
NBER WORKING PAPER SERIES

PREDICTABILITY AND POWER IN LEGISLATIVE BARGAINING

S. Nageeb Ali
B. Douglas Bernheim

Xiaochen Fan

Working Paper 20011
http://www.nber.org/papers/w20011

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 2014

We thank Daron Acemoglu, Attila Ambrus, Tiberiu Dragu, Simone Galperti, Matt Jackson, Ehud
Kalai, Navin Kartik, Thad Kousser, Mark Machina, Peter Norman, Romans Pancs, Debraj Ray, Joel
Sobel, Leeat Yariv, Huseyin Yildirim, Muhamet Yildiz, and seminar participants at Columbia, Duke,
Microsoft Research, Stanford, UCSD, UIUC, University of Maryland, and USC. We thank Erik
Lillethun for expert proofreading. Nageeb Ali gratefully acknowledges Microsoft Research for their
financial support and hospitality, and financial support from the NSF (SES-1127643). Doug Bernheim
gratefully acknowledges financial support from the NSF (SES-0137129) The views expressed herein
are those of the authors and do not necessarily reflect the views of the National Bureau of Economic
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2014 by S. Nageeb Ali, B. Douglas Bernheim, and Xiaochen Fan. All rights reserved. Short sections
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full
credit, including © notice, is given to the source.



Predictability and Power in Legislative Bargaining
S. Nageeb Ali, B. Douglas Bernheim, and Xiaochen Fan
NBER Working Paper No. 20011
March 2014
JEL No. D72,D78

ABSTRACT

This paper examines the relationship between the concentration of political power in legislative
bargaining and the predictability of the process governing the recognition of legislators. Our main
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1 Introduction
Motivation: Multilateral bargaining is a ubiquitous aspect of decision making within social groups.
For example, in the political sphere, it governs the distribution of pork, the design of international
treaties, and the formation of governments in parliamentary systems. Negotiators routinely attempt
to steer these processes towards their own objectives, not only by organizing coalitions to support or
block particular proposals, but also by maneuvering for control of the process through which they
and others bring forth proposals. The relative power of the negotiators determines how agreements
are reached and who benefits most from them.

In this paper, we investigate the ways in which the predictability of future bargaining power
affects multilateral negotiations. Intuitively, an individual’s willingness to join a coalition in support
of a proposal today, rather than one aiming to block the proposal and extend negotiations, depends
on how much bargaining power she expects to have if negotiations continue. If she has reason to be
optimistic about her future bargaining power, she will only support proposals that are favorable to
her; in contrast, if she expects to have little bargaining power in the future, she should be willing to
support current proposals that provide her with modest benefits. Thus, the predictability of future
bargaining power has an important bearing on negotiations.

Proposer Power: We examine these issues in the context of noncooperative multilateral bargaining
models that build on Rubinstein (1982) and Baron and Ferejohn (1989). In these settings, rejection of
a proposal leads to costly delay, and hence bargaining power flows from the ability to make proposals
(or “set the agenda”).

Most models of legislative bargaining treat proposer power as a primitive, formulated as an
i.i.d. recognition process in which uncertainty as to who makes a proposal in period t is resolved
immediately before the proposal is made. While this assumption can be defended as a stylized
attempt to capture the somewhat inscrutable nature of the various protocols by which proposers are
actually selected, it is also unrealistic. According to this assumption, the selection of each proposer is
entirely random, and no information bearing on the identity of the period-t proposer is revealed prior
to period t. In practice, important elements of the processes governing the recognition of proposers
are non-random, and information concerning random elements may be revealed in advance of the
round-t proposer’s selection. Examples include the following:

1. Proposers may be pre-announced. For instance, an otherwise inscrutable (and hence apparently
random) chair may identify the next proposer when recognizing the current one.

2. Based on the rules governing multilateral bargaining, it may be possible to rule out certain
candidates for the proposer in advance. For example, the rules may require that proposers
belong to pertinent committees or have seniority. Alternatively, the rules may prevent members
of the same party from being recognized twice in a row or before representatives from all other
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parties have had a turn, or they may specify that the proposer for period t must be selected
from a slate of nominees who are announced at an earlier point in time.

3. The selection of the period-t proposer may depend upon strategic choices that are themselves
predictable in equilibrium, e.g., if choice of the proposer is up to a chair who is elected in
advance, and who has a known “pecking order” of favorites, or if members can compete for the
right to propose through costly effort or the expenditure of political capital.

From the perspective of developing a realistic positive theory of multilateral bargaining, it is essen-
tial to understand the implications of a (somewhat) predictable recognition process. Analyzing such
processes is also of normative importance: when designing institutions, rules, and constitutions that
govern multilateral bargaining, institutional architects must decide whether to make these processes
more or less predictable. Thus it is important to know whether predictability improves or worsens
the efficiency and equity of negotiated outcomes. For instance, our analysis raises the possibility that
greater procedural equity, such as rules ensuring that negotiators must take turns making proposals,
can perversely produce less equitable outcomes.

Our Approach and Main Result: We study a multilateral bargaining game wherein, in each
period, one of n legislators proposes a division of a fixed payoff, and needs the support of q <
n legislators for the proposal to pass. Initially we consider a class of recognition processes that
generalizes the standard i.i.d. selection mechanism in two distinct ways. First, we allow the selection
process to exhibit rich history-dependence: the identity of the current proposer may depend on the
history of random shocks and past proposers. Second, information concerning the random shocks
affecting the identity of the period-t proposer may be revealed in prior periods, so that negotiators
become better informed about period-t bargaining power over time. These two elements give rise to
a collection of rich stochastic games in which negotiations are influenced by the evolution of beliefs
about future bargaining power.

We find that even a limited degree of predictability of the recognition process has stark impli-
cations for bargaining: under a relatively mild condition described in the next paragraph, the first
proposer receives the entire prize, irrespective of negotiators’ discount factors, in every subgame
perfect equilibrium of the finite horizon game, and every Markov Perfect equilibrium of the infi-
nite horizon game. Our result contrasts sharply with the characterization of stationary equilibria
described in Baron and Ferejohn (1989), in which the first proposer shares surplus with a minimal
winning coalition according to a formula that depends on negotiators’ discount factors, with the
proposer keeping roughly half the surplus in large legislatures of patient players. Thus, mild pre-
dictability of the recognition process confers considerably more bargaining power on the first proposer
than existing approaches to multilateral bargaining suggest.

The predictability condition that gives rise to the aforementioned result is simple and intuitive.
We say that bargaining power is one-period predictable of degree d if, for each history, at least d

players can be ruled out as the next proposer. Our main result, Theorem 1, establishes that if
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the bargaining process is one-period predictable of degree q, then the first proposer captures all
of the surplus. (Recall that passage of a proposal requires q < n favorable votes.) The impact of
predictability is continuous; if q legislators are recognized with sufficiently small probability, then the
current proposer captures nearly all of the surplus.

The logic of our main result (which we also illustrate through examples in Section 2) is straight-
forward. When a voting rule is non-unanimous, a proposer can exclude any other negotiator from
a winning coalition, and this possibility constrains the amount of surplus any particular participant
anticipates obtaining from the proposer. Greater predictability of bargaining power at period t + 1
helps the period-t proposer identify the most profitable negotiators to exclude: those who expect
to be the proposer tomorrow have incentives to block the current proposal and extend negotiations,
while others have no reason to reject offers unless they expect the next proposer to treat them more
generously. But the proposer at t + 1 cannot commit to such generosity. Indeed, since she will be
able to predict bargaining power at t + 2 prior to making her offer, she will, in turn, act on her own
incentives to form the cheapest winning coalition by proposing to share the surplus with participants
who do not expect to be recognized at t + 2. Iterating this logic, the proposer at time t can secure
the support of those who can be ruled out as period t+1 proposers by offering them arbitrarily small
shares of the surplus, even if they expect to be recognized in subsequent rounds. Because the number
of such individuals is sufficient to form a winning coalition (d ≥ q by assumption), the first proposer
extracts all of the surplus.

Broader Implications: We do not view our findings as providing a literal description of legislative
outcomes, but rather as illustrating an important principle concerning the possible effects of insti-
tutional characteristics on negotiated outcomes: the combination of predictable bargaining power
and a non-unanimous voting rule can provide those with short-term control over agenda setting
with extreme power. Perhaps surprisingly, neither institutional feature in isolation engenders such
inequality. For instance, for the alternating-offer protocol of Rubinstein (1982), future bargaining
power is perfectly predictable but unanimity is required; as a result, in both bilateral and multilateral
settings, stationary equilibria yield approximately equal division as δ → 1. Similarly, in Baron and
Ferejohn (1989), unanimity is not required but future bargaining power is unpredictable; as a result,
the proposer shares roughly half the surplus with the winning coalition. Thus it is the combination
of these two features that permits a proposer to capture the entire surplus.

As we show in Section 5, the proposer power resulting from predictability and excludability
extends to general coalition structures that would arise, e.g., if individuals have different voting
weights, to settings in which utility is non-transferable, and even to richer settings in which individuals
can maneuver for bargaining power. Indeed, across these settings, when future bargaining power is
sufficiently predictable, heterogeneity in discount factors, recognition probabilities, risk-aversion, and
voting weights have little impact on the shares offered by the first proposer. Thus, the combination
of even a limited degree of predictability and opportunities for profitable coalition formation confers
far greater power upon the proposer than previous research would seem to imply.
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Because our main result elucidates the implications of one-period predictability in the starkest
case, it may raise the concern that predictability matters only if it is possible to rule out at least
q negotiators as the next proposer. That is not the case. For instance, if it is possible to rule out
only q − 1 negotiators, the current proposer will still capture nearly all of the surplus, provided the
group is reasonably large. We study a tractable sub-class of models falling within our framework (see
Section 6) and derive results for the spectrum of possibilities between the one-period predictability
of degree 0 (as in Baron and Ferejohn 1989), in which players receive no information regarding
next period’s proposer, and perfect one-period predictability, in which next period’s proposer is
revealed one period in advance. We show that increases in the degree of one-period predictability
monotonically increase the first proposer’s payoff until one-period predictability of degree q is reached,
at which point the proposer captures the entire surplus. In large legislatures (as n → ∞), only the
limiting proportional degree of one-period predictability (d/n) and the limiting proportional voting
rule (q/n) matter, so even if the degree of predictability trails the size of a winning coalition by a
constant number of legislators, the proposer still captures nearly all of the surplus.

Our results are potentially important because they identify features of institutions (pertaining
to the predictability or “scrutability” of recognition processes) that tend to concentrate power. For
example, they imply that legislative processes in which agenda setters are selected from special
committees or small groups of nominees can confer great power to the first proposer. Likewise,
“seniority rules” that give priority to senior members can generate extreme inequality by conferring
enormous power on the most senior member. Paradoxically, process-oriented reforms that promote
“transparency” may exacerbate inequality because inscrutable processes tend to foster more equal
sharing of social surplus.

Our analysis also potentially informs the design of institutions by identifying rules and procedures
that can counter the effects of predictability. We consider two such possibilities: endowing multiple
players with veto power, and allowing proposals to be amended before they are brought to a vote.
When members of a set of negotiators each individually has veto power, then even if the recognition
process exhibits perfect one-period predictability, each veto player has the ability to delay agreement
until she is the proposer. To avoid such delays, the proposer must share some surplus with those
players. Similarly, when a proposer must rely on other players to move her proposal in settings where
they can alternatively propose amendments, she can secure their agreement only by sharing surplus.
We explore the extent to which such provisions limit the proposer’s power.

Related Literature: While legislative bargaining has been studied extensively, the implications of
predictability concerning future bargaining power have not been explored systematically. Our model
is related to those in which legislators are recognized with unequal (but time-invariant) probabilities,
a possibility that is mentioned in the literature.1 If the i.i.d. recognition probability for legislator

1Baron and Ferejohn (1989) present some simple examples with asymmetric recognition probabilities (emphasizing
that a lower recognition probability does not necessarily imply a lower expected payoff) but offer no general results.
Subsequent papers that study asymmetric recognition probabilities include Banks and Duggan (2000), who establish
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i is sufficiently close to unity, then one can show that player i may obtain the entire prize. But
such circumstances transparently establish legislator i as a (near) dictator and leave those with low
recognition probabilities entirely powerless. In that setting, future bargaining power is in some sense
predictable, but only because it is exactly the same as current bargaining power. Our main result
differs from this observation because we demonstrate that the first proposer receives the entire prize
even if (i) his probability of being selected in any future period is low, (ii) it is predictable that
someone else (or some other group of individuals) will make the next proposal, and (iii) subsequent
proposers are not at all predictable.

More broadly, the defining features of our framework are that the recognition process can be
highly non-stationary and history-dependent, individuals learn about the bargaining process over
time, and proposals can pass with less than unanimous consent. Merlo and Wilson (1995) consider
a rich class of recognition processes, but study bargaining over a stochastic surplus when unanimity
is required; unlike us, they focus on whether delays in bargaining are efficient. Simsek and Yildiz
(2009) study durable bargaining power in a bilateral setting where the proposer today is very likely
to be the proposer tomorrow. Our results imply that the current proposer should capture a large
share of the surplus not only when bargaining power is highly durable, but also when it is fleeting,
in the sense that the current and recent proposers are not expected to have bargaining power in the
future.

Predictability of future bargaining power is naturally connected to the information and beliefs
that individuals have about the bargaining process. One strand of work that has examined the role
of these beliefs in detail departs from the common prior assumption. Yildiz (2003, 2004) and Ali
(2006) study how beliefs about bargaining power can induce delays and influence the outcome of
negotiations. When individuals agree to disagree, bargaining power may be predictable from each
individual’s perspective—for example, each negotiator may believe that others will be recognized with
probability 0—but the lack of consensus may prevent the first proposer from capturing the entire
surplus. Our results do not require common priors, but merely that enough people are pessimistic
about their bargaining power tomorrow: if q or more players believe their recognition probabilities
for the next round are less than ϵ, and if this is common knowledge, then the first proposer captures
almost the entire surplus.

We follow the existing literature on dynamic multilateral bargaining in assuming that proposers
and voters are sophisticated and forward-looking with respect to decisions that affect the division
of economic surplus. Dynamic sophistication is at the heart of many results in the literature on
legislative bargaining, such as the distinction between the consequences of employing open and closed
rules emphasized by Baron and Ferejohn (1989), and is known to have important implications for
proposer power. Norman (2002) has previously noted that those who are likely to be excluded from
the winning coalition at t+ 1 make attractive coalition partners at time t. Kalandrakis (2004) shows

existence of stationary equilibria in the infinite horizon, Eraslan (2002), who establishes that stationary equilibria
payoffs are unique, and Norman (2002), who discusses it as a perturbation that restores uniqueness in finite-horizon
bargaining problems.
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in a three player majoritarian bargaining game with an evolving status quo that the proposer can
capture the entire surplus in each period because each non-proposer anticipates that such inequality
creates cheaper coalition partners in the future. Bernheim, Rangel and Rayo (2006) study real-
time agenda setting with an evolving status quo, and establish that a mildly predictable recognition
process can provide the last proposer with dictatorial power.

Our results speak to the potential importance of commitment mechanisms when there are multiple
proposers: if a future proposer could commit to an equitable distribution of surplus, others would
reject any exploitative offer made by the first proposer, and so instead he too would propose a more
equitable outcome.2 Note the contrast between this implication and that of Diermeier and Fong
(2011), in which a single agenda-setter’s inability to commit to future proposals limits the surplus
she can extract; in our case, it is the inability of future agenda-setters to commit that permits the
current agenda-setter to extract surplus.

Outline: Section 2 conveys the intuition for our results through some simple examples. We present
our framework in Section 3 and our main results in Section 4. In Section 5, we extend our results to
settings with general coalition structures, non-transferable utility, and those in which individuals can
influence recognition through costly maneuvers. We develop comparative statics on imperfect pre-
dictability in Section 6. Section 7 describes the implications of veto power and open rule negotiations.
Section 8 concludes. Omitted proofs are in the Appendix or the Online Appendix.

2 Examples
We begin by illustrating the stark implications of predictable recognition processes through a series of
examples. Our starting point is the closed rule divide-a-dollar model of Baron and Ferejohn (1989),
in which each of n players (with n odd) has an equal probability of being recognized in each period
independently of the past, legislators are equally patient, and legislative approval requires a simple
majority.

Example 1: One-Period-Ahead Revelation. In Baron and Ferejohn (1989), the proposer for
period t + 1 is revealed at the beginning of period t + 1. Suppose instead that this uncertainty is
resolved one period before, revealing the identity of the period-(t + 1) proposer at the beginning of
period t.

First consider a two-period model in which proposals can be made at t ∈ {0,1}, and if no agreement
is reached by t = 1, the dollar is destroyed. Suppose Alice and Carol are known to be the proposers at

2For example, suppose the proposer at t = 1, p1, can commit to an offer to be made at t = 1 before the proposer at
t = 0, p0, makes an offer. The legislator p1 then has a incentive to ensure that she is the most expensive member of a
minimal winning coalition at t = 0. Accordingly, she would commit to an offer providing 0 to q − 1 players (including
the first proposer), 1

n−q −ϵ to herself, and equal shares for the remaining n−q−1 players. The legislator p0 then chooses
a policy in which he obtains q − 2 players for free and proposer p1 at a cost of δ

n−q − δϵ. Even if commitment is costly,
p1 clearly benefits from this strategy.
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t = 0 and t = 1 respectively. The unique sub-game perfect equilibrium (henceforth SPE) emerges from
backward induction: if agreement is not reached at t = 0, Carol proposes at t = 1 to keep the entire
dollar for herself, and a strict majority votes in favor. Thus, at t = 0, every player other than Carol
has an expected continuation value of 0 if no agreement is reached immediately. So the unique SPE
outcome involves Alice proposing to keep the entire dollar for herself at t = 0, and a strict majority
voting in favor.

Naturally, the same conclusion applies in longer finite-horizon settings: each proposer is able to
capture the entire surplus since everyone other than the next proposer expects to receive 0 if there
is delay. For the infinite horizon setting, it is easy to construct an SPE in which the first proposer
receives the entire prize: in every period, the selected legislator proposes to keep the prize for himself,
and all legislators (except for the next proposer, who is known) vote in favor. Given the continuation
equilibrium, rejecting the proposal would simply shift the prize from the current proposer to the next
proposer, which is of no benefit to other legislators. Thus, such behavior is sequentially rational for
every history.3

Because multilateral bargaining games with infinite horizons give rise to folk theorems (see Baron
and Ferejohn 1989 and Osborne and Rubinstein 1990), the literature generally focuses on Markov
Perfect Equilibria (henceforth MPE). We discuss MPE at length in Section 3.2; in this example, the
concept implies that players can condition proposals and voting strategies only on variables that are
directly payoff-relevant (rather than indirectly relevant through others’ strategies)—i.e., the identities
of the current and next proposers, and (when voting) the proposal currently on the table—and not
on past proposals or voting decisions.

Our main result implies that the first proposer captures the entire surplus in all MPE of the
infinite horizon model (and not merely in the particular MPE described above). The following is a
sketch of the proof for this special case. Suppose each MPE involves agreement in every period (a
claim we prove in Lemma 1). As before, suppose the proposers at t ∈ {0,1} are known to be Alice
and Carol, and towards a contradiction that Alice has to share at least ϵ > 0 to secure the support of
Bob, who knows he will not be recognized at t = 1. The fact that Bob will not accept a lower offer
from Alice implies that there must be some realization of the t = 2 proposer for which Carol will offer
Bob at least ϵ/δ. But Carol would make such an offer only if she could not find cheaper votes at
t = 1. It follows that there must be some party (possibly Bob) who, in that same contingency, will
not be the proposer for t = 2, and yet demands at least ϵ/δ to vote for Carol’s proposal at t = 1. The
fact that such a player would not accept a lower offer from Carol in that contingency implies that
there must be some further realization of the t = 3 proposer such that the t = 2 proposer would offer
that player at least ϵ/δ2. Since the same argument applies at t = 2,3, . . ., and δ < 1, there must be a
contingency under which a proposer eventually offers more than the entire surplus to another player,
which is plainly a contradiction.

3This equilibrium does not rely on the fortuitous resolution of indifference among voters: by offering members of the
winning coalition arbitrarily small shares, the current proposer can break their indifference and secure their support.
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Example 2: Nominations. Next suppose that the period-t proposer is selected randomly (with
equal probabilities) in period t from a set of n∗ nominees, call it N∗t . The nominees are in turn
selected in period t−1 from the full set of legislators, and immediately announced. For concreteness,
we will assume that nominees are also selected randomly (with equal probabilities), but the particular
selection process is in fact irrelevant. Finally suppose that the list of nominees is not too long:
n∗ ≤ n−1

2 .
Reasoning as in the first example, we see that the following is an equilibrium: in period t,

the selected legislator proposes to keep the entire prize for himself, and the proposal passes with
the support of legislators belonging to N/N∗t+1. Members of that group are willing to vote for the
proposal because they understand that rejecting it would simply shift the entire prize from the current
proposer to some member of N∗t+1. Because N∗t+1 has fewer than n−1

2 members, N/N∗t+1 has at least n+1
2

members, and therefore the proposal passes. The intuition for uniqueness is also essentially identical:
the support of those in N/N∗t+1 is costly to secure only if the total amount at least one individual
expects to be offered in the next round is even greater under some contingency, which recursively
implies the existence of some eventual contingency under which a proposer offers a member of the
winning coalition more than the total payoff.

This special case has immediate implications for procedural rules that favor legislators based on
their seniority or membership in special committees: if proposals must come from a small subset of
the entire legislature, the first proposer necessarily captures the entire surplus.

Example 3: Rotation Through Parties. Next suppose that every legislator belongs to one
of P parties, where P ≥ 3. Also assume that, despite these party affiliations, each legislator is
concerned only about his own constituents; hence politics remains a zero-sum game. Let nj (with
∑P

j=1 nj = n) denote the number of legislators belonging to party j. By convention, list the parties so
that n1 > n2 > ... > nP . Also assume n1 < n

2 − 1, so that no party has a majority.
Consider a recognition rule that cycles through the parties, starting with the largest. For example,

a randomly selected member of the largest party makes the first offer, followed by a randomly selected
member of the second largest party, and so forth, returning to the largest party if a proposal by the
smallest party is rejected. In this setting, the first proposer from the largest party receives the entire
prize in any Markov-perfect equilibrium. The logic is essentially the same as for Example 2.

3 The Model

3.1 Environment

Consider a group of players, N = {1, ..., n}, who are bargaining over the division of a fixed payoff
(normalized to unity); i.e., the policy space is X ≡ {x ∈ [0,1]n ∶ ∑i∈N xi = 1}. Proposals can be made
at discrete points of time in T ≡ {t ∈ N ∶ t ≤ t}, where t ≤ ∞ is the deadline for bargaining. In each
period, a player is recognized to propose an alternative in X . If the group approves the proposal
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according to the voting rules described below, the game ends and the policy is implemented. If the
group rejects the proposal, play proceeds to the next period unless t = t, in which case the game ends
and the policy (0, . . . ,0) is implemented.

Within period t, events unfold as follows:
1. Information concerning the selection of current and future proposers is revealed, and the pro-

poser for time t, pt, is determined. The proposer pt observes this information and makes a
proposal.

2. Legislators vote on the proposal.

Details concerning each of these stages follow.

Stage 1: Information and Recognition. The selection of proposer at time t may depend both
on random events, as in Baron and Ferejohn (1989), and on institutional rules that constrain the
possible sequences of proposers. Formally, consider a canonical probability space (Ω,F , µ) (where
Ω is the state space, F is a σ-algebra, and µ is a probability measure) encompassing all uncertainty
pertaining to the recognition process, and let ω ∈ Ω denote the generic state of nature. For every
t ∈ T , define ht

P ≡ (pτ)τ∈T ,τ≤t as the history of proposers, and letH t
P denote the set of possible proposer

histories. The recognition rule is a sequence of functions P̃ t ∶ H t−1
P ×Ω → N , where P̃ t governs the

selection of pt, the proposer in round t. Of course, for a process of that type, the state of nature
recursively determines the entire sequence of proposers, and hence we can rewrite the recognition
rule more compactly as a sequence of functions P t ∶ Ω→ N that only depend on ω. This formulation
is extremely general, in that the proposer in any period can depend on the entire history of past
proposers and random events. In Section 5.4, we enrich it further by allowing for the possibility that
players can influence recognition through political maneuvers.

In stage 1 of period t, the players commonly observe a signal σt, where σt(ω) is an F -measurable
function. We assume that pt is fully revealed in period t: for every t and ω,ω′ ∈ Ω, P t(ω) ≠ P t(ω′)
implies that σt(ω) ≠ σt(ω′). For each t, we can represent the information structure induced by
the stochastic process (στ)τ∈T ,τ≤t as a partition, St, of the state space Ω.4 The partition identifies
states of nature that generate exactly the same signals through period t. Formally, St satisfies two
requirements: (i) it partitions Ω and therefore ⋃st∈St st = Ω; and (ii) for each st ∈ St, {ω,ω′} ⊂ st if
and only if στ(ω) = στ(ω′) for every τ ≤ t.

The framework we use to describe uncertainty concerning future proposers and the revelation of
pertinent information embeds all natural possibilities, with the restriction that revealed information
is never forgotten; in other words, the signal structure generates a sequence of partitions {St}t∈T that
are weakly finer over time. For example, the framework encompasses the extreme possibilities that
the recognition order is known in advance, and that no information concerning the period-t proposer
is revealed prior to period t. Between these extremes, we place no restrictions on the correlation

4The signal process also generates a filtration F t ⊂ F ; i.e., a series of sub-σ-algebras for the probability spaces
governing residual uncertainty.
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structure governing the selection of proposers and the generation of signals.

Stage 2: Voting. The players vote on the proposal in a fixed sequential order.5 A proposal is
implemented if and only if at least q players (including the proposer) vote in favor. A voting rule is
non-unanimous if q < n.

Payoffs: Players evaluate payoffs according to conventional exponential discounting: player i’s
discount factor is δi. No player is perfectly patient and δ̂ < 1 denotes an upper-bound on their
discount factors. If proposals at every period t in T are rejected, each player obtains a payoff of 0.
If proposal x is implemented at time t, player i’s payoff is ui(x, t) ≡ δtixi.

3.2 Solution Concept

It is well-known that when three or more players bargain, every division can be supported as the out-
come of a subgame perfect equilibrium (Baron and Ferejohn 1989; Osborne and Rubinstein 1990).
The literature generally avoids the implications of this “folk theorem” by restricting attention to
equilibria that are stationary or Markov Perfect.6 Because our model allows for complex history-
dependent recognition processes, the state of the game evolves as proposers are recognized and
information about future proposers is revealed. Accordingly, the state space is different in each
period. We restrict attention to equilibria that prescribe the same continuation strategies at all
structurally indistinguishable nodes (i.e., those at which the same information pertinent to the se-
lection of subsequent proposers has been revealed). We refer to such equilibria as Markov Perfect
Equilibria (henceforth MPE). Our focus on MPE rules out equilibrium strategies for which choices
depend on past proposals and votes, inasmuch as those actions have no direct structural implications
for the continuation game.7

We have two motivations for studying this class of equilibria. First, adopting an appropriate
generalization of the solution concept that is widely used in the literature facilitates transparent
comparisons with existing results and highlights the implications of predictability. Second, Markovian
strategies are the simplest possible form of behavior consistent with equilibrium rationality.8 Every
equilibrium must condition choices on variables that alter structural features of the continuation

5Sequential rationality combined with voting in a sequential order implies that for every equilibrium, there exists
an outcome-equivalent equilibrium in which each player eliminates weakly dominated strategies at the voting stage
and “votes as if pivotal.”

6The restriction to stationary or Markovian equilibria is sufficiently pervasive in political economy that we hesitate
to offer an exhaustive list; several recent studies that impose this restriction with an evolving state variable are
Acemoglu, Egorov and Sonin (2010), Battaglini and Coate (2007), Diermeier and Fong (2011), and Lagunoff (2009).
Banks and Duggan (2000), Eraslan (2002) and Eraslan and McLennan (2013) show that stationary equilibria exist
and are unique in the divide-the-dollar and coalitional bargaining settings with an i.i.d. recognition process.

7As is conventional, our restriction is on equilibria, and not strategies. Players have the option to consider non-
Markovian deviations, and for a strategy profile to be an MPE, such deviations have to be unprofitable.

8In the canonical legislative bargaining environment, Baron and Kalai (1993) prove that the Markovian equilibrium
is the simplest equilibrium based on an automaton notion of complexity.
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game, and non-Markovian equilibria are more complex because choices also depend on variables
that have no structural implications for the continuation game. Because non-Markovian equilibria
require legislators to follow different continuation strategies in structurally identical circumstances,
sustaining any such equilibrium presumably requires more coordination. Yet, because every MPE
ends in immediate agreement (as we show in Lemma 1), there is no efficiency motive for selecting a
more complex equilibrium. Thus, the complex coordination required for a non-Markovian equilibrium
is never in the legislators’ mutual interests.

Focusing on the proposal stage of period t, the structural state consists of the proposer’s identity
and all information bearing on the selection of future proposers. In our framework, st encapsulates
that state in period t; recall in particular that it encodes the identities of all proposers through and
including period t, as well as all signals pertaining to the identities of future proposers. For the voting
stage of period t, the state consists of (st, xt), where xt is the period-t proposal.9 Let Sti be the set
of all st ∈ St consistent with player i being the proposer in period t, i.e., in which for every ω ∈ st,
P t(ω) = i. A Markov Perfect Equilibrium is an SPE in which we can write each player’s equilibrium
strategy as a sequence of functions (ξi,tP , ξi,tV )t∈T such that ξi,tP ∶ Sti → ∆X is player i’s randomization
over proposals when recognized in period t in structural state st, and ξi,tV ∶ St × X → ∆{yes,no} is
player i’s randomization over whether to vote for or against a policy x ∈ X proposed in period t and
structural state st.

3.3 Some Examples

This framework subsumes numerous examples of recognition processes:

(i) Baron and Ferejohn (1989): Let Ω = N ∣T ∣, and P t(ω) = ωt+1. The signal at time t is σt(ω) = ωt+1.
The measure µ is the “uniform” measure on Ω.

(ii) One-period-ahead revelation: The process is as above, except the signal at time t is σt(ω) = ωt+2,
so that the identity of the proposer at time t + 1 is publicly observed prior to the period t

proposal.

(iii) Fixed Order: The role of proposer rotates through the players in a fixed order. In this case, Ω
is degenerate.

(iv) Nomination: At most n − q nominees for the period-t proposer are determined randomly in
period t′ < t, and the proposer is then chosen randomly from the nominees in period t. In this
case, the signal partially reveals the identity of the period-t proposer in period t′, and then
fully reveals it in period t.

9As is conventional, we ignore the voting history at stage 2 of period t up to the time that player i votes. Although
an equilibrium must specify behavior for every voting history, it is well-known that the requirement of subgame
perfection selects the same outcome in the sequential voting game that would emerge if players voted simultaneously
and sincerely for their preferred alternatives.
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4 Bargaining with a Closed Rule
We begin by formally defining predictability and then examine its implications in closed rule nego-
tiations.

4.1 Predictability

In each period, players forecast the distribution of future bargaining power based on all informa-
tion accumulated up to the present. Suppose that in stage 1 of period t, the sequence of signals
(σ0(ω), . . . , σt(ω)) indicate that the underlying state of the world ω is in st. Player i is recognized
at time t + 1 if and only if ω is in

Ω̂t+1
i (st) ≡ {ω ∈ st ∶ P t+1(ω) = i} ,

which has probability rt+1i (st) ≡ µ (Ω̂t+1
i (st) ∣ st). The losers are those players who have 0 probability

of being the proposer at t + 1 conditional on all that is known at the proposal stage in period t:

Lt+1(st) ≡ {i ∈ N ∶ rt+1i (st) = 0} .

The cardinality of this set serves as a metric for the predictability of the recognition process.

Definition 1. The recognition process exhibits one-period predictability of degree d if ∣Lt+1(st)∣ ≥
d for all st in St and t in T .

One-period predictability of degree d means that by the time the proposer is selected in period t,
at least d players have been ruled out as the proposer for period t+1. Plainly, one-period predictability
of degree d implies the same for any degree d′ < d. We can classify the examples from Section 3.3
as follows: process (i) (Baron-Ferejohn) does not exhibit one-period predictability of degree d for
any strictly positive d, processes (ii) and (iii) exhibit one-period predictability of degree n − 1, and
process (iv) exhibits one-period predictability of degree q. In general, the degree of predictability for
a given process depends on the timing of decisions that influence the choice of the period-t proposer,
institutional constraints on the order of proposers, and the timing of revelation for random events.

Note that one-period predictability of degree d has no implications for two-period predictability
(defined in the analogous way). For example, though process (ii) exhibits one-period predictability
of degree n−1, it does not exhibit two-period predictability of degree d for any d > 0. Our results for
this class of models do not require an ability to predict bargaining power in any round but the next.

4.2 Main Result

In this section, we state and prove our main result.
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Theorem 1. Suppose the voting rule is non-unanimous, requiring q < n votes for a proposal to pass.
If the recognition process exhibits one-period predictability of degree q, the proposer selected at t = 0
captures the entire surplus in every MPE.

This result illuminates the implications of combining predictability of the recognition process
with a non-unanimous voting rule: the current proposer can extract all of the surplus by forming a
winning coalition consisting only of those who definitely will not make a proposal in the next period.
Perhaps surprisingly, the members of this minimal winning coalition may expect to have bargaining
power two periods hence, but in equilibrium, the votes of such individuals are bought cheaply since
they expect to obtain no surplus in the next period. Thus, one-period predictability of degree q

confers complete power.
Constructing an MPE that delivers this division of surplus is straightforward. Suppose that in

each period t, and in each structural state st, the proposer pt offers to share nothing, each player in
Lt+1(st) accepts all offers, and any other players accepts an offer if and only if his share exceeds his
discounted continuation value. No proposer or voter will have a strict incentive to deviate from this
strategy profile.

Of course, the theorem makes the much stronger claim that all MPE generate this outcome. The
proof makes use of two properties of MPE, stated formally (and proven) below as Lemmas 1 and
2: all MPE end in immediate agreement, and the proposer never offers strictly positive surplus to
more than q −1 other players (the smallest group needed to achieve a winning coalition). With these
results in hand, the logic of the argument is similar to that outlined in Section 2.

Specifically, suppose towards a contradiction that the first (period 0) proposer, player i, does
not capture the entire surplus. Let player j be a member of player i’s minimal winning coalition to
whom i offers (weakly) more than she does to anyone else, and let x0

j denote this share. Because she
chooses to exclude the other (n − q) players and include player j in her minimal winning coalition,
each of the excluded players must be more expensive to buy out; i.e., each has an expected discounted
continuation value that weakly exceeds x0

j . Thus, at least (n−(q−1)) players have expected discounted
continuation values no less than x0

j . If the recognition process exhibits one-period predictability of
degree q, then at least one person within that set (call her player k) has no chance of being recognized
in the next period. Player k necessarily derives all of her continuation value from the payoff she
expects to receive when someone else serves as the proposer in period 1. Thus, in some structural
state in period 1, the period 1 proposer must offer player k a payoff of at least x0

j/δ̂.
The same logic, of course, holds for the aforementioned state in period 1. So by induction, there

is some period 2 state in which the proposer offers some player a payoff of at least x0
j/δ̂2. Iterating

this argument, we see that, for every t, there exists a structural state in which the proposer offers
another a player a share of at least x0

j/δ̂t. Because δ̂ < 1, at least one player eventually obtains a
share that exceeds the maximal feasible payoff, which is an obvious contradiction.
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Necessity: The preceding logic shows that one-period predictability of degree q suffices for the
first proposer to capture the entire surplus. Is this condition also necessary? We describe a setting
in Section 6 where the first proposer cannot capture the entire surplus if the degree of one-period
predictability is strictly less than q. Nevertheless, for that setting, greater predictability confers
greater power: the first proposer’s share is strictly increasing in the degree of predictability until
d = q, at which point he captures the entire surplus.

However, as a general matter, one-period predictability of degree q is not the tightest possible
condition for ensuring that the first proposer receives the entire surplus. One way to weaken this
condition is to employ a “proposer-specific” notion of predictability. Suppose in particular that,
in each structural state st, one can rule out q − 1 players other than the current proposer, pt, as
the proposer for t + 1. Then the current proposer captures the entire surplus even if the degree of
one-period predictability is less than q. We return to this possibility in Section 5.2.

A Formal Proof of the Main Result: To prove Theorem 1, we first establish that every pure
or mixed MPE must yield immediate agreement, and that every equilibrium proposal is directed
towards the cheapest minimal winning coalition. For these purposes, it is useful to introduce some
additional notation for players’ continuation values in an MPE. For every t in T and every structural
state st in St, let pt(st) denote the proposer in period t. Moreover, for t < t, let V t+1

i (st) denote
the expected continuation value of player i at the beginning of period t + 1 (before Stage 1) after
the rejection of an offer in period t and structural state st; for the finite-horizon setting (t < ∞),
let V t+1

i (st) ≡ 0. For a coalition C ⊆ N / {pt(st)}, let W t
C(st) ≡ ∑i∈C δiV t+1

i (st) represent the sum of
discounted continuation values for the coalition. Denote the lowest cost of a coalition of size q − 1 as

W t(st) ≡ min
C⊆N /{pt(st)},
∣C∣=q−1

W t
C(st),

the associated set of coalitions that achieve the minimum cost by

Ct(st) ≡ {C ⊆ N / {pt(st)} ∶ ∣C ∣ = q − 1, and W t
C(st) =W t(st)} ,

and the cheapest policies required to secure the support of such coalitions as

X t(st) ≡ {x ∈ X ∶ ∃C ∈ Ct(st) such that xi = δiV t+1
i (st)∀i ∈ C and xpt(st) = 1 −W t(st)} .

Plainly, every coalition C in Ct(st) includes q − 1 players (other than the proposer) with the
weakly lowest discounted continuation value. The set of policies X t(st) is that which offers discounted
continuation values to these cheapest minimal winning coalition partners, 0 to others, and the rest
to the proposer pt(st). Observe that the maximum offered to any player other than pt(st) is the
same for all proposals in X t(st): i.e., there exists xt(st) such that for every offer x ∈ X t(st), xt(st) =
maxi≠pt(st) xi.
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Lemma 1 (Immediate Agreement). For every t in T and structural state st in St, every MPE
proposal offered with strictly positive probability is accepted with probability 1.

Proof. Suppose there is a structural state st in St such that an equilibrium proposal offered with
strictly positive probability in period t, x′, is rejected with strictly positive probability. Select some
x ∈ X t(st) and let C in Ct(st) be an associated minimal winning coalition (excluding the proposer).
Define a proposal xϵ for small ϵ ≥ 0 in which xϵ

i = xi+ϵ for every i ∈ C, xϵ
i = 0 for every i ∉ C ∪{pt(st)},

and the proposer keeps the remainder. In equilibrium, the proposal xϵ is accepted by all members of
C with probability 1 if ϵ > 0. Observe that because ∑j∈N V t+1

j (st) ≤ 1, and δ̂ < 1,

∑
i∈C

δiV
t+1
i (st) + δpt(st)V t+1

pt(st)(st) ≤ δ̂ ∑
j∈N

V t+1
j (st) < 1. (1)

Therefore, for sufficiently small ϵ, the proposer’s share of 1 −∑i∈C δiV t+1
i (st) − (q − 1)ϵ exceeds her

discounted continuation value of δpt(st)V t+1
pt(st)(st). Conditional on the equilibrium proposal x′ being

rejected, the proposer is strictly better off deviating to xϵ for sufficiently small ϵ > 0. Conditional
on the equilibrium proposal x′ being accepted, the proposer’s share can be no greater than that she
obtains when offering x (otherwise a winning coalition would not support it). Since proposal x′ is
rejected with strictly positive probability, she is strictly better off offering xϵ for sufficiently small
ϵ > 0. Therefore, no equilibrium offer is rejected with strictly positive probability.

Lemma 2 (Minimal Winning Coalition). For every t in T and structural state st in St, every MPE
proposal offered with positive probability provides positive payoffs only to members of the cheapest
minimal winning coalition: x ∈ X is an MPE proposal in st only if x ∈ X t(st).

Proof. Any proposal in which the proposer shares less than W t(st) with others is rejected with
probability 1, and so Lemma 1 rules out such MPE proposals. If the proposer shares strictly more
than W t(st) with others, deviating to the proposal xϵ defined in the proof of Lemma 1 is strictly
profitable for sufficiently small ϵ > 0.

Proof of Theorem 1. Let the structural state in Stage 1 of period 0 be s0, and consider x0(s0), the
highest equilibrium share that the proposer p0(s0) offers to any player other than herself with strictly
positive probability. Suppose towards a contradiction that x0(s0) > 0. By Lemmas 1-2, we know that
every MPE offer is made to a minimal winning coalition and accepted. Consider the set of players
whose support cannot be secured for shares less than x0(s0):

H0(s0) ≡ {i ∈ N /{p0(s0)} ∶ δiV 1
i (s0) ≥ x0(s0)} .

H0(s0) must have cardinality of at least n − (q − 1), because otherwise proposer p0(s0) could form a
cheaper coalition without having to offer x0(s0) to any player. Since the recognition process exhibits
one-period predictability of degree q, H0(s0)⋂L1(s0) is non-empty. Consider a generic player i in
H0(s0)⋂L1(s0): player i definitely will not be the proposer in the next period, and his continuation
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value must therefore reflect an offer he receives. So there exists some structural state s1 ∈ S1 such
that the associated proposer offers player i at least x0(s0)

δi
≥ x0(s0)

δ̂
with strictly positive probability.

Therefore, the highest share offered by that proposer to another player, x1(s1), must be no less than
x0(s0)

δ̂
.

The same logic applies in period 1 and in the structural state s1. So by induction, there exists a
sequence of states {st}t∈T such that for each t, st ∈ St, and xt(st) ≥ x0(s0)

δ̂t
. If t =∞, δ̂ < 1 implies that

xt(st) eventually exceeds 1; if t <∞, the same argument implies that the proposer in the final round
offers a strictly positive share to another player. In both cases, we have reached a contradiction.

5 Extensions
In this section, we consider several extensions of our framework, pointing out that (i) the proposer
captures nearly all of the surplus if he can “almost” rule out q other players; (ii) our analysis can
be generalized to encompass more general coalitional structures; (iii) the proposer captures the
entire surplus even if payoffs are not transferrable and more equitable distributions generate greater
aggregate surplus; and (iv) our findings generalize to settings in which the recognition of proposers
depends not only on procedural rules and random events, but also on political maneuvering.

5.1 Robust Predictability

A feature of our main result is that it requires a degree of certainty (concerning the identities of
individuals who will not make the next proposal). In this section, we show that this strict requirement
is qualitatively inessential: if q players are recognized with probability of at most ϵ > 0 tomorrow,
the first proposer’s does not offer more than δ̂ϵ

1−δ̂(1−ϵ) to any player. Formally, for every ϵ ∈ [0,1), we
define the set of almost losers:

Lt+1
ϵ (st) ≡ {i ∈ N ∶ rt+1i (st) ≤ ϵ} .

In other words, based on all available information available at the period t proposal stage, the
probability that any player in Lt+1

ϵ (st) will be recognized as the period t + 1 proposer is at most ϵ.
The cardinality of this set determines the degree of ϵ-predictability.

Definition 2. The recognition process exhibits one-period ϵ-predictability of degree d if ∣Lt+1
ϵ (st)∣ ≥

d for all st in St and t in T .

Theorem 2. Suppose the voting rule is non-unanimous, requiring q < n votes for a proposal to pass.
If the recognition process exhibits one-period ϵ-predictability of degree q, then in every MPE, the
proposer selected at t = 0 does not offer more than δ̂ϵ

1−δ̂(1−ϵ) to any other player.

Thus, if there are sufficiently many players who are unlikely to be recognized, the first proposer
captures almost the entire surplus in every MPE. The logic of the argument closely resembles that
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given for Theorem 1: we show that if the proposer at t = 0 offers any player a share that exceeds
δ̂ϵ

1−δ̂(1−ϵ) , then there must exist some future state in which the proposer offers at least one player more
than the entire surplus. In contrast to the proof of Theorem 1, the maximum amount offered to an
almost loser does not increase geometrically; however, when initialized at a level exceeding δ̂ϵ

1−δ̂(1−ϵ) ,
it grows according to an “expansive” mapping that upon repeated iteration escapes the feasible set.

5.2 General Coalition Structures

Our main result generalizes to settings with more complex coalitional structures, as studied in the
context of multilateral bargaining by Banks and Duggan (2000). We will say that a coalition of
players is decisive if approval of an offer by all members of the coalition results in its implementation.
Let D ⊂ 2N denote the set of decisive coalitions. As is conventional, we assume that D satisfies
monotonicity: if D is decisive and D ⊆ D′, then D′ is decisive. This general structure provides
tremendous flexibility for modeling coalitional power; e.g., it encompasses settings in which players
have unequal voting weights, as well as those with individual or coalitional veto power.10

We generalize our notion of one-period predictability as follows:

Definition 3. The recognition process exhibits one-period decisive predictability if for all st in
St and t in T , there exists a decisive coalition D in D such that:

(a) D includes the proposer at time t, pt(st), and
(b) every other player in D definitely will not be recognized at t + 1, i.e., D/ {pt(st)} ⊆ Lt+1(st).

For the special class of anonymous aggregation rules—i.e. D is in D if and only if ∣D∣ ≥ q—
one-period decisive predictability actually weakens one-period predictability of degree q, insofar as
it requires only that q − 1 players other than the current proposer definitely will not be the next
proposer. The vital implication of predictability is that the current proposer can form a decisive
coalition with players who definitely will not be recognized in the next period; for Theorem 1, we
invoked predictability of degree q (rather than q − 1) so as to avoid stating a condition that depends
on the identity of the proposer. The following theorem generalizes our earlier result:

Theorem 3. If the recognition process exhibits one-period decisive predictability, the proposer selected
at t = 0 captures the entire surplus in every MPE.

While the logic is similar to that of Theorem 1, the argument has to address the constraints a
proposer faces in choosing a decisive coalition. In particular, it is no longer the case that all those
excluded from an equilibrium coalition necessarily have lower discounted continuation value than
those who are included. Instead, the argument proceeds by analyzing the cost of each coalition. We
establish that coalitions formed with players who definitely will not be the next proposer must have
zero cost; otherwise, there is some state in which a proposer offers more than is feasible.

10In the related literature on coalitional bargaining (Chatterjee, Dutta, Ray and Sengupta 1993; Ray 2007), each
coalition is assigned an aggregate value that it can achieve irrespective of whether others oppose it. The framework
that we adopt here implicitly assigns coalitions in D a value of unity and all other coalitions a value of zero.
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5.3 Beyond Pure Distribution: Non-Transferable Utility

The implications of predictable recognition processes extend to environments with non-transferable
utility. Suppose the policy space is X , and player i’s stage payoff from policy x is ui(xi) where, for
each i, ui(⋅) is strictly increasing, continuous, and concave, with ui(0) = 0. Player i’s discount factor
is δi, and perpetual disagreement yields a payoff of 0. The following analog of Theorem 1 holds in
this setting:

Theorem 4. If the recognition process exhibits one-period predictability of degree q, the proposer
selected at t = 0, player i, obtains a payoff of ui(1) in every MPE.

Two interesting implications follow from Theorem 4. First, heterogeneity in risk-aversion, as
captured by the concavity of ui(⋅), may be less important in negotiations when bargaining power
is predictable and unanimity is not required.11 Second, even in settings where equality promotes
aggregate efficiency (e.g., because all utility functions are identical and strictly concave), a high
degree of inequality still prevails. Thus, predictability of the recognition process exacerbates both
inequity and inefficiency.

5.4 Political Maneuvers

Our results extend seamlessly to environments in which players can maneuver for bargaining power
or otherwise influence the selection of future proposers. Suppose that in each period t, prior to the
arrival of information and the selection of a proposer, each player i (potentially including a Chair,
denoted i = 0, in addition to the negotiators) chooses a (potentially) costly maneuver mt

i from some
set Mi, and that the entire history of maneuvers up to that point (in addition to past random shocks
and proposers) influences recognition in period t.

In this setting, it is useful to distinguish between two forms of predictability. The first is uncondi-
tional predictability, defined as follows: at the end of period t, it is possible to rule out a fixed set of q
players as the next proposer irrespective of period t+1 maneuvers. Theorem 1 applies to this setting
with only slight modification. A weaker notion is that of conditional predictability, defined as follows:
at the end of period t, it is possible to rule out some set of q players as the next proposer for each
profile of period t + 1 maneuvers (where the set may depend on the maneuver profile). Under that
condition, our main result follows for all pure strategy MPE: because players can accurately predict
future maneuvers in any such equilibrium, the period-t proposer can still form a winning coalition
with players who will definitely not be the next proposer. Since the logic of these arguments mirror
that of Theorem 1, we relegate formalizations to the Online Appendix.

As an application, suppose a Chair is endowed with the power to choose the proposer at the
outset of each period from a set of eligible candidates (which may be history-dependent). Because
the recognition process satisfies conditional predictability of degree n − 1 ≥ q, the first proposer

11Our analysis thus complements previous work on the implications of risk-aversion in bilateral bargaining problems
wherein recognition is perfectly predictable (Roth 1985; Binmore, Rubinstein and Wolinsky 1986).
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captures the entire surplus in every pure strategy MPE. While randomization on the part of the
Chair could overturn this conclusion, a deterministic choice is more intuitively compelling when the
Chair has favorites among the negotiators; i.e., for every policy x and pair i and j such that xi ≠ xj,
the Chair has strict preferences between x, and the policy xi↔j that exchanges the allocations for i
and j. Thus, a Chair who fails to project inscrutability may have to choose between highly unequal
distributions of surplus even if she favors equality.12

6 Imperfect Predictability
This section examines a tractable subclass of the environments subsumed by our framework, with
the object of illuminating the spectrum of possibilities between one-period predictability of degree
zero, as in Baron and Ferejohn (1989), and of degree q, as in Theorem 1. We show that increases in
the degree of predictability increase the expected share captured by the first proposer.

As in Baron and Ferejohn (1989), suppose that proposer recognition is governed by an i.i.d.
process, and that in every period, each player has an equal chance ( 1n) of being recognized. Suppose
that players receive a potentially informative signal about the period-t proposer in period t − 1. We
represent the signal by the posterior beliefs it induces: for a fixed vector of probabilities λ (such that
λ1 ≤ λ2 ≤ . . . ≤ λn) governing the selection of the period-t proposer, the signal reveals which player i
is assigned to which probability λj.13 For simplicity, we suppose that all players are equally patient,
with a common discount factor of δ. The Baron and Ferejohn (1989) framework corresponds to the
special case where λ1 = . . . = λn = 1

n , which exhibits one-period predictability of degree 0. Example
1 in Section 2 (“One-Period-Ahead Revelation”) corresponds to 0 = λ1 = . . . = λn−1 < λn = 1, which
exhibits one-period predictability of degree n − 1.

We characterize the MPE for this model as follows. Let wi denote the continuation value for
a player who will be selected as the next proposer with probability λi. In equilibrium, proposers
will assemble the cheapest possible minimal winning coalitions by including the players who are least
likely to be recognized tomorrow. Thus, we obtain the following recursive formula for the continuation
value:

wi = λi

⎛
⎝
n − q + 1

n
(1 − δ

q−1

∑
j=1

wj) +
1

n

q−1

∑
k=1
(1 − δ

q

∑
j=1,j≠k

wj)
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Expected Proposer Surplus

+(1 − λi)δ (
q−1

∑
j=1

wj

n
+
(q − 1)wq

n(n − 1)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Included in MWC

.

The first term in this expression represents the player’s continuation value conditional upon being
recognized as the proposer. It encompasses two distinct possibilities: either she is among the n−q+1
players most likely to be recognized, in which case she purchases the cheapest q−1 votes (i.e., those of

12Even if the negotiators are not entirely sure of the Chair’s preferences, similar conclusions would follow provided
they can confidently rule out a sufficient number of possibilities.

13It is straightforward to formulate a signal space with n! possible realizations that induces this family of posterior
beliefs.
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the players least likely to be recognized), or she is among the q−1 players least likely to be recognized,
in which case she purchases the q −1 cheapest votes other than her own. The second term represents
the player’s continuation value conditional upon another player being recognized as the proposer. It
reflects the same considerations: the player assigned the recognition probability λq is included in the
minimal winning coalition if and only if the current proposer is assigned a weakly lower probability.
This recursive formulation generates n linear equations with n unknowns, and consequently has a
unique solution.

We use this approach to derive the closed-form solution of the three player game.

Example 1. Suppose there are three players who make decisions based on simple majority rule. As
δ → 1, the expected proposer surplus converges to

PS(λ1, λ2) ≡
2

3
(1 −w1) +

1

3
(1 −w2) =

2λ1 + λ2 + 3
6λ1 + 3λ2 + 3

.

When λ1 = λ2 = 1
3 , the preceding term is 2

3 , which coincides with the solution in Baron and Ferejohn
(1989). Greater predictability monotonically increases the proposer’s share: if λ1 ≥ λ′1 and λ2 ≥ λ′2,
then PS(λ1, λ2) < PS(λ′1, λ′2). Thus, an increases in predictability results in the proposer capturing
a larger share of the surplus.

The proposer’s ability to capture rents also depends on the relative power of the other players.
Holding fixed λ3, the first proposer’s share increases along with the size of the disparity between λ1

and λ2: using ∆ ≡ λ2 − λ1, the first proposer’s share can be re-written as

PS = 9 − 3λ3 −∆
15 − 9λ3 − 3∆

,

which is increasing in both λ3 and ∆. Intuitively, greater inequality in predicted bargaining power
decreases the cost of buying the vote of the weakest coalition partner.

We can use this approach to investigate the implications of one-period predictability of degree d

for d < q, in the special case where d players learn one period in advance that they definitely will not
the next proposer, while the remaining n− d players learn that they are equally likely to be the next
proposer; formally, λ1 = . . . = λd = 0 and λd+1 = . . . = λn = 1

n−d .
In this setting, we can write continuation values as w for players 1, . . . , d and w for players

d + 1, . . . , n. To solve for these values, we compute w recursively and then make use of the fact that
all continuation values must sum to 1 (since there is no delay). Relegating the algebra to the Online
Appendix, we find that

w = (n − 1)(n − δd)
n((n − 1)(n − d) − δd(n − q))

, and

w = δ(n(q − (d + 1)) + d)
n((n − 1)(n − d) − δd(n − q))

.
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The above terms are strictly positive for non-unanimous rules (q < n) when the degree of predictability
d is strictly less than q. The first proposer’s expected share is

1 − δ + δ(n − q)w + δ/n.

Using this solution, we can determine the effect of d, the number of players who definitely will not
make the next offer, on the proposer’s payoff for the case of d ≤ q:

Theorem 5. Suppose the voting rule is non-unanimous, and the recognition process exhibits one-
period predictability of degree d ≤ q. For every δ > 0, the share obtained by the first proposer is strictly
increasing in d.

Thus, the conceptual message of Theorem 1 generalizes beyond the case of d ≥ q: when d ≤ q,
greater one-period predictability (measured according to the degree d) implies greater proposer power.

Our second result characterizes the proposer’s (approximate) share in large legislatures. Consider
a sequence of games (Gn)n=3,4,... such that game Gn has n players, requires qn votes for approval of a
proposal, and exhibits one-period predictability of degree dn. We say that the sequence is convergent
if there exists αv and αp such that qn/n→ αv and dn/n→ αp. Our next result identifies the proposer’s
limiting share in a convergent sequence of games.

Theorem 6. Consider a convergent sequence of games (Gn)∞n=3 in which αv is the limiting proportional
voting rule and αp is the limiting proportional degree of one-period predictability. For every ϵ > 0,
there exists n such that if n > n, the share of the surplus captured by the first proposer is within ϵ of
1 − δ(αv−αp)

1−αp(1+δ(1−αv)) if αp ≤ αv, and 1 otherwise.

This expression shows how one-period predictability of a less-than-decisive degree influences the
first proposer’s share in the limit. For αp = 0, the proposer’s share corresponds to that found by Baron
and Ferejohn (1989). Increases in the limiting degree of one-period predictability (as measured by
αp) improve the outcome for the first proposer, consistent with the conceptual message of Theorem 5.
Moreover, for αp < αv, the proposer’s share is a convex function of αp.14

Two additional implications of Theorem 6 merit emphasis. First, even if the votes required for
passage (qn) exceed the degree of one-period predictability (dn), the proposer’s share will converge to
unity as the legislature becomes arbitrarily large provided the difference between qn and dn remains
bounded (because then qn

n −
dn
n converges to zero). Second, as the voting rule converges to una-

nimity, the first proposer’s limiting share converges to 1 − δ irrespective of the degree of one-period
predictability. Thus, we see once again that the source of the proposer’s power is the combination
of a predictable recognition process and an ability to exclude some players from a minimal winning
coalition.

14The second derivative of the proposer’s share with respect to αp is 2δ(1−αv)(1−δαv)(1+δ(1−αv))
(1−αp(1+δ(1−αv)))3 > 0.
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7 Institutions That Counter Predictability
In this section, we discuss how offering players opportunities to veto or amend proposals can counter
the tendency for multilateral negotiations to generate inequitable outcomes when future bargaining
power is highly predictable.

7.1 Vetoes

Veto rights can play a critical role in moderating a proposer’s power, and when the recognition
process exhibits predictability, the difference in outcomes for those with and without veto power is
more stark. Because a player with veto power can delay agreement for multiple periods, she can
hold out for a strictly positive share of the total surplus even if she definitely will not be the next
proposer.

Suppose that passage of a proposal requires the support of players 1, . . . , k and at least q − k of
the remaining n − k players, where necessarily k ≤ q < n. This is a special case of the coalitional
framework studied in Section 5.2, but instead of focusing on one-period decisive predictability, we
examine the implications of one-period predictability of degree q (which is weaker).

Theorem 7. If the recognition process exhibits one-period predictability of degree q, then in every
MPE, the proposer selected at t = 0 shares the surplus only with veto players.

A player without veto power obtains a strictly positive payoff only if she is the first proposer. The
contrast between the shares obtained by veto and non-veto players is more stark than for completely
unpredictable recognition processes; in the latter settings, some non-veto players may receive positive
shares even when another player is the proposer.

The amount that veto players extract in equilibrium depends on the recognition process. To
illustrate their power, suppose that all players are equally patient and consider the “One-Period-
Ahead Revelation” recognition process described in Section 2: in each period t ≥ 1, each player has
a 1/n chance of being the proposer, but uncertainty is fully resolved in the preceding period (which
implies one-period predictability of degree n − 1). In the MPE of this model, the proposer today
must share surplus with all veto players (because they can block agreement today), and must share a
larger fraction of the surplus with any veto player who is identified as tomorrow’s proposer (because
he has an even greater incentive to block agreement today); in contrast, the proposer today does not
need to share surplus with any non-veto player who is identified as tomorrow’s proposer, since he
can exclude that player from the minimal winning coalition. With these considerations in mind, we
derive the recursive equations and solutions for the continuation values of a veto player identified as
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the proposer at t + 1 (wP ), and a veto player not identified as the proposer at t + 1 (wV ):

wP =
k − 1
n
(1 − δ(k − 2)wV − δwP ) +

n − k + 1
n

(1 − δ(k − 1)wV ) =
n(1 − δ) + δ
n(1 − δ) + δk

,

wV = δ (
wP + (n − 1)wV

n
) = δ

n(1 − δ) + δk
.

The first equation, which describes the continuation value of a veto player who is identified as
tomorrow’s proposer, encompasses two distinct possibilities, defined according to whether he learns
that another veto player is the proposer at t+2 (which occurs with probability (k−1)/n). The second
equation, which describes the continuation value of a veto player who is definitely not the proposer
at t + 1, encompasses the possibility that he is identified as the proposer at t + 2 (which occurs with
probability 1/n), and that he is not.

Thus, the proposer at t = 0 shares 0 with each non-veto player, δwV with each veto player other
than the proposer for t = 1, and δwP with the veto player who will be the proposer at t = 1 (if one
exists). As δ → 1, all veto players split the surplus equally as both wP and wV converge to 1

k .15

7.2 Amendments

So far we have analyzed a “closed rule” setting in which there is no opportunity to amend a proposal
before voting on it. In contrast, many legislatures employ “open rule” procedures that allow for
amendments and require a motion to bring any (possibly amended) proposal to a vote. As we explain
in this section, such procedures weaken the first proposer’s ability to capitalize on a predictable
recognition process, but only to a limited degree.

We model open-rule bargaining by generalizing the framework of Baron and Ferejohn (1989). For
simplicity, we take the number of legislators to be odd and assume they employ simple majority rule.
At the beginning of period 0, the first proposer p0 names a policy x in X . A slate of k distinct
amenders A0(p0) = (a01, . . . , a0k) is then drawn at random (with equal probabilities) from N /{p0}.
First a01 chooses whether to offer an amendment or move the proposal. To offer an amendment, a01
names an alternative policy x′ in X /{x}. The legislature then votes between x and x′. Round 0 ends
and round 1 begins, with the winning policy (either x or x′) serving as the proposal on the table. A
new list of amenders (A1(p0) or A1(a0i )) is chosen, and the process starts over. If instead a01 moves
the proposal, a02 is recognized, and must likewise either offer an amendment or join the pending
motion. As long as amenders join the motion, the process moves sequentially through A0(p0). If
every amender joins the motion, then the policy x is put to a vote. Should a strict majority vote
in favor, the policy is implemented; otherwise, round 0 ends and round 1 begins with the random
selection of a new proposer p1, as well as amenders A1(p1). Players discount payoffs across (but

15As δ → 1, predicted shares are the same regardless of whether the recognition process is predictable: veto players
in Baron and Ferejohn (1989) also collectively appropriate the entire surplus whenever players are perfectly patient.
However, in contrast to our setting, non-veto players obtain some share of the surplus from the proposer whenever
δ < 1.
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not within) rounds at a common rate (δ < 1), and consequently incur the costs of delay whenever a
proposal is amended or rejected.

Baron and Ferejohn (1989) study a special case of this open-rule procedure in which the slate
of amenders consists of a single individual (k = 1), and the amender in period t also serves as the
proposer in period t if there is no proposal on the table. We consider, as they do, a symmetric
recognition process in which each player has the same probability of becoming a proposer, and
conditional on the choice of proposer, each list of amenders is drawn from the remaining players
with uniform probabilities. Because our objective is to determine whether an amendment process
counters the effects of a predictable recognition process, we depart from Baron and Ferejohn (1989)
by assuming that the bargaining process satisfies perfect one-period predictability, defined as follows:
in each period t, players know the identities of the proposer in period t+ 1 (who becomes active only
if proposal in period t is moved and then rejected) and the set of amenders in period t + 1 for each
possible contingency. The following result characterizes the extent to which an open rule moderates
the tendencies identified in Theorem 1.

Theorem 8. Suppose the recognition process for open-rule bargaining exhibits perfect one-period
predictability. Then there exists a pure strategy MPE that reaches the following agreement without
delay: the first proposer offers δ

1+δk to each amender and 0 to every other player, keeping 1
1+δk for

herself.

Thus, when bargaining power is predictable, an open rule promotes greater equity than a closed
rule.16 The open-rule process ensures that a proposer must share surplus with those who can offer
amendments. The special case of a single amender (k = 1), studied by Baron and Ferejohn (1989),
deserves emphasis, in that the proposer offers δ

1+δ to the amender and keeps 1
1+δ for himself. In-

terestingly, this outcome coincides exactly with the result of two-player bargaining in Rubinstein
(1982).

8 Concluding Remarks
In practice, bargaining power flows from a variety of sources. Often future bargaining power is
predictable, at least to some extent. The central observation motivating our analysis is that such
predictability can dramatically influence the outcomes of multilateral negotiations when passage of
a proposal does not require unanimous consent. Predictability of future bargaining power becomes
a critical source of current power, one that can dominate the effects of heterogeneity in patience,
risk-aversion, or voting weights. Predictability need not be perfect to influence negotiations. On the
contrary, a modest degree of predictability ensures that the first proposer receives the entire surplus,

16Through an argument that involves comparing the best and worst possible equilibrium payoffs for a proposer, one
can show that the MPE outcome is unique among all those in which the proposer shares surplus only with amenders.
We conjecture that this is the unique MPE outcome more generally, but have not yet proven that every MPE outcome
offers 0 to those not in p0 ∪A0(p0).
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and below that threshold greater predictability implies a larger share for the proposer. Thus, our
theory yields implications that are both testable and useful for understanding why certain groups
divide resources less equally than others. Our results also offer insight into institutional design; for
example, they explains how veto rights and amendment processes can limit the power of the first
proposer and thereby promote more equitable outcomes.

As in many models of coalition formation and multilateral bargaining, all information is public.
Our results nevertheless extend to settings in which there is some private information but sufficient
common knowledge. For example, suppose it is common knowledge that each of at least q players
privately learns that he will not be the next proposer. Then there exists an MPE in which each
proposer offers to share nothing, and each of the aforementioned players vote in favor. More generally,
when individuals privately learn about the bargaining process, each has a motive to signal information
through his bargaining posture; however, each player has an incentive not to appear too greedy or
powerful lest he be excluded from the minimal winning coalition. The signaling motives that may
emerge when individuals are privately informed, and that complicate the process of competition in
coalition formation, are intricate and important subjects for further study.

Throughout our analysis, we have assumed that recognition probabilities depend only on the
history of random events and proposers (plus the history of political maneuvers in Section 5), but
not on past proposals and voting decisions. If the latter choices directly affected the subsequent
recognition process, they would become part of the (structural) state variable; Markov strategies
could then condition subsequent choices upon them, and a folk theorem would be difficult to avoid. A
tractable variation of the bargaining protocol that avoids these issues involves the notion of “rejector-
friendliness” (Chatterjee, Dutta, Ray and Sengupta 1993; Ray 2007): the first rejector of a proposal
(according to the sequential voting order) in period t is recognized with probability µ in the next
period, whereas all others are recognized with probability 1−µ

n−1 . The probability µ is meant to capture
“rejector-power,” which is maximized at µ = 1 and minimized at µ = 0. Ray (2007) exhibits an
interesting example in which the first proposer can capture the entire surplus when µ = 0 and
unanimous consent is required. Although our setting is quite different—in our model, bargaining
power is non-stationary and independent of prior voting decisions, rather than the other way around—
there appears to be an intriguing connection, which we hope to explore in future work.17

An important assumption made throughout our analysis is that each individual is indifferent
between all outcomes for which she receives the same share, irrespective of how the residual share is
distributed among other negotiators. If externalities are present, one can reformulate policies as points
in utility space and proceed as in Section 5.3. However, in some instances natural restrictions on the
policy space will defeat the logic of Theorem 4. To illustrate, suppose the parties are negotiating
over the level of a public good, and no side-payments are possible. In that case, the policy space is
one-dimensional, and it is natural to assume that each player has single-peaked preferences, so that a
Condorcet winner exists. With majority rule and standard (unpredictable) recognition processes, the

17We thank Debraj Ray for drawing our attention to rejector-friendliness and its connection to our work.
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negotiated outcome cannot stray far from the Condorcet winner as players become patient (Jackson
and Moselle 2002; Cho and Duggan 2009). We conjecture that a similar result holds even with
predictable recognition processes. As a general matter, when the negotiators have preferences that
are more congruent than is the case for the settings studied herein, they may naturally coordinate
so as to block the first proposer from exploiting power that would otherwise flow from an ability to
predict future bargaining strengths.

A Appendix
Proof of Theorem 2 on p. 16. We first describe the function that we use as a lower bound on
the amount a proposer must share with at least one other party. Consider the function f ∶ R → R

defined by f(y) ≡ y−δ̂ϵ
δ̂(1−ϵ) . Observe that f has a unique fixed point, namely ŷ = δ̂ϵ

1−δ̂(1−ϵ) . The function
f is both strictly increasing and expansive: for each y > ŷ, an induction argument establishes that

fk(y) − ŷ = ( 1

δ̂(1 − ϵ)
)
k

(y − ŷ).

Since δ̂(1 − ϵ)<1, it follows that for each y > ŷ, there exists a finite k such that for every k > k,
fk(y) > 1. We use this observation to prove this result.

Let the structural state in Stage 1 of period 0 be s0 and consider x0(s0), the highest equilibrium
share that the proposer p0(s0) offers to any player other than herself. Suppose towards a contradiction
that x0(s0) > δ̂ϵ

1−δ̂(1−ϵ) . Exactly as by the argument of Theorem 1, if the recognition process exhibits
one-period ϵ-predictability of degree q, there must exist some player i in H0(s0)⋂L1

ϵ(s0). Player i’s
continuation value V 1

i (s0) emerges from the ϵ probability that he is recognized and the rents he then
captures, and the amounts offered to him if someone else is recognized. Since player i’s payoff from
being the proposer is bounded above by 1, there must exist some structural state s1 ∈ S1 in which
player i is not the proposer and his expected share x̃1

i (s1) satisfies

V 1
i (s0) ≤ ϵ + (1 − ϵ)x̃1

i (s1).

Because the greatest share offered to any non-proposer, x1(s1) must exceed x̃1
i (s1), and player i’s

discounted continuation value in state s0 weakly exceeds x0(s0), it follows that

x0(s0)
δ̂
≤ V 1

i (s0) ≤ ϵ + (1 − ϵ)x1(s1)

or re-arranging that x1(s1) ≥ f (x0(s0)). Since f is strictly increasing and expansive, we are guaran-
teed that f (x0(s0)) > x0(s0), which is greater than δ̂ϵ

1−δ̂(1−ϵ) . Therefore, the same argument applies
in state s1. Accordingly, there exists a sequence of states {st}t∈T such that for each t, we have
xt(st) ≥ f t (x0(s0)), and x0(s0) > ŷ. Our earlier observation implies that if t =∞, a proposer eventu-
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ally offers a share exceeding 1 to another player in some state, or if t <∞, a proposer in the final round
offers a strictly positive share to another player. In both cases, we have reached a contradiction.

Proof of Theorem 3 on p. 17. Lemma 1 extends seamlessly to this environment, so every MPE
proposal is accepted with probability 1. To extend Lemma 2 to this setting, recall that W t

C(st) is
the sum of discounted continuation values for a coalition C. Let

W̃ t(st) ≡ min
C⊆N /{pt(st)},
C∪{pt(st)}∈D

W t
C(st),

be the cost of the cheapest decisive coalitions for proposer pt(st). We denote the cheapest decisive
coalition partners as

C̃t(st) ≡ {C ⊆ N / {pt(st)} ∶ C ∪ {pt(st)} ∈ D and W t
C(st) = W̃ t(st)} ,

and the proposals that involve creating such coalitions as

X̃ t(st) ≡ {x ∈ X ∶ ∃C ∈ C̃t(st) such that xi = δiV t+1
i (st)∀i ∈ C and xpt(st) = 1 − W̃ t(st)} .

Lemma 2 generalizes insofar as every MPE proposal offered with positive probability in state st must
be in X̃ t(st). Recall that ξi,tP (st) is the equilibrium mixed action selected by proposer pt(st) at state
st: for a proposal x in X̃ t(st), let ξi,tP (st)(x) denote the equilibrium probability with which proposer
pt(st) makes that proposal at state st. We prove an additional lemma for this setting bounding the
continuation value at time t for the coalition of losers.

Lemma 3. Consider a time period t < t and a structural state st. The following relates costs of
coalitions across periods:

W t
Lt+1(st)(s

t) ≤ δ̂∫
St+1

W̃ t+1(st+1)dµ (st+1 ∣ st) .

Proof. Observe that by definition of W t
C(st), and using δi ≤ δ̂,

W t
Lt+1(st)(s

t) = ∑
i∈Lt+1(st)

δiV
t+1
i (st) ≤ δ̂ ∑

i∈Lt+1(st)
V t+1
i (st). (2)

Consider any player i in Lt+1(st): such a player is recognized with probability 0 in period t + 1. In
other words, given st, for each feasible continuation structural state in period t+ 1, st+1 ⊂ st, player i
is distinct from the proposer pt+1(st+1). Therefore, player i can only expect to obtain strictly positive
payoffs in period t + 1 in structural states st+1 in which the proposer pt+1(st+1) makes an offer that
offers a strictly positive share to player i. In such a scenario, he is offered his discounted continuation
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value, namely δiV t+2
i (st+1). Therefore, for every player i in Lt+1(st),

V t+1
i (st) = ∫

St+1
δiV

t+2
i (st+1) ∑

x∈X̃ t+1(st+1)
1xi>0ξ

i,t+1
P (st+1)(x)dµ (st+1 ∣ st) . (3)

We substitute (3) into (2):

W t
Lt+1(st)(s

t) ≤ δ̂ ∑
i∈Lt+1(st)

∫
St+1

δiV
t+2
i (st+1) ∑

x∈X̃ t+1(st+1)
1xi>0ξ

i,t+1
P (st+1)(x)dµ (st+1 ∣ st)

= δ̂∫
St+1

∑
i∈Lt+1(st)

δiV
t+2
i (st+1) ∑

x∈X̃ t+1(st+1)
1xi>0ξ

i,t+1
P (st+1)(x)dµ (st+1 ∣ st)

≤ δ̂∫
St+1

∑
i∈N /pt+1(st+1)

δiV
t+2
i (st+1) ∑

x∈X̃ t+1(st+1)
1xi>0ξ

i,t+1
P (st+1)(x)dµ (st+1 ∣ st) ,

= δ̂∫
St+1

∑
x∈X̃ t+1(st+1)

ξi,t+1P (st+1)(x) ∑
i∈N /pt+1(st+1)

1xi>0δiV
t+2
i (st+1)dµ (st+1 ∣ st) ,

= δ̂∫
St+1

∑
x∈X̃ t+1(st+1)

ξi,t+1P (st+1)(x)W̃ t+1(st+1)dµ (st+1 ∣ st) ,

= δ̂∫
St+1

W̃ t+1(st+1)dµ (st+1 ∣ st) .

in which the first line is the substitution, the second line interchanges the sum and integral, the
third line uses the fact that for each st+1 ⊂ st, Lt+1(st) is a subset of N /pt+1(st+1), the fourth line
re-arranges terms by interchanging summation, the fifth line uses the fact that by definition, for each
x in X̃ t+1(st+1), ∑i∈N /pt+1(st+1) 1xi>0δiV

t+2
i (st+1) = W̃ t+1(st+1), and the sixth line uses the generalized

Lemma 2 to note that ∑x∈X̃ t+1(st+1) ξ
i,t+1
P (st+1)(x) = 1.

We now prove the theorem by contradiction. Suppose the state in Stage 1 of period 0 is s0, and
that a policy proposed with positive probability in which the proposer p0(s0) offers a strictly positive
amount, x, to another player, in which case W̃ 0(s0) ≥ x . Since the recognition process exhibits
one-period decisive predictability, there exists a set of coalition partners C that excludes p0(s0) such
that C⋃{p0(s0)} is in D, and C is a subset of L1(s0). By definition of W̃ that W̃ 0(s0) ≤ W 0

C(s0)
and by monotonicity that W 0

C(s0) ≤ W 0
L1(s0). Therefore, W 0

L1(s0) must be no less than x. Lemma 3
implies that there must exist a structural state s1 such that W̃ 1(s1) ≥ x/δ̂. Since W̃ 1(s1) is defined
to be the cost of the cheapest decisive coalition partners for proposer p1(s1), the same argument as
above implies that W 1

L2(s1)(s1) must also be no less than x/δ̂. Therefore, by induction, there exists a
sequence of states {st}t∈T such that for each t, st ∈ St, and W̃ t(st) ≥ x

δ̂t
. If t =∞, δ̂ < 1 implies that

W̃ t(st) eventually exceeds 1; if t < ∞, the same argument implies that the proposer at t does not
appropriate the entire surplus in some state st. In both cases, we have reached a contradiction.

Proof of Theorem 4 on p. 18. In this setting, we re-define the cost of a coalition, W t
C(st): for
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a state st and coalition C ⊆ N /{pt(st)}, let

W t
C(st) ≡∑

i∈C
u−1i (δiV t+1

i (st))

Given that V t+1
i (st) ∈ [0, ui(1)], δi ∈ (0,1), ui(0) = 0, and ui is strictly increasing and continuous, we

know that W t
C(st) is well-defined. Having re-defined W t

C(st), we define W t(st) and Ct(st) exactly
as before. We now write

X t(st) ≡
⎧⎪⎪⎨⎪⎪⎩

x ∈ X ∶ ∃C ∈ Ct(st) such that ∀i ∈ C, ui(xi) = δiV t+1
i (st)

and xpt(st) = 1 −W t(st)

⎫⎪⎪⎬⎪⎪⎭
.

In an equilibrium, let a(st) denote the (undiscounted) average of policies that are selected in the
continuation after rejection of the proposal in state st. Because ui is concave for each i and δi < 1,
we necessarily have ui(ai(st)) > δiV t+1

i (st) for all i. Consequently, for any coalition C, we have
W t

C(st) < ∑i∈C ai(st) ≤ 1. It follows that 1 −W t(st) > 0, and hence that X t(st) is non-empty.

No Delay: We first extend Lemma 1. Suppose there is a structural state st in St such that an
equilibrium proposal offered with strictly positive probability, x′, is rejected with strictly positive
probability. Select some x ∈ X t(st) and let C ∈ Ct(st) be the associated minimal winning coalition
(excluding the proposer). Define a proposal xϵ for small ϵ ≥ 0 in which xϵ

i = xi + ϵ for every i ∈ C,
xϵ
i = 0 for every i ∉ C ∪ {pt(st)}, and keeps 1− x(st)− (q − 1)ϵ for himself (which is feasible in light of

the the fact that 1−x(st) > 0). In the equilibrium, the proposal xϵ must be accepted by all members
of C with probability 1 if ϵ > 0. Observe that because ∑i∈N u−1i (δiVi (st)) < ∑i∈N ai(st) ≤ 1 and δ̂ < 1,

x(st) + u−1 (δpt(st)V t+1
pt(st) (st)) = ∑

i∈C
u−1i (δiV t+1

i (st)) + u−1 (δpt(st)V t+1
pt(st) (st))

≤ ∑
i∈N

u−1i (δiV t+1
i (st))

< 1.

Therefore, for sufficiently small ϵ > 0, we have

xϵ
pt(st) = 1 − x(st) − (q − 1)ϵ > u−1 (δpt(st)V t+1

pt(st) (st)) .

Thus, conditional on x′ being rejected, the proposer is discretely better off deviating to xϵ(st) for
sufficiently small ϵ > 0. Conditional on x′ being accepted, the proposer’s share can be no greater
than she obtains when offering x (because that offer delivers the share 1 − x(st)). Since proposal x′

is rejected with strictly positive probability, she is strictly better off offering xϵ for sufficiently small
ϵ > 0. Therefore, no equilibrium offer x′ can be rejected with strictly positive probability. ◻
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Minimal Winning Coalition: Lemma 2 extends readily to this setting: if the proposer pt(st)
chooses a policy outside X t(st), then she can profitably deviate to such a policy (plus tiny additional
payments to members of the minimal winning coalition) to obtain immediate agreement at a strictly
lower cost.

Establishing the Contradiction: Suppose that in an MPE, the first proposer p0(s0) chooses
a policy with xp0(s0) < 1 with strictly positive probability. Reasoning exactly as in the proof
of Theorem 1 (and defining x0(s0) analogously), there must exist a player i in L1(s0) such that
δiV 1(s0) ≥ ui(x0(s0)) for x0(s0) > 0. Therefore, there must exist some state s1 such that player i is
offered at least u−1i (ui(x0(s0))/δi) by p1(s1), which implies that x1(s1) ≥ u−1i (ui(x0(s0))/δi). Induc-
tion then implies that there exists a sequence of states (st)t∈T such that for each t ≥ 1, there exists j
such that xt(st) ≥ u−1j (uj(xt−1(st−1))/δj). If t <∞, then this fact implies that there must exist some
state in St such that the proposer in the final round chooses a policy that offers a strictly positive
share to another player, which is a contradiction. If t =∞, observe that:

1. For each player i, u−1i (ui(xi)/δi) > xi for every xi > 0, which implies that the sequence (xt(st))∞t=0
is strictly increasing.

2. Since there are finitely many players, there exists a player i∗ and an infinite subsequence of
periods {tk}∞k=0 such that ui∗(xtk−1(stk−1)) ≤ δi∗ui∗(xtk(stk)).

Plainly xt(st) is bounded above by 1 and since it is increasing, it must converge to a limit x∗ ≤ 1.
The two observations imply that ui∗(xt0(st0)) ≤ δki∗ui∗(x∗) for every k = 1,2, . . ., which implies that
xt0(st0) = 0. Since x0(s0) ≤ xt0(st0), we have contradicted our initial assumption that x0(s0) > 0.
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B Online Appendix

B.1 Omitted Proofs

Proof of Theorem 5 on p. 21. We begin by describing the system of equations used to solve for
w and w. It follows by recursive calculation that

w = (d
n
) δw + (n − d

n
)( d(q − d)
(n − 1)(n − d)

+ (n − d − 1)(q − 1 − d)
(n − 1)(n − d − 1)

) δw,

where d
n is the probability the individual will be a member of Lt+1(st) in the next period; (n−dn ) (

d
n−1) (

q−d
n−d)

is the probability the individual will not be a member of Lt+1(st) in the next period, the next period’s
proposer will be a member of Lt+1(st), and next period’s proposer will include the individual in the
winning coalition; and (n−dn ) (

n−d−1
n−1 ) (

q−1−d
n−d−1) is the probability the individual will not be a member

of Lt+1(st) in the next period, the next period’s proposer will not be a member of Lt+1(st), and the
next period’s proposer will include the individual in the willing coalition.

Combining this equation with

dw + (n − d)w = 1 (4)

yields the solutions in the text. Finally, the first proposer’s expected share can be represented as

(n − d
n
) (1 − dδw − (q − d − 1)δw) + (d

n
) (1 − (d − 1)δw − (q − d)δw)

= (n − d
n
) (1 − δ(1 − (n − d)w) − (q − d − 1)δw) + d

n
(1 − δ(1 − (n − d)w) + δw − (q − d)δw)

= (n − d
n
) (1 − δ + δ(n − q)w + δw) + d

n
(1 − δ + δ(n − q)w + δw)

= 1 − δ + δ(n − q)w + δ

n
,

where the first line follows from the fact that the first proposer is not a member of L1(s0) with
probability (n − d)/n, and is a member with probability d

n ; the second line uses (4); the third line
simplifies the expression; and the fourth line uses (4) again. The derivative of the proposer’s share
with respect to d is

δ(n − 1)(n − q)(n − δq − (1 − δ))
((n − 1)n − d(δ(n − q) + (n − 1)))2

,

which being strictly positive implies that the first proposer’s share is strictly increasing in d for
d < q.

Proof of Theorem 6 on p. 21. If αp > αv, then it follows that for sufficiently large n, dn > qn

in which case Theorem 1 implies that the first proposer captures the entire surplus. Suppose that
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αp ≤ αv. By our earlier result, the first proposer’s share is

1 − δ + δ

n
+ δ(n − qn)wn

=1 − δ + δ

n
+ δ(n − qn)(n − 1)(n − δdn)
n(n(n − 1) − dn(δ(n − qn) + n − 1))

=1 − δ + δ

n
+

δ(n−qn)
n

(n−1)
n
(n−δdn)

n
(n−1)

n − δdn(n−qn)
n2 − dn

n +
dn
n2

Taking limits as n→∞, qn/n→ αv, and dn/n→ αp, we obtain

1 − δ +
δ(1 − αv)(1 − δαp)
1 − δαp(1 − αv) − αp

= 1 −
δ(αv − αp)

1 − δαp(1 − αv) − αp

.

Proof of Theorem 7 on p. 22. The coalitional structure of vetoes and votes is a special case of
the framework studied in Section 5.2: every D ∈ D must contain players 1, . . . , k and at least q of
the remaining n − k players. We invoke the extensions of Lemma 1 and Lemma 2 described in the
proof of Theorem 3: for every state st, every MPE proposal generated in state st is accepted with
probability 1, and is in X̃ t(st).

Observe that if k = q, Theorem 7 follows from Lemma 2: any proposal in which a proposer offers
a strictly positive amount to a non-veto player is not in X̃ t(st).

Now suppose that k < q < n: it must be that there are at least two non-veto players. Ob-
serve that for every state st, there exists x̃t(st) such that for every offer x ∈ X̃ t(st), x̃t(st) =
maxi∉({pt(st)}∪{1,...,k}) xi. Our claim is that for every s0 ∈ S0, x̃0(s0) = 0. Suppose towards a con-
tradiction that x̃0(s0) > 0. Consider the set of non-veto players whose support cannot be secured for
shares less than x̃0(s0):

H̃0(s0) ≡ {i ∈ {k + 1, . . . , n}/{p0(s0)} ∶ δiV 1
i (s0) ≥ x̃0(s0)} .

H̃0(s0) must have cardinality at least n− (q − 1) because otherwise proposer p0(s0) would be able to
form a coalition of veto and non-veto players without having to offer x̃0(s0) to any player. Therefore,
H̃0(s0)⋂L1(s0) is no-empty. Therefore, there must exist some state s1 such that player i offered at
least x̃0(s0)/δi, which implies that x̃1(s1) ≥ x̃0(s0)/δ̂. By induction (as before), there must then exist
a state in which a proposer shares more than the entire surplus (if t =∞) or offers a strictly positive
share in t (if t <∞), both of which are contradictions.

Proof of Theorem 8 on p. 24. Define a policy x proposed by player p to be movable in period t

if xj ≥ δ
1+δk for each j in At(p). We write M t(p) for the set of movable policies by player p in period

t. Consider a strategy profile in which:
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1. In every period t for which there is no proposal on the table, the proposer pt offers δ
1+δk to each

amender and 0 to all others.

2. When voting on a proposal in period t that has been moved by each amender in At, each player
votes to accept the proposal unconditionally unless he is either the proposer pt+1 or an amender
in At+1(pt+1). The proposer in period t+1 votes to accept the proposal if and only if he obtains
at least δ

1+δk , and the amender votes to accept if and only if he obtains at least δ2

1+δk . Define a
proposal to be passable if it satisfies these conditions.

3. In period t, if the proposal on the table is movable, then each amender moves the proposal. If
it is neither movable nor passable, then assuming previous amenders have moved the proposal,
each ati offers an amendment to keep 1

1+δk for himself and share δ
1+δk with each amender in the

set At+1(ati). In the case where the proposal is passable but not movable, let i′ denote the last
amender for whom the amount offered is strictly less than δ

1+δk . For all i ≤ i′, ati offers the same
amendment just described. For all i > i′ (if any), ati moves the proposal.

4. When voting in period t between a proposal x proposed by player p and an amendment x′ by
player p′, each player i votes for x if and only if

• x ∈M t+1(p) and x′ ∈M t+1(p′), and xi > x′i,

• or x ∈M t+1(p) and x′ ∉M t+1(p′),

• or x ∉M t+1(p), x′ ∉M t+1(p′), and i is in At+1(p).

First, as a preliminary observation, we note that all movable proposals are passable. If k ≥ n−1
2 ,

then pt ∪ At(pt) has cardinality of at least n+1
2 , so the current proposer and amenders can pass a

proposal with no other support. According to the strategies, all members of that group will vote in
favor of a movable proposal, so it is passable. If k < n−1

2 , the set of players not in pt+1 ∪ At+1(pt+1)
has cardinality of at least n+1

2 , and can pass a proposal with no other support. According to the
strategies, all members of that group will vote in favor of a movable proposal, so it is passable.

We prove that, for this strategy profile, no player has a profitable deviation for any history by
considering each of the three roles separately: proposer, amender, and voter.

• Proposer: Suppose there is no offer on the table, so the proposer pt must make an offer: any
proposal that offers less than δ

1+δk to a player j in At is amended by that player and defeated.
Since no proposal accepted in equilibrium in the continuation game offers a higher discounted
expected payoff to the proposer pt than 1

1+δ , he has no incentive to deviate to any proposal
that offers less to amender j than δ

1+δk . Of the proposals that are accepted in equilibrium, the
equilibrium proposal maximizes the proposer’s payoff.

• Amender: Suppose first that the current proposal on the table in period t is movable. The
proposal is also passable, so moving it leads to its implementation (given continuation strate-
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gies), yielding a payoff of at least δ
1+δk for the amender. Amending the proposal cannot generate

a strictly higher payoff for the amender given prescribed behavior in the continuation game.

Next suppose the current proposal is neither movable nor passable. Moving the proposal results
in implementation of some other policy one period hence, with an expected discounted payoff
no greater than δ

1+δk (given continuation strategies). By proposing the amendment prescribed
by the equilibrium strategies, the amender can achieve a discounted payoff of δ

1+δk , which is
(weakly) greater.

Finally suppose the current proposal is passable but not movable. Amender ati′ (where i′ is
defined in part 3 of the description of the equilibrium strategies) plainly has a strict incentive
to amend the proposal by offering to keep 1

1+δk for himself and share δ
1+δk with each amender in

the set At+1(ati′) (given that this proposal will be implemented one period hence, and that no
proposal more favorable to i′ would be implemented). Anticipating this successful amendment,
each amender i playing prior to i′ has a strict incentive (by induction) to offer an analogous
amendment. For i > i′, ati can obtain an immediate payoff not less than δ

1+δk by moving the
proposal (because subsequent amenders will move it and it is passable), and cannot obtain a
greater discounted payoff by offering an amendment.

• Voting Decisions: By construction, players cast votes in favor of the alternative that yields
their highest continuation payoff.

B.2 Formal Results for Political Maneuvers

We formalize the conclusions discussed in Section 5.4, permitting legislators i = 1, . . . , n and the
Chair, i = 0, to choose (potentially) costly maneuvers mi in each period from some set Mi that has
persistent effects on recognition. We describe in order the timing of maneuvers, the recognition rule,
and the payoff relevant state. We then describe the appropriate predictability conditions and our
formal results.

Timing: At the beginning of period t, players engage in political maneuvers. Each player i simul-
taneously chooses an action variable mt

i from the feasible set of maneuvers, Mi, a non-empty and
compact subset of a Euclidean space. We write M ≡M0× . . .×Mn. The selected vector of maneuvers
in period t is mt = (mt

0, ...,m
t
n), which is observed by all players. We let ht

m = (m0, . . . ,mt) denote
the full history of maneuvers up to and including that of period t.

After the maneuvers are selected, players proceed to the Information and Recognition stage
described in Section 3. We let H t

m denote the set of possible histories of maneuvers up to and
including those of time t, and Hm = ⋃t∈T H t

m denote the set of all possible histories of maneuvers.
The period t recognition rule is represented by a deterministic function P̃ t ∶ H t

m ×H t−1
P × Ω → N in
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which H t−1
P is the set of possible proposer histories, and Ω is the state space. Because the state of

nature and the history of maneuvers recursively determines the entire sequence of proposers, we can
write the recognition rule more compactly as P t ∶ H t

m ×Ω → N . After the revelation of information
and recognition, the proposer pt proposes a policy in X and other votes in a fixed sequential order.
The proposal is implemented if and only at least q players (including the proposer) vote in favor.

Payoffs: We augment each legislator’s payoff in Section 3 with that from maneuvers; substantively
we assume that no legislator has any interest in prolonging negotiations because he intrinsically enjoys
the process of political maneuvering. Formally, for a history ht

m ∈ Hm, let vi ∶ Hm → R represent
player i’s costs from that history incurred at time t. If offer x is accepted at time t, legislator i’s
payoff is

ui (x, t, ht
m) = δtxi −

t

∑
τ=0

δτi vi (hτ
m) .

We assume that for all t, and all ht
m ∈ Hm, vi (ht

m) ≥ 0. Thus, maneuvering is (potentially) costly,
and prolonging negotiations cannot be motivated by the desire for further maneuvering. For many
applications, it suffices to consider a special case of vi in which the only dimension of the history of
maneuvers, ht

m, that is costly at time t is the current individual maneuver, mt
i. However, our results

also accommodate settings in which the cost of maneuvering is affected by the maneuvers of others
and one’s own past maneuvers.

For the Chair’s preferences, we write

u0 (x, t, h(t)m ) = δt0W (x) −
t

∑
τ=0

δτ0v0 (hτ
m) ,

in which W (x) represents her payoffs from a policy x. We make no restrictions on v0.

Markov Perfect Equilibria: We augment our description of structural states and equilibria to
account for the possibilities for maneuvering. In the maneuvering stage of period t, let s̃tM ≡ (ht−1

m , st−1)
denote all past maneuvers and all that is known after period t−1 about future recognition. We write
s̃tP ≡ (ht

m, s
t) as the state at the proposal stage, in which both the maneuvers and information

revealed at period t are included. Let St
M denote the set of possible states for the maneuvering stage

of period t. We let St
P,i denote the collection of all states for the proposal stage consistent with player

i being the proposer. An MPE is an SPE in which each player’s equilibrium strategy can be written
as a sequence of function (ξi,tM , ξi,tP , ξi,tV )t∈T such that ξi,tM ∶ St

M → ∆Mi is player i’s randomization
over maneuvers in period t in structural state s̃tM , ξi,tP ∶ St

P,i → ∆X is player i’s randomization over
proposals when recognized in period t in structural state s̃tP , and ξi,tV ∶ St

P ×X →∆{yes,no} is player
i’s randomization whether to vote in favor of a policy x ∈ X proposed in period t in structural state
stP .
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Predictability: Using the above notation, we can extend our notions of predictability to account
for political maneuvers. If the profile of maneuvers at t + 1 is mt+1, then and the sequence of signals
identify that the member of the partition St that ω is in is st, then player i is recognized at t + 1 if
and only if ω is in

ΩM
i (ht

m,m
t+1, st) ≡ {ω ∈ st ∶ P t+1 ((ht

m,m
t+1), ω) = i} ,

which has probability rMi (ht
m, s

t,mt+1) ≡ µ(ΩM
i (ht

m,m
t+1, st)∣st). A player is a loser conditional on

mt+1 in structural state stP = (ht
m, s

t) if in period t+1, he is definitely not the proposer if the period-t+1
profile of maneuvers is mt+1:

Lt+1
C (stP ,mt+1) ≡ {i ∈ N ∶ rMi (stP ,mt+1) = 0} .

The player is an unconditional loser if he is not the proposer regardless of mt+1:

Lt+1
U (stP ) ≡ ⋂

mt+1∈M
Lt+1

C (stP ,mt+1).

We offer two distinct notions of predictability.

Definition 4. The recognition process exhibits one-period unconditional predictability of degree
d if ∣Lt+1

U (stP )∣ ≥ d for all stP in St
P and t in T .

Definition 5. The recognition process exhibits one-period conditional predictability of degree d

if ∣Lt+1
C (stP ,mt+1)∣ ≥ d for all stP in St

P , mt+1 ∈M , and t in T .

With conditional predictability, the players are able to rule out d legislators in period t when
they can predict the maneuvers in period t+ 1. Unconditional predictability is stronger (and implies
conditional predictability) as the players need not predict the maneuvers played in period t+1 to rule
out d legislators from being proposer. The following describes the implications of each condition.

Theorem 9. If the recognition process exhibits one-period unconditional (respectively conditional)
predictability of degree q, the proposer selected at t = 0 captures the entire surplus in every (respectively
every pure strategy) MPE.

Proof. For every state stP in St
P , let V t+1

i (stP ) denote the expected continuation value of player i before
Stage 1 of the next period, after the rejection of an offer in state stP , and excluding maneuvering
costs that have already been incurred (at period t or before). Lemmas 1 and 2 extend to this setting
immediately, so in every MPE proposal is accepted with probability 1.

Case 1: Unconditional Predictability of Degree q: Constructing x0(s0P ) and H0(s0P ) as in the
proof of Theorem 1, it follows that H0(s0P )⋂L1

U(s0P ) is non-empty. Consider a generic player i in
H0(s0)⋂L1(s0). For a generic player i in H0(s0P )⋂L1

U(s0P ), his continuation value is a combination
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of offers that he receives in states in S1
P and maneuvering costs that he incurs in period 1. Since

maneuvering can be only costly, it must be that there exists some structural state s1P in S1
P such

that the associated proposer offers player i at least x0(s0P )
δi
≥ x0(s0P )

δ̂
, which implies that x1(s1P ) ≥

x0(s0P )
δ̂

.
Induction (as before) implies that there exists a state in which a proposer shares more than the entire
surplus (if t = ∞) or offers a strictly positive share in the final period (if t < ∞), both of which are
contradictions.

Case 2: Conditional Predictability of Degree q: Construct x0(s0P ) and H0(s0P ) as in the proof of
Theorem 1. The state for maneuvers in period 1, s1M = (h0

m, s
0
P ), which is identical to s0P . Since the

MPE is in pure strategies, there is a profile of maneuvers m1 that is chosen in s1M that is perfectly
predictable in state s0P . Since the recognition process exhibits predictability of degree q, it follows
that ∣L1

C(s0,m1)∣ ≥ q. Since H0(s0P ) must have cardinality of at least n−(q−1), H0(s0P )⋂LC(s0,m1)
is non-empty. It follows exactly as in the argument above that there exists some structural state s1P
in S1

P such that x1(s1P ) ≥
x0(s0P )

δ̂
. Induction, as before, implies a contradiction.

Finally, we note that the example that we discuss in which the Chair selects proposers is that
in which M0 = N , θt(ω) = θ for all t and ω, and P t(ht

m, θ
t) = mt

0. This is a recognition process
that satisfies conditional predictability of degree n − 1, and so in every pure strategy MPE, the first
proposer captures the entire surplus.
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