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Abstract

This paper studies a competitive general equilibrium model with default and en-

dogenous collateralized contracts. The possibility of trade in spot markets creates

externalities, as spot prices and the bindingness of collateral constraints interact. We

propose a market based solution which overcomes the externalities problem and obvi-

ates the needs for any government policy intervention. If agents are allowed to contract

ex ante on market fundamentals determining the state-contingent spot prices used to

unwind collateral, over and above contracting on true underlying states of the world,

then standard existence and welfare theorems apply, that is, competitive equilibria are

equivalent with Pareto optima.

Keywords: Default; endogenous collateral; externalities; segregated exchanges; Walrasian

equilibrium; limited commitment; financial crises

JEL Code: D52, D53, D61, D62.

1 Introduction

This paper uses a competitive general equilibrium with directly-collateralized and asset-

backed securities to analyze the interaction between the endogenous valuation of collat-

eral and corresponding default decisions. The interaction creates a “pecuniary externality”,

which causes a collateral-constrained equilibrium to be inefficient. The externality exists

because the consumption feasibility set of an agent directly depends on the spot price and

the prices of asset backed securities through the decisions of other agents in the contracting

period. This impact on the feasible set in turn impacts the allocations of all agents whenever

the collateral or borrowing constraints of any types of agents is binding.

The primary contribution of this paper is not the discovery of the externality, as this

is now quite clear from a growing literature, (e.g., Allen and Gale, 2004; Caballero and

Krishnamurthy, 2001, 2004; Farhi et al., 2009; Geanakoplos, 2003; Geanakoplos and Pole-

marchakis, 1986; Golosov and Tsyvinski, 2007; Greenwald and Stiglitz, 1986; Jacklin, 1987;

Lorenzoni, 2008). Much of this literature is linked to modeling the recent financial crisis

and emphasizes fire sales that come about from too much initial credit that has to be un-
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wound, falls in asset prices, and a further tightening of financial constraints. This of course

relates to the larger financial accelerator literature, e.g., Aghion et al. (1999); Bernanke and

Gertler (1989); Bernanke et al. (1996); Cooley et al. (2004); Kiyotaki and Moore (1997); Kr-

ishnamurthy (2003); Lamont (1995); Rampini (2004); Ranciere et al. (2008). These papers

use endogenous borrowing constraints as amplification mechanisms. In particular our paper

which focuses on collateral constraints is closely related to Kiyotaki and Moore (1997) and

Krishnamurthy (2003).

Recently Hart and Zingales (2113) have emphasized that externalities can result in too

much saving, providing a model where limited ability to borrow against future human capital

raises the demand for liquid assets which in turn raises the price of goods purchased. Our

paper is closely related. Indeed in our class of models in which collateral is required to

back promises, the over-savings phenomena is a general result. As a consequence of this, a

constrained optimal system will make traders pay for the right to bring the collateral good

or be compensated for not doing so, though this is relative to a market fundamental that

determines the equilibrium spot prices.

The primary contribution of our paper, though, the one we emphasize, is a solution to all

these pecuniary externality problems using market-based, segregated exchanges in securities.

These internalize the externality by creating otherwise missing markets. The contrast with

the literature is evident. We do not require portfolio restrictions, restrictions on savings,

interest rate manipulation, fiscal policy, or taxes and subsidies levied by the government.

We do not have to quantify any particular policy response. Rather, appropriate designed

markets in rights to trade will deliver the correct prices at the Walrasian, non intervention

outcomes and so deliver an efficient outcome. Lump sum taxes and subsidies can be used to

compensate potential losers from the creation of there new markets and achieve any desired

Pareto optimal allocation. We also do give a public finance tax/subsidy interpretation of

the market based solution through the lens of the budget constraint, to make clear both

the lump sum redistributive and marginal considerations that lead to a constrained optimal

structure.

We now go over some of theses points in more detail. A contract or security consists of

two items, a state-contingent promise and the collateral backing that promise. We take it
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as a primitive that default is possible or, equivalently, that collateral is required to make

borrowers (or issuers of securities) repay their loans. A borrower may choose to default

on a particular loan, or a particular state-contingent promise, and in doing so would lose

the value of collateral backing that particular loan or security1. A rational borrower will

base her default decision security by security on the value of the collateral backing each

liability, compared to the original promise to pay. Of course the value of the collateral good

at the time of repayment decisions (called the execution period) and in the market for asset

backed securities (in the contract period) is an equilibrium phenomenon. Yet this market-

clearing price of collateral determines whether borrowers default or not and hence the overall

amount of debt and saving. In particular, the model is a general equilibrium model with

endogenously determined collateral and so aggregate collateral (hence saving) is a result of

the actions in the contracting period of all agents as a group. This in turns implies that

the market fundamental, the price in the spot market, the price used to unwind collateral,

is endogenously determined by the actions in the contracting period of all agents as a group

(aggregate savings).

Contracts that promise to pay and which do not default have to be backed by a sufficient,

minimum level of collateral, again depending on the promise and the value of collateral.

Likewise asset-backed securities which are issued as a promise to pay have to be backed in

collateral by an equivalent value of asset-backed securities acquired, the promises of others.

Further, for every set of securities which actually default, handing over collateral, there is

another set which would be equivalent, with the same overall payoff and no default. Adding

up all such promises, over state-contingent security promises directly backed by collateral and

over state-contingent securities backed by the promises of others, generates a state-contingent

collateral constraint on trades which is in play in the ex ante contract market. Of course

contracts which do default naturally also require collateral that is to be handed over when

the borrower does not repay. That is, partially collateralized securities are still intimately

1This paper is related to the literature on decentralization with autarky as the penalty for reneging, e.g.,

Alvarez and Jermann (2000); Kehoe and Levine (1993); Kocherlakota (1996). Similar to our model, they

allow ex ante complete contracts, and focus on decentralization of constrained optimal allocations. On the

other hand, the punishment mechanism is different from ours, as for us defaulting agents will only lose their

collateral.
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associated with the exact amount of collateral which serves a backing. But rescaling these

latter contracts delivers collateral constraints which are equivalent. We label such constraints

collateral constraints, for brevity.

The externality problem2 is in general a missing-market problem, as Arrow (1969), which

was build on an earlier work of Meade (1952), made clear some time ago. For us, here in

this paper, the markets for contracts over the “market fundamentals”, those aspects of

the environment which determine the market-clearing price, the valuation of collateral, are

missing.

There are several key ingredients in our approach to creating these missing markets. First,

we define a new object called a type’s “discrepancy from the market fundamental”, and in

equilibrium, by definition, the sum of individual discrepancies must be zero (but discrepancies

are nontrivial, some types on one side of the market and some on the other). Second, we

give this discrepancy a common price per unit discrepancy, determined by a market (but the

quantity discrepancy depends in part on observed heterogeneity). Third, we allow agents to

contract ex-ante on the market fundamental determining the state-contingent spot-market-

clearing price. That is, we create security exchanges at which the value of collateral used for

clearing ex post is pre-determined, for the entire range of values for collateral, including out

of equilibrium values.

The particular security exchanges which emerge in equilibrium are determined by the

forces of demand and supply. In any active exchange the clearing price of collateral, allowing

retrade within the exchange, is indeed one that is sustained in equilibrium given the types

and numbers of agents attracted to that particular exchange3. We then prove that the

2This externality problem is multilateral. That is, without further restrictions, every agent will experience,

as a common price ratio, the same market fundamental, regardless of the fact that other agents are also

experience the same thing. In this sense the externality is a nondepletable externality. Indeed, this might

suggest that one way to internalize the externality is with personalized prices, using a Lindahl equilibrium

concept (Lindahl, 1958). Yet, to the contrary, here we apply a market-based solution concept with a common

price per unit discrepancy. The connection is that the total paid, or received, does depend on type-specific

pretrade endowment ratios and in that sense is personalized.
3A price island is a language one can use to conceptualize the consistent execution of the contingencies

on fundamentals. That is, a price island specifies the spot price, the value of collateral ex post, and the

set of agents that end up there through their ex ante purchases or sales have to support that price. Agents
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competitive equilibria with endogenous collateral constraints in this extended commodity

space are equivalent with Pareto optima. Indeed, working through the optimum problem

and its Lagrange multipliers, we are able to derive the price of rights to trade even for

markets which will not exist in equilibrium. It is crucial that any agent thinks about the

consequences of off-equilibrium deviations to different exchanges, so to speak.

One could view these results as normative, indicative of the need for a systematic but

market-determined way for traders to unwind commitments. We elaborate on what actual

implementation might look like in the conclusion of this paper.

Here to elaborate is the main idea of the paper: we internalize the externality by making

household types pay or be paid for their influence on the spot market prices determining

the value of collateral, when their pretrade endowment ratio is different from the ratio

determining the market fundamental. Specifically, household types who enter into a market

in which the price is high for the collateral good with which they are abundantly endowed

and/or have as a consequence of collateral/savings (they have a smaller pretrade endowment

ratio than the market fundamental) will pay for demanding rights to trade on that market

(and no other) . On the flip side, those types who are entering into a market with relatively

little of the collateral good (they have a pretrade endowment ratio larger than the market

fundamental) must be paid for accepting the restriction to trade on that market (and no

other).

In another interpretation, ex post spot trades are replaced by ex ante trade in asset

backed securities. In this interpretation, a household has to pay or be paid for the rights to

trade in a particular security exchange ex ante, but these exchanges still determine the price

at which asset backed securities are unwound.

can carry in goods or securities in such a way that their pretrade ratio of endowments or portfolio in a

spot market deviates from the market fundamental, but the sum of the discrepancies must, by the definition

of consistency, be zero so that the spot price that indexed ex ante contracts is the one which prevails in

equilibrium. This is like a club constraint in other literature, e.g., Prescott and Townsend (2006). See also

consumption right in Bisin and Gottardi (2006). This solution concept with segregated security exchanges

is also related to the assignment literature (e.g., Koopmans and Beckmann, 1957; Prescott and Townsend,

1984a,b). Mortensen and Wright (2002) internalizes a search externality using directed search into segregated

submarkets that promise different expected waiting times. See also Guerrieri et al. (2010).
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The collateralization structure in this model incorporates both “tranching” and “pyra-

miding” (see also Geanakoplos, 1997). With “tranching”, a specific piece of collateral can

be used to back up several contracts as long as their promises to pay are in different states,

i.e., no conflicting claims. With “pyramiding”, agents are allowed to use financial assets, the

contracts for promises to receive goods of others, as collateral for their own promises. This

is different from the contract-specific collateralization structure as in Geanakoplos (2003),

among others, where the collateral of a contract cannot be used as collateral for any other

contract. On the other hand, our structure is similar to that of Chien and Lustig (2010),

where several state-contingent contracts can be backed by the same collateral. However, the

main results of this paper are valid under any contract-specific collateralization structure4;

that is, the externality exists, and more importantly, our solution concept to the externality

problem still works5.

Of course agents are allowed to retrade in spot markets, and that is what delivers the

spot-market-clearing prices. This is the easiest interpretation of what is going on in the

model. However, with pyramiding, agents are indifferent between ex-ante contracting versus

ex post retrading in spot markets. This is because anything which can be done in the spot

market, trading one good for another, can be done in the ex ante contract market, with

promises to receive one good backing promises to surrender the other. Hence agents do not

need to retrade in spot markets (but they may well do so).

The remaining of the paper proceeds as follows. Section 2 describes the primitive ingre-

dients of the model. We establish the existence of the externality in section 3. Section 4

presents our market-based solution concept with illustrative numerical examples. Section 5

formally defines the competitive equilibrium with extended commodity space using lotteries,

and proves the existence and welfare theorems. Section 6 concludes the paper. Appendix

4Note that the need for securities with default in Geanakoplos (2003) is not a result of the contract-specific

collateralization structure. As shown in Kilenthong (2011), if all promises are feasible, there will be no need

for securities with default even when the collateralization structure is contract-specific. In fact, collateralized

securities with default are needed in Geanakoplos (2003) because he rules out state-contingent promises ex

ante, i.e., only debt-like collateralized securities are allowed.
5Of course, the collateral constraints are slightly different under different structures. That difference

could lead to different quantitative, but not qualitative conclusions and the existence and welfare theorems.
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A contains all proofs. Appendix B presents more related results, and Appendix C shows

detailed derivations for numerical examples.

2 The Model Economy

This is a two-period economy, t = 0, 1. All financial (debt and insurance) contracts are

traded in period t = 0, henceforth called the “contracting period”. In addition, in period

t = 0, both of two consumption goods can be traded and consumed. One of them can

be saved. All contracts will be executed in period t = 1, henceforth called the “execution

period”. There are a finite number S of possible states of nature in this period t = 1,

i.e., s = 1, 2, ..., S. This allows S = 1 so there is only intertemporal trade, borrowing and

lending, from t = 0 to t = 1. For S > 1 in which contingent claims, Arrow-Debreu securities

are traded, let 0 < πs < 1 be the objective and commonly assessed probability of state s

occurring, where
∑

s πs = 1. Again the two underlying goods can be traded and consumed

in each state s. We refer to these t = 1 markets as spot markets.

Again there are two underlying goods, called good 1 and good 2. Good 1 cannot be stored

(is completely perishable) from t = 0 to t = 1, while good 2 is storable. The good 2 that

can be stored is collateralizable, i.e., can serve as collateral to back promises. Henceforth,

good 2 and collateral good will be used interchangeably. Furthermore, good 1 will be the

numeraire good in every date and state. In the concluding section, we interpret good 1 as

a money and good 2 as treasuries. That is, treasuries are collateral backing all promises to

pay at t = 1.

There is a continuum of agents of measure one. So in this paper we are not concerned

with small numbers. The agents are however divided into H types, each of which is indexed

by h = 1, 2, · · · , H. Each type h consists of αh ∈ [0, 1] fraction of the population such that∑
h α

h = 1. Each agent type h is endowed with good 1 and good 2, eh0 =
(
eh10, e

h
20

)
∈ R2

+ in

period t = 0 and ehs =
(
eh1s, e

h
2s

)
∈ R2

+, in each state s = 1, · · · , S. Let eh =
(
eh0 , · · · , ehS

)
∈

R2(1+S)
+ be the endowment profile of agent type h over period t = 0 and all states s in period

t = 1. There are thus 2 (1 + S) commodities in total. Heterogeneity of agents originates

in part from the endowment profiles eh (and not in preferences, but we could easily allow
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this extension). As a notational convention, vectors or matrices will be represented by bold

letters. We also assume that the endowments in all periods and all states are publicly known.

Hence, the limited commitment considered in this paper comes from a contract enforceability

problem, not from an informational problem. We leave the latter for future work. In the

concluding section, we interpret an agent as a trader (insurance company and/or hedge

fund) and think of endowments as pretrade portfolios determined by considerations outside

the model.

Let kh ∈ R+ denote the collateral holding (equivalent to the holding of good 2) of an

agent type h at the end of period t = 0. Note that this collateral allocation does not need to

be equal to his initial endowment of good 2. In particular, since good 2 can be exchanged or

acquired in the contracting period (at date t = 0), kh will be equal to the net-position in the

collateral good after trading in period t = 0. The collateral good as legal collateral backing

claims is assumed to be fully registered and kept in escrow, i.e., cannot be taken away either

by borrowers or lenders. However, the holding of good 2 can also include normal saving. The

storage technology of good 2 whether in collateral or normal saving is linear but potentially

with a random return. In some applications, it is natural to treat the returns as a constant,

and focus on how collateral interacts with intertemporal trade. In other applications, the

risk is in the collateral itself. Each unit of good 2 stored will become Rs units of good 2

in state s = 1, · · · , S. Specifically, storing I units of good 2 at date t = 0 will deliver RsI

units of good 2 in state s. It is noteworthy that the results in this paper are valid even if

the technology R is not random. In most of the exposition, uncertainty originates in the

endowment, primarily. In the concluding section, we can interpret Rs as determined outside

the model, e.g., world events determine the price of treasuries, as if in a small open economy.

The preferences of agent type h are represented by the utility function u
(
ch1 , c

h
2

)
: R2

+ →

R, where
(
ch1 , c

h
2

)
are the consumption of good 1 and good 2 of agent type h, respectively.

Let 0 < β ≤ 1 be the common discount factor. The discounted expected utility of h is thus

Uh
(
ch
)

= u
(
ch10, c

h
20

)
+ β

S∑
s=1

πsu
(
ch1s, c

h
2s

)
where, as with the notation for endowments, ch =

(
ch0 , · · · , chS

)
∈ R2(1+S)

+ is the consumption

allocation with ch0 ≡
(
ch10, c

h
20

)
∈ R2

+ and chs ≡
(
ch1s, c

h
2s

)
∈ R2

+ for s = 1, . . . , S as the
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consumption of good 1 and good 2 in period t = 0, and in state s, respectively. In our trader

interpretation in the concluding section, consumption removes securities from a portfolio,

though the reason utility is derived from this is not modeled there.

Assumption 1. For each agent type h, common utility function u
(
ch1 , c

h
2

)
is homothetic,

continuous, strictly concave, strictly increasing in both arguments, and satisfies the usual

Inada conditions.

Homotheticity is special but will allow us to construct closed form solutions in the de-

termination of spot prices. This has great expositional advantage when it comes to under-

standing how security markets work to correct the externality. Risk aversion with random

endowments motivates trade in state-contingent securities. Heterogeneous intertemporal en-

dowments motivates trade in bonds. We will on occasion put superscript h on the utility

function for clarity, but again preference heterogeneity per se is not an essential part of what

we do here.

2.1 Market Fundamentals

Each agent can trade in spot markets in each state s. In principle, the market-clearing prices

in these spot markets depend on the distribution of pretrade (before ex post spot trade)

endowments or the composition of agents. To be precise, let zs be a market fundamental

that determines the spot-market-clearing price of good 2 in state s, and accordingly p(zs)

be the spot-price function.

With identical homothetic preferences, the aggregate ratio of good 1 to good 2 in state s

is the market fundamental in state s; that is, zs =
∑
h α

heh1s
RsK+

∑
h α

heh2s
∈ R+, where K =

∑
h α

hkh is

the aggregate (endogenous) saving including collateral. Here then the spot price function can

be represented by a single-valued function p(zs). In other words, the market fundamental,

a ratio of goods in state s, is necessary and sufficient to pin down the spot price in state s.

We summarize:

Lemma 1. With identical homothetic preferences, the market fundamental in state s is given
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by

zs =

∑
h α

heh1s
Rs

∑
h α

hkh +
∑

h α
heh2s

. (1)

Market clearing price p(zs) is a one-to-one function, i.e. p(zs) is a single-valued, and p(zs) =

p(z′s) implies that zs = z′s. In addition, with strictly concavity of u(·), p(zs) is strictly

monotone increasing.

Condition (1) is called a consistency constraint. It ensures that the market fundamental

is consistently well-defined in that p(zs) is exactly the spot price that constitutes a spot

market equilibrium. This is where we exploit the homotheticity assumption; ratios of the

aggregate are enough to pin down equilibrium prices.

2.2 Collateralization Structure

A specific piece of collateral can be used to back up several contracts as long as their promises

to pay are in different states. Thus, there is no conflict in a given state s. This is known as

tranching. This is distinct from the contract-specific collateralization structure (in Geanako-

plos, 2003, among others), in which the collateral of a given security cannot be used as

collateral for any other security. For full generality here, we will consider state-contingent

securities as the primitives and otherwise let the security structure be endogenous. Accord-

ingly, we focus on securities paying in each state s with market fundamental zs, one at a

time. In words, we are dealing with an Arrow-Debreu complete security environment, but

collateral will limit the securities which emerge in equilibrium.

A (contingent) security promising to pay one unit of good 1, the numeraire, in period

t = 1 and state s with Ĉ units of good 2 as collateral is a promise to pay a unit of good

1 if the state of nature is s and nothing otherwise. For notational convenience, we use ̂
to distinguish securities paying in good 1, the numeraire, from securities paying in good 2.

With limited commitment, that is, allowing default on the part of the person making the

promise, the payoff of this security is given by

D̂ =

 min
(

1, ĈRsp(zs)
)

if state is s,

0 otherwise,
(2)
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where this payoff is in units of good 1 in period t = 1, and p(zs) is the price of good 2 (in units

of good 1) in state s converting good 2 with its potentially random return into units of good

1. That is, the person pays off as promised in good 1 or defaults surrendering collateral. The

issuer or “borrower” in period t = 0 may not wish to honor the state-contingent obligation.

This creates the limited commitment problem; that is, she will keep the promise if that

promise is no larger than the value of the collateral, i.e., 1 ≤ ĈRsp(zs), and will “default”

otherwise, ĈRsp(zs) < 1. In case of default, the payoff of the contract in state s is equal to

the value of its collateral in that state, ĈRsp(zs) units of good 1. Note in particular that

this defaulting condition depends on the spot price p(zs).

Ironically, it can be shown that there is no loss of generality in restricting attention to

securities without default. Intuitively a security which would default has a known payoff

structure, so we may as well start with that in the first place. But the possibility of de-

fault does restrict securities, and collateral constraints can be binding. The discussion is

summarized in the following lemma.

Lemma 2. For any state-contingent security, there exists a security with no default that

can generate the same total payoffs using the same amount of collateral.

In Appendix A, we present the result for a security paying in good 1 in state s with good

2 as collateral, and then argue that the same logic applies for all other types of securities. See

Kilenthong (2011) for a similar result with contract-specific collateralization. Further, issuing

securities that do default requires no less collateral than (an equivalent set of) securities that

do not. In other words, and this again may seem counterintuitive, securities with default,

i.e., with little collateral, do not really economize on collateral. In addition, we also show in

Appendix B.1 that default cannot make collateral constraints, formally defined below, less

binding.

In addition, with perfectly divisible collateral, there is no loss of generality in excluding

over-collateralized securities, whose collateral value is strictly larger than the promise. More

precisely, an over-collateralized security paying in good 1 in state s is a contract with a

collateral Ĉ such that ĈRsp(zs) > 1. The payoff of this security in state s is 1. This security

is equivalent to a no-default security with 1
Rsp(zs)

< Ĉ units of good 2 as collateral, whose
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payoff in state s is also 1. A similar result applies to other types of securities as well.

It is worthy of emphasis, however, that own saving should not be interpreted as over-

collateralization, as no securities are acquired from others; that is, each agent can save.

This saving will result in the slackness of the collateral constraint (3) defined below. In

particular, an agent may hold at the end of period t = 0 more collateral good than the

(minimum) amount needed to collateralize all securities issued.

3 Collateral Constraints and Externality

There is no loss of generality in considering at most only two classes of securities6; (i) θ̂hs

- securities paying in good 1 in state s, (ii) θhs - securities paying in good 2 in state s.

Here a positive number denotes the purchaser or holder, and negative the issuer. When

negative, each of the state-contingent securities must be backed by the issuer either by good

2 itself or by purchased assets (other people’s promises). In other words, θ̂hs and θhs include

both directly collateralized and asset-backed securities. As established in Appendix B.2, the

collateral constraints7 for an agent type h take the intuitive form

p(zs)Rsk
h + θ̂hs + p (zs) θ

h
s ≥ 0, ∀s. (3)

The collateral constraint (3) states that, for each state s, the net-value of all assets,

including collateral good and securities, must be non-negative. If θ̂hs and θhs were negative,

as promises, we could write this as p (zs)Rsk
h ≥ −θ̂hs − p (zs) θ

h
s . That is, there is sufficient

collateral in value in state s to honor the value of all such promises. Note that all promises

are converted to units of good 1 using the spot market price of the collateral good p (zs).

Also as θ̂hs and θhs include both asset-backed and directly backed securities, these collateral

6With spot markets we actually need securities θ̂hs paying in the numeraire only. We proceed here in more

generality as what we do will not require active spot markets.
7These collateral constraints are different from the ones in Geanakoplos (2003) in that they now include

all state contingent collateralized securities with tranching and pyramiding. See Appendix B.2 for more

details. Similar collateral constraints are discussed in liquidity literature, e.g., Caballero and Krishnamurthy

(2001); Holmström and Tirole (1998); Rampini and Viswanathan (2010).
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types per se do not matter, either8.

The collateral constraints (3) can be written in consumption space as follows. Suppose

for the moment that securities are such that there is no spot trade in equilibrium (see Lemma

6 in Appendix B.4). The consumption for an agent type h in state s is given by

ch1s = eh1s + θ̂hs , (4)

ch2s = eh2s +Rsk
h + θhs . (5)

Substituting these two equations into the collateral constraint (3) yields

ch1s + p(zs)c
h
2s ≥ eh1s + p(zs)e

h
2s. (6)

This condition implies that, due to limited commitment and the possibility of default, the

market value of consumption in a state s of an agent cannot be lower than the market

value of her endowment (without collateral kh) in the same state (related to Golosov and

Tsyvinski, 2007; Kehoe and Levine, 1993, among others). Intuitively, if this constraint were

to be violated, an agent type h would have promised to deliver some part of the value of

her endowments, over and above her consumption, but other things equal there will be no

incentive to deliver ex post. Collateral will preclude (6) from being violated.

The interaction between the bindingness of collateral constraints and spot prices generates

an externality. Technically, there is an externality because the consumption feasibility set of

an agent type h depends on other agents’ choices of saving kh̃ through the spot price. This

dependency results from the collateral constraints (6), or borrowing constraints in general.

Conceivably, if there were no binding collateral constraint, the consumption feasibility set

would be independent of other agents’ choices (and therefore there would be no externality).

3.1 Competitive Collateral Equilibrium

Let P̂as and Pas be the prices of securities in the ex ante t = 0 market paying in good 1 and

in good 2 in state s, respectively. We allow spot price p (zs) but we do not require agents to

8In addition, we can show that the markets economize on collateral; that is, there is no gain from pooling

collateral across agents type h (see Lemma 5 in Appendix B.3).
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be active in these markets since they could have all ex ante contingent commodity securities

trade at t = 0. A collateral equilibrium is defined:

Definition 1. A competitive collateral equilibrium is a specification of prices of good 2 in

period t = 0, P20, the prices of securities paying in good 1, P̂as, and the prices of securities

paying in good 2, Pas, the spot price of good 2 in each state s, p(zs), and an allocation(
ch0 , k

h, θ̂h, θh
)
h

such that

(i) for any agent type h,
(
ch0 , k

h, θ̂h, θh
)

solves

max
(ch0 ,kh,θ̂h,θh)

u
(
ch10, c

h
20

)
+ β

∑
s

πsu
(
eh1s + θ̂hs , e

h
2s +Rsk

h + θhs

)
(7)

subject to the collateral constraints for each state s:

p (zs)Rsk
h + θ̂hs + p (zs) θ

h
s ≥ 0, ∀s, (8)

and the budget constraint at t = 0:

ch10 + P20

(
ch20 + kh

)
+
∑
s

P̂asθ̂
h
s +

∑
s

Pasθ
h
s ≤ eh10 + P20e

h
20, (9)

taking prices
(
P20, P̂as, Pas, p (zs)

)
as given;

(ii) markets clear for good 1 at t = 0, for good 2 at t = 0, for θ̂hs in state s, and for θhs in

state s, respectively: ∑
h

αhch10 ≤
∑
h

αheh10, (10)∑
h

αh
[
ch20 + kh

]
≤

∑
h

αheh20, (11)∑
h

αhθ̂hs = 0, ∀s, (12)∑
h

αhθhs = 0, ∀s; (13)

(iii) the consistency constraint

zs =

∑
h α

heh1s
Rs

∑
h α

hkh +
∑

h α
heh2s

(14)

holds for all s.
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The necessary maximizing condition for a collateral equilibrium (ce) related to collateral

allocation kh (an interior solution to the consumer problem) is given by, for any h,

P20 =
uh20

uh10

∣∣∣
ce

=
∑
s

πsβ
uh2s
uh10

Rs +
∑
s

γhcc−s
uh10

p(zs)Rs, (15)

where uhi0 =
∂u(ch10,c

h
20)

∂ci0
, uhis =

∂u(ch1s,ch2s)
∂cis

for i = 1, 2, and γhcc−s is the Lagrange multiplier for

the collateral constraint (8) in state s for an agent type h.

3.2 Collateral Constrained Optimality

Attainable allocations are those that can be achieved by exchanges of securities and collateral

in date t = 0 and exchanges of consumption goods in date t = 1 at state s, respecting spot

prices p(zs). In other words, a planner can only reallocate goods with the same instruments

as the agents. Accordingly, attainable allocations are defined using the spot-price function

p(zs). Again as will be later proved (see Lemma 6 in Appendix B.4), the asset-backed

securities in this model are simply substitutes for spot markets.

Definition 2. An allocation
(
ch0 , k

h, θ̂hs , θ
h
s

)
h

is attainable if

(i) it satisfies resource constraints: ∑
h

αhch10 ≤
∑
h

αheh10, (16)∑
h

αh
[
ch20 + kh

]
≤

∑
h

αheh20, (17)∑
h

αhθ̂hs = 0, ∀s, (18)∑
h

αhθhs = 0, ∀s; (19)

(ii) for each agent type h, it satisfies the collateral constraints for each state s:

p(zs)Rsk
h + θ̂hs + p(zs)θ

h
s ≥ 0, ∀s, (20)

(iii) the consistency constraint

zs =

∑
h α

heh1s
Rs

∑
h α

hkh +
∑

h α
heh2s

(21)

holds for all s.
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We note in passing with a non-constant, s-contingent spot-price function that the attain-

able set is non-convex. The main source of the non-convexity is the product of spot-price

function and the sum of collateral and contract allocations, p(zs)
(
Rsk

h + θhs
)
, in the col-

lateral constraints (3). Thus there are hints already that mixed strategies or lotteries may

come into play. We turn to this issue later in the paper but earmarked it here for future

reference.

Lemma 3. With identical homothetic and strictly concave preferences, the attainable set is

non-convex.

A constrained optimal allocation is characterized using the following planner’s problem.

Let U
h

be the reservation utility level for an agent type h.

Program 1. The Pareto Program with collateral constraints:

max
(ch0 ,kh,θ̂h,θh)h

u
(
c1

10, c
1
20

)
+ β

∑
s

πsu
(
e1

1s + θ̂1
s , e

1
2s +Rsk

1 + θ1
s

)
(22)

subject to (16)-(21), and the participation constraint for each h = 2, · · · , H,

u
(
ch10, c

h
20

)
+ β

∑
s

πsu
(
eh1s + θ̂hs , e

h
2s +Rsk

h + θhs
)
≥ U

h
, (23)

and non-negativity constraints for consumption and collateral allocations.

As is typically the case, it suffices to consider only equal-treatment-of-equals in the Pareto

problem. More generally, the externalities in this class of models, if they exist, have nothing

to do with the equal treatment of equals property. Let µhcc−s, and µhū denote the Lagrange

multipliers for the collateral constraint (3) for agent h in state s, and for the participation

constraint (23) for agent h, respectively. For notational convenience, let µ1
ū = 1. A necessary

condition9 for constrained optimality10 (op) related to collateral allocation kh is given by,

for any h,

9Given that the constraint set is not convex (Lemma 3), this optimality condition is necessary but may

not be sufficient. Nevertheless, this does not cause any problem to our externality argument, as we simply

need to show that a collateral equilibrium cannot be constrained optimal, i.e. does not satisfy the necessary

optimal condition (24).
10For expositional simplicity and without any real loss, we consider only equal-treatment (for each type),

and interior solutions (i.e., the non-negativity constraint for kh is neglected). With homothetic and strictly
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uh20

uh10

∣∣∣
op

=
∑
s

πsβ
uh2s
uh10

Rs +
∑
s

µhcc−s
µhūu

h
10

p(zs)Rs −
∑
s

αh

µhūu
h
10

p′(zs)

p(zs)

∂zs
∂K

∑
h̃

µh̃cc−sθ̂
h̃
s , (24)

where p′(zs) = ∂p(zs)
∂zs

, K =
∑

h α
hkh, µhcc−s is the Lagrange multiplier for the collateral

constraint (20) for state s for an agent type h and µhū is the Lagrange multiplier for the

participation constraint (23) for an agent type h = 1, 2, . . . , H with a normalization of

µ1
ū = 1.

Of special interest, the last term depends not only on the bindingness of collateral con-

straints for h but also the bindingness of other agents’ collateral constraints. This implies

that if an agent type’s collateral constraint were binding, it would impact everyone. This

is the source of the externality. Again such results are easily surmised from an extensive

literature, but we quickly review in the next section.

3.3 The Externality

Note that an infinitesimal agent of type h takes a spot price, p(zs), as invariant to his or

her own actions. To the contrary, the constrained planner can influence the spot prices

p(zs) through collateral assignments, kh, for the agents of type h = 1, 2, . . . , H, in period

t = 0, which affect in turn the market fundamentals zs. This key influence is the term in

p′(zs)
p(zs)

∂zs
∂K

. The difference between the impact of the planner and that of the agents creates

the externality and causes an inefficiency. If the last term in (24) were zero and we set

γhcc−s =
µhcc−s
µhū

, then condition (15) is exactly the same as (24), and there would be no

externality.

The last term in (24) could be zero if either µh̃cc−s = 0 for all h̃ or p′(zs)
p(zs)

∂zs
∂K

= 0. With

a strictly concave utility function, the spot price varies with the market fundamental11 (is

concave preferences, and no non-convexity, agents of the same type will optimally choose the same allocation

in an equilibrium; that is, given the same market prices in equilibrium. Thus, a collateral equilibrium

allocation has equal-treatment-of-equals property.
11If the utility function is linear in both goods, then the spot price is constant, i.e. p′(zs)

p(zs)
∂zs
∂K = 0. This

clearly results in constrained efficiency. Similarly, if the amount of aggregate saving is fixed exogenously,

then the market fundamental (the ratio of good 1 to good 2) is fixed. This also implies that the last term is

zero, and so constrained efficiency.
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not constant), i.e. p′(zs)
p(zs)

∂zs
∂K
6= 0. As a result, when at least one of the collateral constraints

is binding, i.e., µh̃cc−s > 0 for some h̃, the last term in (24) will be non-zero. With this

non-zero term, a collateral equilibrium will not be constrained efficient. It is true that, as

an exceptional case, a collateral equilibrium could be a full first-best optimum, that is, the

environment could be such that despite the focus of the paper we could ignore the collateral

constraint. But, otherwise, the collateral equilibrium must be constrained suboptimal, and

that is the assumed benchmark case of interest that motivates the paper. The result is

summarized in the following proposition.

Proposition 1. Under Assumption 1, a competitive collateral equilibrium is constrained

optimal if and only if all collateral constraints are not binding, i.e. γhcc−s = µhcc−s = 0 for

all h and all s. As a result, a competitive collateral equilibrium is constrained suboptimal if

and only if it is not first-best optimal.

In particular when the last term in (24) is not zero, we can show that it must be pos-

itive, i.e.,
∑

s
αh

µhūu
h
10

p′(zs)
p(zs)

∂zs
∂K

∑
h̃ µ

h̃
cc−sθ̂

h̃
s > 0. As a result, the equilibrium price of good 2 in

period t = 0 will be too high relative to its shadow price from the (constrained) optimal

allocation
uh20

uh10

∣∣∣
op

. In addition, this implies that the competitive collateral equilibrium level

of (endogenous) aggregate saving Kce is too large relative to the (constrained) optimal level

of aggregate saving/collateral Kop. Intuitively, the planner can do better by lowering the

aggregate saving or collateral. This is our analogous here to the result of Hart and Zingales

(2113) that it is possible for agents to be saving too much. The result is summarized in the

following proposition.

Proposition 2. Under Assumption 1, if a competitive collateral equilibrium is not first-best

optimal, then

(i) the equilibrium price of good 2 in period t = 0, P20, is too high, i.e., P20 >
uh20

uh10

∣∣∣
op

, and

(ii) the (endogenous) aggregate saving/collateral in a competitive collateral equilibrium,

Kce, is too large, i.e., Kce > Kop.
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4 Internalizing The Externality: The Economy with

Segregated Security Exchanges

This section presents the key contribution of this paper, a market-based solution to the

externality problem. A key object is the discrepancy from the market fundamental of each

type, as this reflects the “marginal impact” of each type on others at an equilibrium price.

This new object when priced then makes each type pay or be paid according to their marginal

impact on the price used to unwind collateral, adding to or alleviating congestion, so to speak.

But this object exists and is priced for out-of-equilibrium prices as well. Taken together these

internalize the externality.

In particular, let z = (zs)
S
s=1 denotes a vector of the market fundamentals in all states

s. Being in a security exchange zs in state s means that an agent h can trade in spot

markets and value collateral at spot price p(zs), as determined by the market fundamental

zs. Equivalently, even if the spot markets were shut down12, an agent on a security exchange

zs can accomplish the same thing by trading in ex-ante securities (θ̂s, θs), which has a relative

price equal to the same p (zs).

Now let ∆h
s (zs) ∈ R define “type h’s discrepancy from the market fundamental in state

s” a scalar13:

∆h
s (zs) = zs

(
eh2s +Rsk

h
)
− eh1s,∀s, (25)

which can be rewritten as

∆h
s (zs) =

(
eh2s +Rsk

h
)(

zs −
eh1s

eh2s +Rskh

)
,∀s. (26)

Note that if ∆h
s (zs) = 0, then zs =

eh1s
eh2s+Rsk

h and type h’s pretrade endowment is exactly equal

to the market fundamental. But typically with heterogeneity and active trade an agent type

h will be on one side or the other of the market fundamental, buying or selling the collateral

good 2 for good 1. Of course it takes at least two sides to make open an active market.

12As proved in Lemma 6 in Appendix B.4, the spot markets are redundant in that agents are indifferent

between trading in ex-ante contracts or in spot markets. Importantly, the spot markets are opened.
13If we were in the underlying spaces of k and zs, they would enter multiplicatively, hence and so we would

have a non convexity problem. This is not a problem with lotteries, however.
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If ∆h
s (zs) > 0, then zs >

eh1s
eh2s+Rsk

h and type h holds a relative low amount of good 1 and

abundant amount of good 2, that is, relative to zs. Such an agent type h brings in good two,

the collateral good, in such a way that they push the valuation of collateral (the spot price

of good 2 here) downward; that is, his pretrade actions have a negative marginal impact on

the valuation of collateral to unwind commitments. As a result, he would need to pay for

the right to trade or unwind in this market. Conversely, when ∆h
s (zs) < 0, an agent type

h has a relatively high amount of good 1 and scarce amount of good 2, relative to zs. We

know that there is oversaving in general, so this type will be compensated. Specifically, his

pretrade actions have a positive marginal impact on the valuation of collateral. Therefore

he would need to be paid to enter a high zs, high p (zs) market.

Adding one unit of good 2 (via collateral k) adds to the discrepancy ∆h
s (zs) by exactly

zsRs (see Eq.25). This is the same for all agent types. But note also that there is a part of

∆h
s (zs) over which h has no control, namely her endowments. However, we assume that types,

hence the endowments are publicly known. The “type h discrepancy from the fundamental”

will be priced in a competitive equilibrium. The per unit price, denote P∆ (zs, s) below, will

be common. But the payment or subsidy for rights to trade in each security exchange will be

proportional to the “type h discrepancy from the fundamental”, that is price times quantity,

and again the latter can be negative.

More formally, let an indicator function δh (zs) ∈ {0, 1}, that is δh (zs) = 0 or δh (zs) = 1,

denote an agent type h’s discrete choice of security market zs in each state s = 1, 2, . . . , S.

That is, each agent must choose one but only one fundamental spot market in each state s.

With vector z = (zs)
S
s=1, we write this function as δh (z) such that

∑
z δ

h (z) = 1. Specifically,

δh (z) = ΠS
s=1δ

h (zs) = 1 if only if δh (zs) = 1 for all s. Let P∆ (zs, s) denote the market price

of rights to trade in security exchange zs in state s, ∆h
s (zs). But consistent with key notion

of segregated exchanges, these choices of z are bundled with the consumption good, secu-

rities and collateral. Notationally, let xh (z) =
(
δh (z) , kh (z) , ch10 (z) , ch20 (z) , θ̂hs (z) , θhs (z)

)
denote a typical bundle or allocation for an agent type h.

A competitive equilibrium with segregated security exchanges is defined as follows.

Definition 3. A competitive equilibrium with segregated security exchanges is a specifica-

tion of allocation
(
xh (z)

)
h

and prices
(
P20, P̂a (zs, s) , Pa (zs, s) , P∆ (zs, s) , p (zs)

)
such that
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(i) for any agent type h, allocation xh (z) =
(
δh (z) , kh (z) , ch10 (z) , ch20 (z) , θ̂hs (z) , θhs (z)

)
solves

max
xh(z)

∑
z

δh (z)

[
u
(
ch10 (z) , ch20 (z)

)
+
∑
s

πsu
(
eh1s + θ̂hs (z) , eh2s +Rsk

h (z) + θhs (z)
)]

(27)

subject to collateral constraints∑
z

δh (z)
[
p (zs)

[
Rsk

h (z) + θhs (z)
]

+ θ̂hs (z)
]
≥ 0,∀s, (28)

and budget constraints∑
z

δh (z)
{
ch10 (z) + P20

[
ch20 (z) + kh (z)

]
+
∑
s

P̂a (zs, s) θ̂
h
s (z)

+
∑
s

Pa (zs, s) θ
h
s (z) +

∑
s

P∆ (zs, s) ∆h
s (zs)

}
≤ eh10 + P20e

h
20, (29)

taking prices prices
(
P20, P̂a (zs, s) , Pa (zs, s) , P∆ (zs, s) , p (zs)

)
as given;

(ii) markets clear for good 1 in period t = 0, for good 2 in period t = 0, for securities

paying good 1, for securities paying good 2, and for rights to trade, respectively,

∑
h

∑
z

δh (z)αhch10 (z) =
∑
h

αheh10, (30)∑
h

∑
z

δh (z)αh
[
ch20 (z) + kh (z)

]
=

∑
h

αheh20, (31)∑
h

∑
z−s

δh (z)αhθ̂hs (z) = 0,∀s; zs, (32)∑
h

∑
z−s

δh (z)αhθhs (z) = 0,∀s; zs, (33)∑
h

∑
z−s

δh (z)αh∆h
s (zs) = 0,∀s; zs, (34)

where z−s = (z1, . . . , zs−1, zs+1, . . . , zS) is a vector of market fundamentals in all states

but state s.

4.1 Public Finance Interpretation

This section presents an alternative interpretation of the market based solution. The budget

constraint with its prices for discrepancies from the market fundamentals has a public finance
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interpretation, as if we were to try to implement the optimum solution by taxes and subsidies,

both lump sum and marginal.

Specifically, substituting (25), ∆h
s (zs) = zs

(
eh2s +Rsk

h
)
− eh1s, into the budget constraint

for an agent type h (29) gives∑
z

δh (z)
{
ch10 (z) + P20

[
ch20 (z) + kh (z)

]
+
∑
s

P̂a (zs, s) θ̂
h
s (z) +

∑
s

Pa (zs, s) θ
h
s (z)

+
∑
s

P∆ (zs, s)
(
zs
(
eh2s +Rsk

h
)
− eh1s

)}
≤ eh10 + P20e

h
20, (35)

which can be rewritten as∑
z

δh (z)
{
ch10 (z) + P20

[
ch20 (z) + kh (z)

]
+
∑
s

P̂a (zs, s) θ̂
h
s (z) +

∑
s

Pa (zs, s) θ
h
s (z)

}
≤∑

z

δh (z)
{[

1 +
∑
s

P∆ (zs, s)
]
eh10 +

[
P20 −

∑
s

P∆ (zs, s) zs
]
eh20 −

[∑
s

P∆ (zs, s) zsRs

]
kh (z)

}
.(36)

We can now see that we need to have three types of taxes/subsidies, (i) saving/collateral

tax of
∑

s P∆ (zs, s) zsRs per unit of saving/collateral, (ii) capital good endowment tax of∑
s P∆ (zs, s) zs per unit of collateral good endowment, and (iii) income or consumption good

endowment (negative) tax of −
∑

s P∆ (zs, s) per unit of consumption good endowment. The

endowment/income taxes are easy to see and since endowments are fixed, they can be viewed

as lump sum taxes/subsidies or budget shifters. The saving/collateral tax enters the budget

too but it is also endogenous as saving is; hence we can think of this as a marginal tax

rate the agent type is facing for a given, fixed security exchanges zs that the agent chooses.

However, the security exchange zs itself is a choice as far as the household is concerned, so

in some sense even the fixed budget shifters are a choice for the agent. This is like looking

up fixed and marginal rates in a big tax book and settling on which page (or pages) to use,

indexed by active security exchanges zs that the agent chooses.

4.2 Example Economies with Segregated Security Exchanges

The following three examples illustrate the competitive equilibrium with segregated security

exchanges.

Environment 1 (Intertemporal Smoothing). There are two periods, t = 0, 1, and a single

state, S = 1 in period t = 1. So this is a pure intertemporal economy. Henceforth we drop
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all subscript s from the notation. There are two types of agents, H = 2, both of which have

an identical constant relative risk aversion (CRRA) utility function

u(c1, c2) = − 1

c1

− 1

c2

, ∀h. (37)

Each type consists of 1
2

fraction of the population, i.e. αh = 1
2
. In addition, the discount

factor β = 1. The storage technology is given by R = 1. The endowment profiles of the

agents are shown in Table 1 below. Recall that ehit is an agent h’s endowment of good i in

period t. Note that endowments for both agents are symmetric. In particular, an agent type

1 is well endowed with both goods in period t = 0 and vice versa for type 2.

Table 1: Endowment profiles of the agents.

endowments first-best allocations

eh10 eh20 eh11 eh21 kh ch10 ch20 ch11 ch21

h = 1 3 3 1 1 0 2 2 2 2

h = 2 1 1 3 3 0 2 2 2 2

The symmetry of endowments and preferences together with β = 1 implies that the first-

best aggregate saving is zero, and each agent gets the average 2 units of each good in each

period (see Table 1). Accordingly, the first-best price of good 2 in period t = 0 is P fb
20 = 1

(“fb” stands for first-best), and the market fundamental is z = 1. Unfortunately, but to

make our point, the first-best allocation is not attainable; that is, it violates the collateral

constraints.

We now consider the economy with default and collateral (with an externality). The

endowment profile and the first-best allocation suggest that agent 2 would like to move

resources backwards in time from t = 1 to t = 0, i.e., borrow and therefore will be constrained.

Hence, we will assume that agents type 2 hold no collateral, i.e. k1 = kex (“ex” stands for

externality) and k2 = 0. We will then solve for an equilibrium kex. Note that if agent type

1 wants to save and if there is no lending to another agent, this saving must be in good 2.

As shown in Appendix C.1, the equilibrium collateral is kex = 1.3595. In addition, there

is no loss of generality to consider a solution with no security trading, i.e., θh = θ̂h = 0

for all h. As a result, agents actively trade in spot markets, which we denote by trades
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τh below. Despite this seeming triviality, this is a good starting point, a good example

economy as there remains the issue of the value for unwinding collateral. The zero debt

aspect resembles Hart and Zingales (2113) in which an entire market in human-capital-

backed trade is shut down. It is worthy of emphasis, however, that all spot trades can be

done using ex-ante security trades and we return to that interpretation below. The price

of good 2 in period t = 0 is P ex
20 =

(
4

4−kex
)2

= 2.2948, and the market fundamental in

period t = 1 is zex = 4
4+kex

= 0.7463, which implies that the spot price is p(zex) = 0.5570.

Note that the collateral price at t = 0 is higher in the equilibrium with an externality, i.e.,

P fb
20 = 1 < P ex

20 = 2.2948. On the other hand, the spot price of good 2 in period t = 1 is

lower in the equilibrium with the externality, i.e., p(zfb) = 1 > p(zex) = 0.5570. In words,

the collateral distortion makes the price of good 2 higher in the first period and lower in the

second period relative to the first-best.

Figure 1 illustrates the competitive collateral equilibrium allocation (with externality)

in period t = 0. It shows that an agent type 1, the unconstrained agent, sells good 1 and

buys good 2, and vice versa for agent 2. In addition, the allocation is on the budget line of

constrained agent 2, which is the line passing through e2
0. An unconstrained agent effectively

does all the saving, k1 = kex = 1.3595 and k2 = 0. In the spot market the direction of trades

is reversed. That is, an agent type 1 buys τ̂ 1
ex = 0.3252 units of good 1 and sells τ 1

ex = −0.5839

units of good 2 at price p(zex) = 0.5570 in spot markets, and vice versa. See figure 2a below.

In addition, the expected utility of an agent type 1 and type 2 are U1
ex = −2.2527 and

U2
ex = −2.5724, respectively.

We will now turn to a corresponding competitive equilibrium with segregated security

exchanges (without an externality). There is one active security exchange, zop = 0.7729

(“op” stands for optimality), even though all security exchanges are available for trade.

That is, in equilibrium, both types optimally choose to trade in the same security ex-

change with specified market fundamental zop = 0.7729. More formally, δ1 (zop = 0.7729) =

δ2 (zop = 0.7729) = 1. The collateral allocation in the competitive equilibrium with segre-

gated security exchanges is k1 (zop = 0.7729) = kop = 1.1753 and k2 = 0. The equilibrium av-

erage or per capita saving (without externality) is
∑

h

∑
z α

hδh (z) kh (z) = α1kop = 0.5877,

which clearly smaller than the aggregate saving in the equilibrium with the externality
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Figure 1: Point A is the competitive collateral equilibrium allocation (with externality) in

period t = 0 with c1
0 = (2.6899, 1.7756) and c2

0 = (1.3101, 0.8649). An agent type 1 sells

0.3101 units of good 1, buys 0.1128 units of good 2, and kex = 1.3595 saves units of good 2,

and vice versa.

∑
h α

hkh = α1kex = 0.6798, though more than the first-best which is zero. In this sense

the distortion is corrected, and we shall see below the contracted second best allocation. In

addition, an agent type 1 buys τ̂ 1
op = 0.2970 units of good 1 and sells τ 1

op = −0.4972 units of

good 2 at price p (zop) = 0.5974 in spot markets, and vice versa for agent 2. See figure 2b

below.

Table 2 presents equilibrium prices/fees of rights to trade in security exchanges P∆ (z)

for different market fundamental levels. Notice that as anticipated, the prices/fees of rights

to trade in security exchanges are increasing with the market fundamentals z; that is, the

larger the specified market fundamental of a security exchanges, the higher the fee of the

security exchanges will be. Note also that the prices/fees of out-of-equilibrium (non-active)

security exchanges are available, but at such prices agents do not want to trade them.

An agent type 1 is coming in with good 2 in storage, and therefore his discrepancy is

positive. On the other hand, an agent type 2’s discrepancy is negative. Thus, with a positive

equilibrium fee P∆(zop) = 0.5375, an agent type 2 whose discrepancy from the fundamental

is negative must get paid for the access to the security exchange. In particular, a constrained
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Figure 2: (a) Point C is the competitive collateral equilibrium allocation (with externality)

in period t = 1 with c1
1 = (1.3252, 1.7756) and c2

1 = (2.6748, 3.5839). An agent type 1 buys

0.3252 units of good 1, sells 0.5839 units of good 2 at price p(zex) = 0.5570 in spot markets,

and vice versa. Note that eex is the pre-trade allocation (with externality) in period t = 1. (b)

Point D is the competitive equilibrium with segregated security exchanges allocation (without

externality) in period t = 1 with c1
1 = (1.2970, 1.6781) and c2

1 = (2.7030, 3.4972). An agent

type 1 buys 0.2970 units of good 1, sells 0.4972 units of good 2 at price p(zop) = 0.5974 in

spot markets, and vice versa. Note that eop is the pre-trade allocation (without externality)

in period t = 1.
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Table 2: Equilibrium prices of rights to trade in security exchanges P∆ (z). Bold numbers

are equilibrium prices for actively traded security exchanges.

z = 0.7479 z = 0.7729 z = 0.7979

P∆ (z) 0.4639 0.5375 0.6118

agent (h = 2) with ∆2(zop) = −0.6813, is receiving a transfer of −P∆(zop)∆2(zop) = 0.3662

in period t = 0 for being in the security exchange zop = 0.7729. Graphically, this shifts

her budget line outward by T = 0.3662 as shown in figure 3. This illustrates how trading

in rights to trade in security exchanges generates the redistribution of wealth in general

equilibrium.
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Figure 3: Point B is the competitive collateral equilibrium allocation (without externality)

in period t = 0 with c1
0 = (2.6073, 1.8410) and c2

0 = (1.3927, 0.9837). where an agent type

1 sells 0.3927 units of good 1, buys 0.0163 units of good 2, and kop = 1.1753 saves units of

good 2, and vice versa.

In addition, the expected utility of an agent type 1 and type 2 in this competitive equi-

librium with segregated security exchanges (without externality) are U1
op = −2.2936, U2

op =

−2.3905, respectively. Recall that the expected utility of an agent type 1 and type 2 in

the competitive collateral equilibrium allocation (with externality) are U1
ex = −2.2527 and

U2
ex = −2.5724, respectively. This shows that internalizing the externality is beneficial to an
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agent type 2 (constrained agent) but may be harmful for an agent type 1 if there is no other

remedy is employed. This is a (distributional) general equilibrium effect. Internalizing the

externality improves efficiency of the economy, but also redistributes wealth. All agents can

benefit from the efficiency effect, which shifts the Pareto frontier outward, but some agents

may be harmed by the distributional effect. To induce welfare gain for all of agents, there

must be lump sum transfers, as in the second welfare theorem which we establish below.

Note that with lower aggregate saving, the price of good 2 in period t = 0 in this

competitive equilibrium with segregated security exchanges (without externality) is lower

(P op
20 = 2.0073 < P ex

20 = 2.2948) but the spot price of good 2 is higher (p(zop) = 0.5974 >

p(zex) = 0.5570), relative to the one in the competitive collateral equilibrium allocation (with

externality). That is, the collateral distortion makes the price of good 2 higher in the first

period and lower in the second period relative to the constrained optimality, as proved in

Proposition 2. In other words, the price of good 2 varies less over time when the externality

is internalized. In this sense we mitigate fluctuations.

If we shut down all active spot markets in this example environment, we can still achieve

a second best allocation by allowing agents to make date t = 1 promises to deliver good

1 or good 2. A promise to deliver must be backed by a promise issued by another type.

As we establish more generally in Appendix B.2, there are collateral constraints for asset-

backed promises and a need for valuation. Intuitively, the valuation can be done using

Pa (zs, s) = p (zs) P̂a (zs, s), and the collateral constraints for an agent type h become

Pa (zs, s)Rsk
h + P̂a (zs, s) θ̂

h
s + Pa (zs, s) θ

h
s ≥ 0,∀s. (38)

The next economy illustrates an economy with uncertainty where collateralized securities,

θ̂, are actively traded (cannot be substituted by spot trades). All agents are constrained, but

at different states. In particular, an agent will be binding in a state where her endowment

is large. This is because she would like to transfer a part of such a large amount of wealth

backwards in time from t = 1 to t = 0 but cannot do so because of the collateral constraints.

Environment 2 (State Contingent Securities). The economy in this example is similar to

the one in example 1 with two periods, but there are two states, S = 2. There are two types

of agents, H = 2, both of which have an identical constant relative risk aversion (CRRA)
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utility function as in (37). Each type consists of 1
2

fraction of the population, i.e. αh = 1
2
. In

addition, the discount factor β = 1. The storage technology is constant and given by Rs = 1

for s = 1, 2. The endowment profile is presented in Table 3. Note unlike the first example

that the agents are ex-ante identical in endowments. But agent type 1 has relatively more

of both goods in state s = 1 than in state s = 2 and vice versa for agent type 2.

Table 3: Endowment profiles of the agents.

eh10 eh20 eh11 eh21 eh12 eh22

h = 1 2 2 3 3 1 1

h = 2 2 2 1 1 3 3

First, the symmetry of the endowments and preferences implies that an equilibrium

allocation in period t = 0 should be the same for all agents; that is, ch10 = c10 and ch20 = c20,

for all h. Further, the indeterminacy between kh and θh(s) implies that there is no loss of

generality in considering the case with symmetric collateral allocation, i.e. kh = k, for all

h. The first-best is to assign 2 units of each goods to each agent in every period and every

state. This involves making promises which would have required collateral in our limited

commitment world.

The competitive collateral equilibrium (with externality) is as follows. The detailed

derivation is again omitted and presented in Appendix C.3. The unique competitive collateral

equilibrium (with externality) of this economy has kh = kex ≈ 0.4603, for all h = 1, 2.

Accordingly, the market fundamental and spot price in state s are zexs = 0.8129 and p(zexs ) =

0.6608, respectively, for all s = 1, 2. The price of good 2 in period t = 0 is P ex
20 = 1.6872,

the prices of collateralized securities paying in units of good 1 and good 2 in state s are

P̂ ex
s = 1.2766, P ex

s = 0.8436, respectively, for all s = 1, 2. Note that the symmetry also

makes the prices of collateralized securities the same across states.

Interestingly, there are security trades in this economy. In particular, an agent type 1

issues a security paying in units of good 1 in state s = 1, θ̂1
1 = −0.3042 units backed by

all of his collateral k1 = kex = 0.4603, while an agent type 2 buys the same amount of this

security. That is, an agent type 1’s collateral constraint in state s = 1 is binding again

here with positive collateral. In addition, an agent type 1 reverse the transaction in the
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spot market, buys τ̂ 1
ex = 0.0525 units of good 1 and sells τ 1

ex = −0.0794 units of good 2

at price p(zexs ) = 0.6608 in spot markets in state s = 1, and vice versa. The positions are

reversed at state s = 2. In addition, the expected utility of an agent type 1 and type 2 are

U1
ex = U2

ex = −2.2035. Figure 4a illustrates the competitive collateral equilibrium allocation

(with externality) in state s = 1.

We now turn to the competitive equilibrium with segregated security exchanges (without

externality). There is one active security exchange in each state, zops = 0.8285 for all s = 1, 2,

even though again all security exchanges are available for trade. That is, in equilibrium,

both types optimally choose to trade in the same security exchange with specified market

fundamental zops = 0.8285 in both states. More formally, δ1 (zop) = δ2 (zop) = 1 where zop =

[0.8285, 0.8285] is the vector of active exchanges in both states. The collateral allocation

in the competitive equilibrium with segregated security exchanges is k1 (zop) = k2 (zop) =

kop = 0.4200. That is, each type holds the same amount of collateral at t = 0. The

equilibrium average or per capita saving without externality is
∑

h

∑
z α

hδh (z) kh (z) = kop =

0.4200, which clearly smaller than the aggregate saving in the equilibrium with externality∑
h α

hkh = kex = 0.4603, though still more than the first-best which is zero. As a result,

the market fundamental and the spot price of good 2 in each state s are higher in the

competitive equilibrium with segregated security exchanges (without externality), i.e., zops =

0.8285 > zexs = 0.8129 and p (zops ) = 0.6864 > p (zexs ) = 0.6608. In addition, the price

of good 2 in period 0 in the competitive equilibrium with segregated security exchanges

(without externality) is P op
20 = 1.5903 < P ex

20 = 1.6872, which is again lower than the one in

the competitive equilibrium with the externality.

We can recover the positions of each security and spot trades using the same approach

as in the competitive collateral equilibrium with the externality. An agent type 1 issues a

security paying in units of good 1 in state s = 1, θ̂1
1 = −0.2872 units backed by all of his

collateral k1 = kop = 0.4200, while an agent type 2 buys the same amount of this security.

That is, an agent type 1’s collateral constraint in state s = 1 is binding. In addition, an

agent type 1 buys τ̂ 1
op = 0.1266 units of good 1 and sells τ 1

op = −0.1844 units of good 2 at the

larger price p(zops ) = 0.6864 in spot markets in state s = 1, and vice versa for an agent type 2.

The positions are reversed at state s = 2. The symmetry of the equilibrium solution implies
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Figure 4: (a) Point C is the competitive collateral equilibrium allocation (with externality)

in state s = 1 with c1
1 = (2.7483, 3.3808) and c2

1 = (1.2517, 1.5397). An agent type 1

buys 0.0525 units of good 1, sells 0.0794 units of good 2 at price p(zex1 ) = 0.6608 in spot

markets, and vice versa. The positions are reversed in state s = 2. Note that eex is the

pre-trade allocation (with externality) in state s = 1, and e2
1 is the endowment of agent

type h = 2 in state s = 1 (excluding savings and securities trades). (b) Point D is the

competitive equilibrium with segregated security exchanges allocation (without externality)

in state s = 1 with c1
1 = (2.7644, 3.3449) and c2

1 = (1.2356, 1.4951). An agent type 1 buys

0.1266 units of good 1, sells 0.1844 units of good 2 at price p(zop) = 0.6864 in spot markets,

and vice versa. The positions are reversed in state s = 2. Note that eop is the pre-trade

allocation (without externality) in state s = 1.
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that net borrowing of each agent is zero. In addition, the expected utility of an agent type

1 and type 2 are U1
op = U2

op = −2.2024. Figure 4b illustrates the competitive equilibrium

with segregated security exchanges allocation (without externality) in state s = 1. Note that

agents trade less securities relative to the equilibrium with the externality. This is because

the agents save less, and are issuing fewer securities. That is, the externality generates too

much saving/collateral.

Table 4 presents equilibrium prices/fees of rights to trade in security exchanges in each

state P∆ (zs, s) for different market fundamental levels. Notice that the prices/fees of rights

to trade in security exchanges are again increasing with the market fundamentals zs in

both states. Recall that the net transfer in period t = 0 for an agent type h is the sum

of all payments/subsidies for rights to trade in all active security exchanges in all states,∑
z δ

h (z)
∑

s P∆ (zs, s) ∆h
s (z). The symmetry of the equilibrium solution implies that the

equilibrium rights to trade for an agent type h in state s = 1 is exactly the opposite of his

rights to trade in state s = 2, and the prices of the rights to trade in both exchanges are

identical. As a result, payments/subsidies for an agent type h from trading in those security

exchanges are canceling out each other completely, and therefore each agent type h receives

zero net transfer in period t = 0. That is, there is no distributional general equilibrium effect

in this case14.

Table 4: Equilibrium prices of rights to trade in security exchanges P∆ (zs, s) which are

the same in both states due to symmetry. Bold numbers are equilibrium prices for actively

traded security exchanges.

zs = 0.8035 zs = 0.8285 zs = 0.8535

P∆ (zs, s) 0.0900 0.1142 0.1400

The following example presents an economy where it is possible to assign agents to

different security exchanges and have multiple segregated security exchanges. A formal

formulation with randomization is presented in the next section.

14This is special to the example and would not happen with more heterogeneity.
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Environment 3 (Heterogeneous Borrowers and the Role of Randomization). There are two

periods, t = 0, 1, and a single state, S = 1, in period t = 1 (no uncertainty). There are three

types of agents, two borrower types and one lender. Each agent is given the same utility

function as in (37). Each type consists of 1
3

fraction of the population, i.e. αh = 1
3
. Similar to

the previous example, β = 1, and R = 1. The endowment profile is given in Table 5 below.

Note that to conserve on space we do not present the first-best allocation of this economy.

Table 5: Endowment profiles of the agents.

Type of Agents eh10 eh20 eh11 eh21

h = 1 4.26 11.5 0.5 0.5

h = 2 3.92 0.5 7 5

h = 3 4.32 0.5 5 7

We first consider the competitive collateral equilibrium (with externality). The detailed

derivation is presented in Appendix C.3. With relatively large endowments in t = 1, an

agent type 2 and an agent type 3 want to move resources backwards in time from t = 1

to t = 0, i.e., borrow. The scarcity of collateral then implies that both of them will be

collateral constrained. Similar to Environment 1, we assume that only an agent type 1 hold

collateral/storage, k1 = kex while an agent type 2 and an agent type 3 hold no collateral,

i.e., k2 = k2 = 0. The unique competitive collateral equilibrium (with externality) has

k1 = kex = 7.2836, and there is no security trading, i.e., θ̂h = θh = 0 for all h. The

price of good 2 in period t = 0 is P ex
20 = 5.7422, and the market fundamental in period

t = 1 is zex = 12.5
12.5+kex

= 0.6318, which implies that the spot price is p (zex) = 0.3992. The

competitive equilibrium allocation is shown in Table 6 below.

Table 6: The competitive collateral equilibrium allocation for Environment 3.

Agent Type kh τ̂h τh ch10 ch20 ch11 ch21 Uh

h = 1 7.284 1.711 -4.285 8.384 3.499 2.211 3.499 -1.1433

h = 2 0.000 -1.487 3.725 1.999 0.834 5.513 8.725 -1.9950

h = 3 0.000 -0.223 0.560 2.117 0.883 4.777 7.560 -1.9460
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We now turn to the competitive equilibrium with segregated security exchanges15 (with-

out externality), shown in Table 7 below. Interestingly, there are two active security ex-

changes, z = 0.6113 and z = 0.8132. The security exchange z = 0.6113 consists of some

fraction of agents type 1 (19.69 percent), and all of agents type 3 (a constrained type). On

the other hand, the security exchange z = 0.8132 consists of some residual fraction of agents

type 1 (80.31 percent), and all of agents type 2 (a constrained type). In addition, an agent

type 1 holds collateral which is a weighted average of collateral for each segregated market:

k1 = 0.1969 × 6.3082 + 0.8031 × 4.6072 = 4.9421. Note that there are more agents type 1

in security exchange z = 0.8132 than in security exchange z = 0.6113, and agent 1’s spot

trading varies across security exchanges due in part to a difference in spot prices.

Table 7: Equilibrium allocation of (non-zero-mass) lotteries. There are multiple active secu-

rity exchanges; z = 0.6113 and z = 0.8132.

h = 1 h = 2 h = 3

k 6.3082 4.6072 0.0000 0.0000

τ̂ 1.3892 1.6384 -1.3159 -0.2735

τ -3.7176 -2.4776 1.9898 0.7319

c10 5.6204 5.6204 4.4835 2.3961

c20 3.3982 3.3982 2.7106 1.4491

c11 1.8892 2.1384 5.6841 4.7265

c21 3.0905 2.6296 6.9898 7.7319

z 0.6113 0.8132 0.8132 0.6113

∆ 3.6618 3.6532 -2.9340 -0.7209

xh 0.1969 0.8031 1.0000 1.0000

Uh -1.3211 -0.9110 -1.4483

The key reason for the existence of multiple segregated exchanges in equilibrium is that it

is socially optimal to compensate constrained agents with positive transfers at period t = 0,

to try to move back toward the first best, i.e., alleviate borrowing constraints, in this case. As

15The competitive equilibrium with segregated security exchanges here corresponds to a Pareto optimal

allocation (a solution to Program 2) with Pareto weights λ1 = 0.8, λ2 = λ3 = 0.1.
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mentioned earlier, agents type 2 and agents type 3 are collateral constrained, and therefore

have relatively high marginal utility at period t = 0. As a result, it is socially optimal to

give them more resources in period t = 0. This is the case in the competitive equilibrium

with segregated security exchanges (without externality), where the discrepancy from the

market fundamental of both types are negative (the 8th row of Table 7), i.e., ∆2 = −2.9340

and ∆3 = −0.7209. With positive equilibrium price of the discrepancy, agents type 2 and

agents type 3 receive transfers from rights to trade fees P∆ (z) ∆h (z) of 6.6122 units of good

1 in period t = 0 and 0.6739 units of good 1 in period t = 0, respectively. Of course, agents

type 1 pay all these fees paid in proportion to the relative number of types assigned to

each exchange. Equilibrium fees of security exchanges, including the fees of inactive (out-of

equilibrium) security exchanges are summarized in Table 8 below.

Table 8: Equilibrium fees of security exchanges. The bold numbers are (actively traded)

equilibrium prices.

z = 0.6088 z = 0.6113 z = 0.6138 z = 0.8088 z = 0.8132 z = 0.8138

P∆(z) 0.9119 0.9348 0.9589 2.2339 2.2537 2.2564

Intuitively, agents type 1 would like to buy into the higher z security exchange, which

is z = 0.8132 in this case, where good 2 is more valuable because with (endogenous) saving

she will end up with more of good 2 than good 1 in period t = 1. The question is then

why did not all of type 1 choose that exchange with certainty in equilibrium. The answer is

that such deterministic choice is not affordable. The total expenditure for such deterministic

allocation would be of 35.7523 units of the numeraire while his income is only 35.7214 units

of the numeraire, which is not enough to cover his expenditure. On the other hand, his total

expenditure for the randomized equilibrium allocation is 35.7214 units of the numeraire,

which is exactly equal to his income.

In addition, it is also natural to ask if it would be socially optimal to move everyone to a

unique security exchange instead of segregating them as in the actual equilibrium. Contrary

to the equilibrium outcome, if an agent type 3 were to enter into a security exchange with

z > 0.7143, he would have had to pay for the right to trade in that security exchange given

that her ratio of good 1 to good 2 in period t = 1 is 5
7

= 0.7143. In particular, if all
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agents were in one exchange but keeping the same allocation including storage, the market

fundamental in that exchange would have been z = 12.5
12.5+4.9421

= 0.7167 > 0.7143. As a result,

the discrepancy from the market fundamental of an agent type 3 would be ∆3 = 0.0166.

This positive discrepancy then would imply that agent type 3 would have to pay for the

right to trade in that security exchange, given that the corresponding fee is strictly positive.

As with discussion earlier, charging fees in period t = 0 to this constrained agent type 3

would move against the socially optimal direction. That is, putting all agents in only one

security exchange is not socially optimal in this case. It is socially optimal to allocate agents

to multiple segregated exchanges, though this is at the cost of divergent marginal rates of

substitution. The more general point is that mixing with lotteries can be useful, and we

incorporate that into the more notation and proofs below.

This example also suggests that the number of active segregated exchanges is equal to

the number of constrained types. Consistent with this idea, Appendix C.6, an economy

with four agent types, three of which are constrained, has three active segregated exchanges.

Intuitively, it is socially optimal to put different types in different exchanges to face distinct

prices, as in our taxes/subsidy, budget-shifter impact from the choice of the fundamental z

in section 4.1.

5 Existence and Welfare Theorems of Competitive Equi-

librium with Segregated Security Exchanges

This section presents a more formal representation of our competitive equilibrium with segre-

gated security exchanges. To deal with the non-convexity problem generated by the collateral

constraints, we now use a probability measure or a lottery as the commodity. That is, we

now suppose it is possible to assign agents to different security exchanges even in state s as

if by a lottery as in example 3. Security trades are also bundled into this potentially random

assignment. Security exchange assignments, by lottery or not, are still state-contingent. Im-

portantly, a member of a security exchange zs can trade securities with other members in

the same security exchange only.
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More formally, for each agent type h, let xh(c0, k, θ̂, θ, z,∆) ≥ 0 denote a probability mea-

sure on
(
c0, k, θ̂, θ, z,∆

)
, where ∆s satisfies (25) for all s. In other words, xh

(
c0, k, θ̂, θ, z,∆

)
is the probability of receiving period t = 0 consumption, c0 ≡ (c10, c20), collateral, k, securi-

ties paying in good 1, θ̂s, securities paying in good 2, θs, and being in security exchange zs

in state s where all securities are executed and all spot trades take place also. Recall that a

positive (negative) amount of trade means receiving (transferring out) the specified good.

As a probability measure, a lottery of an agent type h satisfies∑
c0,k,θ̂,θ,z,∆

xh
(
c0, k, θ̂, θ, z,∆

)
= 1, (39)

but unlike discrete choice notation δh, this lottery may be non degenerate for some bundles,

i.e., 0 < xh < 1. With a continuum of agents, xh
(
c0, k, θ̂, θ, z,∆

)
can be interpreted as

the fraction of agents type h assigned to a bundle
(
c0, k, θ̂, θ, z,∆

)
. More formally, with all

choice objects gridded up as an approximation, the commodity space L is assumed to be a

finite n-dimensional linear space16.

For notational purposes, let b =
(
c0, k, θ̂, θ, z,∆

)
be a typical commodity, called a

bundle. We will use b and
(
c0, k, θ̂, θ, z,∆

)
interchangeably. Accordingly, we can write

xh ≡
[
xh(b)

]
b
∈ Rn

+ as a typical lottery for an agent type h.

A holder of a bundle b =
(
c0, k, θ̂, θ, z,∆

)
will receive k units of collateral and hold

portfolio of securities
(
θ̂, θ
)

. With limited commitment, each bundle b will be feasible only

if the collateral and security assignments satisfy the collateral constraints (3) which we repeat

here:

p (zs)Rsk + θ̂s + p (zs) θs ≥ 0, ∀s. (40)

Accordingly, we impose the following condition on a probability measure xh (b).

xh
(
c0, k, θ̂, θ, z,∆

)
≥ 0 if

(
c0, k, θ̂, θ, z,∆

)
satisfies (25) and (40), (41)

= 0 if otherwise.

In words, a positive measure can be defined only on feasible bundles, which have to satisfy

conditions (25) and (40).

16The limiting arguments under weak-topology used in Prescott and Townsend (1984a) can be applied to

establish the results if L is not finite.
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More formally, the consumption possibility set of an agent type h is defined by

Xh =

{
xh ∈ Rn

+ :
∑
b

xh (b) = 1, and for any b, xh (b) satisfies (41)

}
. (42)

Let xh be a typical element of Xh. Note that Xh ⊂ L is compact and convex. In addition,

the non-emptiness of Xh is guaranteed by assigning mass one on each agent’s endowment.

5.1 Competitive Equilibrium with Segregated Security Exchanges

Let P20 be the price of good 2 in period t = 0, and P
(
c0, k, θ̂, θ, z,∆

)
be the price of a

bundle
(
c0, k, θ̂, θ, z,∆

)
. Note that the price of good 1 in period t = 0 is P10 = 1 as good 1

is the numeraire good. Each agent is infinitesimally small relative to the entire economy and

will take all prices as given. The broker-dealers introduced below will also act competitively.

Note as well that ∆ is also competitively priced.

Consumers: Each agent h, taking prices, P20, P
(
c0, k, θ̂, θ, z,∆

)
, as given, chooses xh

in period t = 0 to maximize its expected utility:

max
xh

∑
(c0,k,θ̂,θ,z,∆)

xh
(
c0, k, θ̂, θ, z,∆

){
u
(
ch10, c

h
20

)
+ β

∑
s

πsu
(
eh1s + θ̂s, e

h
2s +Rsk + θs

)}
(43)

subject to xh ∈ Xh, and period t = 0 budget constraint∑
c0,k,θ̂,θ,z,∆

P
(
c0, k, θ̂, θ, z,∆

)
xh
(
c0, k, θ̂, θ, z,∆

)
≤ eh10 + P20e

h
20, (44)

which states that the agent sells all her endowments17 including good 2 at price P20 and uses

this income to buy lotteries xh, which includes consumption in period t = 0,
(
ch10, c

h
20

)
.

In state s, a holder of bundle
(
c0, k, θ̂, θ, z,∆

)
receives, in addition to her endowments of

good 1 and good 2
(
eh1s, e

h
2s

)
, θ̂s units of good 1 as the net-payment of portfolio θ̂, Rsk units

of good 2 from the collateral/saving good, θs units of good 2 as the net-payment of portfolio

17It is worthy of emphasis that we can write an equivalent problem specifying consumption transfers

in period t = 0, instead of consumption allocation. By doing so, agents do not need to sell their entire

endowments but simply buy and sell consumption transfers. In other words, it is not restrictive that we

make agents sell their entire endowments and buy consumption allocation through lotteries.
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θ. Of course, if θ̂s and θs are negative, these are promises to pay and require collateral. It

is worthy of emphasis that the agent will trade in security exchange zs, where she can in

principle trade good 1 and good 2 at price p(zs) in spot markets. (Again in the equilibrium

under consideration it will not be necessary to trade in spot markets even though they believe

they could.)

Broker-Dealers: Broker-dealers are agents who try to put together deals, much like

brokers on Wall street who put buyers and sellers of securities together. When ask and

bid prices are not matched, brokers will try to “clear the market” by communicating with

both sides of the markets (trying to change quantities and/or prices), so that demand equals

supply at a given price at the end.

Formally, the broker-dealer issues (sells) y
(
c0, k, θ̂, θ, z,∆

)
∈ R+ units of each bundle(

c0, k, θ̂, θ, z,∆
)

, at the unit price P
(
c0, k, θ̂, θ, z,∆

)
. Note that the broker-dealer can issue

any non-negative number of a bundle
(
c0, k, θ̂, θ, z,∆

)
; that is, the number of bundles issued

does not have to be between zero and one and is not a lottery. It is simply the number of

bundles, a real number. Let y ∈ L be the vector of the number of bundles issued as one

move across
(
c0, k, θ̂, θ, z,∆

)
. With constant returns to scale, the profit of a broker-dealer

must be zero and the number of broker-dealers becomes irrelevant. Therefore, without loss of

generality, we assume there is one representative broker-dealer, which takes prices as given.

The objective of the broker-dealer is to maximize its profit by supplying y ∈ L as follows:

max
y

∑
c0,k,θ̂,θ,z,∆

y
(
c0, k, θ̂, θ, z,∆

) [
P
(
c0, k, θ̂, θ, z,∆

)
− c10 − P20c20 − P20k

]
(45)

subject to technology constraints:∑
c0,k,θ̂,θ,z−s,∆

y
(
c0, k, θ̂, θ, z−s, zs,∆

)
θ̂s = 0, ∀s; zs, (46)

∑
c0,k,θ̂,θ,z−s,∆

y
(
c0, k, θ̂, θ, z−s, zs,∆

)
θs = 0, ∀s; zs, (47)

∑
c0,k,θ̂,θ,z−s,∆

y
(
c0, k, θ̂, θ, z−s, zs,∆

)
∆s = 0 ,∀s; zs, (48)

taking prices P20, P
(
c0, k, θ̂, θ, z,∆

)
as given. See our working paper Kilenthong and Townsend

(2011b) for more details.
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The existence of an optimum to the broker-dealer’s problem requires, that for any bundle(
c0, k, θ̂, θ, z,∆

)
,

P
(
c0, k, θ̂, θ, z,∆

)
≤ c10 +P20c20 +P20k+

∑
s

P̂a (zs, s) θ̂s+
∑
s

Pa (zs, s) θs+
∑
s

P∆ (zs, s) ∆s

(49)

where P̂a(zs, s), Pa(zs, s) , and P∆(zs, s) are the Lagrange multipliers for the zero-net-supply

constraints for securities paying in good 1 (46), for the zero-net-supply constraints for secu-

rities paying in good 2 (47), and for consistency constraints (48), respectively. In particular,

for a security exchange zs in state s, P̂a(zs, s), Pa(zs, s), and P∆(zs, s) are the shadow prices

of a securities paying in good 1 and good 2, and the shadow price of “type h discrepancies

from the fundamental” in the security exchange zs, respectively. Condition (49) holds with

equality if y
(
c0, k, θ̂, θ, z,∆

)
> 0. Here P

(
c0, k, θ̂, θ, z,∆

)
is the revenue from the sale of

one unit of bundle
(
c0, k, θ̂, θ, z,∆

)
. This condition is in fact the necessary and sufficient

condition for the saddle-point profit maximization problem.

Market Clearing: The market clearing condition for good 1 in period t = 0 is∑
c0,k,θ̂,θ,z,∆

y
(
c0, k, θ̂, θ, z,∆

)
c10 =

∑
h

αheh10 (50)

Similarly, the market clearing condition for good 2 in period t = 0 is∑
c0,k,θ̂,θ,z,∆

y
(
c0, k, θ̂, θ, z,∆

)
[c20 + k] =

∑
h

αheh20 (51)

The market clearing conditions for lotteries in period t = 0 are∑
h

αhxh
(
c0, k, θ̂, θ, z,∆

)
= y

(
c0, k, θ̂, θ, z,∆

)
, ∀
(
c0, k, θ̂, θ, z,∆

)
(52)

Definition 4. A competitive equilibrium with segregated security exchanges (with lottery)

is a specification of allocation (x,y), and prices P20, P
(
c0, k, θ̂, θ, z,∆

)
such that

(i) for each h, xh ∈ Xh solves utility maximization problem (43) subject to period t = 0

budget constraint (44), taking prices P20, P
(
c0, k, θ̂, θ, z,∆

)
as given;

(ii) for the broker-dealer,
{

y, P̂a (zs, s) , Pa (zs, s) , P∆ (zs, s)
}

solves profit maximization

problem (45) subject to technology constraints (46), (47) and (48) taking prices P20,

P
(
c0, k, θ̂, θ, z,∆

)
as given;
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(iii) markets for good 1, for good 2, and for lotteries in period t = 0 clear, i.e., (50), (51)

and (52) hold.

5.2 Constrained Optimal Allocations

An allocation x ≡
(
xh
)
h

is attainable if xh ∈ Xh for all h, and it satisfies the following

feasibility constraints.

Recall that good 1 cannot be stored; only good 2 is storable. The aggregate endowment

of good 1 in period t = 0 is
∑

h α
heh10. Therefore, the resource constraint for good 1 in period

t = 0 is given by ∑
h

∑
c0,k,θ̂,θ,z,∆

αhxh
(
c0, k, θ̂, θ, z,∆

)
c10 ≤

∑
h

αheh10. (53)

Similarly, the resource constraint for good 2 in period t = 0 is given by∑
h

∑
c0,k,θ̂,θ,z,∆

αhxh
(
c0, k, θ̂, θ, z,∆

)
[c20 + k] ≤

∑
h

αheh20. (54)

Note that the non-negativity constraint on k guarantees that the aggregate saving is non-

negative.

Recall that all securities are executed within each assigned security exchange only. In

particular, for a security exchange zs in state s, the net supply of a security paying in good

1 in state s, θ̂s must be zero:∑
h

∑
c0,k,θ̂,θ,z−s,∆

αhxh
(
c0, k, θ̂, θ, z−s, zs,∆

)
θ̂s = 0 , ∀s; zs, (55)

where z−s = (z1, . . . , zs−1, zs+1, . . . , zS) is a vector of market fundamentals in all states but

state s. This feasibility condition holds for every state s and every security exchange zs.

Similarly, the feasibility or market clearing constraints for securities paying in good 2 are as

follows: ∑
h

∑
c0,k,θ̂,θ,z−s,∆

αhxh
(
c0, k, θ̂, θ, z−s, zs,∆

)
θs = 0 , ∀s; zs. (56)

The market fundamental in each security exchange must be consistent. The planner must

choose the composition of agents to set the market fundamental for each security exchange
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to its specified level. With identical homothetic preferences, the consistency constraint for

a security exchange zs is that the aggregate ratio of good 1 to good 2 within the security

exchange zs must be exactly zs:

zs =

∑
h

∑
c0,k,θ̂,θ,z−s,∆

αhxh
(
c0, k, θ̂, θ, z−s, zs,∆

)(
eh1s + θ̂s

)
∑

h

∑
c0,k,θ̂,θ,z−s,∆

αhxh
(
c0, k, θ̂, θ, z−s, zs,∆

) (
eh2s +Rsk + θs

) . (57)

Using the feasibility conditions for securities within each security exchange, (55)-(56), and the

definition of “type h discrepancy from the fundamental” (25), these consistency constraints

can be rewritten as∑
h

∑
c0,k,θ̂,θ,z−s,∆

αhxh
(
c0, k, θ̂, θ, z−s, zs,∆

)
∆s = 0, ∀s, zs. (58)

This consistency constraint reflects the depletability of the externality.

Definition 5. An allocation x ≡
(
xh
)H
h=1
∈ X1×. . .×XH is said to be attainable if xh ∈ Xh

for every h, and it satisfies (53)-(56) and (58).

Let X denote the set of all attainable allocations. With finite linear weak-inequality

constraints, the attainable set X is compact and convex. In addition, the assumption that

the endowment is on the grids also ensures that X is nonempty.

A constrained optimal allocation is an attainable allocation such that there is no other

attainable allocation that can make at least one agent type strictly better off without making

any other agent type worse off. To be precise, the expected utility of an agent type h, holding

a lottery xh, is given by

Uh
(
xh
)

=
∑

c0,k,θ̂,θ,z,∆

xh
(
c0, k, θ̂, θ, z,∆

){
u
(
ch10, c

h
20

)
+ β

∑
s

πsu
(
eh1s + θ̂s, e

h
2s +Rsk + θs

)}
Definition 6. An attainable allocation x∗ ∈ X is said to be a constrained optimal allocation

if there is no another attainable allocation x ∈ X such that

Uh
(
xh
)
≥ Uh

(
x∗h
)

for every h, and U h̄
(
xh̄
)
> U h̄

(
x∗h̄
)

for some h̄

We characterize constrained optimality using the following Pareto program. Let λh ≥ 0

be the Pareto weight of agent type h. There is no loss of generality to normalize the weights

such that
∑

h λ
h = 1. A constrained Pareto optimal allocation x∗ solves the following Pareto

program.
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Program 2. The Pareto Program with endogenous segregated security exchanges is defined

as follows:

max
(xh∈Xh)

h

∑
h

λhαh
∑

c0,k,θ̂,θ,z,∆

xh
(
c0, k, θ̂, θ, z,∆

){
u
(
ch10, c

h
20

)
+ β

∑
s

πsu
(
eh1s + θ̂s, e

h
2s +Rsk + θs

)}
(59)

subject to ∑
h

∑
c0,k,θ̂,θ,z,∆

αhxh
(
c0, k, θ̂, θ, z,∆

)
c10 ≤

∑
h

αheh10, (60)

∑
h

∑
c0,k,θ̂,θ,z,∆

αhxh
(
c0, k, θ̂, θ, z,∆

)
[c20 + k] ≤

∑
h

αheh20, (61)

∑
h

∑
c0,k,θ̂,θ,z−s,∆

αhxh
(
c0, k, θ̂, θ, z−s, zs,∆

)
θ̂s = 0 ,∀s; zs, (62)

∑
h

∑
c0,k,θ̂,θ,z−s,∆

αhxh
(
c0, k, θ̂, θ, z−s, zs,∆

)
θs = 0 ,∀s; zs, (63)

∑
h

∑
c0,k,θ̂,θ,z−s,∆

αhxh
(
c0, k, θ̂, θ, z−s, zs,∆

)
∆s = 0, ∀s, zs. (64)

Note again that we already embedded the “individual discrepancies from the funda-

mental” (25), the probability constraints (39) and the collateral constraints (40) into the

consumption possibility sets Xh.

It is clear that the objective function now is linear in xh. Thereby it is continuous and

weakly concave. As discussed earlier, the feasible set X is non-empty, compact, and convex.

Therefore, a solution to the Pareto program for given positive Pareto weights exists and is

a global maximum. The proof of the equivalence between Pareto optimal allocations and

the solutions to the program is omitted for brevity (see Prescott and Townsend, 1984b, for

a similar proof).

As in the classical general equilibrium model, the economy is a well-defined convex econ-

omy, i.e., the commodity space is Euclidean, the consumption set is compact and convex,

the utility function is linear. As a result, the first and second welfare theorems hold, and

a competitive equilibrium exists. In particular, this section proves that the competitive

equilibrium is constrained optimal and any constrained optimal allocation can be supported

by a competitive equilibrium with transfers. Then, we use Negishi’s method to prove the

existence of a competitive equilibrium. For brevity, all related definitions and proofs are
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omitted here but are available in Kilenthong and Townsend (2011b), and similar proofs are

also available in Prescott and Townsend (2006).

The standard contradiction argument is used to prove the first welfare theorem below.

We assume that there is no local satiation point in the consumption set.

Assumption 2. For any xh ∈ Xh, there exists x̃h ∈ Xh such that

Uh
(
x̃h
)
> Uh

(
xh
)

(65)

where Uh
(
xh
)

is the expected utility of agent h derived from allocation xh.

This assumption is easily satisfied using reasonable specifications of the grid of consump-

tion allocation in period t = 0. For example, with a strictly increasing utility function, if we

include a very large consumption allocation in period t = 0 into the grid (larger than what

can be attained with endowments and storage), then the local nonsatiation assumption will

be satisfied.

Theorem 1. With local nonsatiation of preferences (Assumption 2), a competitive equilib-

rium with segregated security exchanges allocation is constrained optimal.

The Second Welfare theorem states that any constrained optimal allocation, correspond-

ing to strictly positive Pareto weights, can be supported as a competitive equilibrium with

segregated exchanges with transfers. The standard approach applies here. In particular, we

first prove that any constrained optimal allocation can be decentralized as a compensated

equilibrium with segregated exchanges. Then, we use a standard cheaper-point argument

(see Debreu, 1954) to show that any compensated equilibrium with segregated exchanges is

a competitive equilibrium with segregated exchanges with transfers.

Theorem 2. Any constrained optimal allocation corresponding with strictly positive Pareto

weights λh > 0,∀h can be supported as a competitive equilibrium with segregated security

exchanges with transfers.

We use Negishi’s mapping method (Negishi, 1960) to prove the existence of competitive

equilibrium with segregated exchanges. The proof benefits from the second welfare theorem.

Specifically, a part of the mapping applies the theorem in that the solution to the Pareto
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program is a competitive equilibrium with segregated exchanges with transfers. We then

show that a fixed-point of the mapping exists and it represents a competitive equilibrium

with segregated exchanges (without transfers).

Theorem 3. For any positive endowments, a competitive equilibrium with segregated security

exchanges exists.

6 Concluding Remarks on Implementation

Our solution to the externality problem is intuitive: create a market that allows agents to

contract on the state contingent price under which they will unwind their contract commit-

ments, over and above contracting on intertemporal or state-contingent security exchanges.

Of course that unwind price is still endogenous, and the contracted price must equal the

market clearing price at which supply equals demand18, taking into account exogenous en-

dowments, saving, contract positions and who is in the market. So when agents contract on

the unwind price at which collateral is valued for clearing, they essentially are counting on

having the requisite number and types of traders around to support that contracted price.

As is usual in a Walrasian equilibrium, and in rational expectations, this presumption is

validated, there is a decentralization, and agents need only pay attention to prices, making

their own decision independently. No agent cares specifically about the identity or name of

other traders. They do care but only implicitly about the composition of traders (or in our

set up with homotheticity, the ratio of pretrade endowments) in the sense they are counting

on a promised fundamental, the contracted price. So the new market mechanism does re-

quire knowledge of which side of a market a trader will be on, contingent on the state of the

world, and hence what commitments they have made previously, in a certain well defined

sense.

18We are abstracting away from broker dealers who absorb trades on their own account, to make a market

so to speak. We have jumped to the standard Walrasian limit with a large (continuum) number of traders of

each type, in which markets clear at an anticipated equilibrium price. However, the broker-deal firms in this

paper would be the outcome of completion among those trying to set up exchanges and attract customers,

as in Townsend (1983).
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Practically, the markets for the rights to trade can be implemented using markets for

certificates, each of which specifies the security exchange a trader wants to be in, at a price

paid, or is willing to be in, at a price received, and the amount of the discrepancy from

the fundamental that the trader will be holding. These are like market participation rights

with market access fees, but for us rather than a fixed fee independent of volume as in

contemporary markets, that volume here for us is implicit in the pretrade position of the

trader and the market fundamental. These markets for rights to trade will be opened in

the contracting period, and traders can buy any certificate they want and can afford, or

be compensated if this puts them in a disadvantageous position. When there is more than

one active exchange for a given state contingent contracted price, then we allow for queuing

with randomized execution of trade. That is traders will buy an actually fair lottery over

certificates at the beginning of the contracting period, and then a platform/utility exchange

will draw the outcome of the lottery and assign the certificate accordingly, to get the fractions

of traders right, at the end of the contracting period19. In the execution period, markets are

segregated or restricted in the sense that a trader with a certificate can trade in the specified

security exchange only so long as its discrepancy from the fundamental on its certificate is the

same as the true one or at least the one agreed to in the contracting period. If a household

or trader comes to a wrong security exchange or holds an inconsistent discrepancy from the

fundamental, its right to trade will be forfeited. This mechanism requires a technology that

can verify ex post, in the execution period, a household’s collateral/saving and its endowment

profiles. On this we elaborate below.

In order to visualize more clearly the mechanics of our proposed market structure, we try

to place it in a contemporary setting. We imagine that there are two commodities. One is a

money (good 1), namely deposits or accounts at the Federal Reserve used to secure payments,

19Trades are executed in some dark pool equity markets in a manner which can best be thought of as

random. In a dark pool, demand is often not equal to supply, and market typically does not clear. In dark

pools that simply take the exchange price as given, allocation rules on the heavy side have two main forms:

pro-rata and time priority. An example of pro-rata: if there are 300 shares to buy and 200 shares to sell, then

2/3 of each buy order is filled. (If the dark pool runs continuously, then time priority is the most common,

but that is not the one we want to emphasize here.) The point is that by increasing her bid, a buyer can

make it more likely to sell more, but the outcome is stochastic (e.g., Zhu, 2013).
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as in Fed wire. The second is a treasury obligation (good 2, the collateral good). All

promises to pay money in the future, whether a simple loan or a state contingent promise as

in an insurance indemnity, required collateral, the treasuries. In practice both treasuries and

money can clear and settle obligations ex post, but the rate of exchange between the two uses

the ex post spot market price or collateral valuation. Even though money and treasuries can

not be consumed directly, as can the commodities of our model, each participant (financial

institutions, e.g., banks, insurance companies, hedge funds) derives an indirect utility from

holding them in their portfolio at the end of today, this period, and also from holding them

given a certain state of the world tomorrow, next period (due to reasons that we do not

model here). But the utility is less from treasuries when they are used as collateral backing

promises to pay. It is as if they were subtracted from end of period portfolio holdings, that is,

not used for consumption/utility now. In the initial date these financial players borrow and

lend in the securities markets and buy and sell insurance obligations, again with loans and

insurance contracts dominated in money. The market fundamental in future spot markets

under a given state of the world is determined by the relative ratio of money to treasuries

at that date and state, equivalently the interest rate at that time. (Obviously, the example

requires a more generous interpretation of the model, which actually ends after the second

period.)

Some market participants buy for cash a vector of market exchange certificates, desig-

nating the future state contingent spot price of treasures for each state of the world. Other

participants are paid to hold each item in a vector of market exchange certificates. There

can of course be active trade in the sense that traders can be long or short on treasuries, even

conditioned on a given state of the world. The arrangement we envision essentially offers a

guarantee of the spot price of treasuries which will be used to settle obligations, hence not

subject to market fluctuations beyond the usual state-of-the-world contingencies. But the

market in the certificates in effect restricts the set of traders with whom there is unwinding

of positions tomorrow in such a way that the contracted, insured price is the market clearing

spot price. Broker-dealers will clear all the markets for securities and markets of certificates.

Of course these institutional arrangements will require a registration system, to keep track

of which exchange market traders are allowed to use (and hence the securities which are
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held). It is important to ensure that agents cannot participate across markets where they

do not have the right to buy and sell and unwind trades, to forestall the obvious arbitrage

when multiple exchanges emerge in equilibrium.

Registration and exclusivity might seem at first blush to be demanding requirements, but

these have become standard in the operation of US financial markets, as we now argue. In

contemporary financial markets, traders do not take physical possession of securities. The

US has moved from a system in which securities and money (checks) were use to complete

trades bilaterally, which one or the other in currier black bags being raced around downtown

NY via bicycle, subject to a deadline, to a system in which securities are registered and fixed

in place and do not change hands physically. A primary institution is DTCC , Depository

Trust and Clearing Corp. Essentially all issuance and ownership is now electronic. Older

securities are in a vault.

Ownership changes by trading on financial markets. There is a Trade Reporting Facility

(TRF). One of the most obvious exchanges is New York Stock Exchange. An order to buy

comes with the name of the trader, typically an identification number, and desired trades

(limit order). Of course much of this information is not revealed to the public, but the

exchanges know, regulators can know in principal, and records are kept. That is, trades are

reported in practice such that the trading venues are disclosed to the public, whereas the

trader identities are only known to the venues and regulators. In contrast, over-the-counter

trades might seem to be bilateral or among dealers and unobserved, but at least the trade in

some derivatives (credit default insurance) is now regulated under Dodd Frank legislation,

and the point here, the collateral is recorded in a CCP, central clearing party. Further, the

responsibility to finalize trade, to transfer securities and money now lies after Trade-plus-2

days with that CCP utility. Evidently many new registration and clearing platforms are

being created. These private entities are a bit like our intermediaries, i.e., trades are netted

and cleared though them. Our more general point is that these kinds of reforms have been

implemented and in that sense our proposal would not seem to require more technology.

Exclusivity is also not uncommon. For example, some of the dark pools do not want to

deal with hedge funds or high frequency (computer) traders, so they just prohibit them from

entering the platform.
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Asset-backed securities are allowed in our set up and do not cause a problem. Neither are

they essential in that various combinations of securities and markets are equivalent. Asset-

backed security trades mimic spot market trade, and become an essential part of the set up if

and only if spot market exchange is for some reason more limited. As a result, all arguments

and institution stated in terms of spot markets can be restated using the language of asset-

backed securities. In particular, we can solve the externality problem by creating segregated

security exchanges where agents can trade ex ante collateralized and asset backed securities

indexed for clearing at a posted price, that is by the market fundamental. Methodologically,

we do not both allow spot trade ex post then restrict spot trade with segregated markets.

That is, even without spot markets, there is an externalities problem in the valuation of

asset backed securities which are used to underwrite promises, and this requires some kind

of market clearing valuation.

Our methods extend to other set ups in which spot market exchange is desirable or cannot

be limited a priori. First, the model can be readily extended to incorporate the contract-

specific collateralization without pyramiding and tranching as in Geanakoplos (2003), among

others. In this case, spot trades will be necessary and cannot be substituted by ex-ante

contracting. Second, this model can also be extended to general preferences and dynamic

environments. This extended version will be used to study equilibrium cascades. This is

again closely related to Geanakoplos (2003). Third, we can use our approach to study re-

trading or anonymous trading in spot markets in incomplete market settings as in Greenwald

and Stiglitz (1986); retrade under moral hazard environments with unobserved actions as in

Acemoglu and Simsek (2008); Kilenthong and Townsend (2011a); and retrade in a Diamond

and Dybvig (1983) preference shocks bank runs environment as in Jacklin (1987). Kilen-

thong and Townsend (2014) create the requisite notation and embed all these environments,

including the collateral environment of this paper, into a common general framework.
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A Proofs

Lemma 2: For any state-contingent security, there exists a security with no default that

can generate the same total payoffs using the same amount of collateral.

Proof of Lemma 2: Default is Irrelevant under Complete Contracts. Consider a contingent

security that will be in default in state s, with collateral Ĉ < 1
Rsp(zs)

. That is, an issuer of

this security will “default” in state s. Hence, according to condition (2), the payoff of this

security (in units of good 1) in state s is

min
(

1, ĈRsp(zs)
)

= ĈRsp(zs) < 1. (66)

We now argue that there is an alternative security that does not default but generates

exactly the same total payoffs using the same amount of collateral overall. Consider a state-s

contingent security with collateral amount C̃ = 1
Rsp(zs)

. This security will not default. It

is straightforward to show that the payoff of this security is one unit of good 1 in state s.

Now consider ĈRsp(zs) units of the alternative security. That collection of securities pays

in state s one per unit or ĈRsp(zs) in total. This is exactly the same as the payoff of the

original security with default: see (66). In addition, the total collateral for ĈRsp(zs) units

of the alternative security with 1
Rsp(zs)

collateral per unit is Ĉ, which is exactly the same as

the collateral level of the original security. Therefore, the alternative security can generate

the same payoffs using the same total amount of collateral but without default. A similar

argument also applies to all other types of securities.

Lemma 3: With identical homothetic and strictly concave preferences, the attainable set

is non-convex.

Proof of Lemma 3. For simplicity, both state and agent indices will be kept implicit here.

Without loss of generality, let Rs = 1 for all s. Consider two different allocations
(
k, θ̂, θ

)
and

(
k′, θ̂′, θ′

)
with two different market fundamentals z, z′, respectively. The collateral

constraints (3) for an agent h in state s with these two allocations be binding:

p(z)k + θ̂ + p(z)θ = 0 =⇒ θ̂ = −p(z) (k + θ) . (67)

p(z′)k′ + θ̂′ + p(z′)θ′ = 0 =⇒ θ̂′ = −p(z′) (k′ + θ′) . (68)

55



Since we are looking for a counter example, we can pick these two allocations to satisfy

θ̂ = θ̂′ < 0 =⇒ p(z) (k + θ) = p(z′) (k′ + θ′) > 0. (69)

The positivity of the prices implies that k + θ > 0 and k′ + θ′ > 0.

Now consider a convex combination allocation: kλ = λk+(1− λ) k′, θ̂λ = λθ̂+(1− λ) θ̂′,

θλ = λθ+ (1− λ) θ′, cλ = λc + (1− λ) c′, and zλ = z(cλ), where 0 < λ < 1. Using equations

(67)-(68), we can write

p(zλ)kλ + θ̂λ + p(zλ)θλ =

(
k + θ

p(z′)

)[
λp(zλ) (p(z′)− p(z)) + p(z)

(
p(zλ)− p(z′)

)]
.

There is no loss of generality to assume that p(z) < p(zλ) < p(z′). Then, pick λ that is

smaller than λ∗:

λ∗ =

(
p(z′)− p(zλ)
p(z′)− p(z)

)(
p(z)

p(zλ)

)
. (70)

Using the condition that p(z) < p(zλ) < p(z′), we can show that 0 < λ∗ < 1. This condition

implies that we can pick 0 < λ < λ∗ < 1 such that

λp(zλ) (p(z′)− p(z)) + p(z)
(
p(zλ)− p(z′)

)
< 0. (71)

Using k + θ > 0, this clearly violates the collateral constraint (3). Therefore, the attainable

set is non-convex.

Proposition 1: Under Assumption 1, a competitive collateral equilibrium is constrained

optimal if and only if all collateral constraints are not binding, i.e. γhcc−s = µhcc−s = 0 for all

h and all s. As a result, a competitive collateral equilibrium is constrained suboptimal if and

only if it is not first-best optimal.

Proof of Proposition 1. We first prove that a competitive collateral equilibrium is constrained

optimal if and only if all collateral constraints are not binding, i.e. γhcc−s = µhcc−s = 0 for all

h and all s. The proof is based on the first-order conditions for Pareto program (22) and

the first-order conditions for a competitive collateral equilibrium. Note that the resource

constraints in the Pareto program (22) and the market-clearing constraints in the competi-

tive collateral equilibrium are clearly equivalent. In addition, the collateral constraints are
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the same in both problems as well. Hence, we only need to match all first-order conditions

from both problems. In addition, with limited space, we will focus only on the term that

generates an externality.

Optimal Conditions for the Pareto Program (22)

Let µhcc−s and µhū denote the Lagrange multipliers for the collateral constraint (20) for state s

for an agent type h and for the participation constraint (23) for an agent type h = 1, 2, . . . , H

with a normalization of µ1
ū = 1, respectively. Combining the first-order conditions with

respect to ch10, k
h, and the complementarity slackness conditions for the collateral constraints

gives:

uh20

uh10

=
∑
s

πsβ
uh2s
uh10

Rs +
∑
s

µhcc−s
µhūu

h
10

p(zs)Rs +
∑
s

αh

µhūu
h
10

p′(zs)
∂zs
∂K

∑
h̃

µh̃cc−s

[
Rsk

h + θh̃s

]
=

∑
s

πsβ
uh2s
uh10

Rs +
∑
s

µhcc−s
µhūu

h
10

p(zs)Rs −
∑
s

αh

µhūu
h
10

p′(zs)

p(zs)

∂zs
∂K

∑
h̃

µh̃cc−sθ̂
h̃
s , (72)

where the last equation follows from the complementarity slackness condition with respect

to collateral constraints:

µh̃cc−s

{
p(zs)

[
Rsk

h + θh̃s

]
+ θ̂hs

}
= 0⇒ µh̃cc−s

[
Rsk

h + θh̃s

]
= −

µh̃cc−sθ̂
h
s

p(zs)
. (73)

Note that (72) is exactly the same as (24).

Optimal Conditions for a Collateral Equilibrium

Let γcc−s be the Lagrange multiplier for the collateral constraint for state s. Combining the

first-order conditions with respect to ch10 and kh gives:

uh20

uh10

=
∑
s

πs
βuh2s
uh10

Rs +
∑
s

γhcc−s
uh10

p(zs)Rs. (74)

We are ready to prove the lemma.

(i) (⇐=) Suppose that γhcc−s = µhcc−s = 0 for all h and all s. We then can show that

any competitive collateral equilibrium allocation will also solve the Pareto program

(22) by matching all necessary and sufficient conditions. In particular, we can pick

µ20

µ10
= P20,

µθ̂s
µ10

= P̂as,
µθs
µ10

= Pas, and γhcc−s =
µhcc−s
µhū

= 0. In conclusion, any collateral

equilibrium allocation is constrained optimal if γhcc−s = µhcc−s = 0 for all h and all s.
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(ii) (=⇒) Suppose that a competitive collateral equilibrium allocation is constrained opti-

mal, i.e., solves the Pareto program (22). Hence, it must satisfy (72). Using the same

matching conditions as above, this will be true only if the last terms in (72) is zero.

We will prove this by a contradiction argument.

Suppose that there are some h̃ with µh̃cc−s 6= 0, and the last terms in (72) is zero:

αh

µhūu
h
10

∑
s

p′(zs)

p(zs)

∂zs
∂K

∑
h̃

µh̃cc−sθ̂
h̃
s

 = 0. (75)

This must be true for all h and h̃.

We will now argue that
∑

h̃ µ
h̃
cc−sθ̂

h̃
s has the same negative sign for every state s. Using

the first-order condition for the Pareto program with respect to θ̂hs , we can show that∑
h̃

µh̃cc−sθ̂
h̃
s =

∑
h̃

µ1sα
h̃θ̂h̃s − βπs

∑
h̃

µh̃ūu
h̃
1sθ̂

h̃
s , (76)

where µ1s is the Lagrange multiplier for the resource constraint for θ̂hs . The resource

constraint for θ̂hs ,
∑

h̃ α
h̃θ̂h̃s = 0, then implies that

∑
h̃ µ1sα

h̃θ̂h̃s = 0 for all s. In

addition, the first-order condition for the Pareto program with respect to ch10 implies

that µh̃ū = µ10αh̃

uh̃10

. Thus, we now have

∑
h̃

µh̃cc−sθ̂
h̃
s = −βπsµ10

∑
h̃

(
uh̃1s

uh̃10

)
αh̃θ̂h̃s . (77)

The optimality requires that an agent with relative large IMRS,
uh̃1s
uh̃10

, will hold positive

θ̂h̃s ≥ 0 and vice versa. This implies that the positive term of αh̃θ̂h̃s ≥ 0 will be weighted

more than the negative one. Combining this result with the resource constraint for θ̂hs ,∑
h̃ α

h̃θ̂h̃s = 0, we can conclude that
∑

h̃

(
uh̃1s
uh̃10

)
αh̃θ̂h̃s ≥ 0,∀s, and therefore

∑
h̃

µh̃cc−sθ̂
h̃
s = −βπsµ10

∑
h̃

(
uh̃1s

uh̃10

)
αh̃θ̂h̃s ≤ 0,∀s. (78)

With strictly concave and identical homothetic utility function, we can show that

p′(zs)
p(zs)

∂zs
∂K

< 0, and therefore can conclude that

p′(zs)

p(zs)

∂zs
∂K

∑
h̃

µh̃cc−sθ̂
h̃
s

 ≥ 0, ∀s. (79)
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As a result, (75) will hold only if

∑
h̃

µh̃cc−sθ̂
h̃
s = −βπsµ10

∑
h̃

(
uh̃1s

uh̃10

)
αh̃θ̂h̃s = 0,∀s. (80)

Given that
∑

h̃ α
h̃θ̂h̃s = 0, condition (80) implies that

uh̃1s
uh̃10

=
uh1s
uh10
, ∀h, h̃; s. Using the

fact that
uh2s
uh1s

= p(zs) for all h, we can also show that
uh̃1s
uh̃1ŝ

=
uh1s
uh1ŝ
, ∀h, h̃; s. In words,

the marginal rate of substitutions across times and states are equalized across agent

types. Under the assumption 1, these equalities are necessary and sufficient conditions

for first-best optimality, which in turn implies that all collateral constraints are not

binding, i.e., γhcc−s = µhcc−s = 0 for all h and all s. Hence, we can conclude that a

collateral equilibrium is constrained optimal, solving the Pareto program (22), only if

all collateral constraints are not binding.

The rest of the proof of is by contrapositive. Suppose a competitive collateral equilibrium

is constrained optimal. The above result implies that a necessary and sufficient condition for

a competitive collateral equilibrium to be constrained optimal is that all collateral constraints

are not binding. No binding collateral constraints implies first-best optimality. In short, we

have shown that first-best optimality is a necessary and sufficient condition for constrained

optimality. Thus we can conclude that a competitive collateral equilibrium is constrained

suboptimal if and only if it is not first-best optimal.

Proposition 2: Under Assumption 1, if a competitive collateral equilibrium is not first-best

optimal, then

(i) the equilibrium price of good 2 in period t = 0, P20, is too high, i.e., P20 >
uh20

uh10

∣∣∣
op

, and

(ii) the (endogenous) aggregate saving/collateral in a competitive collateral equilibrium,

Kce, is too large, i.e., Kce > Kop.

Proof of Proposition 2. The proof is an immediate result of the proof of proposition 1 above.

First, if a competitive collateral equilibrium is not first-best optimal, then (by proposition

1) we can show that the last term of (72) is strictly positive:∑
s

αh

µhūu
h
10

p′(zs)

p(zs)

∂zs
∂K

∑
h̃

µh̃cc−sθ̂
h̃
s > 0. (81)
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This implies that the marginal rate of substitution between good 1 and good 2 in period

t = 0 at the competitive collateral equilibrium is larger than the optimal level of the marginal

rate of substitution between good 1 and good 2 in period t = 0, i.e.,
uh20

uh10

∣∣∣
ce
>

uh20

uh10

∣∣∣
op

. This

implies that the equilibrium price of good 2 in period t = 0 is too high relative to its

shadow price from the (constrained) optimal allocation
uh20

uh10

∣∣∣
op

. In addition, given that the

aggregate consumption of good 1 is fixed and preferences are identically homothetic, this

result can be true only if the (endogenous) aggregate saving/collateral in a competitive

collateral equilibrium, Kce, is too large, i.e., Kce > Kop.
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B More Results

B.1 Default cannot Make Collateral Constraints Less Binding un-

der Complete Contracts

This section shows that contracts that do actually default does not relax the collateral

constraints (3); that is, contracts that do default are not necessary. They may exist and get

traded, but we can support an equivalent allocation without them. In particular, we now

derive a collateral constraint with contracts that do default, and then show that the same

net-payoff and same collateral constraint can be reached using no-default contracts. This is,

in fact, a result of Lemma 2 but it is nice to be explicit, as the result seems counterintuitive.

Let Ĉ, C, Ĉσ, and Cσ be the collateral levels of defaulting contracts promising to pay

a unit of good 1 with good 2 as collateral, promising to pay a unit of good 2 with good

2 as collateral, promising to pay a unit of good 1 with financial assets as collateral, and

promising to pay a unit of good 2 with financial assets as collateral, respectively. Note

that, for expositional reasons, we assume that all contracts are contracts that do default.

Accordingly, the payoffs of those contracts, which by construction with default, in state s

are

D̂s = min
(
P2sRsĈ, 1

)
= P2sRsĈ, (82)

Ds = min (RsC, 1) = RsC, (83)

D̂σ
s = min

(
P2sĈ

σ, 1
)

= P2sĈ
σ, (84)

Dσ
s = min

(
Cσ

P2s

, 1

)
=
Cσ

P2s

. (85)

The collateral requirement condition for contracts using physical good 2 as collateral is

given by

kh ≥ −Ĉ min
(

0, ψ̂hs

)
− C min

(
0, ψhs

)
.

Multiplying by P2sRs both sides gives

P2sRsk
h ≥ −P2sRsĈ min

(
0, ψ̂hs

)
− P2sRsC min

(
0, ψhs

)
= −D̂s min

(
0, ψ̂hs

)
− P2sDs min

(
0, ψhs

)
. (86)
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where the last equality follows from (82)-(83).

The collateral requirement condition regarding contracts paying in good 1 using pur-

chased assets as collateral can be written as

Ds max
(
0, ψhs

)
+Dσ

s max
(
0, σhs

)
≥ −Ĉσ min

(
0, σ̂hs

)
, (87)

which can be rearranged as

P2sDs max
(
0, ψhs

)
+ P2sD

σ
s max

(
0, σhs

)
≥ −P2sĈ

σ min
(
0, σ̂hs

)
= −D̂σ

s min
(
0, σ̂hs

)
. (88)

where the last equality follows from (84).

Similarly, the collateral requirement condition regarding contracts paying in good 2 using

purchased assets as collateral can be written as

D̂s max
(

0, ψ̂hs

)
+ D̂σ

s max
(
0, σ̂hs

)
≥ −Cσ min

(
0, σhs

)
= −P2sD

σ
s min

(
0, σhs

)
, (89)

where the last equality follows from (85).

Summing conditions (86)-(89) gives the collateral constraint in state s, for an agent h,

P2sRsk
h ≥ −D̂s

[
max

(
0, ψ̂hs

)
+ min

(
0, ψ̂hs

)]
−
[
max

(
0, σ̂hs

)
+ D̂σ

s min
(
0, σ̂hs

)]
−P2sDs

[
max

(
0, ψhs

)
+ min

(
0, ψhs

)]
− P2sD

σ
s

[
max

(
0, σhs

)
+ min

(
0, σhs

)]
= −

(
D̂sψ̂

h
s

)
−
(
D̂σ
s σ̂

h
s

)
− P2s

(
D̂σ
sψ

h
s

)
− P2s

(
Dσ
s σ

h
s

)
. (90)

The above collateral constraint shows that what really matter for the collateral constraint

is the total payoff of contracts. As a result, we can find equivalent contracts with no-default

that satisfy the same collateral constraint, by re-normalizing the original contracts. In

particular, consider contracts, with collateral Ĉ ′ = 1
P2sRs

, C ′ = 1
Rs

, Ĉ ′σ = 1
P2s

, and C ′σ = P2s.

Hence, their payoffs are payoffs of those contracts in state s, respectively, are

D̂′s = min
(
P2sRsĈ

′, 1
)

= 1, (91)

D′s = min (RsC
′, 1) = 1, (92)

D̂′σs = min
(
P2sĈ

′σ, 1
)

= 1, (93)

D′σs = min

(
C ′σ

P2s

, 1

)
= 1. (94)
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Note that these are no-default contracts.

In order to reach the same total payoff as originally, let the agent hold securities ψ̂′hs =

D̂sψ̂
h
s , σ̂′hs = D̂σ

s σ̂
h
s , ψ′hs = Dsψ

h
s , and σ′hs = Dσ

s σ
h
s . As a result, the collateral constraint (90)

becomes

P2sRsk
h +

(
ψ̂′hs + σ̂′hs

)
+ P2s

(
ψ′hs + σ′hs

)
≥ 0, (95)

which is identical to the collateral constraint (3), derived from no-default contracts only.

B.2 Details of the Building Blocks of the Collateral Constraints

This section precisely defines directly collateralized and asset-back securities (pyramiding),

and derives the unified collateral constraints (3) by considering the collateral constraints of

each type of securities one at a time and adding them up (and disaggregating back down).

Collateral Constraints on Directly Collateralized Securities

To generalize a bit, let ψ̂h ≡
(
ψ̂hs
)S
s=1
∈ RS and ψh ≡

(
ψhs
)S
s=1
∈ RS denote agent h’s

portfolios of securities demanded, held at the end of period 0 paying in good 1 and in good

2, both with good 2 as collateral directly, respectively. Again, we adopt the convention that

positive means demand and negative means sale. So, holding a positive amount of a security

paying good 2 in state s, max
(
0, ψhs

)
= ψhs , a positive number, is equivalent to buying that

security (or lending) while holding a negative amount of a security, min
(
0, ψhs

)
= ψhs , a

negative number, is equivalent to selling that security (or borrowing). In short, the max and

min operators pick off demand and supply, respectively. A wedge is created by the need to

back the supply by collateral but not the demand.

More generally, a security paying a unit of good 1 in state s backed by good 2 pays the

minimum of 1 unit of good 1 or the value of its collateral in state s. By an argument similar

to the one given earlier, the minimum no-default collateral is 1
p(zs)Rs

per unit. Similarly, with

no-default and no-over-collateralization, a security paying in good 2 in state s requires 1
Rs

units of good 2 as collateral. The results so far are summarized in the first two rows of the

Table 9 with collateral requirement in the last column.
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Table 9: Collateral requirements for each type of securities.

payment collateral issued purchased assets total collateral

unit unit liabilities available requirement for

as collateral no default securities

ψ̂hs good 1 good 2 −min
(

0, ψ̂hs

)
max

(
0, ψ̂hs

)
−
(

1
Rsp(zs)

)
min

(
0, ψ̂hs

)
ψhs good 2 good 2 −min

(
0, ψhs

)
max

(
0, ψhs

)
−
(

1
Rs

)
min

(
0, ψhs

)
σ̂hs good 1 securities paying −min

(
0, σ̂hs

)
max

(
0, σ̂hs

)
−
(

1
p(zs)

)
min

(
0, σ̂hs

)
in good 2

σhs good 2 securities paying −min
(
0, σhs

)
max

(
0, σhs

)
−p(zs) min

(
0, σhs

)
in good 1

ν̂hs good 1 securities paying −min
(
0, ν̂hs

)
max

(
0, ν̂hs

)
−min

(
0, ν̂hs

)
in good 1

νhs good 2 securities paying −min
(
0, νhs

)
max

(
0, νhs

)
−min

(
0, νhs

)
in good 2

For securities
(
ψ̂hs , ψ

h
s

)
with good 2 as collateral, paying in good 1 and good 2, respec-

tively, agent h must hold good 2 at the end of period 0 no less than the collateral requirement

in any state (shown in Table 9):

kh ≥ −min
(

0, ψ̂hs

)( 1

Rsp(zs)

)
−min

(
0, ψhs

)( 1

Rs

)
, ∀s, (96)

which can be rewritten as

p(zs)Rsk
h + min

(
0, ψ̂hs

)
+ p(zs) min

(
0, ψhs

)
≥ 0, ∀s. (97)

These are state-contingent collateral requirement constraints with directly collateralized se-

curities. We incorporate asset-backed securities in the next section.

Note that when an agent h’s collateral requirement constraints (96) are not binding for

every state s (i.e., the LHS of (96) exceeds its RHS or (96) holds with strict inequality

for every state s), then the agent h holds collateral kh more than needed to back issued

securities. The extra part of collateral is normal saving.
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Pyramiding: Asset-Backed Securities

In real world economies, agents are allowed to use the promises to receive goods of others as

collateral to back their own promises. This is termed pyramiding. In other words, there are

two types of collateral, good 2 itself (described in the preceding section) and “assets” backed

by such collateral. The prototypical example of an asset-backed promise in this paper is an

ex-ante agreement for an agent to give up good 1 in the spot market in state s backed by

someone else’s promise, a receipt of good 2, or vice versa. The promise of receipt is the asset,

and this backs the promise to pay. Indeed, if the planned spot-market trade is at equilibrium

price of p(zs), then one is moving along a budget line and so the value of collateral, the good

to be recovered, exactly equals the promise and there is no need for additional underlying

collateral.

With two physical commodities, there are four possible types of asset-backed securities,

summarized in the last four rows of Table 9. For example, a unit of an asset-backed security

σ̂s paying in good 1 in state s needs 1
p(zs)

units of assets paying in good 2 as collateral. The

value of the payoff of 1
p(zs)

units of securities paying in good 2 in state s equals p(zs)× 1
p(zs)

= 1

unit of good 1, which is exactly the face-value promise to pay. These collateral requirements

are minimum no-default levels.

As shown in the third row of Table 9 (see the column titled total collateral requirement),

an asset-backed security paying a unit of good 1 in state s, σ̂hs , requires that the total amount

of purchased assets paying in good 2 in state s is no less than −
(

1
p(zs)

)
min

(
0, σ̂hs

)
. Similarly,

an asset-backed security νhs requires that the total amount of purchased assets paying in good

2 in state s is no less than −min
(
0, νhs

)
(see the last row of Table 9). On the other hand, the

total amount of purchased assets paying in good 2 is max
(
0, ψhs

)
+max

(
0, σhs

)
+max

(
0, νhs

)
,

as shown in the second, fourth and last rows of Table 9 (see the next-to-last column titled

purchased assets). Hence, the collateral requirement condition regarding issued securities σ̂hs

and νhs that require financial assets paying in good 2 as collateral can be written as, for any

state s,

max
(
0, ψhs

)
+ max

(
0, σhs

)
+ max

(
0, νhs

)
≥ −

(
1

p(zs)

)
min

(
0, σ̂hs

)
−min

(
0, νhs

)
.

This states that the agent purchases enough assets or promises paying in good 2, θhs , σ
h
s , ν

h
s ,
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to back up her own asset-backed securities or issued promises σ̂hs , ν
h
s . The above condition

can be rearranged as

p(zs) max
(
0, ψhs

)
+ p(zs) max

(
0, σhs

)
+ p(zs)ν

h
s ≥ −min

(
0, σ̂hs

)
, (98)

where we applies the fact that max
(
0, νhs

)
+ min

(
0, νhs

)
= νhs .

Similarly, the collateral requirement condition for issued securities that require financial

assets paying in good 1 as collateral is given by

max
(

0, ψ̂hs

)
+ max

(
0, σ̂hs

)
+ ν̂hs ≥ −p(zs) min

(
0, σhs

)
, ∀s, (99)

where the right-hand-side comes from the fourth and fifth rows of Table 9.

We now show that the collateral constraints

p(zs)Rsk
h + θ̂hs + p(zs)θ

h
s ≥ 0, ∀s (100)

are equivalent to collateral requirement conditions (with three types of collateral), (97), (98),

and (99). In other words, there is no loss of generality to use the collateral constraints (100);

an allocation is attainable under (100) if and only if it is so under (97), (98), and (99).

To be more precise, let θ̂hs = ψ̂hs + σ̂hs + ν̂hs and θhs = ψhs + σhs + νhs be contingent securities

paying in good 1 and in good 2 in state s, respectively, which can be backed either by good

2 or purchased assets (other people’s promises). Note that θ̂hs and θhs include both directly

collateralized and asset-backed securities. An attainable allocation under (97), (98), and (99)

can be defined similarly to the one under (3) by replacing (12)-(13) the following resource

constraints:∑
h

αhψ̂hs =
∑
h

αhψhs =
∑
h

αhσ̂hs =
∑
h

αhσhs =
∑
h

αhν̂hs =
∑
h

αhνhs = 0, ∀s. (101)

The collateral constraint (100) results from summing (97), (98), and (99) altogether, and

then applying max(0, x)+min(0, x) = x to get rid of max and min operators. In addition, the

proof of this lemma also shows how to recover contract allocation
(
ψ̂hs , ψ

h
s , σ̂

h
s , σ

h
s , ν̂

h
s , ν

h
s

)
h

from
(
θ̂hs , θ

h
s

)
.

Lemma 4. The following statements are true:

66



(i) if
(
ch0 , k

h, ψ̂hs , ψ
h
s , σ̂

h
s , σ

h
s , ν̂

h
s , ν

h
s

)
h

is attainable, then the collateral constraint (100) and

the market-clearing conditions (12)-(13) hold, and

(ii) if
(
kh, θ̂hs , θ

h
s

)
h

is attainable, then there exists a collateral and security allocation(
kh, ψ̂hs , ψ

h
s , σ̂

h
s , σ

h
s , ν̂

h
s , ν

h
s

)
h

that satisfies collateral requirement conditions (97), (98),

(99) and the market-clearing conditions (101).

Proof. The first statement can be proved as follows. First, it is clear that conditions (101)

imply (12)-(13). We now only need to show that (97), (98), and (99) imply (100). Sum-

ming up all collateral requirement conditions, (97), (98), and (99), and using the fact that

max (0, x) + min (0, x) = x give, for an agent h in state s,

p(zs)Rsk
h +

[
ψ̂hs + σ̂hs + ν̂hs

]
+ p(zs)

[
ψhs + σhs + νhs

]
≥ 0,

which is the collateral constraint for an agent h in state s where θ̂hs = ψ̂hs + σ̂hs + ν̂hs and

θhs = ψhs + σhs + νhs .

The second statement is proved as follows. Consider an allocation
(
kh, θ̂hs , θ

h
s

)
h

that satis-

fies (100) and (12)-(13). We will now choose a corresponding allocation
(
kh, ψ̂hs , ψ

h
s , σ̂

h
s , σ

h
s , ν̂

h
s , ν

h
s

)
h

that satisfies θ̂hs = ψ̂hs + σ̂hs + ν̂hs , θhs = ψhs + σhs + νhs , the collateral requirement conditions

(97), (98), (99), and the market-clearing conditions (101). Consider the following candidate

allocation:

ψ̂hs = θ̂hs + p(zs)θ
h
s , (102)

ψhs = ν̂hs = νhs = 0, (103)

σ̂hs = θ̂hs − ψ̂hs = −p(zs)θhs , (104)

σhs = θhs . (105)

(103) implies that agents hold no ψhs , ν̂
h
s , ν

h
s ; they will borrow or lend through directly col-

lateralized contract paying in good 1 ψ̂hs only.

It is straightforward to show that resource constraints (101) hold. Since the resource con-

straints are satisfied and the collateral allocations kh are the same, the market fundamentals

are the same. We now would like to show that collateral requirement conditions (97), (98),

(99) also hold. First, we will show that (98) and (99) hold. There are two cases to consider;
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(i) θhs > 0, (ii) θhs < 0. Case I: Suppose that θhs > 0. Using (105), this implies that σhs > 0,

which in turn leads to min
(
0, σhs

)
= 0. On the other hand, it is true that

max
(

0, ψ̂hs

)
+ max

(
0, σ̂hs

)
= max

(
0, ψ̂hs

)
+ max

(
0, σ̂hs

)
+ ν̂hs ≥ 0,

where the first equality follows from (103). Since min
(
0, σhs

)
= 0, we have

max
(

0, ψ̂hs

)
+ max

(
0, σ̂hs

)
= max

(
0, ψ̂hs

)
+ max

(
0, σ̂hs

)
+ ν̂hs ≥ −p(zs) min

(
0, σhs

)
,

which is (99). On the other hand, (104) implies that σ̂hs < 0 when θhs > 0. As a result,

min
(
0, σ̂hs

)
= σ̂hs . Using (103), (104), (105), we then can show that

p(zs) max
(
0, ψhs

)
+ p(zs) max

(
0, σhs

)
+ p(zs)ν

h
s + min

(
0, σ̂hs

)
= 0 + p(zs)σ

h
s + 0 + σ̂hs = p(zs)θ

h
s − p(zs)θhs = 0,

where the second equality follows from (104) and (105). This shows that (98) holds.

Case II: Suppose that θhs < 0. (104) and (105) imply that max
(
0, σ̂hs

)
= σ̂hs = −p(zs)θhs

and min
(
0, σhs

)
= σhs = θhs , respectively. We then can write

max
(

0, ψ̂hs

)
+ max

(
0, σ̂hs

)
+ ν̂hs = max

(
0, ψ̂hs

)
− p(zs)θhs ≥ −p(zs)θhs = −p(zs) min

(
0, σhs

)
,

which is exactly (99). Note that the first equality follows from (103), the second inequality

follows from the fact that max
(

0, ψ̂hs

)
≥ 0. Similarly, using , we can show that max

(
0, σhs

)
=

min
(
0, σ̂hs

)
= 0. This implies that

p(zs) max
(
0, ψhs

)
+ p(zs) max

(
0, σhs

)
+ p(zs)ν

h
s + min

(
0, σ̂hs

)
= 0 + 0 + 0 + 0 = 0,

which is exactly (98).

Similarly, we can now show that (97) also holds. There are two cases to be considered as

well.

Case I: suppose that θ̂hs + p(zs)θ
h
s < 0. (102) implies that ψ̂hs < 0, which in turn implies

that min
(

0, ψ̂hs

)
= ψ̂hs = θ̂hs + p(zs)θ

h
s . Using (103), we now can show that

p(zs)Rsk
h + min

(
0, ψ̂hs

)
+ p(zs) min

(
0, ψhs

)
= p(zs)Rsk

h + θ̂hs + p(zs)θ
h
s + 0 ≥ 0,

where the last inequality follows (100). This implies that (97) holds.

Case II: we can use a similar argument to show that (97) holds when θ̂hs+p(zs)θ
h
s = ψ̂hs > 0.

In summary, we have show that all collateral requirement conditions hold.
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B.3 Pooling Collateral versus Tranching

This section shows that the markets economize on collateral; that is, there is no gain from

pooling collateral across agents type h. Let the collateral constraints with pooling be:

p(zs)RsK ≥ −
∑
h

αhp(zs) min
{

0, ψhs
}
−
∑
h

αh min
{

0, ψ̂hs

}
, (106)

where the average collateral K =
∑

h α
hkh. We then show that the group collateral con-

straint is equivalent to individuals collateral constraints (3).

Lemma 5. For any allocation
(
kh, ψhs , τ

h
s , τ̂

h
s

)
satisfying the collateral constraints (106), then

there exists there exists an equivalent allocation
(
k′h, ψ′hs , τ

h
s , τ̂

h
s

)
with

k′1 =

∑
h α

hkhs
α1

, and k′h = 0 for h 6= 1, (107)

ψ′hs =
(
Rsk

h
s + ψhs

)
−Rsk

′h, (108)

where khs =
−p(zs) min(0,ψhs )−min(0,ψ̂hs )

p(zs)Rs
,∀s.

Proof. This result can be proved in two steps: (i) show that the collateral constraints (106)

hold if and only if there exists khs such that (3) hold, (ii) then show that any allocation

with state-contingent collateral, khs , can be replicated by an allocation with fixed collateral

allocation kh.

Step I: =⇒ Suppose that collateral constraints (106) hold. Now consider an alternative

allocation with

khs =
−p(zs) min

(
0, ψhs

)
−min

(
0, ψ̂hs

)
p(zs)Rs

,∀s. (109)

This clearly implies no default. We then only need to show that the average collateral needed∑
h α

hkhs is no larger than K. Summing the above equation over h with weight αh gives, for

each s,

∑
h

αhkhs =
∑
h

αh
−p(zs) min

(
0, ψhs

)
−min

(
0, ψ̂hs

)
p(zs)Rs

≤ K, (110)

where the last inequality follows from the group collateral constraints (106).
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⇐= This can be done by summing over the individuals collateral constraints with weight

αh.

Step II: Let
(
khs , ψ

h
s , τ

h
s , τ̂

h
s

)
be an attainable allocation with contingent collateral; that is,

it satisfies the collateral constraint for each h and s:

Rsk
h
s ≥ −min

(
0, ψhs

)
, (111)

and the average collateral is the same in every state; K =
∑

h α
hkhs for all s. In addition,

the consumption allocation of agent h in state s is given by

ch1s = eh1s + τ̂hs , (112)

ch2s = eh2s +
(
Rsk

h
s + ψhs

)
+ τhs , (113)

where the spot trade satisfies:

τ̂hs + p(zs)τ
h
s = 0. (114)

Now consider a candidate allocation
(
k′h, ψ′hs , τ

′h
s , τ̂

′h
s

)
with

k′1 =
K

α1
, and k′h = 0 for h 6= 1, (115)

ψ′hs =
(
Rsk

h
s + ψhs

)
−Rsk

′h, (116)

τ̂ ′hs = τ̂hs , and τ ′hs = τhs . (117)

Using (115), we can write the securities as

ψ′1s =
(
Rsk

1
s + ψ1

s

)
− k′1, (118)

ψ′h = Rsk
h
s + ψhs for h 6= 1. (119)

Using the collateral constraint (111) we can show that for each h 6= 1:

ψ′hs = Rsk
h
s + ψhs ≥ Rsk

h
s + min

{
0, ψhs

}
≥ 0, (120)

where the last inequality follows from the collateral constraint (111). This, ψ′hs ≥ 0, implies

that the collateral constraint for any h 6= 1 holds (since he does not issue securities at all).

We hence only need to show that the collateral constraint also holds for h = 1. We can

rewrite (118) as

k′1 =
(
Rsk

1
s + ψ1

s

)
− ψ′1s ≥ −ψ′1s , (121)
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where the last inequality follows from the collateral constraint (111) for h = 1. This shows

that the collateral constraint also holds for h = 1.

Given that
∑

h α
hk′hs = K =

∑
h α

hkhs , the market fundamentals are the same for every

state. With the same market fundamental, zs, the spot trade is satisfied, using (117).

Now we will show that the consumption allocations are also the same.

c′h1s = eh1s + τ̂ ′hs = eh1s + τ̂hs = ch1s, (122)

where the second equality follows from (117), and the last one follows from (112). Similarly,

c′h2s = eh2s +
(
Rsk

′h
s + ψ′hs

)
+ τ ′hs = eh2s +

(
Rsk

′h
s +

(
Rsk

h
s + ψhs −Rsk

′h))+ τhs

= eh2s +
(
Rsk

h
s + ψhs

)
+ τhs = ch2s, (123)

where the second equality follows from (116) and (117), and the last one follows from (113).

B.4 Ex-ante Contracting versus Ex-post Spot Trading

Thus far we implicitly shut down trade in the spot markets in each state. This section shows

that the spot markets are redundant when all types of contracts are available (see Lemma 6

below). In other words, agents do not need to trade in spot markets, though they may well

do so. Importantly, the spot markets are open and deliver the spot price p(zs). In addition,

we also show that the asset-backed securities are not necessary when the spot markets are

open and active (see Lemma 7 below). Put differently, agents simply are indifferent between

trading in spot markets or ex-ante asset-backed securities.

When the spot markets are open, each agent h can trade τ̂hs units of good 1 for τhs units

of good 2 at a spot price p(zs) according to the spot-trade constraint:

τ̂hs + p(zs)τ
h
s = 0. (124)

Recall that the spot price function, p(zs), is the price such that the spot markets for both

goods clear: ∑
h

αhτ̂hs = 0, (125)∑
h

αhτhs = 0. (126)
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Hence, an attainable allocation with the spot markets is defined by adding the spot-trade

constraint (124) and market-clearing constraints (125)-(126) to Definition 2.

To be more precise, an allocation is said to be equivalent to an attainable allocation if

it is attainable and generates the same consumption allocation and market fundamental in

each state s as the original attainable allocation.

Lemma 6. For any attainable allocation
(
ch0 , k

h, θ̂h, θh, τ̂h, τh
)
h
, there exists an equivalent

allocation
(
ch0 , k

h, θ̂′h, θ′h, τ̂ ′h, τ ′h
)
h

such that

τ̂ ′hs = τ ′hs = 0,∀s, h. (127)

Proof. Let
(
ch0 , k

h, θ̂h, θh, τ̂h, τh
)
h

be an attainable allocation. We will show that we can

find an equivalent allocation with no spot trade, i.e., τ̂ ′hs = τ ′hs = 0. Consider the following

candidate allocation (with ′)

c′h0 = ch0 ,∀h, (128)

θ̂′hs = θ̂hs + τ̂hs ,∀s, h, (129)

θ′hs = θhs + τhs ,∀s, h. (130)

Note that agents here acquire or issue securities on good 1 and good 2 in state s rather than

waiting for trade in spot markets. The rest of the proof is similar to the proof of Lemma 4,

and hence is omitted (it is available in our Working Paper version).

Condition (127) in Lemma 6 implies that the spot markets in period 1 are redundant

when all securities are allowed; that is, anything that can be done through the spot markets

and one set of securities is feasible under another set of securities without spot markets.

Henceforth (and previously), the ex-post spot trade transfers will be (were) set to zero,

(τ̂h = 0, τh = 0 as in (127)) and the spot-trade constraints (124) will be (were) neglected,

unless stated otherwise.

Lemma 7. For any attainable allocation
(
ch0 , k

h, ψ̂hs , ψ
h
s , σ̂

h
s , σ

h
s , ν̂

h
s , ν

h
s , τ̂

h, τh
)
h
, there exists

an equivalent allocation
(
ch0 , k

h, ψ̂′hs , ψ
′h
s , σ̂

′h
s , σ

′h
s , ν̂

′h
s , ν

′h
s , τ̂

′h, τ ′h
)
h

such that

σ̂′hs = σ′hs = ν̂ ′hs = ν ′hs = 0,∀s, h. (131)
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Proof. Suppose
(
ch0 , k

h, ψ̂hs , ψ
h
s , σ̂

h
s , σ

h
s , ν̂

h
s , ν

h
s , τ̂

h, τh
)
h

is attainable. Consider the following

alternative allocation (with ′)
(
ch0 , k

h, ψ̂′hs , ψ
′h
s , σ̂

′h
s , σ

′h
s , ν̂

′h
s , ν

′h
s , τ̂

′h, τ ′h
)
h

such that

σ̂′hs = σ′hs = ν̂ ′hs = ν ′hs = 0, ψhs = 0, ∀h, s, (132)

ψ̂′hs =
(
ψ̂hs + σ̂hs + ν̂hs

)
+ p(zs)

(
ψhs + σhs + νhs

)
,(133)

τ̂ ′hs = −p(zs)
(
ψhs + σhs + νhs

)
+ τ̂hs , (134)

τ ′hs =
(
ψhs + σhs + νhs

)
+ τhs . (135)

Note that at the alternative allocation, agents will do in spot markets what they might have

done in asset-backed security markets. In addition, with active spot markets, there is no

need to trade in collateral-backed securities paying in good 2 (trade in the ones paying in

numeraire good only). The rest of the proof is similar to the proof of Lemma 6, and hence

is omitted (it is available in our Working Paper version).

It is worthy of emphasis that Lemma 6 and Lemma 7 imply that the asset-backed secu-

rities that we need in this model are the ones that replicate spot markets. In other words,

the asset-backed securities in this model (with tranching) are simply substitutes for spot

markets. Henceforth, we let asset-backed securities play this role and shut down active trade

in spot markets. The result is summarized in the following corollary.

Corollary 1. Asset-backed securities and the spot markets are perfect substitute in this

model.

B.5 Spot Markets and Security Prices: No-Arbitrage Condition

The pyramiding mechanism puts a restriction on the prices of contracts traded within each

security exchange. The ratio of the equilibrium prices of the securities in security exchange

zs in state s, Pa(zs,s)

P̂a(zs,s)
, must be equal to the marginal rate of substitution or the spot price in

the security exchange, p(zs). Otherwise, there will be an arbitrage possibility (by keeping the

collateral constraints satisfied with pyramiding). The result is summarized in the following

lemma.
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Lemma 8. In a competitive equilibrium, for each s and zs,

Pa(zs, s) = p(zs)P̂a(zs, s). (136)

Using the no-arbitrage condition (136), the collateral constraints (100) can be rewritten

as

Pa (zs, s)Rsk
h + P̂a (zs, s) θ̂

h
s + Pa (zs, s) θ

h
s ≥ 0,∀s. (137)

These constraints state that the value in units of good 1 at t = 0 of all ex ante securities

held (RHS) cannot exceed the value of collateral held (LHS). These constraints are applicable

when the spot markets are not available but the ex-ante asset-backed securities can be traded.

B.6 Prices of the Right to Trade

Trading in security exchanges also imposes a restriction on collateral, contract and prices

of rights to trade in security exchanges, P20, Pa(zs, s), P∆(zs, s). Even though collateral and

securities are indeterminate (see Lemma 10 below), holding collateral additionally impacts

the spot price p(zs). Therefore, the equilibrium price of collateral must reflect the role of

collateral on the spot price in each security exchange.

Again a no-arbitrage condition requires that the prices of two different bundles that result

in the same consumption allocation for an agent h must have the same prices. Using the

profit maximization condition of a broker-dealer (49) and some algebra, we can prove the

following equation must hold.

P20 +
S∑
s=1

P∆ (zs, s) zsRs =
S∑
s=1

Pa (zs, s)Rs. (138)

The RHS is the price of contracts paying Rs units of good 2 in every state s. On the other

hand, the LHS is the total cost of the same return, received by buying and holding a unit

of collateral. The first term on the LHS is the price of the collateral good. The second term

on the LHS comes from the fact that holding more a unit of good 2 increases ∆ in every

state s by the amount zsRs. In particular, an agent holding an additional unit of collateral

must pay for the marginal impact zsRs at price P∆ (zs, s). This term prices the impact of

collateral on the market fundamental. In equilibrium, these two values must be the same.
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Lemma 9. In a competitive equilibrium, for each set of security exchanges z = (zs)s, (138)

holds.

B.7 An Indeterminacy of Collateral Allocations

Using a similar argument to proof of Lemma 6, we show that the collateral and securities

paying in good 2 allocations are indeterminate; that is, neither k nor θs can be pinned down

(but the net-claim of good 2, Rsk + θs, will be uniquely determined). Roughly speaking,

agents are indifferent between buying contracts (θs > 0), and holding collateral (k > 0) and

selling contracts against it (θs < 0) as long as they lead to the same consumption allocation

in period 1 over state s. Note that storage technology is linear and there is no direct utility

per se from holding collateral. The formal result is summarized in the following lemma.

Lemma 10. For a feasible bundle of an agent type h
(
c0, k, θ̂, θ, z,∆

)
, any bundle

(
c′0, k

′, θ̂′, θ′, z′,∆′h
)

such that (i) c′0 = c0, (ii) z′ = z, (iii) θ̂′ = θ̂, and (iv) Rsk
′ + θ′s = Rsk + θs, ∀s, is also be

feasible for the agent h, and leads to the same consumption allocation as the original bundle.

Proof. The proof is similar to the one of Lemma 6.

Condition (iv) implies that there is some indeterminacy between k and θs. In particular,

if we set k′ = 0, then we can reach the same consumption allocation by setting the security

position to be θ′s = Rsk + θs. This implies that there is no loss of generality to assume that

all collateral is held by an unconstrained type, and the others including constrained agents

hold no collateral, k = 0, and therefore we will do so, unless stated otherwise.

Thus a constrained agent may hold no collateral and therefore issue no directly-collateralized

securities, yet her collateral constraint is binding still. The fact that a constrained agent is

effectively not borrowing at all in equilibrium seems counterintuitive at first. In a partial

equilibrium setting when the price of collateral good is fixed exogenously, one would imagine

that the agent will try to buy more of the collateral good and then borrow against to increase

current consumption. In this general equilibrium setting where collateral price is determined

endogenously, however, the price of the collateral good rises so in effect those transactions

will offset each other and lead to a zero net transfer.
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B.8 Trading in Security Exchanges Generates Intertemporal Trans-

fers

Trading in security exchanges can generate additional intertemporal transfers. For example,

a constrained agent would like to smooth consumption by issuing securities or borrowing

to transfer future resources back to period 0 but cannot do so much because of the limited

commitment. Trading in security exchanges facilitates more consumption smoothing by

generating period 0 transfer for a constrained agent.

For the sake of discussion, we will consider a case with two types of agents one of which

is constrained, and without uncertainty (i.e., S = 1). In addition, as shown in the previous

section, we assume that a constrained agent holds no collateral, k = 0. Using (25), (49), and

(136), an agent type h’s budget constraint (44) can be rewritten as∑
b

xh (b) [c10 + P20c20] ≤ eh10 + P20e
h
20 +

∑
b

xh (b) P̂a (z1, 1)
[
−θ̂1 − p(z1)θ1

]
+
∑
b

xh (b)P∆ (z1, 1)

[
eh11

eh21

− z1

]
eh21.

The third term on the RHS is the revenue from borrowing via
(
θ̂1, θ1

)
. Using the

collateral constraint (40), p(z1)R1k + θ̂1 + p(z1)θ1 ≥ 0. Since the constrained agent holds

no collateral, k = 0, her collateral constraint becomes θ̂1 + p(z1)θ1 = 0. Of course, this

constrained agent would like to go short on the contracts (i.e., having θ̂1 + p(z1)θ1 < 0) but

cannot do so because she holds no collateral. In other words, with zero collateral, the agent

cannot borrow from trading in contracts.

Of special interest, the last term on the RHS shows that the constrained agent could

potentially receive positive period 0 wealth by trading in security exchanges. In particu-

lar, a constrained agent could smooth consumption intertemporally by trading in security

exchanges in such a way that this term is positive, giving her more resources to purchase

date zero consumption. For example, if P∆ (zs, s) > 0, then the constrained agent will buy

a security exchange zs whose market fundamental is lower than her own endowment, i.e.,

zs <
eh1s
eh2s

, and vice versa.

On the other hand, an unconstrained agent will potentially hold strictly positive amount

of collateral, k > 0. She will in fact transfer out period 0 wealth from trading in security
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exchanges. For example, if a constrained agent has zs <
eh1s
eh2s

, then the consistency constraint

(58) implies that an unconstrained agent in security exchange zs must have zs >
eh1s

Rsk+eh2s
.

Hence, if P∆ (zs, s) > 0, the last term on the RHS will be negative for an unconstrained

agent.
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C Detailed Derivations

C.1 Derivation of a Competitive Equilibrium with the Externality

in Environment 1

The endowment profile and the first-best allocation suggest that agent 2 would like to move

resources forward from t = 1 to t = 0, and therefore will be constrained. Hence, we will

assume that agents type 2 hold no collateral, i.e. k1 = k and k2 = 0. We now solve for an

equilibrium k. From the market clearing conditions of contracts, we can set θ̂1
1 = θ̂ = −θ̂2

1

and θ1
1 = θ = −θ2

1. Note that this does not mean agent 1 is demanding both securities. In

addition, using the specified collateral allocation, the market fundamental in period t = 1

is now z = 4
4+k

(the ratio of endowment of good 1 to the sum of endowment of good 2 and

saving), and consequently the spot price of good 2 in period 1 is p(z) =
(

4
4+k

)2
.

With homothetic preferences, the first-order conditions of the problem (7) for both types

imply that in spot markets at date t = 0

P20 =

(
c1

10

c1
20

)2

=

(
c2

10

c2
20

)2

=

(
4

4− k

)2

. (139)

Since agent 1’s collateral constraint is not binding, the first-order conditions of her utility-

maximization problem (7) with respect to θ1
1 and c1

10 lead to

P1 =
u1

21

u1
10

=

(
c1

10

c1
21

)2

, (140)

where uhit = ∂uh

∂cit
is the marginal utility with respect to cit, and P1 is the price of a security

paying in good 2 in period t = 1, θh1 . Note that we put superscript h on the utility function

for clarity. Further, the first-order conditions of the consumer’s problem (7) with respect to

θ1
1 and k1 (interior solutions) lead to

P20 = P1. (141)

Intuitively, this is the case because their payoffs are identical and both are collateralizable.

Using (139) and (140), condition (141) implies that

c1
10

c1
20

=
c1

10

c1
21

=⇒ c1
20 = c1

21. (142)
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That is, an unconstrained agent consumes the same amount of good 2 in both periods.

Substituting (139) and (140) into (141) gives(
4

4− k

)2

=

(
c1

10

c1
21

)2

;

4

4− k
=

c1
10

1 + k + θ
=⇒ (4− k) c1

10 = 4 + 4k + 4θ, (143)

where we use c1
21 = 1 + k + θ.

On the other hand, an agent type 2’s collateral constraint is binding; with k2 = 0,

θ̂2 + p(z)θ2 = 0 =⇒ −θ̂ − p(z)θ = 0 =⇒ θ̂ = −
(

4

4 + k

)2

θ, (144)

where the second and the last equations use θ̂2 = −θ̂ and θ2 = −θ, and p(z) =
(

4
4+k

)2
,

respectively.

The budget constraint of an agent 1 (9) can be written as

c1
10 − 3 + P20

[
c1

20 + k − 3
]

+ P̂1θ̂ + P1θ = 0. (145)

A standard no-arbitrage argument (similar to the one used in Lemma 8) implies that

P1 = p(z)P̂1. (146)

It thus true from (146) that

P̂1θ̂ + P1θ = P̂1θ̂ + P̂1p(z)θ = P̂1

[
θ̂ + p(z)θ

]
p(z) = 0, (147)

where the last equation follows the fact that the term in the bracket is zero, from (144).

Now the LHS of the budget constraint (145) can be rewritten as

c1
10 + P20

[
c1

20 + k − 3
]

= 3. (148)

Using (139), we can replace c1
20 by

(
4−k

4

)
c1

10. Then using P20 =
(

4
4−k

)2
gives

c1
10 +

(
4

4− k

)2 [(
4− k

4

)
c1

10 + k − 3

]
= 3

=⇒ (4− k) c1
10 =

3k2 − 40k + 96

8− k
. (149)
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Substituting (143)into (149) gives

3k2 − 40k + 96

8− k
= 4 + 4θ + 4k =⇒ 4θ + 4k =

3k2 − 36k + 64

8− k
. (150)

With the identical homothetic preferences, the period t = 1 consumption allocations

must satisfy

z =
4

4 + k
=
c1

11

c1
21

=⇒ 4

4 + k
=

1 + θ̂

1 + k + θ
. (151)

Substitute (144) into (151) gives

4θ + 4k = −3k

(
4 + k

8 + k

)
+ 4k. (152)

Using (150) and (152), we have

3k2 − 36k + 64

8− k
= −3k

(
4 + k

8 + k

)
+ 4k =⇒ 4k3 − 384k + 512 = 0. (153)

There are three roots for equation (153). Using the condition that 0 ≤ k ≤ 4, there is only

one feasible solution, i.e. k ≈ 1.3595. To sum up, the equilibrium collateral allocation is

k1 = k = 1.3595 and k2 = 0.

C.2 Derivation of a Competitive Equilibrium with the Externality

in Environment 2

First of all, the price of good 2 in period t = 0 is given by

P20 =

(
2

2− k

)2

(154)

Similarly, the market fundamental in each state s is zs = 2
2+k

. Hence, the spot price of good

2 in each state s is given by

p(zs) =

(
2

2 + k

)2

,∀s. (155)

Further, the price of a (collateralized) security paying in good 2 in state s is given by

Ps = max
h

(
πsu

h
2s

uh10

)
, ∀s. (156)
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The endowment structure implies that agents type 2 will have higher MRS
πsuh2s
uh10

in state 1,

and vice versa. Hence, (156) can be rewritten as

P1 =
πsu

2
21

u2
10

=
1

2

(
2

1 + k + θ

)2

=
πsu

1
22

u1
10

= P2. (157)

Note that the symmetry also implies that P1 = P2. Using the optimal conditions with respect

to kh and θhs , we can show that

P20 = P1 + P2 =⇒
(

2

2− k

)2

=

(
2

1 + k + θ

)2

. (158)

Next, with the homotheticity of preferences, the ratio of consumption in each state of

each agent must be equal to the market fundamental; that is,

1 + θ̂

1 + k + θ
= zs =

2

2 + k
. (159)

Furthermore, the collateral constraint in state s = 1 of an agent type h = 1 is binding,

i.e.

p(z1)k − θ̂ − p(z1)θ = 0 =⇒ θ̂ =

(
2

2 + k

)2

(k − θ) . (160)

Note that the same equation can be derived from the binding collateral constraint in state

s = 2 for an agent type h = 2.

We can compute a collateral equilibrium using (158), (159), and (160) to solve for(
k, θ, θ̂

)
. We can rewrite (158) as

2− k = 1 + k + θ =⇒ θ = 1− 2k. (161)

In addition, Substituting (160) into (159) gives

1 +

(
2

2 + k

)2

(k − θ) =

(
2

2 + k

)
(1 + k + θ) . (162)

Then, substituting (161) into (162) will give

1 +

(
2

2 + k

)2

(k − 1 + 2k) =

(
2

2 + k

)
(1 + k + 1− 2k)

=⇒ 3k2 + 16k − 8 = 0. (163)

The unique feasible (positive) solution to the above quadratic equation is k ≈ 0.4603.
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C.3 Derivation of a Competitive Equilibrium with the Externality

in Environment 3

We restrict our attention to a symmetric allocation of each type. Using Lemma , we assume

that all constrained agents hold no collateral, i.e., kh = 0 for h = 2, 3. Let k1 = k.

First, the first-order conditions of the consumer’s problem (7) result in

c1
10

c1
20

=
c2

10

c2
20

=
c3

10

c3
20

=
12.5

12.5− k
. (164)

From the endowment profile, it is clear that an agent 1 will not be constrained. The first-

order conditions of the consumer’s problem (7) with respect to θ1 and c1
10 lead to

u1
21

u1
10

= P. (165)

Further, the first-order conditions of the consumer’s problem (7) with respect to θ1 and k1

(interior solutions) lead to

P20 = P. (166)

Combining (165), (166) and the utility function (37), gives

P20 =

(
12.5

12.5− k

)2

= P =
u1

21

u1
10

=

(
c1

10

c1
21

)2

. (167)

This implies that

12.5

12.5− k
=

c1
10

c1
21

=
c1

10

0.5 + k + θ1
=⇒ (12.5− k) c1

10 = 12.5
(
0.5 + k + θ1

)
, (168)

where we use c1
21 = 0.5 + k + θ1.

In addition, the market fundamental in period t = 1 is z = 12.5
12.5+k

, and consequently the

spot price of good 2 in period t = 1 is
(

12.5
12.5+k

)2
. The bindingness of the collateral constraints

of agent 2 and agent 3, combining with the market-clearing conditions of securities, imply

that

θ̂1 = −
(

12.5

12.5 + k

)2

θ1. (169)

A standard no-arbitrage argument (similar to the one used in Lemma 8) implies that

P1 = p(z)P̂1, (170)
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which can be used to show that

P̂1θ̂
1 + P1θ

1 = P̂1θ̂
1 + P̂1p(z)θ1 = P̂1

[
θ̂1 + p(z)θ1

]
p(z) = 0, (171)

where the last equation follows the bindingness of the collateral constraints of agent 2 and

agent 3, combining with the market-clearing conditions of securities. The budget constraint

of an agent 1 (9) can be written as

c1
10 − e1

10 + P20

[
c1

20 + k − e1
20

]
= 0. (172)

Substituting (164) and (167) into (172), we have

(12.5− k) c1
10 =

12.52 (e1
20 − k) + e1

10 (12.5− k)2

25− k
. (173)

Substituting (168) into (173), we have

12.5
(
0.5 + k + θ1

)
=

12.52 (e1
20 − k) + e1

10 (12.5− k)2

25− k
. (174)

With the identical homothetic preferences, the period t = 1 consumption allocations

must satisfy

z =
12.5

12.5 + k
=
c1

11

c1
21

=⇒ 12.5

12.5 + k
=

0.5 + θ̂1

0.5 + k + θ1
, (175)

where the equality follows (169). This can be rewritten as

12.5
(
0.5 + k + θ1

)
= (12.5 + k)

(
0.5−

(
12.5

12.5 + k

)2

θ1

)
. (176)

Solving (174) and (176) for k and θ1, with e1
10 = 4.2631 and e1

20 = 11.5, gives one feasible

solution (0 ≤ k ≤ 12.5) k = 7.2836, θ1 = −4.2849. To sum up, the competitive collateral

equilibrium allocation is k1 = k = 7.2836, and k2 = k3 = 0.

C.4 Computing Competitive Equilibrium with Segregated Secu-

rity Exchanges

All numerical solutions for competitive equilibrium with segregated security exchanges in

section 4 are computed using the following programming problem:
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Program 3.

max
(xh∈X̃h)

h

∑
h

λhαh
∑

c0,k,θ̂,θ,z,∆

xh
(
c0, k, θ̂, θ, z,∆

){
u
(
ch10, c

h
20

)
+ β

∑
s

πsu
(
eh1s + θ̂s, e

h
2s +Rsk + θs

)}

subject to ∑
h

∑
c0,k,θ̂,θ,z,∆

αhxh
(
c0, k, θ̂, θ, z,∆

)
= 1,

∑
h

∑
c0,k,θ̂,θ,z,∆

αhxh
(
c0, k, θ̂, θ, z,∆

)
c10 ≤

∑
h

αheh10,

∑
h

∑
c0,k,θ̂,θ,z,∆

αhxh
(
c0, k, θ̂, θ, z,∆

)
[c20 + k] ≤

∑
h

αheh20,

∑
h

∑
c0,k,θ̂,θ,z−s,∆

αhxh
(
c0, k, θ̂, θ, z−s, zs,∆

)
θ̂s = 0 ,∀s; zs,

∑
h

∑
c0,k,θ̂,θ,z−s,∆

αhxh
(
c0, k, θ̂, θ, z−s, zs,∆

)
θs = 0 ,∀s; zs,

where X̃h is the restricted consumption possibility set for an agent type h in which we allow

a positive mass only on a bundle
(
c0, k, θ̂, θ, z,∆

)
that satisfies a market fundamental ratio

condition: zs =
eh1s+θ̂s

eh2s+Rsk+θs
. This in turn puts restrictions on grids of securities θ̂s and θs for

each security exchange.

Pareto program 3 and the Pareto program 2 are equivalent but the former is more com-

putationally tractable. The restrictions on grids of securities do not affect the results because

each agent type must optimally choose securities (from a complete set of securities) in such

a way that his consumption ratio equals to the market fundamental zs =
eh1s+θ̂s

eh2s+Rsk+θs
. These

restrictions imply that the consistency constraints (64) are redundant.

We can then recover all prices including P̂a (zs, s) , Pa (zs, s) , P∆ (zs, s) from the Lagrange

multipliers of the securities
˜̂
P a (zs, s) and P̃a (zs, s) (normalized by the Lagrange multiplier

of c10) from Pareto program 3 as follows. First, the no-arbitrage condition (136) applies

here:

Pa (zs, s) = p (zs) P̂a (zs, s) . (177)

Second, the equivalence between Pareto program 3 and the Pareto program 2, and the

second welfare theorem implies that equilibrium prices P̂a (zs, s) , Pa (zs, s) , P∆ (zs, s) and the
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Lagrange multipliers of the securities paying in good 1 and good 2, respectively,
˜̂
P a (zs, s)

and P̃a (zs, s) from Pareto program 3 must satisfy the following relationships:

˜̂
P a (zs, s) = P̂a (zs, s) + P∆ (zs, s) , (178)

P̃a (zs, s) = Pa (zs, s)− zsP∆ (zs, s) . (179)

Solving the last three equations simultaneously give equilibrium prices as follows:

P̂a (zs, s) =
zs
˜̂
P a (zs, s) + P̃a (zs, s)

zs + p (zs)
, (180)

Pa (zs, s) = p (zs)
zs
˜̂
P a (zs, s) + P̃a (zs, s)

zs + p (zs)
, (181)

P∆ (zs, s) =
p (zs)

˜̂
P a (zs, s)− P̃a (zs, s)

zs + p (zs)
. (182)

C.5 Competitive Equilibrium with Segregated Security Exchanges

with Three Agent Types but Two Constrained Types are Al-

most Identical

This environment is similar to Environment 3. The key difference is in the endowments in

period t = 1 for agent types h = 2, 3. The endowment profile is given in Table 10 below.

Note that type 2 and type 3 are almost identical. As in Environment 3, we assume that the

Pareto weights are λ1 = 0.8, λ2 = λ3 = 0.1.

Table 10: Endowment profiles of the agents.

Type of Agents eh10 eh20 eh11 eh21

h = 1 11.56 11.5 0.5 0.5

h = 2 0.37 0.5 7.0 5.0

h = 3 0.58 0.5 6.9 5.0

They key point is that the competitive equilibrium with segregated security exchanges

still has two active exchanges as in Environment 3. Of course, the active exchanges are closer

to each other than the ones in Environment 3. It is worthy of emphasis that the number of
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active exchanges in equilibrium equals to the number of constrained types again. See also

Appendix C.6 below for a similar result with four agent types, three of which are constrained.

Table 11: Equilibrium allocation of (non-zero-mass) lotteries. There are two active security

exchanges; z = 0.8883 and z = 0.8913.

h = 1 h = 2 h = 3

k 5.6933 5.6735 0 0

τ̂ 2.3528 2.3575 -1.1987 -1.1565

τ -2.9817 -2.9676 1.5089 1.4657

c10 7.3228 7.3228 2.5886 2.5886

c20 3.9939 3.9939 1.4114 1.4114

c11 2.8528 2.8528 5.8013 5.7435

c21 3.2116 3.2060 6.5089 6.4657

z 0.8883 0.8913 0.8913 0.8883

∆ 5.0015 5.0025 -2.5435 -2.4685

xh 0.4916 0.5084 1.0000 1.0000

C.6 Competitive Equilibrium with Segregated Security Exchanges

with Four Agent Types and Three Constrained Types

The endowment profile is given in Table 12 below. There are four agent types of equal mass.

This example is constructed in such a way that agent types h = 2, 3, 4 are constrained in

equilibrium. We assume that the Pareto weights are λ1 = 0.5, λ2 = 0.2, λ3 = 0.1, λ4 = 0.2.

Table 12: Endowment profiles of the agents.

Type of Agents eh10 eh20 eh11 eh21

h = 1 2.06 11.5 0.5 0.5

h = 2 1.94 0.5 6.0 4.0

h = 3 3.52 0.5 4.0 5.0

h = 4 4.98 1.0 2.0 3.0
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They key point is that the number of active exchanges in equilibrium equals to the

number of constrained types again. Specifically, with four agent types, three of which are

constrained, there are three active exchanges in equilibrium.

Table 13: Equilibrium allocation of (non-zero-mass) lotteries. There are three active security

exchanges; z = 0.6034, z = 0.6719, and z = 0.8710.

h = 1 h = 2 h = 3 h = 4

k 5.8556 5.1771 3.9264 0 0 0

τ̂ 1.2550 1.3320 1.5620 -1.1713 -0.2574 -0.0714

τ -3.4470 -2.9505 -2.0590 1.5439 0.5702 0.1962

c10 4.6096 4.6096 4.6096 2.9144 2.0616 2.9144

c20 3.0344 3.0344 3.0344 1.9174 1.3529 1.9174

c11 1.7550 1.8320 2.0620 4.8287 3.7426 1.9286

c21 2.9086 2.7266 2.3674 5.5439 5.5702 3.1962

z 0.6034 0.6719 0.8710 0.8710 0.6719 0.6034

∆ 3.3350 3.3145 3.3554 -2.5160 -0.6405 -0.1898

xh 0.0569 0.1932 0.7498 1.0000 1.0000 1.0000
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