εf
it, equal to our estimates from the pre-sample.

Then a fixed effects regression on a sample with 186 months yields on average an estimate

of β̂
fpp

FE well above one: 1.45 (with a 90% confidence interval for the ratio βfpp
FE/βfpp ranging

from 1.08 to 2.32).25 Thus, even if we lived in a world where exchange rates are unpredictable,

(βfpp = 1) a regression of realized returns on forward premia with country fixed effects would

show an elasticity of realized returns with respect to forward premia far greater than one,

simply because investors predict forward premia with error.26

The fact that investors, conditional on the information available at the time, may in fact

expect high-interest-rate currencies to depreciate rather than appreciate in turn has important

implications for the kind of models we might want to write to understand the interplay between

risk premia and exchange rates: a βfpp smaller than one obviates the long-standing challenge

in the theoretical literature to find a reason why a representative currency’s risk premium

25Coefficient and confidence interval are calculated by using the process for forward premia (18) to simulate
1,000 artificial series of forward premia for each currency included in our 1 Rebalance sample, and then using

(16) to calculate β̂
fpp

FE = 1 + v̂ar(fpi − f̂p
e

i )/v̂ar
(
fpit − fpi

)
for each series. See Appendix Table 8 for details.

26Appendix Table 8 also shows variations of the same Monte Carlo exercise, illustrating how the size of
the difference between elasticities of expected and realized returns varies across different samples. Across
specifications, we find that it increases with the heterogeneity of the countries included in the sample and with
the conditional variance of mean forward premia. That is, the harder it is to predict mean forward premia for

a given process for forward premia and investment horizon, the larger is β̂
fpp

FE .
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should be negatively correlated with expected depreciations. Following the argument in Fama

(1984), we can write the elasticities of risk premia with respect to forward premia βstat, βdyn,

βdol, and their linear combinations βct and βfpp in the following form:27

βfpp =
var (Eit[rxi,t+1] − Ei0[rxi]) + cov

(
Eit[rxi,t+1] − Ei0[rxi], Eit[Δsi,t+1] − Ei0[Δsi]

)

var (Eit[rxi,t+1] − Ei0[rxi]) + var
(
Eit[Δsi,t+1] − Ei0[Δsi]

)
+ 2cov

(
Eit[rxi,t+1] − Ei0[rxi], Eit[Δsi,t+1] − Ei0[Δsi]

) .

(19)

This fraction can be larger than one only if the covariance term is negative, that is, only

if a negative covariance exists between risk premia and expected depreciations. However, as

long as βfpp is between zero and one, Fama’s analysis has no implications for this covari-

ance. Any number between zero and one may simply result from the fact that both risk

premia and expected changes in exchange rates vary over time (var (Eit[rxi,t+1] − Ei0[rxi]),

var
(
Eit[Δsi,t+1] − Ei0[Δsi]

)
) > 0).

Similarly, estimates between zero and one for βstat, βdyn, βdol, and βct have no implications

for the covariance of currency risk premia and expected changes in exchange rates in the

relevant dimension. Figure 3 summarizes the implications of our estimates in Table 3 for the

covariance of currency risk premia with expected appreciations. It shows all estimates of βstat,

βdyn, and βdol from the table and highlights the median estimate of each of the coefficients.

(Appendix Figure 2 shows the same overview for βfpp and βct.)

None of our point estimates for βstat and βdyn are larger than one. In fact, we can reject the

hypothesis that either of the two coefficients is larger than one in all but one specification. The

data thus provide little evidence that risk premia and expected appreciations are correlated in

the cross-currency and the between-time-and-currency dimensions.

In fact, the only potential evidence in favor of a negative covariance between currency risk

premia and expected depreciations comes from the cross-time dimension. There, a number

of point estimates are above one. However, the standard errors are so large that we reject

the hypothesis that βdol > 0 in only one specification and never reject the hypothesis that

βdol < 1. Overall, our multilateral regressions of currency returns on forward premia thus

offer little evidence of a non-zero covariance of currency risk premia with expected changes in

exchange rates,28 with the possible exception of the cross-time dimension.

3.2 Implications for Models of Currency Returns

Beyond the relationship between risk premia and exchange rates, another advantage of rep-

resenting all three anomalies (the FPP, the carry trade, and the dollar trade) in the form of

27To get an expression of this form, replace Eit [rxi,t+1] = fpit − EitΔsi,t+1 in the expressions given in
Proposition 1. See Appendix C.9 for a detailed derivation.

28This conclusion is also consistent with Sarno and Schmeling (2014), who find that currency risk premia
are only weakly related to exchange rates.
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regression coefficients is that we can now use the variance-covariance matrix of our estimated

elasticities of risk premia with respect to forward premia from Table 3 to estimate the restric-

tions that these facts jointly place on models of currency returns. Our generic affine model

of currency returns (11) has three parameters. A theorist wishing to focus her energy on the

most salient features of the data may want to begin with the null hypothesis that each of

these parameters is equal to zero and include them if and only if they significantly improve

the model’s fit to the data. Based on the results from Table 3, she might thus start with

the simplest model the data do not clearly reject {βstat > 0, βdyn = 0, βdol = 0}. This model

explains returns on the carry trade as the result of static, unconditional, differences in risk

premia across currencies.

Although this model explains most of the significant coefficients shown in Table 3, discard-

ing the mean returns to the forward premium trade, and thus the FPP itself, as a statistical

fluke may not be satisfactory. Columns 1-5, 7, and 8 of the 1 Rebalance and 3 Rebalance

samples, show significantly positive returns to the forward premium trade. Although neither

βdyn nor βdol are by themselves usually statistically distinguishable from zero, their convex

combination (βfpp) is statistically significant in these seven specifications. We might thus

want to relax our model by adding an additional parameter that can explain this pattern. The

three simplest options to extend the model are {βdyn > 0, βdol = 0}, {βdyn = 0, βdol > 0}, and

{βdyn = βdol = βfpp > 0}.

Table 5 performs χ2 difference tests, asking which of the three extensions is best able

to explain the mean returns on the forward premium trade observed in the data under the

assumption that the coefficient estimates of βfpp, βdyn, and βdol are normally distributed (see

Appendix C.10 for details). The two columns in the table use the coefficient estimates and

standard errors from columns 1 and 5 of the 1 Rebalance and the 3 Rebalance samples in Table

3, respectively. (Because the linear relationship between the three coefficients holds only in

the absence of transaction costs, these specifications are the only two of relevance.) In both

cases, we cannot reject βdyn = 0 or βdyn = βdol, whereas we can reject βdol = 0 at the 5% level.

The two simplest models that can explain all the statistically significant correlations in Table

3 are thus {βstat > 0, βdyn = 0, βdol > 0} and {βstat > 0, βdyn = βdol = βfpp > 0}.29

The conclusion from this exercise is that the data strongly reject models in which βstat = 0

and, to the extent that the FPP is a robust fact in the data, also reject models in which

βdol = 0. A parsimonious affine model of currency returns thus need only allow for variation in

currency risk premia in the cross-currency and cross-time dimensions. Any assumptions about

βdyn do not significantly affect the model’s ability to fit the data.30

29This finding continues to apply when we focus on a sample of developed economies or after adjusting
returns for US inflation.

30Given these results one might be tempted to go a step further and impose βstat = βdyn = βdol. Indeed, we
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This finding suggests that the statistically significant violations of UIP may be fundamen-

tally linked to asymmetries across countries: the carry trade anomaly requires static or highly

persistent asymmetries in risk premia across currencies, while the FPP and the dollar trade

anomaly may arise due to an especially high elasticity of the risk premium on the US dollar.

3.2.1 Example: No-arbitrage Model of Currency Returns

To illustrate how these findings restrict a specific model of currency returns, we apply our

decomposition to a simplified version of the no-arbitrage model by Lustig et al. (2011). Their

model is particularly well-suited for our purposes because it explicitly models both the cross-

section and the time series of the returns on N currencies, rather than focusing only on one

currency pair or on a single cross-section. For simplicity, the model exogenously specifies a

stochastic discount factor (SDF) for each currency, without tracing the innovations to this SDF

to fundamental shocks to productivity or demand (as would be common in the macroeconomic

literature). In a world with complete markets and one representative agent per country and

currency, we might think of each SDF simply as representing the growth rate of the marginal

utility of consumption in a given country.

The logarithm of each country’s SDF is

− mi,t+1 = α + χzit +
√

γzitui,t+1 + τzw
t −

√
δizw

t uw,t+1, (20)

where ui,t+1 is a currency-specific shock and uw,t+1 is a “global” shock that is common to all

currencies. Both shocks are i.i.d. and follow a standard normal distribution. The N + 1 state

variables, {zit} and zw
t , evolve according so some stationary process over time and modulate

the SDFs’ exposures to the two shocks. For example, if zit is low, currency i has little currency-

specific risk, while a high zw
t means that global risk is high, in the sense that all currencies are

highly exposed to the global shock. Following our convention above, we denote the time-zero

expectation of the state variables as ze and zwe, respectively. The change in the real exchange

rate between two currencies, measured in country i goods per home country good is then

simply mh,t+1 − mi,t+1, where we index the home country with h.

While earlier work on this class of model focused on the restrictions on (20) needed to

generate the FPP, the major innovation of Lustig et al. (2011)’s work is that they allow some

currencies to be permanently be riskier than others, that is, they allow currencies to differ in

reject this hypothesis only in our 6 Rebalance sample (again using the specifications in columns 1 and 5 of Table

3). Appendix Table 9 shows estimates of this model using the specification rxi,t+1−rx = β
(
fpit − fp

e
)
+εi,t+1.

15 out of 16 estimates return values larger than zero but less than one, suggesting that such a constrained
model would again be very simple: currencies with high interest rates depreciate, but not enough to reverse
the higher returns resulting from the interest rate differential.

25



their loading on the global shock (δi).
31 It is this feature that allows the model to generate

cross-sectional differences in interest rates and expected currency returns.

Although some authors have argued that the US dollar may have a particularly large

exposure to global shocks, we will also assume that δh is equal to the mean of δi across all

currencies as doing so greatly simplifies the exposition.32 For simplification, we also assume

that the number of countries is large such that at any time
∑

i

zit = ze, and that the {δi} are

normally distributed across countries with variance σ2
δ .

In this framework, Lustig et al. (2011) derive the forward premium and expected returns

on currency i as

fpit =
1

2
(zw

t (δh − δi) + (γ − 2χ) (zht − zit))

and

Et [rxi,t+1] =
1

2
(zw

t (δh − δi) + γ (zht − zit)) ,

respectively, implying that currencies that have a large loading on the global shock pay lower

returns in equilibrium (because they tend to appreciate in “high-marginal-utility” states). If

χ = 0, expected returns are equal to forward premia, that is, investors pocket on average the

interest differential and exchange rates are in random walk.

Performing our decomposition we can show

βstat = 1, βdyn =
γ(γ−2χ)+σ2

δ

(γ−2χ)2+σ2
δ

, and βdol = γ
γ−2χ

.

For comparison, our baseline estimates and 95% confidence intervals for these coefficients from

column 1 of Table 3 are 0.47 [0.31; 0.63], 0.44 [-0.05; 0.93], and 3.11 [-0.03; 6.25], respectively.

What do these estimates teach us about this model? First, and most importantly, the model

generates permanent differences in interest rates across countries (βstat > 0). However, in the

data, these differences are partially reversed by predictable depreciations (βstat < 1). This

simple version of the model cannot match these predictable depreciations because χ affects

depreciations in the time-series, but not the cross-section. In the time-series, we can generate

any value for βdol smaller or greater than one by adjusting χ. We get 1 > βdol > 0 by setting

χ < 0, so that the dollar depreciates relative to all other currencies when it has high interest

rates. By contrast, we get the dollar to appreciate in these states by setting χ > 0. However,

this simple version of the model does not allow the dollar’s stochastic behavior to differ from

31The later work cited above has then argued that such differential loadings arise in microfounded macroe-
conomic models as a result of differences in country size, trade centrality, or endowments of commodities.

32The model considered here corresponds to the setup in section 4.1 of Lustig et al. (2011). In Appendix
C.11 we show the same results for a more general version of the model where we drop this assumption and
also allow for variation over time in a country’s exposure to a second global shock as in Lustig et al. (2014).
Moreover, we obtain identical results when we add the inflation process specified in the extended version of
the model in Lustig et al. (2011) and solve for elasticities of expected real (rather than nominal) returns.
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that of other currencies, so that there is a tight link between βdyn and βdol: both coefficients

depend on the same parameters and are larger than one if and only if χ > 0. As a result,

the model cannot, for example, simultaneously match the point estimates for both coefficients

in column 1 of Table 3. In the model, the only difference between the two coefficients is

the addition of σ2
δ in the numerator and the denominator of βdyn, reflecting that time-series

variation zw
t yields and additional motive for re-weighting currencies as higher and lower global

risk expands and contracts the size of permanent interest rate differentials.

To break the tight link between these two coefficients, and to reflect the dominant role of

the dollar trade in generating the FPP, the model would therefore also have to allow for some

kind of asymmetry between the dollar and other currencies, for example by introducing an

additional state variable or assigning different parameters.

Finally, the model also naturally implies that βdyn
FE > βdyn and βfpp

FE > βfpp, because

investors do not have perfect foresight about fpi over a finite investment horizon:

fpi − fp
e

i =
1

2
((γ − 2χ)(zh − zi) + (δh − δi) (zw − ze)) .

The difference between estimates of the elasticities of expected and realized returns can then

be used to discipline the size of forecast errors relative to the variance of forward premia over

time.

3.3 Is the US Dollar Special?

The important role of βdol in accounting for both the dollar trade and the FPP suggests that

the returns on the dollar might behave differently from the returns to other currencies. To

address this question it is useful to first generalize our model of currency returns to allow for

heterogeneous elasticities of risk premia with respect to forward premia across currencies.

3.3.1 Allowing for Heterogeneous Elasticities Across Currencies

Consider a generalized version of (9)

rxi,t+1 − rxt+1 − (rxi − rx) = αdyn
i + βdyn

i

[(
fpjt − fpt

)
−
(
fp

e

j − fp
e
)]

+ ε̃dyn
i,t+1, (21)

where βdyn
i can now differ across currencies. In combination with (7) and (10), this specification

implies a generalized version of our model of currency returns, nesting (11) and (12):

rxi,t+1 = γ +βstat
(
fp

e

i − fp
e
)

+βdyn
i

[(
fpjt − fpt

)
−
(
fp

e

j − fp
e
)]

+βdol
(
fpt − fp

e
)

+ ε̃i,t+1,

(22)
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where ε̃i,t+1 = αdyn
i + εstat

i + ε̃dyn
i,t+1 + εdol

t . Following the same steps as the proof of Proposition 1

we can again show that currency-specific coefficients βdyn
i are measures of the elasticity of the

risk premium on currency i with respect to deviations of currency i’s forward premium from

its currency- and time-specific mean. In addition, Appendix C.12 shows we can re-write the

decomposition in (8) as

∑
i,t (rxi,t+1fpit)

=

β̂
stat∑

i,t

(
fp

e

i − fp
e
)2

︸ ︷︷ ︸
Static Trade

+
∑

i

β̂
dyn

i

∑

t

(
fpit − fpt −

(
fpi − fp

))2
+ α̂dyn

︸ ︷︷ ︸
Dynamic Trade

+ β̂
dol∑

i,t

(
fpt − fp

e
)2

+ α̂dol

︸ ︷︷ ︸
Dollar Trade

− α̂dol.

(23)

From comparing equations (8) and (23), it follows immediately that

β̂
dyn∑

i,t

(
fpit − fpt −

(
fp

e

i − fp
e
))2

=
∑

i β̂
dyn

i

∑
t

(
fpit − fpt −

(
fpi − fp

))2
, (24)

so that models (11) and (22) predict identical expected returns on the static, dynamic, dollar,

carry, and forward premium trades. In other words, allowing for heterogeneous elasticities

of risk premia with respect to forward premia across currencies does not change the model’s

ability to account for the returns on these trading strategies or the FPP. Instead, the purpose

of extending the model in this way is merely to detect whether the dynamic behavior of specific

currencies is significantly different from that of others.

Table 6 shows estimates of (21). To save space, we show only the coefficients using one-

month forwards, without taking into account bid-ask spreads. The table shows we cannot

reject the null that βdyn
i = 0 for most currencies. In fact, looking across columns, we do

not appear to robustly reject this null for any currency, with the possible exception of the

Indian rupee, the Austrian schilling, and the Belgian franc. Although we remain open to the

possibility that risk premia of these, and potentially a few other, currencies may co-move with

deviations of forward premia from their time- and currency specific mean, the evidence does

not appear overwhelming.

3.3.2 Changing the Base Currency

What do these results imply about the role of the US dollar? Throughout the paper, we account

for returns in terms of US dollars. Asking whether the dollar is special is thus equivalent to

asking whether our results would be significantly different if we had chosen a different base

currency. Given a large enough sample of currencies, our estimates of the returns on the static

and the dynamic trades, as well as our estimates of βstat and βdyn, would not change at all, as

both strategies are neutral with respect to the base currency—implying that their returns are
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not affected by the choice of base currency. However, our estimates of βdol might be different,

because the dollar trade is not neutral with respect to the returns on the dollar. 33

We now generalize our analysis to allow for an arbitrary choice of base currency. To this end,

denote the elasticity of risk premia with respect to forward premia in the cross-time dimension

from the perspective of an investor using currency i as base currency as βi, i = dol, aus, ..., yen.

Proposition 3 In the limit in which the number of currencies tends to infinity (N → ∞),

the elasticity of the risk premium on any base currency j with respect to the average forward

premium on all other foreign currencies equals the elasticity of currency i’s risk premium

against the US dollar with respect to deviations of its forward premium against the US dollar

from its time- and currency-specific mean,

βi = βdyn
i .

Proof. See Appendix C.14

If the number of currencies is large, the coefficients in Table 6 are thus identical to the

coefficients we would estimate on the “base currency trade” (i.e., the equivalent of the dollar

trade but using currency i as the base currency) of each of the other currencies in the sample.

For example, had we chosen to account for all returns in terms of Japanese yen, our estimates

of βstat and βdyn would (in a large sample of currencies) be identical to those in Table 3, but

our estimate of βyen would be equal to βdyn
yen = 0.55 in column 1 of Table 6.

One can show that the elasticity of realized returns in the between-time-and-currency

dimension, βdyn
FE , is a weighted average of the βdyn

i .34 Thus, the null hypothesis that βdol = βdyn
FE

provides a test of whether the elasticity of the risk premium on the US dollar is significantly

different from elasticity of the average currency in the sample. Table 7 shows we cannot reject

this hypothesis in any of our samples (with a p-value of 0.17 in our 1 Rebalance sample). 35

However, given our results regarding the prominent role of the dollar trade as a driver of

the FPP in Tables 3 and 5 , our overall results are at least consistent with the notion that

the risk-premium on the US dollar might have dynamics that are systematically different from

those of other countries.36 Indeed, Table 6 suggests that this property may be shared with a

small number of other currencies.

33See Appendix C.13 for a formal proof of these statements.
34To see this, substitute the (sample equivalent) of (15) into the left hand side of (24) and simplify to get

β̂
dyn

FE =
∑

i ωiβ̂
dyn

i , where ωi =
∑

t

(
fpit − fpt −

(
fpi − fp

))2
/
∑

i

∑
t

(
fpit − fpt −

(
fpi − fp

))2
.

35When we restrict our sample of currencies in the 1 Rebalance sample to only developed economies as in
Appendix Table 5, column 3, the p-value on the same test drops to 0.09, and it drops to 0.11 if we adjust for
inflation (as in column 4 of Appendix Table 5).

36 For other evidence on the special role of the US dollar, see, for example, Gourinchas and Rey (2007),
Lustig et al. (2014), and Maggiori (2017).

29



3.4 The Currency-specific FPP

Before concluding, we revisit the FPP in the way it is traditionally framed in the literature and

discuss how its conventional interpretation should be modified in light of our analysis. Many

papers on international currency returns feature a table showing a list of estimates of βfpp
i from

Fama’s bilateral regression (1). Table 8 replicates this list using our data. Consistent with the

literature, the coefficients βfpp
i exhibit wide variation. Some are significantly positive, others

are significantly negative, most are statistically indistinguishable from zero, but the average

across point estimate is above one.

We have argued that this fact should not be taken as evidence that βfpp > 1. That is, it

does not mean that a representative currency has an elasticity of risk premia with respect to

forward premia above one or that investors in general expect high-interest-rate currencies to

appreciate. The reason is that a weighted average of βfpp
i yields βfpp

FE but not βfpp,

∑

i

1

N

vari (fpit)∑
i

1
N

vari (fpit)
βfpp

i = βfpp
FE > βfpp. (25)

(See Appendix C.15 for a formal proof.)37 Mentally averaging across currency-specific estimates

in Table 8 thus yields a consistent estimate of the elasticity of realized but not expected

returns, and is thus by itself not useful to discipline the dynamics of risk premia. In this sense,

tables like our Table 8 make the FPP look worse than it is, because they do not correct for

investors’ information sets. Once we make reasonable corrections for what investors know, we

consistently obtain point estimates for βfpp that are smaller than one, calling into question

the usual interpretation of the FPP that requires a negative covariance between currency risk

premia and forward premia.

That said, our interpretation of these results is predicated on using data from multiple

countries to learn about the stochastic properties of a representative currency’s risk premium.

If instead we were interested in modeling the dynamics of each individual currency’s risk

premium, respecting for example the fact that the risk premium on the Danish crown may have

systematically different dynamics than the Japanese yen, we may reinterpret the coefficients in

Table 8 as country-by-country results: because (1) includes a currency-specific intercept that

absorbs any expectational errors, fpi − fp
e

i , we can rewrite (1) as

rxi,t+1 − rxi = αi + βfpp
i

(
fpit − fp

e

i

)
+ ε̃fpp

i,t+1, (26)

where αi = βfpp
i (fp

e

i − fpi). Following the logic in proposition 1, we may interpret the

37In keeping with our notational convention, vari(fpit) refers to the variance for a given currency i, as
opposed to var(fpit), which refers to the corresponding variance across i and t.
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coefficients βfpp
i as consistent estimates of the currency-specific elasticity of risk premia with

respect to forward premia corresponding to the model:

rxi,t+1 − rx = βstat
(
fp

e

i − fp
e
)

+ βfpp
i

(
fpit − fp

e

i

)
+ αi + εstat

i + ε̃fpp
i,t+1. (27)

However, this interpretation seems somewhat unappealing for three reasons: The first is

its sheer complexity. For example, such a model would have to explain why the elasticities

of Kuwait and South Africa have opposing signs and why Canada has a significantly larger

elasticity than Japan, but about the same elasticity as Denmark. The second reason is that

the model (27) ignores that the base currency may itself have a risk premium that fluctuates

over time (the dollar trade), thus confounding βdyn
i and βdol. In this sense, the model (22),

while similarly complex, may be preferable because it features only one coefficient (βdol) rather

than N coefficients (all βfpp
i ) that are specific to the base-currency chosen for the analysis. In

fact, the results in Table 6 show substantially fewer significant coefficients than those in Table

8, demonstrating that estimates of βfpp
i tend to be particularly high on average when using

the dollar as base currency. Including βdol in the model (22) thus accounts for most of the

variation in currency risk premia that drives the FPP, consistent with our results above.

Finally, skeptics might argue that any evidence on heterogeneity in the dynamic behavior

of risk premia across currencies would be more convincing if it were associated with a profitable

trading strategy. We have shown that heterogeneity in βfpp
i is not responsible for the carry

trade or any of the other well-known trading strategies we have considered. In fact, among the

large number of papers on the FPP, we are unaware of any systematic evidence of a strategy

that would generate excess returns based on the fact that βfpp
i appears to be larger for some

currencies than for others. To probe this possibility, we use pre-sample data to estimate βi
fpp

and fp
e

i for each currency in our 1 Rebalance sample and calculate the Sharpe ratio of each

“bilateral forward premium trade,” where we weight each currency with fpit − fp
e

i . Appendix

Figure 1 plots the ex-ante estimates β̂i

fpp
over the Sharpe ratio for each currency. Consistent

with our prior findings, we find no relationship between the two. If anything, the slope shown

is negative, meaning that the “bilateral Forward Premium Trade” generates less attractive

returns for currencies that have a high β̂i

fpp
.

4 Conclusion

A large empirical literature studies the forward premium puzzle, the carry trade, the dollar

trade, and other violations of uncovered interest parity. However, the relationship between

these anomalies and their implications for theoretical work have often remained unclear because

some anomalies are identified in regression-based, others in portfolio-based analyses. As a
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result, theoretical work often only loosely connects these anomalies, for example, by attributing

the (portfolio-based) carry trade anomaly to the (regression-based) forward premium puzzle.

In this paper, we introduced a decomposition of violations of uncovered interest parity into

a cross-currency, a between-time-and-currency, and a cross-time component. Subject to a

standard assumption on investor expectations, each component can be written as the expected

return to a trading strategy or as a function of a slope coefficient in a regression that measures

the elasticity of currency risk premia with respect to forward premia. This decomposition

allowed us to show analytically how regression- and portfolio-based facts relate to each other,

to test whether they are empirically distinct, and to estimate the joint restrictions they place

on models of currency returns and exchange rates.

Our analysis produced four main insights. First, the cross-time component accounts for

all of the systematic variation driving the dollar trade anomaly and most of the variation

driving the forward premium puzzle. The two anomalies are thus intimately linked. By

contrast, the cross-currency component accounts for most of the systematic variation driving

the carry trade. Explaining the carry trade thus primarily requires explaining permanent or

highly persistent differences in interest rates across currencies that are partially, but not fully,

reversed by predictable movements in exchange rates. By contrast, explaining the forward

premium puzzle primarily requires explaining cross-time variation in the expected return on

the US dollar against all other currencies.

Second, having translated all three anomalies into regression coefficients with standard

errors, we are able to estimate the joint restrictions they place on models of currency returns.

We find the simplest model that the data do not reject features positive elasticities of risk

premia with respect to forward premia in the cross-currency and cross-time dimensions, but

not necessarily in the between-time-and-currency dimension. The three anomalies are thus

best explained in a model with two kinds of asymmetries: a highly persistent asymmetry that

makes some currencies have persistently higher interest rates and returns than others, and

an asymmetry in the dynamic response of currency returns to variation in forward premia

between the US dollar and other currencies. We also never reject the hypothesis that all three

elasticities are smaller than one, such that high-interest-rate currencies need not systematically

appreciate in any of the three dimensions.

Third, although the data seem to favor a special role of the US dollar, we (narrowly) cannot

reject the hypothesis that the elasticity of the risk premium on the US dollar is identical to

that of an average country. Nevertheless, the US dollar appears to be one of a small number

of currencies that pay significantly higher expected returns when their interest rates are high

relative to their currency-specific average and to the world average interest rate at the time.

Fourth, the tight correspondence between portfolio returns and regression coefficients in

our decomposition reveals an important distinction between the elasticity of expected and
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realized returns, akin to the difference between mean returns on trading strategies that are

implementable, using only information available in real time, and trading strategies that rely on

hindsight. Standard quantifications of the forward premium puzzle, using a pooled regression

of currency returns on forward premia with currency fixed effects (or, equivalently, averaging

the coefficients from currency-by-currency regressions), condition on information only available

with hindsight, and are thus informative only about the dynamics of realized, but not expected

returns. Once we correct for this fact, the forward premium puzzle is significantly diminished—

to the point that it does not require a systematic association between currency risk premia

and expected depreciations, thus potentially resolving a long-standing puzzle in the theoretical

literature.

In sum, we hope our results may help guide future theoretical work, having synthesized

and clarified the joint implications of three well-established anomalies in currency markets.

However, we stress that our synthesis between regression- and portfolio-based facts also has

natural limitations: it is confined to representing trading strategies in a linear form, it faces

well-known limitations when attempting to detect time-series variation in expected returns, and

our quantitative results may change if investors’ expectations of future mean forward premia are

significantly more precise than our simple forecasting models suggest. Nevertheless, we believe

the simplicity of our approach may prove useful for distilling the theoretical implications of

portfolio-based analysis in other areas of empirical asset pricing.
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Figure 1: Carry Trade vs. Forward Premium Trade
Forward premia of the New Zealand dollar and Japanese yen against the US dollar 1995-2010. Left panel:

Carry Trade uses fpit−fpt as portfolio weights, always long the New Zealand dollar, always short the Japanese

yen; Right panel: Forward Premium Trade uses fpit − fpi as portfolio weights, goes long when a currency’s

forward premium exceeds its currency-specific mean. The plot cumulates monthly forward premia to the annual

frequency according to fpi,t =
∑12

m=1 fpi,t+m.
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Figure 2: Alternative Estimates of the Elasticity of Risk Premia
Estimates of βdyn and βdol as a function of the estimate of βdyn

FE and βdol
FE from column 1 of Table 4 and

the variance of the forecast error var(fpi − fp
e

i ) as given in equations (15) and (16). Rhomboids mark the

estimates from our standard specification in column 1 of Table 3. Circles mark the point estimates we obtain

from estimating equation (18) over the pre-sample and then calculating the implied variance of the forecast error

in a sample with length T = 186, months under the assumption that the estimated autocorrelation coefficients

{ρ1,i} and ρ2, and the standard deviations of εf
it characterize the true process governing the evolution of fpit .

Triangles mark results of the same calculation when imposing ρ1,i = ρ1 for all currencies. Minor discrepancies

between the estimate shown and the one implied by the function are due to small departures from a fully

balanced sample due to our data-cleaning algorithm. Standard error bands show the 95% confidence interval.
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Figure 3: Summary of Estimates of the Elasticity of Risk Premia with Respect to
Forward Premia across Samples
The figure plots all estimates and 95% confidence intervals of βstat, βdyn, and βdol from Table 3. Small squares

show point estimates, and large squares identify the median estimate for each elasticity across samples/horizons.

The right-hand-side axis summarizes the implications of the estimates for linear models of currency risk premia.

Appendix Figure 2 shows the same overview for βfpp and βct.

Table 1: Mean Annualized Return to the Carry Trade

Carry Trade return,
∑

i,t

[
rxi,t+1

(
fpit − fpt

)]
4.95

of which forward premium 7.11
of which appreciation -2.15

Sharpe Ratio 0.54

Note: Mean annualized return and Sharpe Ratio of the carry trade
calculated by standardizing the expression in (2) with the uncon-
ditional mean forward premium in the sample, fp. The second and
third lines give the part of the mean annualized carry trade return
attributable to the forward premium (

∑
i,t

[
fpit

(
fpit − fpt

)]
)

and appreciation(
∑

i,t

[
(sit − si,t+1)

(
fpit − fpt

)]
), respectively.

One-month forward and spot exchange rates from the 1 Rebal-
ance sample ranging from 12/1994 to 6/2010.
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Table 2: Mean Returns on Five Trading Strategies

(1) (2) (3) (4) (5) (6) (7) (8)
Sample 1 Rebalance 3 Rebalance
Horizon (months) 1 1 6 12 1 1 6 12

Static Trade∑
i,t[rxi,t+1(fp

e

i − fp
e
)] 3.46 1.36 3.58 3.82 3.09 0.33 2.55 2.53

Sharpe Ratio 0.39 0.15 0.32 0.32 0.37 0.04 0.24 0.22
Dynamic Trade∑

i,t[rxi,t+1(fpi,t − fpt − (fp
e

i − fp
e
))] 1.50 -0.24 0.33 1.20 1.42 -0.85 -0.12 0.45

Sharpe Ratio 0.24 -0.04 0.05 0.19 0.20 -0.12 -0.02 0.07
Dollar Trade∑

i,t[rxi,t+1(fpt − fp
e
)] 2.55 1.24 2.52 3.18 1.90 0.26 2.20 2.36

Sharpe Ratio 0.25 0.12 0.26 0.27 0.15 0.02 0.17 0.18

Carry Trade∑
i,t[rxi,t+1(fpi,t − fpt)] 4.95 2.81 4.25 5.24 4.50 1.99 2.95 3.35

Sharpe Ratio 0.54 0.31 0.34 0.44 0.54 0.23 0.26 0.29
% Static Trade 70% 121% 92% 76% 69% . 105% 85%

Forward Premium Trade∑
i,t[rxi,t+1(fpi,t − fp

e

i )] 4.04 1.77 3.03 4.51 3.31 0.28 2.26 2.94
Sharpe Ratio 0.27 0.12 0.20 0.27 0.18 0.02 0.12 0.16

% Dollar Trade 63% 124% 88% 73% 57% . 106% 84%

Sample 6 Rebalance 12 Rebalance

Static Trade∑
i,t[rxi,t+1(fpi − fp

e
)] 2.42 -0.38 1.96 1.96 3.81 0.22 2.92 2.87

Sharpe Ratio 0.29 -0.05 0.20 0.21 0.46 0.03 0.30 0.29
Dynamic Trade∑

i,t[rxi,t+1(fpi,t − fpt − (fp
e

i − fp
e
))] 1.85 -0.48 0.34 -0.08 1.65 -0.89 0.41 0.19

Sharpe Ratio 0.26 -0.05 0.04 -0.00 0.26 -0.14 0.06 0.01
Dollar Trade∑

i,t[rxi,t+1(fpt − fp
e
)] 2.09 0.23 2.39 3.64 1.88 -0.18 1.15 2.13

Sharpe Ratio 0.16 0.02 0.18 0.19 0.14 -0.01 0.09 0.13

Carry Trade∑
i,t[rxi,t+1(fpi,t − fpt)] 4.28 1.66 2.81 2.23 5.45 2.19 3.95 3.45

Sharpe Ratio 0.50 0.19 0.25 0.12 0.69 0.28 0.40 0.22
% Static Trade 57% . 85% 104% 70% . 88% 94%

FP Trade∑
i,t[rxi,t+1(fpi,t − fp

e

i )] 3.95 0.74 2.92 3.71 3.53 -0.01 1.78 2.44
Sharpe Ratio 0.21 0.04 0.15 0.17 0.20 -0.00 0.10 0.12

% Dollar Trade 53% . 88% 102% 53% . 74% 92%

Bid-Ask Spreads No Yes Yes Yes No Yes Yes Yes

Note: Mean returns and Sharpe ratios on the Static, Dynamic, Dollar, Carry, and Forward Premium Trades defined in equations
(2), (5), and (6) calculated using 1-, 6-, and 12-month currency forward contracts against the US dollar. All returns are annualized
and divided by fp estimated in the 1 Rebalance sample post 12/1994 to facilitate comparison. The table also reports the percentage
contribution of Static (Dollar) Trade to the mean returns on the Carry (Forward Premium) Trade, calculated by dividing its mean
return by the maximum of zero and the sum of the mean returns on the Static (Dollar) and Dynamic Trades.

∑
i,t denotes the

double-sum over i and t. See Appendix A for details.
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Table 3: Estimates of the Elasticity of Risk Premia with respect to Forward Premia

(1) (2) (3) (4) (5) (6) (7) (8)
Sample 1 Rebalance 3 Rebalance
Horizon (months) 1 1 6 12 1 1 6 12

Static T: βstat 0.47*** 0.37*** 0.56*** 0.60*** 0.26*** 0.18*** 0.26*** 0.25***
(0.08) (0.09) (0.10) (0.10) (0.05) (0.05) (0.04) (0.06)

Dynamic T: βdyn 0.44* 0.41* 0.36 0.53** 0.28* 0.24 0.21 0.26*
(0.25) (0.25) (0.32) (0.26) (0.15) (0.15) (0.15) (0.15)

Dollar T: βdol 3.11* 3.09* 3.21 3.72* 0.91 0.83 1.44 1.78
(1.60) (1.58) (1.96) (2.16) (1.18) (1.18) (1.22) (1.20)

Carry Trade: βct 0.68** 0.55** 0.62** 0.71*** 0.57*** 0.45** 0.42** 0.43**
(0.27) (0.26) (0.29) (0.26) (0.19) (0.18) (0.21) (0.19)

% ESS Static T 62 54 79 66 56 44 72 62

Forward Premium T: βfpp 0.86** 0.83** 0.85** 1.09*** 0.41** 0.37* 0.48** 0.60***
(0.34) (0.34) (0.42) (0.40) (0.20) (0.20) (0.21) (0.21)

% ESS Dollar T 90 91 94 91 75 76 93 93

N 2706 2706 2631 2541 4494 4494 4374 4230

Sample 6 Rebalance 12 Rebalance

Static T: βstat 0.23*** 0.15*** 0.25*** 0.24*** 0.34*** 0.23*** 0.31*** 0.30***
(0.05) (0.05) (0.04) (0.05) (0.08) (0.09) (0.08) (0.08)

Dynamic T: βdyn 0.19 0.16 0.10 -0.02 0.16 0.13 0.06 -0.01
(0.14) (0.14) (0.12) (0.06) (0.11) (0.12) (0.09) (0.05)

Dollar T: βdol 0.87 0.75 1.83 1.56** 1.71 1.61 0.02 -0.23
(2.59) (2.60) (2.14) (0.70) (2.26) (2.27) (2.04) (1.35)

Carry Trade: βct 0.56*** 0.45*** 0.45** 0.11 0.67*** 0.52*** 0.57*** 0.22
(0.18) (0.17) (0.19) (0.14) (0.16) (0.16) (0.16) (0.17)

% ESS Static T 70 58 92 99 90 86 99 100

Forward Premium T: βfpp 0.24 0.20 0.22 0.08 0.30* 0.26* 0.05 -0.03
(0.19) (0.19) (0.17) (0.08) (0.16) (0.16) (0.14) (0.05)

% ESS Dollar T 62 64 96 100 92 94 1 95

N 4842 4842 4712 4556 6019 6019 5874 5626

Bid-Ask Spreads No Yes Yes Yes No Yes Yes Yes

Note: Estimates of the elasticity of currency risk premia with respect to forward premia in the cross-currency (βstat), between-time-

and-currency (βdyn), and cross-time dimension (βdol) using specifications (7), (9), and (10), respectively. The table also shows

the slope coefficients from specifications (14) and (13) and the partial R2, calculated as ESSd

ESSd+ESSdyn , d ∈ {stat, dol}, where

ESSdyn refers to the explained sum of squares in specification (9) and ESSstat, ESSdol refer to the explained sum of squares in

specifications (7) and (10), respectively. Standard errors are in parentheses. Standard errors for βstat and βdol are clustered by

currency and time, respectively, whereas the standard errors for βdyn, βct, and βfpp are Newey-West with 12, 18, and 24 lags for the

1-, 6-, and 12-month horizons, respectively. Additionally, βdol is also adjusted at the 6-, and 12-month horizon using Newey-West

as per Driscoll and Kraay (1998). Where appropriate, we use the Murphy and Topel (1985) procedure to adjust all standard errors

for the estimated regressors fp
e
i and fp

e
(see Appendix C.4 for details). Asterisks denote statistical significance at the 1 (***), 5

(**) and 10% (*) level.
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Table 4: Elasticities of Realized vs. Expected Returns

(1) (2) (3) (4) (5) (6) (7) (8)
Sample 1 Rebalance 3 Rebalance 6 Rebalance 12 Rebalance

βstat
FE βstat βstat

FE βstat βstat
FE βstat βstat

FE βstat

Static Trade 0.53*** 0.47*** 0.43*** 0.26*** 0.50*** 0.23*** 0.65*** 0.34***
(0.13) (0.08) (0.09) (0.05) (0.11) (0.05) (0.12) (0.08)

βdyn
FE βdyn βdyn

FE βdyn βdyn
FE βdyn βdyn

FE βdyn

Dynamic Trade 1.13** 0.44* 0.83*** 0.28* 0.71** 0.19 0.74** 0.16
(0.45) (0.25) (0.32) (0.15) (0.34) (0.14) (0.33) (0.11)

βfpp
FE βfpp βfpp

FE βfpp βfpp
FE βfpp βfpp

FE βfpp

F.P. Trade 1.81*** 0.86** 0.89*** 0.41** 0.77* 0.24 1.04*** 0.30*
(0.53) (0.34) (0.32) (0.20) (0.41) (0.19) (0.37) (0.16)

FE FE FE FE

% ESS Static T 39 62 36 56 79 70 79 90

% ESS Dollar T 80 90 51 75 71 62 71 92

Note: This table compares estimates of the elasticity of realized returns with respect to forward
premia, βstat

FE , βdyn
FE , and βfpp

FE (the slope coefficients from regressions with currency fixed effects
corresponding to (7), (9), and (13)) with estimates of the elasticity of risk premia with respect
to forward premia from columns 1 and 5 in Table 3. All specifications use one-month forwards
and exclude bid-ask spreads. The columns marked FE in the bottom panel of the table show
the partial R2 of the static trade in the carry trade regression and the partial R2 of the dollar
trade in the forward premium trade regression calculated as ESSd

ESSd+ESSdyn , d ∈ {stat, dol}, where

ESSstat and ESSdyn refer to the explained sum of squares in the equivalent of specifications
(7) and (9) estimated using currency fixed effects and ESSdol refers to the explained sum of
squares in specification (10). The unlabeled columns show the partial R2 calculated using the
corresponding specifications without currency fixed effects from columns 1 and 5 of Table 3 for
comparison. Asterisks denote statistical significance at the 1 (***), 5 (**) and 10% (*) level.
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Table 5: χ2 Difference Tests

(1) (2)
Sample 1 Rebalance 3 Rebalance
Null Hypothesis p-values

βdyn = 0 0.16 0.30

βdol = 0 0.02 0.04

βdol = βdyn 0.11 0.15

Note: χ2 difference tests of the ability of restricted
linear models of currency returns to explain the re-
turns on the forward premium trade documented
in columns 1 and 5 of Table 2. p− values are cal-
culated under the assumption that the coefficient
estimates of of βfpp, βdyn, and βdol in columns 1
and 5 of Table 3 are normally distributed. See
Appendix C.10 for details.
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Table 6: Currency-specific Elasticities of Risk Premia with Respect to Forward Premia

(1) (2) (3) (4)
Sample 1 Rebalance 3 Rebalance 6 Rebalance 12 Rebalance

Australia 1.03 0.23 -0.26 -0.33
Austria 4.29*** 4.40***
Belgium 2.59** 2.95** 3.79***
Canada 1.20 1.45 1.31 2.84
Czech Rep. -0.76 2.68 7.30***
Denmark 1.91 0.69 0.56 0.33
ECU -0.50 -1.25***
Euro 2.75 4.29 2.04
France 0.90 0.82 0.15
Germany 2.08 2.16 3.64*
Hong Kong 1.66 1.12 0.20 0.62
Hungary 6.06** 8.69* 6.27***
Iceland -5.93**
India 3.66*** 3.44*** 3.59***
Indonesia 2.67***
Ireland 1.24 1.18**
Italy -1.31 -1.43 -0.27
Japan 0.55 0.80 -0.72 -0.27
Korea -1.76 -1.05
Kuwait 1.33 1.59 0.44 0.96
Malaysia -1.64 -2.44 -2.17 -2.46**
Mexico 0.91 0.76 1.96
Netherlands 2.39* 2.50 3.88*
New Zealand -0.84 -0.19 -1.77 -2.09
Norway 0.55 -0.69 -0.84 -0.95
Philippines 1.03 0.25 1.00
Poland -3.08 -1.61 5.43***
Saudi Arabia 2.72* 2.40 1.40 3.43**
Sweden 3.08*** -0.09 0.16 0.18
Singapore 1.25* 0.09 0.27 0.11
Slovak Rep. 21.76***
Spain 1.61 -2.22**
Switzerland 1.59 2.90 3.03 4.50*
Taiwan 0.70 1.00 0.07
Thailand 1.55 1.63* 1.75*
Turkey -0.27 2.18
UAE 1.21 3.77*** 3.21**
United Kingdom 2.86 2.52*** 2.83** -0.58
South Africa 2.34** 2.27** 2.95*** 0.92

Note: Currency-specific elasticities of risk premia with respect to forward premia,
βdyn

i , estimated using (21). Asterisks denote statistical significance at the 1 (***), 5
(**) and 10% (*) level. Standard errors (not shown) are Newey-West using 12 lags.
1-month forward contracts used throughout.
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Table 7: Is the US Dollar Special?

(1) (2) (3) (4)
Sample 1 Rebalance 3 Rebalance 6 Rebalance 12 Rebalance

βdol 3.11* 0.91 0.87 1.71
(1.60) (1.18) (2.59) (2.26)

βdyn
FE =

∑
i ωiβ

dyn
i 1.13** 0.83*** 0.71** 0.74**

(0.45) (0.32) (0.34) (0.33)

p-val(βdol =
∑

i ωiβ
dyn
i ) 0.17 0.96 0.95 0.65

Note: This table compares point estimates of βdol from columns 1 and 5 of Table 3 with
the weighted average of estimates of βdyn

i from columns 1-4 of Table 6. One can show

that
∑

i ωiβ
dyn
i = βdyn

FE , where ωi =
∑

t(fpit−fpt−(fpi−fp))
2

∑
i

∑
t(fpit−fpt−(fpi−fp))

2 . To obtain the p-value of the

test βdol =
∑

i ωiβ
dyn
i , we run a bivariate panel regression of rxit − rxi on both fpt − fp

and fpit − fpt − (fpi − fp)), and test if the two resulting coefficients (βdol and βdyn
FE ) are

equal. Standard errors are clustered by time. There is a small discrepancy between βdol

estimated from this multivariate regression and the the estimates shown in the first row of
this table due to few data exclusions resulting from our data-filtering procedure. Asterisks
denote statistical significance at the 1 (***), 5 (**) and 10% (*) level. See Appendix A
for details.
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Table 8: Traditional Bilateral Forward Premium Puzzle Regressions

(1) (2) (3) (4)
Sample 1 Rebalance 3 Rebalance 6 Rebalance 12 Rebalance

Australia 3.25* 2.15* 2.06 1.86
Austria 6.27*** 0.09
Belgium 3.03 3.99*
Canada 4.36*** 2.31*** 4.47*** 4.73***
Czech Rep. -3.60* -5.50 5.28***
Denmark 4.43*** 1.13 0.96 1.45
ECU 1.49 -4.10***
Euro 3.63 4.38*
France 0.73 0.34
Germany 1.90 3.33
Hong Kong 1.05*** 1.03*** 1.06*** 1.14***
Hungary 2.34 8.04 7.40***
Iceland 0.42
Indonesia 3.97**
Ireland 4.26* 1.86**
Italy -2.09 -2.59*
Japan 2.55*** 2.88*** 3.32 2.03
Korea -2.45 -2.52
Kuwait -1.94*** -2.08*** -2.00*** -1.78**
Malaysia -1.96** -1.72 -2.61* -1.10
Mexico -0.73 -0.37 2.01
Netherlands 2.00 1.84
New Zealand 1.10 1.26 -2.06 -1.58
Norway 1.89 -0.12 -1.07 -0.88
Philippines 0.85 3.51 2.77
Poland -5.99*** -5.80* 3.40*
Saudi Arabia 1.36*** 1.46*** 1.47*** 1.58***
Sweden 3.37** 0.02 -0.75 -1.25
Singapore 0.74 1.31* 1.13 2.66***
Slovak Rep. 11.47***
Spain 5.42*** -3.42*
Switzerland 3.59** 2.37** 3.57 4.58***
Taiwan -0.05 -0.05 0.55
Thailand 0.96 1.07 2.26**
Turkey -0.99 -0.82
UAE 1.15*** 1.15*** 1.19***
United Kingdom 2.66* 0.63 0.88 0.06
South Africa 2.43** 2.44* 2.65** 1.33

βfpp
FE 1.81*** 0.89*** 0.77* 1.04***

βfpp 0.86** 0.41** 0.24 0.30*

Note: Estimates of the currency-specific elasticity of risk premia with forward premia βfpp
i

using the specification rxi,t+1 = αi + βfpp
i fpit+εit. Standard errors (not shown) are Newey-

West using 12 lags. 1-month forward contracts used throughout. The table also reproduces
for comparison the corresponding estimates of βfpp

FE and βfpp as in Table 4. Asterisks denote
statistical significance at the 1 (***), 5 (**) and 10% (*) level.
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A Appendix to Section 1

We use two different types of data: foreign exchange data, which comprises spot and forward

rates for maturities of 1, 6, and 12 months, and interbank interest rate data, for maturities of
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1 and 12 months. All data are monthly, retrieved at the last trading day of the month.

We use an algorithm to clean the foreign exchange data based on departures from Covered

Interest Parity (CIP) and discrepancies between different sources of data. The algorithm is

described below.

A.1 Interest Rate Data

We use two different sources for interbank interest rate data. The first is sourced from Global

Financial Data (GFD). This source comprises interbank rates (mostly local LIBOR rates) for

maturities 1 and 12 months. The second source is Datatastream (DS) Eurocurrency rates for

the 1- and 12-month maturity, which comprise a smaller cross section of currencies. Generally,

these series are virtually equal to each other.

• GFD Interbank rates: mnemonics for these series are IBccg1D and IBccg12D for 1- and

12-month maturities, respectively. ccg is the country code for each country in GFD,

which are not the official ISO currency codes.

• DS Interbank Eurocurrency rates: mnemonics for 1 and 12 months are EC iso1M and

ECiso1Y, respectively. As mentioned above, DS uses ISO codes. Check in the FX Data

subsection for details.

In both cases, we did not use the series for 2, 3, and 6 months because their coverage

tends to be less extensive, both in the cross-section and time-series dimension. See the data

provider’s websites for details on respective detailed methodology.

A.2 Spot and Forward Rates

We use data on dollar-based spot and forward exchange rates from Datastream (DS) to con-

struct currency returns. Datastream contains four sources of these data: World Markets

PLC/Reuters (WM/R), Thomson/Reuters (T/R), HSBC, and Barclays Bank PLC (BB). The

most comprehensive in terms of currencies is WM/R. However, this series only begins in De-

cember 1996. T/R goes back to May 1990. Both HSBC and BB are not available for recent

years but have data back to October 1983 (BB) and October 1986 (HSBC) for some curren-

cies. All providers also offer spot exchange rates corresponding to their forward rates. The

mnemonics for these series are: dsisoSP for spot and dsiso1F, -3F, -6F, and -1Y or -YF for

1-, 3-, 6-, and 12-month-maturity forwards. ds corresponds to the dataset mnemonic: TD

for Thomson/Reuters, BB for Barclays Bank, and MB for HSBC. WM/R has a different

structure for spot and forward rates. The mnemonics for spot rates do not have a clear pat-

tern other than some abbreviation of the currency name and the dollar sign in the end (e.g.,

AUSTDO$ for the Australian Dollar quote). The forward rates follow the pattern given above
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for the other sources with mnemonic US. Datastream uses the iso codes as country codes. To

check ISO codes specified by the International Organization for Standardization (ISO), go to

http://www.oanda.com/help/currency-iso-code-country.

The general rules for mnemonics (e.g., departures from ISO codes) have some exceptions.

In addition to mid rates, bid and offer quotes are also available. To distinguish between these

three, DS codes have a suffix -Ex where x is B, R, or O, respectively, for bid, mid, and offer

quotes. See the data provider’s website for details on respective detailed methodology.

In addition to dollar-based data, we complement our spot and forward data with pound-

based data from another provider also available through DS listed as BMI. These data include

one-month forward and spot rates for 14 European currencies, the US dollar, and Japanese

yen from January 1976 onward. These are same as those in Burnside et al. (2006).

In time periods in which they overlap, the data from the different providers are very similar.

We assemble a comprehensive panel of dollar-based forward premia and currency returns in

three steps. First, we use forward and spot rates from the same source to construct a panel

of forward premia and currency returns from each provider. (The data providers vary on the

fixing time. Using a forward rate from one source with a spot from another could therefore

lead to inaccuracies.) Second, we combine the panels in the following order: When available

we use WM/R data, which appears to be the most recent and most accurate source. We fill in

missing observations using the Thomson/Reuters, HSBC and Barclays Bank datasets in that

order. In a final step, we check the consistency of the data using the following algorithm.

For observations for which we have information on a single dollar-based forward premium,

we compare the forward premia to differentials in the interbank rates at the one-month horizon.

If the interest rate differential in the Global Financial Data (GFD) data is within 20bps

of the interest differential sourced from DS, we exclude the observation if the one-month

forward premium deviates from the one-month GFD interest differential by more than 50bps

(a dramatic violation of covered interest parity). By this criterion, we exclude Italy 1/1985

and 2/1985; Switzerland 2/1985; Germany 2/1985; United Kingdom 3/1985; Belgium 7/1990;

and Indonesia 12/1997, 3/1998, 5/1998-7/1998, 2/2001-11/2002.

For observations for which we have information on a single forward premium, a forward

premium from the pound-based data and information on interest rate differentials from one

source, we again check if the one-month forward premium deviates from the interest differential

by more than 50bps. If it does, we check the forward premium from the pound-based dataset. If

the pound-based forward premium deviates from the interest differential by less than 50bps, we

exclude this observation. By this criterion, we exclude Austria 1/1990-2/1990; Spain 9/1987,

5/1988; Ireland 11/1986, 11/1987, 1/1989, 1/1991, 9/1992-11/1992, 1/1993; Belgium 2/1985;

and Norway 2/1985.

For observations for which we have information on the forward premium from multiple

dollar-based sources and information on interest differentials from one source, we again check
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if the 1-month forward premium deviates from the interest differential by more than 50bps. If

it does we check the forward premium from the alternative sources. If the forward premia from

one other source deviates from the interest differential by less than 50bps we substitute this ob-

servation. By this criterion we replace Norway 5/1988, Sweden 5/1988, Malaysia 12/1993, and

Belgium 10/1987 and 5/1988 with data from BB; and Iceland 2/2009 and Thailand 12/2006,

11/2008 with data from TD.

For observations for which we have information on the forward premium from multiple

dollar-based sources and information on interest differentials from both GFD and DS, we check

if the interest rate differential in the GFD data is within 20bps of the interest differential

sourced from DS. If so, we check if the one-month forward premium deviates from one of

the interest differentials by more than 50bps. If it does, we check the forward premium

from the alternative sources. If the forward premium from one other source deviates from

the interest differential by less than 50bps we substitute this observation. By this criterion,

we replace Switzerland 1/1989, Germany 5/1988, France 1/1989, Italy 5/1988, Netherlands

5/1988, United Kingdom 1/1989 with data from BB; and Singapore 10/1997 and Thailand

10/2003 with data from TD.

Following Lustig et al. (2011), we drop South Africa 8/1985 and Turkey before 11/2001

due to large covered interest parity departures we could not verify. Finally, we drop Malaysia

8/1998-6/2005 and Indonesia 1/2003-5/2007 because forward rates are zero.

Our “1 Rebalance,” “3 Rebalance,” “6 Rebalance,” and “12 Rebalance” samples are built

with the dollar-based data after applying the above algorithm and exclusions.

In addition, we look at four alternative samples: “1 Rebalance (no fixed),” “LRV,” “4

Rebalances (CIP),” and “BER.” “1 Rebalance (no fixed)” is the same as “1 Rebalance,”

excluding Saudi Arabia riyal and Hong Kong dollar. “LRV” is the same as “1 Rebalance” but

instead of using our data cleaning algorithm, we use the notes provided in p.8 of Lustig et al.

(2011) to approximate as best as we can the dataset used there. “4 Rebalance (CIP)” is a

sample with four rebalances at 6/1983, 12/1989, 12/1997, and 12/2004 where we extended our

dollar-based data with both pound-based data and interest rate differentials. Finally, “BER”

uses the same pound-based data as Burnside et al. (2006) with the same rebalacing periods as

“4 Rebalance (CIP).”

B Appendix to Section 2

A number of the proofs below make use of the following identities for all xit, yit = fpit, rxi,t+1

∑
i,t [xtyit] =

∑
i,t [xtyt] ,

∑
i,t [xyit] =

∑
i,t [x yi] =

∑
i,t [x yt] =

∑
i,t [x y] ,
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and
∑

i,t [xiyit] =
∑

i,t [xiyi] .

To see that these identities must hold consider for example the first statement above. Using

the definitions (3) and (4), we can then show

∑
i,t [xtyit] =

∑
i

∑
t xtyit =

∑
t xt (

∑
i yit)

=
∑

t xt (Nyt) =
∑

i

∑
t xtyt

=
∑

i,t [xtyt] .

The remaining statements follow using the same steps.

B.1 The Carry Trade is neutral with respect to the US dollar

To see this result formally, note that the return on an equally weighted portfolio of all foreign

currencies relative to the US dollar is rxt+1 =
∑

i
1
N

rxi,t+1 from (4). In addition, we have that

∑
i,t

[
rxt+1

(
fpit − fpt

)]
= 0,

such that
∑

i,t

[
(rxi,t+1 − rxt+1)

(
fpit − fpt

)]
=
∑

i,t

[
rxi,t+1

(
fpit − fpt

)]
. (28)

The returns to the carry trade are thus independent of the returns on the US dollar.

C Appendix to Section 3

C.1 Detailed derivation of (8)

Re-writing the second term on the right-hand side of (6) yields

∑
i,t

[
rxi,t+1

(
fpit − fpt −

(
fp

e

i − fp
e
))]

=
∑

i,t

[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fpit − fpt −

(
fp

e

i − fp
e
))]

+
∑

i,t

[
(rxt+1 + (rxi − rx))

(
fpit − fpt −

(
fp

e

i − fp
e
))]

=
∑

i,t

[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fpit − fpt −

(
fp

e

i − fp
e
))]

+
∑

i,t

[
rxi

(
fpit − fpt −

(
fp

e

i − fp
e
))]

= β̂
dyn∑

i,t

((
fpi,t − fpt

)
−
(
fp

e

i − fp
e
))2

+

+
∑

i,t

[
rxi

(
fpi − fp −

(
fp

e

i − fp
e
))]

.

We again get the first equality from adding and subtracting rxt+1 + (rxi − rx). The second

equality again follows from the fact that
∑

i,t

(
fpit − fpt −

(
fp

e

i − fp
e
))

= 0 and does not
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vary across t. The third equality then follows from re-writing the first term as an OLS regression
coefficient where

β̂
dyn

=
∑

i,t

[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fpit − fpt −

(
fp

e

i − fp
e
))]

/
∑

i,t

((
fpi,t − fpt

)
−
(
fp

e

i − fp
e
))2

is the OLS estimate of the slope coefficient in (9).

Similarly, we can rewrite the third term on the right-hand side of (6) as

∑
i,t

[
rxi,t+1

(
fpt − fp

e
)]

=
∑

i,t

[
(rxit − rxi)

(
fpt − fp

e
)]

+
∑

i,t

[
rxi

(
fpt − fp

e
)]

=
∑

i,t

[
(rxit − rxi)

(
fpt − fp

e
)]

+
∑

i,t

[
rxi

(
fpt − fp

e
)]

= β̂
dol∑

i,t

(
fpt − fp

e
)2

+
∑

i,t

[
rx
(
fp − fp

e
)]

,

where β̂
dol

the OLS estimate of the slope coefficient in (10).

C.2 Structure of Error Terms

Some readers might find it useful to first read section 3.1 of the main text before reading this

this appendix.

Note that the only difference between our specifications (7), (9), and (10) and standard

fixed effects estimators is that they replace fpi and fp with expectations fp
e

i and fp
e
. That is,

had we been interested in characterizing the elasticity of realized rather than expected returns,

we would have simply used currency fixed effects instead of fp
e

i in our regressions. Denoting

the slope coefficients of the corresponding fixed effects specifications as βstat
FE , βdyn

FE , and βdol
FE ,

we can write realized currency returns without loss of generality as

rxi,t+1 = γ +βstat
FE

(
fpi − fp

)
+βdyn

FE

(
fpi,t − fpt −

(
fpi − fp

))
+βdol

FE

(
fpt − fp

)
+ϑi,t+1, (29)

where ϑi,t+1 is mean-zero and orthogonal to
(
fpi − fp

)
,
(
fp

e

i − fp
e
)
,
(
fpi,t − fpt −

(
fpi − fp

))
,

and
(
fpt − fp

)
. It follows directly that

rxi = βstat
FE

(
fpi − fp

)
+ ϑi, rxt+1 = βdol

FE

(
fpt − fp

)
+ ϑt+1, and rx = γ + ϑ. (30)

We can then write variation of returns in the between-time-and-currency dimension as

rxi,t+1 − rxi − rxt+1 + rx = βdyn
FE

(
fpi,t − fpt −

(
fpi − fp

))
+
(
ϑi,t+1 − ϑi − ϑt+1 + ϑ

)
.
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Adding and subtracting terms reveals the structure of the error term, εdyn
i,t+1, in (9)

rxi,t+1 − rxi − rxt+1 + rx = βdyn
(
fpi,t − fpt −

(
fp

e
i − fp

e
))

+
(
βdyn

FE − βdyn
)(

fpi,t − fpt −
(
fpi − fp

))
− βdyn

((
fpi − fp

)
−
(
fp

e
i − fp

e
))

+
(
ϑi,t+1 − ϑi − ϑt+1 + ϑ

)

︸ ︷︷ ︸
ε
dyn
i,t+1

The first two terms in the bracket reflect errors investors make when predicting fpi: the

first term depends only on the variance of the forecast error (var(fp
e

i − fpi)). It is zero if and

only if investors have perfect foresight, fp
e

i = fpi, as in that case βdyn
FE = βdyn (see Proposition

2 for details). The second term clearly depends on the forecast error itself.

We can now verify that εdyn
i,t+1 is uncorrelated with the regressor, E0[ε

dyn
i,t+1((fpi−fp)−(fp

e

i −

fp
e
))] = 0. Noting that E0[(fpi,t − fpt − (fp

e

i − fp
e
))(ϑi,t+1 − ϑi − ϑt+1 + ϑ)] = 0, plugging in

the structure shown above, and re-arranging yields

E0

[(
βdyn

FE − βdyn
) (

fpi,t − fpt −
(
fpi − fp

)) (
fpi,t − fpt −

(
fp

e

i − fp
e
))]

= E0

[
βdyn

((
fpi − fp

)
−
(
fp

e

i − fp
e
))(

fpi,t − fpt −
(
fp

e

i − fp
e
))]

.

Adding and subtracting
(
fpi − fp

)
in the last round bracket on both sides of the equation

yields

(
βdyn

FE − βdyn
)

E0

[(
fpi,t − fpt −

(
fpi − fp

))2
]

+ E0

[(
fpi,t − fpt −

(
fpi − fp

))((
fpi − fp

)
−
(
fp

e
i − fp

e
))]

︸ ︷︷ ︸
=0

= βdynE0

[((
fpi − fp

)
−
(
fp

e
i − fp

e
))(

fpi,t − fpt −
(
fpi − fp

))]

︸ ︷︷ ︸
=0

+ βdynE0

[((
fpi − fp

)
−
(
fp

e
i − fp

e
))2

]
.

Re-arranging these expressions yields

βdyn
FE = βdyn





1 +

E0

[((
fpi − fp

)
−
(
fp

e

i − fp
e
))2

]

E0

[(
fpi,t − fpt −

(
fpi − fp

))2]





 ,

which is true, as shown in (15).

Similarly, from (30) we can write variation of returns in the cross-currency dimension as

rxi − rx = βstat
FE

(
fpi − fp

)
+ ϑi − ϑ. (31)
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Adding and subtracting terms again yields the structure of the error term, εstat
i ,

rxi−rx = βstat
(
fp

e

i − fp
e
)
+
(
βstat

FE − βstat
) (

fpi − fp
)

+ βstat
((

fpi − fp
)
−
(
fp

e

i − fp
e
))

+ ϑi − ϑ
︸ ︷︷ ︸

εstat
i

,

(32)

where again the first term can be shown to depend on the variance of the forecast error (refer

again to Proposition 2).

Following the same steps, we can again verify that E0

[
εstat
i

(
fp

e

i − fp
e
)]

= 0: Noting that

E0

[(
ϑi − ϑ

) (
fp

e

i − fp
e
)]

= 0, plugging in the structure in (32), and re-arranging yields

E0

[(
βstat

FE − βstat
) (

fpi − fp
) (

fp
e

i − fp
e
)]

= E0

[
βstat

((
fp

e

i − fp
e
)
−
(
fpi − fp

))(
fp

e

i − fp
e
)]

.

Adding and subtracting
(
fpi − fp

)
in the last round bracket on both sides of the equation

and eliminating terms yields

βstat
FE E0

[((
fpi − fp

)2)]
− βstat

FE E0

[((
fp

e

i − fp
e
)
−
(
fpi − fp

))2
]

︸ ︷︷ ︸
=−E0[(rxi−rx)(fp

e
i−fp

e
−(fpi−fp))]

= βstatE0

[(
fp

e

i − fp
e
)2
]

,

For the substitution of the second term on the right hand side note that using (31) we can

write

E0

[
(rxi − rx)

(
fp

e

i − fp
e
−
(
fpi − fp

))]

= E0

[(
βstat

FE

(
fpi − fp

)
+ ϑi − ϑ

) (
fp

e

i − fp
e
−
(
fpi − fp

))]
.

Again noting that ϑi is orthogonal to forward premia, and adding and subtracting
(
fp

e

i − fp
e
)

yields

E0

[
(rxi − rx)

(
fp

e

i − fp
e
−
(
fpi − fp

))]
= −βstat

FE E0

[((
fp

e

i − fp
e
)
−
(
fpi − fp

))2
]

+βstat
FE E0

[(
fp

e

i − fp
e
)(

fp
e

i − fp
e
−
(
fpi − fp

))]

︸ ︷︷ ︸
=0 by rationality

Substituting this expression as indicated above and simplifying yields (17).
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Finally, we have

rxt+1 − rx = βdol
FE

(
fpt − fp

)
+ ϑt+1 − ϑ. (33)

Because the specification (10) contains a constant term we have that βdol
FE = βdol (again see

Proposition 2 for details). It suffices to add and subtract terms to show

rxt+1 − rx = βdol
(
fp

e
− fp

)

︸ ︷︷ ︸
γ

+ βdol
(
fpt − fp

e
)

+ ϑt+1 − ϑ
︸ ︷︷ ︸

εdol
t+1

, (34)

where E0

[
εdol
t+1

(
fpt − fp

e
)]

= 0 by construction.

Residuals in specifications (7) and (10)

Note that in our empirical applications of this model we use the full panel of data to estimate

βstat and βdol. To derive the structure of the error term in the specifications (7) and (10), note

that from (29) and (34) we have

rxi,t+1 − rxt+1 = βstat
(
fp

e

i − fp
e
)

+ βdyn
(
fpi,t − fpt −

(
fp

e

i − fp
e
))

+ εstat
i + εdyn

t+1.

Further, substituting βdyn
(
fpi,t − fpt −

(
fp

e

i − fp
e
))

+εdyn
t+1 = rxi,t+1−rxi−rxt+1 +rx yields

εstat
i,t+1 = εstat

i + rxi,t+1 − rxi − rxt+1 + rx,

where again E0

[
εstat
i,t+1

(
fp

e

i − fp
e
)]

= E0

[
εstat
i

(
fp

e

i − fp
e
)]

= 0, and εstat
i,t+1 is the error term

from (7) and
∑

t ε
stat
i,t+1 = εstat

i .

Similarly, from (29) and (30), and (34) we have

rxi,t+1−rx = γ+βdol
(
fpt − fp

e
)
+βstat

FE

(
fpi − fp

)
+ βdyn

FE

(
fpi,t − fpt −

(
fpi − fp

))
+ ϑi,t+1 − ϑ

︸ ︷︷ ︸
εdol
i,t+1

.

Because
(
fpi − fp

)
and

(
fpi,t − fpt −

(
fpi − fp

))
are by construction orthogonal to

(
fpt − fp

e
)
,

we again have E0

[
εdol
i,t+1

(
fpt − fp

e
)]

= E0

[
εdol
t

(
fpt − fp

e
)]

= 0, where εdol
i,t+1 is the error

term from (10) and
∑

i ε
dol
i,t+1 = εdol

t .

C.3 Generalized Model: Overlapping Investment Periods

Some readers might find it useful to first read section 3.1 of the main text before reading this

this appendix.
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Consider an extension of the model in Section 3 where currencies are priced by a sequence

of rational marginal investors. The marginal investor at each point in time τ has an investment

horizon of T periods. There is an infinite number of investment periods. Denote the population

mean forward premium of currency i as fpi, whereas the mean in each investment period is

denoted as fp
τ

i , and τ is the beginning of the investment period, τ +1, ..., τ +T . As before, each

marginal investor observes each currency’s entire history of forward premia and has rational

expectations of mean forward premia
{

fp
τ ,e

i

}

τ ,i
, where fp

τ ,e

i ≡ Eiτ

[
fp

τ

i

]
. In particular,

rational expectations again imply that Eτ

[
fp

e,τ

i

(
fp

τ

i − fp
e,τ

i

)]
= 0 for all τ . In addition to

covariance stationarity of forward premia, we now also require that the precision of investors’

forecasts of future mean forward premia is invariant across investment periods. That is, the

variance ratio varτ

(
fpi,t − fp

τ

i

)
/varτ

(
fpi,t − fp

e,τ

i

)
is well-defined and constant for all τ .

To save space we re-derive the main results of the paper only for the model corresponding to

(12). The extension to the three-dimensional case is straight-forward.

Each marginal investor demands compensation for holding the static and forward premium

trade portfolios as specified in (7) and (13), so that during the investment period beginning in

τ ,

rxi,t+1 = γ+βstat
(
fp

e,τ

i − fp
e,τ
)
+βfpp

(
fpi,t − fp

e,τ

i

)
+εstat,τ

i +εfpp,τ
i,t+1 , t = τ+1, ..., τ+T, (35)

and Eτ

[
εstat,τ
i

(
fp

e,τ

i − fp
e,τ
)]

= Eτ

[
εfpp,τ
i,t+1

(
fpi,t − fp

e,τ

i

)]
= 0.

The proofs of Propositions 1 and 2 are as follows: For any given τ we have from (13),

βfpp =
Eτ

[
(rxi,t+1 − rxi,τ )

{
fpi,t − fp

e

i,τ

}]

varτ

(
fpi,t − fp

e

i,τ

) ,

=
Eτ

[
Eit [(rxi,t+1 − rxi,τ )]

{
fpi,t − fp

e

i,τ

}]

varτ

(
fpi,t − fp

e

i,τ

)

for all t = τ + 1, ..., τ + T . Similarly, we have from (7),

βstat =
Eτ

[
(rxi,τ − rxτ )

(
fp

e

i,τ − fp
e

τ

)]

varτ

(
fp

e

i,τ − fp
e

τ

) ,

=
Eτ

[
Eit [rxi,τ − rxτ ]

(
fp

e

i,τ − fp
e

τ

)]

varτ

(
fp

e

i,τ − fp
e

τ

)

for all t = τ + 1, ..., τ + T .
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We can then follow the usual steps from Proposition 2 to show that

βfpp =













Eτ

[(
rxi,t+1 − rxτ

i

) (
fpi,t − fp

τ
i

)]

varτ

(
fpi,t − fp

τ
i

)

︸ ︷︷ ︸
=β

fpp,τ
F E

+
Eτ

[(
rxi,t+1 − rxτ

i

) (
fpi,τ − fp

e,τ
i

)]

varτ

(
fpi,t − fp

τ
i

)

︸ ︷︷ ︸
=0













varτ

(
fpi,t − fp

τ
i

)

varτ

(
fpi,t − fp

e,τ
i

) , t = τ +1, ..., τ +T

βfpp = βfpp,τ
FE

varτ

(
fpi,t − fp

τ
i

)

varτ

(
fpi,t − fp

e,τ
i

) , t = τ + 1, ..., τ + T.

which also demonstrates that βfpp
FE,τ = βfpp

FE for all τ , as the variance ratio on the right hand
side is time-invariant by assumption. Similarly,

βstat =













Eτ

[
rxτ

i

((
fp

τ
i − fp

τ
))]

varτ

(
fp

τ
i − fp

τ
)

︸ ︷︷ ︸
βstat

F E,τ

+
Eτ

[
rxτ

i

(
fp

e,τ
i − fp

e,τ
−
(
fp

τ
i − fp

τ
))]

varτ

(
fp

τ
i − fp

τ
)













varτ

(
fp

τ
i − fp

τ
)

varτ

(
fp

e,τ
i − fp

e,τ
) , t = τ + 1, ..., τ + T

which again also demonstrates that βstat
FE,τ = βstat

FE for all τ , due to covariance stationarity (all

the variance ratios on the right hand side are time-invariant by assumption).

This result also implies that we can write the data generating process for realized returns

without loss of generality as

rxi,t+1 = γ + βstat
FE

(
fpi − fp

)
+ βfpp

FE

(
fpi,t − fpi

)
+ ϑi,t+1, (36)

where ϑi,t+1 is orthogonal to
(
fpi − fp

)
,
(
fpi,t − fpi

)
, and

(
fpi,t − fp

e,τ

i

)
. Moreover, the

coefficients βstat
FE and βfpp

FE are stable over time as shown above. This implies that for each

investment period beginning at t = τ we can also write

rxi,t+1 = γ + βstat
FE

(
fp

τ

i − fp
τ
)

+ βfpp
FE

(
fpi,t − fp

τ

i

)
+ ζτ

i,t+1, t = τ + 1, ..., τ + T, (37)

where ζτ
i,t+1 =

(
βstat

FE − βfpp
FE

)(
fpi − fp

τ

i

)
+ βstat

FE

(
fp

τ
− fp

)
+ ϑi,t+1 .

It follows directly that for a given investment period beginning at t = τ :

rxτ
i = γ + βstat

FE

(
fp

τ

i − fp
τ
)

+ ζ
τ

i . (38)

We can then write variation of returns in the time series dimension for any investment period

τ as

rxi,t+1 − rxτ
i = βfpp

FE

(
fpi,t − fpi,τ

)
+ ζτ

i,t+1 − ζ
τ

i .
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Adding and subtracting terms yields the structure of the error term, εfpp,τ
i,t+1 , in (13)

rxi,t+1 − rxτ
i = βfpp

(
fpi,t − fp

e,τ

i

)

+
(
βfpp

FE − βfpp
)(

fpi,t − fp
τ

i

)
− βfpp

(
fpi,t − fp

e,τ

i

)
+ ζτ

i,t+1 − ζ
τ

i
︸ ︷︷ ︸

εfpp,τ
i,t+1

,

where ζτ
i,t+1 − ζ

τ

i = ϑi,t+1 − ϑ
τ

i .

To verify that, Eτ

[
εfpp,τ
i,t+1

(
fpi,t − fp

e,τ

i

)]
= 0, recall that Eτ

[(
fpi,t − fp

e,τ

i

)(
ϑi,t+1 − ϑ

τ

i

)]
=

0. Plugging in the remainder of the the error term from the expression above and re-arranging

yields

Eτ

[(
βfpp

FE − βfpp
)(

fpi,t − fp
τ

i

)(
fpi,t − fp

e,τ

i

)]
= Eτ

[

βfpp
(
fpi − fp

e,τ

i

)2
]

Adding and subtracting fp
τ

i in the last round bracket on the left hand side of the equation

yields

(
βfpp

FE − βfpp
)

Eτ

[(
fpi,t − fp

τ

i

)2
]

+
(
βfpp

FE − βfpp
)

Eτ

[(
fpi,τ − fp

e,τ

i

)(
fpit − fp

τ

i

)]

︸ ︷︷ ︸
=0

= βfppEτ

[(
fpi,τ − fp

e,τ

i

)2
]

Re-arranging these expressions yields

βfpp
FE = βfpp





1 +

Eτ

[(
fp

τ

i − fp
e,τ

i

)2
]

Eτ

[(
fpi,t − fp

τ

i

)2
]







which is true, as shown in (25).

The proof showing that E0

[
εstat
i

(
fp

e

i − fp
e
)]

= 0 is analogous to the one shown in Ap-

pendix C.2.

C.4 Choice of Standard Errors

Standard errors for estimates of βstat are clustered by currency because the panel is composed

of repeated values in the time-series dimension. Similarly, standard errors for estimates of βdol

are clustered by time.

Standard errors for estimates of βdyn are corrected for both heteroscedasticity and serial

correlation using a Newey-West adjustment (Bartlett kernel) with a 12-month lag. For horizons
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larger than one month, we must additionally take into account the fact that returns overlap.

Therefore, for the 6- and 12-month horizons, the standard errors of estimates of βdyn are

corrected for serial correlation at 12- and 24-month lags. Throughout, we calculate standard

errors for βdyn
i , βfpp

i , and βfpp in the same way as those for βdyn. In the case of βdol we use a

Newey-West adjustment in addition to clustering by time using the Driscoll and Kraay (1998)

procedure at the 6- and 12-month horizons.

Finally, an additional adjustment to the standard errors for estimates of βstat, βdyn, and

βfpp is made following Murphy and Topel (1985) to account for the fact that the inputs {fp
e

i}

are estimated in the pre-sample.

In addition, to check the robustness of our results to sample variance in the estimation of

average forward premia, we bootstrap standard errors across blocks of rebalances in Table 6.

We choose the 12 Rebalance sample as our population and run our regressions on boostrapped

draws with replacement from those original 12 blocks of data. Standard errors presented are

for 100,000 draws.

C.5 Details on the coefficients βct and βfpp

Equation (13) defines βfpp =
E0[(rxi,t+1−rxi)(fpit−fp

e
i )]

var(fpit−fp
e
i )

. Multiply by var
(
fpit − fp

e

i

)
, add and

subtract
(
fpt − fp

e
)

from the term that multiplies (rxi,t+1 − rxi) inside the expectation, and

reorganize to get

βfppvar
(
fpit − fp

e

i

)
= E0

[
(rxi,t+1 − rxi)

(
fpit − fp

e

i −
(
fpt − fp

e
))]

+E0

[
(rxi,t+1 − rxi)

(
fpt − fp

e
)]

.

Adding and subtracting rxt+1 − rx to the returns term in the first expectation above,

βfppvar
(
fpit − fp

e

i

)
= E0

[
(rxi,t+1 − rxi − (rxt+1 − rx))

(
fpit − fp

e

i −
(
fpt − fp

e
))]

+

+E0

[
(rxt+1 − rx)

(
fpit − fp

e

i −
(
fpt − fp

e
))]

+ E0

[
(rxi,t+1 − rxi)

(
fpt − fp

e
)]

.

Note that the first term equals βdynvar
(
fpit − fp

e

i −
(
fpt − fp

e
))

, as defined in equation

(9). Gathering terms yields

βfppvar
(
fpit − fp

e

i

)
= βdynvar

(
fpit − fp

e

i −
(
fpt − fp

e
))

+

E0

[
(rxt+1 − rx)

(
fpit − fp

e

i

)]
+ E0

[
(rxi,t+1 − rxi − (rxt+1 − rx))

(
fpt − fp

e
)]

.

The last term is equal to zero since
(
fpt − fp

e
)

do not vary across i, and
∑

i (rxi,t+1 − rxi) /N =

rxt+1− rx. Additionally, the second term simplifies to E0

[
(rxt+1 − rx)

(
fpt − fp

e
)]

, because

13



(rxt+1 − rx) do not vary across i. Using the definition of βdol from equation (10),

βfppvar
(
fpit − fp

e

i

)
= βdynvar

(
fpit − fp

e

i −
(
fpt − fp

e
))

+ βdolvar
(
fpt − fp

e
)

.

Finally, because

var
(
fpit − fp

e

i

)
= var

(
fpit − fpt + fp

e
− fp

e

i + fpt − fp
e
)

= var
(
fpit − fpt + fp

e
− fp

e

i

)
+ var

(
fpt − fp

e
)

+2cov
(
fpit − fpt + fp

e
− fp

e

i , fpt − fp
e
)

︸ ︷︷ ︸
=0

,

one arrives at

βfpp =
var

(
fpit − fp

e

i −
(
fpt − fp

e
))

var
(
fpit − fpt + fp

e
− fp

e

i

)
+ var

(
fpt − fp

e
)βdyn

+
var

(
fpt − fp

e
)

var
(
fpit − fpt + fp

e
− fp

e

i

)
+ var

(
fpt − fp

e
)βdol,

demonstrating that βfpp is a linear combination of βdyn and βdol.

Take the definition of βct as in equation (14):

βct = E0

[
(rxi,t+1 − rxt+1)

(
fpit − fpt

)] [
var

(
fpit − fpt

)]−1
.

Add and subtract (rxi − rx) in the expectation term:

E0

[
(rxi,t+1 − rxt+1)

(
fpit − fpt

)]
= E0

[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fpit − fpt

)
+ (rxi − rx)

(
fpit − fpt

)]
.

Note that E0

[
(rxi − rx)

(
fpit − fpt

)]
= βstat

FE var
(
fpi − fp

)
as defined in C.7. Moreover,

from (17), we have that

βstat
FE var

(
fpi − fp

)
= βstatvar

(
fp

e

i − fp
e
)

+ E0

[
(rxi − rx)

(
fp

e

i − fp
e
−
(
fpi − fp

))]
,

which means

E0

[
(rxi,t+1 − rxt+1)

(
fpit − fpt

)]
= E0

[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fpit − fpt

)]
+

βstatvar
(
fp

e

i − fp
e
)

+ E0

[
(rxi − rx)

(
fp

e

i − fp
e
−
(
fpi − fp

))]
.

14



Add and subtract
(
fp

e

i − fp
e
)

from the forward premia to get

E0

[
(rxi,t+1 − rxt+1)

(
fpit − fpt

)]
= E0

[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fpit − fpt −

(
fp

e

i − fp
e
)

+
(
fp

e

i − fp
e
))]

+βstatvar
(
fp

e

i − fp
e
)

+ E0

[
(rxi − rx)

(
fp

e

i − fp
e
−
(
fpi − fp

))]
.

From equation (9) we know that βdyn is such that

E0

[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fpit − fpt −

(
fp

e

i − fp
e
))]

= βdynvar
(
fpit − fpt −

(
fp

e

i − fp
e
))

,

which means

E0

[
(rxi,t+1 − rxt+1)

(
fpit − fpt

)]
= E0

[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fp

e

i − fp
e
)]

+βdynvar
(
fpit − fpt −

(
fp

e

i − fp
e
))

+ βstatvar
(
fp

e

i − fp
e
)

+E0

[
(rxi − rx)

(
fp

e

i − fp
e
−
(
fpi − fp

))]
.

Note that E0

[
(rxi,t+1 − rxt+1 − (rxi − rx))

(
fp

e

i − fp
e
)]

= 0 and let

αdyn = E0

[
(rxi − rx)

(
fp

e

i − fp
e
−
(
fpi − fp

))]
. Collect terms to get

βct =
αdyn

var
(
fpit − fpt

) + βdyn
var

(
fpit − fpt −

(
fp

e

i − fp
e
))

var
(
fpit − fpt

) + βstat
var

(
fp

e

i − fp
e
)

var
(
fpit − fpt

) .

C.6 Possibility of Stambaugh Bias

Because forward premia are persistent, it is possible that our estimates may be affected by

Stambaugh bias. Consider the following autoregressive system for each currency i :

rxi,t+1 = α + βfpp
i fpi,t + ui,t+1 (39)

fpi,t+1 = γ + φfpi,t + vi,t+1, (40)

where the error terms ut+1 and νt+1 are normally-distributed with mean zero, and a potentially

currency-specific covariance matrix Σ such that:

Σ =

[
σ2

u σuv

. σ2
v

]

.

Stambaugh (1999) shows that in this environment,

E[β̂
fpp

i − βfpp
i ] =

σuv

σ2
v

E[φ̂ − φ] (41)
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for each currency i.

One can show that, for a given precision of investors’ expectations of future mean forward

premia (fpi), the overall elasticity of risk-premia with respect to forward premia, βfpp, is a

linear function of these country-specific regressions coefficients βfpp
i (see Proposition 2 and

equation (25) in the main text).

Appendix Table 10 uses data from our 1 Rebalance sample and the formulas above to

estimate σuv

σ2
v

and the size of the bias for each individual currency under the (possibly extreme)

assumption that φ = 0.99 (see Panel A). The Table shows two main results: First, the esti-

mated biases for some currencies are positive and negative for others, so that the aggregation

of all of these biases has a negligible effect on our overall estimate of βfpp (shown in Panel B).

Taking the bounds for all of the estimated currency-specific Stambaugh biases at face value

implies that our estimates of βfpp should be only 0.01, lower than its true value (corresponding

to 1.1% of the size of the estimated coefficient in our main specification). Similarly, conducting

the Stambaugh calculation directly for the mean return across currencies (rxt+1) and the mean

forward premium (fpt), yields an estimated bias in the estimate of βdol of 0.07 (or 2.1% of

the size of the estimated coefficient). Second, consistent with the existing literature (Moon

and Velasco, 2017), we also find that the estimated Stambaugh bias for the currency-specific

coefficients (βfpp
i ) is also modest for most currencies. Possible exceptions are the the New

Zealand dollar and the Singapore dollar, where the bias may reach up to -27% and +19% of

the point estimate, respectively.

C.7 Detailed proof of Proposition 2

From (9) we have that

βdyn =
E0

[
Eit (rxi,t+1 − rxt+1 − (rxi − rx))

{
fpit − fpt −

(
fp

e

i − fp
e
)}]

var
(
fpit − fpt −

(
fp

e

i − fp
e
)) .

Taking iterated expectations, adding and subtracting
(
fpi − fp

)
in the curly brackets, and

multiplying and dividing with var
(
fpit − fpt −

(
fpi − fp

))
yields

βdyn =



βdyn
FE +

E0

(
(rxi,t+1 − rxt+1 − (rxi − rx))

[(
fpi − fp

)
−
(
fp

e

i − fp
e
)])

var
(
fpit − fpt −

(
fpi − fp

))



 var
(
fpit − fpt −

(
fpi − fp

))

var
(
fpit − fpt −

(
fp

e

i − fp
e
)) ,

where βdyn
FE =

E0((rxi,t+1−rxt+1−(rxi−rx))[fpit−fpt−(fpi−fp)])
var(fpit−fpt−(fpi−fp))

is the slope coefficient from the fixed

effects specification rxi,t+1 − rxt+1 − (rxi − rx) = βdyn
FE

((
fpit − fpt

)
−
(
fpi − fp

))
+ εi,t+1.
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Now note that the second term in the round brackets is equal to zero and write

βdyn = βdyn
FE

var
(
fpit − fpt −

(
fpi − fp

))

var
(
fpit − fpt −

(
fp

e

i − fp
e
)) . (42)

Finally, replace

var
(
fpit − fpt −

(
fp

e

i − fp
e
))

= var
(
fpit − fpt −

(
fpi − fp

)
+
(
fpi − fp

)
−
(
fp

e

i − fp
e
))

= var
(
fpit − fpt −

(
fpi − fp

))
+ var

(
fpi − fp

e

i

)

and cancel terms to get (15).

From (13) we have that

βfpp = E0

[
Eit (rxi,t+1 − rxi))

{
fpit − fp

e

i

}]
var

(
fpit − fp

e

i

)−1

.

Taking iterated expectations, adding and subtracting fpi in the curly brackets, and multiplying
and dividing with var

(
fpit − fpi

)
yields

βfpp =



βfpp
FE +

E0

(
(rxi,t+1 − rxi)

[
fpi − fp

e

i

])

var
(
fpit − fpi

)



 var
(
fpit − fpi

)

var
(
fpit − fp

e

i

) ,

where βfpp
FE = E0

(
(rxi,t+1 − rxi)

[
fpit − fpi

])
var

(
fpit − fpi

)−1
is the slope coefficient from

the fixed effects specification rxi,t+1 − rxi = βfpp
FE

(
fpit − fpi

)
+ εfpp

i,t+1. The second term in the

round brackets is equal to zero and so

βfpp = βfpp
FE

var
(
fpit − fpi

)

var
(
fpit − fp

e

i

) ,

which leads to equation (16).

From (7) we have that

βstat = E0

[
Eit ((rxi − rx))

{
fp

e

i − fp
e
}]

var
(
fp

e

i − fp
e
)−1

Taking iterated expectations, adding and subtracting
(
fpi − fp

)
in the curly brackets, and
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multiplying and dividing with var
(
fpi − fp

)
yields:

βstat =



βstat
FE +

E0

(
(rxi − rx)

[(
fp

e

i − fp
e
)
−
(
fpi − fp

)])

var
(
fpi − fp

)



 var
(
fpi − fp

)

var
(
fp

e

i − fp
e
) ,

where βstat
FE = E0

[
(rxi − rx)

{
fpi − fp

}]
var

(
fpi − fp

)−1
. Because fp and fp

e
are constants,

one can disregard them when measuring var (.), yielding (17).

C.8 Proof of Corollary 1

Consider (13):

rxi,t+1 − rxi = βfpp
(
fpit − fp

e

i

)
+ εfpp

i,t+1.

Under the assumption that we observe fp
e

i without error (A1) we have

E
[
β̂

fpp
]

= βfpp,

where

β̂
fpp

=

∑
i,t (rxi,t+1 − rxi)

(
fpit − fp

e

i

)

∑
i,t

(
fpit − fp

e

i

)2 .

However, in reality we may observe fp
e

i with error and instead run the regression

rxi,t+1 − rxi = β̃
fpp
(
fpit − f̂p

e

i

)
+ νfpp

i,t+1,
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where f̂p
e

i is our estimate of investors’ expectation of fpi. The OLS estimate of β̃
fpp

is then

given as

∑
i,t

[
(rxi,t+1 − rxi)

{
fpit − f̂p

e

i

}](∑
i,t

(
fpit − f̂p

e

i

)2
)−1

=





∑

i,t (rxi,t+1 − rxi)
(
fpit − fp

e

i

)
+
∑

i,t (rxi,t+1 − rxi)
(
fp

e

i − f̂p
e

i

)

︸ ︷︷ ︸
=0






(
∑

i,t

(
fpit − f̂p

e

i

)2
)−1

=

∑
i,t (rxi,t+1 − rxi)

(
fpit − fp

e

i

)

∑
i,t

(
fpit − fp

e

i

)2

∑
i,t

(
fpit − fp

e

i

)2

∑
i,t

(
fpit − f̂p

e

i

)2

= β̂
fpp

∑
i,t

(
fpit − fp

e

i

)2

∑
i,t

(
fpit − f̂p

e

i

)2

where β̂
fpp

is the OLS estimate we would have obtained if f̂p
e

i = fp
e

i .

Finally, under assumption (A2) and using that εfpp
i,t+1 is assymptotically orthogonal to

(
fpit − f̂p

e

i

)
:

plimN→∞








∑
i,t

(
fpit − fp

e
i

)2

∑
i,t

(
fpit − f̂p

e

i

)2
β̂

fpp








=








plimN→∞
∑

i,t

(
fpit − fp

e
i

)2

plimN→∞
∑

i,t

(
fpit − f̂p

e

i

)2
plimN→∞β̂

fpp








plimN→∞
∑

i,t

((
fpit − fpi

)2
+
(
fpi − fp

e
i

)2
)

plimN→∞
∑

i,t

(
(
fpit − fpi

)2
+

(
fpi − f̂p

e

i

)2
)βfpp =

plimN→∞

(
∑

i,t

(
fpit − fpi

)2
)

+ var
(
fpi − fp

e
i

)

plimN→∞

(
∑

i,t

(
fpit − fpi

)2
)

+ var
(
fpi − fp

e
i

)βfpp

= βfpp,

concluding the proof.

C.9 Deriving the “Fama Conditions”

We have already seen that the slope coefficient in (13) can be written as

βfpp =
E0

[
(rxi,t+1 − rxi)

{
fpit − Ei0

[
fpi

]}]

var
(
fpi,t − Ei0

[
fpi

]) , (43)

The next step is to observe that, without loss of generality,

fpit = Eit [rxi,t+1] + Eit [Δsi,t+1] ,
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and, as a result,

Ei0

[
fpi

]
= Ei0 [rxi] + Ei0

[
Δsi

]
.

Substituting these two expressions in the curly brackets on the right hand side of (43) yields

βfpp =
E0

[
(rxi,t+1 − rxi)

{
(Eit [rxi,t+1] + Eit [Δsi,t+1]) −

(
Ei0 [rxi] + Ei0

[
Δsi

])}]

var
(
(Eit [rxi,t+1] + Eit [Δsi,t+1]) −

(
Ei0 [rxi] + Ei0

[
Δsi

])) .

To draw any conclusions about the properties of expected returns (or currency risk premia)

we must now take expectations conditional on i and t in the square brackets and re-arrange

to get

βfpp =
E0 [(Eit [rxi,t+1] − Eit [rxi]) (Eit [rxi,t+1] − Ei0 [rxi])] + E0

[
(Eit [rxi,t+1] − Eit [rxi])

(
Eit [Δsi,t+1] − Ei0

[
Δsi

])]

var
(
(Eit [rxi,t+1] − Ei0 [rxi]) +

(
Eit [Δsi,t+1] − Ei0

[
Δsi

])) .

Note however, that the next step, transforming the first term into a variance, and the

second term into a covariance requires an additional assumption that is made implicitly in

Fama (1984) – that investors do not update their expectations of the mean returns on a given

currency during the investment period

Eit [rxi] = Ei0 [rxi] . (F1)

Once we impose this condition, we can write]

βfpp =
var (Eit [rxi,t+1] − Ei0 [rxi]) + cov

(
Eit [rxi,t+1] − Ei0 [rxi] , Eit [Δsi,t+1] − Ei0

[
Δsi

])

var (Eit [rxi,t+1] − Ei0 [rxi]) + var
(
Eit [Δsi,t+1] − Ei0

[
Δsi

])
+ 2cov

(
Eit [rxi,t+1] − Ei0 [rxi] , Eit [Δsi,t+1] − Ei0

[
Δsi

]) .

which is the basis both for our and for Fama’s claim that

cov
(
Eit [rxi,t+1] − Ei0 [rxi] , Eit [Δsi,t+1] − Ei0

[
Δsi

])
< 0 if βfpp > 1,

where Fama (1984), in addition, imposes

Ei0

[
fpi

]
= fpi. (F2)

so that, in his application, βfpp = βfpp
FE .38

The derivations for βstat, βdyn, βdol, and βct are analogous.

38While one can argue that (F2) is irrelevant when attempting to estimate the elasticity of risk premia with
respect to forward premia for only one currency pair (N = 1) rather than a “representative” currency (βfpp

i

rather than βfpp in our notation), (F1) is needed regardless of which of the two objects we consider.

20



C.10 Details on χ2 difference tests

This section gives analytical details for the construction of the χ2 difference test statistics used

to calculate the p-values in Table 5. These are distance metric statistics (Newey and West,

1987) where we focus solely on variance coming from estimation uncertainty about βdol and

βdyn.

The objective of these tests is to determine which aspect of behavior can best explain the

expected returns on the forward premium trade, given that the hypothesis tests in Table 3

were inconclusive, in the sense that neither βdol nor βdyn are statistically distinguishable from

zero. However, for the forward premium trade to arise, at least one of these parameters must

be non-zero. To this end, we take as given the returns on the trading strategy, as well as the

parts explained by the constants (expectational errors), and ask if our ability to explain the

returns to the trading strategy significantly changes under the null that βdyn = 0 , βdol = 0 or

βdol = βdyn.

For the hypothesis that βdyn = 0, we calculate

Xr =

(
∑

it rxit

(
fpit − fp

e

i

)
− α̂dyn − α̂dol − β̂

dol∑
it

[(
fpt − fp

e
)
−
(
fp − fp

e
)]2)2

V̂ ar

(

β̂
dol∑

it

[(
fpt − fp

e
)
−
(
fp − fp

e
)]2) ,

where the denominator is the variance of the returns to the forward premium trade under the

null. Similarly, for βdol = 0,

Xr =

(
∑

it rxit

(
fpit − fp

e

i

)
− α̂dyn − α̂dol − β̂

dyn∑
it

[(
fpit − fpt

)
−
(
fp

e

i − fp
e
)]2)2

V̂ ar

(

β̂
dyn∑

it

[(
fpit − fpt

)
−
(
fp

e

i − fp
e
)]2) ,

and for βdol = βdyn, we estimate the restricted common coefficient β̂r such that:

Xr =

(
∑

it rxit

(
fpit − fp

e
i

)
− α̂dyn − α̂dol − β̂r

∑
it

[(
fpit − fpt

)
−
(
fp

e
i − fp

e
)]2

− β̂r

∑
it

[(
fpt − fp

e
)
−
(
fp − fp

e
)]2
)2

V̂ ar

(
β̂r

∑
it

[(
fpit − fpt

)
−
(
fp

e
i − fp

e
)]2

+ β̂r

∑
it

[(
fpt − fp

e
)
−
(
fp − fp

e
)]2
) ,

where in each case

Xr − Xu ∼ χ1.

with

Xu =

(
∑

it rxit

(
fpit − fp

e
i

)
− α̂dyn − α̂dol − β̂

dyn∑
it

[(
fpit − fpt

)
−
(
fp

e
i − fp

e
)]2

− β̂
dol∑

it

[(
fpt − fp

e
)
−
(
fp − fp

e
)]2
)2

V̂ ar

(
β̂

dyn∑
it

[(
fpit − fpt

)
−
(
fp

e
i − fp

e
)]2

+ β̂
dol∑

it

[(
fpt − fp

e
)
−
(
fp − fp

e
)]2
) .
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C.11 Generalized No-arbitrage Model

The no-arbitrage model in Lustig et al. (2014) is more general, allowing δh to differ from the

mean exposure across countries and allowing for time-variation in heterogeneous exposures to

an additional global shock. The SDF is

−mi,t+1 = α + χzit +
√

γzitui,t+1 + τzw
t −

√
δizw

t uw,t+1 +
√

κzitu
g
t+1,

where ug
t+1 again follows a standard normal distribution. These generalizations do not sub-

stantially change our conclusions. Forward premia and expected returns are

fpit =
1

2
(zw

t (δh − δi) + (γ + κ − 2χ) (zht − zit))

and

Et [rxi,t+1] =
1

2
(zw

t (δh − δi) + (γ + κ) (zht − zit)) .

Performing our decomposition yields

βstat = 1, βdyn =
(γ+κ)(γ+κ−2χ)+σ2

δ

(γ+κ−2χ)2+σ2
δ

, and βdol =
−2δhδ̄+δ̄

2
+(γ+κ)(γ+κ−2χ)+δ2

h

−2δhδ̄+δ̄
2
+(γ+κ−2χ)2+δ2

h

.

C.12 Derivation of (23)

In Section C.1, we derived equation (8):

∑
i,t

[
(rxi,t+1 − rx)

(
fpit − fp

)]

=

β̂
stat∑

i,t

(
fp

e

i − fp
e
)2

︸ ︷︷ ︸
Static Trade

+ β̂
dyn∑

i,t

(
fpi,t − fpt −

(
fp

e

i − fp
e
))2

+ α̂dyn

︸ ︷︷ ︸
Dynamic Trade

+ β̂
dol∑

i,t

(
fpt − fp

e
)2

+ α̂dol

︸ ︷︷ ︸
Dollar Trade

− α̂dol,

Use β̂
dyn∑

i,t

(
fpi,t − fpt −

(
fp

e

i − fp
e
))2

= β̂
dyn

FE

∑
i,t

(
fpi,t − fpt −

(
fpi − fp

))2
(as shown

in Appendix C.7, equation (42)), together with the definition of βdyn
FE ,

β̂
dyn

FE

∑
i,t

(
fpi,t − fpt −

(
fpi − fp

))2
=
∑

i,t

[
(rxit − rxt+1 − (rxi − rx))

(
fpit − fpt −

(
fpi − fp

))]
.

We can then write

β̂
dyn∑

i,t

(
fpi,t − fpt −

(
fp

e
i − fp

e
))2

=
∑

i

∑

t

[
(rxit − rxt+1 − (rxi − rx))

(
fpit − fpt −

(
fpi − fp

))]

=
∑

i

β̂
dyn

i

∑

t

(
fpit − fpt −

(
fpi − fp

))2
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Substituting into equation (8) leads to (23).

C.13 Appendix to Section 3.3.2

Denote by fpj
i,t the forward premium of currency i against currency j at time t. If j = USD,

we simply write fpi,t as before. For any two currencies, i and j, it must be true by convertibility

(existence of triangular trades) that:

fpj
i,t = fpi,t − fpj,t (44)

rxj
i,t+1 = rxi,t+1 − rxj,t+1.

Taking means over time of the equations in (44) one gets:

fp
j

i = fpi − fpj (45)

rxj
i = rxi − rxj

Take the mean over currencies of equation (44) to get

∑
i 6=j fpj

i,t

N
=

∑
i 6=j fpi,t

N
− fpj,t

fp
j

t =

∑
i fpi,t

N
− fpj,t

(

1 +
1

N

)

fp
j

t = fpt − fpj,t

(
N + 1

N

)

.

If N → ∞,

fp
j

t = fpt − fpj,t (46)

rxj
t+1 = rxt+1 − rxj,t+1,

where we followed the same steps for excess returns.

Finally, take means over currencies j in equation (45):

∑
i 6=j fp

j

i

N
=

∑
i 6=j fpi

N
− fpj

fp
j

=

∑
i fpi

N
− fpj

(

1 +
1

N

)

fp
j

= fp − fpj

(

1 +
1

N

)

.
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Again, if N → ∞,

fp
j

= fp − fpj (47)

rxj = rx − rxj,

where we used the same steps for excess returns as for forward premia.

Claim 2 If N → ∞, βstat and βdyn are independent of the choice of base currency.

Proof. By the definition of βstat in equation (7), where the US dollar is the base currency,

βstat = cov
(
rxi − rx, fp

e

i − fp
e
) [

var
(
fp

e

i − fp
e
)]−1

.

Using (44)-(47) we can write rxj
i −rxj = rxi−rxj − (rx − rxj) = rxi−rx. Taking conditional

expectations in these equations also yields fp
e,j

i − fp
e,j

= fp
e

i − fp
e
. Thus,

βstat = cov
(
rxj

i − rxj , fp
e,j

i − fp
e,j
) [

var
(
fp

e,j

i − fp
e,j
)]−1

for any base currency j other than the US dollar as well.

By the definition of βdyn in equation (9), where the US dollar is the base currency,

βdyn = cov
(
rxi,t+1 − rxt+1 − (rxi − rx) , fpi,t − fpt −

(
fp

e

i − fp
e
)) [

var
(
fpi,t − fpt −

(
fp

e

i − fp
e
))]−1

.

Using (44)-(47) we can again write

rxj
i,t+1 − rxj

t+1 −
(
rxj

i − rxj
)

= (rxi,t+1 − rxj,t+1) − (rxt+1 − rxj,t+1) − (rxi − rxj − (rx − rxj)) =

= rxi,t+1 − rxt+1 − (rxi − rx) ,

and similarly for forward premia by taking the conditional expectations operator through equa-

tions (45), (46), and (47). Thus,

βdyn = cov
(
rxj

i,t+1 − rxj
t+1 −

(
rxj

i − rxj
)

, fpj
i,t − fp

j
t −

(
fp

e,j
i − fp

e,j
)) [

var
(
fpj

i,t − fp
j
t −

(
fp

e,j
i − fp

e,j
))]−1

for any base currency j other than the US dollar as well.

C.14 Proof of Proposition 3

First, we generalize our notation to account for returns in units of different currencies. Denote

by fpj
i,t the forward premium of currency i against currency j at time t, where for the US
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dollar, we maintain fpdol
i,t = fpi,t. By convertibility, we have

fpj
i,t = fpi,t − fpj,t, Δsj

i,t+1 = Δsi,t+1 − Δsj,t+1, and thus rxj
i,t+1 = rxi,t+1 − rxj,t+1,

where we again use the convention that Δsj
i,t+1 and rxj

i,t+1 refer to values in terms of currency

j. If N → ∞, we can also write fp
j

t = fpt − fpj,t and consequently, fp
e,j

= fp
e
− fp

e

j (see Ap-

pendix C.13 for a formal derivation). We can then write fp
j

t−fp
e,j

= −
(
fpj,t − fp

e

j −
(
fpt − fp

e
))

and, analogously, rxj
t+1 − rxj = − (rxj,t+1 − rxj − (rxt+1 − rx)).

Using these identities, we can then show that, for a given base currency j,

E0

[(
rxj

t+1 − rxj
) (

fp
j

t − fp
e,j
)]

= Ej0

[(
rxj

t+1 − rxj
) (

fp
j

t − fp
ej
)]

= Ej0

[
(rxj,t+1 − rxj − (rxt+1 − rx))

(
fpj,t − fp

e

j −
(
fpt − fp

e
))]

.

By definition, the left-hand side of this equation is equal to cov
(
rxj

t+1 − rxj , fp
j

t − fp
e,j
)

=

βjvar
(
fp

j

t

)
. Similarly, the right-hand side can be replaced with covj

(
rxj,t+1 − rxt+1, fpj,t − fpt

)
=

βdyn
j varj

(
fpj,t − fpt

)
= βdyn

j var
(
fp

j

t

)
, where the last equality again uses the identities above.

It follows that βj = βdyn
j .

C.15 Derivation of (25)

By the properties of OLS we have β̂
fpp

FE =

∑
i,t

[
(rxit − rxi)

(
fpit − fpi

)]

∑
i,t

(
fpit − fpi

)2 . In addition (1) intro-

duced βfpp
i , where β̂

fpp

i can be written as β̂
fpp

i =
∑

t

[
(rxi,t+1 − rxi)

(
fpit − fpi

)]
/
∑

t

(
fpit − fpi

)2
,

because a currency-specific constant is in the regression. We can then write

β̂
fpp

FE =
∑

i,t

[
(rxit − rxi)

(
fpit − fpi

)]
/
∑

i,t

(
fpit − fpi

)2

=
∑

i

∑

t

[
(rxit − rxi)

(
fpit − fpi

)]
/
∑

i

∑

t

(
fpit − fpi

)2
.

After dividing and multiplying each term inside the summation by the currency-level vari-

ance of forward premium,
∑

t

(
fpit − fpi

)2
, one gets

β̂
fpp

FE =
∑

i

(∑
t

[
(rxit − rxi)

(
fpit − fpi

)]

∑
t

(
fpit − fpi

)2
∑

t

(
fpit − fpi

)2
)

/
∑

i

∑

t

(
fpit − fpi

)2

=
∑

i

(

β̂
fpp

i

∑
t

(
fpit − fpi

)2

∑
i,t

(
fpit − fpi

)2

)

,

which yields (25).
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Appendix Figure 1: Sharpe Ratio on bilateral forward premium trade for each currency in
1 Rebalance sample plotted over that currency’s βfpp

i estimated in the pre-sample. 1-month
forward contracts used throughout.

Appendix Figure 2: Summary of Estimates of the Elasticity of Risk Premia with
Respect to Forward Premia across Samples and Horizons
The figure plots all estimates and 95% confidence intervals of βfpp and βct from Table 3. Small squares show

point estimates, and large squares identify the median estimate for each elasticity across samples/horizons. The

right-hand-side axis summarizes the implications of the estimates for linear models of currency risk premia.
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Appendix Table 1: Implementing the Carry Trade Using Alternative Weighting Schemes

1 Rebalance 3 Rebalance 6 Rebalance 12 Rebalance

Expected Return 4.95 6.43 2.73 4.50 4.60 3.11 4.28 4.60 2.97 5.45 5.29 2.88
Sharpe Ratio 0.54 0.66 0.80 0.54 0.53 0.69 0.50 0.55 0.67 0.69 0.66 0.63

max $ short 0 0 -0.60 0 0 -0.42 0 0 -0.23 0 0 -0.17
max $ long 0 0 0.71 0 0 0.75 0 0 0.69 0 0 0.72

Linear weights Yes Yes Yes Yes
HML Yes Yes Yes Yes
Equally weighted Yes Yes Yes Yes

Note: Mean returns and Sharpe ratios achieved by three different implementations of the carry trade
across our four main samples. (1) “Linear weights”: weight each currency by the difference between its
forward premium and the average forward premium across currencies at the time as in equation (2); (2)
“HML”: separate currencies into five portfolios and go long the currencies in the last portfolio (highest
forward premia) and short the currencies on the first portfolio (lowest forward premia) as described in
Lustig et al. (2011); (3) “Equally weighted”: go long all currencies whose forward premium is larger
than zero and short all other currencies, normalizing total investment to $1 as described in Burnside
et al. (2011).
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Appendix Table 3: Currency Portfolios Using Alternative Samples

(1) (2) (3) (4) (5) (6)
Sample 1 Rebalance (no fixed) LRV
Horizon (months) 1 1 6 12 1 1

Static Trade∑
i,t[rxi,t+1(fp

e

i − fp
e
)] 3.36 1.38 3.64 3.97 4.10 1.96

Sharpe Ratio 0.44 0.18 0.37 0.38 0.47 0.22
Dynamic Trade∑

i,t[rxi,t+1(fpi,t − fpt − (fp
e

i − fp
e
))] 1.05 -0.62 -0.25 0.50 1.02 -0.76

Sharpe Ratio 0.18 -0.11 -0.04 0.09 0.16 -0.12
Dollar Trade∑

i,t[rxi,t+1(fpt − fp
e
)] 2.86 1.37 3.01 3.82 2.42 1.09

Sharpe Ratio 0.24 0.12 0.26 0.27 0.24 0.11

Carry Trade∑
i,t[rxi,t+1(fpi,t − fpt)] 4.41 2.31 3.70 4.68 5.12 2.93

Sharpe Ratio 0.50 0.26 0.32 0.41 0.55 0.32
% Static Trade 76% 182% 107% 89% 80% 163%

Forward Premium Trade∑
i,t[rxi,t+1(fpi,t − fp

e

i )] 3.90 1.65 2.97 4.48 3.44 1.10
Sharpe Ratio 0.27 0.11 0.20 0.26 0.23 0.07

% Dollar Trade 73% 183% 109% 88% 70% 330%

Sample 4 Rebalance (CIP) BER

Static Trade∑
i,t[rxi,t+1(fp

e

i − fp
e
)] 4.87 0.19 2.97 5.11 -6.78

Sharpe Ratio 0.53 0.02 0.21 0.49 -0.63
Dynamic Trade∑

i,t[rxi,t+1(fpi,t − fpt − (fp
e

i − fp
e
))] 0.93 -2.34 0.11 1.12 -5.94

Sharpe Ratio 0.12 -0.31 0.01 0.21 -1.09
Dollar Trade∑

i,t[rxi,t+1(fpt − fp
e
)] 4.51 2.55 4.26 6.30 1.54

Sharpe Ratio 0.31 0.17 0.26 0.26 0.06

Carry Trade∑
i,t[rxi,t+1(fpi,t − fpt)] 5.80 2.08 3.62 6.23 -2.78

Sharpe Ratio 0.71 0.25 0.24 0.63 -0.28
% Static Trade 84% . 99% 82% .

Forward Premium Trade∑
i,t[rxi,t+1(fpi,t − fp

e

i )] 5.44 1.57 4.54 7.42 -1.36
Sharpe Ratio 0.27 0.08 0.22 0.30 -0.05

% Dollar Trade 83% 747% 99% 85% .

Bid-Ask Spreads No Yes Yes Yes No Yes

Note: This table replicates all calculations in Table 2 using alternative data samples. Columns
1-4 of the top panel use the 1 Rebalance sample but drop currencies that have a fixed official
exchange rate with respect to the US dollar. Columns 5 and 6 of the top and bottom panels use
samples that are as close as possible to the samples used in Lustig et al. (2011) and Burnside
et al. (2006). Columns 1-4 of the bottom panel use an extended sample using all available US
dollar- and UK pound-based forward data as well as forward rates imputed using interest rate
data. See Appendix A for details. 30



Appendix Table 4: Estimates of the Elasticity of Risk Premia with respect to Forward Premia
Using Alternative Samples

1 Rebalance (no fixed) LRV
(1) (2) (3) (4) (5) (6)

Horizon (months) 1 1 6 12 1 1

Static T: βstat 0.52*** 0.44*** 0.63*** 0.66*** 0.57*** 0.45***
(0.08) (0.08) (0.10) (0.10) (0.09) (0.10)

Dynamic T: βdyn 0.41 0.38 0.28 0.46 0.43* 0.40
(0.28) (0.28) (0.36) (0.29) (0.25) (0.25)

Dollar T: βdol 3.12* 3.11** 3.28 3.80* 3.32** 3.23*
(1.61) (1.57) (2.25) (2.24) (1.59) (1.82)

Carry Trade: βct 0.63** 0.50* 0.56** 0.65** 0.69** 0.56**
(0.26) (0.26) (0.28) (0.25) (0.27) (0.26)

% ESS Static T 71 68 90 78 73 65

Forward Premium T: βfpp 0.96** 0.92** 0.95* 1.22*** 0.88** 0.84**
(0.40) (0.40) (0.50) (0.47) (0.35) (0.35)

% ESS Dollar T 94 95 98 95 92 93

N 2334 2334 2269 2191 2616 2616

4 Rebalance (CIP) BER

Static T: βstat 0.21*** 0.13*** 0.24*** 0.26*** 0.19
(0.06) (0.03) (0.06) (0.03) (0.14)

Dynamic T: βdyn 0.18* 0.15 0.20 0.38*** 0.19*
(0.11) (0.11) (0.12) (0.15) (0.11)

Dollar T: βdol 1.83 1.72 2.06* 1.31 1.46
(1.19) (1.20) (1.10) (1.32) (1.25)

Carry Trade: βct 0.57*** 0.39** 0.36** 0.67*** 0.38**
(0.16) (0.17) (0.17) (0.18) (0.18)

% ESS Static T 69 55 74 53 68

Forward Premium T: βfpp 0.42*** 0.38*** 0.63*** 0.74*** 0.60***
(0.15) (0.15) (0.18) (0.25) (0.20)

% ESS Dollar T 94 95 96 88 96

N 5558 5533 5231 3161 3997

Bid-Ask Spreads No Yes Yes Yes No Yes

Note: This table replicates all calculations in Table 3 using alternative data samples.
Columns 1-4 of the top panel use the 1 Rebalance sample but drop currencies that have
a fixed official exchange rate with respect to the US dollar. Columns 5 and 6 of the top
and bottom panels use samples that are as close as possible to the samples used in Lustig
et al. (2011) and Burnside et al. (2006). Columns 1-4 of the bottom panel use an extended
sample using all available US dollar- and UK pound-based forward data as well as forward
rates imputed using interest rate data. Asterisks denote statistical significance at the 1
(***), 5 (**) and 10% (*) level. See Appendix A for details.
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Appendix Table 5: Estimates of the Elasticity of Risk Premia with respect to Forward Premia
calculated using a fixed set of currencies, focusing on developed countries, and after adjusting
for US inflation
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(1) (2) (3) (4) (5) (6) (7) (8)
Sample 1 Rebalance 3 Rebalance

Static T: βstat 0.47*** 0.47*** 0.52*** 0.47*** 0.26*** 0.29*** 0.25*** 0.26***
(0.08) (0.08) (0.10) (0.08) (0.05) (0.04) (0.05) (0.05)

Dynamic T: βdyn 0.44* 0.44* 0.40 0.44* 0.28* 0.27 0.21 0.27*
(0.25) (0.25) (0.35) (0.25) (0.15) (0.19) (0.18) (0.15)

Dollar T: βdol 3.11* 3.11* 3.82** 3.46** 0.91 1.70 1.23 0.90
(1.60) (1.60) (1.52) (1.62) (1.18) (1.08) (1.14) (1.18)

Carry Trade: βct 0.68** 0.68** 0.90** 0.68** 0.57*** 0.51** 0.63** 0.56***
(0.27) (0.27) (0.40) (0.27) (0.19) (0.22) (0.29) (0.19)

% ESS Static T 62 62 85 62 56 63 68 57

Forward Premium T: βfpp 0.86** 0.86** 1.85*** 0.92*** 0.41** 0.58** 0.55** 0.41**
(0.34) (0.34) (0.44) (0.35) (0.20) (0.25) (0.24) (0.20)

% ESS Dollar T 90 90 99 92 75 91 95 75

N 2706 2706 1674 2706 4494 3407 2759 4428

Sample 6 Rebalance 12 Rebalance

Static T: βstat 0.23*** 0.26*** 0.22*** 0.22*** 0.34*** 0.38*** 0.18** 0.33***
(0.05) (0.03) (0.05) (0.05) (0.08) (0.04) (0.09) (0.09)

Dynamic T: βdyn 0.19 0.17 0.12 0.18 0.16 0.08 0.05 0.15
(0.14) (0.19) (0.20) (0.14) (0.11) (0.15) (0.15) (0.12)

Dollar T: βdol 0.87 1.85 1.18 1.29 1.71 2.55 1.15 1.85
(2.59) (2.94) (2.87) (2.65) (2.26) (1.75) (2.27) (2.28)

Carry Trade: βct 0.56*** 0.52** 0.63** 0.54*** 0.67*** 0.68*** 0.66*** 0.65***
(0.18) (0.22) (0.29) (0.17) (0.16) (0.18) (0.25) (0.16)

% ESS Static T 70 79 83 71 90 98 96 91

Forward Premium T: βfpp 0.24 0.28 0.26 0.27 0.30* 0.35* 0.26 0.30*
(0.19) (0.26) (0.29) (0.20) (0.16) (0.20) (0.25) (0.16)

% ESS Dollar T 62 90 97 81 92 99 99 94

N 4842 3503 2759 4728 6019 4128 3191 5899

Note: This table replicates calculations without bid-ask spreads in Table 3 using alternative assumptions and
samples. Columns 1 and 5 replicate the results from Table 3. Columns 2 and 6 use the same countries included
in the 1 Rebalance sample, while still updating expectations of fp

e

i at 3, 6, and 12 dates (but not allowing entry
of currencies as in Table 3). Columns 3 and 7 include only developed countries (see caption of Appendix Table
2). Columns 4 and 8 subtract the lead of 1-year U.S. inflation from returns.
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Appendix Table 6: Bootstrapped Standard Errors for 12 Rebalance Sample

(1) (2) (3) (4)
Horizon (months) 1 1 6 12

Static T: βstat 0.34** 0.23 0.31*** 0.30***
(0.15) (0.15) (0.12) (0.11)

Dynamic T: βdyn 0.16 0.13 0.06 -0.01
(0.11) (0.12) (0.14) (0.11)

Dollar T: βdol 1.71 1.61 0.02 -0.23
(2.36) (2.40) (2.88) (1.76)

Carry Trade: βct 0.67*** 0.52** 0.57** 0.22
(0.24) (0.25) (0.23) (0.27)

% ESS Static T 90*** 86*** 99*** 100***
(15) (24) (18) (15)

Forward Premium T: βfpp 0.30 0.26 0.05 -0.03
(0.27) (0.28) (0.36) (0.24)

% ESS Dollar T 92*** 94*** 1 95***
(24) (23) (22) (23)

Bid-Ask Spreads No Yes Yes Yes

Note: This tables uses our 12 Rebalance sample to block-
bootstrap standard errors corresponding to columns 5-8 of Table
3. In this procedure, we treat each of the 12 two-year periods in
between re-balancing dates as one block and draw 100,000 ran-
dom samples with replacement from this set of histories. Using
this approach to constructing standard errors, the table also re-
ports standard errors for % ESS Static T and % ESS Dollar T.
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Appendix Table 7: Alternative Estimates of βdyn and βfpp using Different Approaches to
Estimating the Variance of Forecast Errors, var(fpi − fp

e

i )

Restrictions on (18) βdyn βfpp

ρ1,i = ρ1, ρ2 = 0 0.17 0.38
(0.18) (0.24)

ρ2 = 0 0.45* 0.88**
(0.25) (0.35)

unrestricted 0.47* 0.89**
(0.26) (0.36)

unrestricted GARCH(1,1) 0.45 1.01**
(0.28) (0.39)

Note: Estimates of βdyn and βfpp calculated by combin-
ing (15) and (16) with different approaches to estimating
the variance of forecast errors, var(fpi −fp

e

i ). The esti-
mates in the top panel are calculated by estimating (18)
in the pre-sample data for each currency and then calcu-
lating the implied variance of the forecast error in a sam-
ple with length T = 186 months. Bottom panel: The
GARCH(1,1) model relaxes the assumption that innova-
tions to forward premia in (18), εf

it, are distributed with
constant variance and assumes instead εf

it ∼ N
(
0, σ2

i,t

)

where σ2
i,t = b0

i + b1
i (ε

f
i,t−1)

2
+ b2

i σ
2
i,t−1. If the estimated

coefficients in the GARCH imply nonstationary dynam-
ics, we revert to an AR(1) specification. In case the
estimated ρ1,i coefficient is larger than 1, we set it to
0.999. Asterisks denote statistical significance at the 1
(***), 5 (**) and 10% (*) level. See section 3.1.2 of the
main text for details.
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Appendix Table 8: Estimates of βfpp
FE in Monte Carlo Simulations where Exchange Rates are

Unpredictable (βfpp = 1)

JP
Y
, A
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ev
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s
1
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eb
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m
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e

Process for fpit βfpp
FE/βfpp

common AR(1) 1.09 1.10 1.12
[1.01, 1.25] [1.05, 1.17] [1.06, 1.19]

AR(1) 1.10 1.13 1.45
[1.01, 1.27] [1.05, 1.24] [1.08, 2.32]

GARCH(1,1) 1.29 1.21 1.92
[1.02, 1.9] [1.08, 1.42] [1.15, 3.33]

Note: This table shows the average β̂
fpp

FE and 90% con-
fidence intervals obtained from imposing βfpp = 1 and
simulating 1,000 time paths of forward premia for each
of the currencies in our sample. Three models were used
to generate these time paths: (i) “common AR(1)” as in
equation (18) where ρi,1 = ρ1 and ρ2 = 0; (ii) “country-
specific AR(1)” as in equation (18) where ρ2 = 0; and
(iii) “GARCH(1,1)” as described in the note of Appendix
Table 7. Three different samples of currencies were used:
(i) “JPY, AUD and NZD” — a sample restricted to the
Japanese yen, Australian dollar and New Zealand dollar;
(ii) “Developed countries” using only developed countries
from our 1 Rebalance sample (see caption of Appendix
Table 2); and (iii) our 1 Rebalance sample. Parameters
are estimated in each of these (full) samples and then, for
given parameters, simulated for an artificial sample of 180-
months.
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Appendix Table 9: Estimates of the Elasticity of Risk Premia with respect to Forward Premia
Using Constrained Model

(1) (2) (3) (4) (5) (6) (7) (8)
Sample 1 Rebalance 3 Rebalance
Horizon (months) 1 1 6 12 1 1 6 12

Overall Beta: β 0.97*** 0.85** 0.92** 1.05*** 0.60*** 0.49** 0.58** 0.62***
(0.35) (0.34) (0.39) (0.37) (0.22) (0.22) (0.24) (0.24)

N 2706 2706 2631 2541 4494 4494 4374 4230

Sample 6 Rebalance 12 Rebalance

Overall Beta: β 0.59*** 0.48** 0.57*** 0.26 0.70*** 0.57*** 0.66*** 0.37*
(0.21) (0.21) (0.22) (0.17) (0.19) (0.19) (0.19) (0.20)

N 4842 4842 4712 4556 6019 6019 5874 5644

Bid-Ask Spreads No Yes Yes Yes No Yes Yes Yes

Note: Estimates of the elasticity of currency risk premia with respect to forward premia for a
constrained model in which βstat = βdyn = βdol using the specification

rxi,t+1 − rx = α + β
(
fpit − fp

e
)

+ εi,t+1.

Standard errors are in parentheses. Asterisks denote statistical significance at the 1 (***), 5 (**)
and 10% (*) level.
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Appendix Table 10: Bounds for Stambaugh Bias in Estimates of βfpp
i , βfpp, and βdol Calculated

using Kendall’s Approximation

Panel A Stambaugh Bias in β̂
fpp

i

Currency σuv

σ2
v

E
[
φ̂ − φ

]
E
[
β̂

fpp

i − βfpp
i

]
β̂

fpp

i

AUD 15.9 -0.02 -0.34 3.25
CAD -12.7 -0.02 0.27 4.36
CHF 6.6 -0.02 -0.14 3.59
DKK 3.1 -0.02 -0.07 4.43
HKD 0.1 -0.02 0.00 1.05
JPY 6.1 -0.02 -0.13 2.55
KWD -1.2 -0.02 0.03 -1.94
MYR 3.0 -0.02 -0.06 -1.96
NOK -0.5 -0.02 0.01 1.89
NZD 13.8 -0.02 -0.30 1.10
SAR 0.0 -0.02 0.00 1.36
SEK 10.6 -0.02 -0.23 3.37
SGD -6.6 -0.02 0.14 0.74
UK -1.1 -0.02 0.02 2.66
ZAR -8.8 -0.02 0.19 2.43

Panel B Stambaugh Bias in β̂
fpp

and β̂
dol

Coefficient σuv

σ2
v

E
[
φ̂ − φ

]
E
[
β̂ − β

]
β̂

βfpp n/a -0.02 -0.01 0.86

βdol -3.4 -0.02 0.07 3.27

Note: Panel A shows estimates of σuv

σ2
v

for each currency in

our 1 Rebalance sample estimated using (48) and (49); the
bias in the autoregressive coefficient in (49) calculated un-
der the assumption that φ = 0.99 and using and Kendall’s
approximation, E[φ̂ − φ] = −1+3φ

T
; the resulting bias in

estimates of βfpp
i calculated using (50); and the point es-

timate of βfpp
i for each currency. The first line in Panel B

shows the Stambaugh bias in βfpp implied by these num-
bers, calculated using the expressions given in Proposi-
tion 2 and (25), under the additional assumption that the
variance of the forecast error of fpi is equal to that es-

timated for our 1 Rebalance sample, var(fpi−fp
e
i )

var(fpit−fpi)
= 1.08.

The second line in Panel B also shows an estimate for the
Stambaugh bias in βdol, calculated in the same way as the
numbers in Panel A, but using rxt+1 and fpt.
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