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1. INTRODUCTION

The tradeoff between unemployment and inflation has been a

dominant issue in macroeconomic policy for many years now. The ques-

tion of the optimal choice has been investigated by a number of authors.

The earliest studies, conducted in the mid 1960's were purely static;

see, e.g., Lipsey (1965) and Brechling (1968). Subsequently, the

analysis was extended to a dynamic context, where the source of the

dynamics is inflationary expectations, which are assumed to follow

some gradual evolutionary process, such as an adaptive scheme; see,

e.g., Phelps (1967, 1974), Turnovsky (1981). These authors derive

an optimal path along which the inflation rate adjusts gradually towards

some steady state equilibrium, while the unemployment rate converges

slowly towards its natural rate level. More recently, Stemp and Turnovsky

(1984) have shown that if instead, inflationary expectations satisfy

perfect foresight, the economy can jump instantaneously to a zero rate

of inflation. However, there is a tradeoff between an initial once—and—

for—all jump in the price level and the subsequent gradual adjustment

of the unemployment rate towards its natural rate level.

In this paper we analyze the issue of the unemployment (or

equivalently output)—inflation tradeoff in an open economy in which

expectations satisfy perfect foresight)' For the model we analyze,

we find that even under this assumption, the optimal paths followed

by output and inflation generally involve the gradual adjustment of

both variables towards their respective steady state equilibria.

There is therefore a dynamic intertemporal tradeoff between them.

The nature of the tradeoff depends critically upon the parameters
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characterizing the economy, as well as the preferences of the policy

maker. These include in particular the rate of time discount and the

costs associated with an initial real structural adjustment in the

economy, necessary to attain the optimal path. The implied optimal

monetary policy along this path can be described in terms of monetary

rules, which can be expressed in various equivalent ways. One particu—

larly convenient form specifies the level of the real money stock,

relative to its equilibrium, in terms of the deviation of the current

real exchange rate from its long—run equilibrium level. Rules of this

kind are similar to those which appear in the recent literature on

exchange market intervention; see, e.g., Boyer (1978), Cox (1980),

Turnovsky (1983), and the papers in Bhandari (1985).

An important, and widely discussed, aspect of optimal policy

determination under rational expectations concerns the question of the

time consistency of the optimal policy; see, e.g., Kydland and Prescott

(1977), Turnovsky and Brock (1980). This issue is addressed in our

analysis.-1 We show that, provided the policy maker is not too myopic,

the time consistency or otherwise of the opimal solutions depends cru-

cIally upon the nature of the adjustment costs associated with unanticipated

changes in the exchange rate, resulting from a policy change.

2. A DYNAMIC MACRO MODEL OF A SMALL OPEN ECONOMY

Consider a small open economy operating under a regime of

perfectly flexible exchange rates. The economy is assumed to be

specialized in the production of a single (composite) commodity, part

of which is consumed domestically, the remainder of which is exported.
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In exchange, the economy imports from abroad, taking the foreign currency

price of imports as given. We also assume that there exists a perfect

worldwide capital market with domestic and foreign securities being

regarded as perfect substitutes. For notational simplicity, the model

is expressed relative to a fixed steady state, so that all variables

can be interpreted in deviation form. It can therefore be summarized

as follows:

Y =
d1(E

— P) — d2(I —
d1 > 0, d2 > 0 (la)

N — P =
a1Y

> 03 > 0 (lb)

I = E , except at points where E jumps (lc)

yY y>0 (id)

C = SP + (1 — 6)E (le)

where

Y = real output, measured as a deviation from its
natural rate level,

P = price of domestic output, expressed in logarithms,

C = consumer price index, expressed in logarithms,

E = exchange rate (measured in terms of units of foreign
currency per unit of domestic currency), measured
in logarithms,

I = nominal interest rate,

M = nominal money supply, expressed in logarithms.

This model will be immediately recognized as being a standard

Dornbusch (1976) model, so that our description can be brief. Equation
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(la) describes the reduced form for the domestic goods market, where

the demand for domestic output depends positively upon the relative

price of domestic to foreign goods (where for convenience the foreign

currency price of the latter are set to unity) and negatively upon the

real interest rate. Money market equilibrium is specified by (lb) and

is standard. Uncovered interest parity is described by (ic), where

again for notational convenience we have set the foreign nominal

interest rate to zero. Equation (id) defines the rate of price adjust-

ment in the domestic economy in terms of a simple Phillips curve.

Finally, (le) describes the domestic CPI (which we assume to be relevant

to the policy maker's objective function, discussed below), to be a

weighted average of the price ot domestic good and the domesLic price

of the imported good. Note that the real interest rate in (la) and

the nominal money stock in (lb) are deflated by the price of domestic

output. Little is changed, apart from additional notational complica-

tions, if the deflator is in terms of the domestic CPI.

Equations (la)—(le) describe the basic dynamic structure of

the economy, which is seen to be extremely simple. In addition, we

should note that the model embodies the familiar features of the Dornbusch

model, namely sluggish goods prices, so that at any point of time P is

predetermined by the past, while the exchange rate is forward looking,

allowing it to undergo endogenous jumps as new information impinges

on the economy. The policy maker is assumed to control the economy by

appropriate choice of the nominal money stock. In addition, the announce--

ment of a new (optimal) policy at the beginning of the planning horizon,
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time 0 say, leads to an initial jump in the exchange rate, which also

plays an important role in determining the subsequent path of the

economy.

The most critical aspect of the model concerns the formula-

tion of the objective function. Specifically, we assume that the

policy maker's objective is to

Minimize kIE(0) — + J IaY + (l_a)Ô21e_13tdt (2)

This cost function has two components. The second is a standard

quadratic loss function. It asserts that a zero rate of inflation of

the CPI (i.e., a stable CPI), together with a full employment level

of output (Y = 0), are regarded as globally optimal. The policy maker

seeks to minimize the discounted intertemporal deviations about these

targets, over the planning horizon, which we take to be infinite.

The parameter a (0 < a < 1) reflects the relative importance attached

to inflation and output in the intertemuoral objective. As a increases,

the policy maker is concerned increasingly with unemployment (output);

as a decreases, the objective is weighted more heavily towards inflation.

The parameter 13, (0 < 13 < c) which measures the rate of time preference,

reflects the degree of myopia of the policy maker; the larger 13, the

more myopic he is.

As noted above, with a forward looking exchange rate, the

change in monetary policy at time zero will cause the exchange rate

to undergo an initial unanticipated discontinuous change from its pre-

viously inherited level E0 say, at that time. Given that the price of

output is predetermined at any instant, this change in the nominal
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exchange rate translates into an instantaneous unanticipated jump in

the relative price E — P, which in turn causes an unanticipated jump

in output. These jumps in real magnitudes impose real (structural)

adjustment costs on the economy and these need to be taken into account

in assessing the overall benefits of the optimal stabilization policy

to the economy.

The initial adjustment costs are specified to be proportional

to the absolute value of the jump, raised to the arbitrary power q.--"

This is a more general functional form than the more usual quadratic

function appearing in the second component in (2), but the choice is

deliberate. As will be shown below, the time consistency or otherwise

of the optimal policy depends critically upon q. Specifically, if

q < I, the solution is time consistent; for q > 1 it is time incon-

sistent. Thus the quadratic function (q = 2) is time inconsistent,

while if the initial costs are evaluated in terms of the absolute jumps

(q = 1), time consistency is obtained.

The magnitude of the initial jump in the exchange rate will be

shown to depend upon the size of the coefficient k. In the limiting

case when k = 0, we will see that the optimal monetary policy will move

the economy instantaneously to steady state. The dynamic time path there-

fore degenerates. Thus, a well—defined optimal intertemporal adjustment

path is obtained by, in effect, balancing off the initial costs associated

with implementing the policy, with the subsequent improvement in the

performance of the economy. This procedure for generating a gradual

adjustment process is not new. In his well known survey article on

distributed lags, Griliches (1967) demonstrated how distributed lag
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investment functions could be derived by balancing off the costs of an

initial adjustment in the capital stock) with the costs of being away

from some target level. Our approach here is essentially analogous.

3. THE OPTIMAL MONETARY POLICY PROBLEM

The formal monetary stabilization problem is to choose the

nominal money stock M(t) so as to minimize the loss function specified

in (2) subject to the constraints on the economy given by (1). In order

to solve this problem it is convenient to define:

m E M — P = real money stock (in logarithms),

S E — P = relative price of foreign to domestic
goods (in logarithms); i.e., the real
exchange rate.

We can then use equations (1) to express the variables Y, C, and s, in

terms of m and s as follows:

= + (3a)

C = 1m + (3b)

s =
01m + 02s (3c)

where

d
ct2d

ct —->Oq 1>0lD '2 D

— (l-)(l-d2y) - d1[6ya2 + (l-)a1]
D >0

d1(c1—o2-y)
01

—
D

<
02

=
D
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D ct2(1—d2y) +

We shall assume 1 > day, thereby ensuring D > 0. This imposes an upper

bound on the speed of price adjustment y consistent with having a down-

ward sloped IS curve in Y — I space.

Given the assumption that price of output moves gradually, it is

reasonable to assume that P(t) is observed at time t. Thus by continuously

accommodating the nominal money stock (the monetary instrument) to the pre-

determined price level, the monetary authorities can in effect control the

real money stock m. In fact, it is analytically convenient to treat m rather

than M as being the monetary control variable. Secondly, we assume that the

monetary authority observes the nominal exchange rate instantaneously. Thus

the relative price 8(t) is observable to the policy maker at time t, and in

factthe optimal monetary policies will be obtained as feedback solutions in

terms of s.-' Thus the formal optimal stabilization problem is

Minimize ks(O) - + [aY + (l_a)2]etdt (4)

subject to (3a)—(3c).

Since the function describing the adjustment costs associated

with the initial jump in the real exchange rate, i.e., kjs(0) — s
is generally nondifferentiable at the point s(0) = s0, the optimization

problem specified by equations (3a)—(3c), (4) can most easily be solved

by decomposing it into the following two subproblems:

Problem 1:

Find L1 = Mm k(s(0) — 80)q + J [aY2 + (l_a)C!2Jetdt (5a)

subject to equations (3a)—(3c) and s(0) > s0
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Problem 2:

Find L2 = Mm k(s0 — 5(0))q +
J

[aY2 + (l_a)2]etdt (5b)

subject to equations (3a)—(3c) and s0 > s(O)

The solution to the original nroblem is then a solution for which

s(O) > s is L1 < L or a solution for which s0 > s(O) if L2 < L1.

4. DETERMINATION OF OPTIMALITY CONDITIONS

To solve the optimization problem specified by both Problems

1 and 2, we first write down the Hamiltonian function:

H et[a{1m + + (l—a)[1m + 2s]2]

+ e_t[ -
01m

-
62s] (6)

where let is the discounted Lagrange multiplier associated with the

dynamic equation (3c). The Euler equations with respect to m and s

are then given by

+
p12s

— = 0 (7a)

+ l22S + (—e2)l1 = (7b)

where

acP + (l_a)nfl
i = 1, 2 i = 1, 2

These two equations, in conjunction with equations (3a)—(3c), then

define the dynamic time paths for the optimal solutions for m and s,

and hence for Y and C.
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Note further that the long—run solution is obtained by setting

s = p = 0 in (7a), (7b). From this substitution we immediately see that

in long—run equilibrium m = s = 0. Consequently, the long—run dynamic

time path of the economy converges to Y = C = 0.

In addition, the optimal solution must satisfy the following

transversality condition as t

—stlim spe 0 (8)

Furthermore, the fact that s(0) is endogenously determined imposes the

following constraints on the initial time point 0, see, e.g., Kamien

and Schwartz (1971):

For Problem 1:

If s(0) > s then p(O) = kq(s(0) - 5)q—1 (9a)

If s(0) = s0 then p(O) kq(s(0) - )q.l (9b)

For Problem 2:

If s0 > s(0) then p(0) = —kq(s0
— (0flq—l (lOa)

If = s(0) then p(O) > —kq(s0
— g(Q))1 (lOb)

5. TRANSITIONAL DYNANICS

The main item of interest is the transitional dynamics implied

by the optimal solutions (7a), (7b), together with (3a)—(3c). We begin

by solving (7a) for m, namely,

l2
(11)
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Next, substituting for in from (11) into (7b) and (3c) the dynamic solution

reduces to the following pair of equations in and s

= h1 h12
(12)

s
h21 "22 S

where

h = + l2l — ll02
h = 1122

- i2
> o11

pll 12 ii

1 2ll —ll
The eigenvalues of this system satisfy the quadratic equation

—
(h11 + h22)x +

h11h22
—

h12h21
= 0

i.e.,

— A+K 0 (13)

where

K h11h22 -
h12h21

=
h22

- (h2 +
h12h21)

Hence,

K < 0, if either h22 < 0

or if h22 > 0, and < (h2 + h12h21)/h22 (14a)

K > 0, if h22 > 0 and > (h2 +
h12h21)/h22 (14b)
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The roots A1, A2, or (13) are given by

xi, A2
=

4[13 4K] (15)

In particular, A] A2
are always real and if we denote the larger by

A1, then

A1 >max[h11,h22] >
13/2 > 0 (l6a)

X2 < min[h11,h22]
< 13/2 (16b)

Also, A2 0 according as K 0. Hence it follows from (l4a, l4b) that

A2<O,if01313 (17a)

A2 > 0, if 13 > 13* (l7b)

where

if h < 0
13* =

(h2 + h12h21)/h22, if h2 > 0

In other words, the optimal solution will have two unstable

roots if the policy maker is sufficiently myopic (i.e., 13 is sufficiently

large); otherwise, the optimal solution will have one stable and one

unstable root. The critical level of myopia, 13*, depends upon the

parameters in the economy.

The solution to the dynaiiic system (12) can be expressed in

the form
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xt
h12 h12 n1e

A2t (18)
S

X1—h11 X2—h11 n2e

where n1 and n2 are arbitrary constants. Given (16a), (16b), in order

for the transversality conditions (8) to hold, we require n1 = 0

and hence the solution becomes

-' A2t= i.i(0)e (19a)

St) =
h (l3b)
12 J

where p(O) satisfies the initial conditions given by equations (9), (10)

and , s denote optimal values.

It will be recalled from the previous discussion that if the

policy maker is sufficiently myopic (i.e., if is sufficiently large)

then 0 < < /2, and the path derived from the optimality conditions

is unstable. This is a plausible outcome, because when the policy maker

is myopic much more weight is assigned to initial values along the optimal

path. In the extreme case when > *, the policy maker is so unconcerned

with these later values that it is of little consequence for the loss func-

tion that the optimal path diverges.

When the optimal path diverges, then given that an optimal path

has been chosen at time 0, say, it will always be optimal to revise the

initial path at some future time t to say. This property of the optimal

solution, which is known as time inconsistency, is clearly undesirable.

In fact it can be argued that if all solutions to the optimization problem

are time inconsistent, then no truly optimal solution will exist.-'
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Throughout the rest of this paper we shall restrict analysis to the

case where the optimal path converges (i.e., A2 < 0). As will be

shown in the next section, for a large range of cases, such a path

is consistent with a time—path that would be chosen at any time in

the future, and hence is time consistent.

Equations (19a), (19b) describe the time path of the real

exchange rate, s, and the costate variable, , along the optimal path

that will be followed after an initial jump in the exchange rate. Com-

bining (l9b) with (11), and noting the definitions of h.., the real

money stock along the optimal path is related to the real exchange

rate by the simple feedback rule

m(t) =
8

s(t) t > 0 (20)
1

Rules of the form (20) characterize much of the current discussion of

exchange market intervention; see Boyer (1978), Cox (1980), Turnovsky

(1983) and papers in Bhandari (1985). Since 81 < 0, and assuming the

more plausible case where A2 < 0, > 0, we see that the coefficient

of S in (20) is positive. This means that following the initial jump

in the exchange rate, it will be optimal for the policy maker to respond

to a depreciating real exchange rate by increasing the real money supply;

i.e., to lean with the wind." Note that by using the definitions of m

and s, the rule can be expressed equivalently in nominal terms as

N(t) = E(t) +
6 P(t) (20')

Ui 1
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In a similar fashion we can express the optimal time paths

followed by output and inflation in terms of the time path followed by

the real exchange rate. These are derived by substituting (20) and

(19b) into (3a), (3b), respectively, to yield1

lA2+0l282lY(t) = s(t) 1s(t) (21a)
1

t>0
• n1A2+81n282n1C(t) = (t) w2s(t) (21b)

I

Recalling the definitions of p, 81, we find l2 — 2l < 0.

Thus for A2 < 0, the coefficient > 0. That is, along the optimal path

domestic output increases with the real exchange rate. On the other hand,

in (21b) is ambiguous. Differentiating (le) with respect to t and

noting the definition of s, we may express (21b) as

= P + (l—6)

= [yw + (l—6)X2J (21b')

enabling us to see the source of the ambiguity. On the one hand, C

responds positively through the inflation of domestic goods to domestic

output and hence to the relative price s; on the other hand, it is

negatively related through changes in S to s. The net effect depends

upon which of these two effects dominate.

Combining equations (21a), (21b), we observe that the optimal

paths for output and the rate of inflation of the CPI lie along the

straight line

riA+O—8 w
C(t) =

1 2_ 2 1 Y(t) Y(t) (22)
2 l2 2l



—16—

It is clear from the above observations that this locus may be either

positively or negatively sloped depending upon whether 0. Finally,

substituting (20) into (3c) and noting (2la), (21b), we see that along

the optimal path all variables converge at tne same rate to their

respective steady states.

6. ENDOGENOUS INITIAL JUMPS IN EXCHANGE RATh

daving determined the dynamic time path of the economy follow-

ing the initial jump in the exchange rate, all that remains to determine

the solution for the optimal time path is to determine the initial condi-

tion for the exchange rate, namely, s(0), itself.

By combining the transversality conditions at time 0, given

by equations (9) and (10), together with the optimality conditions (l9a),

(1gb), and the comparison of the loss functions for Problems 1 and 2. we

find that the initial conditions for s(0) for the optimization problem

are given by

s(0) =

{
2Jk((Q) )ql , if s(O) > s0 (23a)

h —A h —X
- —---_- kq(s(O)s0) < s(0) <

11 2
kq(s0-s(O)) , if s(0) = s0 (23b)

L
12 12

s(0) = 11
2]kq(s 5(0))ql , if > s(0) (23c)

12

The nature of the endogenous jumps in the exchange rate depends crucially

upon the form of the adjustment costs as represented in (2'). Specifically,

the time consistency of the initial jump depends upon the magnitude of q,
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while the magnitude of the initial jump depends upon the inherited real

exchange rate s0, together with the cost parameter k. It is convenient

to consider the three cases q = 1, 0 < q < 1, q > 1 separately.

Case 1: q = 1

In this case conditions (23a)—(23c) reduce to

h -X
s(O) = —

2
k , if s(0) > s0 (24a)

12

h —X h
A2— 11 2

k < s(0) < - k , if s(0) s (24b)
"12 "12

h11—X2s(0) =
h k , if s0

> s(0)
12

It can be deduced from these three equations that if the inherited real

exchange rate s lies in a specific closed interval bounded by

{hii_x2] < s < (25)

then it will be optimal for no initial jump in the real exchange rate

s to occur.Z' Since any initial jump in the real exchange rate is

achieved through a jump in the nominal rate (P moves continuously through-

out) this means that if (25) holds, it will be optimal for no jump in

the nominal exchange rate to occur. However, if s0 lies outside this

interval, then the nominal exchange rate will jump so that the real

exchange rate s moves instantaneously to the nearest boundary of this

closed interval.
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The boundaries of the closed interval defined in (25) depend

critically upon k, the magnitude of the cost associated with the initial

jump. If k then it is clear that it is never optimal to have an

initial jump in the exchange rate E. On the other hand, if k - 0, then

the closed interval (25) collapses to 0, and it will be optimal for the

real exchange rate to always jump instantaneously to its steady state

equilibrium value, (which we have chosen to be zero). Thirdly, the

boundaries of the closed interval are symmetric about the steady—state

equilibrium level = 0.

Once the initial condition for the optimal time path for the

real exchange rate s has been determined, equations (19a), (19b) show

that s will then converge monotonically towards its steady state level,

whenever is sufficiently small to ensure A2 < 0. Since the steady state

= 0 is always within the boundaries of the closed interval defined by

(25), it will not be optimal for the exchange rate to jump again after

the initial jump. In the case q = 1, therefore, the optimal policy will

clearly be time consistent.

This example of a time consistent solution is illustrated in

Figure la. Initially, the real exchange rate is at s0 < —(h11—X2)k/h12.

At the initial instant that optimization begins, the jump in the nominal

exchange rate causes the real exchange rate to jump to s(O) =

and thereafter it begins to converge monotonically towards equilibrium

(zero).

Case 2: 0< q <1

En this case condition (23b) reduces to

= s(O) < (23b')
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Thus if s0 < 0, then either s(0) satisfies (23a) or s(0) = As in

the case q = 1, it may be optimal either for an initial jump in s to

occur, or for no initial jump in s to occur, depending upon the

inherited value of the exchange rate, as well as the adjustment cost

parameters k and q, and other parameters in the economy. Note that

in contrast to the case q = 1, where the point to which s(0) jumps

(when it is in fact optimal to jump) is independent of the inherited

value s0 (see (24a) or (24b)), in the present case s(0) is in part

determined by s0; see (23a), (23b). It can further be shown that no

subsequent jumps beyond the initial point will be optimal, although

details of this are omitted.' Thus for 0 < q < 1, the solution will

be time consistent and the optimal patti will be of the same general

form to that for q = 1; i.e., a possible initial jump followed by con-

vergence towards equilibrium.

Case 3: q > 1

In this case inequalities (23b) reduce to

s0
= s(0) = 0 (23b")

If s0] > 0, then (23a), (23c) together imply-'

Isol > Is(O)J > 0 (26a)

But then if after the initial jump, the policy maker immediately

reoptimizes, choosing the initial condition after the second optimiza-

tion to be given by s(0+), then

> s(0)j > s(0+)j > 0 (26b)
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Hence s(O+) s(O), unless s0 = 0. Thus, when q > 1, the recomputed

path is in general discontinuous and the optimal solution is in general

time inconsistent.

An example of this time inconsistent case is given in Figure

lb. At the beginning of the optimization period, the real exchange rate

s jumps from s to s(0). If the policy maker reoptimizes at time to,

then it will be optimal for the exchange rate to jump again at that time.

An intuitive explanation of these results can be seen by noting

that the marginal cost of a jump in the exchange rate is given by

kqs(O) - q—l

When 0 < q < 1, the marginal cost of a jump decreases with the magnitude

of the jump. Thus it is "cheaper" to have one large jump than two small

ones. On the other hand, when q > 1, the marginal cost of a jump

increases with the magnitude of the jump. In this case two smaller jumps

are less costly than a single large one'

7. SOLUTION FOR OPTIMAL TIME PATH

We are now in a position to construct the optimal time paths

for output and inflation. This involves a consideration of the optimal

transitional paths given in (19a,l9b), (20), and (2la,2lb), as well as

the endogenous initial jumps in the exchange rate described in Section 6.

Throughout this section we shall restrict discussion to time consistent

solutions. We shall also consider the case q = 1, for which s(O) when

it jumps, does so to a point independent of s0. The case q < 1 is essen-

tially similar, the only difference being that s(O) is a function of s0,

as seen from (23a).
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We assume that initially the economy starts from a point hav-

ing an arbitrary real money stock m0 and real exchange rate s0. Corre-

sponding to these values, (3a), (3b) imply initial values of output and

inflation, namely,

= + 2O

C0 = flm + fl2S0

For the sake of being concrete we shall assume that m0, s0, the inherited

values, have been chosen such that < 0, C0 > 0; i.e., the economy

begins in a state of stagflation.

Typical optimal paths for inflation and output are illustrated

in Figures 2A, 2B. In both these figures, the locus XX' defines the

optimal adjustment path for output and CPI inflation described by equa-

tion (22). It has been drawn on the assumption that the domestic price

inflation responds slowly to output changes (i.e., y is small), so that

the coefficient in (2lb) is negative. This implies that XX' has a

negative slope. Given our choice of units, the steady state of the

economy is at the point where this line passes through the origin.

The appropriate initial points on the line XX' lie within

the closed interval defined by AB. In effect, this locus is the analogue

of the closed set derived from (23b) in Y—C space. Within this set no

initial jump in E (or s) occurs. If the economy starts outside this set

it must move towards the nearer endpoint A or B. The coordinates of

these points are obtained by substituting for (0) from the initial

conditions (9), (10) into (19) and (21), at time t = 0.
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The loci Z1Z, Z2Z (as well as WS, W'S') have slopes given

by

dC = (27)

where the partial derivatives , n, are obtained from (3a), (3b)

Basically, these derivatives define the slopes of the lines along

which inflation and output will move instantaneously in response to

an initial change in the money supply, without taking account of the

jump in E which such a change may or may not induce (depending upon

adjustment costs). Since l > 0, its slope depends upon whether

>
111<

It is seen from its definition that r, has two effects. On
4-

the one hand, an increase in m will raise output, thereby increasing

the rate of inflation of domestic goods and hence that of the overall

CPI. On the other hands the monetary expansion will tend to lower the

domestic interest rate and hence the rate of exchange depreciation,

thereby lowering the rate of inflation of the CPI. We take the case

where the latter effect dominates, so that the Z.Z lines are negatively

11/ H
sloped.

Figure 2 illustrates two cases. The first is where the initial

output and inflation rate lie at a point such as V which lies outside

the area defined by Z1Z and Z2Z. The second is where it is initially

at W, which lies within the area. We shall consider these in turn.

Suppose that the economy is initially at V, with < 0 and a

positive rate of inflation C0 > 0. The initial adjustment involves mov-

ing the system instantaneously to A on the optimal locus XX'. This jump

implies an instantaneous increase in real output (dY(O) > 0), accompanied
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by an instantaneous reduction in the rate of inflation (d(O) < 0). To

see the adjustments involved, we consider equations (3a), (3b). Letting

dX(0) E X(0) —
X0, we have

dY(0) =
q1dm(0) + 42ds(0)

dC(0) =
n1dm(0) + ri2ds(0)

Solving these equations for dm(0), ds(0), yields

ri.,dY(O) — cdC(O)
dm(0) =

— (28a)l12 2fl

+ 1dC(0)ds(O) =
— (281,)

lh12 c2fll

From the definitions of q., fl.,, we can readily show 12 — '2l > o•

It then follows that with dY(0) > 0, dC(0) < 0, > > 0

dm(0) > 0 (29a)

Also, since V lies to the left of Z1Z.,, we have

dC(O) 14.) —

dY(0)
(.dYJzzi

—

implying

—
ri1dY(0) > 0

so that

ds(0) > 0 (29b)

Thus the movement from V to A is achieved by an initial monetary

expansion. This gives rise to a depreciation .of the real exchange rate,

which with the price of domestic output sluggish, is brought about by a
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depreciation of the nominal rate. The expressions for the initial changes

in s(0) and m(0) are obtained from (24) and (20), namely,

A -h
ds(0) = k —

s0
> 0 (30a)

12

x—e A—h
dm(0) =

2 2 2 11 k —
m0

> 0 (30b)
1 12

It follows further from (30) that

s0 < s(0) < 0 (30a')

m0 < m(0) < 0 (30b')

Consequently, the original stagflation illustrated by V is the result of

a low real money supply, coupled with a value of the real exchange rate

which is overvalued compared with its long-run equilibrium value.

In Figure 2A we have also drawn the locus VV', the slope of

which is

[c]
(31)

VV,

This represents the relative effects of an exchange rate change on the

rate of inflation and level of output, with the nominal (and real) money

supply held constant. Thus the instantaneous jump from V to A can be

decomposed into a jump due to the change in the exchange rate (along VI!'),

coupled with a jump due to the monetary expansion (along V'A), both of

which occur simultaneously at the beginning of the optimization.

Letting (dC/dY), denote the slope of the inflation—output

tradeoff given by XX', we can show by substitution that

dC) dC dC
>

XX'
> (32)
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Figures 2A and 2B are drawn with the respective slopes
satisfying (32).

Despite the initial depreciation of the exchange rate associated

with the move from V to A, the domestic currency remains overvalued rela-

tive to its long—run equilibrium. Further devaluation is required. With

s(0) < 0, the monetary authorities set m(0) < 0, in accordance with the

optimal rule (20). As a result, the domestic exchange rate
immediately

continues to depreciate; i.e., s(0) =
A2s(0) > 0. This causes output

to continue increasing and with 2 < 0, for CPI inflation to continue

decreasing. Along the optimal path, the real exchange s continues to

depreciate, although at a decreasing rate, as steady state is approached.

This adjustment is mirrored by the
money supply. Likewise, output and

inflation continue to follow the optimal path XX' until the stedy—stae

equilibrium Y = C = 0 is reached.

It is also possible to consider the case where the domestic

price inflation effect in (2lbT) dominates, so that the coefficient

> 0. In this case XX' is positively sloped. The exposition remains

similar to the above except that after the jump in the exchange rate,

the economy will be driven to a level of deflation (C(0) < 0), as well as

unemployment. In this case the effect of the monetary expansion along the

optimal path on output will have a greater effect on domestic prices than

before. The added demand now induces inflationary pressure leading to a

gradual moderation in the deflation initially generated.

We turn now to the second case illustrated in Figure 2b, where

the economy starts out at W which lies within the area bounded by Z1Z

and Z2Z. In this case it will be optimal for no initial jump in the

exchange rate to occur and the optimal path will be reached by means of

an initial expansion in the money supply alone. In this case the move
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is along WS which involves an increase in output accompanied by a

decrease in inflation. Thereafter, output and inflation follow XXV

as before. Note that it is possible for the increase in output result-

ing from the initial monetary expansion to take the economy beyond the

steady state level 0. In this case, the economy will reduce output and

depending upon the magnitude of w2, inf late or deflate along the optimal

path XX'. This is illustrated by the move along W'S' from the initial

point W' in Figure 2b.

Finally, Figure 3 illustrates the implied time paths for the

levels of CPI and output (drawn for w2 < 0). The relationship between

these paths and those in Figure 2 is self—explanatory.

8. FURTHER DISCUSSION

In this paper we have analyzed the optimal intertemporal trade-

off between inflation and output in an open economy which is characterized

by perfect foresight in the formation of exchange rate expectations. The

announcement of the optimal plan, may or may not, generate an initial

unanticipated jump in the exchange rate. That depends upon the real

adjustment costs, which such unanticipated changes impose on the economy.

In the case that such jumps do occur, the question of time consistency

of the optimal path arises. e have obtained a time consistent solution,

provided: (i) the policy maker is not too myopic; (ii) the adjustment

costs associated with the unanticipated jump in the exchange rate are of

an appropriate, but reasonable, form.

The optimal monetary rule can be expressed in feedback form

with the real money supply being adjusted to the real exchange rate.

In most cases the relationship is a positive one, implying a "leaning

with the wind" policy. The corresponding adjustments in output and
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inflation can also be expressed in terms of the real exchange rate.

Accordingly, along the optimal path the relationship between output

and inflation is a linear one. This may be either positively or

negatively sloped, depending upon whether the CPI inflation rate is

positively or' negatively related to the real exchange rate.

ve have analyzed in some detail the case where the economy

starts from stagflation; output is below full employment equilibrium,

while the inflation rate is positive. In the case that it is optimal

for the exchange rate to undergo an initial jump, the optimal monetary

policy calls for an initial expansion, thereby generating an initial

increase in output and in the level of the CPI, followed by an instantaneous

reduction in its rate of inflation. Thereafter, as the economy moves

along the optimal paui, the monetary growth remains positive, but declin-.

ing, so that output and inflation converge to their respective equilibria.

If the costs associated with the initial jump in the exchange rate are

sufficiently high, there will be no initial jump, and the optimal output—

inflation tradeoff path is reached by means of a change in the money

supply alone. The exchange rate then always moves continuously.

An important aspect of our analysis concerns the specification of

the Phillips curve, (ld), in which the price of output adjusts to devia-

tions in output alone. If, on the other hand, the price adjusts fully to

changes in the CPI, as the result of some wage indexation scheme, say,

our results are changed somewhat. In particular, the stable loci XX'

in Figs 2A, 2B become horizontal, coinciding with the Y axis, implying

that inflation can be reduced instantaneously to zero. At the same

time, output still adjusts slowly, reflecting the initial adjustment

12/costs.—
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A further interesting aspect of our results is the ability to

generate time—consistent solutions. These are obtained by imposing

costs on the initial jumps in the exchange rate and assuming these to

be from a specified class of functions. Such costs are introduced on

the grounds that unanticipated changes in the exchange rateimpose

real disturbances and hence real adjustment costs on the economy.

The feature of the specification which generates time consistency is

the fact that the marginal cost of a jump in the exchange rate

decreases with the size of the jump, thus making it optimal to make

an initial large jump and discouraging any subsequent jumps. By

choosing a general class of adjustment cost functions, we have

demonstrated that the phenomenon of time consistency is not simply

the result of choosing a particular arbitrary cost function.

Furthermore, the procedure used here has general applicability

and may prove to be useful in other stabilization contexts.
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FOOTNOTES

1For some simulations of optimal monetary policies in an open economy

see Driffill (1982).

-'The issue of time consistency within the context of linear—quadratic
dynamic control models, with specific reference to problems of inter-

national macro policy, is also discussed by Miller and Salmon (1984).

-'The reason for specifying the costs in terms of the absolute value
is simply to ensure that they are always nonnegative for all q > 0.

ignore informational asymmetries, i.e. the possibility that E may

be observed before P or even H.

—-'1This result follows because if the optimal solution is time incon-
sistent, there is no optimal time period between endogenous jumps.

-'Combining (20) with (2la) or (21b) it is also possible to express
the optimal monetary rule in terms of Y or C. However, these forms

are less appealing since information oncurrent exchange rate is

generally more readily available than information on current output

or inflation.

-'This can be established by the following simple argument. Suppose
lies in the closed interval (25), and s0 jumps to s(O) > say.

Then from (24a), s(0) = —(h11—X2)k1h12.
Hence it follows that

—(h11—X2)k1h12 > s0,
inconsistent with s lying in the closed inter-

val (25). The case where s0 jumps to s(O) < s0 can be argued simi-

larly.

-"The detailed arguments are available from the authors on request.

-'Inequality (26a) can be established by contradiction. Suppose s0 > 0.
Then either s(O) > s > 0, or s(O) < s0. If s(O) > s, then (24a)

implies s(O) < 0 and hence s(O) < s0, which is a contradiction. Thus

s(0) < s, in which case (23c) implies o > s(0) > 0 implying (26a).

The case where s < 0 can be reasoned similarly.
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'Equivalently, these conclusions follow from the mathematical property
that for a > 0, b > 0,

(a + b) > + q > 1

q<l

It is important to emphasize that n < 0 does not necessarily mean
1

that a monetary expansion will necessarily lead to a lower CPI
inflation rate. This is because it measures only a partial effect
and does not take account of any induced jump in the exchange rate.
In fact, one can show that an increase in m alone will (in the
absence of adjustment costs) lead to a devaluation of the exchange
rate. This devaluation in the exchange rate tends to increase the
domestic inflation rate P, but as is known from the Dornbusch model,
this can lead to a decline in E, the rate of depreciation of the
nominal exchange rate. Since C = 3P + (l—ô)E, the overall effect
on the CPI inflation rate is in general ambiguous.

We are grateful to a referee for drawing this to our attention.
Actually, a previous version of this paper analyzes the case of an
expectations—augmented Phillips curve in detail.
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