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1 Introduction

Since at least the work of Kaldor (1935) and Bain (1949), economists have been aware that

incumbent firms may have incentives to take actions that deter entry by rivals. While models

of entry deterrence form much of the core of theoretical Industrial Organization (e.g., chapters

8 and 9 of Tirole (1994)), and surveys support the claim that managers often make investments

for strategic reasons (Smiley (1988)), empirical evidence that any particular model explains real-

world data is limited. One reason why is that it is unclear what the stylized two-period models

that form the backbone of the theoretical literature predict should happen when incumbents and

potential entrants interact repeatedly. This is especially true of the many theoretical models

that rely on asymmetric information.

To see why, consider, like we will, the classic two-period Milgrom and Roberts (1982) (MR)

model of limit pricing.1 In their model, an incumbent faces a potential entrant who is not

informed about some aspect of the market, such as the incumbent’s marginal cost. In equilibrium,

the incumbent may deter entry by choosing a price that is low enough to credibly signal that

the potential entrant’s post-entry profits will not cover its entry costs. However, once the model

is extended so that an incumbent can set prices in multiple periods and the potential entrant

has multiple opportunities to enter it is unclear a priori whether the model can give a unique

prediction about how the incumbent should price (for example, does it need to set low prices in

every period or only in a set of initial periods?). It is therefore also unclear whether the model

could ever be claimed to explain how an actual incumbent sets prices when it is threatened by

entry. Indeed, the common perception in the applied literature is that dynamic games with

persistent asymmetric information are too intractable to work with, at least using standard

equilibrium concepts (Doraszelski and Pakes (2007), Fershtman and Pakes (2012)).

We analyze a natural dynamic extension of the MR model where the incumbent’s marginal

cost is serially correlated but not perfectly persistent over time. We show that Markov Perfect

Bayesian Equilibrium strategies and beliefs on the equilibrium path are unique under an ap-

plication of the D1 refinement when a set of simple conditions on the primitives of the model

1The idea that incumbents might set low prices to deter entry is much older (Kaldor (1935), Clark (1940)
and Bain (1949)), but it was often rationalized by arbitrarily assuming that potential entrants would perceive
incumbents as committed to pre-entry prices (Gaskins (1971), Kamien and Schwartz (1971), Baron (1973) and,
for a critique, Friedman (1979)). MR addressed this issue with a model where the incumbent can use a low price
to signal information to an uninformed potential entrant. Matthews and Mirman (1983) and Harrington (1986)
provide early developments of the MR framework.
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are satisfied, and that strategies can be easily computed. The equilibrium strategies involve the

incumbent engaging in limit pricing to perfectly reveal its current marginal cost in every period,

so that our model predicts that the incumbent will keep prices low until entry actually occurs

(at which point we assume, like MR, that the game changes to be one of complete information).

Having developed the model, we explore whether it provides a potential explanation for the

phenomenon that incumbent airlines cut their prices significantly when Southwest, the most

successful U.S. low-cost carrier, becomes a potential entrant on an airport-pair route market but

does not yet serve the route.2 As documented by Morrison (2001) and Goolsbee and Syverson

(2008) (GS) these price cuts can be large, as much as 20% of previous prices, and have substan-

tial welfare effects. For example, Morrison estimates that Southwest’s presence as a potential

competitor reduced consumers’ annual spending on airfares by $3.3 billion in 1998.

We provide two types of empirical evidence. First, we present new reduced-form evidence that

favors a limit pricing explanation. To do so, we focus on a set of markets with a single dominant

incumbent, to match the assumptions of our theoretical model, and where the incumbents’

marginal costs are likely to be opaque.3,4 Following the strategy of Ellison and Ellison (2011)

(EE), we examine how the size of the incumbents’ price cuts varies with the probability of entry

by Southwest, which is estimated based on exogenous market characteristics such as market size.5

We find that the price declines tend to be much larger in markets with intermediate probabilities

of entry, rather than on routes where entry is either very likely or very unlikely. This is exactly

what we would expect to see if the price cuts are aimed at trying to deter entry, rather than,

for example, being part of an entry accommodation strategy which would lead to the size of

the price reductions increasing monotonically with the probability of entry. In contrast, we

show that some other strategies, such as increased code-sharing (Goetz and Shapiro (2012)), do

appear to be motivated by a desire to accommodate entry. We also provide evidence against

2Southwest will be defined as a potential entrant when it serves both endpoint airports.
3The routes in our sample typically involve the dominant incumbent’s hub and most of the traffic on the

incumbent’s flights are connecting to or from other destinations. As we discuss in Section 3.1, the resulting
network effects will tend to make it hard for outsiders to judge the incumbent’s marginal cost.

4In contrast, Morrison (2001) and GS consider a wide range of markets with heterogeneous market structures
where the incentives for strategic investment are also likely to vary significantly. It is intuitive that incentives to
invest in strategic entry deterrence should be weaker when there are several incumbents because of the incentive
to free ride (e.g., Waldman (1983), McLean and Riordan (1989)) although there are models where oligopolists can
engage in significant deterring behavior in equilibrium (e.g., Gilbert and Vives (1986), Waldman (1987), Kirman
and Masson (1986)).

5EE’s empirical application is to branded pharmaceuticals that face patent expiry. Dafny (2005) provides
another application of the same approach to hospital procedure markets.
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other explanations for why prices fall, including entry-deterring investments in capacity that

might lower incumbents’ marginal costs.

Second, we exploit our model’s tractability by calibrating it using demand and marginal cost

parameters that we estimate using data from our sample markets. We show that our simple model

is able to generate the size of the price declines that are observed for markets with intermediate

probabilities of Southwest entry. We also use our calibrated model to provide insights into which

parameters lead to more aggressive limit pricing in equilibrium and to compare welfare under

limit pricing to welfare when the incumbent’s marginal costs are observed or the incumbent

cannot use prices to signal.

Our work is related to several literatures beyond those dealing directly with models of limit

pricing and the effect of Southwest on its competitors’ prices. One example is the broader the-

oretical literature on signaling games. We make extensive use of results from Mailath (1987),

Mailath and von Thadden (2013) and Ramey (1996), which characterize equilibria and refine-

ments in models where there is only one opportunity to signal, in proving our theoretical results.

In particular, we apply their results recursively in our dynamic, finite-horizon game, showing

that a set of simple conditions on static payoffs and quantities are sufficient to generate a unique

and fully separating equilibrium outcome in every period. Roddie (2012a) and Roddie (2012b)

consider a dynamic quantity-setting game between duopolists where one of the firm’s marginal

costs is private information. This model has a similar structure to ours, and, like us, Roddie also

claims that there can be a unique fully separating Markov Perfect Bayesian equilibrium under a

recursive application of the D1 refinement, which in his case involves the informed firm behaving

like a Stackelberg leader. We differ from Roddie, however, in that we use a slightly different

set of high-level theoretical conditions, and, more importantly, we show how our high-level con-

ditions will be satisfied throughout the game under a set of relatively weak restrictions on the

static monopoly and duopoly payoffs and quantity outcomes. Kaya (2009) and, in a limit pricing

context, Toxvaerd (2013) consider repeated signaling models where the sender’s type is fixed over

time, which can lead to signaling only at the beginning of the game in equilibrium. In contrast,

we allow the incumbent’s type to evolve over time, according to a Markov process, which leads

to repeated signaling in equilibrium.6

6A model where the incumbent’s type is fixed would have difficulty in explaining two aspects of our empirical
application. First, incumbents not only cut prices when Southwest first appears as a potential entrant, they also
keep prices low even if Southwest does not initially enter. Second, and more fundamentally, if the incumbent’s
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A second connected literature is the broader empirical literature on strategic investment.

Most of this literature has adopted a qualitative approach, providing evidence by comparing the

investment decisions of different types of firms (e.g., Lieberman (1987)) or showing correlations

between incumbent investments and subsequent entry decisions (e.g., Chevalier (1995)), without

identifying the precise mechanism involved.7 The EE approach that we apply in Section 4 is also

qualitative, but, by applying the idea to different types of investment, we provide evidence that a

limit pricing story appears to provide the best explanation of the data. Recently Snider (2009),

Williams (2012), both in the context of alleged predation by airlines, and Chicu (2012) have

estimated structural Ericson and Pakes (1995)-style dynamic oligopoly models with complete

information (up to i.i.d. payoff shocks) where incumbents can deter entry or induce exit by

investing in capacity. These models often have multiple Markov Perfect Equilibria. We differ

from these papers in considering a dynamic model with asymmetric information and deriving

conditions under which the Markov Perfect Bayesian equilibrium that we look at is unique under

refinement. We also approach our empirical exercise in Section 5 by calibrating our model rather

than imposing it on the data, with the main goal of showing that our model can generate the

magnitude of price declines that we observe.8 We also provide evidence against the hypothesis

that capacity investment is used to deter entry in our setting.

A final related literature is concerned with modeling dynamic games in applied Industrial

Organization. Almost all of the existing literature follows Ericson and Pakes (1995) in assum-

ing that firms either observe all payoff-relevant variables or observe them up to some payoff

shocks that are i.i.d. over time. Given these assumptions, there is no scope for firms to signal

information about the future profitability of entry or any need for potential entrants to form

beliefs about their opponents’ types, ruling out by assumption many of the types of strategic

investment behavior proposed in the theoretical literature. In a recent paper, Fershtman and

Pakes (2012) (FP) provide a general framework for modeling a dynamic game with persistent

type is fixed then Southwest should be able to infer the incumbent’s type from how it set prices before Southwest
became a potential entrant, leaving it unclear what cutting prices once Southwest threatens entry would achieve.

7Salvo (2010) argues that Brazilian cement producers set prices at a level that prevents imports from being
profitable. However, Salvo’s setting differs from standard models of strategic investment where a potential entrant
has to pay a sunk cost to enter the market.

8We hope to develop and implement a direct estimation approach in future work, but to do so would likely
require developing a more complicated version of the model to allow, for example, time-varying carrier quality and
entry or exit by other firms. We would still require some element of calibration to pick bounds for the supports
of marginal cost that can affect the results. In the current paper we prefer to stay close to the relatively simple
theoretical model developed in Section 2, which is a natural dynamic extension of MR.
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incomplete information. As they argue, solving these models can be computationally challeng-

ing not least because of the need to store the potentially complicated beliefs that players may

have about other players’ types. They suggest circumventing this computational problem using

an alternative solution concept, Experience Based Equilibrium (EBE). In an EBE, players only

have beliefs about expected payoffs from their own actions rather than their rivals’ types; these

expectations are based only on some limited observed history; and, optimality is only required in

an endogenously-determined recurrent class of states. These assumptions simplify computation

and storage, but they may tend to increase the number of equilibria, and, if there are multiple

EBEs, there is no clear way either to enumerate them or to select a particular prediction. Our

approach is quite different. We consider a specific model of a dynamic game with asymmetric

information where, under some additional conditions, we are able to characterize a PBE that has

a very tractable form which allows us to avoid the computational problems that FP identify.9

While our approach lacks the generality of the approach proposed by FP, it has two advantages

for our goal of studying dynamic limit pricing in an empirical setting. First, we can use exist-

ing concepts to show that our equilibrium is unique under refinement, so that it is clear what

our model predicts.10 Second, because beliefs are explicitly modeled it is natural to talk about

signaling, and there is a clear link between our model and the two-period MR model of limit

pricing.

The rest of the paper is organized as follows. Section 2 lays out our model of dynamic limit

pricing and characterizes the equilibrium. Section 3 describes our data. It also discusses in some

detail why we view our model as being potentially applicable to understanding how incumbents

respond to the threat of entry in our sample of markets. Section 4 provides the reduced-form

(GS and EE-style) evidence in support of our limit pricing model and Section 5 describes our

calibration of the model. Section 6 concludes. Appendix A contains all of our theoretical proofs

with additional appendices detailing aspects of our empirical work.

9These are not the only differences. FP consider a model with finite state and action spaces. This may also
limit a player’s ability to signal its type, by requiring at least some pooling when there are more types than
possible actions. In contrast, we consider a game where the signaling firm chooses a continuous action (price).

10Of course, refinements impose additional assumptions, here on the inferences that a potential entrant would
make if it observed an off-the-equilibrium-path action, that a critic might view as unreasonable.
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2 Model

In this section we develop our theoretical model of a dynamic entry deterrence game with seri-

ally correlated asymmetric information. We describe the Markov Perfect Bayesian Equilibrium

(MPBE) of the model where incumbents perfectly reveal their type each period and explain the

conditions under which this equilibrium both exists and is unique when the D1 refinement is

applied recursively. Proofs are in Appendix A. Finally, we explain how equilibrium strategies

can be computed using a recursive algorithm.

We present the model in an abstract way to be clear about what features of our results are

general, rather than dependent on specific parametric choices that we will make to calibrate our

model using airline data. In the next section we explain why we believe that our model may be

useful for understanding how incumbents behave in at least some airline markets.

2.1 Model Specification

There is a finite sequence of discrete time periods, t = 1, ..., T , two long-lived firms and a common

discount factor of 0 < β < 1. We assume finite T so that we can apply backwards induction to

prove certain properties of the model, but, when illustrating strategies in our calibration exercise

below, we will assume that T is large and focus on the strategies that will be (almost) stationary

in the early part of the game.11

At the start of the game, firm I is an incumbent, who is assumed to remain in the market

forever, and firm E is a long-lived potential entrant. It is assumed that E will remain as

a potential entrant until it enters, and that, once it enters, it will also remain in the market

forever. The marginal costs of the firms, cE,t and cI,t lie on compact intervals CE := [cE, cE]

and CI := [cI , cI ] and evolve, independently, according to Markov processes ψI : cI,t−1 → cI,t and

ψE : cE,t−1 → cE,t, with full support (i.e., costs can evolve to any point on the support in the

next period). We denote the conditional probability density functions (pdfs) by ψI(cI,t|cI,t−1)

and ψE(cE,t|cE,t−1). We make the following assumptions.

Assumption 1 Marginal Cost Transitions

11We could follow Toxvaerd (2008) who takes the T → ∞ limit of finite horizon games, for which properties
can be shown using backwards induction, to prove the properties of equilibria in a game with an infinite horizon.
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1. ψI(cI,t|cI,t−1) and ψE(cE,t|cE,t−1) are continuous and differentiable (with appropriate one-

sided derivatives at the boundaries).

2. ψI(cI,t|cI,t−1) and ψE(cE,t|cE,t−1) are strictly increasing i.e., a higher cost in one period

implies that higher costs in the following period are more likely. Specifically, we will require

that for all cj,t−1 there is some x′ such that
∂ψj(cj,t|cj,t−1)

∂cj,t−1
|cj,t=x′ = 0 and

∂ψj(cj,t|cj,t−1)

∂cj,t−1
< 0 for

all cj,t < x′ and
∂ψj(cj,t|cj,t−1)

∂cj,t−1
> 0 for all cj,t > x′. Obviously it will also be the case that∫ cj

cj

∂ψj(cj,t|cj,t−1)

∂cj,t−1
dcj,t = 0.

To enter in period t, E has to pay a private-information sunk entry cost, κt, which is an

i.i.d. draw from a commonly-known time-invariant distribution G(κ) (density g(κ)) with support

[κ = 0, κ].

Assumption 2 Entry Cost Distribution

1. κ is large enough so that, whatever the beliefs of the potential entrant, there is always some

probability that it does not enter because the entry cost is too high.

2. G(·) is continuous and differentiable and the density g(κ) > 0 for all κ ∈ [0, κ].

Demand is assumed to be common knowledge and fixed, although it would be straightforward

to extend the model to allow for time-varying demand as long as it is observed by both firms.

Similarly one can allow for an observed common element of marginal costs (e.g., fuel prices) that

changes over time, with the Markov processes described above only affecting the idiosyncratic

component of costs.

2.1.1 Pre-Entry Game

Before E has entered, so that I is a monopolist, E does not observe cI,t. E does observe the

whole history of the game to that point. The timing of the game in each of these periods is as

follows:

1. I and E observe cE,t (the entrant’s marginal cost).

2. E observes κt (I does not).
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3. I sets a price pI,t, and receives profit

πMI (pI,t, cI,t) = qM(pI,t)(pI,t − cI,t) (1)

where qM(pI,t) is the demand function of a monopolist. Define

pstatic monopoly
I (cI) ≡ argmaxpIq

M(pI)(pI − cI) (2)

The incumbent can choose a price from the compact interval [p, p] where p must be greater

than pstatic monopoly
I (cI), the static monopoly price that an incumbent with cost cI would

choose. All of our theoretical results would hold when the monopolist sets a quantity, but

we choose not to present our model in this way because it is more natural to assume price-

setting when talking about limit pricing. The choice of strategic variable in the duopoly

game that follows entry may matter, as will be explained below.

4. E observes pI,t.

5. E decides whether to enter (paying κt if it does so). If it enters, it is active at the start of

the following period.

6. Marginal costs of both firms evolve independently according to ψI and ψE.

Assumption 3 Monopoly Payoffs

1. qM(pI), the demand function of a monopolist, is strictly monotonically decreasing in pI ,

continuous and differentiable.

2. πMI (pI , cI) is continuous and differentiable in both arguments, has a unique optimum in

price and for any pI ∈ [p, p] where
∂2πMI (pI ,cI)

∂p2
I

> 0 ∃k > 0 such that
∣∣∣∂πMI (pI ,cI)

∂pI

∣∣∣ > k for all

cI . These assumptions are consistent, for example, with strict quasi-concavity of the profit

function.

3. p ≥ pstatic monopoly
I (cI) and p is low enough such that no firm would choose it (for any t)

even if this would prevent E from entering whereas any higher price would induce E to

enter with certainty.12

12For some parameters, although not those in our calibration, this could require p < 0. The purpose of this
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2.1.2 Post-Entry Game

We assume that once E enters both marginal costs, which continue to evolve as before, are

observed before choices are made each period, so there is no scope for further signaling, and that

both firms receive static equilibrium per-period profits, πDI (cI,t, cE,t) and πDE (cE,t, cI,t), where the

different functions allow for fixed quality differences between the firms. The firms’ equilibrium

outputs are qDI (cI,t, cE,t) and qDE (cE,t, cI,t). The choice variables of the firms in the static duopoly

game are aI,t and aE,t (which could be prices or quantities).

Assumption 4 Duopoly Payoffs and Output

1. πDI (cI , cE), πDE (cE, cI) ≥ 0 for all (cI , cE). This assumption also rationalizes why neither

firm exits.

2. πDI (cI , cE) and πDE (cE, cI) are continuous and differentiable in both arguments. For both

firms, duopoly profits are strictly monotonically increasing in their rival’s marginal cost

and strictly monotonically decreasing in their own marginal cost.

3. πDI (cI , cE) < πMI (pstatic monopoly
I (cI), cI) for all (cI , cE).

4. qDI (cI , cE)− qM(pstatic monopoly
I (cI))−

∂πDI (cI ,cE)

∂aE

∂aE
∂cI

< 0 for all (cI , cE).

The fourth assumption here is the key condition that we use to show that a single cross-

ing property will hold in our model in every period because it determines that a decrease in

marginal cost is more advantageous to a monopolist than a duopolist.13 The sign of the last

term will depend on whether the duopolists compete in strategic complements (prices) or substi-

tutes (quantities), with the condition being easier to satisfy when they compete in prices as an

increase in the incumbent’s marginal cost will lead to the entrant setting a higher price, which

is good for the incumbent.14 While it is perhaps natural to assume that the post-entry game

involves simultaneous price or quantity choices, this does not need to be the case as long as

restriction is to ensure that the action space is large enough to allow all types to separate.
13Note that because demand is decreasing in price, if this condition holds when a monopolist incumbent sets

the monopoly price then it will also hold if it sets a lower limit price, a fact that is used in the proof.
14In his presentation of the two-period MR model, Tirole (1994) suggests a condition that a static monopolist

produces more than a duopolist with the same marginal cost is reasonable. However, it will not hold in all models,
such as one with homogeneous products and simultaneous Bertrand competition when the entrant has the higher
marginal cost but it is below the incumbent’s monopoly price.
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payoffs and outputs satisfy the conditions in Assumption 4. For example, one might assume that

the incumbent maintains some advantage and acts as a Stackelberg leader.15

2.1.3 Comparison with Milgrom and Roberts (1982)

MR provide the classic two-period model of limit pricing in which one firm (our I) is a monopolist

in the first period, and a second firm (E) can observe its price or output before deciding whether

to enter in the second period. In the model on which they focus, the marginal costs of both

firms are private information in the first period while E’s entry cost is commonly known. The

marginal costs of both firms, which in their case do not vary over time, are publicly revealed if

E enters, so that, with entry, second period competition is static Cournot or Bertrand. I can

attempt to deter entry by using its first-period quantity/price choice to signal its marginal cost

to E.

Our cost assumptions differ in two respects. First, in our model the incumbent’s marginal

costs can evolve over time, specifically in a positively serially correlated way. We need correlation,

which takes an extreme form in the MR model, in order for the monopolist to have a state

variable that will affect an entrant’s profit from entering to signal. On the other hand, we need

the incumbent’s marginal cost to be able to change from period-to-period in order to generate an

incentive for the incumbent to engage in limit pricing in every period before entry occurs. As a

comparison, Kaya (2009) and Toxvaerd (2013) consider dynamic models in which the informed

party’s type is fixed over time, where the natural equilibrium to consider involves it signaling

only in initial periods after which point the receiver is convinced of the informed party’s type.

Second, we assume that the entrant’s marginal costs, which we allow to be serially correlated,

are observed, but that its entry costs, which are i.i.d. draws, are not. As a result, in our model,

as in MR, only one player (E) is learning and E’s entry is probabilistic from the perspective of

I.16 On the other hand, in a model where E has any unobserved but serially correlated state

variable, I would want to draw inferences about that variable from E’s entry decision, leading to

a quite different kind of model to the one considered by MR. Modeling entry costs as unobserved

15Moving further away from the simple structure of the MR model, there is also scope to relax the assumption
that there is complete and symmetric information post-entry, by following Roddie (2012a) who considers a duopoly
game where firms choose quantities simultaneously but the costs of one of the firms is unknown. In this case,
our characterization of behavior in the pre-entry game would still hold if the payoff and output conditions in
Assumption 4 hold during all periods of the continuation game that follows entry.

16We could also assume that κt is only revealed after pI,t has been chosen, but that at that point it is observed
by both firms.

11



and i.i.d. while E’s marginal costs are observed and possibly serially correlated is also attractive

for two additional reasons: first, in the entry games literature it is quite standard to treat entry

cost draws as being private information and independent; and, second, it seems natural to allow

for serial correlation in the entrant’s marginal costs given our assumptions on I’s marginal costs

and our estimation results in Section 5. We will also argue below that Southwest’s business

model, which involves a simpler network structure than legacy carriers, adds some plausibility

to the idea that Southwest’s marginal costs might be more transparent than those of legacy

carriers.17

2.2 Equilibrium

Unique Nash equilibrium behavior post-entry, when the two firms play a complete information

duopoly game, is assumed.18 We are therefore interested in characterizing play before E enters.

Our basic equilibrium concept is MPBE (Roddie (2012a), Toxvaerd (2008)). The definition of

a MPBE requires, for each period:

• a time-specific pricing strategy for I, as a function of both firms’ marginal costs ςI,t :

(cI,t, cE,t)→ pI,t;

• a time-specific entry rule for E, σE,t, as a function of its beliefs about I’s marginal cost,

its own marginal costs and its own entry cost draw; and,

• a specification of E’s beliefs about I’s marginal costs given all possible histories of the

game.

In an equilibrium, for all possible cE,t and cI,t, E’s entry rule should be optimal given its

beliefs, its beliefs should be consistent with I’s strategy on the equilibrium path and the evolution

of marginal costs, and I’s pricing rule must be optimal given what E will infer from I’s price

and how E will react based on these inferences.
17Note that if we instead assumed that entry costs are serially correlated and observed and the entrant’s

marginal cost is unobserved but i.i.d. (so there would still be one-way learning) then we would have to change
the model in some way so that E’s expected future profits would depend on its private information, as this is
necessary for its entry decision to be probabilistic from the perspective of the incumbent. For example, we might
assume that the potential entrant decides to enter once it knows its marginal cost for the next period, or that it
is actually able to compete in some part of the current period.

18Existence and uniqueness of the post-entry equilibrium will depend on the particular form of demand assumed,
and will hold for the common demand specifications (e.g., linear, logit, nested logit) with single product firms
and linear marginal costs.
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Fully Separating Riley Equilibrium (FSRE). We will consider an equilibrium where I’s

price perfectly reveals its current marginal cost, i.e., there is full separation, and where signaling

is achieved at minimum cost to I subject to the incentive compatibility constraints being satisfied

(i.e. the ‘Riley equilibrium’ (Riley (1979)).

The following theorem contains our main theoretical results.

Theorem 1 Consider the following strategies and beliefs:

In the last period, t = T , a monopolist incumbent will set the static monopoly price, and the

potential entrant will not enter whatever price the incumbent sets.

In all periods t < T :

(i) E’s entry strategy will be to enter if and only if entry costs κt are lower than a threshold

κ∗t (ĉI,t, cE,t), where ĉI,t is E’s point belief about I’s marginal cost and

κ∗t (ĉI,t, cE,t) = β[Et(φEt+1|ĉI,t, cE,t)− Et(V E
t+1|ĉI,t, cE,t)] (3)

where Et(V E
t+1|ĉI,t, cE,t) is E’s expected value, at time t, of being a potential entrant in period

t+1 (i.e., if it does not enter now) given equilibrium behavior at t+1 and Et(φEt+1|ĉI,t, cE,t) is its

expected value of being a duopolist in period t+ 1 (which assumes it has entered prior to t+ 1).19

The threshold κ∗t (ĉI,t, cE,t) is strictly decreasing in cE,t and strictly increasing in ĉI,t;

(ii) I’s pricing strategy, ςI,t : (cI,t, cE,t)→ p∗I,t, will, for a given value of cE,t, be the solution

to a differential equation

∂p∗I,t
∂cI,t

=
βg(·)∂κ

∗
t (cI,t,cE,t)

∂cI,t
{Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]}

qM(pI,t) +
∂qM (pI,t)

∂pI,t
(pI,t − cI,t)

(4)

and an upper boundary condition p∗I,t(cI , cE,t) = pstatic monopoly(cI). Et[V I
t+1|cI,t, cE,t] is I’s ex-

pected value of being a monopolist at the start of period t + 1 given current (t period) costs and

equilibrium behavior at t+ 1. Et[φIt+1|cI,t, cE,t] is its expected value of being a duopolist in period

t+ 1;

19We define values at the beginning of each stage. See the discussion in Appendix A for more details.
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(iii) E’s beliefs on the equilibrium path: observing a price pI,t, E believes that I’s marginal

cost is ς−1
I,t (pI,t, cE,t).

This equilibrium exists, and the above form the unique MPBE strategies and equilibrium-

path beliefs consistent with a recursive application of the D1 refinement. For completeness we

assume that if E observes a price which is not in the range of ςI,t(cI,t, cE,t) then it believes that

the incumbent has marginal cost cI .

Proof. See Appendix A.

Our proof applies results from the theoretical literature on one-shot signaling models recur-

sively. The first result that we use is from Mailath and von Thadden (2013).20 They provide

conditions on signaling payoffs21 that imply that there will be only one separating equilibrium,

where the strategy of the party that is signaling is determined by a differential equation and a

boundary condition. The key conditions are type monotonicity (a given price reduction always

implies a greater loss in current payoffs for an incumbent with a higher marginal cost), belief

monotonicity (the incumbent always benefits when the entrant believes that he has lower cI,t,

which reflects the monotonicity of the entrant’s entry rule) and a single crossing condition (a

lower cost incumbent is always willing to cut the current price slightly more in order to differ-

entiate itself from higher cost incumbents). Our contribution is to show that our assumptions

on the primitives of the model (or more precisely, static monopoly and duopoly quantities and

payoffs) are sufficient for I’s signaling payoff function to satisfy these conditions in every period

by applying backwards induction.22 Our conditions are not necessary, only sufficient, so that

our equilibrium may exist more generally.

Mailath and von Thadden’s results do not rule out the possible existence of pooling equilibria.

To do so we recursively apply the D1 refinement (Cho and Sobel (1990), Ramey (1996)), which is a

restriction on the possible inferences that E could make when observing off-the-equilibrium-path

actions. Specifically, in a one-shot signaling game, D1 restricts how off-the-equilibrium-path

20Mailath and von Thadden (2013) provides a generalization of Mailath (1987), expanding the set of models to
which the results apply.

21The signaling payoff function can be written as ΠI,t(cI,t, ĉI,t, pI,t, cE,t) where ĉI,t is E’s point belief about
the incumbent’s marginal cost when taking its period t entry decision. An alternative way of writing the payoff
function that is used when ruling out pooling equilibria is ΠI,t(cI,t, κ

′, pI,t, cE,t) where κ′ is the threshold used
by the potential entrant.

22This also involves showing that E’s strategy in every period will be a threshold rule.
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signals are interpreted by requiring the receiver to place zero posterior weight on a signaler

having a type θ1 if there is another type θ2 who would have a strictly greater incentive to deviate

from the putative equilibrium for any set of post-signal beliefs that would give θ1 an incentive to

deviate. Theorem 3 of Ramey (1996) shows that as long as a pool does not involve the incumbent

choosing (in our setting) the lowest possible price, pooling equilibria can be eliminated when the

signaling payoff function satisfies a single crossing condition.

Applying D1 in a setting with repeated signaling is potentially complicated by the possibility

that an off-the-equilibrium-path signal in one period could change how the receiver interprets

signals in future periods. Here we follow Roddie (2012a) in applying a recursive version of D1,

where we work backwards through the game, applying the refinement in each period, where,

even if an out-of-equilibrium action is observed, the players believe that they would use refined

equilibrium strategies in subsequent periods.

2.3 Solving the Model

Given a specific parameterization of the model (e.g., the form of demand and the supports and

transition processes for marginal costs), it is straightforward to compute pricing strategies and

entry probabilities. The solution algorithm is as follows.

Step 1. Specify a grid for cI and cE.23

Step 2. For each of the grid-points, calculate each firm’s single-period profits in the specified

full information duopoly game that follows entry.

Step 3. Consider period T . Calculate the incumbent’s static monopoly profits for each

discretized value of cI (in this period it does not face the threat of entry and so it prices as a

static monopolist). The incumbent’s static monopoly and duopoly profits define V I
T and φIT for

each value on the grid. For the potential entrant V E
T = 0 and φET is the static duopoly profit.

Step 4. Consider period T − 1. (a) For a given value of cE,T−1, use the assumed form of

the transition processes for marginal costs to calculate the value of ET−1[φET |cI,T−1, cE,T−1] for each

value of cI,T−1. As ET−1[V E
T |cI,T−1, cE,T−1] = 0 and κ∗T−1(cI,T−1, cE,T−1) = βET−1[φET |cI,T−1, cE,T−1],

we compute g(κ∗T−1) and
∂κ∗T−1(cI,T−1,cE,T−1)

∂cI,T−1
for each of these values. (b) Next, we solve for the

pricing strategy of the incumbent as a function of its marginal cost, by solving the differential

23In Section 5 we use an evenly-spaced grid with 100 points for each cost variable, and the results are essentially
identical using 50 or 200 points.
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equation starting from the boundary solution that the firm with the highest marginal cost sets

the static monopoly price

∂p∗I,T−1

∂cI,T−1

=
βg(κ∗T−1)

∂κ∗T−1(cI,T−1,cE,T−1)

∂cI,t
{ET−1[V I

T |cI,T−1, cE,T−1]− ET−1[φIT |cI,T−1, cE,T−1]}

qM(pI,T−1) +
∂qM (pI,T−1)

∂pI,T−1
(pI,T−1 − cI,T−1)

(5)

This is done using ode113 in MATLAB. Given known demand, the denominator can be computed

exactly for any value of cI,T−1 considered by the differential equation solver. We store this result,

and then repeat for all other values of cE,T−1. (c) Given the entry and pricing strategies we can

calculate V i
T−1(cI,T−1, cE,T−1) and φiT−1(cI,T−1, cE,T−1) for both firms (i.e., the values of each firm

as a monopolist/potential entrant/duopolist) as appropriate given the cost state.

Step 5. Consider period T − 2. Here we proceed using the same steps as in Step 4, except

that κ∗T−2(cI,T−2, cE,T−2) = β{ET−2[φET−1|cI,T−2, cE,T−2]− ET−2[V E
T−1|cI,T−2, cE,T−2]}.

Step 6. Repeat Step 5 for all previous periods.

3 Can Our Limit Pricing Model Explain How Incumbent

Carriers Respond to the Threat of Entry by Southwest?

We now turn to the question of whether our dynamic limit pricing model can explain why

incumbent carriers cut prices substantially when Southwest becomes a potential entrant on an

airline route. We present two types of evidence. First, in Section 4, we present reduced-

form evidence that indicates, for a set of routes that match the assumptions of our model, that

incumbents lower prices in order to try to deter entry, while providing evidence against alternative

explanations. Second, in Section 5, we perform a calibration that shows that our model can

generate price cuts of the magnitude observed in the data when we use demand and marginal

cost parameters that are estimated using data from our sample markets. In this section we

introduce our data and explain, in some detail, why we believe that our model may plausibly

describe behavior in a subset of airline markets.
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3.1 Relevance of Our Model to Entry By Southwest

Competition in airline markets, which we define as the routes between pairs of airports24, is

heterogeneous with routes between small cities often having no non-stop service, while large

markets may have several carriers competing non-stop. Previous analysis of the effects of

potential competition from Southwest (e.g., in GS) has used data from this wide range of markets.

However, we will test our model, which assumes an incumbent monopolist, by focusing on a subset

of markets with one dominant incumbent when Southwest becomes a potential entrant (defined

as Southwest serving both of the endpoint airports but not the route itself) and we will focus on

the pricing and other possibly strategic choices of this carrier.

Our model assumes that, prior to entry, the incumbent’s marginal cost is private information,

while the potential entrant’s marginal cost is public information but its entry costs are unob-

served.25 While it would complicate solving our model by adding additional state variables,

we could allow for additional factors, such as fuel costs or changes in the economy or airport

capacity, that affect marginal costs or demand and are observed by both firms, so what is really

critical is that there is an idiosyncratic portion of the incumbent’s marginal cost of serving a

route that is private information and serially correlated.

Why is it reasonable to believe that some part of the incumbent’s marginal cost is not observed

by other carriers? The key is the nature of economic costs on the routes in our dominant

incumbent sample. 90% of these routes involve a dominant legacy carrier, such as Delta, US

Airways or Continental, flying a route from one of its hubs to a non-hub airport. Its effective

marginal opportunity cost of selling a seat to someone who only wants to travel between these

airports will depend on the probability that this displaces a sale to someone else who wants to

travel the route as a segment that is part of a longer journey; the profitability of customers making

these onward connections; how operating planes on the route fits into the carrier’s overall network

configuration; and, the possible profits that the carrier could make if the capacity (planes or gates)

were to be switched to other routes. As has been well documented in cases of alleged predation

24We follow GS in defining markets as airport-pairs. An alternative approach would be to use city-pairs,
but using city-pairs would leave us with a very small sample of markets with a dominant incumbent carrier
where Southwest becomes a potential entrant during our sample. Morrison (2001) estimates that Southwest
has substantially smaller effects on fares when it only serves nearby airports as either an actual or a potential
competitor.

25In our conclusion we will discuss why we believe it makes sense to focus on a model where it is the incumbent’s
marginal costs that are not observed rather than some feature of demand.
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by legacy airlines (Edlin and Farrell (2004), Elzinga and Mills (2005)), these network-related

opportunity costs make it very difficult to determine a carrier’s marginal cost on routes involving

hubs even ex-post and with access to the carrier’s accounting data. Therefore, the incumbent’s

current marginal cost should certainly be somewhat opaque to carriers, like Southwest, that are

making contemporaneous decisions about whether to enter.26 The network component of costs

is also likely to be time-varying but highly persistent as the carrier’s network and the alternative

options that passengers have for making connections evolve slowly. In contrast, Southwest’s

marginal costs, which we assume are observed, are likely to be relatively transparent because it

operates a simpler point-to-point network using a fleet composed entirely of Boeing 737s.

In our view, the two informational assumptions that are actually harder to justify are that

Southwest’s current entry costs are unobserved to the incumbent and that the incumbent’s

marginal costs are observed once the potential entrant enters. The first assumption is designed

to capture the idea that, even if an incumbent knows factors that affect the attractiveness of

entry, it is likely difficult for it to determine exactly when Southwest will enter routes that appear

likely to be marginal in terms of Southwest’s profitability. In the context of our model one could

interpret this type of uncertainty as uncertainty about Southwest’s entry cost. As noted in

footnote 15, the second assumption is made so that our model is as similar as possible to MR

and for convenience, in the sense that assuming complete information post-entry simplifies the

assumptions required to characterize the equilibrium in the pre-entry game. At a general level,

it also seems plausible that entrants into a market should have a clearer view of their rivals’

marginal costs than potential entrants.27

While we can defend our cost assumptions, there are clearly important features of the industry

that our model abstracts away from. For example, a carrier’s marginal costs on different routes

are likely to be correlated so that a potential entrant should try to make inferences about costs on

a particular route from pricing on other routes as well. Our model is a model of a single market

26One might object that other carriers can use publicly available data to understand these network flows.
However, the Department of Transportation only releases these data with a lag of at least three months, and our
theoretical results hold even if we assume that the incumbent’s current marginal cost is revealed to the entrant
after it has made its entry decision.

27Dixit and Chintagunta (2007) estimate a model of route exit for discount airlines, excluding Southwest, where
they allow for discount airlines to learn about market conditions once they enter. While this implies that entrants
do not have complete information, they find that entrants learn very quickly (within one year), and, consistent
with our model, they also find that these conditions significantly affect the willingness of discount carriers to
compete. They exclude Southwest from their analysis on the basis that it very rarely exits markets that it enters.
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and we cannot capture cross-route effects. On a particular route a carrier also sets many prices

(first or business class and economy tickets, and tickets with and without restrictions that may

be available on different dates before departure). Our model ignores this feature, assuming that

the incumbent sets a single price. However, we will provide evidence that, on at least the routes

that fit the assumptions of our model, incumbent carriers cut prices across the entire distribution

of fares, which, at least intuitively, seems consistent with the idea of a carrier trying to signal

that its marginal cost of filling a seat is low. This fact will also provide some evidence against

alternative explanations for why incumbents cut prices when Southwest becomes a potential

entrant.

Another feature of our markets that differs from our model is that there are potential entrants

other than Southwest. While focusing only on the threat of entry by Southwest is a simplification,

it makes some sense given that Southwest’s rapid growth during our data and the very large

effect that it has on prices once it enters (Morrison (2001) and our results below) should make

incumbents particularly keen to deter Southwest’s entry if possible.28 Of course, one might

also be concerned that Southwest’s entry decisions would not be sufficiently sensitive to what it

believes about the incumbent’s marginal cost to generate significant limit pricing. Note, however,

that in our empirical examination we will focus on entry decisions at the route (airport-pair)

level, treating airport entry as exogenous, and we will identify price changes from routes that

Southwest does not initially enter.29 Therefore while Southwest almost always enters routes

to its focus airports, such as Chicago Midway and Las Vegas, as soon as it enters an airport

and there is probably very little that an incumbent could do to prevent this entry, we will

be focused on other routes. We are assuming, however, that there is some subset of routes

which, during our data, really are marginal for Southwest to enter so that its decisions could

28Wu (2012) compares the effects that potential entry by Southwest and JetBlue have on incumbent prices. He
finds that JetBlue has a substantially smaller effect. However, recent work by bin Salam and McMullen (2013),
who focus on how Southwest sets prices on routes where legacy carriers merge, and Wittman and Swelbar (2013),
who look at both the level of Southwest’s own prices and the prices that legacy carriers set as a function of
Southwest’s presence at an airport, suggests that the extent to which the presence of Southwest tends to lower
airfares has diminished since 2008. Our sample ends in 2010.

29Our regressions will include market (i.e., airport-pair) fixed effects. The key issue for identifying the effect
of an entry threat is whether the timing of Southwest’s entry decisions into airports is correlated with declines
in incumbent marginal costs in future periods. While one might be able to develop stories where this type of
correlation would exist (e.g., improvements in airport infrastructure that reduce incumbent marginal costs and
could also encourage Southwest to enter), our evidence in favor of our limit pricing model will primarily be based
on a comparison between routes based on how likely Southwest is to enter them, where the entry probability will
be determined by exogenous characteristics such as market size.
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be influenced by its beliefs about how competitive the incumbent would be if it entered. Our

empirical results will be consistent with this assumption: incumbents in markets where the

probability of entry, estimated based on exogenous route characteristics, is either very high or

very low will not tend to lower prices significantly when Southwest becomes a potential entrant

whereas on those routes where entry probabilities are intermediate, which it is natural to view

as marginal routes, incumbents cut prices significantly.30 The assumption that airline entry

decisions (not necessarily by Southwest) are sensitive to incumbent costs is also supported by

Zou (2013) who shows that route-level entry decisions are significantly affected by accounting

disclosures on how an incumbent’s fuel hedging strategy will affect its future operating costs, and

that entry decisions become more sensitive to this information when more complete disclosure is

required.

3.2 Data

Most of our data is drawn from the U.S. Department of Transportation’s Origin-Destination

Survey of Airline Passenger Traffic (Databank 1, DB1), a quarterly 10% sample of domestic

tickets, and its T100 database that reports monthly carrier-segment level information on flights,

capacity and the number of passengers carried on the segment (which may include connecting

passengers). We aggregate the T100 data to the quarterly level to match the structure of the

DB1 data. Our data covers the period from Q1 1993-Q4 2010 (72 quarters).31

Following GS, we define a market to be a non-directional airport-pair with quarters as periods.

We only consider pairs where, on average, at least 50 DB1 passengers are recorded as making

return trips each period, possibly using connecting service, and in everything that follows a one-

way trip is counted as half of a round-trip. We exclude pairs where the round-trip distance is

less than 300 miles. We define Southwest as having entered a route once it has at least 65 flights

per quarter recorded in T100 and carries 150 non-stop passengers on the route in DB1, and we

30The fact that, at least since the mid-1990s, Southwest’s entry is not completely determined by exogenous
market characteristics is supported by existing research. For example, Boguslaski, Ito, and Lee (2004) show that
the ability of a simple probit (based on exogenous market characteristics) to predict Southwest’s entry decisions
declined significantly in the 1990s (explaining only 41% of entry decisions from 1995-2000 compared with almost
60% for the 1990-2000 decade as whole).

31There are some changes in reporting requirements and practices over time. For example, prior to 1998
operating and ticketing carriers are not distinguished in DB1, making it impossible to analyze code-sharing.
Prior to 2002 regional affiliates, such as Air Wisconsin operating as United Express, were not required to report
T100 data, which introduces some limitations when we look at measures of capacity based on T100 such as the
number of available seats that a carrier has on a route.

20



consider it to be a potential entrant once it serves at least one route out of each of the endpoint

airports.

Based on our potential entrant definition there are 1,872 markets where Southwest becomes

a potential entrant after the first quarter of our data and before Q4 2009, a cutoff that we use

so we can see whether Southwest enters the market in the following year, an observed outcome

that we will use to estimate which market characteristics make entry more likely. Southwest

enters 339 of these markets during the period of our data. We will call these 1,872 markets

our “full sample”. Most of our analysis will focus on the subset of these markets where there

is one carrier that is a dominant incumbent before Southwest enters. As we want to identify

only carriers that are really committed to a market rather than just serving it briefly, we use the

following rules to identify a dominant carrier:

1. to be considered active in a quarter it must carry at least 150 DB1 non-stop passengers;

2. once it becomes active in a market the carrier must be active in at least 70% of quarters

before Southwest enters, and in 80% of those quarters it must account for 80% of direct

traffic on the market and at least 50% of total traffic.32

We identify 106 markets with a dominant incumbent before Southwest enters, but in some

of these markets Southwest enters at the same time as it becomes a potential entrant (i.e., the

market is one of the first ones that Southwest enters when it begins serving one of the endpoint

airports) and in a few of them the dominant incumbent becomes active only after Southwest

is a potential entrant on the route. In 65 markets we observe quarters where the incumbent

carrier is dominant both before Southwest becomes a potential entrant and after it is a potential

entrant but before it actually entered. It is data from these routes that will identify the effects

of the potential entry threat on the price set by a dominant incumbent, although we include

the remaining 41 routes in our regressions as they help to pin down the coefficients on the time

effects and other controls included in the specification.33 The 106 and 65 markets are listed in

32To apply this definition we have to deal with carrier mergers (for example, Northwest was the dominant
carrier on the Minneapolis-Oklahoma City route before it merged with Delta in 2008, after which Delta is the
dominant carrier). When we define fixed effects we treat the dominant carrier before and after a merger as the
same carrier even if the name of the carrier changed.

33For example, Southwest began service out of Philadelphia (PHL) in Q3 2004. It already operated at both
Chicago Midway (MDW) and Columbus, OH (CMH), and so, under our definitions, it became a potential entrant
into both the PHL-MDW (where the dominant incumbent was ATA) and PHL-CMH (where the dominant
incumbent was US Airways) markets in Q3 2004. However, it immediately began service on the PHL-MDW
route, but did not enter the PHL-CMH market until Q4 2006.
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Table 1: Comparison of the Full and Dominant Incumbent Samples

Full Sample Dominant Incumbent Samples
Mean Std. Dev Mean Std. Dev Mean Std. Dev

Mean endpoint pop. (m.) 2.373 1.974 2.850 1.894 3.155 2.081
Round-trip distance (miles) 2,548.48 1,327.04 1,251.44 749.58 1,315.10 803.07
Constructed market size 27,837 44,541 62,751 66,633 47,975 61,397
Origin or destination is a:

primary airport 0.161 0.368 0.330 0.473 0.277 0.451
secondary airport 0.301 0.459 0.321 0.469 0.354 0.482
big city 0.587 0.492 0.858 0.350 0.877 0.331
leisure destination 0.093 0.291 0.113 0.318 0.108 0.312
slot controlled airport 0.033 0.179 0.057 0.230 0.092 0.292

Number of markets 1,872 106 65

Appendix B.

Table 1 provides some statistics for the full sample, and the sub-samples of 106 and 65

markets. Relative to the full sample, the dominant incumbent markets tend to be shorter with

larger endpoint cities measured either by average population or by one of the cities being a city

that Gerardi and Shapiro (2009) identify as a “big city”. All of the markets in our dominant firm

sample are shorter than routes that Southwest flies non-stop (these include long, cross-country

routes such as Las Vegas-Providence), so, by this metric, it is plausible that Southwest could

enter any of our routes.34,35 As only the largest cities have multiple major airports, the dominant

incumbent markets are also more likely to involve an airport identified as a primary or secondary

airport. On the other hand, the standard deviations show that both sets of markets are quite

heterogeneous with respect to these market characteristics.

Table 1 also reports a constructed estimate of market size, which we will use when estimating

demand in Section 5 and as an additional variable for predicting the probability that Southwest

enters a market. As explained in Appendix C, this variable is constructed by estimating a gener-

34The longest route in the dominant firm sample is Las Vegas-Pittsburgh, which is one of the markets that
Southwest enters immediately. Even though some longer routes are flown by only one carrier, they fail to meet
our definition of dominance because many people will fly these routes via connecting service on other carriers.

35Gerardi and Shapiro (2009) define the largest 30 MSAs as being big cities, although they exclude some MSAs,
such as Orlando, on the basis that are primarily vacation destinations. We also follow them in defining “leisure”
destinations, which include cities such as New Orleans and Charleston, SC, as well as Las Vegas and several cities
in Florida. We define slot controlled airports as JFK, LaGuardia and Newark in the New York area, Washington
National and Chicago O’Hare, although O’Hare is no longer slot controlled. We identify metropolitan areas with
more than one major airport using http://en.wikipedia.org/wiki/List of cities with more than one airport, and
identify the primary airport in a city as the one with the most passenger traffic in 2012.
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alized gravity equation using the Poisson Pseudo-Maximum Likelihood approach recommended

by Silva and Tenreyro (2006), which allows us to capture the fact that the amount of travel on

a route varies systematically with distance and the popularity of the particular airports.

Table 2 reports, for the dominant incumbent markets, summary statistics for variables that

vary over time, such as average prices (in Q4 2009 dollars), yield (average fare divided by route

distance, a widely used metric for comparing fares across routes of different lengths) and market

shares. Quarters are aggregated into three groups, which we will refer to frequently below: “Phase

1” - before Southwest is a potential entrant; “Phase 2” - when Southwest is a potential entrant

but has not yet entered the route; and, “Phase 3” - after Southwest enters (if it enters during

the sample). Entered markets will obviously be a selected set of markets which explains why the

dominant carrier’s average capacity and passenger numbers for the Phase 3 markets are higher

than for the other groups. The summary statistics are, however, consistent with Southwest’s

actual entry into a market reducing prices dramatically, so that an incumbent should be willing

to make investments to deter entry if it is likely that they would be effective, and with incumbents

responding to the threat of entry by lowering prices, suggesting that limit pricing may be one of

these investments.36

The summary statistics also provide some evidence against an alternative story for why

prices fall in Phase 2. Recall that in Phase 2, Southwest serves both endpoint airports so that

passengers may be able to travel the route by connecting on Southwest37, in which case one

might argue that Southwest should be viewed as a competitor with an inferior product rather

than just a potential entrant. This could provide an alternative explanation for why prices fall.

However, from the table we see that Southwest’s average market share in Phase 2 is less than

1.5%, compared with the dominant carrier’s share of over 80%, while its average fare is quite high

compared to the fares that Southwest charges when it enters the market. Therefore, the degree of

direct competitive pressure that Southwest exerts on the incumbent’s pricing in Phase 2 should

be small. In Section 4 we will provide additional evidence against this “actual competition”

explanation for why prices fall when entry is threatened.

36Yields and average fares do not vary in the same proportion across the phases, consistent with the fact that
the set of markets that Southwest enters are not random with respect to the length of the route. For this reason
we will look at both price metrics in the results below.

37Southwest does not always allow customers to buy tickets between any pair of airports that it serves, reflecting
the fact that, compared to the legacy carriers, its business model is more focused on point-to-point travel. However,
we do not have data on which routes it will sell tickets that involve connections.
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The last lines of the table show the amount of capacity (seats) and the total number of

passengers that the dominant incumbent carries on its planes that fly the route non-stop (both

numbers come from T100). Reflecting the fact that almost all of the routes in our sample involve

the dominant carrier’s hub, on average 85% of these passengers are making connections to or from

other routes.38 As network effects are the key reason why the dominant incumbent’s marginal

cost is likely to be opaque, this high percentage of connecting passengers makes it more plausible

that we might observe MR-style limit pricing on the routes in our sample.

4 Evidence of Limit Pricing in the Dominant Incumbent

Sample

In this section we present reduced-form evidence that our model may be useful for understanding

why incumbents cut prices when Southwest becomes a potential entrant on an airline route. In

doing so, we extend the analysis in GS by testing alternative explanations for why prices fall in

more detail by using the ideas in EE and focusing on dominant incumbent markets that fit the

market structure assumed by most models of strategic investment, including ours.

4.1 The Effect of Threatened Entry in Dominant Incumbent Markets

We begin our analysis by confirming that dominant incumbents do cut prices significantly when

Southwest becomes a potential entrant on a route by serving both endpoint airports but not

yet serving the route (Phase 2). To do so we follow GS, who use markets with any number of

incumbents, by utilizing the following regression specification:

Price Measurej,m,t = γj,m + τt + αXj,m,t + ...

8+∑
τ=−8

βτSWPEm,t0+τ +
3+∑
τ=0

βτSWEm,te+τ + εj,m,t (6)

where γj,m are market-carrier fixed effects and τt are quarter fixed effects. Carriers other than

the dominant carrier are not included in our version of the regression. X includes the number

38To be clear, when we measure prices we use passengers who are only traveling between the endpoints, not
those making connections to or from other destinations.
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of other carriers serving the market (separate counts for direct and connecting service) as well as

interactions between the jet fuel price39 and route distance. t0 is the quarter in which Southwest

becomes a potential entrant, so SWPEm,t0+τ is an indicator for Southwest being a potential

entrant, but not an actual entrant, into market m at quarter t0 + τ . If Southwest enters it does

so at te, and SWEm,te+τ is an indicator for Southwest actually serving the market in quarter

te + τ . We use observations for up to three years (12 quarters) before Southwest becomes a

potential entrant, and the β coefficients measure price changes relative to those quarters that are

more than eight quarters before Southwest becomes a potential entrant or, if Southwest becomes

a potential entrant within the first eight quarters that the dominant carrier is observed in the

data, the first quarter that it is observed. We estimate separate coefficients for the quarters

immediately around the entry events, but aggregate those quarters further away from the event

where we have fewer observations. In our analysis markets are weighted equally, but the results

are similar if observations are weighted by the average number of passengers carried on the route.

Table 3 presents two sets of coefficient estimates, using the log of the average price and the

yield as alternative price measures. Average prices fall by 10-14% when Southwest becomes a

potential entrant and, consistent with our model where the incumbent continues to signal even

if the potential entrant does not initially enter the route, they do not subsequently increase. In

fact, the price declines actually tend to become slightly larger over time in Phase 2, which can

happen in our model as those incumbents who experience the most favorable changes in marginal

cost will also be the most likely to deter entry. The average yield in Phase 1 is 0.544, so the

yield coefficients imply similar proportional changes. If Southwest enters, average prices decline

by an additional 30-45%, giving a decline of 45-60% relative to prices at the start of Phase 1.

While our Phase 2 price declines are slightly smaller than those identified by GS, our Phase 3

declines are significantly larger, presumably reflecting the fact that dominant incumbents have

more market power prior to Southwest’s entry than the average incumbent in GS’s sample.

One feature of the results, also found in GS, is that prices start declining two quarters before

Southwest becomes a potential entrant. In some settings, one would be concerned that observing

a price decline prior to the treatment (here, the entry threat) becoming effective would suggest

that it is not the treatment that causes prices to decline but rather some other factor that also

causes Southwest to enter the endpoint airports. However, in our setting this pattern reflects

39Specifically, U.S. Gulf Coast Kerosene-Type Jet Fuel Spot Price FOB (in $/gallon).
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Table 3: Incumbent Pricing In Response to Southwest’s Actual and Poten-
tial Entry

Phase 1 Phase 2 Phase 3
Fare

t0 − 8 -0.047 t0 −0.105∗∗∗ te −0.416∗∗∗

(0.029) (0.031) (0.066)

t0 − 7 -0.022 t0 + 1 −0.115∗∗∗ te + 1 −0.514∗∗∗

(0.0307) (0.034) (0.069)

t0 − 6 -0.040 t0 + 2 −0.131∗∗∗ te + 2 −0.539∗∗∗

(0.034) (0.032) (0.077)

t0 − 5 -0.041 t0 + 3 −0.131∗∗∗ te + 3 −0.602∗∗∗

(0.034) (0.032) (0.080)

t0 − 4 -0.015 t0 + 4 −0.135∗∗∗ te + 4 −0.608∗∗∗

(0.033) (0.034) (0.082)

t0 − 3 −0.009 t0 + 5 −0.137∗∗∗ te + 5 −0.577∗∗∗

(0.029) (0.038) (0.084)

t0 − 2 −0.0761∗∗ t0 + 6-12 −0.206∗∗∗ te + 6-12 −0.589∗∗∗

(0.029) (0.047) (0.081)

t0 − 1 −0.0874∗∗∗ t0 + 13+ −0.309∗∗∗ te + 13+ −0.589∗∗∗

(0.029) (0.051) (0.086)

Yield
t0 − 8 -0.027 t0 −0.060∗∗∗ te −0.234∗∗∗

(0.014) (0.019) (0.051)

t0 − 7 -0.005 t0 + 1 −0.051∗∗ te + 1 −0.273∗∗∗

(0.017) (0.021) (0.052)

t0 − 6 -0.011 t0 + 2 −0.063∗∗∗ te + 2 −0.286∗∗∗

(0.018) (0.019) (0.056)

t0 − 5 -0.008 t0 + 3 −0.062∗∗∗ te + 3 −0.308∗∗∗

(0.018) (0.019) (0.057)

t0 − 4 -0.009 t0 + 4 −0.066∗∗∗ te + 4 −0.315∗∗∗

(0.018) (0.019) (0.059)

t0 − 3 −0.008 t0 + 5 −0.066∗∗∗ te + 5 −0.313∗∗∗

(0.017) (0.022) (0.060)

t0 − 2 −0.042∗∗ t0 + 6-12 −0.115∗∗∗ te + 6-12 −0.332∗∗∗

(0.018) (0.027) (0.059)

t0 − 1 −0.047∗∗ t0 + 13+ −0.185∗∗∗ te + 13+ −0.361∗∗∗

(0.018) (0.034) (0.067)

Notes: Estimates of specification (6) with the dependent variable as either the
log of the mean passenger-weighted fare on the dominant incumbent (“Fare”) or
this fare divided by the non-stop route distance (“Yield”). Specifications include
market-carrier fixed effects, quarter fixed effects and controls for the number of
other competitors on the route (separately for direct or connecting), fuel prices
and fuel prices×route distance. Standard errors clustered by route-carrier are
in parentheses. ∗∗∗, ∗∗ and ∗ denote significance at the 1, 5 and 10% levels
respectively. Number of observations is 3,904 and the adjusted R2s are 0.81
(“Fare”) and 0.86 (“Yield”). Phases are defined in the text.
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the fact that Southwest announces that it will begin service from an airport some months in

advance, and that incumbent carriers start changing some prices as soon as this announcement

occurs. This is, of course, consistent with our model’s explanation for why prices decline because

once Southwest announces it will serve an airport it will also be deciding which routes to enter

in its first several quarters of service, so incumbents that want to deter entry will have incentives

to start signaling as soon as the airport-entry announcement occurs, especially on routes that

may be of marginal attractiveness to Southwest.40

On airline routes, few passengers pay the average fare (Borenstein and Rose (1995) and

Gerardi and Shapiro (2009)). In Appendix D we report estimates of specification (6) where

we use different percentiles of the fare or yield distribution as the dependent variable. The

results reveal that when Southwest threatens entry, prices decline significantly across the fare

distribution. As well as illustrating the very robust nature of the GS effect in our dominant

incumbent sample, the patterns are also useful in providing evidence against two non-deterrence

explanations for why prices decline.

One of these explanations, already mentioned, is that Southwest may provide actual competi-

tion, through connecting service, in Phase 2. In this case, we might expect that the competition

would increase primarily for price-elastic customers (who would be willing to substitute to con-

necting service) who would typically purchase cheaper (advance) tickets, so that the price declines

should be concentrated at the low end of the fare distribution.41 Instead, the declines are signifi-

cant across the distribution and are actually slightly greater for the median and 75th percentiles.

On the other hand, a theory that has often been mentioned to us is that carriers may cut prices

as part of an entry accommodation, not a deterrence, strategy, where they try to build up the

loyalty, or program status, of frequent-flyers to soften competition once Southwest enters. This

could explain why incumbents cut high-priced tickets, which are most likely to be bought by

frequent business travelers, but it is not clear why they would necessarily cut the prices of low-

priced tickets that are typically sold at different times (relative to departure) and are targeted

at infrequent, leisure travelers. In contrast, declines across the fare distribution are consistent

with a model where the incumbent is signaling the marginal opportunity cost of selling a seat

40On the other hand, if prices fall in Phase 2 because of actual competition from connecting service on Southwest
there is no reason why they should be falling before these connections are actually available.

41Borenstein and Rose (1995) argue that actual competition tends to increase within-carrier fare dispersion in
the airline industry for this reason.
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to someone who only wants to fly the segment, as this should affect pricing whatever type of

consumer the ticket is sold to. We now turn to the EE approach which allows us to distinguish

between accommodation and deterrence strategies in a more systematic fashion.

4.2 Testing Alternative Explanations for Why Prices Fall When En-

try is Threatened

In the context of a fairly general model of strategic investment by an incumbent monopolist,

EE argue that, when deterrence incentives are present, they can generate a non-monotonic re-

lationship between the level of investment and the probability of entry. In our setting, their

logic would apply in the following way. When Southwest becomes a potential entrant, an incum-

bent will not choose to cut prices (very much) in markets where entry is very unattractive to

Southwest, because it is likely only to be sacrificing monopoly profits. In markets where entry

is very attractive, the monopolist will also not want to cut prices because it is unlikely that

entry can be deterred and it will only be sacrificing the profits that it can make before entry

happens. On the other hand, in markets that are marginal for entry, it is possible that entry

will be prevented (or delayed) if the incumbent signals that its marginal costs are low enough.

EE show how this insight can be developed into a two-stage empirical strategy for identifying

strategic investment in settings where observable and exogenous variables, such as market size,

change the attractiveness of entry.42 In the first stage, a simple model of the entry probability is

estimated to construct a single index of the attractiveness of the market to the potential entrant

and then, in the second stage, the monotonicity of the relationship between this index and the

incumbent’s (possibly strategic) investment is examined.

For our first stage, we estimate a probit model of Southwest’s entry using the full sample

of 1,872 markets where an observation is a route and the dependent variable is equal to one

if Southwest entered within four quarters of becoming a potential entrant.43 The explanatory

42GS compare incumbent pricing behavior in the quarters immediately prior to Southwest becoming a potential
entrant on routes where Southwest had already announced it would enter and routes where it had not. They
observe larger declines in prices on routes where entry had not been pre-announced, but, in their sample, the
differences are generally not statistically significant. However, the direction of their results is consistent with our
findings as we see no significant price declines in markets where entry is very likely.

43It would be inappropriate to use a dummy for Southwest ever entering because, in our relatively long sample,
different markets are exposed to the possibility of entry for different periods of time. Using a four quarter rule
also means that we minimize the truncation problem associated with the end of the sample while still having a
significant number of observations.
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variables include several measures (and their squares) of market size, including measures of

endpoint population and our gravity model-based market size measure; route distance; measures

of carrier presence at the endpoint airports; and, an indicator for whether one of the airports

is slot constrained. Further details of the variables included and the estimated coefficients are

given in Appendix E. Consistent with previous research, e.g. Boguslaski, Ito, and Lee (2004),

we are able to explain a reasonable degree of variation (pseudo-R2 0.37) in Southwest’s entry

decisions in the full sample, with Southwest more likely to enter shorter routes between bigger

cities, especially when it already serves a significant number of routes out of the endpoints. For

the subset of 65 markets the predicted within-four-quarter entry probabilities vary from 0.01 to

0.9, with the 20th, 40th and 60th and 80th percentiles at 0.02, 0.085, 0.204 and 0.512.

In the second stage, we only use Phase 1 and 2 observations from the dominant incumbent

sample, and we test how the size of the Phase 2 price decline varies with the entry probability

using the following market-carrier fixed effects specification:

Price Measurej,m,t = γj,m + τt + αXj,m,t + . . .

β0SWPEm,t + β1ρ̂m × SWPEm,t + β2ρ̂m
2 × SWPEm,t + εj,m,t (7)

where ρ̂m is the predicted probability of entry (within one year) for market m, j is the dominant

carrier, γj,m and τt are market-carrier and quarter fixed effects, and Xj,m,t includes the same

controls that were used in the GS specification. SWPEm,t is an indicator for a market-quarter

in which Southwest is a potential entrant (i.e., a Phase 2 observation). Standard errors are

adjusted to allow for uncertainty in the first-stage estimate ρ̂m, as well as heteroskedasticity and

first-order serial correlation in the residuals.44 If the incumbent is using a limit pricing strategy

then we would expect β̂0 ≈ 0, β̂1 < 0 and β̂2 > 0. On the other hand, an entry accommodation

explanation for falling prices would predict that β̂0 ≈ 0 and a combination of β̂1 and β̂2 such

that prices are expected to fall more in markets where entry is more likely.

Figure 1 shows the estimated quadratic relationship between the price change in Phase 2 and

the entry probability using the log of the average fare (left panel) and average yield (right panel)

44To do this, we specify the derivatives of the first-stage log-likelihood as an additional set of moment conditions
and use the methodology outlined by Ho (2006). Regressions using the estimated second-stage residuals indicate
that only first-order serial correlation is significant, and allowing for additional periods of serial correlation does
not change the standard errors significantly.
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price measures. The coefficients for yield are reported in column (1) of Table 4. Consistent with

a deterrence explanation, but not an accommodation explanation, the results indicate that, on

average, the price declines are largest and statistically significant for intermediate probabilities of

Southwest entry, but are smaller, and not necessarily significantly different from zero, for markets

where entry probabilities are either high or very low. In the regression both the linear and the

quadratic terms are statistically significant at the 1% level (this is also true in the log(average

price) regression). The coefficients remain statistically significant in column (2) where we control

for the convenience of using connecting service on Southwest, to guard against the possibility

that prices on some routes fall in Phase 2 because connecting service on Southwest provides

an attractive alternative to the dominant carrier for some proportion of consumers. We do so

by including three additional dummies interacted with SWPEm,t that divide the markets into

three groups based on the convenience of a Southwest connection.45 Further evidence against the

actual competition explanation is provided by the fact that the coefficients on the new variables

indicate that incumbent prices tend to fall most on the routes where connections on Southwest

are least convenient.

Figure 2 plots the estimated change in yield for each of the dominant incumbent markets

separately against the estimated entry probability (the figure using log of the average fare looks

very similar). These market-specific effects are estimated by replacing the three SWPEm,t terms

in specification (7) with SWPEm,t×market dummy interactions, with the plotted points being

the point estimates of the coefficients on these interactions. While the effects for individual

markets are heterogeneous, which is consistent with a limit pricing model where incumbents

have different levels of marginal cost and may perceive different degrees of entry threat that are

not measured perfectly by the ρ̂s, it is clear that prices do not tend to decrease in markets with

high or very low entry probabilities, while many of the markets in between experience quite large

Phase 2 price declines.

Of course, while this pattern is consistent with prices falling as part of an entry deterrence

strategy, it does not necessarily imply that dominant incumbents use limit pricing strategies of

the type that arise in our model, where prices are lowered in order to signal information to an

uninformed potential entrant. One alternative explanation would be that Southwest observes

45For each market, we calculate the total distance that would be involved in traveling via the most convenient of
Southwest’s focus airports (Baltimore, Chicago Midway, Phoenix and Las Vegas) and divide that by the non-stop
round-trip distance. We divide the markets into three equally-sized groups based on this convenience measure.
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Table 4: EE Reduced-Form Analysis: Second Stage

(1) (2) (3) (4) (5) (6)
Log Log Log Load Prop.

Dependent Variable Yield Yield Capacity Passengers Factor Code-share
SWPEm,t 0.0139 -0.064 0.079 0.139** 0.0599*** 0.0030

(0.0147) (0.059) (0.052) (0.053) (0.0169) (0.0026)

ρ̂m ∗ SWPEm,t -0.721*** -0.555** -0.2436 0.451 0.695*** -0.023
(0.136) (0.273) (0.402) (0.423) (0.177) (0.030)

ρ̂m
2 ∗ SWPEm,t 0.921*** 0.722** 0.2045 -1.009 -1.214*** 0.123**

(0.194) (0.315) (0.515) (0.581) (0.3118) (0.049)
Observations 3,622 3,622 3,100 3,100 3,100 2,243

Notes: Heteroskedasticity robust Newey-West standard errors allowing for one period serial cor-
relation and corrected for first-stage approximation error in the entry probabilities in parentheses.
Column (2) includes controls for the convenience of connecting on Southwest. ∗∗∗, ∗∗ and ∗ denote
significance at the 1, 5 and 10% levels respectively.

Figure 1: Predicted incumbent price and yield changes in Phase 2 as a function of Southwest’s
predicted probability of entry.
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Figure 2: Market-by-market predicted yield declines in Phase 2 as a function of Southwest’s
predicted probability of entry.

the incumbent’s marginal cost, but that in markets that are marginal for Southwest to enter,

incumbents invest in capacity to lower their marginal cost of selling additional seats, in order

to deter entry, which will also reduce their optimal monopoly prices. In their recent models of

predation in the airline industry, both Snider (2009) and Williams (2012) advance models where

incumbent legacy carriers invest in capacity for exactly this reason in order to induce low-cost

competitors to exit.46

To investigate this alternative model of deterrence we use the log of the incumbent’s capacity

on the route (T100 seats performed) as the dependent variable in specification (7). If the capacity-

driven cost reduction story were correct then we would expect to observe increasing capacity on

routes with intermediate probabilities of entry. Instead, as seen in Table 4, column (3) and

Figure 3 (top-left panel) capacity does not tend to change significantly when Southwest becomes

a potential entrant in any type of market, irrespective of the entry probability.47

46They argue that capacity adjustment costs imply some commitment to low future prices when a carrier invests
in capacity.

47The number of observations is lower in these regressions because of incomplete coverage of flights scheduled
by regional affiliates prior to 2002 in T100, so that we observe no capacity for some market-quarter observations.
The estimates are very similar using scheduled seats rather than performed seats.
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An alternative explanation for the price results would be that the incumbent’s marginal

cost falls in some markets when Southwest becomes a potential entrant because, even if its

capacity does not change, the number of passengers who want to fly on that segment as part of a

longer itinerary may fall.48 While it is not clear why this would particularly affect markets with

intermediate probabilities of entry, we can also test this story directly by using both the log of the

number of passengers flying on the dominant incumbent on the route segment and the log of the

dominant incumbent’s load factor (segment passengers divided by seat capacity) as alternative

dependent variables. The results are in columns (4) and (5) of Table 4 and the top-right and

bottom-left panels of Figure 3, and we observe that, in fact, when Southwest becomes a potential

entrant, the dominant carrier tends to carry more passengers and have higher load factors in

markets with intermediate probabilities of entry, suggesting that, if anything, its marginal cost

should be increasing rather than decreasing. This provides further evidence in favor of a limit

pricing explanation for why prices fall.

Obviously, carriers might use strategies in addition to limit pricing to try to deter entry.

For example, Goetz and Shapiro (2012) find that when Southwest becomes a potential entrant,

incumbents also tend to increase code-sharing with other carriers, although it is unclear whether

this is for the purposes of deterrence or accommodation.49 To investigate how code-sharing is

used strategically, we use the proportion of the dominant incumbent’s passengers on a route

that were ticketed by a different carrier as the dependent variable in specification (7).50 We

are necessarily restricted to using quarters after 1998 when operating and ticketing carriers are

distinguished in DB1. The results in column (6) of Table 4 and the bottom-right panel of Figure

3 indicate that, when Southwest becomes a potential entrant, dominant carriers increase code-

sharing on routes where Southwest’s entry is most likely. This suggests that code-sharing, unlike

lower prices, is used primarily as a strategy for accommodating Southwest’s entry.

48For example, when Southwest enters an airport it will typically offer direct flights to Las Vegas. This may
reduce the demand for seats on flights between the airport and the hub airports of legacy carriers from consumers
who want to go to Las Vegas.

49A code-sharing arrangement allows specific non-operating (marketing) carriers to sell tickets on a flight
operated by another carrier. For example, Continental and Northwest, and United and US Airways engaged in
fairly extensive code-sharing in periods of our data.

50Results are similar if we instead use a dummy for any of the dominant incumbent’s passengers being ticketed
by another carrier which is the variable used by Goetz and Shapiro (2012). On average, 15% of routes satisfy this
definition of being code-shared in Phase 1 and 35% in Phase 2, illustrating that the pattern noted by Goetz and
Shapiro (2012) in a broader sample of markets is also found in our dominant incumbent sample.
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Figure 3: Predicted incumbent responses in Phase 2 as a function of Southwest’s predicted
probability of entry. The responses shown are the log of capacity (seats performed) (top-left
panel), the log of segment passengers (includes passengers connecting onto other routes) (top-
right), the log of the load factor, (bottom-left panel), and proportion of passengers carried that
have a different ticketing carrier (code-shared) (bottom-right panel).
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5 Calibration

While the reduced-form evidence is consistent with dominant incumbents using limit pricing to

try to deter entry, this raises the question of whether our simple model can generate the large

price declines that are observed in the data. We address this question by calibrating our model,

which we then use to illustrate the welfare effects of limit pricing. The model is calibrated

using a mixture of estimated parameters (e.g., price sensitivity of demand, process describing

the evolution of marginal cost) and parameters that are chosen (e.g., bounds on marginal costs

and the distribution of entry costs) to satisfy the assumptions of our model and match the pricing

patterns observed in the data. We parameterize the model from Section 2 in the following way:

• demand has a one-level nested logit structure where the nests are ‘fly’ and ‘not fly’. The

nesting and price sensitivity parameters, and the difference between incumbent and entrant

qualities are estimated from the data. When solving the model we hold the product qualities

of the incumbent and entrant fixed over time;

• the marginal costs of both firms evolve according to independent AR(1) processes, that

we estimate, with truncated normal innovations. We set the mean difference in incumbent

and potential entrant marginal costs to be consistent with our data;

• a truncated normal entry cost distribution for the potential entrant, where we choose the

parameters; and,

• firms are assumed to choose prices simultaneously as differentiated Bertrand duopolists

once entry occurs.

5.1 Parameters

5.1.1 Demand

We estimate demand using the dominant incumbent sample for Phases 1 and 3 (i.e., before

Southwest becomes a potential entrant, and after Southwest enters, if it enters), so that we do

not use observations where we believe that limit pricing may be taking place.51 Markets are

51We also restrict ourselves to Phase 1 observations where the dominant incumbent has at least 50 direct
DB1 passengers and Phase 3 observations where the formerly dominant incumbent and Southwest have 50 DB1
passengers, although these restrictions have little impact on our sample or our estimates of demand.
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non-directional, and we use our gravity model-based definition of market size, with carriers other

than the dominant incumbent and Southwest included in the outside good.52 We do, however,

control for the number of other carriers flying any passengers non-stop in our specification of

utility.

Viewing each carrier in the market as offering a single product, we assume the standard

nested logit indirect utility specification with a single level of nesting (e.g., Berry (1994)):

ui,j,m,t = µj + τ1Tt + τ2−4Qt + γXj,m,t − αpj,m,t + ξj,m,t + ζFLYi,m,t + (1− λ)εi,j,m,t

≡ θj,m,t − αpj,m,t + ξj,m,t + ζFLYi,m,t + (1− λ)εi,j,m,t (8)

where µj is a carrier j effect, Tt is a time trend, and Qt are quarter-of-year dummies. pj,m,t is

the passenger-weighted average round-trip fare for carrier j on market m in quarter t and ξj,m,t

is an unobserved (to the econometrician) quality characteristic. Xj,m,t includes an indicator for

whether the market is a hub for carrier j, a set of market characteristics (distance, distance2, and

indicators for whether one of the route’s endpoint cities has another major airport or is a leisure

destination) and a set of dummies for the number of other firms serving the market non-stop.

We estimate the model using the standard estimating equation for a nested logit model with

aggregate data (Berry (1994)):

log

(
sj,m,t
s0,m,t

)
= µj + τ1Tt + τ2−4Qt + γXj,m,t − αpj,m,t + λ log(sj,m,t|FLY ) + ξj,m,t (9)

where sj,m,t|FLY is carrier j’s share of passengers flying the route on the incumbent or Southwest

and sj,m,t is firm j’s market share.

Appendix Table F presents OLS and 2SLS estimates of the demand model, where we in-

strument for pj,m,t and sj,m,t|FLY using the one-period lagged price of jet fuel, the interaction

of the lagged jet fuel price and non-stop route distance, each carrier’s average presence at the

endpoint airports in that quarter53, and, for the incumbent, whether Southwest has entered the

market and, for Southwest, whether the route involves a hub for the incumbent. Controlling for

endogeneity increases the estimated price elasticity of demand (the average is -2.4 in column (2))

52We use non-directional markets because entry decisions are non-directional and in our model we are assuming
that incumbents set one price for each market.

53A carrier’s presence at an airport is defined as being equal to its share of originating traffic (calculated using
DB1) at the airport.
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and, consistent with previous research, consumers are estimated to prefer traveling on a carrier

with a hub at one of the endpoints. Based on the 2SLS results, we calibrate the model using

α̂ = −0.408 and λ̂ = 0.762, and assume a market size of 58,777, which is the mean size (during

Phase 2) of the 65 markets for which we have Phase 2 observations. In the calibration we also set

θj equal to 0.33 and 0.30 for the incumbent and potential entrant respectively and fix the ξj,ts

to be equal to zero so that, ignoring price, carrier quality does not vary over time. The choice of

θ for the incumbent matches the average value implied by the estimates for incumbent carriers

in Phase 3, while the value for the potential entrant allows us to match the average difference

in incumbent and Southwest qualities in Phase 3 estimated using a route-quarter fixed effects

regression (not reported).

5.1.2 Marginal Costs

We specify that the marginal costs of the firm j exist on a support [cj, cj] and evolve according

to an AR(1) process: mcj,t = ρARmcj,t−1 +(1−ρAR)
cj+cj

2
+εj,t. The εj,t innovation is drawn from

a normal distribution that is truncated so that marginal costs remain on their support and the

untruncated distribution has mean zero and standard deviation σε. This process implies that in

the long-run each carrier’s expected marginal cost is equal to the mid-point of its support.

To estimate the ρAR and the average difference in marginal costs, we use the 2SLS demand

estimates and back out the marginal cost for each carrier-route-quarter observation assuming

that pricing in Phases 1 and 3 is characterized by the standard static monopoly/Bertrand Nash

first-order conditions (recall that Phase 2 observations, where the incumbent may be limit pricing,

are not used for estimation). To make comparisons across routes, we transform these marginal

costs to $s-per-mile of the non-stop route. The median and mean marginal costs calculated in

this way are $0.13/mile and $0.16/mile, comparable to the average $0.134 of total operating

expenses per available seat mile that carriers reported on the Department of Transportation’s

Form 41 in 2010. A route-quarter fixed effects regression using observations from Phase 3 (not

reported) indicates that Southwest has an average marginal cost advantage of $0.055 per mile

(significant at the 1% level).

In our calibration we will consider a market with a round-trip distance of 1,200 miles, close

to the median for the dominant incumbent markets in our data (examples from our data that

are close to this length include Los Angeles-Salt Lake City and Minneapolis-Tulsa), implying
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an average marginal cost advantage for Southwest of close to $70. We choose supports of

[cI , cI ] = [$160, $280] and [cE, cE] = [$90, $210]. The width of these supports is chosen so that

our assumption that qDI (cI,t, cE,t) − qM(pstatic monopoly
I (cI,t)) −

∂πDI (cI,t,cE,t)

∂aE,t

∂aE,t
∂cI,t

< 0 holds for all

possible costs.

We estimate ρAR by regressing per-mile marginal costs on its one-period lagged value, con-

trolling for observed route characteristics (such as distance, market size and the presence of slot

constraints at either endpoint), carrier dummies, a full set of quarter dummies and, as a measure

of a component of costs that is presumably observed by carriers, the one-quarter lagged jet fuel

price interacted with route distance. Column (1) of Table F.2 shows the estimates when we pool

observations for all carriers. As the implied marginal costs are likely to be measured with error

(partly because market shares and average prices are based on the limited sample of passengers

included in the DB1 data), in column (2) we instrument for the lagged marginal cost with the

third through fifth lags of marginal cost. The estimated persistence of marginal costs increases

significantly. In the third and fourth columns, we provide 2SLS estimates for the incumbent

carriers and Southwest separately. In both cases ρ̂AR ≈ 0.97 and we use this value in the cali-

bration. We set σε, the standard deviation of innovations to marginal cost for our representative

1,200 mile route, equal to $36.54

5.1.3 Entry Costs

In our baseline specification we assume that E’s entry costs are drawn from a truncated normal

(support of [$0, $100 million]) where the untruncated distribution has a mean of $55.4 million and

a standard deviation of $2 million. The mean and standard deviation parameters were selected,

based on a coarse grid search, so that the average degree to which the incumbent shades prices

below the static monopoly price when strategies are approximately stationary at the start of the

game is similar to the size of the price cuts observed in markets with intermediate probabilities

of entry when Southwest becomes a potential entrant. Of course, this raises the question of

whether entry costs of this size are reasonable. As our model does not explicitly include fixed

costs and we are assuming that once E has entered it will stay in the market forever, the entry

cost should be interpreted as including the discounted value of all of the future fixed costs

54The distribution of estimated innovations has fatter tails than a normal. Our choice of standard deviation
allows us to match the interquartile range of cost innovations based on the IV estimates in column (2) of Table
F.2.
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that Southwest will incur in operating the route, which might include, for example, the fixed

component of the costs associated with leasing additional gates and the opportunity costs of

using them on the route in question rather than on other profitable routes. The attractiveness of

entry will be determined, of course, by the level of the entry cost relative to the discounted value

of variable profits that the entrant can expect to make if it enters. Given our demand and cost

parameters, the average steady-state variable profit of Southwest as a duopolist is $1.5 million

per quarter, which translates to a present discounted value of $74.8 million. Our specification

therefore assumes that entry and fixed costs combined account for roughly 75% of discounted

variable profits, which does not seem unreasonable a priori.

5.2 Equilibrium Strategies

Given these parameters we solve the model, using the method described in Section 2.3, assuming

that T = 200. For this T , entry probabilities and pricing strategies are stationary (to four

decimal places) at the start of the game. Figure 4 shows the incumbent’s pricing functions at

t = 1 for several values of cE together with Southwest’s entry probabilities as a function of its

beliefs about the incumbent’s marginal costs, which are correct in equilibrium.

In equilibrium, there is substantial shading below the monopoly price for all cI < cI . Using the

probability weights implied by the steady state distribution of marginal costs for each firm, the

average shading below the monopoly price is $80.54 or 16.1% of the monopoly price, illustrating

that our model can match the average size of the price reductions observed when Southwest

becomes a potential entrant in markets with intermediate probabilities of entry.55 Shading is

substantial in this example because E’s entry decision is relatively sensitive to its beliefs about

the incumbent’s marginal cost, and, consistent with the insights in EE, the average level of

the entry probability is neither very high nor very low. Based on solving many games with

different parameters, the degree of shading increases when there is greater serial correlation in

the incumbent’s marginal cost or the variance of the entry cost distribution falls.56 Greater serial

55While our focus is on what happens when strategies are stationary, it is worth noting that, as t increases,
the average degree of shading changes in a non-monotonic way. For our parameters, the degree of shading is
effectively constant until t ≈ 104, at which point it increases rapidly, reaching a maximum of 43.5% at t = 136
before decreasing rapidly and becoming very close to zero by t = 150, by which point the level of entry costs
means that entry is effectively blockaded. The incentives to try to deter entry immediately before this point are
therefore very strong, because if deterrence is successful a long period of monopoly profit will be enjoyed, resulting
in the high degree of shading.

56For example, if ρAR = 0.99 and the standard deviation of marginal cost innovations and entry costs are $5
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Figure 4: Incumbent’s Pricing Strategies and Potential Entrant’s Entry Probabilities at t = 1
for Different Values of cE.
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correlation leads to more shading in equilibrium for two reasons. First, from the perspective of

the entrant, the incumbent’s marginal cost becomes a better predictor of the entrant’s profits if it

enters, so the entry decision becomes more sensitive to its beliefs. Second, from the perspective

of a low-cost incumbent, it also implies that if entry is deterred in the current period it is

also likely to be deterred, in equilibrium, in subsequent periods. Both of these effects increase

the incumbent’s incentive to invest in entry deterrence by reducing the current price. A lower

variance of the entry cost distribution makes the entry decision more sensitive to beliefs about the

incumbent, which also increases the incumbent’s incentive to limit price. On the other hand, if

we either increase or decrease market size substantially then, because the average attractiveness

of entry changes in the same direction, and away from the intermediate values that maximize

and $1.5 million respectively, the average degree of shading at the beginning of the game is 29%.
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deterrence incentives, the degree of shading falls.57

5.3 Welfare Calculations

We can also use our model to quantify the welfare effects of limit pricing. As in the two-period

MR model with a fully separating equilibrium, limit pricing is unambiguously welfare increasing

(as long as limit prices are above marginal costs) in our model relative to a model where the

potential entrant can observe the incumbent’s marginal cost (full information), as entry decisions

are the same on the equilibrium path but prices are lower before entry occurs because of limit

pricing. For our baseline parameters, the gains in welfare that occur before entry occurs are quite

large in percentage terms. Based on the steady-state distribution of marginal costs for this single

representative market, the 16.1% shading increases expected consumer surplus by $843,000 per

quarter (26.5% of the full information consumer surplus), while reducing the incumbent’s profits

by $154,000 (6.4%).

Of course, welfare would be increased if there were more entry (specifically expected per period

total welfare is $8.03 million, $4.87 million and $5.56 million under duopoly, full information

monopoly and limit pricing monopoly respectively), and there may be too little entry in our

model as entrants fail to capture all of the surplus that they create. While entry is the same in

both the limit pricing and full information models, it would be different if there were incomplete

information and pricing were too opaque to allow for meaningful signaling. For example, a

potential entrant might only be able to observe list prices, while transaction prices, which may

involve substantial discounts, would be more indicative of the incumbent’s marginal costs. In

this case, E would have to take an entry decision based only on its own costs (uninformed entry),

and depending on the shape of the E’s value functions with respect to its beliefs in the limit

pricing model, this could result in more entry. The question is whether this effect could be large

enough to increase total welfare.

Given the baseline parameters, the limit pricing equilibrium yields substantially higher welfare

than uninformed entry (as well as full information). The reason is that uninformed entry only

57When we move to a market size of 10,000 people (between the 5th and 10th percentiles of observed market
sizes), the equilibrium entry probabilities are always tiny (less than 1e-10) and the incumbent’s strategy involves
essentially no shading. On the other hand, when we move to a market size of 200,000 (between the 90th and 95th

percentiles), the equilibrium entry probabilities at the start of the game are greater than 0.86, and the average
degree of shading is less than 4% of the monopoly price.
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raises the probability of entry by 1% (from 0.298 to 0.301 given the steady-state distribution

of costs), and while this tends to increase welfare relative to full information, the effect is not

large enough to overcome the loss of consumer surplus associated with monopoly pricing before

entry occurs.58 In addition, compared with limit pricing, entry is less likely to occur when the

incumbent is inefficient, which is when entry would be particularly valuable. As an illustration,

across the first two periods of the game expected consumer surplus is $5.65 million, $5.66 million

and $7.08 million with full information, uninformed entry (with its slightly greater competition

in the second period) and limit pricing respectively. Of course, while these numbers illustrate

that limit pricing can involve substantial gains in welfare relative to two benchmark alternatives,

they take no account of the possible costs or benefits involved with the creation of the monopoly

position in the first place.

6 Conclusion

We have developed theoretical and empirical frameworks for analyzing a classic form of strategic

behavior, entry deterrence by setting a low price, in a dynamic setting. Under some weak

conditions on the primitives and a standard refinement, our model has a unique Markov Perfect

Bayesian Equilibrium in which the incumbent’s pricing policy reveals its marginal cost each

period. This characterization of the equilibrium makes it straightforward to compute equilibrium

pricing strategies. The resulting tractability stands in contrast to the widely-held belief in the

applied literature that dynamic games with persistent asymmetric information are too intractable

to be used in empirical work, at least when using standard equilibrium concepts. While our model

is a special case in many respects, and uniqueness of a dynamic MPBE is certainly not general,

it is the natural extension of one of the most widely-cited two-period models in the theoretical

literature (Milgrom and Roberts (1982)).

We exploit tractability to study whether our model of dynamic limit pricing can explain

why incumbent carriers cut prices when Southwest becomes a potential entrant on a particular

airline route. Here we provide new evidence, both in the reduced-form and by calibrating our

58When the expected value of being a duopolist in the next period, Et[φEt+1|cI,t, cE,t], is graphed against ĉI,t,
the relationship is close to linear. If the nesting parameter in demand were closer to one, then there are values of
cE,t where the relationship is more clearly convex, which can induce a greater difference in expected entry under
limit pricing/full information and uninformed entry.
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model, that limit pricing can explain both the qualitative pattern and the quantitative size of

the observed price cuts.

One question that we have often been asked is whether we are necessarily attached to the idea

that, when an incumbent sets a low price, it is indicating that its marginal costs are low rather

than demand is low, which could also make entry unattractive. The answer is that while it may

be possible to create a model where this form of equilibrium behavior arises, in which case it

would be difficult to distinguish from our model without exogenous variation in the predictability

of demand, it is not straightforward to come up with a specification where it would be the case

that incumbents would want to lower prices when faced by an entry threat and the sufficient

conditions for the uniqueness of a fully separating equilibrium hold.

To see why, consider some specific examples. Suppose that demand has a simple logit speci-

fication, marginal costs are known and constant (both with respect to output and across time)

but that the current market size parameter is only observed by the incumbent and is serially

correlated over time. In this case, the optimal monopoly price will not depend on market size,

but it will be cheaper for an incumbent to cut price when the market size is small. However,

the single crossing property required in our proofs of existence and uniqueness may not hold

because the expected future benefit of keeping the potential entrant out of the market will tend

to increase with the size of the market. In contrast, in our model when an incumbent has a lower

marginal cost it is both more valuable for the incumbent to preserve monopoly and cheaper for

the incumbent to lower its price. The same kind of problem can arise under an alternative speci-

fication where it is the price sensitivity of demand that is not observed by the potential entrant:

it will be cheaper to cut price below the monopoly level when demand is more price sensitive,

but it may be more valuable to preserve monopoly when demand is less price sensitive. Finally,

suppose that what the potential entrant does not know is how attractive consumers find the

legacy incumbent carrier (both in absolute terms and relative to how they perceive the potential

entrant). In this model, even if it is the case that Southwest’s profits from entering decline in the

attractiveness of the incumbent and it is more valuable for the incumbent to preserve monopoly

when the incumbent is more attractive to consumers, a separating equilibrium would tend to

involve a more attractive incumbent increasing prices above the full information monopoly level.

Therefore while this variant of the model might have a fully separating equilibrium, it could not

explain why incumbent airlines cut prices when they face the threat of entry by Southwest. For
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these reasons, we believe that our focus on a model where the incumbent’s marginal costs are

not observed is appropriate.

This discussion does, however, indicate that there is much open ground for exploring, both

theoretically and empirically, how different types of asymmetric information can lead to different

types of dynamic behavior, and we believe that our approach could be applied to at least some

of these alternative models. To examine a wider array of industries and markets, it would also

be necessary to extend our model to cases where there are several incumbents, and identify

conditions under which these types of models also give clear predictions that can be tested

empirically.
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A Proof of Theorem 1

In this Appendix, we prove that the strategies described in Theorem 1 form a fully separating

Markov Perfect Bayesian Equilibrium that is unique under a recursive application of the D1

Refinement. The proof uses induction and makes extensive use of theoretical results for one-shot

signaling games from Mailath and von Thadden (2013) and Ramey (1996).

A.1 Notation and the Definition of Values

At many points in the proof we will make use of notation indicating expectations of a firm’s

value in a future period, e.g., Et[V E
t+1|ĉI,t, cE,t]. We will use several conventions.

1. φEt (cE,t, cI,t) denotes E’s expected present discounted future value when it is a duopolist at

the beginning of period t, and its marginal cost is cE,t and I’s marginal cost is cI,t. Under

our assumption that duopolists use unique static Nash equilibrium strategies in a complete

information game, φEt (cE,t, cI,t) is uniquely defined.

2. φIt (cI,t, cE,t) denotes I’s expected present discounted future value when it is a duopolist at

the beginning of period t, and its marginal cost is cI,t and E’s marginal cost is cE,t. Under

our assumption that duopolists use unique static Nash equilibrium strategies in a complete

information game, φEt (cI,t, cE,t) is uniquely defined.

3. V I
t (cI,t, cE,t) denotes I’s expected present discounted future value when it is an incumbent

monopolist at the beginning of period t, and its marginal cost is cI,t and the E’s marginal

cost, which I knows, is cE,t. κt is not known when the value is defined (so the value is

the expectation over the different possible values of κt). This value will be dependent on

the pricing strategy that I will use in period t, E’s period t entry strategy and both firms

strategies in future periods.

4. V E
t (cE,t, cI,t) denotes E’s expected present discounted future value when it is a potential

entrant at the beginning of period t, its marginal cost is cE,t and I’s marginal cost is cI,t.

Of course, E does not know cI,t at the moment when this value is being defined (i.e., prior

to I choosing a price) but defining values in this way is convenient both because it defines

the value of both firms at the same moment each period (the beginning) and it economizes
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on the amount of notation. κt is not known when the value is defined (so the value is the

expectation over the different possible values of κt).

When we write φEt , φIt , V
E
t or V I

t to economize on notation, their dependence on cE,t and cI,t

should be understood. For example, Et[V E
t+1|ĉI,t, cE,t] is the expected value of E as a potential

entrant at the start of period t+ 1 given the period t value of cE,t and a belief that cI,t is exactly

ĉI,t. As in this example, when E has point beliefs we will denote the believed value as ĉI,t. If E

does not have a point belief, we will denote their density as q(c̃I,t) and assume that only values

on the interval [cI , cI ] can have positive density.
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A.2 Useful Lemmas

We will make frequent use of several results:

Lemma 1 Suppose that f(x, y) is a strictly positive function, g(x|w) is a strictly positive condi-

tional pdf on x,w ∈ [x, x] and h(y) is a strictly positive pdf on y ∈ [y, y].59 Further suppose that

(i) for a given value of w ∃x′ ∈ (x, x) such that ∂g(x′|w)
∂w

= 0, ∂g(x|w)
∂w

< 0 ∀x < x′ and ∂g(x|w)
∂w

> 0

for ∀x > x′ and (ii) k ≡
y∫
y

x∫
x

f(x, y)∂g(x|w)
∂w

h(y)dxdy. If ∀x, y ∂f(x,y)
∂x

> 0 then k > 0. On the

other hand, if ∀x, y ∂f(x,y)
∂x

< 0 then k < 0.

Proof.

k ≡
y∫
y

x∫
x

f(x, y)
∂g(x|w)

∂w
h(y)dxdy

=

y∫
y

x′∫
x

f(x, y)
∂g(x|w)

∂w
h(y)dxdy +

y∫
y

x∫
x′

f(x, y)
∂g(x|w)

∂w
h(y)dxdy

>

y∫
y

f(x′, y)


x′∫
x

∂g(x|w)

∂w
dx+

x∫
x′

∂g(x|w)

∂w
dx

h(y)dy = 0 if
∂f(x, y)

∂x
> 0

or <

y∫
y

f(x′, y)


x′∫
x

∂g(x|w)

∂w
dx+

x∫
x′

∂g(x|w)

∂w
dx

h(y)dy = 0 if
∂f(x, y)

∂x
< 0

There are several useful corollaries of Lemma 1.

Corollary 1 Suppose that φEt+1(cE,t+1, cI,t+1) > V E
t+1(cE,t+1, cI,t+1),

∂{φEt+1(cE,t+1,cI,t+1)−V Et+1(cE,t+1,cI,t+1)}
∂cI,t+1

> 0 for all (cE,t+1, cI,t+1) and
∂ψI(cI,t+1|ĉI,t)

∂ĉI,t
satisfies Assumption

1, then

∂Et[φE
t+1|ĉI,t, cE,t]

∂ĉI,t
−
∂Et[V E

t+1|ĉI,t, cE,t]

∂ĉI,t
=

cI∫
cI

cE∫
cE

[
φ
E
t+1(cE,t+1, cI,t+1)− V E

t+1(cE,t+1, cI,t+1)
] ∂ψI (cI,t+1|ĉI,t)

∂ĉI,t
ψE(cE,t+1|cE,t)dcI,t+1dcE,t+1 > 0.

59In particular, we will assume that

y∫
y

h(y)dy = 1 and

x∫
x

∂g(x|w)
∂w dx = 0. h(y) could be a conditional or an

unconditional pdf.
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Corollary 2 Suppose that φEt+1(cE,t+1, cI,t+1) > V E
t+1(cE,t+1, cI,t+1),

∂{φEt+1(cE,t+1,cI,t+1)−V Et+1(cE,t+1,cI,t+1)}
∂cE,t+1

< 0 for all (cE,t+1, cI,t+1) and
∂ψE(cE,t+1|cE,t)

∂cE,t
satisfies Assump-

tion 1, then

∂Et[φE
t+1|ĉI,t, cE,t]

∂cE,t

−
∂Et[V E

t+1|ĉI,t, cE,t]

∂cE,t

=

cI∫
cI

cE∫
cE

[
φ
E
t+1(cE,t+1, cI,t+1)− V E

t+1(cE,t+1, cI,t+1)
] ∂ψE(cE,t+1|cE,t)

∂cE,t

ψI (cI,t+1|cI,t)dcI,t+1dcE,t+1 < 0.

Corollary 3 Suppose that V I
t+1(cI,t+1, cE,t+1) > φIt+1(cI,t+1, cE,t+1),

∂{V It+1(cI,t+1,cE,t+1)−φIt+1(cI,t+1,cE,t+1)}
∂cI,t+1

< 0 for all (cI,t+1, cE,t+1) and
∂ψI(cI,t+1|cI,t)

∂cI,t
satisfies Assumption

1, then

∂Et[V I
t+1|cI,t, cE,t]

∂cI,t
−
∂Et[φE

t+1|cI,t, cE,t]

∂cI,t
=

cI∫
cI

cE∫
cE

[
V

I
t+1(cI,t+1, cE,t+1)− φI

t+1(cI,t+1, cE,t+1)
] ∂ψI (cI,t+1|cI,t)

∂cI,t
ψE(cE,t+1|cE,t)dcI,t+1dcE,t+1 < 0.

A further, very straightforward, result that will be referred to frequently is:

Lemma 2 (a) Suppose that φEt+1(cE,t+1, cI,t+1) > V E
t+1(cE,t+1, cI,t+1) for all (cE,t+1, cI,t+1) and ψI

and ψE satisfy Assumption 1 then

Et[φEt+1|q(c̃I,t), cE,t]− Et[V E
t+1|q(c̃I,t), cE,t] =

cI∫
cI

cE∫
cE


[
φEt+1(cE,t+1, cI,t+1)− V E

t+1(cI,t+1, cE,t+1)
]
× ...

ψI(cI,t+1|c̃I,t)ψE(cE,t+1|cE,t)q(c̃I,t)

 dcE,t+1dcI,t+1dc̃I,t > 0

including the case where E has a point belief about I’s marginal cost as a special case; and,

(b) Suppose that V I
t+1(cI,t+1, cE,t+1) > φIt+1(cI,t+1, cE,t+1) for all (cE,t+1, cI,t+1) and ψI and ψE

satisfy Assumption 1 then

Et[V I
t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t] =

cI∫
cI

cE∫
cE

[
V I
t+1(cI,t+1, cE,t+1)− φIt+1(cI,t+1, cE,t+1)

]
ψI(cI,t+1|cI,t)ψE(cE,t+1|cE,t)dcE,t+1dcI,t+1 > 0.

Proof. Follows immediately from the assumptions as ψI(cI,t+1|ĉI,t) > 0 for all costs on
[
cI , cI

]
and ψE(cE,t+1|cE,t) > 0 for all costs on

[
cE, cE

]
.
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A.3 Outline

Our proof uses induction. We first show that if the value functions of both firms satisfy several

properties at the start of period t + 1 then, together with our Assumptions 1-4, it follows that

the unique equilibrium strategies in period t satisfying the D1 refinement will be those described

in Theorem 1. We then show that this result implies that the value functions at the start of

period t will have the same set of properties. Finally, we show that the value functions at the

start of the last period satisfy these properties, which is very straightforward.

A.4 Proof for Period t Given Value Function Properties at t+ 1

We will assume that the entrant’s value functions as defined at the start of period t+ 1 have the

following properties:

E1t+1. φEt+1(cE,t+1, cI,t+1) > V E
t+1(cE,t+1, cI,t+1); and

E2t+1. φEt+1(cE,t+1, cI,t+1) and V E
t+1(cE,t+1, cI,t+1) are uniquely defined functions of cIt+1 and

cE,t+1, and do not depend on κt or any earlier values of κ;

E3t+1. φEt+1(cE,t+1, cI,t+1) and V E
t+1(cE,t+1, cI,t+1) are continuous and differentiable in both

arguments; and

E4t+1.
∂[φEt+1(cE,t+1,cI,t+1)]

∂cI,t+1
>

∂[V Et+1(cE,t+1,cI,t+1)]

∂cI,t+1
and

∂[φEt+1(cE,t+1,cI,t+1)]

∂cE,t+1
<

∂[V Et+1(cE,t+1,cI,t+1)]

∂cE,t+1

A.4.1 Potential Entrant Strategy in Period t

E will compare its expected continuation value if it enters, Et[φEt+1|ĉI,t, cE,t] if it has a point belief

and otherwise Et[φEt+1|q(c̃I,t), cE,t], less its entry cost, κt, with its expected continuation value if

it does not enter, Et[V E
t+1|ĉI,t, cE,t] or Et[V E

t+1|q(c̃I,t), cE,t]. By E2t+1 these continuation values do

not depend on κt or earlier entry costs, so that E’s optimal entry stategy will be a period-specific

threshold rule in its entry cost. Specifically E will enter if and only if

κt < κ∗t (ĉI,t, cE,t) = β
{
Et[φEt+1|ĉI,t, cE,t]− Et[V E

t+1|ĉI,t, cE,t]
}

if E has a point belief ĉI,t; and otherwise its entry strategy will be to enter if and only if

κt < κ∗t (q(c̃I,t), cE,t) = β
{
Et[φEt+1|q(c̃I,t), cE,t]− Et[V E

t+1|q(c̃I,t), cE,t]
}
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To derive the incumbent’s strategy we also need to show that the threshold has certain

properties. Specifically, we need it to be the case that κ∗t > κ = 0 and κ∗t < κ; and, that

if E has a point belief, its threshold κ∗t is continuous and differentiable and strictly decreasing

in cE,t and strictly increasing in ĉI,t. κ∗t > κ = 0 follows from combining E1t+1 and Lemma 2

(a). κ∗t (ĉI,t, cE,t) will be continuous and differentiable if φEt+1(cE,t+1, cI,t+1) and V E
t+1(cE,t+1, cI,t+1)

are continuous and differentiable (E3t+1) and ψI and ψE are continuous and differentiable (As-

sumption 1). κ∗t (ĉI,t, cE,t) is strictly increasing in ĉI,t if
∂Et[φEt+1|ĉI,t,cE,t]

∂ĉI,t
− ∂Et−1[V Et+1|ĉI,t,cE,t]

∂ĉI,t
> 0,

which follows from E4t+1 and Corollary 1. κ∗t (ĉI,t, cE,t) will be strictly decreasing in cE,t if
∂Et[φEt+1|ĉI,t,cE,t]

∂cE,t
− ∂Et−1[V Et+1|ĉI,t,cE,t]

∂cE,t
< 0, which follows from E4t+1 and Corollary 2.

A.4.2 Incumbent Strategy in Period t

Existence of a Unique Separating Signaling Strategy To show the existence of a unique

separating strategy for the incumbent we will rely on Theorem 1 of Mailath and von Thadden

(2013), which is a useful generalization of the results in Mailath (1987). This theorem imposes

conditions on the incumbent’s ‘signaling payoff function’ ΠI,t(cI,t, ĉI,t, pI,t, cE,t) where, in this

application, the first argument is the incumbent’s marginal cost, the second argument is E’s

(point) belief about the I’s marginal cost, pI,t is the price that I sets and cE,t is E’s marginal

cost.

Theorem [Based on Mailath and von Thadden (2013)] If (MT-i) ΠI,t(cI,t, cI,t, pI,t, cE,t) has a

unique optimum in pI,t, and for any pI,t ∈ [p, p] where ΠI,t
33 (cI,t, cI,t, pI,t, cE,t) > 0, there ∃k > 0

such that
∣∣∣ΠI,t

3 (cI,t, cI,t, pI,t, cE,t)
∣∣∣ > k for all (cI,t, cE,t); (MT-ii) ΠI,t

13 (cI,t, ĉI,t, pI,t, cE,t) 6= 0 for

all (cI,t, ĉI,t, pI,t, cE,t); (MT-iii) ΠI,t
2 (cI,t, ĉI,t, pI,t, cE,t) 6= 0 for all (cI,t, ĉI,t, pI,t, cE,t); (MT-iv)

ΠI,t3 (cI,t,ĉI,t,pI,t,cE,t)

ΠI,t2 (cI,t,ĉI,t,pI,t,cE,t)
is a monotone function of cI,t for all (ĉI,t, cE,t) and all pI,t below the static

monopoly price; (MT-v) p ≥ pstatic monopoly(cI) and ΠI,t(cI,t, cI,t, p, cE,t) < maxp ΠI,t(cI,t, cI,t, p, cE,t)

for all cE,t, then, for given cE,t, I’s period t unique separating pricing strategy is differentiable

on the interior of [cI , cI ] and satisfies the differential equation

∂p∗I,t
∂cI,t

= −ΠI,t
2

ΠI,t
3

with boundary condition that p∗I,t(cI , cE,t) = pstatic monopoly(cI).
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We now show that the conditions (MT-i)-(MT-v) hold assuming that

I1t+1. V I
t+1(cI,t+1, cE,t+1) > φIt+1(cI,t+1, cE,t+1);

I2t+1. V I
t+1(cI,t+1, cE,t+1) and φIt+1(cI,t+1, cE,t+1) are continuous and differentiable; and,

I3t+1.
∂V It+1(cI,t+1,cE,t+1)

∂cI,t+1
<

∂φIt (cI,t+1,cE,t+1)

∂cI,t+1
,

as well as the conditions on E’s period t entry threshold that were derived above.

Condition (MT-v) is simply a condition on the support of prices, with the second part requir-

ing that p is so low that I would always prefer to set some higher price even if this resulted in

E having the worst (i.e., highest) possible beliefs about I’s marginal cost whereas setting price

p would have resulted in E having the best (i.e., lowest) possible beliefs. This is implied by

Assumption 3.

The signaling payoff function is defined as

ΠI,t(cI,t, ĉI,t, pI,t, cE,t) = qM(pI,t)(pI,t − cI,t) + ... (10)

β((1−G(κ∗t (ĉI,t, cE,t)))Et[V I
t+1|cI,t, cE,t] +G(κ∗t (ĉI,t, cE,t))Et[φIt+1|cI,t, cE,t])

where G(κ∗t (ĉI,t, cE,t)) is the probability that E enters given its entry strategy.

Condition (MT-i): ΠI,t(cI,t, ĉI,t, pI,t, cE,t) only depends on pI,t through the static monopoly

profit function πMI,t = qM(pI,t)(pI,t − cI,t). The assumptions on the monopoly profit function in

Assumption 3 therefore imply that (MT-i) is satisfied.

Condition (MT-ii): Differentiation of ΠI,t(cI,t, ĉI,t, pI,t, cE,t) gives

ΠI,t
13 (cI,t, ĉI,t, pI,t, cE,t) = −∂q

M(pI,t)

∂pI,t
(11)

ΠI,t
13 (cI,t, ĉI,t, pI,t, cE,t) 6= 0 for all (cI,t, ĉI,t, pI,t, cE,t) because monopoly demand is strictly down-

ward sloping on [p, p] (Assumption 3).
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Condition (MT-iii): Differentiating ΠI,t(cI,t, ĉI,t, pI,t, cE,t) gives

ΠI,t
2 (cI,t, ĉI,t, pI,t, cE,t) = −βg(κ∗t (ĉI,t, cE,t))

∂κ∗t (ĉI,t, cE,t)

∂ĉI,t

{
Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
}

(12)

ΠI,t
2 (cI,t, ĉI,t, pI,t, cE,t) 6= 0 for all (cI,t, ĉI,t, pI,t, cE,t) as g(κ∗t (ĉI,t, cE,t)) > 0 (which is true given

Assumption 2 and the previous result that κ < κ∗t (ĉI,t, cE,t) < κ),
∂κ∗t (ĉI,t,cE,t)

∂ĉI,t
> 0 for all (ĉI,t, cE,t)

(true given the previous result on the monotonicity of E’s entry threshold rule in perceived

incumbent marginal cost), and Et[V I
t+1|cI,t, cE,t] − Et[φIt+1|cI,t, cE,t] > 0 (assumption I1t+1 and

Lemma 2(b)).

Condition (MT-iv): Using equations (11) and (12) we have

ΠI,t
3 (cI,t, ĉI,t, pI,t, cE,t)

ΠI,t
2 (cI,t, ĉI,t, pI,t, cE,t)

=

[
qM(pI,t) +

∂qM (pI,t)

∂pI,t
(pI,t − cI,t)

]
(
−βg(κ∗t (ĉI,t, cE,t))

∂κ∗t (ĉI,t,cE,t)

∂ĉI,t

{
Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
})

Differentiation with respect to cI,t gives

∂
ΠI,t3 (cI,t,ĉI,t,pI,t,cE,t)

ΠI,t2 (cI,t,ĉI,t,pI,t,cE,t)

∂cI,t
=

∂qM (pI,t)

∂pI,t(
βg(κ∗t (ĉI,t, cE,t))

∂κ∗t (ĉI,t,cE,t)

∂ĉI,t

{
Et[V I

t+1]− Et[φIt+1]
}) + ... (13)

[
q(pI,t) +

∂qM (pI,t)

∂pI,t
(pI,t − cI,t)

]
∂{Et[Vt+1]−Et[φIt+1]}

∂cI,t

(
βg(κ∗t (ĉI,t, cE,t))

∂κ∗t (ĉI,t,cE,t)

∂ĉI,t

)
(
βg(κ∗t (ĉI,t, cE,t))

∂κ∗t (ĉI,t,cE,t)

∂ĉI,t

{
Et[V I

t+1]− Et[φIt+1]
})2

where Et[V I
t+1|cI,t, cE,t] and Et[φIt+1|cI,t, cE,t] have been written as Et[V I

t+1] and Et[φIt+1] to save

space.

Sufficient conditions for
∂

Π
I,t
3 (cI,t,ĉI,t,pI,t,cE,t)

Π
I,t
2 (cI,t,ĉI,t,pI,t,cE,t)

∂cI,t
to be < 0 (implying

ΠI,t3 (cI,t,ĉI,t,pI,t,cE,t)

ΠI,t2 (cI,t,ĉI,t,pI,t,cE,t)
is monotonic

in cI,t) are:
{
Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
}
> 0 (follows from assumption I1t+1 and Lemma

2(b));
∂{Et[V It+1|cI,t,cE,t]−Et[φIt+1|cI,t,cE,t]}

∂cI,t
< 0 (assumption I3t+1 and Corollary 3);[

q(pI,t) +
∂qM (pI,t)

∂pI,t
(pI,t − cI,t)

]
≥ 0 for all prices below the monopoly price (implied by strict

quasi-concavity of the profit function); g(κ∗t (ĉI,t, cE,t)) > 0 (Assumption 2 and the previous result
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that κ < κ∗t (ĉI,t, cE,t) < κ);
∂κ∗t (ĉI,t,cE,t)

∂ĉI,t
> 0 (proved above); and,

∂qM (pI,t)

∂pI,t
< 0 (Assumption 3).

Uniqueness of the Separating Strategy under the D1 Refinement The Mailath and

von Thadden theorem allows us to show that there is only one fully separating strategy, but it

does not show that there can be no pooling equilibria. To show this, we use the D1 Refinement

and Theorem 3 of Ramey (1996).

Theorem [Based on Ramey (1996)] Take I’s signaling payoff ΠI,t(cI,t, κ
′
t, pI,t, cE,t) where κ′t is

E’s entry threshold. If Conditions (R-i) ΠI,t
2 (cI,t, κ

′
t, pI,t, cE,t) 6= 0 for all (cI,t, κ

′
t, pI,t, cE,t); (R-ii)

ΠI,t3 (cI,t,κ
′
t,pI,t,cE,t)

ΠI,t2 (cI,t,κ
′
t,pI,t,cE,t)

is a monotone function of cI,t for all (κ′t, cE,t); and (R-iii) p ≥ pstatic monopoly(cI)

and ΠI,t(cI,t, κ, p, cE,t) < maxp ΠI,t(cI,t, κ, p, cE,t) for all (t, cE,t), then an equilibrium satisfying

the D1 refinement will be fully separating.

The signaling payoff function in this theorem is defined based on E’s threshold, not its point

belief, to allow for the fact that, with pooling, E’s beliefs may not be a point. (R-iii) is a

condition on the support of prices, as it says that I would always prefer to use some price above

p even if doing this led to certain entry when setting p would prevent entry from happening.

Once again, it is implied by Assumption 3. Essentially replicating the proofs of (MT-iii) and

(MT-iv) above, we now show that conditions (R-i) and (R-ii) hold.

Condition (R-i): ΠI,t
2 (cI,t, κt, pI,t, cE,t) = −βg(κt)

{
Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
}

. This

will not be equal to zero if g(·) > 0 (true given Assumption 2 and the condition that an equilib-

rium level of κ′t will satisfy κ < κ′t < κ), and
{
Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
}
> 0 (follows

from assumption I1t+1 and Lemma 2(b)).

Condition (R-ii): as before, we have

ΠI,t
3 (cI,t, κt, pI,t, cE,t)

ΠI,t
2 (cI,t, κt, pI,t, cE,t)

=

[
qM(pI,t) +

∂qM (pI,t)

∂pI,t
(pI,t − cI,t)

]
(
−βg(κt)

{
Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
})
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Differentiation with respect to cI,t yields

∂
ΠI,t3 (cI,t,κt,pI,t,cE,t)

ΠI,t2 (cI,t,κt,pI,t,cE,t)

∂cI,t
=

∂qM (pI,t)

∂pI,t

βg(κt)Et[V I
t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]

+ ...[
q(pI,t) +

∂qM (pI,t)

∂pI,t
(pI,t − cI,t)

]
∂{Et[V It+1|cI,t,cE,t]−Et[φIt+1|cI,t,cE,t]}

∂cI,t
(βg(κt))(

βg(κt)
{
Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
})2

Sufficient conditions for
∂

Π
I,t
3 (cI,t,κt,pI,t,cE,t)

Π
I,t
2 (cI,t,κt,pI,t,cE,t)

∂cI,t
to be < 0 (implying

ΠI,t3 (cI,t,κt,pI,t,cE,t)

ΠI,t2 (cI,t,κt,pI,t,cE,t)
monotonic in

cI,t) are:
{
Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
}
> 0 (follows from assumption I1t+1 and Lemma

2(b));
∂{Et[V It+1|cI,t,cE,t]−Et[φIt+1|cI,t,cE,t]}

∂cI,t
< 0 (assumption I3t+1 and Corollary 3);[

q(pI,t) +
∂qM (pI,t)

∂pI,t
(pI,t − cI,t)

]
≥ 0 for all prices below the monopoly price (implied by quasi-

concavity of the profit function); g(κ∗t (ĉI,t, cE,t)) > 0 (Assumption 2 and the previous result that

κ < κ∗t (ĉI,t, cE,t) < κ); and,
∂qM (pI,t)

∂pI,t
< 0 (Assumption 3).

A.4.3 Properties of the Potential Entrant’s Value Functions for Period t

We now show that, given these strategies (in particular the fact that I’s pricing strategy is fully

revealing), which depend on the assumed properties of value functions in period t + 1, that the

value functions at the start of period t will have these same properties. For the potential entrant

we have to prove:

E1t. φEt (cE,t, cI,t) > V E
t (cE,t, cI,t); and

E2t. φEt (cE,t, cI,t) and V E
t (cE,t, cI,t) are uniquely defined functions of cIt and cE,t, and do not

depend on κt−1 or any earlier values of κ;

E3t. φEt (cE,t, cI,t) and V E
t (cE,t, cI,t) are continuous and differentiable in both arguments; and

E4t.
∂[φEt (cE,t,cI,t)]

∂cI,t
>

∂[V Et (cE,t,cI,t)]

∂cI,t
and

∂[φEt (cE,t,cI,t)]

∂cE,t
<

∂[V Et (cE,t,cI,t)]

∂cE,t

From the above, we have that
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φEt (cI,t, cE,t) = πDE (cE,t, cI,t) + β

cI∫
cI

cE∫
cE

φEt+1(cE,t+1, cI,t+1)ψI(cI,t+1|cI,t)ψE(cE,t+1|cE,t)dcE,tdcI,t

(14)

V E
t (cI,t, cE,t) =

κ∗∫
0

cI∫
cI

cE∫
cE

{
βφEt+1(cE,t+1, cI,t+1)ψI(cI,t+1|cI,t)ψE(cE,t+1|cE,t)− κ

}
g(κ)dcE,tdcI,tdκ+ ...

(15)

κ∫
κ∗

cI∫
cI

cE∫
cE

βV E
t+1(cE,t+1, cI,t+1)ψI(cI,t+1|cI,t)ψE(cE,t+1|cE,t)g(κ)dcE,tdcI,tdκ

where κ∗(cE,t, cI,t) has been written as simply κ∗ to save space and we are exploiting the fact

that the unique equilibrium involves the entrant believing the true value of I’s marginal cost

when it takes its entry decision.

Continuity and differentiability of (14) and (15) follows from φEt+1 and V E
t+1 being continuous

and differentiable (E3t+1), and ψI(cI,t+1|cI,t) and ψE(cE,t+1|cE,t) being continuous and differen-

tiable (Assumption 1) and κ∗(cE,t, cI,t) being continuous and differentiable as shown above. The

fact that both (14) and (15) are uniquely defined and do not depend on κt−1 or any earlier values

of κ follows from inspection of these equations and, in particular, the fact that I’s signaling

strategy perfectly reveals its current cost so that E’s entry threshold in period t does not depend

on earlier information. As φEt+1(cE,t+1, cI,t+1) > V E
t+1(cE,t+1, cI,t+1), (15) implies

V E
t (cI,t, cE,t) < β

cI∫
cI

cE∫
cE

φEt+1(cE,t+1, cI,t+1)ψI(cI,t+1|cI,t)ψE(cE,t+1|cE,t)dcE,tdcI,t,

and therefore,

φEt (cI,t, cE,t)− V E
t (cI,t, cE,t) > πDE (cE,t, cI,t) > 0

by our assumption on duopoly profits, so that φEt (cE,t, cI,t) > V E
t (cE,t, cI,t).
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To show that
∂[φEt (cE,t,cI,t)]

∂cI,t
>

∂[V Et (cE,t,cI,t)]

∂cI,t
, it is convenient to write

φEt (cI,t, cE,t)−V E
t (cI,t, cE,t) = πDE (cE,t, cI,t)+β

κ∫
0

min{κ,Et[φEt+1|cI,t, cE,t]−Et[V E
t+1|cI,t, cE,t]}g(κ)dκ

so that

∂[φEt (cE,t, cI,t)]

∂cI,t
− ∂[V E

t (cE,t, cI,t)]

∂cI,t
=
∂πDE (cE,t, cI,t)

∂cI,t
+ ...

β

∂

κ∫
0

min{κ,Et[φEt+1|cI,t, cE,t]− Et[V E
t+1|cI,t, cE,t]}g(κ)dκ

∂cI,t
> 0

where the inequality follows from
∂πDE (cE,t,cI,t)

∂cI,t
> 0 (Assumption 4), 0 < κ∗ < κ and

∂Et[φEt+1|cI,t,cE,t]
∂cI,t

−
∂Et[V Et+1|cI,t,cE,t]

∂cI,t
> 0 (E4t+1 and Corollary 1).

∂[φEt (cE,t,cI,t)]

∂cE,t
<

∂[V Et (cE,t,cI,t)]

∂cE,t
< 0 follows form the

same logic, using
∂πDE (cE,t,cI,t)

∂cE,t
< 0 (Assumption 4) and Corollary 2.

A.4.4 Properties of the Incumbent’s Value Functions for Period t

For the incumbent we have to prove:

I1t. V I
t (cI,t, cE,t) > φIt (cI,t, cE,t);

I2t. V I
t (cI,t, cE,t) and φIt (cI,t, cE,t) are continuous and differentiable; and,

I3t.
∂V It (cI,t,cE,t)

∂cI,t
<

∂φIt (cI,t,cE,t)

∂cI,t
.

Condition I1t:

V I
t (cI,t, cE,t) = max

pI,t
qM(pI,t)(pI,t − cI,t) + ... (16)

β

 (1−G(κ∗t (ς
−1
I,t (pI,t, cE,t), cE,t)))Et[V I

t+1|cI,t, cE,t]

+G(κ∗t (ς
−1
I,t (pI,t, cE,t), cE,t))Et[φIt+1|cI,t, cE,t]


φIt (cI,t, cE,t) = πDI (cI,t, cE,t) + βEt[φIt+1|cI,t, cE,t] (17)
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Now, given I1t+1 and Lemma 2(b),

β

 (1−G(κ∗t (ς
−1
I,t (pI,t, cE,t), cE,t)))Et[V I

t+1|cI,t, cE,t]+

G(κ∗t (ς
−1
I,t (pI,t, cE,t), cE,t))Et[φIt+1|cI,t, cE,t]

 > βEt[φIt+1|cI,t, cE,t]

for any pI,t (including the static monopoly price). But, as qM(pI,t)(pI,t−cI,t) > πDI (cI,t, cE,t) (As-

sumption 4) when the static monopoly price is chosen, it follows that V I
t (cI,t, cE,t) > φIt (cI,t, cE,t)

when a possibly different price is chosen by the incumbent.

Condition I2t: continuity and differentiability of V I
t (cI,t, cE,t) and φIt (cI,t, cE,t) follows from

expressions (16) and (17), and the continuity and differentiability of the static and duopoly

profit functions, the incumbent’s equilibrium pricing function, the entry threshold function,

κ∗t (cI,t, cE,t), the cdf of entry costs G, the cost transition conditional probability functions ψI and

ψE, and the following period value functions V I
t+1(cI,t+1, cE,t+1) and φIt+1(cI,t+1, cE,t+1) (I2t+1).

Condition I3t:
∂V It (cI,t,cE,t)

∂cI,t
<

∂φIt (cI,t,cE,t)

∂cI,t

∂V I
t (cI,t, cE,t)

∂cI,t
=
∂πM(p∗, cI,t, cE,t)

∂cI,t
+ β

∂Et[φIt+1|cI,t, cE,t]
∂cI,t

− ...

β
∂κ∗(cI,t, cE,t)

∂cI,t
g(κ∗t (cI,t, cE,t))

{
Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
}

+ ...

β(1−G(κ∗(cIt,cE,t)))

[
∂Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
∂cI,t

]
∂πM (p∗,cI,t,cE,t)

∂cI,t
= −qM(p∗)+

∂p∗(cI,t,cE,t)

∂cI,t

{
qM(p∗) + ∂qM (p∗)

∂p
(p∗ − cI,t)

}
. But from the unique equi-

librium strategy of the incumbent (recall that V I
t (cI,t, cE,t) is the value to being an incumbent

at the beginning of period t allowing for equilibrium play in that period),

∂p∗

∂cI,t

{
qM(p∗) +

∂qM(p∗)

∂p
(p∗ − cI,t)

}
= βg(κ∗t (cI,t, cE,t))

∂κ∗t
∂cI,t

{
Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
}
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so

∂V I
t (cI,t, cE,t)

∂cI,t
= −qM(p∗) + β

∂Et[φIt+1|cI,t, cE,t]
∂cI,t

+ ...

β(1−G(κ∗(cIt,cE,t)))

[
∂Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]
∂cI,t

]

and

∂φIt (cI,t, cE,t)

∂cI,t
=
∂πD(cI,t, cE,t)

∂cI,t
+ β

∂Et[φIt+1|cI,t, cE,t]
∂cI,t

= −qDI (cI,t, cE,t) +
∂πDI
∂aDE

∂aDE
∂cI,t

+ β
∂Et[φIt+1|cI,t, cE,t]

∂cI,t
< 0

where the inequality follows from the assumption that
∂πD(cI,t,cE,t)

∂cI,t
< 0 (Assumption 4). There-

fore,

∂V I
t (cI,t, cE,t)

∂cI,t
− ∂φIt (cI,t, cE,t)

∂cI,t
= qDI (cI,t, cE,t)− qM(p∗(cIt,cE,t))−

∂πDI
∂aDE

∂aDE
∂cI,t

+ ...

β(1−G(κ∗(cI,t, cE,t)))

[
∂{Et[V I

t+1|cI,t, cE,t]− Et[φIt+1|cI,t, cE,t]}
∂cI,t

]
< 0

where the inequality follows from Assumption 4, as qM(p∗(cI,t, cE,t)) > qM(pstatic monopoly) be-

cause the limit price will be below the static monopoly price and demand slopes downwards

(Assumption 3), and I3t+1 and Corollary 3.

A.5 Proof for Period T

We now turn to showing that the value functions defined at the start of period T have the

required properties. Of course, this is trivial because the game ends after period T so that if I is a

monopolist in period T it should just set the static monopoly price, and E should not enter for any

positive entry cost. Therefore, φET (cE,T,cI,T ) = πDE (cE,T , cI,T ), V E
T (cE,T , cI,T ) = 0, φIT (cI,T , cE,T ) =

πDI (cI,T , cE,T ) and V I
T (cI,T , cE,T ) = q(pstatic monopoly(cI,T ))(pstatic monopoly(cI,t) − cI,t). Under our

assumptions φET (cE,T , cI,T ) > V E
T (cE,T , cI,T ), V I

T (cI,T , cE,T ) > φIT (cI,T , cE,T ) (Assumption 4) and

∂φET
∂cE,T

<
∂V ET
∂cE,T

= 0,
∂φET
∂cI,T

>
∂V ET
∂cI,T

= 0,
∂V IT (cI,T ,cE,T )

∂cI,T
<

∂φIT (cI,T ,cE,T )

∂cI,T
< 0.60

60 ∂V
I
T (cI,T ,cE,T )
∂cI,T

− ∂φI
T (cI,T ,cE,T )
∂cI,T

= qDI (cI,T , cE,T )−qM (pstatic monopoly(cI,T , cE,T ))− ∂πD
I

∂aDE

∂aDE
∂cI,T

< 0 by Assumption

4.
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B List of Dominant Incumbent Markets By Carrier

In the following list (*) identifies markets in the subset of 65 markets where Southwest is observed

for at least some periods as a potential, but not an actual, entrant. Carrier names reflect those

at the end of the sample (so, for example, Northwest routes are listed under Delta).

American (AA): Nashville-Raleigh, Burbank-San Jose, Colorado Springs-St Louis(*), Las
Vegas-San Jose, Los Angeles-San Jose(*), Reno-San Jose(*), Louisville-St Louis, San Jose-Orange
County(*), St. Louis-Tampa

Alaska (AS): Boise-Portland, Boise-Seattle, Eugene-Seattle(*), Spokane-Portland(*), Spokane-
Seattle, Oakland-Portland, Oakland-Seattle, Oakland-Orange Country(*), Palm Springs-Seattle(*),
Palm Springs-San Francisco(*)

Continental (CO): Baltimore-Houston(Bush)(*), Cleveland-Palm Beach(*), Houston- Jack-
son, MS(*), Houston-Jacksonville(*), Houston-Orlando(*), Houston-Omaha(*), Houston-Palm-
Beach(*), Houston-Raleigh(*), Houston-Seattle(*), Houston-Orange County(*), Houston-Tampa(*),
Houston-Tulsa(*), Orlando-Omaha(*)

Delta (DL): Albany-Detroit(*), Albany-Minneapolis(*), Hartford-Minneapolis(*), Boise- Min-
neapolis(*), Boise-Salt Lake City, Buffalo-Detroit(*), Colorado Springs-Salt Lake City, Detroit-
Milwaukee(*), Detroit-Norfolk, VA(*), Fresno-Reno(*), Fort Lauderdale-Minneapolis(*), Spokane-
Minneapolis(*), Spokane-Salt Lake City, Jacksonville-LaGuardia(*), Los Angeles-Salt Lake City,
LaGuardia-New Orleans(*), LaGuardia-Southwest Florida(*), Kansas City-Salt Lake City(*),
Minneapolis-New Orleans(*), Minneapolis-Oklahoma City(*), Minneapolis-Omaha(*), Minneapolis-
Providence(*), Minneapolis-Orange County(*), Minneapolis-Tulsa(*), Oakland-Salt Lake City,
Portland-Salt Lake City, Reno-Salt Lake City(*), San Diego-Salt Lake City, Seattle-Salt Lake
City(*), San Jose-Salt Lake City, Salt Lake City-Sacramento, Salt Lake City-Orange County(*)

United (UA): Hartford-Washington Dulles(*), Nashville-Washington Dulles(*),Boise-San Fran-
cisco(*), Eugene-San Francisco(*), Washington Dulles-Indianapolis(*), Washington Dulles- Jack-
sonville(*), Washington Dulles-LaGuardia(*), Washington Dulles-Raleigh(*), Washington Dulles-
Tampa

US Airways (US): Albany-Baltimore, Hartford-Baltimore, Hartford-Philadelphia(*), Buffalo-
Baltimore, Buffalo-LaGuardia(*), Buffalo-Philadelphia(*), Baltimore-Jacksonville, Baltimore-
Orlando, Baltimore-Norfolk, Baltimore-Palm Beach, Baltimore-Providence, Baltimore-Tampa,
Columbus-Philadelphia(*), Colorado Springs-Phoenix(*), Las Vegas-Omaha, Las Vegas-Pittsburgh,
Las Vegas-Tulsa, LaGuardia-Pittsburgh(*), Manchester-Philadelphia(*), New Orleans- Philadel-
phia(*), Norfolk-Philadelphia(*), Omaha-Phoenix, Philadelphia-Pittsburgh, Philadelphia-Providence,
Phoenix-Orange County(*), Sacramento-Orange County(*)

Other Carriers: Midwest Airlines (YX): Columbus-Milwaukee(*), Orlando-Milwaukee; Air-
tran (FL): Baltimore-Milwaukee; Midway Airlines (JI): Jacksonville-Raleigh(*); ATA (TZ): Chicago
Midway-Philadelphia, Chicago Midway-Southwest Florida.
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C Construction of Market Size

A simple approach to defining the size of an airline market is to assume that it is proportional to

the arithmetic or geometric average population of the endpoint cities (e.g., Berry and Jia (2010)).

However, the number of passengers traveling on a route also varies systematically with distance,

time and the number of people who use the particular airports concerned.61 Recognizing this

fact, like Benkard, Bodoh-Creed, and Lazarev (2010) amongst others, we try to create a better

measure of market size, that we use when estimating demand in Section 5 and also as one of the

variables, in addition to average endpoint population, that can predict the probability of entry

by Southwest in Section 4.

We estimate a generalized gravity equation using our full sample, where the expected number

of passengers traveling on a route is a function of time, distance and the number of originating

and final destination passengers at both of the endpoint airports as well as interactions between

these variables and distance. The originating and destination variables are measured in the first

quarter of our data (Q1 1993) in order to avoid potential problems arising from the fact that

they will be affected by the airport entry of Southwest, and incumbents’ responses to Southwest

entry. We specify

E
[
Passengerso,d,t

]
= exp



β0 + β1Qt + β2 log(distanceo,d) + β2 log(distance2
o,d) + ...∑

j={o,d} β3,j log(originatingj,1993) + β4,j log(originating2
j,1993) + ...∑

j={o,d} β5,j log(destinationj,1993) + β6,j log(destination2
j,1993) + ...

interactions between log(distance)

and originating and destination variables


(18)

where o is the origin airport, d is the destination airport andQt are quarter dummies. Passengerso,d,t

is the number of DB1 passengers with itineraries in either direction on the route, independent of

whether they use direct or connecting service.62 The specification is estimated using the Poisson

Pseudo-Maximum Likelihood estimator, as suggested by Silva and Tenreyro (2006), because esti-

mates from a log-linearized regression will be inconsistent when the residuals are heteroskedastic.

61This can reflect either the fact that customers in some cities may be able to choose between multiple airports,
which may be more or less convenient, but also that some destinations, such as vacation destinations, receive
more visitors than would be expected based on their populations.

62A return passenger counts as 1, and a one-way only passenger counts as 0.5.
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The estimates on several coefficients are shown in Table C.1.

Table C.1: Selected Coefficients from the Gravity Equation Used to Estimate Market Size

DB1 Passengers
log(Distance) 19.07***

(0.313)
log(Distance)2 -1.102***

(0.0218)
log(Final Destinationo,1993) 0.028***

(0.003)
log(Final Destination2

o,1993) -0.0017***
(0.00017)

log(Final Destinationd,1993) 30.92***
(0.148)

log(Final Destination2
d,1993) -1.655***

(0.0076)
log(Originatingo,1993) -21.21***

(0.176)
log(Originating2

o,1993) 1.274***
(0.0091)

log(Originatingd,1993) 0.422***
(0.0042)

log(Originating2
d,1993) -0.0221***

(0.0002)
Observations 166,072
Pseudo-R2 0.818

*** denotes significance at the 1% level.

With the estimates in hand, we calculate the predicted value of the number of passengers for

each market-quarter and then form our estimate of market size by multiplying this estimate by

3.5, so that, on average, the market share of all carriers combined (as a share of the potential

market) is between 25% and 40%. Based on this measure, the median-sized route in our 106

dominant incumbent sample is Salt Lake City-Orange County where Delta is the dominant

incumbent (6,806 DB1 people, or 68,060 people accounting for the fact DB1 is a 10% sample).
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D Effect of Southwest’s Potential and Actual Entry on

the Distribution of Prices

The following tables present the results of the GS regressions using the 25th, 50th or 75th per-

centiles of the price distribution on the incumbent to form the dependent variable, rather than

the average fare.
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Table D.1: Incumbent Pricing In Response to Southwest’s Actual and
Potential Entry: 25th Percentile of Prices

Phase 1 Phase 2 Phase 3
Fare

t0 − 8 -0.039 t0 −0.091∗∗ te −0.424∗∗∗

(0.031) (0.037) (0.074)

t0 − 7 0.002 t0 + 1 −0.105∗∗ te + 1 −0.455∗∗∗

(0.033) (0.039) (0.073)

t0 − 6 -0.019 t0 + 2 −0.117∗∗ te + 2 −0.497∗∗∗

(0.037) (0.041) (0.076)

t0 − 5 -0.029 t0 + 3 −0.134∗∗∗ te + 3 −0.534∗∗∗

(0.036) (0.036) (0.079)

t0 − 4 0.027 t0 + 4 −0.085 te + 4 −0.547∗∗∗

(0.038) (0.0404) (0.081)

t0 − 3 0.005 t0 + 5 −0.099∗ te + 5 −0.523∗∗∗

(0.036) (0.042) (0.083)

t0 − 2 −0.062∗ t0 + 6-12 −0.170∗∗∗ te + 6-12 −0.502∗∗∗

(0.034) (0.049) (0.082)

t0 − 1 −0.055∗ t0 + 13+ −0.286∗∗∗ te + 13+ −0.494∗∗∗

(0.031) (0.056) (0.089)

Yield
t0 − 8 -0.014 t0 −0.040∗∗ te −0.169∗∗∗

(0.012) (0.016) (0.04)

t0 − 7 0.016 t0 + 1 −0.029∗ te + 1 −0.174∗∗∗

(0.016) (0.015) (0.040)

t0 − 6 -0.001 t0 + 2 −0.036∗∗ te + 2 −0.187∗∗∗

(0.017) (0.017) (0.043)

t0 − 5 -0.005 t0 + 3 −0.048∗∗∗ te + 3 −0.191∗∗∗

(0.013) (0.015) (0.042)

t0 − 4 0.02 t0 + 4 −0.030 te + 4 −0.195∗∗∗

(0.016) (0.020) (0.043)

t0 − 3 0.01 t0 + 5 −0.035∗ te + 5 −0.195∗∗∗

(0.016) (0.018) (0.045)

t0 − 2 −0.019 t0 + 6-12 −0.068∗∗∗ te + 6-12 −0.213∗∗∗

(0.017) (0.022) (0.048)

t0 − 1 −0.018 t0 + 13+ −0.115∗∗∗ te + 13+ −0.234∗∗∗

(0.017) (0.033) (0.053)

Notes: Estimates of specification (6) when dependent variable is log of the
25th percentile passenger-weighted fare (“Fare”) or this fare divided by the
non-stop route distance (“Yield”). The adjusted R2s are 0.75 (“Fare”) and
0.78 (“Yield”). Other notes from Table 3 apply here.
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Table D.2: Incumbent Pricing In Response to Southwest’s Actual and Po-
tential Entry: 50th Percentile of Prices

Phase 1 Phase 2 Phase 3
Fare

t0 − 8 -0.029 t0 −0.121∗∗∗ te −0.524∗∗∗

(0.034) (0.039) (0.090)

t0 − 7 -0.020 t0 + 1 −0.131∗∗∗ te + 1 −0.615∗∗∗

(0.042) (0.047) (0.090)

t0 − 6 -0.023 t0 + 2 −0.129∗∗∗ te + 2 −0.650∗∗∗

(0.04) (0.042) (0.097)

t0 − 5 -0.016 t0 + 3 −0.144∗∗∗ te + 3 −0.722∗∗∗

(0.039) (0.042) (0.104)

t0 − 4 -0.034 t0 + 4 −0.163∗∗∗ te + 4 −0.685∗∗∗

(0.041) (0.042) (0.104)

t0 − 3 −0.024 t0 + 5 −0.175∗∗∗ te + 5 −0.628∗∗∗

(0.0385) (0.050) (0.107)

t0 − 2 −0.107∗∗∗ t0 + 6-12 −0.249∗∗∗ te + 6-12 −0.615∗∗∗

(0.037) (0.051) (0.102)

t0 − 1 −0.097∗∗ t0 + 13+ −0.364∗∗∗ te + 13+ −0.612∗∗∗

(0.0386) (0.061) (0.109)

Yield
t0 − 8 -0.018 t0 −0.066∗∗∗ te −0.281∗∗∗

(0.017) (0.024) (0.065)

t0 − 7 0.007 t0 + 1 −0.0491∗∗ te + 1 −0.314∗∗∗

(0.022) (0.028) (0.064)

t0 − 6 0.004 t0 + 2 −0.060∗∗∗ te + 2 −0.330∗∗∗

(0.023) (0.025) (0.068)

t0 − 5 0.011 t0 + 3 −0.070∗∗∗ te + 3 −0.352∗∗∗

(0.023) (0.024) (0.070)

t0 − 4 -0.017 t0 + 4 −0.074∗∗∗ te + 4 −0.352∗∗∗

(0.024) (0.024) (0.072)

t0 − 3 −0.007 t0 + 5 −0.074∗∗∗ te + 5 −0.347∗∗∗

(0.025) (0.024) (0.075)

t0 − 2 −0.057∗∗ t0 + 6-12 −0.143∗∗∗ te + 6-12 −0.367∗∗∗

(0.025) (0.033) (0.075)

t0 − 1 −0.053∗∗ t0 + 13+ −0.220∗∗∗ te + 13+ −0.400∗∗∗

(0.026) (0.050) (0.086)

Notes: Estimates of specification (6) when dependent variable is log of the
median passenger-weighted fare (“Fare”) or this fare divided by the non-stop
route distance (“Yield”). The adjusted R2s are 0.73 (“Fare) and 0.82 (“Yield”).
Other notes from Table 3 apply here.
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Table D.3: Incumbent Pricing In Response to Southwest’s Actual and
Potential Entry: 75th Percentile of Prices

Phase 1 Phase 2 Phase 3
Fare

t0 − 8 -0.053 t0 −0.135∗∗∗ te −0.476∗∗∗

(0.034) (0.046) (0.091)

t0 − 7 -0.063 t0 + 1 −0.170∗∗∗ te + 1 −0.597∗∗∗

(0.039) (0.045) (0.092)

t0 − 6 -0.064 t0 + 2 −0.193∗∗∗ te + 2 −0.615∗∗∗

(0.041) (0.046) (0.098)

t0 − 5 -0.055 t0 + 3 −0.176∗∗∗ te + 3 −0.697∗∗∗

(0.042) (0.046) (0.106)

t0 − 4 -0.042 t0 + 4 −0.194∗∗∗ te + 4 −0.707∗∗∗

(0.042) (0.047) (0.102)

t0 − 3 −0.0333 t0 + 5 −0.190∗∗∗ te + 5 −0.655∗∗∗

(0.0377) (0.052) (0.106)

t0 − 2 −0.105∗∗∗ t0 + 6-12 −0.242∗∗∗ te + 6-12 −0.672∗∗∗

(0.040) (0.061) (0.101)

t0 − 1 −0.111∗∗∗ t0 + 13+ −0.388∗∗∗ te + 13+ −0.636∗∗∗

(0.039) (0.069) (0.109)

Yield
t0 − 8 -0.029 t0 −0.097∗∗∗ te −0.342∗∗∗

(0.022) (0.03) (0.079)

t0 − 7 -0.034 t0 + 1 −0.098∗∗ te + 1 −0.403∗∗∗

(0.023) (0.033) (0.077)

t0 − 6 -0.026 t0 + 2 −0.113∗∗∗ te + 2 −0.422∗∗∗

(0.025) (0.032) (0.083)

t0 − 5 -0.018 t0 + 3 −0.099∗∗∗ te + 3 −0.456∗∗∗

(0.026) (0.032) (0.086)

t0 − 4 -0.035 t0 + 4 −0.115∗∗∗ te + 4 −0.468∗∗∗

(0.025) (0.033) (0.086)

t0 − 3 −0.036 t0 + 5 −0.118∗∗∗ te + 5 −0.460∗∗∗

(0.023) (0.037) (0.087)

t0 − 2 −0.075∗∗∗ t0 + 6-12 −0.179∗∗∗ te + 6-12 −0.488∗∗∗

(0.027) (0.044) (0.084)

t0 − 1 −0.076∗∗∗ t0 + 13+ −0.289∗∗∗ te + 13+ −0.518∗∗∗

(0.027) (0.051) (0.097)

Notes: Estimates of specification (6) when dependent variable is log of the 75th

percentile passenger-weighted fare (“Fare”) or this fare divided by the non-stop
route distance (“Yield”). The adjusted R2s are 0.81 (“Fare”) and 0.84 (“Yield”).
Other notes from Table 3 apply here.
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E First Stage of the Ellison and Ellison (2011) Analysis:

Southwest’s Route-Level Entry Probabilties

As outlined in Section 4.2, the EE approach is implemented in two stages. The first stage, which

we describe in more detail here, involves the estimation of a probit model using the full sample

of 1,872 markets to predict the probability of entry by Southwest at the route-level. There is one

observation per market, and the dependent variable (Entry4m,t) is equal to 1 if Southwest enters

market m within four quarters of becoming a potential entrant at time t (recall that Southwest

becomes a potential entrant when it has operations at both endpoints).

Pr(Entry4m,t|X, t) = Φ(τt + αXm,t) (19)

where τt are a full set of quarter dummies. The explanatory variables Xm contain the following

market characteristics:

• Distance: round-trip distance between the endpoint airports (also Distance2);

• Long Distance: a dummy that is equal to 1 for markets with a round-trip distance greater

than 2,000 miles;

• Average Pop.: geometric average population for the endpoint MSAs (also Average Pop.2);

• Market Size: our estimated market size based on our gravity model described in Appendix

C (also Market Size2). The size is measured in the quarter when Southwest becomes a

potential entrant;

• Slot: a dummy that is equal to 1 if either endpoint airpot is a slot-controlled airport;

• Tourist: a dummy that is equal to 1 if either endpoint city is a leisure destination as defined

by Gerardi and Shapiro (2009);

• Big City: a dummy that is equal to 1 if either endpoint city is a large city, following the

population-based definition of Gerardi and Shapiro (2009);

• Southwest Alternate Airport: a dummy equal to 1 in cases where Southwest already serves

one of the endpoint airports from an airport that is in the same city as the other endpoint
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airport;

• HHI: the HHI, based on passenger numbers, for the route in the quarter that Southwest

became a potential entrant;

For each of the endpoints separately, we also include:

• Primary Airport: a dummy equal to 1 for the largest airport (measured by passenger traffic

in 2012) in a multiple airport city63;

• Secondary Airport: a dummy equal to 1 for an airport other than the largest in a multiple

airport city;

• Incumbent Presence: the average proportion of all passenger originations accounted for by

the incumbents on route m at the airport in the quarter Southwest became a potential

entrant (also Incumbent Presence2);

• Southwest Presence: the proportion of all passenger originations accounted for by South-

west at the airport in the quarter it became a potential entrant (also Southwest Presence2).

The results are reported in Table E.1.

63http://en.wikipedia.org/wiki/List of cities with more than one airport.
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Table E.1: Probit Model of Southwest’s Entry

Entry by Southwest Within Four Quarters
Distance -0.668***

(0.204)
Distance2 0.0385

(0.0344)
Long Distance -0.0414

(0.181)
Average Pop. -0.0952

(0.109)
Average Pop.2 0.0117*

(0.00637)
Market Size 0.237***

(0.0404)
Market Size2 -0.00745***

(0.00165)
Slot -1.801***

(0.543)
Tourist 1.003***

(0.174)
Big City -0.0134

(0.146)
Southwest Alternate Airport -0.185

(0.195)
HHI 0.541***

(0.202)

Airport-Specific Variables Origin Destination
Primary Airport 0.688*** 0.558***

(0.254) (0.211)
Secondary Airport (origin) 0.542** 0.0383

(0.237) (0.233)
Incumbent Presence 2.174 -4.076

(1.743) (1.683)
Incumbent Presence2 -2.085 6.253

(1.683) (7.521)
Southwest Presence 2.455** 0.187

(0.983) (1.045)
Southwest Presence2 -2.245** -0.0427

(0.940) (1.101)
Observations 1,872
Pseudo-R2 0.372

Notes: Specification also includes dummies for the quarter in which Southwest
becomes a potential entrant. Robust standard errors in parentheses. ***,**,*
denote significance at the 1, 5 and 10% levels respectively. The origin airport is
the endpoint with an IATA code that is earlier in the alphabet.
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F Estimates of Demand and Marginal Cost for Calibra-

tion

This Appendix reports the estimates of carrier demand and marginal cost that are used in Section

5.

Table F.1: Nested Logit Demand Estimates

OLS 2SLS

Price ($00s, α̂) -0.327∗∗∗ -0.408∗∗∗

(0.012) (0.037)

Inside Share (λ̂) 0.799∗∗∗ 0.762∗∗∗

(0.032) (0.069)

Hub Carrier 0.184∗ 0.242∗∗∗

(0.030) (0.034)

Selected Carrier Dummies
American -0.112∗∗ -0.139∗∗

(0.054) (0.060)

Continental 0.174∗∗ 0.263∗∗

(0.086) (0.101)

Delta -0.184∗∗∗ -0.212∗∗∗

(0.043) (0.045)

Northwest 0.296∗∗∗ 0.451∗∗∗

(0.052) (0.086)

United -0.358∗∗∗ -0.330∗∗∗

(0.075) (0.079)

US Airways -0.027 0.048
(0.047) (0.058)

Southwest -0.012 -0.082
(0.041) (0.050)

Observations 5,778 5,778
R2 0.312 -

Notes: Specification also includes a linear time trend, quarter of
year dummies, market characteristics (distance, distance2, indi-
cators for whether the route includes a leisure destination or is in
a city with another major airport) and dummies for the number
of competitors offering direct service. The instruments used for
2SLS are described in the text. Robust standard errors in paren-
theses. ∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10%
levels respectively.
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Table F.2: Marginal Cost Evolution Estimates

(1) (2) (3) (4)
OLS All Carriers 2SLS All Carriers 2SLS Southwest 2SLS Incumbents

̂MC per milej,m,t−1 0.847∗∗∗ 0.974∗∗∗ 0.975∗∗∗ 0.963∗∗∗

(0.1038) (0.0123) (0.0889) (0.0461)

Observations 5,432 4,544 1,603 2,941
R2 0.813 - - -

Notes: The dependent variable is ̂MC per milej,m,t, carrier j’s computed marginal cost per mile in market
m in quarter t. The specification also includes market characteristics (market size, average population,
distance and a dummy for whether one of the airports is slot constrained), quarter dummies, carrier
dummies and the lagged price of jet fuel interacted with route distance. In columns (2)-(4) we use the
third through fifth lags of marginal cost per mile to instrument for lagged marginal costs. Robust standard
errors, corrected for the uncertainty in the demand estimates, are in parentheses. ∗∗∗, ∗∗, ∗ denote statistical
significance at the 1, 5 and 10% levels respectively.
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