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ABSTRACT

Considerable attention has been focused, in recent years, on the role that graduate and postdoc
students play in the production of academic knowledge. Using data from the MIT Department of
Biology for the period 1970-2000, we analyze the evolution over time of four fundamental aspects
of their productivity:  i) training duration; ii) time to a first publication; iii) productivity over the
training period; and iv) collaboration with other scientists. We identified four main trends that are
common to graduate students and postdocs. First, training periods have increased for later cohorts
of graduate and postdoc students. Second, later cohorts tend to publish their initial first-author article
later than the earlier cohorts. Third, they produce fewer first-author publications. Finally, collaborations
with other scientists, as measured by the number of coauthors on a paper, have increased. This increase
is driven by collaborations with scientists external to a trainee’s laboratory. We interpret these results
in light of the following two paradigms: the increased burden of knowledge that later generations
of scientists face and the limited availability of permanent academic positions.
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I. Introduction 

 Knowledge has been recognized as a major contributor to technological change 

and, more generally, to economic growth (Romer, 1990). In the knowledge production 

function, one of the most important inputs is knowledge created by university 

researchers. Indeed, a report by the National Science Board (2008) has revealed that 

university researchers are responsible for more than 70% of all scientific articles. 

Moreover, scholars have shown that academic knowledge is responsible for a large 

percentage of industrial innovations (Jaffe, 1989; Mansfield, 1995). 

 

 Academic knowledge has increasingly become a collective phenomenon. Seminal 

studies have documented the increase in the size of scientific collaborations, with special 

focus on the evolution of the geographic dispersion of team members (e.g. Adams et al., 

2005; Wuchty et al., 2007). Even though university scientists collaborate more and more 

across research institutions, the scientific laboratory remains the major locus of 

knowledge production (Stephan, 2012b). These laboratories are largely populated by 

graduate students and postdocs, whose contributions to their laboratory’s knowledge 

stock have been recognized in a number of studies (see, for instance, Stephan, 2012b; 

Conti et al., forthcoming). These research trainees have coauthored an important 

percentage of their laboratory’s papers and, moreover, have produced a considerable 

share of the articles published in highly ranked journals (Black and Stephan, 2010). 

 

 In this study, we use a unique database that allows us to examine the productivity, 

training duration, and the collaborative behavior of graduate students and postdocs as 

well as the extent to which these aspects have evolved over time. We interpret the 

patterns we find in light of two paradigms: the increased burden of knowledge that 

successive generations of scientists face (Jones, 2009 and 2010) and the limited 

availability of permanent academic positions (Stephan, 1996; Freeman et al., 2001). 

 

 Our data encompass the complete set of laboratories in the MIT Department of 

Biology, observed from 1970 to 2000. This department has been a major locus of basic 

and applied discoveries in the life sciences for the latter half of the 20th century. Through 
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the time frame of our dataset, the scientists working at the MIT Department of Biology 

made discoveries as varied as the molecular mechanisms underpinning recombinant DNA 

(e.g., the discovery of splicing and introns), cell death, aging, and the progression of 

cancer. This work has resulted in six Nobel Laureates and 43 members of the National 

Academy of Sciences between 1966 and 2000. MIT’s Department of Biology has roughly 

doubled in size, from 27 laboratories in 1966 to 49 laboratories in the year 2000. Given 

this department’s elite status, the findings in this paper may be difficult to extend beyond 

other elite North American laboratories. With this caveat in mind, we follow in the 

footsteps of other scholars and trade analytical depth with a focus on an elite setting 

(Azoulay, 2010; Zuckerman, 1977). 

 

 We collected a detailed set of information on the graduate students and postdocs 

who populated these laboratories, including their publication output. For the purposes of 

this study, we use this information to analyze the evolution over time of four fundamental 

aspects of their productivity:  i) training duration, ii) time to a first publication, iii) 

productivity over the training period, and iv) collaboration with other scientists.  

 

 We identified four main trends that are common to graduate students and 

postdocs. First, training periods have increased for later cohorts of graduate students and 

postdocs. Second, recent cohorts tend to publish their first article later than the earlier 

cohorts. Third, they produce fewer first-author publications.  Finally, collaborations with 

other scientists, as measured by the number of coauthors on a paper, have increased. This 

increase is driven by collaborations with scientists outside of a trainee’s laboratory.  

 

 The remainder of this study is organized as follows. Section II describes the 

empirical setting. Section III presents the scientific productivity trends for graduate 

students and postdocs. Section IV concludes and discusses policy implications.  
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II. Empirical setting  

 For the period under study, the MIT Department of Biology generated an Annual 

Report, which serves as our core data source. The primary purpose of the Annual Report 

was to, internally, distribute information about the department’s scientific activities. As a 

result, the report includes technical summaries of ongoing projects as well as a list of 

publications produced during the prior year. From 1966-1989, technical summaries were 

at the project level and individuals could contribute to multiple projects. The size of the 

Annual Report grew in accordance with the size of the department. After the Annual 

Report reached 629 pages in 1987, summaries were limited to two pages per laboratory, 

regardless of its size. Unfortunately, starting in 2001, even the summaries ceased to be 

published and subsequent data have been lost to posterity.  

 

The Annual Report documents a roster of each laboratory’s members. We know 

the names of every individual in each laboratory as well as the individual’s personnel 

type (e.g., postdoc, graduate student, technician). As a result, we know the characteristics 

of the department, its laboratories, and its individual members over the course of 35 

years. Figure 1 provides an example of the data available for any given laboratory-year. 

We know of no other data source that provides as detailed a view into the organization of 

scientific work as this one.  

 

< Insert Figure 1 about here> 

 

We supplemented this departmental personnel roster with a number of other data 

sources. To examine scientific outputs, we hand collected each principal investigator ‘s 

(PI) paper output from Medline. We then matched each publication’s author list with our 

personnel roster to examine the extent to which individual laboratory members 

contributed to the scientific output. In instances where matching was ambiguous (e.g. 

Liu), we examined the article directly. It is exceedingly rare for laboratory members to 

publish scientific papers without their PI listed as an author. Hence we do not believe we 

are missing any publications.  

 



 5 

Overall, our dataset comprises 1,494 laboratory-years and 20,324 laboratory 

member-years that span 1966-2000. Within this dataset, there are 120 professors and 

6,938 laboratory members who collectively produced 7,553 journal publications.  

 

We restrict our analysis to the 1970-2000 period as there was ambiguity in 

personnel categories prior to 1970. We begin with a description of the laboratories and 

their changes over time. We then turn our attention to examine the laboratory members 

with a particular emphasis on two major types, postdocs and graduate students, who 

comprise more than half of our personnel roster.  

 

 Within our dataset, the average laboratory has 10 members of which 5 are 

postdocs, 3 are graduate students, and 2 are technicians. Staff scientists are rare, but their 

prevalence has increased over time. As shown in Figure 2, laboratories have grown in 

size through the latter part of the 20th century, and this increase has been fostered by the 

number of postdoctoral scientists. There is no change in the number of graduate students 

or technicians over time, although the number of salaried staff (i.e., technicians and staff 

scientists) appears to have increased in the late 1990s4.  

 

< Insert Figure 2 about here> 

 

Figure 3 presents trends in scientific output for our laboratories. As shown, the 

average number of articles has steadily increased over time, from an average of 4 articles 

per laboratory-year in the 1970s to 6 articles per laboratory-year in the 1990s. We 

observe a very similar trend in the number of impact factor-weighted publications.  

 

< Insert Figure 3 about here> 

 

                                                        
4 A likely reason why the number of graduate students remained steady over the years is that 

university departments in the US tend to set a limit to the number of students that can enroll in a PhD 
program. 
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We restrict our analysis of laboratory members to graduate students and postdocs 

for the following reasons. First, these individuals make large contributions to a PI’s 

publication output. Their purpose is to directly produce scientific publications, rather than 

to play a supporting role (e.g., technicians). Second, these two types are the most 

prevalent personnel categories within the roster. Together they make up more than half of 

the laboratory. Third, these two personnel types have been the focus of recent interest in 

the literature because of their contributions to knowledge and technology production (e.g. 

Dasgupta and David, 1994; Waldinger, 2010). A quick look at faculty websites convinces 

one of the importance of these contributions, be it measured by publications, citations, or 

grants. Lastly, we note that graduate students and postdocs are easily and unambiguously 

identified, as opposed to less clear categories such as visiting scientists.  

 

Our sample is composed of 991 graduate students and 2,427 postdocs. Figures 4a 

and 4b provide descriptive results of the distribution of graduate students and postdocs by 

their publication count. Interestingly, a significant proportion of them (about 35%) did 

not publish any articles during their training period. Conditioned upon having published, 

the mean number of papers is about three articles for both graduate students and 

postdocs.  

 

< Insert Figure 4a about here> 

< Insert Figure 4b about here> 

 

III. Trends in scientific productivity of graduate students and postdocs 

 This section explores the trends in four major dimensions of graduate student and 

postdoc scientific productivity. First, we look at training duration. Second, we investigate 

the timing to a first publication. Third, we examine scientific output. Finally, we explore 

collaboration patterns.  

 

 In analyzing these trends, we should keep in mind that while both postdocs and 

graduate students are formally considered laboratory trainees, they fundamentally differ 

in a number of aspects. Postdocs are more experienced that graduate students and have 
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accumulated a greater wealth of knowledge and skills. As a consequence, matching 

between postdocs and PIs is based upon prior ability and experience, rather than the 

future expectation of productivity as in the case of graduate students (Stephan, 2012b).  

 

A. Training duration 

 We begin this section by presenting descriptive statistics for the average training 

duration of postdoc and graduate students over our sample period. We then investigate 

whether the length of training has changed over time. Figures 5a and 5b show the 

distribution of graduate students and postdocs by their training duration. The training 

period for graduate students is longer than postdoctoral training. Indeed, the majority of 

graduate students in our sample completed their training between five and seven years, 

while postdocs tended to spend between two and four years in a PI’s laboratory5. 

 

< Insert Figure 5a about here> 

< Insert Figure 5b about here> 

 

 Figure 6 shows the evolution of training periods for graduate students (in red) and 

postdocs (in blue) over the period 1970-1995. We exclude the years 1996 through 2000, 

since students who enrolled in these years might not have completed their training by the 

end of 2000. In line with previous studies6, we find that training periods for recent 

cohorts of students tend to be about one year longer than those for the earliest cohorts. 

The training period increases from three to approximately four years for postdocs and 

from five to six years for graduate students over our dataset. 

 

< Insert Figure 6 about here> 

 

                                                        
5 It is possible for postdocs to have worked in more than one PI’s laboratory before they are offered a 
faculty position. However, from discussions with MIT PIs as well as from an examination of a CV sample, 
it is evident that, at least for the period we examine, this is rarely the case for MIT postdocs. 
6 See, for instance, the findings by the National Research Council (1990), Tilghman (1998), Jones (2009), 
Jones and Weinberg (2011), and Freeman et al. (2001). 
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There are at least three reasons that can explain these trends. The first reason is 

that as knowledge accumulates, earlier trainee cohorts face a greater educational burden 

than do the older cohorts (Jones, 2009 and 2010). Second, it is also possible that the 

recent cohorts of postdocs and graduate students tend to stay longer in their positions 

because of the increased mismatch between the trainees’ supply and the availability of 

permanent academic positions (Stephan, 1996; Freeman et al., 2001). Finally, one cannot 

exclude the possibility that the increased pressure on PIs to publish and apply for grants 

has led them to impose longer training periods on their students (Freeman et al., 2001).  

 

 To more formally assess the evolution of training periods over time, we estimate 

Poisson regression models, with robust standard errors, in which we relate the training 

duration of graduate students and postdocs to whether these trainees had enrolled during 

the following periods: i) 1970-1979; ii) 1980-1989; and iii) 1990-1995. The distribution 

of students across enrollment periods is reported in Table 1.  

 

The equation we estimate is: 

 

yi=exp(β1 D1980-1989+ β2 D1990-1995+ νi+ θi +εi) 

 

where yi is training duration, measured in number of years. Moreover, D1980-1989 is an 

indicator variable that equals one if trainee i enrolled during 1980-1989 and equals zero 

otherwise. D1990-1995 equals one if trainee i enrolled during 1990-1995 and, similarly, 

equals zero otherwise. We omit the 1970-1979 indicator variable and use it as a 

reference. Hence, the coefficients of β1 and β2 should be interpreted as the change in 

training duration relative to the duration of trainees enrolled in 1970-1979.  When 

investigating training duration, it is important to consider the scientific field in which a 

laboratory operates (Galison, 1997). Different scientific fields use different tools and it is 

likely that trends in training durations vary across fields. To account for field effects, we 

include a series of indicator variables, νi, corresponding to the modal experimental 

organism used in each laboratory. Specifically, we generated indicators for protein 

biochemists, bacteriologists, unicellular systems (e.g., HeLa cells), genetic systems (e.g., 
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yeast), rodents, and other (e.g., frog). Finally, we include a set of PI dummies, θi, to 

capture variations in duration trends across laboratory heads.  

 

 Table 2 presents the regression results for graduate student and postdoc training 

duration.  For each trainee category, we first include biology field fixed effects (column 

I) and, subsequently, we add PI fixed effects (column II). We begin by describing the 

results for graduate students and then for postdocs. 

  

 As Table 2 shows, in the baseline model, the dummies D1980-1989 and D1990-

1995 have a positive and statistically significant coefficient. These results confirm the 

descriptive evidence that later cohorts of students take longer to complete their PhD than 

earlier cohorts (cohorts who enrolled during the 1970-1979 period). In the second 

column, we add PI effects and the magnitude of the coefficients declines together with 

their statistical significance. This last result suggests that PI characteristics are a source of 

positive correlation between period dummies and training duration.  

 

We find similar results for postdocs. The coefficients of the 1980-1989 and 1990-

1995 period dummies are positive and statistically significant regardless of the model 

specification, although the magnitude and significance is reduced with PI fixed effects. 

 

To summarize, the results in this section suggest that training periods have 

increased in recent years for both graduate students and postdocs. While we cannot 

precisely disentangle the mechanisms behind these trends, we believe that increasing 

challenges imposed on recent trainees, in terms of increased educational burden or 

reduced availability of permanent academic positions, may play an important role.  

 

< Insert Table 1 about here> 

< Insert Table 2 about here> 
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B. Time to a first publication 

 In this section, we focus on the time it takes trainees to publish their first article. 

We considered the time interval between a trainees’ enrollment and their first publication 

as the time it takes them to acquire the knowledge to develop publishable findings. This 

interval becomes then a measure of trainee distance to the existing knowledge frontier. 

Figure 7 presents Kaplan-Meier estimates of the time to a first publication for postdocs 

and graduate students. As shown, the probability of publishing a paper in each training 

year appears to be higher for postdocs than for graduate students. This holds true even 

when we focus exclusively on first-author publications, which we take as a proxy for 

those projects to which trainees have given their greatest contribution7.  

 

< Insert Figure 7 about here> 

 

 Once more, we are interested in the evolution of time to a first publication over 

our sample period, for both graduate students and postdocs. If the knowledge burden for 

the more recent cohorts is larger than that for the oldest ones, then we should expect that 

the time it takes to publish a first article has increased for the most recent cohorts.  There 

are other reasons to expect such a trend. One of these could be a lengthening of the 

review process at scientific journals. While this is a documented trend in the economic 

field (Ellison, 2002), there are grounds for believing that this phenomenon is not confined 

to economic journals.  By way of an example, statistics available for the EMBO journal 

reveal an increase over time in the number of days from submission to final decision8.  

 

 Figures 8 and 9 display Kaplan-Meier estimates of the time it takes to publish a 

first article, distinguishing between the following periods: i) 1970-1979; ii) 1980-1989; 

and iii) 1990-2000. They provide evidence that the probability of publishing a paper at 

any given period is higher for the oldest cohorts than for the more recent ones. These 

trends seem to be more accentuated for postdocs than for graduate students. Moreover, 

                                                        
7 For the sake of brevity, we do not show the results for first-author publications, but they are available 
upon request.  
8 Statistics are available from http://www.nature.com/emboj/about/process.html 
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for graduate students, they are more evident in first-author publications than they are in 

other publications.  

 

< Insert Figure 8 about here> 

< Insert Figure 9 about here> 

 

What we need to understand is whether these trends persist once we take into 

account field or PI characteristics, which are likely to be a source of correlation between 

enrollment periods and time to a first publication.  For this purpose, we estimate a series 

of Cox proportional hazard models in which the hazard of publishing a first article is a 

function of our period indicators and controls.  

 

Hence, we estimate the following equation: 

 

h(t|xi) =h0(t)exp(xiβx) 

 

where h(t|xi) is the hazard of publishing a first article, h0(t) is the baseline hazard (i.e. the 

hazard when all covariates are equal to zero), and xi is a matrix of covariates. As in our 

previous equation, xi includes period indicator variables as well as field and PI dummies. 

This time we also include in the sample trainees who had enrolled after 1995.  Hence, the 

last period indicator variable equals one for trainees who had enrolled during 1990-2000 

and zero otherwise. The results for graduate students are presented in Table 3, while 

those for postdocs are in Table 4. Standard errors are clustered around PI.  

 

We begin by presenting the results for graduate students, distinguishing between 

the time to a first publication and the time to an initial first-author publication. Estimates 

are presented in terms of their effect on the odds of publishing a first paper. Hence, a 

coefficient smaller (larger) than one reflects a negative (positive) effect. When we only 

include field fixed effects, the coefficients of the 1980-1989 and 1990-2000 period 

dummies are smaller than one, as expected, but not statistically significant. They decrease 
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in magnitude and become significant once we introduce PI fixed effects. This result 

indicates that trends in the time to a first publication vary across PIs.  

 

When we examine first-author publications, we find stronger evidence that the 

time to a first publication has increased for later cohorts of graduate students relative to 

earlier ones. Indeed, the coefficients of both period dummies are smaller than one and the 

coefficient for the 1990-2000 indicator is statistically significant. The coefficient 

magnitudes suggest that the hazard of publishing an initial first-author paper, for graduate 

students who enrolled in the 1980-1989 period, is 0.9 times the hazard of those who 

enrolled in the 1970-1979 period. It declines to 0.8 times for graduate students who 

enrolled during 1990-2000. As before, once we introduce PI fixed effects the significance 

of the coefficients improves and the magnitude declines.  

 

< Insert Table 3 about here> 

  

 In the case of postdocs, both the time to a first publication and that to an initial 

first-author publication appear to have increased for later cohorts relative to earlier ones. 

Regardless of the regression specification, the hazard of publishing a first paper is lower 

for postdocs who started in the 1980-1989 period, than for postdocs who enrolled during 

1970-1979, and it is lowest for those who started during 1990-2000. Moreover, the 

coefficients tend to be statistically significant with and without PI fixed effects9. 

 

< Insert Table 4 about here> 

 

 Overall, we provide evidence that the time to an initial first-author publication has 

increased for both graduate students and postdocs and this result is strongest for trainees 

in the most recent decade. Moreover, in the case of postdocs, results indicate that the time 

to a first publication has increased even for non-first author articles. In general, these 

                                                        
9 In column three the coefficient for the 1980-1989 period dummy is not significant. However, a test of 
joint significance of period dummies rejects the null hypothesis that they are (jointly) equal to zero with a 
p-value of 0.00. 
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results seem to be consistent with our previous findings that training periods have 

increased over time. Taken together, these results may suggest that, at least in part, recent 

cohorts of trainees use their extra training time to achieve first publishable results.  

 

C. Publication trends 

 In this section, we turn our attention to trends in the publication output of 

graduate students and postdocs. The question we want to explore is whether recent 

cohorts of graduate students and postdocs have become less productive than older ones. 

Indeed, if one posits that recent cohorts of scientists face a larger learning burden or that 

the reviewing process at scientific journals has increased over time, then we should 

observe a declining trend in the publication output of graduate students and postdocs.  

  

 To investigate this hypothesis, we estimate count regression models in which we 

relate publication outputs that graduate students and postdocs had produced during their 

training as a function of whether their enrollment year falls within the 1970-1979, 1980-

1989, or 1990-1995 periods. We adopt a Poisson specification with robust standard 

errors. We measure publication output by counting the number of publications from the 

moment a trainee joins a PI laboratory until two years after the trainee was last observed 

in the laboratory. In this way, we account for the fact that there are lags between the 

moment a research project is completed and the moment its results are published. As for 

the analysis of training durations, we exclude the latest years because graduate students 

and postdocs who enrolled in these years might not have completed their training by the 

end of our sample period.  

 

The equation we estimate is: 

 

yi=exp(β1 D1980-1989+ β2 D1990-1995+ β3 Durationi+ 

+νi+ θi +εi) 

 

where yi is either the total count of trainee i’s publications or the count of their first-

author publications. D1980-1989 is an indicator variable that equals one if trainee i 
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enrolled during 1980-1989 and equals zero otherwise. D1990-1995 equals one if trainee i 

enrolled during 1990-1995 and, similarly, equals zero otherwise. Durationi is defined as 

the number of years a trainee has spent in a laboratory. Finally, νi and θi are field and PI 

fixed effects, respectively.  

 

 The results for graduate students are displayed in Table 5, while those for 

postdocs are presented in Table 6. When we consider the total publication count (column 

I), we find that graduate students who enrolled in more recent periods are no less 

productive than their colleagues who enrolled during 1970-1979. In fact, none of the 

coefficients for the 1989-1990 and 1990-1995 period dummies are statistically 

significant. Once we include supervisor fixed effects, the coefficient of the dummy for 

student enrollment during 1990-1995 becomes statistically significant and has a negative 

sign. While this last result suggests that there are some supervisor characteristics that are 

correlated with productivity trends, we cannot conclude that there is a general declining 

tendency in the graduate student paper count. In support of this conjecture, descriptive 

evidence reported in Figure 10 does not reveal a decreasing trend for the annual 

publication count. In regressions, not reported here (but available upon request), we find 

very similar results when we use the impact-factor weighted publication count as the 

output measure.  

 

We show different findings when analyzing first-author publications. In this case, 

both period dummies have a negative coefficient and that the coefficient for the 1990-

1995 period variable is significant, regardless of whether we include PI fixed effects. One 

might wonder whether this effect is driven by the fact that fewer graduate students are 

publishing first-author papers in recent years. To investigate this possibility, we estimate 

a linear probability model in which the dependent variable is an indicator that takes a 

value of one if graduate students have published at least one article during their training. 

The results are displayed in the last column of Table 5. The coefficient for the 1990-1995 

period dummy is negative and statistically significant, independent of the regression 

specification. These results suggest that at least part of the declining output trend is 

explained by a lower publishing probability for the most recent cohorts. Overall, we find 
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that later graduate student cohorts produce fewer first-author articles than earlier ones 

and, this time, regression results seem to be supported by descriptive evidence reported in 

Figure 10. 

  

< Insert Table 5 about here> 

< Insert Figure 10 about here> 

 

 When we turn our attention to postdocs (Table 6), we find strong evidence that 

the postdoc cohorts enrolled during 1980-1989 and 1990-1995 produce less articles than 

cohorts enrolled during 1970-1979. This result holds true regardless of whether we look 

at total or first-author publication counts. Indeed, the coefficients of our period dummies 

are negative and statistically significant, with and without PI fixed effects. When we 

analyze the probability of publishing at least one first-author paper, we find that part of 

the declining trend for the first-author paper count is explained by a lower publishing 

probability for the most recent cohorts. Overall, these findings are consistent with the 

descriptive trends presented in Figure 11, which shows an over-time decline in 

publication outputs by postdoc students. 

 

< Insert Table 6 about here> 

< Insert Figure 11 about here> 

 

 In analyses not presented here, for the sake of brevity, we attempted to analyze 

whether the decline in the number of first-author graduate student publications was 

correlated with larger time intervals between papers, for subsequent publications.  Thus 

we estimated hazard models for publishing a second first-author paper, conditioned on 

having published an initial one, and for publishing a third first-author paper, conditioned 

on having published a second. Because we have annual data, we cannot analyze the time 

interval between two papers published in the same year. With this caveat in mind, we 

find that the time intervals between first-author publications, subsequent to the first, are 

not larger for the most recent graduate student cohorts. This seems to suggest that the 

decline in the number of first-author papers for graduate students could be explained by 
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the fact that trainees take longer to publish a first article or they publish fewer articles per 

year. Similar results were obtained when we estimated the hazard that postdoc students 

publish a paper or a first-author paper, conditioned on an initial publication.  

 

 To summarize, the results from this section lead us to infer that when we measure 

graduate student productivity by their first-author publication count, later cohorts appear 

to be less productive than earlier ones. As for postdocs, recent cohorts appear to be less 

productive in terms of both first-author and total paper counts. 

 

D. Collaboration trends 

 We have analyzed the training period and productivity trends of postdoc and 

graduate students in light of the challenges that recent cohorts of scientists face relative to 

later ones. The question remaining to be answered is whether trainees have reacted to 

these challenges by working in larger teams, in a similar fashion to other researchers. 

  

 The benefits of teamwork have been extensively discussed in the economics 

literature and include output gains derived from labor specialization (Becker and Murphy, 

1992) and from the circulation of new ideas among team members (Adams et al., 2005). 

In the economics of science, scholars have found that scientists increasingly work in 

teams (Zuckerman and Merton, 1973; Wuchty et al., 2007)10 and that team size has 

expanded over time (Adams et al., 2005), largely due to an intensification of multi-

university collaborations (Jones et al., 2008).  

 

 Figure 12 reports trends over time in the average number of coauthors per paper, 

distinguishing between postdocs and graduate students. In line with previous studies, we 

observe that for both trainee categories the average number of coauthors per paper has 

increased over time from approximately 1.5 at the beginning of the 1970s to 

approximately 3.5 by the second half of the 1990s. Interestingly enough, we also observe 

that the increased collaboration size was mainly driven by an increase in the number of 

outside laboratory coauthors.   

                                                        
10 See also Agrawal and Goldfarb (2008) and Forman and Van Zeebroeck (2012). 
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< Insert Figure 12 about here> 

 

 Overall, this suggests that trainees, similar to other scientists across a broad range 

of disciplines, are increasingly working in teams and these teams tend to encompass 

authors from outside the trainees’ laboratories.   

 

IV. Conclusions and policy implications 

A. Summary 

 While knowledge production is considered one of the main determinants of 

economic growth, there is no doubt that academic knowledge is one of the most decisive 

inputs in the knowledge production function representing by far the largest source of 

codified knowledge. 

 

 This study focuses on the contributions to academic knowledge by postdocs and 

graduate students. Using data from the MIT Department of Biology from 1970 to 2000, 

we look at the evolution of four fundamental aspects of their productivity:  i) training 

duration, ii) time to a first publication, iii) productivity over the training period, and iv) 

collaboration with other scientists.  

 

We identified four main trends that are common to graduate students and 

postdocs. First, training periods have increased for later cohorts of research trainees. 

Second, recent cohorts tend to publish their initial first-author article later than the earlier 

cohorts. Third, they produce fewer first-author publications.  Finally, collaborations with 

other scientists, as measured by the number of coauthors on a paper, have increased. This 

increase is driven by collaborations with scientists outside of a trainee’s laboratory.  

  

B. Interpreting the results  

 What are the mechanisms that drive our results? Our findings are consistent with 

Jones’ educational burden story (Jones, 2009, 2010), which states that, as knowledge 

accumulates, future generations of scientists require a greater effort to stand on a giant’s 
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shoulders. Hence, they can either make a greater effort or they can specialize in a 

narrower field and collaborate with other scientists. Our first three results –longer 

training periods, longer time to publish, lower productivity for later trainee cohorts– 

could be interpreted as an indication that the knowledge burden has increased. The final 

result regarding increased trainee collaboration provides an indication that these cohorts 

have become more specialized.  

 

 While the educational burden story is indeed a compelling explanation, we 

nevertheless think that other mechanisms might also be responsible for our results. One 

of these mechanisms is the mismatch between the supply of trainees and the availability 

of post-training academic positions that scholars have discussed in recent decades 

(Stephan, 2012a; Freeman et al., 2001). Data from the NSF-NIH Survey of Graduate 

Students & Postdoctorates in Science and Engineering, shows that enrollment into PhD 

life science programs has increased by 80% between 1972 and 200511.  While we do not 

have information on the availability of post-training positions, it is plausible that 

selection into (desirable) postdoctoral positions has become harder over time. Lastly, we 

also should note that longer training periods certainly benefit and are encouraged by PIs. 

Specifically, many PIs are reluctant to allow their most productive laboratory members 

(i.e., high-tenure trainees) to depart. In fact, their compensation is, increasingly, assigned 

according to the rules of a tournament model in which trainee contributions have become 

key to making discoveries, first (Freeman et al., 2001). 

 

If market frictions were to be responsible for longer training periods, should we 

also expect them to explain the lower productivity of recent trainee cohorts and their 

increased propensity to work in collaboration with other scientists? Is it plausible to posit 

that market disequilibria last for decades?  Why is the market not redirecting the excess 

supply of trainees to other fields? 

  

 To answer the first question, one might consider that the excess supply of 

scientists has led to an increase in academic journal submissions, without a corresponding 

                                                        
11 Data is available from https://webcaspar.nsf.gov/. 
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increase in the number of publications. If there is an excess supply of submissions, then 

the direct consequence is that publishing becomes more difficult, which might explain the 

lower productivity of recent trainee cohorts. Moreover, specialization and collaboration 

become ways of dealing with market disequilibria and one wonders whether the reduction 

in recent cohort productivity could have been even more accentuated had recent trainees 

not worked with other scientists. This mechanism is not necessarily in contrast with the 

educational burden explanation, rather, it offers a complementary perspective. In fact, 

market imbalances might act as a stimulus for scientists to expand the knowledge frontier 

in order to publish, thus increasing the burden on future generations. 

 

 While the mechanisms we have highlighted seem to be plausible, one cannot 

exclude the possibility that the mismatch between the supply of trainees and the 

availability of academic positions has led the most brilliant students to shy away from 

careers in the life sciences. Thus, the increase in training periods and the reduced 

productivity of the most recent cohorts is a reflection of their lower quality skills.  

 

 To answer the second and third questions regarding the duration of market 

imbalances, we should refer to studies by Freeman et al. (2001) and Stephan (2012b) and 

mention that, increasingly, PhD programs in life science, among others, tend to be 

populated by foreign students. Indeed, while domestic students might be discouraged 

from continuing their studies in the life sciences PhD programs, these remain attractive to 

foreign students not only because of their prestige, but also because salary differentials 

between foreign countries and the US are typically large. Clearly, if the average salary of 

a PhD holder in Italy is about $2,000 per month, then Italian students will be attracted by 

a US graduate degree because by the conclusion of their studies, they will potentially 

earn more than they would have earned at home. To verify that the proportion of foreign 

graduate students in the MIT Department of Biology has increased over time, we 

examined our trainees’ first and last names. We then codified those who had a Chinese 

last name as well as those with an Italian or French first and last name12. We found that 

the proportion of Asian, Italian, or French students has increased from 17% in 1970 to 

                                                        
12 Given the authors’ backgrounds, we found it easiest to codify these student ethnicities. 
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27% in 1995. While these figures are only suggestive, given that we cannot distinguish 

between foreign or native-born students, they seem to provide an indication that foreign 

trainees have recently become an important proportion of the graduate student 

population. There are important policy implications arising from the interpretations of our 

results. We will discuss them below.  

 

C. Policy Implications 

 Ultimately, this paper has served to document the mechanisms underlying two 

important trends in the scientific community: the increasing duration of scientist trainees 

and an increasing propensity for collaborative activity (e.g., Agrawal et. al, this volume; 

Tilghman, 1998). Additionally, we have provided evidence of a decline in the scientific 

output of recent trainees. What implications do these trends have for the scientific 

community? 

 

 First, regardless of the reasons for the observed trends, it is important to note that 

the costs of science have increased (Jones, 2011). These costs are paid by the individual, 

who must endure longer training and uncertain future prospects, as well as by society at 

large, which does not recuperate the returns from its investment. As previous scholars 

have highlighted (Jones, 2011; Stephan 2012a), costs can be reduced by ensuring that 

graduate students and postdocs receive adequate pedagogical support during their training 

period. This, in turn, improves the efficiency of trainee learning and may serve to offset 

increases in learning burdens. Moreover, decision makers could cap the trainee teaching 

load, thereby ensuring that the majority of their time is dedicated to research. 

 

 It is also worth mentioning that, as the pre-PI career path for life scientists has 

become incredibly long, talented scientists may increasingly choose to opt out. Our data 

show that trainee duration creeps above 10 years and this evidence is not unique to the 

MIT Department of Biology and to elite institutions, in general (Stephan, 2012b). Longer 

training duration raises the opportunity costs of a scientific career and makes other 

occupations more attractive. After all, if employment in other fields entails shorter 

training periods, lower uncertainty and higher salaries, why would the most brilliant 
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minds opt for a career in the life sciences? 

 

 The increase in the opportunity costs of a life science career is likely to affect 

women more severely than men, further exacerbating issues of female participation in the 

sciences (Ding et al., 2006). Women’s participation in academia has been found to be 

very sensitive to considerations such as family constraints and career uncertainty 

(Kaminski and Geisler, 2006). Certainly, longer training durations do not help ease these 

concerns. 

 

             We conclude with a final important issue that has attracted the attention of 

recent scholars, namely the allocation of research credit in collaborations (Bikard et al., 

2013). Working in teams entails a tradeoff. On the one hand, teamwork seems to produce 

more knowledge breakthroughs than solo work (Singh and Fleming, 2010). On the other, 

it involves costs, some of which are related to the assessment of the team members’ 

contributions (Dasgupta and David, 1994). This tradeoff is especially relevant for trainees 

given that access to tenure-track positions requires that they be able to prove their ability 

to conduct impactful independent research.  
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Figure 1: Personnel composition of Professor Baltimore’s laboratory 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2: Number of laboratory’s personnel by type 
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Figure 3: Number of laboratory’s publications and impact factor-weighted publications 
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Figure 4a: Distribution of graduate students by their number of papers 
 

 
 
 
Figure 4b: Distribution of postdocs by their number of papers 
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Figure 5a: Distribution of graduate students by their training duration 
 
 

  
 

Figure 5b: Distribution of postdocs by their training duration 
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Figure 6: Training duration for graduate students and postdocs over time 
 

  
 
 
Table 1: Distribution of graduate students and postdocs by enrollment period 
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Table 2: Regression results for graduate student and postdoc training duration 
 

 
Note: We estimated Poisson models. Robust standard errors are in parentheses. *** p < 0.01, ** p 
< 0.05, * p < 0.10. For these analyses we only consider trainees who had enrolled before 1996. 

 
 
Figure 7: Kaplan-Meier estimates of the time to a first publication: graduate students and 
postdocs 
 

  



 30 

Figure 8: Kaplan-Meier estimates of the time to a first publication: graduate students 
over time 
 

 
 
 
 

 
 
Figure 9: Kaplan-Meier estimates of the time to a first publication: postdocs over time 
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Table 3: Hazard models for the time to a first publication: graduate students over time 
 

 
Note: We estimate Cox proportional hazards models with standard errors clustered around PI. We 
report hazard ratios. *** p < 0.01, ** p < 0.05, * p < 0.10.  
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Table 4: Hazard models for the time to a first publication: postdocs over time 
 

 
Note: We estimate Cox proportional hazards models with standard errors clustered around PI. We 
report hazard ratios. *** p < 0.01, ** p < 0.05, * p < 0.10.  
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Table 5: Regression results for graduate student publications 
 

 
Note: Standard errors are in parentheses. For the Poisson models we use robust standard errors, 
while for the linear probability model we cluster standard errors around PI. *** p < 0.01, ** p < 
0.05, * p < 0.10. For these analyses we only consider trainees who had enrolled before 1996. 
 
 
Figure 10: Publication output of graduate student cohorts 
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Table 6: Regression results for postdoc publications 
 

 
Note: Standard errors are in parentheses. For the Poisson models we use robust standard errors, 
while for the linear probability model we cluster standard errors around PI. *** p < 0.01, ** p < 
0.05, * p < 0.10. For these analyses we only consider trainees who had enrolled before 1996. 

 
 
Figure 11: Publication output of postdoc cohorts  
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Figure 12: Average yearly number of coauthors per paper  
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