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1 Introduction

Liquidity in financial markets is often provided by specialized agents, such as market makers,

trading desks in investment banks, and hedge funds. Adverse shocks to the capital of these agents

cause liquidity to decline and risk premia to increase. Conversely, movements in the prices of assets

held by liquidity providers feed back into these agents’ capital.1

In this paper we study the dynamics of liquidity providers’ capital, the liquidity that these

agents provide to other participants, and assets’ risk premia. We build a framework with minimal

frictions, in particular no asymmetric information or borrowing constraints. The capital of liquidity

providers matters in our model only because of standard wealth effects. At the same time, we depart

from most frictionless asset-pricing models by fixing the riskless rate and by suppressing wealth

effects for agents other than the liquidity providers. These assumptions are sensible when focusing

on shocks to the capital of liquidity providers in an asset class rather than in the entire asset

universe.

Our combination of assumptions makes it possible to prove general analytical results on equilib-

rium prices and allocations. We characterize, in particular, how liquidity providers’ risk-appetite,

the endogenous risk that they generate, and the pricing of that risk, depend on liquidity deman-

ders’ characteristics and on liquidity providers’ capital. We also show that the capital of liquidity

providers is the single priced risk factor, and that aggregate illiquidity, which declines in capital,

captures that factor. Our results thus suggest that a priced liquidity risk factor may be arise even

with minimal frictions.

We assume a continuous-time infinite-horizon economy. There is a riskless asset with an ex-

ogenous and constant return, and multiple risky assets whose prices are determined endogenously

in equilibrium. There are two sets of competitive agents: hedgers, who receive a risky income flow

and seek to reduce their risk by participating in financial markets, and arbitrageurs, who take the

other side of the trades that hedgers initiate. Arbitrageurs can be interpreted, for example, as

speculators in futures markets. We consider two specifications for hedgers’ preferences. Hedgers

1A growing empirical literature documents the relationship between the capital of liquidity providers, the liquidity
that these agents provide to other participants, and assets’ risk premia. For example, Comerton-Forde, Hendershott,
Jones, Moulton, and Seasholes (2010) find that bid-ask spreads quoted by specialists in the New York Stock Exchange
widen when specialists experience losses. Aragon and Strahan (2012) find that following the collapse of Lehman
Brothers in 2008, hedge funds doing business with Lehman experienced a higher probability of failure, and the
liquidity of the stocks that they were trading declined. Coval and Stafford (2007) find that stocks sold by mutual
funds that experience extreme outflows drop significantly in price during the outflow period and earn abnormally high
expected returns over the next eighteen months. Jylha and Suominen (2011) find that outflows from hedge funds that
perform the carry trade predict poor performance of that trade, with low interest-rate currencies appreciating and
high-interest rate ones depreciating. Acharya, Lochstoer, and Ramadorai (2013) find that risk premia in commodity-
futures markets are larger when broker-dealer balance sheets are shrinking.
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can be “long-lived” and maximize constant absolute risk-aversion (CARA) utility over an infinite

consumption stream, or they can be “short-lived” and maximize a mean-variance objective over

changes in wealth in the next instant. Under both specifications, hedgers’ demand for insurance is

independent of their wealth. On the other hand, because arbitrageurs maximize constant relative

risk aversion (CRRA) utility over consumption, the supply of insurance depends on their wealth.

Arbitrageur wealth impacts equilibrium prices and allocations, and is the key state variable in

our model. Solving for equilibrium amounts to solving a system of ordinary differential equations

(ODEs) in wealth, with boundary conditions at zero and infinity. These ODEs include non-linear

terms. Yet, their structure makes it possible to prove general analytical results across the entire

parameter space, e.g., for all risk-aversion parameters of hedgers and arbitrageurs.2 In the case

where hedgers are short-lived, we show that a solution exists and we characterize how it depends

on wealth and on model parameters. Moreover, in both the short-lived and long-lived cases, we

characterize the behavior of the solution close to the boundaries.

Our analysis yields new insights on dynamic risk-sharing and asset pricing. We show that the

risk aversion of arbitrageurs is the sum of their static CRRA coefficient and of a forward-looking

component that reflects intertemporal hedging. The latter component makes the risk aversion of

arbitrageurs dependent on parameters of the economy that affect equilibrium prices. For example,

when hedgers are more risk-averse, arbitrageurs become endogenously more risk averse if their

CRRA is smaller than one. This effect can be sufficiently strong to imply that more risk-averse

hedgers may receive less insurance from arbitrageurs in equilibrium. Intuitively, when hedgers are

more risk-averse, expected returns rise steeply following declines in arbitrageur wealth. This makes

arbitrageurs with CRRA smaller than one willing to invest more conservatively, so to preserve

wealth in bad states and earn the high returns.

On the asset-pricing side, we show that arbitrageurs generate endogenous risk, in the sense that

changes in their wealth affect return variances and covariances through amplification and contagion

mechanisms. Endogenous risk is small at both extremes of the wealth distribution: when wealth

is close to zero this is because arbitrageurs hold small positions and hence have a small impact

on prices, and when wealth is close to infinity this is because prices are insensitive to changes in

wealth. The dependence of endogenous risk on arbitrageur wealth can give rise to hump-shaped

patterns of variances, covariances and correlations. It can also cause risk premia, defined as expected

returns in excess of the riskless asset, to increase with arbitrageur wealth for small values of wealth,

2Ruling out frictions such as borrowing constraints, and suppressing wealth effects from hedgers, seem both
important for the tractability of our ODE system.
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even though Sharpe ratios decrease. We show that risk premia always exhibit this pattern when

arbitrageurs’ CRRA coefficient is small, and can exhibit it for larger values as well provided that

hedgers are sufficiently risk-averse. In a similar spirit, we show that risk premia can be larger if

the arbitrageurs’ CRRA coefficient is smaller—precisely because endogenous risk is larger.

Additional asset-pricing results concern liquidity risk and its relationship with expected returns.

A large empirical literature has documented that liquidity varies over time and in a correlated

manner across assets within a class. Moreover, aggregate liquidity appears to be a priced risk factor

and carry a positive premium: assets that underperform the most during times of low aggregate

liquidity earn higher expected returns than assets with otherwise identical characteristics.3 We

map our model to that literature by defining liquidity based on the impact that hedgers have on

prices. We show that liquidity is lower for assets with more volatile cashflows. It also decreases

following losses by arbitrageurs, and this variation is common across assets.

Expected returns in our cross-section of assets are proportional to the covariance with the

portfolio of arbitrageurs, which is the single priced risk factor. That factor may be hard to measure

empirically as the portfolio of arbitrageurs is unobservable. We show, however, that aggregate

liquidity captures that factor. Indeed, because arbitrageurs sell a fraction of their portfolio following

losses, assets that covary the most with their portfolio suffer the most when liquidity decreases.

Thus, an asset’s covariance with aggregate liquidity is proportional to its covariance with the

portfolio of arbitrageurs. On the other hand, the covariances between an asset’s liquidity and

aggregate liquidity or return would not explain expected returns as well. This is because they are

proportional to the volatility of an asset’s cashflows rather than to the asset’s covariance with the

arbitrageurs’ portfolio. The covariance between an asset’s return and other proxies of arbitrageur

wealth, such as the leverage of financial intermediaries, used in recent empirical papers, would also

capture the true priced risk factor.4

We finally characterize when the long-run stationary distribution of arbitrageur wealth is non-

degenerate, and show that it can be bimodal. The stationary distribution can be non-degenerate

because arbitrage activity is self-correcting: when wealth drops, the arbitrageurs’ future expected

3Chordia, Roll, and Subrahmanyam (2000), Hasbrouck and Seppi (2001), and Huberman and Halka (2001) docu-
ment the time-variation of liquidity in the stock market and its correlation across stocks. Amihud (2002) and Hameed,
Kang, and Viswanathan (2010) link time-variation in aggregate liquidity to the returns of the aggregate stock market.
Pastor and Stambaugh (2003) and Acharya and Pedersen (2005) find that aggregate liquidity is a priced risk factor
in the stock market and carries a positive premium. Sadka (2010) and Franzoni, Nowak, and Phalippou (2012) find
similar results for hedge-fund and private-equity returns, respectively. For more references, see Vayanos and Wang
(2013) who survey the theoretical and empirical literature on market liquidity.

4Adrian, Etula, and Muir (2014) and He, Kelly, and Manela (2017) find that a single risk factor based on inter-
mediary leverage can price a large cross-section of assets. As we argue in Section 5, our model is exactly consistent
with this finding. It also shows that such a finding may be explained with minimal frictions.
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returns increase causing wealth to grow faster, and vice-versa. The stationary density becomes

bimodal when hedgers are sufficiently risk-averse. Indeed, because insurance provision in that case

is more profitable, arbitrageur wealth grows fast and large values of wealth can be more likely in

steady state than intermediate values. At the same time, while profitability (per unit of wealth)

is highest when wealth is small, wealth grows away from small values slowly in absolute terms.

Therefore, small values are more likely than intermediate values.

We see our work as bridging three relatively distinct streams of theoretical literature: on liquid-

ity risk, on intermediary asset pricing, and on consumption-based asset pricing with heterogeneous

agents. The first stream focuses on the pricing of liquidity risk in the cross-section of assets. In

Holmstrom and Tirole (2001), firms avoid assets whose return is low when financial constraints are

severe, and these assets offer high expected returns in equilibrium. The covariance between asset

returns and liquidity (less severe constraints) is exogenous. It is instead endogenous in our model

because prices depend on arbitrageur wealth, and this endogeneity is key for our results on a priced

liquidity factor. In Amihud (2002) and Acharya and Pedersen (2005), illiquidity takes the form of

exogenous time-varying transaction costs. An increase in the costs of trading an asset raises the

expected return that investors require to hold it and lowers its price. A negative covariance between

illiquidity and asset prices arises also in our model but because of an entirely different mechanism:

low liquidity and low prices are endogenous symptoms of low arbitrageur wealth.

The second stream links intermediary capital to liquidity and asset prices. In Gromb and

Vayanos (2002), arbitrageurs intermediate trade between investors in segmented markets, and are

subject to margin constraints. Because of the constraints, the liquidity that arbitrageurs provide

to investors increases in their wealth. In Brunnermeier and Pedersen (2009), margin-constrained

arbitrageurs intermediate trade in multiple assets across time periods. Assets with more volatile

cashflows are more sensitive to changes in arbitrageur wealth.5 Garleanu and Pedersen (2011)

introduce margin constraints in an infinite-horizon setting with multiple assets. They show that

assets with higher margin requirements earn higher expected returns and are more sensitive to

changes in the wealth of the margin-constrained agents. This result is suggestive of a priced liquidity

factor. In He and Krishnamurthy (2013), arbitrageurs can raise capital from other investors to invest

in a risky asset over an infinite horizon, but this capital cannot exceed a fixed multiple of their

internal capital. When arbitrageur wealth decreases, the constraint binds, and asset volatility and

expected returns increase. In Brunnermeier and Sannikov (2014), arbitrageurs are more efficient

5In Gromb and Vayanos (2017), arbitrage spreads are positively related to the spreads’ sensitivity to arbitrageur
wealth because both characteristics are positively related to cashflow volatility and convergence horizon.
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holders of productive capital and can trade a risky claim to that capital with other investors. The

long-run stationary distribution of arbitrageur wealth can have a bimodal density. A key difference

with all of the above papers is that we derive the effects of arbitrage capital without imposing any

constraints or contracting frictions.

Perhaps the closest papers to ours within the second stream of literature are Xiong (2001) and

Kyle and Xiong (2001). In both papers, arbitrageurs with logarithmic utility over consumption can

trade with exogenous long-term traders and noise traders over an infinite horizon.6 The liquidity

provided by arbitrageurs is increasing in their wealth, and asset volatilities are hump-shaped.

Relative to these papers, we derive the demand of all traders from optimizing behavior and consider

a general number of risky assets. We also prove analytical results (rather than numerical examples),

and do so for general parameter values within which logarithmic preferences are a restrictive special

case.

Finally, our paper is related to the literature on consumption-based asset pricing with hetero-

geneous agents, e.g., Dumas (1989), Wang (1996), Chan and Kogan (2002), Bhamra and Uppal

(2009), Basak and Pavlova (2013), Chabakauri (2013), Ehling and Heyerdahl-Larsen (2013), Gar-

leanu and Panageas (2014), and Longstaff and Wang (2015). In these papers, agents have CRRA

utility and differ in their risk aversion. As the wealth of the less risk-averse agents increases, Sharpe

ratios decrease, and this can cause volatilities and correlations to be hump-shaped.7 In contrast to

these papers, we assume that only one set of agents has wealth-dependent risk aversion, and we fix

the riskless rate.

We proceed as follows. In Section 2 we present the model. In Section 3 we derive risk-sharing,

market prices of risk, and wealth dynamics when the risky assets are claims on the next instant’s

cashflow. In Section 4 we show that the results carry through to long-maturity assets, and we

compute expected returns, volatilities and correlations of such assets. In Section 5 we explore the

implications of our model for liquidity risk. In Section 6 we show that the analysis of the previous

sections, which assumes assets in zero supply, extends to positive supply. Section 7 concludes, and

all proofs are in the Appendix.

6Isaenko (2008) studies a related model in which long-term traders maximize CARA utility and there are trans-
action costs.

7Longstaff and Wang (2015) show that the hump-shaped pattern extends to expected excess returns. Garleanu
and Pedersen (2011) also find hump-shaped volatilities and expected returns. These findings, however, are shown
via numerical examples rather than general proofs. See also Liu, Lu, Sun, and Yan (2017) for a model in which
arbitrageurs render anomalies that they discover endogenously more correlated and this endogenous risk is hump-
shaped in wealth.
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2 Model

Time t is continuous and goes from zero to infinity. Uncertainty is described by the N -dimensional

Brownian motion Bt. There is a riskless asset whose instantaneous return is constant over time

and equal to r > 0. This return is exogenous in our model and could be derived from a linear and

riskless production technology. There are N risky assets with cashflows

dDt = D̄dt+ σ⊤dBt, (2.1)

and D̄ is a constant N × 1 vector, σ is a constant and invertible N × N matrix, and ⊤ denotes

transpose. The cashflows (2.1) are i.i.d. The i.i.d. assumption is for simplicity, and we can introduce

persistence without significant changes to our analysis. We denote by St the N × 1 vector of risky-

asset prices at time t, and by s the N × 1 vector consisting of asset supplies measured in terms of

number of shares. The prices St are determined endogenously in equilibrium. We set Σ ≡ σ⊤σ.

There are two sets of agents, hedgers and arbitrageurs. Each set forms a continuum with

measure one. Hedgers receive a random endowment u⊤dDt at t+ dt, where u is a constant N × 1

vector. Because the endowment is correlated with the risky assets’ cashflows, it can be hedged

by trading in these assets. We consider two specifications for hedgers’ preferences. Under both

specifications, the hedgers’ wealth does not affect their risk aversion and demand for insurance. We

intentionally simplify the model in this respect, so that we can focus on the supply of insurance,

which is time-varying because of the wealth-dependent risk aversion of arbitrageurs.

• Specification 1: Long-lived hedgers. Hedgers maximize negative-exponential utility over

intertemporal consumption:

−Et

(
∫ ∞

t

e−
α
r
c̄t′e−ρ̄(t′−t)dt′

)

, (2.2)

where c̄t′ is consumption at t′ ≥ t, α
r
is the coefficient of absolute risk aversion, and ρ̄ is the

subjective discount rate.

• Specification 2: Short-lived hedgers. Hedgers maximize a mean-variance objective over

instantaneous changes in wealth:

Et(dvt)−
α

2
Vart(dvt), (2.3)

where dvt is the change in wealth between t and t+ dt, and α is a risk-aversion coefficient.

6



The risk-aversion coefficient α
r
under Specification 1 is over consumption, and it yields a risk-

aversion coefficient α over wealth, same to that under Specification 2. The interpretation of hedgers

under Specification 1 is straightforward: they are infinitely lived agents. Under Specification 2,

hedgers can instead be interpreted as overlapping generations living over infinitesimal periods. The

generation born at time t is endowed with initial wealth v̄, and receives the additional endowment

u⊤dDt at t+ dt. It consumes all its wealth at t+ dt and dies. If preferences over consumption are

described by the VNM utility U , this yields the objective (2.3) with the risk-aversion coefficient

α = −U ′′(v̄)
U ′(v̄) .

Under the overlapping generations interpretation, Specification 2 introduces the friction that fu-

ture generations of hedgers cannot trade with the current generation. Markets are hence incomplete—

alhtough they are complete for the current generation of hedgers and for arbitrageurs because the

number N of risky assets is equal to the number of Brownian motions. Under Specification 1,

markets are complete for all hedgers and arbitrageurs. While generating a form of incompleteness,

Specification 2 has the advantage of being more tractable. We refer to Specification 1 as long-lived

hedgers, and to Specification 2 as short-lived hedgers.

Arbitrageurs maximize power utility over intertemporal consumption. When the coefficient γ

of relative risk aversion is different than one, the arbitrageurs’ objective at time t is

Et

(

∫ ∞

t

c
1−γ
t′

1− γ
e−ρ(t′−t)dt′

)

, (2.4)

where ct′ is consumption at t′ ≥ t and ρ is the subjective discount rate. When γ = 1, the objective

becomes

Et

(∫ ∞

t

log(ct′)e
−ρ(t′−t)dt′

)

. (2.5)

We assume that ρ > r. As we explain in Section 3.3, this assumption ensures that arbitrageurs do

not accumulate infinite wealth over time, in which case wealth effects become irrelevant.

We solve for the equilibrium in steps. In Section 3 we derive risk-sharing, market prices of

risk, and wealth dynamics. These derivations can be performed independently of those for price

dynamics. Indeed, in Section 3 we replace the risky assets paying a infinite stream of cashflows

by “short-maturity” assets paying the next instant’s cashflow. Short-maturity assets are a useful

expositional device: risk-sharing, market prices of risk, and wealth dynamics are identical as with

the long-maturity assets introduced earlier, as we show in Section 4, but the derivations are simpler
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because there are no price dynamics. In Section 4 we compute the price dynamics of long-maturity

assets, and these assets’ expected returns, volatilities, and correlations. In both Sections 3 and 4

we assume that risky assets are in zero supply, i.e., s = 0. Even with zero supply, there is aggregate

risk because of the hedgers’ endowment, and risk premia are non-zero and time-varying.

We allow supply to be positive in Section 6. We show that when hedgers are long-lived, risk-

sharing and asset prices are the same as in the equilibrium derived in Sections 3 and 4, provided that

we replace u in that equilibrium by s+u. That is, only the aggregate of the supply u coming from

hedgers and the supply s coming from issuers matters, and not the relative composition. When

hedgers are short-lived, this equivalence does not hold. Yet, key aspects of asset-price behavior

derived in Sections 3 and 4 generalize.

For zero supply our model could represent futures markets, with the assets being futures con-

tracts and the arbitrageurs being the speculators. It could also represent the market for insurance

against aggregate risks, e.g., weather or earthquakes, with the assets being insurance contracts and

the arbitrageurs being the insurers. For positive supply, our model could represent stock or bond

markets, with the arbitrageurs being hedge funds or other agents absorbing demand or supply

imbalances.

3 Equilibrium with Short-Maturity Assets

A new set of N short-maturity assets can be traded at each time t. The assets available at time t

pay dDt at t+ dt. We denote by πtdt the N × 1 vector of prices at which the assets trade at t, and

by dRt ≡ dDt − πtdt the N × 1 vector of returns that the assets earn between t and t + dt. Eq.

(2.1) implies that the instantaneous expected returns of the short-maturity assets are

Et(dRt)

dt
= D̄ − πt, (3.1)

and the instantaneous covariance matrix of returns is

Vart(dRt)

dt
=

Et(dRtdR
⊤
t )

dt
= σ⊤σ = Σ. (3.2)

Note that dRt is also a return in excess of the riskless asset since investing πtdt in the riskless asset

yields return rπt(dt)
2, which is negligible relative to dRt. Note also that dRt is a return per share

rather than per dollar invested: computing the return per dollar would require dividing dRt by
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the price πtdt. When using dollar rather than share returns in the rest of this paper, we will be

mentioning that explicitly.

3.1 Optimization

Consider first the optimization problem of a long-lived hedger. The hedger’s budget constraint is

dvt = rvtdt+ x⊤t (dDt − πtdt) + u⊤dDt − c̄tdt, (3.3)

where xt is the hedger’s position in the risky assets at time t and vt is the hedger’s wealth. The first

term in the right-hand side of (3.3) is the return from investing in the riskless asset, the second term

is the return from investing in the risky assets, the third term is the endowment, and the fourth

term is consumption. We solve the hedger’s optimization problem using dynamic programming

and conjecture the value function

V (vt, wt) = −e−[αvt+F (wt)], (3.4)

where F (wt) is a scalar function of wt. The hedger’s value function over wealth has the same

negative-exponential form as the utility function over consumption, with the risk-aversion coefficient

being α rather than α
r
. In addition, the value function depends on the wealth of arbitrageurs since

the latter affects asset prices πt. Arbitrageur wealth is the only state variable in our model.

Proposition 3.1 Given the value function (3.4), the optimal policy of a long-lived hedger at time

t is to consume

c̄t = rvt +
r

α
[F (wt)− log(r)] (3.5)

and hold a position

xt =
Σ−1(D̄ − πt)

α
− u− F ′(wt)yt

α
(3.6)

in the risky assets.

The hedger’s optimal demand for the risky assets consists of three components, which corre-

spond to the three terms in the right-hand side of (3.6). The first term is a standard mean-variance

demand. It consists of an investment in the tangent portfolio, scaled by the hedger’s risk-aversion
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coefficient α. The tangent portfolio is the inverse of the covariance matrix Σ of asset returns times

the vector D̄ − πt of expected returns. The second term is a demand to hedge endowment risk.

It consists of a short position in the portfolio u, which characterizes the sensitivity of hedgers’

endowment to asset returns. Selling short an asset n for which un > 0 yields a high payoff when

dDnt is low, which when is the endowment is also low. The third term is an intertemporal hedging

demand as in Merton (1971). Changes in arbitrageur wealth, the only state variable in our model,

affect the terms at which hedgers can obtain insurance, and must be hedged against. Intertemporal

hedging is accomplished by holding a portfolio with weights proportional to the sensitivity of arbi-

trageur wealth to asset returns. That sensitivity is simply the portfolio yt of arbitrageurs. Hence,

the intertemporal hedging demand is a scaled version of yt, as the third term in (3.6) confirms.

When the hedger is short-lived, the budget constraint (3.3) does not include consumption,

and the hedger’s optimal demand for the risky assets does not include the intertemporal hedging

component. The other two terms in (3.6), however, remain the same. Hence, the case of a short-

lived hedger can be nested into that of a long-lived hedger by setting the function F (wt) to zero.

Proposition 3.2 The optimal policy of a short-lived hedger at time t is to hold a position

xt =
Σ−1(D̄ − πt)

α
− u (3.7)

in the risky assets.

Consider next the maximization problem of an arbitrageur. The arbitrageur’s budget constraint

is

dwt = rwtdt+ y⊤t (dDt − πtdt)− ctdt, (3.8)

where yt is the arbitrageur’s position in the risky assets at time t and wt is the arbitrageur’s wealth.

The first term in the right-hand side of (3.8) is the return from investing in the riskless asset, the

second term is the return from investing in the risky assets, and the third term is consumption.

The arbitrageur’s value function depends not only on his own wealth wt, but also on the aggregate

wealth of all arbitrageurs since the latter affects asset prices πt. In equilibrium own wealth and

aggregate wealth coincide because all arbitrageurs are symmetric and in measure one. For the

purposes of optimization, however, we need to make the distinction. We reserve the notation wt for

aggregate wealth and denote own wealth by ŵt. We likewise use (ct, yt) for aggregate consumption
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and position in the assets, and denote own consumption and position by (ĉt, ŷt). We conjecture the

value function

V (ŵt, wt) = q(wt)
ŵ

1−γ
t

1− γ
(3.9)

for γ 6= 1, and

V (ŵt, wt) =
1

ρ
log(ŵt) + q1(wt) (3.10)

for γ = 1, where q(wt) and q1(wt) are scalar functions of wt. We set q(wt) =
1
ρ
for γ = 1.

Proposition 3.3 Given the value function (3.9) and (3.10), the optimal policy of an arbitrageur

at time t is to consume

ĉt = q(wt)
− 1

γ ŵt (3.11)

and hold a position

ŷt =
Σ−1(D̄ − πt)

γ
ŵt

+
q′(wt)yt
γ
ŵt
q(wt)

(3.12)

in the risky assets.

The arbitrageur’s optimal consumption is proportional to his wealth ŵt, with the proportion-

ality coefficient q(wt)
− 1

γ being a function of aggregate arbitrageur wealth wt. The arbitrageur’s

optimal demand for the risky assets consists of two components, which correspond to the two terms

in the right-hand side of (3.12) and are analogous to those for hedgers. The first term consists of

an investment in the tangent portfolio, scaled by the arbitrageur’s coefficient of absolute risk aver-

sion γ
ŵt
. The second term is an intertemporal hedging demand. The arbitrageur hedges against

changes in aggregate arbitrageur wealth since these affect asset prices. Moreover, this hedging is

accomplished by holding a portfolio with weights proportional to the aggregate portfolio yt of all

arbitrageurs.

3.2 Equilibrium Characterization and Existence

Since in equilibrium all arbitrageurs are symmetric and in measure one, their aggregate position

coincides with each arbitrageur’s position and the same is true for wealth. Setting ŷt = yt and

11



ŵt = wt in (3.12), we find that the aggregate position of arbitrageurs is

yt =
Σ−1(D̄ − πt)

A(wt)
, (3.13)

where

A(wt) ≡
γ

wt
− q′(wt)

q(wt)
. (3.14)

Arbitrageurs’ investment in the tangent portfolio is scaled by A(wt), which can be interpreted as a

coefficient of dynamic risk aversion. It is the sum of the static coefficient of absolute risk aversion

γ
wt
, and of the term − q′(wt)

q(wt)
which corresponds to the intertemporal hedging demand and hence

reflects dynamic considerations. Suppose, for example, that q(wt) is decreasing, a property which

holds for γ < 1, as we show in Theorem 3.1. Eq. (3.12) then implies that the intertemporal hedging

demand is negative and lowers the arbitrageurs’ position. The negative hedging demand is reflected

in (3.13) through a larger coefficient of dynamic risk aversion A(wt).

A similar calculation can be made for hedgers using the market-clearing equation

xt + yt = 0. (3.15)

Setting yt = −xt in (3.6), we find that the aggregate position of hedgers is

xt =
Σ−1(D̄ − πt)− αu

α− F ′(wt)
. (3.16)

Substituting (3.13) and (3.16) into (3.15), we find that asset prices πt are

πt = D̄ − αA(wt)

α+A(wt)− F ′(wt)
Σu. (3.17)

Substituting (3.17) back into (3.13), we find that the arbitrageurs’ position in the risky assets in

equilibrium is

yt =
α

α+A(wt)− F ′(wt)
u. (3.18)

Arbitrageurs buy a fraction of the portfolio u, which is the portfolio that hedgers want to sell to

hedge their endowment risk. They buy a larger fraction of u, hence supplying more insurance

12



to hedgers, when their coefficient of dynamic risk aversion A(wt) is smaller and the hedgers’ risk-

aversion coefficient α is larger. The degree of insurance supplied by arbitrageurs also depends on the

hedgers’ intertemporal hedging demand, as reflected through the function F ′(wt). When hedgers

are short-lived, F (wt) = 0 and hence F ′(wt) = 0. When instead they are long-lived, our numerical

solutions indicate that F ′(wt) > 0. Therefore, the hedgers’ intertemporal hedging motive makes

them demand more insurance from arbitrageurs. The intuition is that hedgers seek to hedge against

the event that arbitrageurs will become poorer in the future because in that event insurance will

be supplied at worse terms. To preserve their wealth when arbitrageurs become poorer, hedgers

must reduce their exposure to the portfolio held by arbitrageurs. Hence, they must demand more

insurance from arbitrageurs.

Expected asset returns D̄−πt are proportional to the covariance with the portfolio u, which is

the single priced risk factor in our model. The risk premium αA(wt)
α+A(wt)−F ′(wt)

of that factor depends

on arbitrageur wealth, and is hence time-varying. The arbitrageurs’ Sharpe ratio, defined as the

expected return of their portfolio divided by the portfolio’s standard deviation, also depends on

their wealth. Using (3.17) and (3.18), we find that the Sharpe ratio is

SRt ≡
y⊤t (D̄ − πt)
√

y⊤t Σyt

=
αA(wt)

α+A(wt)− F ′(wt)

√
u⊤Σu. (3.19)

Substituting the hedgers’ optimal policy from Proposition 3.1 into the Bellman equation, and

using the dynamics that arbitrageur wealth follows in equilibrium, we can derive an ordinary

differential equation (ODE) for the function F (wt). Following the same procedure for arbitrageurs,

we can derive an ODE for the function q(wt). To state these ODEs and subsequent results, we

define the parameter z > 0 by

z ≡ α2u⊤Σu

2(ρ− r)
. (3.20)

This parameter is larger when the hedgers’ risk-aversion coefficient α or endowment variance u⊤Σu

are larger, or the arbitrageurs’ subjective discount rate ρ is smaller, or the riskless rate r is larger.

Proposition 3.4 In equilibrium, the function q(wt) solves the ODE

1 =
q(wt)

− 1
γ − r

ρ− r
A(wt)wt −

z
(

A′(wt) +A(wt)
2
)

[α+A(wt)− F ′(wt)]2
. (3.21)
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The function F (wt) is equal to zero when hedgers are short-lived, and solves the ODE

1 =
rF (wt)− r log(r)− αu⊤D̄ + ρ− ρ̄

ρ− r
+

q(wt)
− 1

γ − r

ρ− r
F ′(wt)wt

− z {F ′′(wt)−A(wt) [2α+A(wt)− 2F ′(wt)]}
[α+A(wt)− F ′(wt)]

2 (3.22)

when they are long-lived.

Solving for equilibrium when hedgers are short-lived amounts to solving the ODE (3.21) with

the function F (wt) set to zero. That ODE involves the functions q(wt) and A(wt). Since, however,

A(wt) depends on q(wt) and q′(wt), as described in (3.14), (3.21) can be written as a second-order

ODE in the single function q(wt). That ODE involves non-linear terms in both q(wt) and q′(wt).

Solving for equilibrium when hedgers are long-lived amounts to solving the ODEs (3.21) and (3.22).

These can be written as a system of second-order non-linear ODEs in q(wt) and F (wt). We derive

boundary conditions for the two ODEs through a small set of economic properties which we assume

should hold when wt goes to zero and to infinity. We next state and motivate these properties.

When wt goes to zero and to infinity, expected asset returns should converge to finite limits:

if the limits were infinite, insurance would become infinitely costly, and hedgers would not only

refrain from buying it but would also be willing to supply it. Since expected returns converge to

finite limits, a hedger’s value function should do the same, holding the hedger’s wealth vt constant,

because utility is negative exponential. Since the value function is given by (3.4), F (wt) should

converge to finite limits when wt goes to zero and to infinity.

That expected returns converge to finite limits when wt goes to zero and to infinity does not

imply that an arbitrageur’s value function should do the same, holding the arbitrageur’s own wealth

ŵt constant. Indeed, because arbitrageurs have power utility, their value function can become

infinite when expected returns are large enough. For wt going to infinity, however, the finite limit

of dollar expected returns is the riskless rate r, as arbitrageurs eliminate all risk premia. Moreover,

because the arbitrageurs’ subjective discount rate ρ exceeds r, their value function does converge

to a finite limit, and so does q(wt). The limit of q(wt) must further be positive: since q(wt) is the

marginal utility of wealth of an arbitrageur with wealth ŵt = 1, and the arbitrageur can always

invest in the riskless asset, q(wt) must exceed a positive bound. This is the boundary condition

for q(wt) at infinity. The boundary condition at zero is through A(wt). Since arbitrageurs have

power utility and risk premia are non-zero, their position in the risky assets as a fraction of their

14



wealth should converge to a finite non-zero limit (while converging to zero in absolute terms). Eq.

(3.13) then implies that A(wt)wt should converge to a positive limit. Note that all the boundary

conditions that we impose concern the existence of finite limits rather than the limits’ exact values.

Theorem 3.1 provides a comprehensive analysis of the equilibrium when hedgers are short-lived,

and a partial analysis when they are long-lived. In the short-lived case, we show that a solution to

the ODE (3.21) with F (wt) = 0 and the boundary conditions on q(wt) and A(wt) exists. We also

characterize monotonicity properties of the solution and show that the limits at zero and infinity

are uniquely determined. In the long-lived case, we have not been able to show existence and

monotonicity properties. We show, however, that the limits at zero and infinity are the same as in

the short-lived case.

Theorem 3.1 When hedgers are short-lived, a solution to the ODE (3.21) with F (wt) = 0 and

positive limits of A(wt)wt at zero and q(wt) at infinity exists. The solution has the following

properties:

• The function A(wt) is decreasing.

• limwt→∞A(wt)wt = γ and limwt→∞ q(wt) =
1

(

r+ ρ−r
γ

)γ .

• If γ < 1, then 1
wt

> A(wt) >
γ
wt

and q(wt) is decreasing.

• If γ > 1, then 1
wt

< A(wt) <
γ
wt

and q(wt) is increasing.

• If γ < K, where K < 1 is the unique positive solution of

G(γ) ≡ 1− γ − γ

z

(

rγ

ρ− r
+ 1

)

= 0, (3.23)

then limwt→0A(wt)wt = K and limwt→0 q(wt) = ∞.

• If γ > K, then limwt→0A(wt)wt = γ and limwt→0 q(wt) ∈ (0,∞).

Suppose next that hedgers are long-lived, and that a solution to the system of ODEs (3.21) and

(3.22) with positive limits of A(wt)wt at zero and q(wt) at infinity, and finite limits of F (wt) at

zero and infinity, exists. Suppose additionally that F ′(wt)wt and F ′′(wt)w
2
t have (finite or infinite)

limits at zero and infinity. The solution has the following properties:
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• The limits of A(wt)wt and q(wt) at zero and infinity are as in the case of short-lived hedgers.

• limwt→0 F (wt) = log(r) + αu⊤D̄+ρ̄−r−z(ρ−r)
r

and limwt→∞ F (wt) = log(r) + αu⊤D̄+ρ̄−r
r

.

• The limits of [A(wt)− F ′(wt)]wt at zero and infinity are the same as those of A(wt)wt.

The basic idea of our existence proof is to start with a finite interval [ǫ,M ] and show that there

exists a unique solution to the ODE (3.21) with the limits of A(wt)wt at zero and infinity imposed

as boundary conditions at ǫ and M , respectively. We next show that when ǫ converges to zero and

M to infinity, that solution converges to a solution over (0,∞). Our construction yields a unique

solution over (0,∞), although it does not rule out that other solutions (constructed differently)

may exist. Uniqueness of our constructed solution allows us to examine how that solution moves

in response to exogenous parameters. Our existence proof concerns only short-lived hedgers; when

stating results on long-lived hedgers in the rest of this paper, we assume that a solution to the

system of ODEs (3.21) and (3.22) as described in Theorem 3.1 exists.

In Section 3.3 we derive economic implications of the results shown in Theorem 3.1, as well as

some additional properties. We examine how positions and returns depend on arbitrageur wealth

(Section 3.3.1), how dynamic risk aversion differs from its static counterpart (Section 3.3.2), and

what the long-run dynamics of arbitrageur wealth are (Section 3.3.3).

3.3 Equilibrium Properties

3.3.1 Wealth Effects

Theorem 3.1 shows that when hedgers are short-lived, an increase in the wealth wt of arbitrageurs

causes arbitrageur dynamic risk aversion A(wt) to decline. A decline in A(wt) results in more

insurance supplied to hedgers: arbitrageur positions become more positive for positive elements of

u, which correspond to assets that hedgers want to sell, and more negative for negative elements of

u, which correspond to assets that hedgers want to buy. Expected asset returns, which reflect the

cost of the insurance, become smaller in absolute value: less positive for positive elements of u and

less negative for negative elements of u. The same is true for the market prices of the Brownian

risks, i.e., the expected returns per unit of risk exposure, and for the arbitrageurs’ Sharpe ratio.

Corollary 3.1 When hedgers are short-lived, an increase in arbitrageur wealth wt:

16



(i) Raises the position of arbitrageurs in each asset in absolute value.

(ii) Lowers the expected return of each asset in absolute value.

(iii) Lowers the market price of each Brownian risk in absolute value.

(iv) Lowers the arbitrageurs’ Sharpe ratio.

The results of Corollary 3.1 are consistent with the empirical findings of Kang, Rouwenhorst,

and Tang (2017). That paper finds that speculators in commodity futures markets act as momentum

traders, buying when prices go up and selling when they go down. Moreover, following purchases

by speculators expected returns are low, while they are high following speculator sales. These

findings are consistent with Corollary 3.1, provided that arbitrageurs hold long positions in the

risky assets, which is the case when u has positive elements. Indeed, when arbitrageurs are long,

their wealth increases when assets earn high returns. Kang, Rouwenhorst, and Tang (2017) show

that speculators are long on average for almost all of the commodities in their sample. Corollary

3.1 has the additional implication that following a positive shock to the price of one commodity

(holding other prices constant), speculators should buy all commodities and the expected returns

on all commodities should decrease. This prediction is not tested in Kang, Rouwenhorst, and Tang

(2017), but could perhaps be investigated as well.

When hedgers are long-lived, changes in the wealth of arbitrageurs affect not only their dynamic

risk aversion A(wt) but also the hedgers’ intertemporal hedging demand, whose strength is captured

by the function F ′(wt) > 0. Recall that long-lived hedgers seek to hedge against the event that

arbitrageurs will become poorer in the future because in that event insurance will be supplied to

them at worse terms. Moreover, because of that intertemporal hedging motive, hedgers demand

more insurance. Our numerical solutions indicate that when arbitrageur wealth wt increases, both

A(wt) and F ′(wt) decrease. In the case of F ′(wt), this is because the terms of insurance become

less sensitive to wt for larger values of wt.

The interplay between increased supply of insurance (lower A(wt)) and declining demand for

it (lower F ′(wt)) can give rise to non-monotonic patterns. Consider, for example, arbitrageur

positions, which increase in absolute value when A(wt)−F ′(wt) declines, as shown in (3.18). When

the hedgers’ risk-aversion coefficient α is high, positions are hump-shaped in wt: they increase in

absolute value for small values of wt as A(wt) declines, and decrease for larger values of wt as

F ′(wt) declines. When instead α is low, the variation in F ′(wt) is dominated by that in A(wt), and

positions increase in absolute value for all values of wt, as in Corollary 3.1.
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Figure 1 illustrates the behavior of arbitrageur dynamic risk aversion and positions. The plots

to the left show dynamic risk aversion A(wt). The plots in the middle show the position ynt in

an asset n, expressed as a fraction of the position un that hedgers want to hedge. All these plots

concern the case where hedgers are long-lived. The plots to the right express positions relative to

the case where hedgers are short-lived. The blue solid line represents the baseline case, which is

the same in all plots. The plots at the top show that positions increase with wt in the baseline case

but become hump-shaped when the hedgers’ risk-aversion coefficient α increases. For the larger

value of α, arbitrageurs can over-insure hedgers, buying the full position that they want to hedge

and holding an additional long position. Over-insurance introduces a large deviation relative to

the case of short-lived hedgers, as the top-right figure shows. The plots at the bottom show that

arbitrageurs provide less insurance to hedgers when their risk-aversion coefficient γ increases.

3.3.2 Dynamic Risk Aversion

Recall from (3.14) that the dynamic risk aversion A(wt) of arbitrageurs is the sum of the static coef-

ficient of absolute risk aversion γ
wt
, and of the term − q′(wt)

q(wt)
which corresponds to the intertemporal

hedging demand. In this section we examine, drawing on the results of Theorem 3.1, how dynamic

and static risk aversion differ, or equivalently what the properties of intertemporal hedging demand

are. We start with the case of short-lived hedgers, and examine how the results carry through to

long-lived hedgers at the end of this section.

For γ < 1, the intertemporal hedging demand raises A(wt) above γ
wt
, while the opposite is

true for γ > 1. The difference between the two cases lies in the behavior of the marginal utility

of arbitrageur wealth, which is q(wt) for an arbitrageur with wealth ŵt = 1. For γ < 1, q(wt) is

decreasing in wt, meaning that the arbitrageur has higher marginal utility in states where aggregate

arbitrageur wealth wt is low. This is because in the low-wt states expected returns are high, and

hence the arbitrageur earns a high return on wealth. By seeking to preserve wealth in those states,

so to earn the high return by investing it, the arbitrageur scales back his positions, behaving as more

risk-averse than in the absence of intertemporal hedging. For γ > 1 instead, q(wt) is increasing in

wt, meaning that the arbitrageur has lower marginal utility in low-wt states. This is because the

high return on wealth in those states is associated with high utility of future consumption. Hence,

it is discounted by low marginal utility, and the latter effect dominates for γ > 1.

When utility is logarithmic (γ = 1), the intertemporal hedging demand is zero, and hence
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Figure 1: Arbitrageur dynamic risk aversion A(wt) and positions yt as a function
of arbitrageur wealth wt. The plots to the left show A(wt). The plots in the middle
show ynt for an asset n, expressed as a fraction of the position un that hedgers want
to hedge. All these plots concern the case where hedgers are long-lived. The plots to
the right express positions relative to the case where hedgers are short-lived. All plots
assume two symmetric and uncorrelated risky assets, and set the annualized standard

deviation of the hedgers’ endowment
√
u⊤Σu to 15%, the arbitrageurs’ subjective

discount rate ρ to 4%, and the riskless rate r to 2%. In the baseline case, represented
by the blue solid line in all plots, the hedgers’ risk-aversion coefficient α is set to
2 and the arbitrageurs’ relative risk-aversion coefficient γ to 0.5. (By normalizing
the hedgers’ wealth to one, via a choice of numeraire, we can interpret α as their

coefficient of relative risk aversion and
√
u⊤Σu as the annualized standard deviation

of their endowment as a fraction of their wealth.) Under these choices, the parameters
z and K are 2.25 and 0.59, respectively. The plots at the top examine the effect of
raising α to 4, and the plots at the bottom examine the effect of raising γ to 2.

A(wt) =
1
wt
. Although the intertemporal hedging demand raises A(wt) for γ < 1, A(wt) remains

smaller than for γ = 1. Conversely, although the intertemporal hedging demand lowers A(wt) for

γ > 1, A(wt) remains larger than for γ = 1. These comparisons do not imply, however, that the

relative contribution of the intertemporal hedging demand to A(wt) is small; we next point out

that it is large in some cases.
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When wt goes to infinity, A(wt) ≈ γ
wt
. Hence, A(wt) is driven purely by the static component,

and the relative contribution of the intertemporal hedging demand converges to zero. The same

result holds when wt goes to zero if γ exceeds a threshold K ∈ (0, 1). If instead γ < K, A(wt) ≈ K
wt
.

Hence, the contribution of the intertemporal hedging demand to A(wt) is K−γ
wt

in absolute terms

and K−γ
K

in relative terms. If, in particular, γ is close to zero, A(wt) is almost purely driven by

the intertemporal hedging demand. The difference between the cases γ > K and γ < K lies in the

behavior of the marginal utility q(wt) when wt goes to zero. If γ > K, then q(wt) converges to

a finite limit and hence the ratio of − q′(wt)
q(wt)

to γ
wt

must converge to zero. If instead γ < K, then

q(wt) converges to infinity and hence − q′(wt)
q(wt)

can be larger than γ
wt
.8

Eq. (3.23) implies that the threshold K increases with the hedgers’ risk-aversion coefficient α

and endowment variance u⊤Σu. Hence, when hedgers are more risk averse or their endowment is

more volatile, arbitrageurs with γ < K also become more risk averse for wt close to zero. Theorem

3.2 generalizes these results to any γ < 1 and wt, and shows that the opposite results hold for

γ > 1.

Theorem 3.2 Suppose that hedgers are short-lived. For any given level of arbitrageur wealth wt,

the following comparative statics hold:

(i) An increase in the hedgers’ risk-aversion coefficient α raises arbitrageur dynamic risk aversion

A(wt) if γ < 1, and lowers it if γ > 1.

(ii) An increase in the hedgers’ endowment variance u⊤Σu raises arbitrageur dynamic risk aver-

sion A(wt) if γ < 1, and lowers it if γ > 1.

The intuition for Theorem 3.2 is that for larger values of α and u⊤Σu, expected returns are

more sensitive to changes in arbitrageur wealth wt, rising more steeply when wt declines. Hence,

arbitrageurs with γ < 1 have a marginal utility that also rises more steeply following declines in

wt. This makes them even more willing to preserve wealth in the low-wt states, and raises their

dynamic risk aversion A(wt). Arbitrageurs with γ > 1, by contrast, have a marginal utility that

drops more steeply following declines in wt, and this lowers A(wt).

8The region γ < K in which q(wt) converges to infinity when wt goes to zero is a subset of the region γ < 1 in
which q(wt) is decreasing. The former region is also the one in which the value function of an arbitrageur facing the
time-invariant expected returns that arise in equilibrium when wt = 0 (no arbitrageurs) is infinite.
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The comparative statics of A(wt) yield comparative statics for arbitrageur positions and Sharpe

ratios. Most surprising among those is that arbitrageurs can supply less insurance to hedgers when

the latter become more risk averse. Following an increase in α, supplying insurance becomes more

profitable for arbitrageurs. If arbitrageur risk aversion included only the static component, which

does not depend on α, arbitrageurs would therefore supply more insurance. Because of the intertem-

poral hedging demand, however, the dynamic risk aversion of arbitrageurs with γ < 1 increases.

Moreover, this effect can dominate, inducing arbitrageurs to supply less insurance. Arbitrageurs

with γ ≥ 1 instead supply more insurance because their dynamic risk aversion decreases. When

γ ≤ 1, arbitrageurs’ Sharpe ratio increases because both hedgers and arbitrageurs become more

risk averse. The comparative statics with respect to u⊤Σu are along similar lines.

Corollary 3.2 Suppose that hedgers are short-lived. For any given level of arbitrageur wealth wt,

the following comparative statics hold:

(i) An increase in the hedgers’ risk aversion coefficient α raises the arbitrageurs’ position in

absolute value when γ ≥ 1 and lowers it when γ < K, z < 1 and wt is small. It raises the

arbitrageurs’ Sharpe ratio when γ ≤ 1.

(ii) An increase in the variance u⊤Σu of hedgers’ endowment raises the arbitrageurs’ position in

absolute value when γ > 1 and lowers it when γ < 1. It raises the arbitrageurs’ Sharpe ratio

when γ ≤ 1.

When hedgers are long-lived, an increase in α lowers the arbitrageurs’ position in absolute value

when γ < K, z < 1 and wt is small.

The result that an increase in α can induce the arbitrageurs to supply less insurance to hedgers

carries through to long-lived hedgers. This is because the asymptotic behavior of A(wt) for wt

close to zero is the same as with short-lived hedgers. Our numerical solutions indicate that the

remaining comparative statics in Theorem 3.2 and Corollary 3.2 also extend to long-lived hedgers.

3.3.3 Stationary Distribution

We next derive the long-run dynamics of arbitrageur wealth.
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Proposition 3.5 If z > 1, then arbitrageur wealth has a long-run stationary distribution with

density

d(wt) =

[α+A(wt)−F ′(wt)]2

A(wt)
exp

[

∫ wt

1

(

A(ŵt)− [α+A(ŵt)−F ′(ŵt)]2

zA(ŵt)

)

dŵt

]

∫∞
0

[α+A(wt)−F ′(wt)]2

A(wt)
exp

[

∫ wt

1

(

A(ŵt)− [α+A(ŵt)−F ′(ŵt)]2

zA(ŵt)

)

dŵt

]

dwt

(3.24)

over the support (0,∞). If z < 1, then wealth converges to zero in the long run.

Arbitrageur wealth has a non-degenerate stationary density if the parameter z defined in (3.20)

exceeds one. That is, the hedgers’ risk-aversion coefficient α and endowment variance u⊤Σu must

be large enough relative to the difference between the arbitrageurs’ subjective discount rate ρ and

the riskless rate r. Note that this result is valid both when hedgers are short-lived and when they

are long-lived.

The existence of a non-degenerate stationary density is related to the dynamics of arbitrageur

wealth being self-correcting : when wealth drops, the arbitrageurs’ future expected returns increase

causing wealth to grow faster, and vice-versa. To explain the relationship and why the condition

z > 1 is required, we recall the standard Merton (1971) portfolio optimization problem in which

an infinitely-lived investor with CRRA coefficient γ can invest in a riskless rate r and in N risky

assets whose returns have expectation given by a vector µ and covariance given by a matrix Σ. The

investor’s wealth converges to infinity in the long run when

r +
1

2
µ⊤Σ−1µ > ρ, (3.25)

i.e., the riskless rate plus one-half of the squared Sharpe ratio achieved from investing in the risky

assets exceeds the investor’s subjective discount rate ρ. When instead (3.25) holds in the opposite

direction, wealth converges to zero. Intuitively, wealth converges to infinity when the investor

accumulates wealth at a rate that exceeds sufficiently the rate at which he consumes.

Our model differs from the Merton problem because the arbitrageurs’ Sharpe ratio is endoge-

nously determined in equilibrium and decreases in their wealth (Corollary 3.1). Using (3.19) to

substitute for the arbitrageurs’ Sharpe ratio, we can write (3.25) as

r +
1

2

(

αA(wt)

α+A(wt)− F ′(wt)

)2

u⊤Σu > ρ. (3.26)

Transposing the result from the Merton problem thus suggests that there are three possibilities for

the long-run dynamics of arbitrageur wealth. If (3.26) is satisfied for all values of wt, then wealth
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converges to infinity. If (3.26) is violated for all values of wt, then wealth converges to zero. If,

finally, (3.26) is violated for large values but is satisfied for small values, neither convergence occurs

and wealth has a non-degenerate stationary density.

Since Theorem 3.1 shows that A(wt) converges to zero when wt goes to infinity, (3.26) is satisfied

for large values of wt if r > ρ. Our assumption ρ > r hence implies that (3.26) is violated for large

wt, and rules out that wealth converges to infinity in the long run. To examine whether (3.26) is

satisfied for small values of wt, we recall from Theorem 3.1 that A(wt) is of order
1
wt

for wt close to

zero, and that limwt→0 F
′(wt)wt = 0. Hence, (3.26) is satisfied for small wt if r+

α2u⊤Σu
2 > ρ. This

condition is equivalent to z > 1, which is exactly what Proposition 3.5 requires for a non-degenerate

stationary density to exist. Proposition 3.6 computes the density in closed form when hedgers are

short-lived and arbitrageurs have logarithmic utility (γ = 1).

Proposition 3.6 Suppose that hedgers are short-lived, arbitrageurs have logarithmic utility (γ =

1), and z > 1. The stationary density d(wt):

(i) Is decreasing in wt if z < 27
8 .

(ii) Is bimodal in wt otherwise: decreasing in wt for wt ∈ (0,m1), increasing in wt for wt ∈
(m1,m2), and again decreasing in wt for wt ∈ (m2,∞). The thresholds m1 < m2 are the two

positive roots of

(αwt)
3 + 3(αwt)

2 + (3− 2z)αwt + 1 = 0. (3.27)

(iii) Shifts to the right in the monotone likelihood ratio sense when α or u⊤Σu increase.

The stationary density has two possible shapes. When z is not much larger than one, it is

decreasing in arbitrageur wealth wt, and so values of wt close to zero are more likely than larger

values. When instead z is sufficiently larger than one, the stationary density becomes bimodal,

with the two maxima being zero and an interior point m2 of the support. Values of wt close to the

maxima are more likely than intermediate values, meaning that the economy spends more time at

these values than in the middle. The intuition is that when the hedgers’ risk-aversion coefficient

α and endowment variance u⊤Σu are large, arbitrageurs earn high expected returns for providing

insurance, and their wealth grows fast. Therefore, large values of wt can be more likely in steady

state than intermediate values. At the same time, while expected returns are highest when wealth
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is small, wealth grows away from small values slowly in absolute terms. Therefore, small values of

wt are more likely than intermediate values.

Using the long-run stationary distribution, we can perform “unconditional” comparative statics.

For example, rather than examining how the arbitrageurs’ Sharpe ratio depends on α conditionally

on wt, we can examine how it depends on α unconditionally, in expectation over the stationary

distribution of wt. The unconditional comparative statics can differ from the conditional ones.

For example, while an increase in α and u⊤Σu raises the conditional Sharpe ratio when γ ≤ 1

(Corollary 3.2), it can lower its unconditional expectation. Intuitively, for larger values of α and

u⊤Σu, arbitrageur wealth grows faster, and its stationary density shifts to the right (Proposition

3.6). Therefore, while the conditional Sharpe ratio increases, its unconditional expectation can

decrease because large values of wealth, which yield low Sharpe ratios, become more likely.

4 Equilibrium with Long-Maturity Assets

We conjecture that in equilibrium the price vector St of the long-maturity assets follows the Ito

process

dSt = µStdt+ σ⊤
StdBt, (4.1)

where µSt is a N × 1 vector and σSt is a N ×N matrix. We denote by dRt ≡ dSt + dDt − rStdt

the N × 1 vector of returns that the long-maturity assets earn between t and t+ dt in excess of the

riskless asset. Note as in the case of short-maturity assets, dRt is a return per share rather than

per dollar invested. Eqs. (2.1) and (4.1) imply that the instantaneous expected excess returns of

the long-maturity assets are

Et(dRt)

dt
= µSt + D̄ − rSt, (4.2)

and the instantaneous covariance matrix of returns is

Vart(dRt)

dt
= (σSt + σ)⊤(σSt + σ). (4.3)

4.1 Equivalence with Short-Maturity Assets

With long-maturity assets, the budget constraint (3.3) of a long-lived hedger becomes

dvt = rvtdt+X⊤
t (dSt + dDt − rStdt) + u⊤dDt − c̄tdt, (4.4)

24



where Xt is the hedger’s position in the risky assets at time t. The budget constraint of a short-

lived hedger is derived from (4.4) by excluding consumption. The budget constraint (3.8) of an

arbitrageur becomes

dwt = rwtdt+ Y ⊤
t (dSt + dDt − rStdt)− ctdt, (4.5)

where Yt is the arbitrageur’s position in the risky assets at time t. The market clearing equation

(3.15) becomes

Xt + Yt = 0. (4.6)

Because the market is complete with long-maturity assets, as it is with short-maturity assets, the

two asset structures generate the same allocation and the same pricing of risk.

Lemma 4.1 An equilibrium (St,Xt, Yt) with long-maturity assets can be constructed from an equi-

librium (πt, xt, yt) with short-maturity assets by:

(i) Choosing the price process St such that

(

σ⊤
)−1

(D̄ − πt) =
(

(σSt + σ)⊤
)−1

(µSt + D̄ − rSt). (4.7)

(ii) Choosing the asset positions Xt of hedgers and Yt of arbitrageurs such that

σxt = (σSt + σ)Xt, (4.8)

σyt = (σSt + σ)Yt. (4.9)

In the equilibrium with long-maturity assets the dynamics of arbitrageur wealth, the exposures of

hedgers and arbitrageurs to the Brownian shocks, the market prices of the Brownian risks, and the

arbitrageurs’ Sharpe ratio are the same as in the equilibrium with short-maturity assets.

Eqs. (4.8) and (4.9) construct positions of hedgers and arbitrageurs in the long-maturity assets

so that the exposures to the underlying Brownian shocks are the same as with short-maturity

assets. Eq. (4.7) constructs a price process such that the market prices of the Brownian risks are

also the same. Given this price process, risk exposures are optimal and clear the markets, because

these properties also hold with short-maturity assets.
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4.2 Asset Prices and Returns

The prices St of the long-maturity assets are a function of arbitrageur wealth wt, which is the only

state variable in our model. Using Ito’s lemma to compute the drift µSt and diffusion σSt of the

price process as a function of the dynamics of wt, and substituting into (4.7), we can determine

S(wt) up to an ODE for a scalar function.

Proposition 4.1 The prices of the long-maturity assets are given by

S(wt) =
D̄

r
+ g(wt)Σu, (4.10)

where the scalar function g(wt) solves the ODE

α2u⊤Σu

2[α +A(wt)− F ′(wt)]2
g′′(wt)+

(

r − q(wt)
− 1

γ

)

g′(wt)wt−rg(wt) =
αA(wt)

α+A(wt)− F ′(wt)
. (4.11)

The assets’ expected excess returns are

Et(dRt)

dt
=

αA(wt)

α+A(wt)− F ′(wt)

[

u⊤Σuf(wt) + 1
]

Σu, (4.12)

and the covariance matrix of returns is

Vart(dRt)

dt
= f(wt)

[

u⊤Σuf(wt) + 2
]

Σuu⊤Σ+ Σ, (4.13)

where

f(wt) ≡
αg′(wt)

α+A(wt)− F ′(wt)
. (4.14)

The ODE (4.11) is linear in g(wt). The boundary conditions that we require are that g(wt)

converges to finite limits at zero and infinity. As with the ODEs in Section 3, we only assume the

existence of finite limits rather than the limits’ exact values. Theorem 4.1 shows that a solution

g(wt) to the ODE (4.11) exists when hedgers are short-lived, is negative and increasing in wt, and

converges to −α
r
and to zero, respectively, when wt goes to zero and to infinity. The theorem also

shows that when hedgers are long-lived, the limits are as in the short-lived case.

Theorem 4.1 When hedgers are short-lived, a solution to the ODE (4.11) with finite limits at zero

and infinity exists. The solution has the following properties:
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• The function g(wt) is negative and increasing.

• limwt→0 g(wt) = −α
r
and limwt→∞ g(wt) = 0.

When hedgers are long-lived, the limits of g(wt) at zero and infinity are the same as when they are

short-lived, provided that a solution to the ODE (4.11) with finite limits exists.

Proposition 4.1 shows that asset prices (given in (4.10)) are the sum of two terms. The first

term, D̄
r
, is the present value of the assets’ expected cashflows D̄, discounted at the riskless rate

r. Prices would equal that present value if arbitrageurs had infinite wealth since they would then

eliminate all risk premia, rendering the expected dollar returns on all assets equal to r. The second

term, g(wt)Σu, reflects the risk premia arising from arbitrageur wealth wt being finite. Consider

an asset n that covaries positively with the portfolio u that hedgers want to sell, i.e., (Σu)n > 0.

In the absence of arbitrageurs, that asset would trade at a discount relative to D̄n

r
. Arbitrageurs

cause that discount to decrease, and the more so the wealthier they are. Hence, the asset price

Sn = D̄n

r
+ g(wt)(Σu)n increases in wt and converges to D̄n

r
when wt goes to infinity. Theorem 4.1

shows that g(wt) is indeed increasing and converges to zero at infinity.

Since changes in arbitrageur wealth wt affect the prices of long-maturity assets, they also im-

pact the assets’ returns. Proposition 4.1 shows that the covariance matrix of asset returns (given

in (4.13)) is the sum of a “fundamental” component Σ, driven purely by shocks to assets’ under-

lying cashflows dDt, and an “endogenous” component f(wt)
[

f(wt)u
⊤Σu+ 2

]

Σuu⊤Σ, introduced

because cashflow shocks affect wt which affects returns. Endogenous risk does not arise with short-

maturity assets since their returns are risky only because of the payoff dDt, which is not sensitive

to changes in wt.

The endogenous covariance between an asset pair (n, n′) depends on whether the corresponding

components of the vector Σu have the same or opposite signs. Suppose, for example, that (Σu)n > 0

and (Σu)n′ > 0, in which case both assets would trade at a discount in the arbitrageurs’ absence.

An increase in arbitrageur wealth wt causes the prices of both assets to increase, resulting in positive

endogenous covariance. Suppose instead that (Σu)n < 0, in which case demand from hedgers would

cause asset n to trade at a premium in the arbitrageurs’ absence. Asset n’s price would then drop

following an increase in wt, resulting in negative endogenous covariance with asset n′.
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Endogenous risk is small at both extremes of the wealth distribution and larger in the middle.

When arbitrageur wealth wt is close to zero, arbitrageurs hold small positions in absolute terms

(i.e., not as a fraction of wt). Therefore, changes in wt are small and have a small impact on prices.

When instead wt is close to infinity, arbitrageurs absorb the entire portfolio u that hedgers want

to sell. Changes in wt are hence larger, but prices are insensitive to those changes. These effects

can be seen in the expression (4.14) for f(wt): this function is small for small wt because A(wt)

is large (resulting in small positions by arbitrageurs), and for large wt because g′(wt) is small (low

price sensitivity to wt). Since the endogenous variance is larger in the middle than in the extremes,

total variance can be hump-shaped in wt. Total covariance and correlation can be hump-shaped

or inverse hump-shaped depending on whether the endogenous covariance is positive or negative,

respectively. Proposition 4.2 confirms the hump shapes (i.e., shows that there is only one hump)

in the case where hedgers are short-lived and arbitrageurs have logarithmic utility.

Proposition 4.2 The effects of a change in arbitrageur wealth wt on the volatility of asset returns

and on return covariance and correlation converge to zero when wt goes to zero and to infinity.

When hedgers are short-lived and arbitrageurs have logarithmic utility, an increase in wt has:

(i) A hump-shaped effect on the volatility of asset returns. The hump peaks at a value that is

common to all assets.

(ii) The same hump-shaped effect on the covariance between the returns of assets n and n′ if

(Σu)n(Σu)n′ > 0, and the opposite, i.e., inverse hump-shaped, effect if (Σu)n(Σu)n′ < 0.

(iii) The same hump-shaped effect on the correlation between the returns of assets n and n′ if

(Σu)n(Σu)n′Σnn − (Σu)2nΣnn′

f(wt) [f(wt)u⊤Σu+ 2] (Σu)2n +Σnn
+

(Σu)n(Σu)n′Σn′n′ − (Σu)2n′Σnn′

f(wt) [f(wt)u⊤Σu+ 2] (Σu)2n′ +Σn′n′

> 0, (4.15)

and the opposite, i.e., inverse hump-shaped, effect if (4.15) holds in the opposite direction.

The effect on correlations is more complicated than that on covariances because it includes

the effect on volatilities. Suppose that changes in arbitrageur wealth move the prices of assets n

and n′ in the same direction, and hence have a hump-shaped effect on their covariance. Because,

however, the effect on volatilities, which are in the denominator, is also hump-shaped, the overall

effect on the correlation can be inverse hump-shaped. Intuitively, arbitrageurs can cause assets to

become less correlated because the increase in volatilities that they cause can swamp the increase

in covariance.
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A hump-shaped pattern is possible for expected excess returns as well. This is more surprising

because Corollary 3.1 shows that an increase in arbitrageur wealth wt lowers the market prices of

the Brownian risks, which are equal to expected excess returns per unit of risk exposure. Offsetting

this effect, is that for wt to the left of the volatility hump, an increase in wt raises volatility because

it raises endogenous risk. The latter effect can dominate and cause expected excess returns to

increase with wt for small values of wt. Proposition 4.3 shows that when hedgers are short-lived,

the latter effect always dominates for γ < K, and can dominate for larger values of γ as well

provided that the parameter z is sufficiently large.

Proposition 4.3 Suppose that hedgers are short-lived. For small arbitrageur wealth wt, an increase

in wt raises the expected excess return of each asset in absolute value, if γ < K. If γ > K, then

the same result holds provided that z >
γ
(

r
ρ−r

γ+1
)

γ+1 .

Figure 2 plots the Sharpe ratios, expected excess returns, volatilities and correlations of long-

maturity assets as a function of arbitrageur wealth for long-lived hedgers and for γ = 0.5 and 2.

Consistent with Propositions 4.2 and 4.3, shown for short-lived hedgers, volatility and correlation

are hump-shaped in arbitrageur wealth, and the hump-shape carries through to expected excess

returns. The comparison across the two values of γ is also interesting. As one would expect, Sharpe

ratios increase in γ. Expected excess returns, however, can be larger for the smaller value of γ. This

is because when arbitrageurs are less risk-averse, they establish larger positions, and this generates

more endogenous risk. As in Proposition 4.3, the effect of larger endogenous risk on expected excess

returns can dominate that of smaller Sharpe ratios.

5 Liquidity Risk

In this section we explore the implications of our model for liquidity risk. We assume long-maturity

assets, as in the previous section, and define liquidity based on the impact that hedgers have on

prices. Consider an increase in the parameter un that characterizes hedgers’ willingness to sell asset

n. This triggers a decrease ∂Xnt

∂un
in the quantity of the asset held by the hedgers, and a decrease

∂Snt

∂un
in the asset price. Asset n has low liquidity if the price change per unit of quantity traded is

large. That is, the illiquidity of asset n is defined by

λnt ≡
∂Snt

∂un

∂Xnt

∂un

. (5.1)
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Figure 2: Assets’ Sharpe ratios, expected excess returns, volatilities, and correlations
as a function of arbitrageur wealth wt. The plots assume two symmetric and uncorre-

lated risky assets, and set
√
u⊤Σu = 15%, α = 2, ρ = 4% and r = 2%. In the baseline

case, represented by the blue solid line, γ is set to 0.5. The plots examine the effect of
raising γ to 2. The baseline case is identical to that in Figure 1, which also examines
the effect of raising γ to 2 (on dynamic risk aversion and positions).

Defining illiquidity as price impact follows Kyle (1985). Kyle and Xiong (2001), Xiong (2001), and

Johnson (2008) perform similar constructions to ours in asset-pricing settings by defining illiquidity

as the derivative of price with respect to supply.

Proposition 5.1 Illiquidity λnt is equal to

−g(wt)

(

1 +
A(wt)− F ′(wt)

α
+ u⊤Σug′(wt)

)

Σnn. (5.2)

It converges to infinity when arbitrageur wealth wt goes to zero, and to zero when wt goes to

infinity. When hedgers are short-lived, illiquidity is positive for all wt ∈ (0,∞). When, in addition,

arbitrageurs have logarithmic utility (γ = 1), illiquidity decreases in wt.
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Proposition 5.1 identifies a time-series and a cross-sectional dimension of illiquidity. In the

time-series, illiquidity varies in response to changes in arbitrageur wealth. Our numerical solutions

indicate that illiquidity is a decreasing function of wealth, a finding that Proposition 5.1 confirms

in the case where hedgers are short-lived and arbitrageurs have logarithmic utility. The time-

series variation of illiquidity is common across assets and corresponds to the term multiplying Σnn

in (5.2). In the cross-section, illiquidity is higher for assets with more volatile cashflows. The

dependence of illiquidity on an asset n is through Σnn, the asset’s cashflow variance. The time-

series and cross-sectional dimensions of illiquidity interact: assets with more volatile cashflows have

higher illiquidity for any given level of wealth, and the time-variation of their illiquidity is more

pronounced.

We next compute the covariance between asset returns and aggregate illiquidity. Since illiquid-

ity varies over time because of arbitrageur wealth, and with an inverse relationship, the covariance of

the return vector with illiquidity is equal to the covariance with wealth times a negative coefficient.

Proposition 4.1 implies, in turn, that the covariance of the return vector with wealth is propor-

tional to Σu. This is the covariance between asset cashflows and the cashflows of the portfolio u,

which characterizes hedgers’ supply. The intuition for the proportionality is that when arbitrageurs

realize losses, they sell a fraction of u, and this lowers asset prices according to the covariance with

u. Therefore, the covariance between asset returns and aggregate illiquidity Λt ≡
∑N

n=1 λnt

N
is

Covt(dΛt, dRt)

dt
= CΛ(wt)Σu, (5.3)

where CΛ(wt) is a negative coefficient. Assets that suffer the most when aggregate illiquidity

increases and arbitrageurs sell a fraction of the portfolio u, are those corresponding to large com-

ponents (Σu)n of Σu. They have volatile cashflows (high Σnn), or are in high supply by hedgers

(high un), or correlate highly with assets with those characteristics.

Using Proposition 5.1, we can compute two additional liquidity-related covariances: the co-

variance between an asset’s illiquidity and aggregate illiquidity, and the covariance between an

asset’s illiquidity and aggregate return. We take the aggregate return to be that of the portfolio

u, which characterizes hedgers’ supply. Acharya and Pedersen (2005) show theoretically, within a

model with exogenous transaction costs, that both covariances are linked to expected returns in

the cross-section. In our model, the time-variation of the illiquidity of an asset n is proportional to

the asset’s cashflow variance Σnn. Therefore, the covariances between the asset’s illiquidity on one

hand, and aggregate illiquidity or return on the other, are proportional to Σnn.
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Corollary 5.1 In the cross-section of assets:

(i) The covariance between asset n’s return dRnt and aggregate illiquidity Λt is proportional to

the covariance (Σu)n between the asset’s cashflows and the cashflows of the hedger-supplied

portfolio u.

(ii) The covariance between asset n’s illiquidity λnt and aggregate illiquidity Λt is proportional to

the variance Σnn of the asset’s cashflows.

(iii) The covariance between asset n’s illiquidity λnt and aggregate return u⊤dRt is proportional

to the variance Σnn of the asset’s cashflows.

When hedgers are short-lived and arbitrageurs have logarithmic utility (γ = 1), the proportionality

coefficient CΛ(wt) in the first relationship is negative, and those in the second and third relationships

are positive and negative, respectively.

We next determine the link between liquidity-related covariances and expected returns. Eq.

(4.12) shows that the expected excess return of an asset n is proportional to (Σu)n. This is exactly

proportional to the covariance between the asset’s return and aggregate illiquidity. Thus, aggregate

illiquidity is a priced risk factor that explains expected returns perfectly. Intuitively, assets are

priced by the portfolio of arbitrageurs, who are the marginal agents. Moreover, the covariance

between asset returns and aggregate illiquidity identifies that portfolio perfectly. This is because

(i) changes in aggregate illiquidity are driven by arbitrageur wealth, and (ii) the portfolio of trades

that arbitrageurs perform when their wealth changes is proportional to their existing portfolio and

impacts returns proportionately to the covariance with that portfolio.

The covariances between an asset’s illiquidity on one hand, and aggregate illiquidity or returns

on the other, are less informative about expected returns. Indeed, these covariances are proportional

to cashflow variance Σnn, which is only a component of (Σu)n. Thus, these covariances proxy for

the true priced risk factor but imperfectly so.

Corollary 5.2 In the cross-section of assets, expected excess returns are proportional to the covari-

ance between returns and aggregate illiquidity. When hedgers are short-lived and arbitrageurs have

logarithmic utility (γ = 1), the proportionality coefficient ΠΛ(wt) in this relationship is negative.

The premium associated to the illiquidity risk factor is the expected excess return per unit of

covariance with the factor. Hence, it coincides with the proportionality coefficient ΠΛ(wt) in the

32



relationship between expected excess returns and covariance of returns with aggregate illiquidity.

Both the premium of the illiquidity risk factor and the covariance of returns with aggregate

illiquidity vary over time in response to changes in arbitrageur wealth wt. When wt is low, illiquidity

is high and highly sensitive to changes in wealth. Because of that effect, assets’ covariance with

illiquidity is large in absolute value when wt is small, and decreases when wt increases. Conversely,

because the premium of the illiquidity risk factor is the expected excess return per unit of covariance,

it is small in absolute value when wt is small and increases when wt increases.
9

Proposition 5.2 The common component CΛ(wt) of assets’ covariance with aggregate illiquidity,

and the premium ΠΛ(wt) of the illiquidity risk factor have the following properties:

(i) CΛ(wt) converges to minus infinity when arbitrageur wealth wt goes to zero, and to zero when

wt goes to infinity.

(ii) ΠΛ(wt) converges to zero when wt goes to zero. When hedgers are short-lived, ΠΛ(wt) con-

verges to minus infinity when wt goes to infinity.

Aggregate illiquidity explains expected returns perfectly in our model because it is a monotone

function of arbitrageur wealth wt. Hence, any other monotone function of wt would also have this

property. Recent empirical papers on intermediary asset pricing, such as Adrian, Etula, and Muir

(2014) and He, Kelly, and Manela (2017), have used the leverage of specific groups of financial

intermediaries as a risk factor, and have shown that it can price a large cross-section of assets. The

findings of these papers are exactly consistent with our model, insofar as leverage is a monotone

function of wt.
10 Our modelling approach suggests that these findings may be explained even with

minimal frictions, e.g., no borrowing constraints. On the other hand, introducing frictions may

give better guidance on which function of wt to use as a risk factor.

9Since the premium of the illiquidity risk factor depends on wt, it can be viewed as a function of illiquidity itself,
which is a monotone decreasing function of wt.

10A natural measure of leverage in our model is the total risk exposure of arbitrageurs as a fraction of their wealth.
Since the exposure of arbitrageurs to the Brownian risks is σyt = (σSt + σ)Yt, (3.13) implies that leverage is

1⊤σyt

wt

=
α1⊤σu

αwt +A(wt)wt − F ′(wt)wt

.

Lemma A.8, stated and proven in the Appendix, shows that this measure of leverage is decreasing in wt when hedgers
are short-lived and γ ≤ 1. Our numerical solutions suggest that this result holds more generally. A countercycli-
cal leverage is consistent with the empirical finding of He, Kelly, and Manela (2017), and the theory of He and
Krishnamurthy (2013) and Brunnermeier and Sannikov (2014), but is inconsistent with Adrian, Etula, and Muir
(2014).
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6 Positive Supply

Our analysis so far assumes that the long-maturity assets are in zero supply (s = 0). Proposition 6.1

shows that this assumption is without loss of generality when hedgers are long-lived: risk-sharing

and asset prices are the same as when assets are in zero supply, provided that we replace u by s+u.

The intuition is that the stream of random endowments u⊤dDt that a long-lived hedger receives

over time is equivalent to an endowment of u shares in the long-maturity assets. Thus, hedgers

generate a supply u, which is added to the supply s coming from the asset issuers. If instead asset

issuers generate no supply and hedgers generate s + u, then hedgers reduce their demand by s.

Their overall risk exposure, however, as well as the risk exposure of arbitrageurs and the prices of

the assets, remain the same.

Proposition 6.1 Suppose that hedgers are long-lived and that long-maturity assets are in positive

supply s. If (St,Xt, Yt) is an equilibrium, then (St,Xt − s, Yt) is an equilibrium when assets are

in zero supply (s = 0) and u is replaced by s + u. In both equilibria, the exposures of hedgers and

arbitrageurs to the Brownian shocks and the prices of the assets are the same.

When hedgers are short-lived, the equivalence between positive-supply and zero-supply equi-

libria does not hold. This is because any given short-lived hedger receives a random endowment

only in the next instant, so that endowment is not equivalent to one in the long-maturity assets.

Prices and expected returns, however, have the same general form as with zero supply.

Proposition 6.2 Suppose that hedgers are short-lived and that long-maturity assets are in positive

supply s. Then, the prices of the assets are given by

S(wt) =
D̄

r
+ g(wt)Σ(s + u), (6.1)

where the scalar function g(wt) solves the ODE (C.44). The assets’ expected excess returns are

Et(dRt)

dt
=

αA(wt)

α+A(wt)− αg′(wt)(s + u)⊤Σs

[

(s+ u)⊤Σ(s+ u)f(wt) + 1
]

Σ(s+ u), (6.2)

where

f(wt) ≡
αg′(wt)

α+A(wt)− αg′(wt)(s+ u)⊤Σs
.
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The price of an asset n, given in (6.1), is the sum of the price D̄n

r
that would arise if arbitrageurs

had infinite wealth, and of a discount that is proportional to the asset’s covariance (Σ(s+u))n with

aggregate supply s + u. Changes in arbitrageur wealth affect the discount, and hence their effect

is proportional to the covariance. Since the asset’s expected return, given in (6.2), is proportional

to the same covariance, aggregate illiquidity is a priced risk factor and explains expected returns

perfectly, as in the case of zero supply. The equivalence between positive and zero supply does

not hold for short-lived hedgers because the proportionality coefficients (e.g., the function g(wt))

depend on both s and u rather than only on their sum.

7 Conclusion

We develop a dynamic model of liquidity provision, in which hedgers can trade multiple risky

assets with arbitrageurs. Arbitrageurs have CRRA utility over consumption, and their capital

matters because of wealth effects. We strip out frictions such as asymmetric information and

borrowing constraints. At the same time, we depart from most frictionless asset-pricing models

by fixing the riskless rate and by suppressing wealth effects for the arbitrageurs’ counterparties.

Under this combination of assumptions, we prove general analytical results on equilibrium prices

and allocations. We characterize, in particular, how arbitrageurs’ risk aversion, the endogenous

risk that they generate, and the pricing of that risk, depend on arbitrageur wealth and hedger

characteristics. We also show that arbitrageur wealth is the single priced risk factor, and that

aggregate illiquidity, which declines in wealth, captures that factor.

One important extension of our model is to allow the supply u coming from hedgers to be

time-varying and stochastic. Such an extension would give our measure of illiquidity (5.1) stronger

empirical content because that measure is based on supply shocks. We could also compare our

measure to measures commonly used in empirical work, e.g., Amihud (2002) and Pastor and Stam-

baugh (2003), and identify their properties when volume arises both because of supply shocks

affecting liquidity demanders and wealth effects affecting liquidity providers. In a similar spirit,

supply shocks may generate a tighter relationship between volatility and our measure of illiquidity.

Indeed, volatility in our model is driven by wealth effects of arbitrageurs and is hump-shaped in

wealth, while illiquidity is defined based on supply shocks affecting hedgers and is decreasing in

wealth.

Extending our model to stochastic u could strengthen our interpretation of arbitrageurs as

specialized liquidity providers. Indeed, a common view of liquidity providers (e.g., Grossman and

35



Miller (1988)) is that they absorb temporary imbalances between demand and supply. A natural

interpretation of these imbalances within our model is as shocks to u. In the presence of these

shocks, liquidity provision becomes distinct from sharing the aggregate risk in the economy, which

also includes the supply s coming from issuers. To model this idea, we would need to introduce

additional agents to the model who absorb part of s but are unable to identify shocks to u or trade

on them. Under such an extension, the result of Section 6 that s and u are symmetric in terms

of their effects on prices and expected returns would break down. Arbitrageur wealth or variables

related to it, such as illiquidity, may remain the single priced risk factor, however.
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APPENDIX

A Proofs of the Results in Section 3

Proof of Proposition 3.1: The Bellman equation is

ρ̄V = max
c̄t,xt

{

u(c̄t) + Vvµvt +
1

2
Vvvσ

⊤
vtσvt + Vwµwt +

1

2
Vwwσ

⊤
wtσwt + Vvwσ

⊤
vtσwt

}

, (A.1)

where u(c̄t) = e−
α
r
c̄t, (µvt, σvt) are the drift and diffusion of the hedger’s wealth vt, and (µwt, σwt)

are the drift and diffusion of arbitrageur wealth. Substituting dDt from (2.1) into (3.3) and (3.8),

we find that the drifts and diffusions are

µvt = rvt − c̄t + x⊤t (D̄ − πt) + u⊤D̄, (A.2)

σvt = σ(xt + u), (A.3)

for the hedger, and

µwt = rwt − ct + y⊤t (D̄ − πt), (A.4)

σwt = σyt, (A.5)

for arbitrageurs.

Substituting (3.4) and (A.2)-(A.5) into (A.1), we can write the latter equation as

− ρ̄e−[αvt+F (wt)] = max
c̄t,xt

{

−e−
α
r
c̄t + αe−[αvt+F (wt)]

[

rvt − c̄t + x⊤t (D̄ − πt) + u⊤D̄
]

− 1

2
α2e−[αvt+F (wt)](xt + u)⊤Σ(xt + u) + F ′(wt)e

−[αvt+F (wt)]
[

rwt − ct + y⊤t (D̄ − πt)
]

+
1

2

[

F ′′(wt)− F ′(wt)
2
]

e−[αvt+F (wt)]y⊤t Σyt − αF ′(wt)e
−[αvt+F (wt)](xt + u)⊤Σyt

}

. (A.6)

The first-order conditions with respect to c̄t and xt yield (3.5) and (3.6), respectively.

Proof of Proposition 3.2: We can write the hedger’s maximization problem as

max
xt

{

µvt −
α

2
σ⊤
vtσvt

}

, (A.7)
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where µvt is given by (A.2) with c̄t = 0, and σvt is given by (A.3). Using (A.2) and (A.3), we find

that the problem (A.7) is equivalent to

max
xt

{

x⊤t (D̄ − πt)−
α

2
(xt + u)⊤Σ(xt + u)

}

. (A.8)

The first-order condition with respect to xt yields (3.7).

Proof of Proposition 3.3: The Bellman equation is

ρV = max
ĉt,ŷt

{

u(ĉt) + Vŵµŵt +
1

2
Vŵŵσ

⊤
ŵtσŵt + Vwµwt +

1

2
Vwwσ

⊤
wtσwt + Vŵwσ

⊤
ŵtσwt

}

, (A.9)

where u(ĉt) =
ĉ
1−γ
t

1−γ
for γ 6= 1 and u(ĉt) = log(ĉt) for γ = 1, (µŵt, σŵt) are the drift and diffusion of

the arbitrageur’s own wealth ŵt, and (µwt, σwt) are the drift and diffusion of the arbitrageurs’ ag-

gregate wealth. The quantities (µwt, σwt) are given by (A.4) and (A.5), respectively. The quantities

(µŵt, σŵt) are given by the counterparts of these equations with hat signs, i.e.,

µŵt = rŵt − ĉt + ŷ⊤t (D̄ − πt), (A.10)

σŵt = σŷt. (A.11)

When γ 6= 1, we substitute (3.9), (A.4), (A.5), (A.10) and (A.11) into (A.9) to write it as

ρq(wt)
ŵ

1−γ
t

1− γ
= max

ĉt,ŷt

{

ĉ
1−γ
t

1− γ
+ q(wt)ŵ

−γ
t

(

rŵt − ĉt + ŷ⊤t (D̄ − πt)
)

− 1

2
q(wt)γŵ

−γ−1
t ŷ⊤t Σŷt

+q′(wt)
ŵ

1−γ
t

1− γ

(

rwt − ct + y⊤t (D̄ − πt)
)

+
1

2
q′′(wt)

ŵ
1−γ
t

1− γ
y⊤t Σyt + q′(wt)ŵ

−γ
t ŷ⊤t Σyt

}

. (A.12)

The first-order conditions with respect to ĉt and ŷt yield (3.11) and (3.12), respectively. When

γ = 1, we substitute (3.10), (A.4), (A.5), (A.10) and (A.11) into (A.9) to write it as

ρ

(

1

ρ
log(ŵt) + q1(wt)

)

= max
ĉt,ŷt

{

log(ĉt) +
1

ρŵt

(

rŵt − ĉt + ŷ⊤t (D̄ − πt)
)

− 1

2ρŵ2
t

ŷ⊤t Σŷt

+q′1(wt)
(

rwt − ct + y⊤t (D̄ − πt)
)

+
1

2
q′′1(wt)y

⊤
t Σyt

}

. (A.13)

The first-order conditions with respect to ĉt and ŷt yield (3.11) and (3.12), respectively, for q(wt) =

1
ρ
.
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Proof of Proposition 3.4: Since in equilibrium ĉt = ct and ŵt = wt, (3.11) implies that

ct = q(wt)
− 1

γwt. (A.14)

Substituting (3.17) and (3.18) into (3.12) and using the definition of A(wt) in (3.14), we find

ŷt =
αŵt

[α+A(wt)− F ′(wt)]wt
u. (A.15)

When γ 6= 1, we substitute (3.11), (3.17), (3.18), (A.14), and (A.15) into the arbitrageur’s

Bellman equation (A.12). The terms in ŵt cancel, and the resulting equation is

ρq(wt) =q(wt)
1− 1

γ +

(

q′(wt) +
(1− γ)q(wt)

wt

)(

rwt − q(wt)
− 1

γwt +
α2u⊤ΣuA(wt)

[α+A(wt)− F ′(wt)]2

)

+
1

2

(

q′′(wt)−
γ(1− γ)q(wt)

w2
t

+
2(1− γ)q′(wt)

wt

)

α2u⊤Σu

[α+A(wt)− F ′(wt)]2
. (A.16)

Dividing both sides by q(wt) and rearranging, we find

ρ =q(wt)
− 1

γ +

(

q′(wt)

q(wt)
+

1− γ

wt

)

(

rwt − q(wt)
− 1

γwt

)

+
1

2

(

q′′(wt)

q(wt)
− γ(1− γ)

w2
t

+
2(1 − γ)q′(wt)

q(wt)wt
+ 2

(

q′(wt)

q(wt)
+

1− γ

wt

)

A(wt)

)

α2u⊤Σu

[α+A(wt)− F ′(wt)]2

=r +
(

q(wt)
− 1

γ − r
)

A(wt)wt

+
1

2

(

q′′(wt)

q(wt)
+

γ(1 + γ)

w2
t

− 2γq′(wt)

q(wt)wt
− 2A(wt)

2

)

α2u⊤Σu

[α+A(wt)− F ′(wt)]2
, (A.17)

where the last step follows from the definition of A(wt) in (3.14). Differentiating (3.14), we find

A′(wt) =− γ

w2
t

− q′′(wt)

q(wt)
+

q′(wt)
2

q(wt)2

=− γ(1 + γ)

w2
t

− q′′(wt)

q(wt)
+

2γq′(wt)

q(wt)wt
+A(wt)

2, (A.18)

where the second step follows again from (3.14). Substituting (A.18) into (A.17), we find

ρ = r +
(

q(wt)
− 1

γ − r
)

A(wt)wt −
1

2

(

A′(wt) +A(wt)
2
) α2u⊤Σu

[α+A(wt)− F ′(wt)]2
. (A.19)

Rearranging (A.19) and using the definition of z in (3.20), we find the ODE (3.21).
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When γ = 1, q(wt) = 1
ρ
and A(wt) = 1

wt
. The ODE (3.21) holds for these values. The

arbitrageur’s Bellman equation (A.13) yields an ODE involving q1(wt). To derive it we substitute

(3.11), (3.17), (3.18), (A.14), (A.15), q(wt) = 1
ρ
and A(wt) = 1

wt
into (A.13). The terms in ŵt

cancel, and the resulting equation is

ρq1(wt) = log(ρ) +

(

q′1(wt) +
1

ρwt

)






rwt − ρwt +

α2u⊤Σu 1
wt

[

α+ 1
wt

− F ′(wt)
]2







+
1

2

(

q′′1 (wt)−
1

ρw2
t

)

α2u⊤Σu
[

α+ 1
wt

− F ′(wt)
]2 . (A.20)

Using (3.5) and (3.6), we can write the terms in the first line of the hedger’s Bellman equation

(A.6) as

− e−
α
r
c̄t + αe−[αvt+F (wt)]

[

rvt − c̄t + x⊤t (D̄ − πt) + u⊤D̄
]

= −re−[αvt+F (wt)] + αe−[αvt+F (wt)]
[ r

α
[log(r)− F (wt)] + u⊤D̄ + αx⊤t Σ(xt + u) + F ′(wt)x

⊤
t Σyt

]

.

Substituting into (A.6), we can write that equation as

ρ̄ =r + rF (wt)− r log(r)− αu⊤D̄ − 1

2
α2(xt − u)⊤Σ(xt + u)− F ′(wt)

[

rwt − ct + y⊤t (D̄ − πt)
]

− 1

2

[

F ′′(wt)− F ′(wt)
2
]

y⊤t Σyt + αF ′(wt)u
⊤Σyt. (A.21)

The last four terms in the right-hand side of (A.21) are equal to

− 1

2
α2x⊤t Σxt +

1

2
α2u⊤Σu− F ′(wt)

[

rwt − ct +A(wt)y
⊤
t Σyt

]

− 1

2

[

F ′′(wt)− F ′(wt)
2
]

y⊤t Σyt + αF ′(wt)u
⊤Σyt

= −1

2
α2y⊤t Σyt +

1

2
α2u⊤Σu− F ′(wt)

[

rwt − ct +A(wt)y
⊤
t Σyt

]

− 1

2

[

F ′′(wt)− F ′(wt)
2
]

y⊤t Σyt + αF ′(wt)u
⊤Σyt

= −F ′(wt)(rwt − ct)−
α2u⊤Σu

2 [α+A(wt)− F ′(wt)]
2

×
[

α2 −
[

α+A(wt)− F ′(wt)
]2

+ 2F ′(wt)A(wt) + F ′′(wt)− F ′(wt)
2 − 2F ′(wt)

[

α+A(wt)− F ′(wt)
]

]

= −F ′(wt)(rwt − ct)−
α2u⊤Σu {F ′′(wt)−A(wt) [2α+A(wt)− 2F ′(wt)]}

2 [α+A(wt)− F ′(wt)]
2 ,
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where the first step follows from (3.13), the second from (3.15), and the third from (3.18). Substi-

tuting into (A.21) and simplifying, we find

ρ̄ =r + rF (wt)− r log(r)− αu⊤D̄ − F ′(wt)(rwt − ct)

− α2u⊤Σu {F ′′(wt)−A(wt) [2α+A(wt)− 2F ′(wt)]}
2 [α+A(wt)− F ′(wt)]

2 . (A.22)

Substituting ct from (A.14) and rearranging, we find (3.22).

Proof of Theorem 3.1: We start with the case where hedgers are short-lived. The second-order

ODE (3.21) for q(wt) is equivalent to the system of two first-order ODEs for (q(wt), A(wt)):

q′(wt) = q(wt)

(

γ

wt
−A(wt)

)

, (A.23)

A′(wt) = −A(wt)
2 +

[α+A(wt)]
2

z

(

q(wt)
− 1

γ − r

ρ− r
A(wt)wt − 1

)

, (A.24)

which follow from rearranging (3.14) and (3.21), respectively. Using the functions Q(wt) ≡ q(wt)
− 1

γ

and R(wt) ≡ A(wt)wt, we can convert the system of (A.23) and (A.24) into one for (Q(wt), R(wt)):

Q′(wt) =
Q(wt) [R(wt)− γ]

γwt
, (A.25)

R′(wt)wt = R(wt) [1−R(wt)] +
[αwt +R(wt)]

2

z

(

Q(wt)− r

ρ− r
R(wt)− 1

)

. (A.26)

Since the function

(wt, Q,R) −→
(

Q(R−γ)
wt

R(1−R)
wt

+ (αwt+R)2

zwt

(

Q−r
ρ−r

R− 1
)

)

is continuously differentiable for (w,Q,R) ∈ (0,∞) × (−∞,∞) × (−∞,∞), it is locally Lipschitz

in that set. Hence, for any ǫ > 0, the system of (A.25) and (A.26) has a unique solution in a

neighborhood of ǫ with initial conditions Q(ǫ) > 0 and R(ǫ) > 0. We can extend that solution

maximally to the left and to the right of ǫ, over an interval I. That solution satisfies Q(wt) > 0 for

all wt ∈ I because of (A.25). We next derive properties of solutions to the system of (A.25) and

(A.26), as well as the existence result, through a number of lemmas.

Lemma A.1 (Limits at zero and infinity) Consider a solution Q(wt) > 0 and R(wt) to the

system of (A.25) and (A.26), defined over the interval (0,∞).
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• If limwt→0R(wt) ∈ (0,∞), then this limit is equal to K if γ < K and to γ if γ > K. In the

former case limwt→0Q(wt) = 0 and in the latter case limwt→0 Q(wt) ∈ (0,∞).

• If limwt→∞Q(wt) ∈ (0,∞), then this limit is equal to r + ρ−r
γ

, and limwt→∞R(wt) = γ.

Proof: To derive the limits at zero, we start by observing that the finiteness of limwt→0R(wt)

implies that if limwt→0R
′(wt)wt exists then it must be zero. Indeed, if limwt→0R

′(wt)wt 6= 0, then

|R′(wt)| ≥ ℓ
wt

for wt < ǫ and for positive ǫ and ℓ. Since, however, for wt < ǫ

R(wt) = R(ǫ) +

∫ wt

ǫ

R′(ŵt)dŵt ⇒ |R(wt)−R(ǫ)| ≥
∫ ǫ

wt

ℓ

ŵt
dŵt = ℓ log

(

ǫ

wt

)

,

limwt→0R(wt) would be plus or minus infinity, a contradiction.

If limwt→0R(wt) < γ, then (A.25) implies limwt→0Q(wt) = ∞. The latter equation, to-

gether with (A.26) and limwt→0R(wt) 6= 0, imply limwt→0R
′(wt)wt = ∞, a contradiction. If

limwt→0R(wt) > γ, then (A.25) implies limwt→0Q(wt) = 0 and (A.26) implies

lim
wt→0

R′(wt)wt = lim
wt→0

R(wt)G

(

lim
wt→0

R(wt)

)

. (A.27)

Setting limwt→0R
′(wt)wt = 0 in (A.27), and using limwt→0 R(wt) 6= 0, we find G (limwt→0 R(wt)) =

0. Since the quadratic polynomialG(γ) defined in (3.23) has the unique positive rootK, limwt→0R(wt) =

K. Suppose, finally, that limwt→0R(wt) = γ and limwt→0R
′(wt)wt exists. Setting limwt→0R

′(wt)wt =

0 in (A.26), we find

γ(1− γ) +
γ2

z

(

limwt→0Q(wt)− r

ρ− r
γ + 1

)

= 0

⇔ 1− γ +
γ

z

(

limwt→0 Q(wt)− r

ρ− r
γ + 1

)

= 0. (A.28)

Since K is the unique positive root of G(γ) and the quadratic term of G(γ) is negative, (A.28) has

a positive solution for limwt→0Q(wt) if γ > K.

If γ > K, then the case limwt→0R(wt) > γ is not possible because it would imply limwt→0R(wt) =

K < γ. Hence, limwt→0 R(wt) = γ and limwt→0Q(wt) ∈ (0,∞). If γ < K, then the case

limwt→0R(wt) = γ is not possible because it would imply limwt→0Q(wt) < 0. Hence, limwt→0R(wt) =

K and limwt→0Q(wt) = 0.
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To complete the proof for the limits at zero, we need to show that in the case limwt→0R(wt) =

γ, limwt→0R
′(wt)wt exists. From (A.26), this is equivalent to showing that limwt→0Q(wt) ex-

ists. We proceed by contradiction and assume that limwt→0Q(wt) does not exist, and hence

lim supwt→0Q(wt) > lim infwt→0Q(wt). This means that as wt goes to zero Q(wt) oscillates more

and more rapidly between maxima and minima whose distance is bounded away from zero. Differ-

entiating (A.25) at a maximizer and at a minimizer of Q(wt), we find

Q′′(wt) = Q′(wt)
R(wt)− γ

γwt
+Q(wt)

(

R′(wt)

γwt
− R(wt)− γ

γw2
t

)

=
Q(wt)R

′(wt)

γwt

=
Q(wt)

[

γ(1− γ) + (αwt+γ)2

z

(

Q(wt)−r
ρ−r

γ − 1
)]

γw2
t

, (A.29)

where the second step follows from R(wt) = γ, which holds at a maximizer and a minimizer of

Q(wt) because of (A.25), and the third step follows from (A.26). Since Q′′(wt) < 0 at a maximizer,

(A.29) implies

γ(1− γ) +
(αwt + γ)2

z

(

Q(wt)− r

ρ− r
γ − 1

)

< 0.

Taking the limit along a sequence of maximizers as wt goes to zero, we find

γ(1− γ) +
γ2

z

(

lim supwt→0Q(wt)− r

ρ− r
γ − 1

)

≤ 0. (A.30)

Since Q′′(wt) > 0 at a minimizer, (A.29) likewise implies that

γ(1− γ) +
γ2

z

(

lim infwt→0Q(wt)− r

ρ− r
γ − 1

)

≥ 0. (A.31)

Eqs. (A.30) and (A.31) imply that lim supwt→0Q(wt) ≤ lim infwt→0Q(wt), a contradiction.

Consider next the limits at infinity. If limwt→∞R(wt) exists, then it has to equal γ, otherwise

(A.25) would imply that limwt→∞Q(wt) is either zero or infinity. Moreover,

limwt→∞Q(wt)− r

ρ− r
γ − 1 = 0 ⇒ lim

wt→∞
Q(wt) = r +

ρ− r

γ
,
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otherwise (A.26) would imply that limwt→0R
′(wt) is plus or minus infinity, which contradicts the

finiteness of limwt→0R(wt).

To complete the proof for the limits at infinity, we need to show that limwt→∞R(wt) ex-

ists. We proceed by contradiction and assume that limwt→∞R(wt) does not exist, and hence

lim supwt→∞R(wt) > lim infwt→∞R(wt). SinceR(wt) oscillates between values close to lim supwt→∞R(wt)

and values close to lim infwt→∞R(wt), there exists ξ ∈ (lim infwt→∞R(wt), lim supwt→∞R(wt)) and

a sequence {wtn}n∈N converging to infinity such that R(wtn) = ξ and R′(wtn) alternates between

being non-positive and non-negative. Eq. (A.26) implies, however, that for large n, the sign of

R′(wtn) is the same as of

limwt→∞Q(wt)− r

ρ− r
ξ − 1,

which does not change and can be chosen to be non-zero by varying ξ, a contradiction.

Lemma A.2 (Single crossing of solutions) Consider two solutions (Q1(wt), R1(wt)) and

(Q2(wt), R2(wt)) to the system of (A.25) and (A.26) with initial conditions Q1(ǫ) > Q2(ǫ) > 0

and R1(ǫ) = R2(ǫ) > 0 for ǫ > 0. The solutions compare as follows:

• Q1(wt) > Q2(wt) for all wt for which the solutions are defined.

• R1(wt) > R2(wt) for all wt > ǫ, and R1(wt) < R2(wt) for all wt < ǫ.

Proof: We first show the inequalities for wt > ǫ. Since Q1(ǫ) > Q2(ǫ) > 0, (A.26) implies

R′
1(ǫ) > R′

2(ǫ). Since, in addition, R1(ǫ) = R2(ǫ), R1(wt) > R2(wt) for wt close to and larger than

ǫ. Proceeding by contradiction, suppose that there exists wt > ǫ such that Q1(wt) ≤ Q2(wt) or

R1(wt) ≤ R2(wt). The infimum m within that set is strictly larger than ǫ since Q1(wt) > Q2(wt)

and R1(wt) > R2(wt) for wt close to and larger than ǫ. Since the same inequalities hold for all

wt ∈ (ǫ,m), Q1(m) ≥ Q2(m) and R1(m) ≥ R2(m), with one of these inequalities being an equality.

Integrating (A.25) from ǫ to m, we find

log

(

Q(m)

Q(ǫ)

)

=

∫ m

ǫ

R(wt)− γ

γwt
dwt. (A.32)

Since R1(wt) > R2(wt) for all wt ∈ (ǫ,m), (A.32) implies Q1(m) > Q2(m). Hence, R1(m) must

be equal to R2(m). Since R1(wt) > R2(wt) for all wt ∈ (ǫ,m), R′
1(m) ≤ R′

2(m). Eq. (A.26) then

implies Q1(m) ≤ Q2(m), a contradiction.
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The inequalities for wt < ǫ follow from a similar argument. Since R1(ǫ) = R2(ǫ) and R′
1(ǫ) >

R′
2(ǫ), R1(wt) < R2(wt) for wt close to and smaller than ǫ. Proceeding by contradiction, suppose

that there exists wt < ǫ such that Q1(wt) ≤ Q2(wt) or R1(wt) ≥ R2(wt). The supremum m within

that set is strictly smaller than ǫ since Q1(wt) > Q2(wt) and R1(wt) < R2(wt) for wt close to

and smaller than ǫ. Since the same inequalities hold for all wt ∈ (m, ǫ), Q1(m) ≥ Q2(m) and

R1(m) ≤ R2(m), with one of these inequalities being an equality. Since R1(wt) < R2(wt) for

all wt ∈ (m, ǫ), (A.32) implies Q1(m) > Q2(m). Hence, R1(m) must be equal to R2(m). Since

R1(wt) < R2(wt) for all wt ∈ (m, ǫ), R′
1(m) ≤ R′

2(m). Eq. (A.26) then implies Q1(m) ≤ Q2(m), a

contradiction.

Lemma A.3 (Existence in finite interval) For any ǫ > 0 and M > ǫ large enough, there exists

a unique solution to the system of (A.25) and (A.26) that is defined over an interval including [ǫ,M ]

and that satisfies R(ǫ) = max{γ,K}, R(M) = γ and Q(ǫ) > 0.

Proof: We will consider solutions to the system of (A.25) and (A.26) with R(ǫ) = max{γ,K}, and
show that by varying Q(ǫ) we can vary R(M) from negative values to large positive values. We

will then use a continuity argument to find a suitable Q(ǫ), and the single-crossing argument in

Lemma A.2 to show that such a Q(ǫ) is unique.

Consider the solution to the system of (A.25) and (A.26) with initial conditions R(ǫ) =

max{γ,K} and Q(ǫ) = 0, and extend it maximally to the right of ǫ, over an interval I. Since

Q(ǫ) = 0, (A.25) implies Q(wt) = 0 for all wt ∈ I. Eq. (A.25) implies that R′(ǫ) has the same sign

as

max{γ,K} (1−max{γ,K}) − (αw +max{γ,K})2
z

(

rmax{γ,K}
ρ− r

+ 1

)

< max{γ,K} (1−max{γ,K}) − (max{γ,K})2
z

(

rmax{γ,K}
ρ− r

+ 1

)

= max{γ,K}G (max{γ,K}) . (A.33)

If γ ≤ K, then (A.33) is equal to zero because K is a root of G(γ), as implied by (3.23). If γ > K,

then (A.33) is negative because K is the unique positive root of G(γ) and the quadratic term of

G(γ) is negative. In both cases, R′(ǫ) < 0 and hence R(wt) < max{γ,K} for wt close to and larger

than ǫ.
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We next show that R(wt) must lie between max{γ,K} and the unique negative root of G(γ),

which we denote by K ′. Proceeding by contradiction, suppose that there exists wt > ǫ such that

R(wt) > max{γ,K}. The infimum m within that set is strictly larger than ǫ since R(wt) <

max{γ,K} for wt close to and larger than ǫ. Since R(wt) < max{γ,K} for all wt ∈ (ǫ,m),

R(m) = max{γ,K}, and hence R′(m) ≥ 0. Eq. (A.25), however, implies that R′(m) has the same

sign as

max{γ,K} (1−max{γ,K}) − (αm+max{γ,K})2
z

(

rmax{γ,K}
ρ− r

+ 1

)

,

which is negative from the previous argument, a contradiction. Hence, R(wt) ≤ {γ,K} for all

wt ∈ I. To show that R(wt) ≥ K ′ for all wt ∈ I, we similarly proceed by contradiction and

suppose that there exists wt > ǫ such that R(wt) < K ′. The infimum m within that set is strictly

larger than ǫ, and satisfies R(m) = K ′ and R′(m) ≤ 0. Eq. (A.25), however, implies that R′(m)

has the same sign as

K ′
(

1−K ′
)

− (αm+K ′)2

z

(

rK ′

ρ− r
+ 1

)

> K ′
(

1−K ′
)

− K ′2

z

(

rK ′

ρ− r
+ 1

)

= K ′G
(

K ′
)

= 0,

where the second step follows because G(K ′) = 0 implies rK ′

ρ−r
+ 1 = z(K ′−1)

K ′ > 0, and the fourth

step follows from K ′ being a root of G(γ). Hence R′(m) > 0, a contradiction.

Since R(wt) lies within a bounded interval, the solution to the system of (A.25) and (A.26)

with initial conditions R(ǫ) = max{γ,K} and Q(ǫ) = 0 can be extended to infinity, i.e., I = [ǫ,∞).

Since, R(wt) is bounded and Q(wt) = 0 for all wt ∈ I,

r limwt→∞R(wt)

ρ− r
+ 1 = 0 ⇒ lim

wt→∞
R(wt) =

r − ρ

r
< 0,

otherwise (A.26) would imply that limwt→∞R′(wt) is plus or minus infinity, which contradicts the

boundedness of R(wt).

Consider next the solution to the system of (A.25) and (A.26) with initial conditions R(ǫ) =

max{γ,K} and Q(ǫ) = r + (1+z)(ρ−r)
max{γ,K} , and extend it maximally to the right of ǫ, over an interval
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I. Eq. (A.25) implies that R′(ǫ) has the same sign as

max{γ,K} (1−max{γ,K}) + (αw +max{γ,K})2
z

(

Q(ǫ)− r

ρ− r
max{γ,K} − 1

)

= max{γ,K} (1−max{γ,K}) + (αw +max{γ,K})2

> max{γ,K} (1−max{γ,K}) + (max{γ,K})2 = max{γ,K} > 0, (A.34)

where the second step follows from the definition of Q(ǫ). Hence, R′(ǫ) > 0. We next show that

R′(wt) > 0 for all wt ∈ I. Proceeding by contradiction, suppose that there exists wt > ǫ such that

R′(wt) ≤ 0. The infimum m within that set is strictly larger than ǫ, and satisfies R′(m) = 0. Since

R′(wt) > 0 for all wt ∈ (ǫ,m), R(wt) > max{γ,K} and hence (A.25) implies Q(m) > Q(ǫ). Eq.

(A.25) implies that R′(m) has the same sign as

R(m)[1−R(m)] +
[αm+R(m)]2

z

(

Q(m)− r

ρ− r
R(m)− 1

)

> R(m)[1 −R(m)] +
[αm+R(m)]2

z

(

Q(ǫ)− r

ρ− r
R(m)− 1

)

= R(m)[1 −R(m)] +
[αm+R(m)]2

z

(

(1 + z)R(m)

max{γ,K} − 1

)

> R(m)[1 −R(m)] + [αm+R(m)]2

> R(m)[1 −R(m)] +R(m)2 = R(m) > 0, (A.35)

where the second step follows from Q(m) > Q(ǫ), the third step from the definition of Q(ǫ), and

the fourth step from R(m) > max{γ,K}. Hence, R′(m) > 0, a contradiction. Since R′(wt) > 0

for all wt ∈ I, R(wt) increases to a limit, which must be infinite. Indeed, if the limit were

finite, limwt→∞R′(wt) = 0, in which case (A.26) would imply limwt→∞Q(wt) ∈ (0,∞). This is a

contradiction: because limwt→∞R(wt) > γ, (A.25) implies limwt→∞Q(wt) = ∞. Note that R(wt)

can reach its infinite limit when wt goes to a finite value m, in which case the interval I is bounded.

We denote by Γ(Q) the value of R(M) for the solution to the system of (A.25) and (A.26)

with initial conditions R(ǫ) = max{γ,K} and Q(ǫ) = Q. If limwt→mR(wt) = ∞ for m ≤ M , then

we set R(M) = ∞. For large enough M , the function Γ(Q) satisfies Γ(0) < 0 because for the

solution with initial conditions R(ǫ) = max{γ,K} and Q(ǫ) = 0, limwt→∞R(wt) =
r−ρ
r

< 0. The

function Γ(Q) also satisfies Γ
(

r + (1+z)(ρ−r)
max{γ,K}

)

> γ because for the solution with initial conditions

R(ǫ) = max{γ,K} and Q(ǫ) = r + (1+z)(ρ−r)
max{γ,K} , limwt→mR(wt) = ∞, where m > ǫ is the upper end
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of the interval I. Lemma A.2 implies that for Q1 > Q2, Γ(Q1) > Γ(Q2) if Γ(Q2) is finite, and

Γ(Q1) = ∞ if Γ(Q2) = ∞. Continuity of the solution to the system of (A.25) and (A.26) with

respect to the initial conditions implies that Γ(Q) is continuous in Q at any point where Γ(Q) is

finite. Hence, Γ(Q) is finite in an interval [0, Q̄) and is infinite in [Q̄,∞). Moreover, it is continuous

an increasing in Q ∈ [0, Q̄), and satisfies limQ→Q̄ Γ(Q) = ∞. Therefore, for large enough M , there

exists a unique Q̂ ∈ [0, Q̄) such that Γ(Q̂) = γ. The solution to the the system of (A.25) and (A.26)

with initial conditions R(ǫ) = max{γ,K} and Q(ǫ) = Q̂ has the properties in the lemma.

Lemma A.4 (Bounds) For any ǫ > 0 and M > ǫ large enough, the solution to the system of

(A.25) and (A.26) constructed in Lemma A.3 satisfies the following inequalities:

• If γ < 1, then 1 > R(wt) > γ for all wt ∈ (ǫ,M).

• If γ > 1, then 1 < R(wt) < γ for all wt ∈ (ǫ,M).

Proof: Consider first the case γ < 1. To show that R(wt) < 1 for all wt ∈ [ǫ,M ], we proceed by

contradiction and assume that there exists wt ∈ (ǫ,M) such that R(wt) ≥ 1. In that case, R(wt)

reaches its maximum value over the closed interval [ǫ,M ] at an interior point m, and R(m) ≥ 1.

Since m is interior, R′(m) = 0, and (A.26) implies

R(m)[1−R(m)] +
[αm+R(m)]2

z

(

Q(m)− r

ρ− r
R(m)− 1

)

= 0

⇒ Q(m)− r

ρ− r
R(m)− 1 =

zR(m)[R(m)− 1]

[αm+R(m)]2
≥ 0. (A.36)

Differentiating (A.26) at m and using R′(m) = 0, we find

R′′(m)m =
2α[αm +R(m)]

z

(

Q(m)− r

ρ− r
R(m)− 1

)

+
[αm+R(m)]2

z

Q′(m)R(m)

ρ− r

=
2α[αm +R(m)]

z

(

Q(m)− r

ρ− r
R(m)− 1

)

+
[αm+R(m)]2

z

Q(m)[R(m) − γ]R(m)

(ρ− r)γm
,

(A.37)

where the second step follows from (A.25). The first term in (A.37) is non-negative because of

(A.36). The second term is positive because R(m) ≥ 1 > γ. Hence, R′′(m) > 0, which contradicts

m being an interior maximizer of R(wt).
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To show that R(wt) > γ for all wt ∈ (ǫ,M), we proceed by contradiction and assume that there

exists wt ∈ (ǫ,M) such that R(wt) ≤ γ. In that case, R(wt) takes its minimum value over the closed

interval [ǫ,M ] at an interior pointm (and possibly at ǫ andM as well), and R(m) ≤ γ. Suppose first

that R(m) = γ. Proceeding as in (A.36) we find Q(m)−r
ρ−r

R(m)− 1 < 0, and proceeding as in (A.37)

we find R′′(m) < 0, which contradicts m being an interior minimizer of R(wt). Suppose next that

R(m) < γ. Since R(ǫ) ≥ γ and R(M) = γ, there exist (wt, ŵt) such that ǫ ≤ wt < m < ŵt ≤ M

and R(wt) = R(ŵt) = γ. The supremum m1 and the infimum m2 within the corresponding sets

satisfy m1 < m < m2, R(m1) = R(m2) = γ, R(wt) < γ for all wt ∈ (m1,m2), R
′(m1) ≤ 0 and

R′(m2) ≥ 0. Using (A.26) and R(m1) = R(m2) = γ, we find that the inequalities R′(m1) ≤ 0 and

R′(m2) ≥ 0 imply

γ(1− γ) +
(αm1 + γ)2

z

(

Q(m1)− r

ρ− r
γ − 1

)

≤ 0 ⇒ Q(m1)− r

ρ− r
γ − 1 ≤ zγ(γ − 1)

(αm1 + γ)2
, (A.38)

γ(1− γ) +
(αm2 + γ)2

z

(

Q(m2)− r

ρ− r
γ − 1

)

≥ 0 ⇒ Q(m2)− r

ρ− r
γ − 1 ≥ zγ(γ − 1)

(αm2 + γ)2
, (A.39)

respectively. Since γ < 1, (A.38) and (A.39) imply Q(m1) < Q(m2). This is a contradiction

because (A.26) and R(wt) < γ for all wt ∈ (m1,m2) imply Q(m1) > Q(m2).

The inequalities in the case γ > 1 follow from similar arguments. Suppose, by contradiction,

that there exists wt ∈ (ǫ,M) such that R(wt) ≥ γ. In that case, R(wt) reaches its maximum

value over the closed interval [ǫ,M ] at an interior point m (and possibly at ǫ and M as well), and

R(m) ≥ γ. Proceeding as in (A.36) we find Q(m)−r
ρ−r

R(m) − 1 > 0, and proceeding as in (A.37) we

find R′′(m) > 0, which contradicts m being an interior maximizer of R(wt).

Suppose next, by contradiction, that there exists wt ∈ (ǫ,M) such that R(wt) ≤ 1. In that

case, R(wt) reaches its minimum value over the closed interval [ǫ,M ] at an interior point m, and

R(m) ≤ 1. Suppose first that R(m) = 1. Proceeding as in (A.36) we find Q(m)−r
ρ−r

R(m) − 1 = 0,

and proceeding as in (A.37) we find R′′(m) < 0, which contradicts m being an interior minimizer

of R(wt). Suppose next that R(m) < 1. Since R(ǫ) = R(M) = γ > 1, there exist (wt, ŵt) such that

ǫ < wt < m < ŵt < M and R(wt) = R(ŵt) = 1. The supremum m1 and the infimum m2 within the

corresponding sets satisfy m1 < m < m2, R(m1) = R(m2) = 1, R(wt) < 1 for all wt ∈ (m1,m2),

R′(m1) ≤ 0 and R′(m2) ≥ 0. Using (A.26) and R(m1) = R(m2) = 1, we find that the inequalities
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R′(m1) ≤ 0 and R′(m2) ≥ 0 imply

Q(m1)− r

ρ− r
− 1 ≤ 0, (A.40)

Q(m2)− r

ρ− r
γ − 1 ≥ 0, (A.41)

respectively, and hence Q(m1) ≤ Q(m2). This is a contradiction because (A.26) and R(wt) < 1 < γ

for all wt ∈ (m1,m2) imply Q(m1) > Q(m2).

Lemma A.5 (Existence in [0,∞]) A solution to the system of (A.25) and (A.26), defined over

the interval (0,∞), and such that limwt→0 R(wt) ∈ (0,∞) and limwt→∞Q(wt) ∈ (0,∞), exists.

This solution satisfies the inequalities in Lemma A.4 for all wt ∈ (0,∞).

Proof: We will construct the solution over (0,∞) as the simple limit of solutions over finite intervals

[ǫ,M ]. We first derive the limit when M goes to infinity, holding ǫ > 0 constant, and then derive

the limit of those limits when ǫ goes to zero.

Fix ǫ > 0 and denote by (Qǫ,M (wt), Rǫ,M (wt)) the solution constructed in Lemma A.3 for

M > ǫ large enough. Consider first the case γ < 1. Since for M2 > M1, Rǫ,M2(M1) > γ (as

implied by Lemma A.4) and Rǫ,M1(M1) = γ, Lemma A.2 implies Qǫ,M2(ǫ) > Qǫ,M1(ǫ), and hence

Qǫ,M2(wt) > Qǫ,M1(wt) and Rǫ,M2(wt) > Rǫ,M1(wt) for all wt ∈ (ǫ,M1]. This means that the

functions M → Qǫ,M(wt) and M → Rǫ,M(wt), defined for given wt > ǫ and for M > wt, are

increasing. The latter function is bounded above by one (as implied by Lemma A.4). The former

function is also bounded above. Indeed, since Rǫ,M(M) = γ and R′
ǫ,M(M) ≤ 0 (which follows from

Rǫ,M(M) = γ and Rǫ,M (wt) > γ for all wt ∈ (ǫ,M)), (A.26) implies

Qǫ,M(M)− r

ρ− r
γ − 1 ≤ zγ(γ − 1)

(αM + γ)2
< 0 ⇒ Qǫ,M(M) < r +

ρ− r

γ
.

Since, in addition, Qǫ,M(wt) is increasing in wt ∈ (ǫ,M) (which follows from (A.25) and because

Rǫ,M(wt) > γ), Qǫ,M(wt) < r + ρ−r
γ

for all wt < M . Being increasing and bounded above, the

functions M → Qǫ,M(wt) and M → Rǫ,M(wt) converge to limits when M goes to infinity. These

limits, denoted by Qǫ(wt) and Rǫ(wt), respectively, satisfy r+ ρ−r
γ

≥ Qǫ(wt) ≥ 0 and 1 ≥ Rǫ(wt) ≥ γ

for all wt ∈ (ǫ,∞).
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Consider next the case γ < 1. Since for M2 > M1, Rǫ,M2(M1) < γ (as implied by Lemma A.4)

and Rǫ,M1(M1) = γ, Lemma A.2 implies Qǫ,M2(ǫ) < Qǫ,M1(ǫ), and hence Qǫ,M2(wt) < Qǫ,M1(wt)

and Rǫ,M2(wt) < Rǫ,M1(wt) for all wt ∈ (ǫ,M1]. This means that the functions M → Qǫ,M(wt)

and M → Rǫ,M(wt) are decreasing. The former function is bounded below by zero and the latter

function is bounded below by one (as implied by Lemma A.4). Hence, the two functions converge

to limits when M goes to infinity. These limits, denoted by Qǫ(wt) and Rǫ(wt), respectively, satisfy

r + ρ−r
γ

(

1 + z(γ−1)
γ

)

≥ Qǫ(wt) ≥ 0 and 1 ≤ Rǫ(wt) ≤ γ for all wt ∈ (ǫ,∞). The upper bound

on Qǫ(wt) can be derived by noting that since Rǫ,M(ǫ) = γ and R′
ǫ,M(ǫ) ≤ 0 (which follows from

Rǫ,M(ǫ) = γ and Rǫ,M(wt) < γ for all wt ∈ (ǫ,M)), (A.26) implies

Qǫ,M(ǫ)− r

ρ− r
γ − 1 ≤ zγ(γ − 1)

(αǫ+ γ)2
⇒ Qǫ,M(ǫ) < r +

ρ− r

γ

(

1 +
z(γ − 1)

γ

)

.

Since, in addition, Qǫ,M(wt) is decreasing in wt ∈ (ǫ,M) (which follows from (A.25) and because

Rǫ,M(wt) < γ), Qǫ,M(wt) < r + ρ−r
γ

(

1 + z(γ−1)
γ

)

for all wt > ǫ.

We next show that the limits Qǫ(wt) and Rǫ(wt), viewed as functions of wt, are solutions to the

system of (A.25) and (A.26). We denote by Q∗
ǫ(wt) and R∗

ǫ (wt) the limits of the functions M →
Q′

ǫ,M(wt) and M → R′
ǫ,M(wt), respectively. These limits exist because the limits of M → Qǫ,M(wt)

and M → Rǫ,M(wt) exist, and because (Q′
ǫ,M(wt), R

′
ǫ,M(wt)) are linked to (Qǫ,M(wt), Rǫ,M (wt))

through (A.25) and (A.26). Consider wt ∈ (ǫ,∞) and a small neighborhood B around it. Since

(Qǫ,M(m), Rǫ,M (m)) are bounded uniformly for all m ∈ B and for all M , (A.25) and (A.26) imply

that the same is true for (Q′
ǫ,M(m), R′

ǫ,M (m)). The same is also true for (Q′′
ǫ,M (m), R′′

ǫ,M (m)), as

can be seen by differentiating (A.25) and (A.26). Denoting the bound on Q′′
ǫ,M(m) by Q̄ǫ,B and

using the intermediate value theorem, we find that for all m ∈ B,

∣

∣

∣

∣

Qǫ,M(m)−Qǫ,M(wt)

m− wt
−Q′

ǫ,M(wt)

∣

∣

∣

∣

=
∣

∣Q′
ǫ,M(m′)−Q′

ǫ,M(wt)
∣

∣ ≤ Q̄ǫ,B|m′ −wt| < Q̄ǫ,B|m−wt|,

(A.42)

where m′ is between m and wt. Taking limits in (A.42) when M goes to infinity, we find

∣

∣

∣

∣

Qǫ(m)−Qǫ(wt)

m− wt
−Q∗

ǫ(wt)

∣

∣

∣

∣

≤ Q̄ǫ,B|m− wt|. (A.43)
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Eq. (A.43) implies that Qǫ(wt) is differentiable in wt and its derivative Q′
ǫ(wt) is Q

∗
ǫ(wt). Likewise,

Rǫ(wt) is differentiable in wt and its derivative R′
ǫ(wt) is R∗

ǫ (wt). Taking limits in (A.25) and

(A.26), written for (Qǫ,M (wt), Rǫ,M (wt)), when M goes to infinity, we find that (Qǫ(wt), Rǫ(wt))

are solutions to (A.25) and (A.26).

We next take the limits of Qǫ(wt) and Rǫ(wt) when ǫ goes to zero, and show that these limits,

denoted by Q(wt) and R(wt), respectively, are bounded and solve the system of (A.25) and (A.26).

The steps parallel those when limits are taken for given ǫ and for M going to infinity, but additional

complications arise. Consider first the case K < γ < 1. Since for ǫ2 < ǫ1 and for M large enough,

Rǫ2,M (ǫ1) > γ (as implied by Lemma A.4) and Rǫ1,M (ǫ1) = γ, Lemma A.2 (applied with M

rather than ǫ as starting value) implies Qǫ2,M (M) < Qǫ1,M (M), and hence Qǫ2,M(wt) < Qǫ1,M (wt)

and Rǫ2,M (wt) > Rǫ1,M(wt) for all wt ∈ [ǫ1,M). Taking limits when M goes to infinity, we find

Qǫ2(wt) ≤ Qǫ1(wt) and Rǫ2(wt) ≥ Rǫ1(wt) for all wt ∈ (ǫ1,∞). Hence, the functions ǫ → Qǫ(wt)

and ǫ → Rǫ(wt), defined for given wt > ǫ, are increasing and decreasing, respectively. Their limits

and bounds are constructed as in the first part of the proof (M goes to infinity).

Consider next the case γ > 1. Since for ǫ2 < ǫ1 and for M large enough, Rǫ2,M (ǫ1) < γ (as

implied by Lemma A.4) and Rǫ1,M (ǫ1) = γ, Lemma A.2 implies Qǫ2,M (M) > Qǫ1,M(M), and hence

Qǫ2,M (wt) > Qǫ1,M (wt) and Rǫ2,M (wt) < Rǫ1,M(wt) for all wt ∈ [ǫ1,M). Taking limits when M

goes to infinity, we find Qǫ2(wt) ≥ Qǫ1(wt) and Rǫ2(wt) ≤ Rǫ1(wt) for all wt ∈ (ǫ1,∞). Hence,

the functions ǫ → Qǫ(wt) and ǫ → Rǫ(wt), defined for given wt > ǫ, are decreasing and increasing,

respectively. Their limits and bounds are constructed as in the first part of the proof.

Consider finally the case γ < K. This case is trickier: unlike when K < γ < 1, Rǫ2,M(ǫ1) for

ǫ2 < ǫ1 can be larger or smaller than max{γ,K}, and hence can be larger or smaller than Rǫ1,M (ǫ1).

The key observation is that if there exist ǫ2 < ǫ1 such that Rǫ2,M(ǫ1) is larger than max{γ,K}, then
the function ǫ → Rǫ,M(ǫ1) is decreasing for ǫ < ǫ2. Indeed, if that function were not decreasing,

then there would exist ǫ4 < ǫ3 ≤ ǫ2 such that Rǫ3,M(wt) and Rǫ4,M (wt) would cross twice, for a

wt < M and for wt = M , contradicting Lemma A.2. Hence, there are two possibilities for ǫ close

to zero: either the function ǫ → Rǫ,M(ǫ1) is decreasing, or it is increasing. In either case, we follow

the first part of the proof to construct the limits and bounds. The argument that the limits Q(wt)

and R(wt), viewed as functions of wt, are solutions to the system of (A.25) and (A.26) is as in the

first part of the proof, for all values of γ.

We next show that limwt→0R(wt) ∈ (0,∞) and limwt→∞Q(wt) ∈ (0,∞). Consider first the
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limits at zero. When γ < 1, R(wt) ≥ γ and hence (A.25) implies that Q(wt) is increasing. When

γ < 1, R(wt) ≤ γ and hence (A.25) implies that Q(wt) is decreasing. In both cases, Q(wt) is

monotone, and because it is bounded it converges to a finite limit when wt goes to zero. Suppose,

by contradiction, that limwt→0R(wt) does not exist. This means that as wt goes to zero R(wt)

oscillates more and more rapidly between maxima and minima whose distance is bounded away

from zero. Since R′(wt) = 0 at the maxima, (A.26) implies

1− lim sup
wt→0

R(wt)−
lim supwt→0R(wt)

z

(

limwt→0 Q(wt)− r

ρ− r
lim sup
wt→0

R(wt) + 1

)

= 0, (A.44)

after taking the limit along a sequence of maxima as wt goes to zero. Likewise, since R′(wt) = 0 at

the minima, (A.26) implies

1− lim inf
wt→0

R(wt)−
lim infwt→0R(wt)

z

(

limwt→0Q(wt)− r

ρ− r
lim inf
wt→0

R(wt) + 1

)

= 0, (A.45)

after taking the limit along a sequence of minima as wt goes to zero. Eqs. (A.44) and (A.45) imply

lim supwt→0R(wt) = lim infwt→0R(wt), a contradiction. Since R(wt) ≥ min{γ, 1}, limwt→0R(wt) ∈
(0,∞). Consider next the limits at infinity. Since Q(wt) is bounded and monotone, it converges

to a finite limit, which is non-negative because Q(wt) is non-negative. If limwt→∞Q(wt) = 0, then

(A.26) and max{γ, 1} ≥ R(wt) ≥ min{γ, 1} for all wt ∈ (0,∞) imply limwt→∞R′(wt) = −∞, which

contradicts R(wt) ≥ min{γ, 1}. Hence, limwt→∞Q(wt) ∈ (0,∞).

We finally show that the inequalities in Lemma A.4 hold. The steps are similar to those in

Lemma A.4, after replacing ǫ by zero andM by infinity, and noting that the boundary conditions for

R(wt) remain the same because of Lemma A.1. The only change concerns the proof that R(wt) > γ

for γ < 1. If in that proof the supremum m1 is zero, limwt→0R
′(wt)wt = 0 implies that (A.38)

holds as an equality.

Lemma A.6 (Decreasing A(wt)) For the solution to the system of (A.25) and (A.26) constructed

in Lemma A.5, A(wt) is decreasing. The same property holds for the solution constructed in Lemma

A.3, if γ < 1. If γ > 1, then the same property holds if, in addition, M is large enough and

wt ∈ [ǫ,M0] for any M0 > ǫ which is kept fixed as M grows.

Proof: We first show the property for the solution to the system of (A.25) and (A.26) constructed

in Lemma A.5. We next extend the proof to the solution constructed in Lemma A.3.
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Suppose, by contradiction, that there exist m2 > m1 > 0 such that A(m1) ≤ A(m2). If

A(m1) < A(m2), then there exists m3 ∈ (m1,m2) such that A′(m3) > 0. Consider the set of

wt < m3 such that A′(ŵt) > 0 for all ŵt ∈ (wt,m3). The infimumm within that set is strictly smaller

than m3 since A′(wt) > 0 for all wt close to m3. It is also positive because limwt→0A(wt) = ∞
(which follows from limwt→0R(wt) ∈ (0,∞)), and it satisfies A′(m) = 0 and A′′(m) ≥ 0. Consider

next the set of wt > m3 such that A′(ŵt) > 0 for all ŵt ∈ (m3, wt). The supremum m̂ within

that set is strictly larger than m3. It is also finite because limwt→0 A(wt) = 0 (which follows from

limwt→0R(wt) ∈ (0,∞)), and it satisfies A′(m̂) = 0 and A′′(m̂) ≤ 0. Moreover, by the definition of

m and m̂, A′(wt) > 0 for all wt ∈ (m, m̂).

If A(m1) = A(m2), then points m̂ > m > 0 with the properties A′(m) = A′(m̂) = 0, A′′(m) ≥ 0,

A′′(m̂) ≤ 0, and A′(wt) > 0 for all wt ∈ (m, m̂), can again be constructed, except that the latter

inequality can be weak. To perform the construction, we distinguish the case where there exists

wt ∈ (m1,m2) such that A(wt) 6= A(m1) = A(m2) and replace m1 or m2 by wt, and the case where

A(wt) = A(m1) = A(m2) for all wt ∈ (m1,m2) and take m = m1 and m̂ = m2.

Using Q(wt) instead of q(wt), we can write (A.24) as

A′(wt) = −A(wt)
2 +

[α+A(wt)]
2

z

(

Q(wt)− r

ρ− r
A(wt)wt − 1

)

. (A.46)

Differentiating (A.46) at a point where A′(wt) = 0, and using (A.25), we find

A′′(wt) =
[α+A(wt)]

2

z





Q(wt)
R(wt)−γ

γwt

ρ− r
A(wt)wt +

Q(wt)− r

ρ− r
A(wt)



 .

Hence, the sign of A′′(wt) at such a point is the same as of

H(wt) ≡ Q(wt)
R(wt)− γ

γ
+Q(wt)− r =

Q(wt)R(wt)

γ
− r. (A.47)
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Using (A.25) and (A.26), we find that for wt ∈ (m, m̂),

H ′(wt) =
Q′(wt)R(wt) +Q(wt)R

′(wt)

γ

=
Q(wt)

γwt

[

[R(wt)− γ]R(wt)

γ
+R(wt)[1 −R(wt)] +

[αwt +R(wt)]
2

z

(

Q(wt)− r

ρ− r
R(wt)− 1

)]

≥ Q(wt)

γwt

[

[R(wt)− γ]R(wt)

γ
+R(wt)[1 −R(wt)] +R(wt)

2

]

=
Q(wt)R(wt)

2

γ2wt
> 0,

where the third step follows by using A′(wt) ≥ 0 for wt ∈ (m, m̂) and (A.46). Since A′′(m) ≥ 0,

H(m) ≥ 0. Since H(wt) is increasing in (m, m̂), H(m̂) > 0, and hence A′′(m̂) > 0, a contradiction.

We next extend the proof to the solution constructed in Lemma A.3. Suppose that γ < 1. Since

R(ǫ) = max{γ,K} ≥ R(M) = γ, there exists mǫ > ǫ such that R(mǫ) = R(ǫ) and R′(mǫ) ≤ 0.

Since R′(mǫ) ≤ 0, (A.26) implies

Q(mǫ)− r

ρ− r
R(mǫ)− 1 < 0 ⇒ Q(ǫ)− r

ρ− r
R(mǫ)− 1 < 0,

where the second step follows because Q(wt) is increasing for γ < 1. Eq. (A.46) then implies

A′(ǫ) < 0. Since, R(wt) > R(M) = γ for all wt ∈ (ǫ,M), R′(M) ≤ 0 and hence A′(M) < 0.

Using A′(ǫ) < 0 and A′(M) < 0, we can define m and m̂ by proceeding as above, and derive a

contradiction. Suppose next that γ > 1. Since R(wt) < R(ǫ) = γ for all wt ∈ (ǫ,M), R′(ǫ) ≤ 0

and hence A′(ǫ) < 0. Since, in addition, for any given wt, the values of Q(wt) and R(wt) under

the solution over [ǫ,M ] converge to the values under the solution over [ǫ,∞) when M goes to

infinity, A(M0) is close to its positive limit under the solution over [ǫ,∞) for M large enough. It

is, therefore, larger than A(M) = γ
M

for M large enough. Using A′(ǫ) < 0 and A(M0) > A(M), we

can define m and m̂ by proceeding as above, and derive a contradiction.

The results in Theorem 3.1 for the case of short-lived hedgers follow from the lemmas proved

so far. Lemma A.5 yields the existence of a solution with the required boundary conditions. The

same lemma yields the comparisons between A(wt),
1
wt

and γ
wt
. The monotonicity of q(wt) follows

from these comparisons and (A.23). Lemma A.6 yields the monotonicity of A(wt). Lemma A.1

yields the limits at zero and infinity.
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We next turn to the case where hedgers are long-lived. The system of ODEs consists of (A.25),

R′(wt)wt = R(wt) [1−R(wt)] +
[αwt +R(wt)− F ′(wt)wt]

2

z

(

Q(wt)− r

ρ− r
R(wt)− 1

)

, (A.48)

which replaces (A.26), and

1 =
rF (wt)− r log(r)− αu⊤D̄ + ρ− ρ̄

ρ− r
+

Q(wt)− r

ρ− r
F ′(wt)wt

− z
{

F ′′(wt)w
2
t −R(wt) [2αwt +R(wt)− 2F ′(wt)wt]

}

[αwt +R(wt)− F ′(wt)wt]
2 , (A.49)

which is (3.22) written in terms of Q(wt) = q(wt)
− 1

γ and R(wt) = A(wt)wt.

The analysis in Lemma A.1 on the limits of Q(wt) and R(wt) at zero and infinity carries

through. For the limits at zero, we need to observe additionally that because limwt→0 F (wt) is

finite, the limit of F ′(wt)wt (which is assumed to exist) is zero. For the limits at infinity, we need

to observe additionally that because limwt→∞ F (wt) is finite, the limit of F ′(wt)wt (which is assumed

to exist) is zero. Lemma A.1 provides the argument for limwt→0 F
′(wt)wt (in the case of R(wt)).

The argument for limwt→∞ F ′(wt)wt is similar: if limwt→∞ F ′(wt)wt 6= 0, then |F ′(wt)| ≥ ℓ
wt

for

wt > M and for positive M and ℓ. Since, however, for wt > M

F (wt) = F (M) +

∫ wt

M

F ′(ŵt)dŵt ⇒ |F (wt)− F (M)| ≥
∫ wt

M

ℓ

ŵt
dŵt = ℓ log

(wt

M

)

,

limwt→∞R(wt) would be plus or minus infinity, a contradiction. Since the limits of F ′(wt)wt at

zero and infinity are zero, the limits of [A(wt)−F ′(wt)]wt at zero and infinity are the same as those

of A(wt)wt, and hence are the same as in Lemma A.1.

The limits of F (wt) at zero and infinity follow from (A.49), the limits of Q(wt) and R(wt),

limwt→0 F
′(wt)wt = 0, limwt→∞ F ′(wt)wt = 0, limwt→0 F

′′(wt)w
2
t = 0 and limwt→∞ F ′′(wt)w

2
t = 0.

The latter two properties follow using similar arguments as for F ′(wt)wt. If limwt→0 F
′′(wt)w

2
t 6= 0,

then |F ′′(wt)| ≥ ℓ
w2

t

for wt < ǫ and for positive ǫ and ℓ. Since, however, for wt < ǫ

F (wt) = F (ǫ) + F ′(ǫ)(wt − ǫ) +

∫ wt

ǫ

F ′′(ŵt)(wt − ŵt)dŵt

⇒ |F (wt)− F (ǫ)− F ′(ǫ)(wt − ǫ)| ≥
∫ ǫ

wt

ℓ

ŵ2
t

(ŵt − wt)dŵt = ℓ

[

log

(

ǫ

wt

)

− ǫ− wt

ǫ

]

,
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limwt→0 F (wt) would be plus or minus infinity, a contradiction. The argument for limwt→∞ F ′′(wt)w
2
t =

0 is a similar adaptation of that used to establish limwt→∞ F ′(wt)wt = 0.

Proof of Corollary 3.1: Part (i) follows from A(wt) being decreasing in wt, F (wt) = 0 and (3.18).

Part (ii) follows from the former two properties, (3.1) and (3.17). Part (iii) follows from the same

two properties and because (3.17) implies that the market prices of risk are given by

ηt ≡
(

σ⊤
)−1

(D̄ − πt) =
αA(wt)

α+A(wt)− F ′(wt)
σu. (A.50)

Part (iv) follows from the same two properties and (3.19).

We next prove two useful lemmas on the monotonicity of R(wt) and αwt +R(wt).

Lemma A.7 (Monotonicity of R(wt)) For the solution to the system of (A.25) and (A.26) con-

structed in Lemma A.5, and for that constructed in Lemma A.3:

• If γ < K, then R(wt) is either decreasing for all values of wt, or is hump-shaped.

• If K < γ < 1, then R(wt) is hump-shaped.

• If γ > 1, then R(wt) is inverse hump-shaped.

Proof: We show the monotonicity properties for the solution to the system of (A.25) and (A.26)

constructed in Lemma A.5. The proof for the solution constructed in Lemma A.3 follows by the

same arguments and because the limits of R(wt) at zero and infinity under the former solution are

the same as the boundary conditions at ǫ and M , respectively, under the latter solution.

Consider first the case K < γ < 1. Since limwt→0 R(wt) = limwt→∞R(wt) = γ and 1 >

R(wt) > γ for all wt ∈ (0,∞), there exists wt ∈ (0,∞) at which R(wt) is maximized. If R(wt) is

not hump-shaped, then there exist m1 < m2 < m3 such that R(m1) > R(m2) and R(m2) < R(m3).

We can then choose ξ ∈ (γ, 1) and (m̂i, ˆ̂mi) for i = 1, 2, 3, such that m̂1 < m1 < ˆ̂m1 ≤ m̂2 < m2 <

ˆ̂m2 ≤ m̂3 < m3 < ˆ̂m3, R(m̂i) = R( ˆ̂mi) = ξ for i = 1, 2, 3, R′(m̂i) > 0 and R′( ˆ̂mi) < 0 for i = 1, 3,

R′(m̂2) < 0 and R′( ˆ̂m2) > 0, R(wt) > ξ for all wt ∈ (m̂i, ˆ̂mi) for i = 1, 3, and R(wt) < ξ for all
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wt ∈ (m̂2, ˆ̂m2). Eq. (A.26) implies that R̂ξ(m̂i) > 0 and R̂ξ( ˆ̂mi) < 0 for i = 1, 3, and R̂ξ( ˆ̂m2) < 0

and R̂ξ( ˆ̂m2) > 0, where the function R̂ξ(wt) is defined by

R̂ξ(wt) ≡ ξ(1− ξ) +
(αwt + ξ)2

z

(

Q(wt)− r

ρ− r
ξ − 1

)

. (A.51)

Therefore, there exist m′
1 ∈ (m̂1, ˆ̂m1), m

′
2 ∈ (m̂2, ˆ̂m2) and m′

3 ∈ (m̂3, ˆ̂m3) such that R̂ξ(m
′
i) = 0 for

i = 1, 2, 3, R̂′
ξ(m

′
1) ≤ 0, R̂′

ξ(m
′
2) ≥ 0 and R̂′

ξ(m
′
3) ≤ 0. Differentiating (A.51) and using (A.26) and

R(m̂i) = R( ˆ̂mi) = ξ for i = 1, 2, 3, we find

R̂′
ξ(wt) =

2α(αwt + ξ)

z

(

Q(wt)− r

ρ− r
ξ − 1

)

+
(αwt + ξ)2

z

Q(wt)[R(wt)− γ]

(ρ− r)γwt
ξ. (A.52)

If R̂ξ(wt) = 0, then we can write (A.52) as

R̂′
ξ(wt) = −2αξ(1− ξ)

αwt + ξ
+

(αwt + ξ)2

z

[

r + (ρ− r)
(

1
ξ
− z(1−ξ)

(αwt+ξ)2

)]

[R(wt)− γ]

(ρ− r)γwt
ξ. (A.53)

Since R̂ξ(m
′
i) = 0 and R̂′

ξ(m
′
i) ≤ 0 for i = 1, 3, (A.53) implies

(αm′
i + ξ)3

2αz

[

r + (ρ− r)
(

1
ξ
− z(1−ξ)

(αm′

i+ξ)2

)]

[R(m′
i)− γ]

(1− ξ)(ρ− r)γm′
i

≤ 1 (A.54)

for i = 1, 3. Likewise, since R̂ξ(m
′
2) = 0 and R̂′

ξ(m
′
2) ≥ 0, (A.53) implies

(αm′
2 + ξ)3

2αz

[

r + (ρ− r)
(

1
ξ
− z(1−ξ)

(αm′
2+ξ)2

)]

[R(m′
2)− γ]

(1− ξ)(ρ− r)γm′
2

≥ 1. (A.55)

Consider the function

Hξ(wt) ≡
(αwt + ξ)3

wt

[

r + (ρ− r)

(

1

ξ
− z(1 − ξ)

(αwt + ξ)2

)]

=

(

r +
ρ− r

ξ

)

(α3w2
t + 3α2ξwt + 3αξ2)− (ρ− r)z(1− ξ)α+ hξ

ξ

wt
,

where

hξ ≡
[(

r +
ρ− r

ξ

)

ξ2 − (ρ− r)z(1− ξ)

]

.
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If hξ ≤ 0, then Hξ(wt) is increasing in wt. Since γ < R(m′
2) < ξ (because m′

2 ∈ (m̂2, ˆ̂m2)) and

R(m′
3) > ξ > γ (because m′

3 ∈ (m̂3, ˆ̂m3)), (A.55) implies that (A.54) for i = 3 should hold as

a strict inequality in the opposite direction, a contradiction. If hξ > 0, then Hξ(wt) is inverse

hump-shaped in wt. If Hξ(m
′
3) ≥ Hξ(m

′
2), then the previous argument yields a contradiction.

Therefore, Hξ(m
′
3) < Hξ(m

′
2), which means that m′

2 is in the decreasing part of Hξ(wt) and hence

Hξ(m
′
1) > Hξ(m

′
2). Since R(m′

1) > ξ > γ (because m′
1 ∈ (m̂1, ˆ̂m1)), (A.54) for i = 1 implies that

(A.55) should hold as a strict inequality in the opposite direction, a contradiction.

Consider next the case γ > 1. Since limwt→0 R(wt) = limwt→∞R(wt) = γ and 1 < R(wt) < γ

for all wt ∈ (0,∞), there exists wt ∈ (0,∞) at which R(wt) is minimized. If R(wt) is not inverse

hump-shaped, then there exist m1 < m2 < m3 such that R(m1) < R(m2) and R(m2) > R(m3).

We can then choose ξ ∈ (1, γ) and (m̂i, ˆ̂mi) for i = 1, 2, 3, such that m̂1 < m1 < ˆ̂m1 ≤ m̂2 < m2 <

ˆ̂m2 ≤ m̂3 < m3 < ˆ̂m3, R
′(m̂i) < 0 and R′( ˆ̂mi) > 0 for i = 1, 3, R′(m̂2) > 0 and R′( ˆ̂m2) < 0,

R(wt) < ξ for all wt ∈ (m̂i, ˆ̂mi) for i = 1, 3, and R(wt) > ξ for all wt ∈ (m̂2, ˆ̂m2). Eq. (A.26)

implies that R̂ξ(m̂i) < 0 and R̂ξ( ˆ̂mi) > 0 for i = 1, 3, and R̂ξ( ˆ̂m2) > 0 and R̂ξ( ˆ̂m2) < 0. Therefore,

there exist m′
1 ∈ (m̂1, ˆ̂m1), m

′
2 ∈ (m̂2, ˆ̂m2) and m′

3 ∈ (m̂3, ˆ̂m3) such that R̂ξ(m
′
i) = 0 for i = 1, 2, 3,

R̂′
ξ(m

′
1) ≤ 0, R̂′

ξ(m
′
2) ≥ 0 and R̂′

ξ(m
′
3) ≤ 0. Eqs. (A.54) and (A.55) still hold, with both R(mi)− γ

and 1− ξ being negative. If hξ ≤ 0, in which case Hξ(wt) is increasing in wt, then γ > R(m′
2) > ξ,

R(m′
3) < ξ < γ, and (A.55) imply that (A.54) for i = 3 should hold as a strict inequality in the

opposite direction, a contradiction. If hξ > 0, in which case Hξ(wt) is inverse hump-shaped in

wt, then the previous argument implies that Hξ(m
′
3) < Hξ(m

′
2), which means that m′

2 is in the

decreasing part of Hξ(wt) and hence Hξ(m
′
1) > Hξ(m

′
2). Since R(m′

1) < ξ < γ, (A.54) for i = 1

implies that (A.55) should hold as a strict inequality in the opposite direction, a contradiction.

Consider finally the case γ < K. Since limwt→0R(wt) = K and limwt→∞R(wt) = γ, R(wt) is

maximized at its zero limit or at a wt ∈ (0,∞). If R(wt) is not decreasing or hump-shaped, then

there exist m1 < m2 < m3 such that R(m1) > R(m2) and R(m2) < R(m3). If R(m2) ≥ K, then we

can proceed as in the case K < γ < 1 to find a contradiction. If R(m2) < K, then we can choose

ξ ∈ (γ,K) and (m̂i, ˆ̂mi) for i = 2, 3, such that m̂2 < m2 < ˆ̂m2 ≤ m̂3 < m3 < ˆ̂m3, R
′(m̂2) < 0

and R′( ˆ̂m2) > 0, R′(m̂3) > 0 and R′( ˆ̂m3) < 0, R(wt) < ξ for all wt ∈ (m̂2, ˆ̂m2), and R(wt) > ξ

for all wt ∈ (m̂3, ˆ̂m3). (Note that (m̂1, ˆ̂m1) may not exist because ξ < K = limwt→0R(wt).) Eq.

(A.26) implies that R̂ξ( ˆ̂m2) < 0, R̂ξ( ˆ̂m2) > 0, R̂ξ(m̂3) > 0 and R̂ξ( ˆ̂m3) < 0. Therefore, there exist
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m′
2 ∈ (m̂2, ˆ̂m2) and m′

3 ∈ (m̂3, ˆ̂m3) such that R̂ξ(m
′
i) = 0 for i = 2, 3, R̂′

ξ(m
′
2) ≥ 0 and R̂′

ξ(m
′
3) ≤ 0.

Eqs. (A.54) for i = 3 and (A.55) still hold. Moreover, hξ < 0 because hξ is increasing in ξ, ξ < K,

and hK = 0 as implied by (3.23). Therefore, Hξ(wt) is increasing in wt, and (A.55) implies that

(A.54) for i = 3 should hold as a strict inequality in the opposite direction, a contradiction.

Lemma A.8 (αwt +R(wt) increasing) For the solution to the system of (A.25) and (A.26) con-

structed in Lemma A.5, αwt+R(wt) is increasing if γ ≤ 1. The same property holds for the solution

constructed in Lemma A.3, provided that ǫ and M are small and large enough, respectively, and

that wt ∈ [ǫ,M0] for any M0 > ǫ which is kept fixed as ǫ shrinks and M grows.

Proof: We first show the property for the solution to the system of (A.25) and (A.26) constructed

in Lemma A.5. We next extend the proof to the solution constructed in Lemma A.3. We assume

γ < 1: for γ = 1, the property trivially holds because R(wt) = 1.

Consider first the case K < γ < 1. Since R(wt) is hump-shaped (Lemma A.7), R′(wt) > −α

for all wt ∈ (0, ŵt), where ŵt exceeds the maximizer of R(wt). Denote by m the supremum of the

set of ŵt such that R′(wt) > −α for all wt ∈ (0, ŵt). If m is infinite, then αwt+R(wt) is increasing.

Suppose, by contradiction, that m is finite. By its definition, m satisfies R′(m) = −α, and since

R′(wt) > −α for all wt < m, it also satisfies R′′(m) ≤ 0. Differentiating (A.26) at m and using

R′(m) = −α, we find

R′′(m)m− α = −α[1− 2R(m)] +
[αm+R(m)]2

z

d
(

Q(wt)−r
ρ−r

R(wt)
)

dwt

∣

∣

∣

∣

∣

∣

wt=m

⇒ R′′(m)m = 2αR(m) +
[αm+R(m)]2

z(ρ− r)
L′(m), (A.56)

where L(wt) ≡ [Q(wt) − r]R(wt). To derive a contradiction, it suffices to show that L′(m) ≥ 0,

since (A.56) would then imply R′′(m) > 0.

Using (A.25), we find

L′(wt) = Q(wt)
R(wt)− γ

γwt
R(wt) + [Q(wt)− r]R′(wt). (A.57)

Eqs. (A.57), R(wt) > γ for all wt ∈ (0,∞), and R′(m) = −α < 0 imply L′(m) ≥ 0 if Q(m) ≤ r. To

show that L′(m) ≥ 0 also if Q(m) > r, we proceed by contradiction, and suppose that L′(m) < 0.
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Since R′(m) = −α < 0, (A.26) implies

Q(m)− r

ρ− r
R(m)− 1 < 0 ⇒ L(m) < ρ− r.

Since, in addition, Lemma A.1 implies that limwt→∞L(wt) = ρ − r, there exists wt large enough

so that L(wt) > L(m) > 0. These inequalities, together with L′(m) < 0, imply that L(wt) has a

local minimum in (m,∞). We can, therefore, choose ξ ∈ (0, L(m)), and m2 > m1 > m such that

L(mi) = ξ, L′(m1) < 0 and L′(m2) > 0. Using (A.25), we can write (A.57) as

L′(wt) = Q(wt)
R(wt)− γ

γwt
R(wt)+[Q(wt)−r]

R(wt)[1−R(wt)] +
[αwt+R(wt)]2

z

(

Q(wt)−r
ρ−r

R(wt)− 1
)

wt
.

(A.58)

Since

L(wt) = ξ ⇒ Q(wt) =
ξ

R(wt)
+ r, (A.59)

we can substitute Q(wt) in L′(wt) to write the inequalities L′(m1) < 0 and L′(m2) > 0 as L̂ξ(m1) <

0 and L̂ξ(m2) > 0, respectively, where the function L̂ξ(wt) is defined by

L̂ξ(wt) ≡ r
R(wt)− γ

γ
+

(

1

γ
− 1

)

ξ − [αwt +R(wt)]
2

R(wt)2
ρ− r − ξ

ρ− r
ξ. (A.60)

Since Q(wt) is increasing, (A.59) implies R(m1) > R(m2). Since A(wt) is decreasing (Lemma A.6),

αwt+R(wt)
R(wt)

= α
A(wt)

+ 1 is increasing. Since, in addition, ξ ∈ (0, ρ − r), (A.60) implies L̂ξ(m1) >

L̂ξ(m2), a contradiction. Therefore, L′(m) ≥ 0, which in turn implies that m is infinite.

Consider next the case γ < K. To show the result it suffices to show that R′(wt) > −α for wt

close to zero, since we can then define the supremum m and proceed as in the case K < γ < 1.

To show that R′(wt) > −α for wt close to zero, we study the behavior of (Q(wt), R(wt)). Since

limwt→0R(wt) = K, (A.25) implies

Q(wt) ≈ Q(ǫ)
(wt

ǫ

)
K−γ

γ
(A.61)
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for small ǫ and wt. If
K−γ
γ

> 1 ⇔ K > 2γ, then Q(wt) is of order smaller than wt, and we look for

a differentiable R(wt). Using (A.26), R(0) = K and L’Hospital’s rule, we find

R′(0) = R′(0)(1 − 2K)− 2[α +R′(0)]K

z

(

rK

ρ− r
+ 1

)

− K2

z

rR′(0)

ρ− r

⇒ R′(0) = −
2αK
z

(

rK
ρ−r

+ 1
)

2K + 2K
z

(

rK
ρ−r

+ 1
)

+ K2

z
r

ρ−r

> −α.

If K−γ
γ

< 1 ⇔ K < 2γ, then Q(wt) is of order larger than wt, and we look for R(wt) that is of the

form K + gw
K−γ

γ + o
(

w
K−γ

γ

)

. Substituting into (A.26), we find

g
K − γ

γ
w

K−γ
γ =

(

K + gw
K−γ

γ

)(

1−K − gw
K−γ

γ

)

+

(

αwt +K + gw
K−γ

γ

)2

z





Q(ǫ)
(

wt

ǫ

)
K−γ

γ − r

ρ− r

(

K + gw
K−γ

γ

)

− 1



 .

Identifying terms in w
K−γ

γ , we find

g
K − γ

γ
= g(1 − 2K)− 2gK

z

(

rK

ρ− r
+ 1

)

+
K2

z

Q(ǫ)
(

1
ǫ

)
K−γ

γ K − rg

ρ− r

⇒ g =

K3

z

Q(ǫ)( 1
ǫ )

K−γ
γ

ρ−r

K−γ
γ

− (1− 2K) + 2K
z

(

rK
ρ−r

+ 1
)

+ K2

z
r

ρ−r

=

K2

z

Q(ǫ)( 1
ǫ )

K−γ
γ

ρ−r

1
γ
+ K

z
r

ρ−r

,

where the last step follows from (3.23). Since g > 0, R(wt) is increasing for wt close to zero, which

means that R′(wt) ≥ 0 > −α.

We next extend the proof to the solution constructed in Lemma A.3. Consider first the case

K < γ < 1. Suppose, by contradiction, that the supremumm of the set of ŵt such that R′(wt) > −α

for all wt ∈ [ǫ, ŵt) is smaller than M0. To derive a contradiction, it suffices to show that L′(m) ≥ 0.

Recall from Lemma A.5 that for any given wt, the values of Q(wt) and R(wt) under the solution over

[ǫ,M ] converge to the values under the solution over [ǫ,∞) when M goes to infinity. Since m ≤ M0

and M0 is kept fixed when M grows large, L(m) is close to its positive limit under the solution over

[ǫ,∞) for M large enough. Hence, L(m) < ρ−r. Moreover, same arguments as in Lemmas A.1 and

A.5 imply that under the solution over [ǫ,∞), limwt→∞Q(wt) = r + ρ−r
γ

and limwt→∞R(wt) = γ

66



(as is the case under the solution over (0,∞)). Hence, there exists wt large enough such that L(wt)

is close to ρ − r and hence larger than L(m). We can then derive a contradiction, proceeding as

above. Consider next the case γ < K. Since R′(wt) > −α for small wt under the solution over

(0,∞), the same inequality holds under the solution over [ǫ,M ] for ǫ small enough by continuity.

We can then derive a contradiction, proceeding as above.

Proof of Theorem 3.2: The comparative statics in the theorem can be stated equivalently in

terms of R(wt): R(wt) is increasing in α and u⊤Σu if γ < 1, and is decreasing in α and u⊤Σu if

γ > 1. We show the latter comparative statics on the solution constructed in Lemma A.3, which is

over the finite interval [ǫ,M ]. We fix any M0 > ǫ, and show that the comparative statics hold for all

wt ∈ (ǫ,M0), provided that ǫ and M are small and large enough, respectively. Since for any given

wt ∈ (0,∞), (Q(wt), R(wt)) for the solution over (0,∞) are obtained as limits of (Q(wt), R(wt))

for the solution over [ǫ,M ] when ǫ goes to zero and M goes to infinity, the inequalities established

for (ǫ,M0) carry through to (0,∞).

The comparative statics with respect to u⊤Σu are equivalent to those with respect to z, and

we show the latter. We start with the case K < γ < 1, and denote the solution to the system of

(A.25) and (A.26) by the subscript z. Since Rz(ǫ) = γ for all z, differentiating (A.26) with respect

to z, we find

∂R′
z(ǫ)

∂z
ǫ =

(αǫ+ γ)2

z

[

−1

z

(

Qz(ǫ)− r

ρ− r
γ − 1

)

+
∂Qz(ǫ)

∂z

ρ− r
γ

]

. (A.62)

We will show that (i) Rz(wt) < Rẑ(wt) for ẑ close to and larger than z and for all wt > ǫ in a

neighborhood of ǫ, and (ii) Rz(wt) ≤ Rẑ(wt) for ẑ close to and larger than z, for all wt ∈ (ǫ,M0),

and for M large enough. These results will be shown by contradiction.

Suppose that Rz(wt) > Rẑ(wt) for ẑ close to and larger than z and for all wt > ǫ in a

neighborhood of ǫ. Since Rz(M) = Rẑ(M) = γ, the set of wt > ǫ such that Rz(wt) = Rẑ(wt) is

non-empty. The infimum m within that set is strictly larger than ǫ since Rz(wt) > Rẑ(wt) for all

wt > ǫ in a neighborhood of ǫ. Since Rẑ(wt) crosses Rz(wt) from above at ǫ, ∂R′
z(ǫ)
∂z

≤ 0, and since
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it crosses Rz(wt) from below at m, ∂R′
z(m)
∂z

≥ 0.11 The counterpart of (A.62) at m is

∂R′
z(m)

∂z
m =

[αm+Rz(m)]2

z

[

−1

z

(

Qz(m)− r

ρ− r
Rz(m)− 1

)

+
∂Qz(m)

∂z

ρ− r
Rz(m)

]

(A.63)

=
[αm+Rz(m)]2

z

[

−1

z

(

Qz(m)− r

ρ− r
Rz(m)− 1

)

+

∂Qz(ǫ)
∂z

exp
(

∫m

ǫ
Rz(wt)−γ

γwt
dwt

)

+Qz(ǫ)
∂ exp

(

∫m
ǫ

Rz(wt)−γ

γwt
dwt

)

∂z

ρ− r
Rz(m)









, (A.64)

where the second step follows because integrating (A.25) from ǫ to m yields

Qz(m) = Qz(ǫ) exp

(
∫ m

ǫ

Rz(wt)− γ

γwt
dwt

)

. (A.65)

Eqs. (A.62) and ∂R′
z(ǫ)
∂z

≤ 0 imply

− 1

z

(

Qz(ǫ)− r

ρ− r
γ − 1

)

+
∂Qz(ǫ)

∂z

ρ− r
γ ≤ 0

⇒
[

−1

z

(

Qz(ǫ)− r

ρ− r
γ − 1

)

+
∂Qz(ǫ)

∂z

ρ− r
γ

]

Qz(m)Rz(m)

Qz(ǫ)γ
≤ 0

⇒ −1

z

(

Qz(m)− r

ρ− r
Rz(m)− 1

)

+
∂Qz(ǫ)

∂z

ρ− r

Qz(m)

Qz(ǫ)
Rz(m)

+
1

z

(

Qz(m)Rz(m)

Qz(ǫ)γ
− 1

)

+
r

z(ρ− r)

(

Qz(m)

Qz(ǫ)
− 1

)

Rz(m) ≤ 0

⇒ −1

z

(

Qz(m)− r

ρ− r
Rz(m)− 1

)

+
∂Qz(ǫ)

∂z

ρ− r

Qz(m)

Qz(ǫ)
Rz(m) < 0

⇒ −1

z

(

Qz(m)− r

ρ− r
Rz(m)− 1

)

+

∂Qz(ǫ)
∂z

exp
(

∫m

ǫ
Rz(wt)−γ

γwt
dwt

)

+Qz(ǫ)
∂ exp

(

∫m
ǫ

Rz(wt)−γ

γwt
dwt

)

∂z

ρ− r
Rz(m) < 0

⇒ ∂R′
z(m)

∂z
< 0,

11For expositional simplicity, we are treating m as independent of ẑ for ẑ close to z. When m is a function m(ẑ)

of ẑ, the property
∂R′

z
(m)

∂z
≥ 0 holds for a non-empty set of m, e.g., for lim inf ẑ→z m(ẑ) and lim supẑ→z m(ẑ). Our

argument requires choosing one such m.
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where the fourth step follows because Qz(wt) is increasing and R(wt) > γ for all wt ∈ (ǫ,M),

the fifth step follows from (A.65) and because Rz(wt) > Rẑ(wt) for all wt ∈ (ǫ,m) implies

∂ exp
(

∫m

ǫ

Rz(wt)−γ

γwt
dwt

)

∂z
≤ 0, and the sixth step follows from (A.64). This contradicts ∂R′

z(m)
∂z

≥ 0.

Hence, it is not possible that Rz(wt) > Rẑ(wt) for all wt > ǫ in a neighborhood of ǫ. This implies

that Rz(wt) < Rẑ(wt) for all wt > ǫ in a neighborhood of ǫ.12

Consider next the infimum m > ǫ within the set of wt > ǫ such that Rz(wt) = Rẑ(wt) and

Rz(ŵt) > Rẑ(ŵt) for all ŵt > wt in a neighborhood of wt. This set is non-empty because it

includes M . Our intended comparative statics result will follow if m ≥ M0 since in that case

Rz(wt) ≤ Rẑ(wt) for all wt ∈ (ǫ,M0). Suppose that m < M0. Since Rz(wt) > Rẑ(wt) for all

wt > m in a neighborhood of m, we can consider the infimum m̂ > m within the non-empty set of

wt > m such that Rz(wt) = Rẑ(wt). Since Rẑ(wt) crosses Rz(wt) from above at m, ∂R′
z(m)
∂z

≤ 0,

and since it crosses Rz(wt) from below at m̂, ∂R′
z(m̂)
∂z

≥ 0.

Eqs. (A.63) and ∂R′
z(m)
∂z

≤ 0 imply

− 1

z

(

Qz(m)− r

ρ− r
Rz(m)− 1

)

+
∂Qz(m)

∂z

ρ− r
Rz(m) ≤ 0

⇒ − 1

zQz(m)Rz(m)

(

Qz(m)− r

ρ− r
Rz(m)− 1

)

≤ −
∂Qz(m)

∂z

Qz(m)(ρ− r)
. (A.66)

The counterpart of (A.64) written between m and m̂ instead of between ǫ and m, ∂R′
z(m̂)
∂z

≥ 0 and

∂ exp
(

∫ m̂
m

Rz(wt)−γ

γwt
dwt

)

∂z
≤ 0 (which follows from Rz(wt) > Rẑ(wt) for all wt ∈ (m, m̂)) imply

− 1

z

(

Qz(m̂)− r

ρ− r
Rz(m̂)− 1

)

+

∂Qz(m)
∂z

exp
(

∫ m̂

m
Rz(wt)−γ

γwt
dwt

)

ρ− r
Rz(m̂) ≥ 0

⇒ −1

z

(

Qz(m̂)− r

ρ− r
Rz(m̂)− 1

)

+

∂Qz(m)
∂z

Qz(m̂)
Qz(m)

ρ− r
Rz(m̂) ≥ 0

⇒ − 1

zQz(m̂)Rz(m̂)

(

Qz(m̂)− r

ρ− r
Rz(m̂)− 1

)

≥ −
∂Qz(m)

∂z

Qz(m)(ρ− r)
, (A.67)

where the second step follows from the counterpart of (A.65) written between m and m̂ and the

third step follows by dividing both sides by Qz(m)Rz(m).

12The implication follows by showing that not all the derivatives ∂R
(n)
z

(ǫ)
∂z

are equal to zero.
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Eqs. (A.66) and (A.67) imply Nz(m) ≤ Nz(m̂), where

Nz(wt) ≡ − 1

zQz(wt)Rz(wt)

(

Qz(wt)− r

ρ− r
Rz(wt)− 1

)

.

Eq. (A.26) implies Nz(wt) > 0 for all wt for which R′
z(wt) ≤ 0. The same inequality holds for all

wt for which Rz(wt) > 0: this follows because Qz(wt) is increasing and because for all wt such

that Rz(wt) > 0, there exists ŵt > wt such that Rz(wt) = Rz(ŵt) and R′
z(ŵt) ≤ 0. Consider

now M large enough, and recall from Lemma A.5 that for any given wt, the values of Qz(wt) and

Rz(wt) under the solution to the system of (A.25) and (A.26) over [ǫ,M ] converge to the values

under the solution over [ǫ,∞) when M goes to infinity. Since m < M0 and M0 is kept fixed when

M grows large, Nz(m) is close to its positive limit under the solution over [ǫ,∞) for M large

enough. Moreover, same arguments as in Lemmas A.1 and A.5 imply that under the solution

over [ǫ,∞), limwt→∞Qz(wt) = r + ρ−r
γ

(as is the case under the solution over (0,∞)). Picking m

such that Qz(m) is close to r + ρ−r
γ

for M large enough, and noting that Qz(wt) is increasing and

Rz(wt) > γ, we can bound Nz(wt) from above by a small positive constant for all wt ≥ m and for

M large enough. Hence, for all wt ≥ m and for M large enough, Nz(wt) is smaller than Nz(m)

minus a positive constant.

If the inequality Nz(m) ≤ Nz(m̂) is strict, then we can choose ξ ∈ (Nz(m), Nz(m̂)), m1 ∈
(m, m̂) and m2 ∈ (m̂,M), such that Nz(mi) = ξ for i = 1, 2, G′(m1) ≥ 0 and G′(m2) ≤ 0. Values

ξ > 0 and m1 < m2 such that Nz(mi) = ξ for i = 1, 2, G′(m1) ≥ 0 and G′(m2) ≤ 0 can also be

chosen if Nz(m) = Nz(m̂). Indeed, if minwt∈[m,m̂]Nz(wt) < Nz(m) = Nz(m̂), then we choose ξ close

to and smaller than Nz(m) = Nz(m̂), m1 ∈ (m, m̂) and m2 ∈ (m̂,M). If Nz(wt) = Nz(m) = Nz(m̂)

for all wt ∈ (m, m̂), then we choose ξ = Nz(m) = Nz(m̂) and any m1 < m2 in (m, m̂). If, finally,

maxwt∈[m,m̂]Nz(wt) > Nz(m) = Nz(m̂), then we replace m̂ by the maximizer of Nz(wt) in [m, m̂],

and proceed as in the case where the inequality is strict.

To compute N ′
z(wt), we write Nz(wt) as

Nz(wt) = − 1

z(ρ− r)
+

r

z(ρ− r)Qz(wt)
+

1

zQz(wt)Rz(wt)
.

Eqs. (A.25) and (A.26) imply

N ′
z(wt) = −

r
ρ−r

Rz(wt)−γ
γ

+ 1
γ
− 1 + [αwt+Rz(wt)]2

zRz(wt)2

(

Qz(wt)−r
ρ−r

Rz(wt)− 1
)

zwtQz(wt)
.
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Since

Nz(wt) = ξ ⇒ Qz(wt) =
1

1 + z(ρ− r)ξ

(

ρ− r

Rz(wt)
+ r

)

, (A.68)

we can substitute Qz(wt) in N ′
z(wt) to write the inequalities N ′

z(m1) ≥ 0 and N ′
z(m2) ≤ 0 as

N̂zξ(m1) ≤ 0 and N̂zξ(m2) ≥ 0, respectively, where the function N̂zξ(wt) is defined by

N̂zξ(wt) ≡
r

ρ− r

Rz(wt)− γ

γ
+

1

γ
− 1− [αwt +Rz(wt)]

2

Rz(wt)2
rRz(wt) + ρ− r

1 + z(ρ− r)ξ
ξ. (A.69)

We will show that N̂zξ(m1) > N̂zξ(m2), which will yield a contradiction because N̂zξ(m1) ≤ 0 and

N̂zξ(m2) ≥ 0. As a first step to show that result, we will show that

αm1 +Rz(m1) < αm2 +Rz(m2). (A.70)

If m2 > m1 +
1−γ
α

, then (A.70) follows from Rz(wt) ∈ (γ, 1) for all wt ∈ (ǫ,M). If m2 < m1 +
1−γ
α

,

then (A.70) follows from Lemma A.8 by noting that m1 < m̂ < m and setting M0 = m + 1−γ
α

.

Using (A.69), (A.70) and ξ > 0, we find

N̂zξ(m1) >
r

ρ− r

Rz(m1)− γ

γ
+

1

γ
−1− [αm2+Rz(m2)]

αm1 +Rz(m1)

Rz(m1)

rRz(wt) + ρ− r

Rz(m1)[1 + z(ρ− r)ξ]
ξ.

(A.71)

Since Qz(wt) is increasing, (A.68) implies Rz(m1) > Rz(m2). Since A(wt) is decreasing (Lemma

A.6), αwt+Rz(wt)
Rz(wt)

= α
A(wt)

+1 is increasing. Since, in addition, rRz(wt)+ρ−r

Rz(wt)
= r+ ρ−r

Rz(wt)
is decreasing

in Rz(wt), and ξ > 0, (A.71) implies N̂zξ(m1) > N̂zξ(m2).

Consider next the case γ < K. Since Rz(ǫ) is increasing in z, Rz(wt) < Rẑ(wt) for ẑ close

to and larger than z and for all wt > ǫ in a neighborhood of ǫ. Therefore, we are left to show

result (ii) of the case K < γ < 1, namely, Rz(wt) ≤ Rẑ(wt) for ẑ close to and larger than z, for all

wt ∈ (ǫ,M0), and for M large enough. We define m as in that case, suppose that m < M0, and

define m̂. We then follow the same arguments to derive a contradiction.

Consider finally the case γ > 1. We will show, proceeding by contradiction, that (i) Rz(wt) >

Rẑ(wt) for ẑ close to and larger than z and for all wt > ǫ in a neighborhood of ǫ, and (ii) Rz(wt) ≥
Rẑ(wt) for ẑ close to and larger than z, for all wt ∈ (ǫ,M0), and for M large enough.
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Suppose that Rz(wt) < Rẑ(wt) for ẑ close to and larger than z and for all wt > ǫ in a

neighborhood of ǫ. Consider the infimum m > ǫ within the non-empty set of wt > ǫ such that

Rz(wt) = Rẑ(wt). Since Rẑ(wt) crosses Rz(wt) from below at ǫ, ∂R′
z(ǫ)
∂z

≥ 0, and since it crosses

Rz(wt) from above at m, ∂R′
z(m)
∂z

≤ 0. Eqs. (A.62) and ∂R′
z(ǫ)
∂z

≥ 0 imply

− 1

z

(

Qz(ǫ)− r

ρ− r
γ − 1

)

+
∂Qz(ǫ)

∂z

ρ− r
γ ≥ 0

⇒ −1

z

(

Qz(m)− r

ρ− r
Rz(m)− 1

)

+
∂Qz(ǫ)

∂z

ρ− r

Qz(m)

Qz(ǫ)
Rz(m)

+
1

z

(

Qz(m)Rz(m)

Qz(ǫ)γ
− 1

)

+
r

z(ρ− r)

(

Qz(m)

Qz(ǫ)
− 1

)

Rz(m) ≥ 0

⇒ −1

z

(

Qz(m)− r

ρ− r
Rz(m)− 1

)

+
∂Qz(ǫ)

∂z

ρ− r

Qz(m)

Qz(ǫ)
Rz(m) > 0

⇒ −1

z

(

Qz(m)− r

ρ− r
Rz(m)− 1

)

+

∂Qz(ǫ)
∂z

exp
(

∫m

ǫ
Rz(wt)−γ

γwt
dwt

)

+Qz(ǫ)
∂ exp

(

∫m
ǫ

Rz(wt)−γ

γwt
dwt

)

∂z

ρ− r
Rz(m) > 0

⇒ ∂R′
z(m)

∂z
> 0,

where the third step follows because Qz(wt) is decreasing and R(wt) < γ for all wt ∈ (ǫ,M),

the fourth step follows from (A.65) and because Rz(wt) < Rẑ(wt) for all wt ∈ (ǫ,m) implies

∂ exp
(

∫m
ǫ

Rz(wt)−γ

γwt
dwt

)

∂z
≥ 0, and the fifth step follows from (A.64). This contradicts ∂R′

z(m)
∂z

≤ 0.

Hence, Rz(wt) > Rẑ(wt) for all wt > ǫ in a neighborhood of ǫ.

Consider next the infimumm > ǫ within the non-empty set of wt > ǫ such that Rz(wt) = Rẑ(wt)

and Rz(ŵt) < Rẑ(ŵt) for all ŵt > wt in a neighborhood of wt. Our intended comparative statics

result will follow if m ≥ M0 since in that case Rz(wt) ≥ Rẑ(wt) for all wt ∈ (ǫ,M0). Suppose

that m < M0. Since Rz(wt) > Rẑ(wt) for all wt > m in a neighborhood of m, we can consider

the infimum m̂ > m within the non-empty set of wt > m such that Rz(wt) = Rẑ(wt). Since

Rẑ(wt) crosses Rz(wt) from below at m, ∂R′
z(m)
∂z

≥ 0, and since it crosses Rz(wt) from above at

m̂, ∂R′
z(m̂)
∂z

≤ 0. Proceeding as in the case K < γ < 1, we can then show that Nz(m) ≥ Nz(m̂),

− 1
z(ρ−r) < Nz(wt) < 0 for all wt ∈ [ǫ,M ], and Nz(wt) exceeds Nz(m) plus a positive constant for all
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wt larger than a fixedm and for M large enough. We can then choose ξ ∈ (− 1
z(ρ−r) , 0) andm1 < m2

such that Nz(mi) = ξ for i = 1, 2, N ′
z(m1) ≤ 0 and N ′

z(m2) ≥ 0. The latter two inequalities can

be written as N̂zξ(m1) ≥ 0 and N̂zξ(m2) ≤ 0. We will show that N̂zξ(m1) < N̂zξ(m2), which will

yield a contradiction because N̂zξ(m1) ≥ 0 and N̂zξ(m2) ≤ 0. As a first step to show that result,

we will show that

Az(m1) > Az(m2). (A.72)

If m2 > γm1, then (A.72) follows from Rz(wt) ∈ (1, γ) for all wt ∈ (ǫ,M). If m2 > γm1, then

(A.72) follows from Lemma A.6 by noting that m1 < m̂ < m and setting M0 = γm1. Using

αm1+Rz(m1)
Rz(m1)

<
αm2+Rz(m2)

Rz(m2)
, which is implied from (A.72), and ξ ∈ (− 1

z(ρ−r) , 0), we find

N̂zξ(m1) <
r

ρ− r

Rz(m1)− γ

γ
+

1

γ
− 1− [αm2 +Rz(m2)]

2

Rz(m2)2
rRz(wt) + ρ− r

1 + z(ρ− r)ξ
ξ. (A.73)

Since Qz(wt) is decreasing, (A.68) implies Rz(m1) < Rz(m2). Combining with (A.71) and ξ ∈

(− 1
z(ρ−r) , 0), we find N̂zξ(m1) < N̂zξ(m2).

We next derive comparative statics with respect to α. We start with the case K < γ < 1, and

denote the solution to the system of (A.25) and (A.26) by the subscript α. Since Rα(ǫ) = γ for all

α, differentiating (A.25) with respect to α and noting that z depends on α through (3.20), we find

∂R′
a(ǫ)

∂z
ǫ =

(αǫ+ γ)γ

z

[

− 2

α

(

Qα(ǫ)− r

ρ− r
γ − 1

)

+ (αǫ+ γ)
∂Qα(ǫ)

∂z

ρ− r

]

. (A.74)

We will show that (i) Rα(wt) < Rα̂(wt) for α̂ close to and larger than α and for all wt > ǫ in a

neighborhood of ǫ, and (ii) Rα(wt) ≤ Rα̂(wt) for α̂ close to and larger than α, for all wt ∈ (ǫ,M0),

and for M large enough. These results will be shown by contradiction, using similar arguments as

for the comparative statics with respect to z.

Suppose that Rα(wt) > Rα̂(wt) for α̂ close to and larger than α and for all wt > ǫ in a

neighborhood of ǫ. Consider the infimum m > ǫ within the non-empty set of wt > ǫ such that

Rα(wt) = Rα̂(wt). Since Rα̂(wt) crosses Rα(wt) from above at ǫ, ∂R′
α(ǫ)
∂z

≤ 0, and since it crosses
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Rα(wt) from below at m, ∂R′
α(m)
∂z

≥ 0. The counterpart of (A.74) at m is

∂R′
z(m)

∂z
m =

[αm+Rα(m)]Rα(m)

z

[

− 2

α

(

Qα(m)− r

ρ− r
Rα(m)− 1

)

+ [αm+Rα(m)]
∂Qα(m)

∂z

ρ− r

]

(A.75)

=
[αm+Rα(m)]Rα(m)

z

[

− 2

α

(

Qα(m)− r

ρ− r
Rα(m)− 1

)

+[αm+Rα(m)]

∂Qα(ǫ)
∂α

exp
(

∫m

ǫ
Rα(wt)−γ

γwt
dwt

)

+Qα(ǫ)
∂ exp

(

∫m

ǫ

Rα(wt)−γ

γwt
dwt

)

∂α

ρ− r









.

(A.76)

Eqs. (A.74) and ∂R′
α(ǫ)
∂α

≤ 0 imply

− 2

α

(

Qα(ǫ)− r

ρ− r
γ − 1

)

+ (αǫ+ γ)
∂Qα(ǫ)

∂z

ρ− r
≤ 0

⇒
[

− 2

α

(

Qα(ǫ)− r

ρ− r
γ − 1

)

+ (αǫ+ γ)
∂Qα(ǫ)

∂z

ρ− r

]

Qα(m)[αm+Rα(m)]

Qα(ǫ)(αǫ + γ)
≤ 0

⇒ − 2

α

(

Qα(m)− r

ρ− r
Rα(m)− 1

)

+ [αm+Rα(m)]
∂Qα(ǫ)

∂α

ρ− r

Qα(m)

Qα(ǫ)

+
2

α

(

Qα(m)− r

ρ− r
Rα(m)− 1

)

− 2

α

(

Qα(ǫ)− r

ρ− r
γ − 1

)

Qα(m)[αm+Rα(m)]

Qα(ǫ)(αǫ+ γ)
≤ 0. (A.77)

We will show that the term in the last line of (A.77) is positive. Since Aα(wt) is decreasing (Lemma

A.6),

α
Aα(m) + 1

α
Aα(ǫ)

+ 1
=

[αm+Rα(m)]γ

(αǫ + γ)Rα(m)
> 1 ⇒ αm+Rα(m)

αǫ+ γ
>

Rα(m)

γ
.

Since, in addition, Qα(ǫ)−r
ρ−r

γ − 1 < 0, the term in the last line of (A.77) is larger than

2

α

(

Qα(m)− r

ρ− r
Rα(m)− 1

)

− 2

α

(

Qα(ǫ)− r

ρ− r
γ − 1

)

Qα(m)Rα(m)

Qα(ǫ)γ

=
2

α

(

Qα(m)Rα(m)

Qα(ǫ)γ
− 1

)

+
2r

α(ρ− r)

(

Qα(m)

Qα(ǫ)
− 1

)

Rα(m),
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which is positive because Qz(wt) is increasing and R(wt) > γ for all wt ∈ (ǫ,M). Hence, (A.77)

implies

− 2

α

(

Qα(m)− r

ρ− r
Rα(m)− 1

)

+ [αm+Rα(m)]
∂Qα(ǫ)

∂α

ρ− r

Qα(m)

Qα(ǫ)
< 0

⇒ − 2

α

(

Qα(m)− r

ρ− r
Rα(m)− 1

)

+ [αm+Rα(m)]

∂Qα(ǫ)
∂α

exp
(

∫m

ǫ
Rα(wt)−γ

γwt
dwt

)

+Qα(ǫ)
∂ exp

(

∫m

ǫ

Rα(wt)−γ

γwt
dwt

)

∂α

ρ− r
< 0

⇒ ∂R′
α(m)

∂α
< 0,

where the second step follows from (A.65) (with subscript α rather than z) and because Rα(wt) >

Rα̂(wt) for all wt ∈ (ǫ,m) implies
∂ exp

(

∫m
ǫ

Rα(wt)−γ

γwt
dwt

)

∂α
≤ 0, and the third step follows from (A.64).

This contradicts ∂R′
α(m)
∂α

≥ 0. Hence, it is not possible that Rα(wt) > Rα̂(wt) for all wt > ǫ in a

neighborhood of ǫ. Instead, Rα(wt) < Rα̂(wt) for all wt > ǫ in a neighborhood of ǫ.

Consider next the infimum m > ǫ within the non-empty set of wt > ǫ such that Rα(wt) =

Rα̂(wt) and Rα(ŵt) > Rα̂(ŵt) for all ŵt > wt in a neighborhood of wt. Our intended comparative

statics result will follow if m ≥ M0. Suppose that m < M0. Since Rα(wt) > Rα̂(wt) for all wt > m

in a neighborhood of m, we can consider the infimum m̂ > m within the non-empty set of wt > m

such that Rα(wt) = Rα̂(wt). Since Rα̂(wt) crosses Rα(wt) from above at m, ∂R′
α(m)
∂α

≤ 0, and since

it crosses Rz(wt) from below at m̂, ∂R′
α(m̂)
∂α

≥ 0.

Proceeding as for the comparative statics with respect to z, we can show that Nα(m) ≤ Nα(m̂),

where

Nα(wt) ≡ − 2

αQα(wt)[αm+Rα(wt)]

(

Qα(wt)− r

ρ− r
Rα(wt)− 1

)

,

and that Nα(wt) > 0 for all wt ∈ (ǫ,M). Since

Nα(m)

Nα(m̂)
=

Nz(m)

Nz(m̂)

[αm̂+Rα(m̂)]Rα(m)

[αm+Rα(m)]Rα(m̂)
,

and

[αm̂+Rα(m̂)]Rα(m)

[αm+Rα(m)]Rα(m̂)
=

α
Aα(m̂) + 1

α
Aα(m) + 1

> 1
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because Aα(wt) is decreasing (Lemma A.6), Nα(m) ≤ Nα(m̂) implies Nz(m) < Nz(m̂). Since, in

addition, Nz(wt) is smaller than Nz(m) minus a positive constant for all wt larger than a fixed m

and for M large enough, the arguments used to establish the comparative statics with respect to

z yield a contradiction. The comparative statics with respect to α in the cases γ < K and γ > 1

follow by similarly adapting the arguments used to establish the comparative statics with respect

to z.

Proof of Corollary 3.2: The first statement in part (i) follows from (3.18), F (wt) = 0, and A(wt)

being decreasing in α when γ > 1 and independent of α when γ = 1. Since for γ < K and small wt,

A(wt) ≈ K
wt
, the second statement in part (i) follows from (3.18) and F (wt) = 0 if α

K
is decreasing

in α. Differentiating α
K

with respect to α, we find

∂ α
K

∂α
=

K − α∂K
∂α

K2
=

K − α

(

2K
αz

(

rK
ρ−r

+1
)

1+ 1
z

(

rK
ρ−r

+1
)

+ rK
z(ρ−r)

)

K2
=

K
(

1− 1
z

)

K2
[

1 + 1
z

(

rK
ρ−r

+ 1
)

+ rK
z(ρ−r)

] ,

where the second step follows by differentiating implicitly K with respect to α using (3.23). There-

fore, α
K

is decreasing in α if z < 1. The third statement in part (i) follows from (3.19), F (wt) = 0,

and A(wt) being increasing in α when γ < 1 and independent of α when γ = 1. The first state-

ment in part (ii) follows from (3.18), F (wt) = 0 and A(wt) being decreasing in u⊤Σu when γ > 1.

The second statement in part (ii) follows from the former two properties and A(wt) being increas-

ing in u⊤Σu when γ < 1. The third statement in part (ii) follows from (3.19), F (wt) = 0 and

A(wt) being increasing in α when γ < 1. The result for long-lived hedgers follows from (3.18),

limwt→0 F
′(wt)wt = 0, and because the asymptotic behavior of A(wt) for wt close to zero is the

same as for short-lived hedgers.

Proof of Proposition 3.5: Substituting (3.17), (3.18) and (A.14) into (A.4) and (A.5), we can

write the dynamics of arbitrageur wealth wt as

dwt = µwtdt+ σ⊤
wtdBt, (A.78)

where

µwt =
(

r − q(wt)
− 1

γ

)

wt +
α2A(wt)

[α+A(wt)− F ′(wt)]2
u⊤Σu, (A.79)

σwt =
α

α+A(wt)− F ′(wt)
σu. (A.80)
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If the stationary distribution has density d(wt), then d(wt) satisfies the ODE

−[µwtd(wt)]
′ +

1

2
[σ⊤

wtσwtd(wt)]
′′ = 0 (A.81)

over (0,∞), with the boundary condition

lim
wt→∞

[

−µwtd(wt) +
1

2
[σ⊤

wtσwtd(wt)]
′

]

= 0 (A.82)

(see Bogachev, Krylov, Röckner, and Shaposhnikov (2015)). Integrating (A.81) using (A.82) yields

the ODE

−µwtd(wt) +
1

2
[σ⊤

wtσwtd(wt)]
′ = 0. (A.83)

Setting D(wt) ≡ σ⊤
wtσwtd(wt), we can write (A.83) as

D′(wt)

D(wt)
=

2µwt

σ⊤
wtσwt

. (A.84)

Integrating between one and wt, we find

d(wt) = D(1)
exp

[

∫ wt

1
2µwt

σ⊤
wtσwt

dŵt

]

σ⊤
wtσwt

. (A.85)

We can determine the multiplicative constant D(1) by the requirement that d(wt) must integrate

to one, i.e.,

∫ ∞

0
d(wt)dwt = D(1)

∫ ∞

0

exp
[

∫ wt

1
2µwt

σ⊤
wtσwt

dŵt

]

σ⊤
wtσwt

dwt = 1. (A.86)

Eq. (A.86) determines a positive D(1), and hence a positive d(wt), if the integral multiplying D(1)

is finite. If the integral is infinite, then (A.86) implies that D(1) = 0, and the stationary distribution

does not have a density but is concentrated at zero. The integral multiplying D(1) is infinite when

the integrand converges to infinity at a fast enough rate when wt goes to zero, or does not converge

to zero at a fast enough rate when wt goes to infinity.
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Substituting (µwt, σwt) from (A.79) and (A.80) into (A.85), we can write (A.85) as

d(wt) = D(1)

exp





∫ wt

1

2

[(

r−q(ŵt)
−

1
γ

)

ŵt+
α2A(ŵt)

[α+A(ŵt)−F ′(ŵt)]
2 u

⊤Σu

]

α2

[α+A(ŵt)−F ′(ŵt)]
2 u

⊤Σu
dŵt





α2

[α+A(wt)−F ′(wt)]2
u⊤Σu

= D(1)

exp







∫ wt

1

2

[

− ρ−r
A(ŵt)

(

1+
z(A′(ŵt)+A(ŵt)

2)
[α+A(ŵt)−F ′(ŵt)]

2

)

+
α2A(ŵt)

[α+A(ŵt)−F ′(ŵt)]
2 u

⊤Σu

]

α2

[α+A(ŵt)−F ′(ŵt)]
2 u

⊤Σu
dŵt







α2

[α+A(wt)−F ′(wt)]2
u⊤Σu

= D(1)
exp

[

∫ wt

1

(

−A′(ŵt)
A(ŵt)

+A(ŵt)− [α+A(ŵt)−F ′(ŵt)]2

zA(ŵt)

)

dŵt

]

α2

[α+A(wt)−F ′(wt)]2
u⊤Σu

=
D(1)A(1)

α2u⊤Σu

[α+A(wt)− F ′(wt)]
2

A(wt)
exp

[∫ wt

1

(

A(ŵt)−
[α+A(ŵt)− F ′(ŵt)]

2

zA(ŵt)

)

dŵt

]

,

(A.87)

where the second step follows from (3.21), the third from (3.20), and the fourth by noting that

exp

[
∫ wt

1

(

−A′(ŵt)

A(ŵt)

)

dŵt

]

= exp {− log[A(wt)] + log[A(1)]} =
A(1)

A(wt)
.

Substituting (A.87) into (A.86) to solve for D(1), and substituting back into (A.87), we find (3.24).

Since limwt→0A(wt)wt = max{γ,K} and limwt→0 F
′(wt)wt = 0, for wt close to zero the nu-

merator of (3.24) is bounded above and below by functions of the form

max{γ,K}
wt

exp

[∫ wt

1
Ψ0

z − 1

z

max{γ,K}
ŵt

dŵt

]

=
max{γ,K}

wt
w

Ψ0 max{γ,K} z−1
z

t ,

where Ψ0 is a positive constant. These functions are integrable at zero if z > 1, and not integrable at

zero if z < 1. Hence, the numerator of (3.24) has the same properties. Since limwt→∞A(wt)wt = γ

and limwt→∞ F ′(wt)wt = 0, for wt close to infinity the numerator of (3.24) is bounded above by a

function of the form

α2wt

γ
exp

[∫ wt

1
−Ψ∞

α2ŵt

γz
dŵt

]

=
α2wt

γ
exp

[

−Ψ∞
α2(w2

t − 1)

2γz

]

,

where Ψ∞ is a positive constant. This function is integrable at infinity, and hence the numerator of

(3.24) has the same property. Therefore, the integral in the denominator of (3.24) is finite if z > 1

and infinite if z < 1.
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Proof of Proposition 3.6: For F (wt) = 0 and A(wt) =
1
wt
, (3.24) becomes

d(wt) =
(αwt + 1)2w

− 1
z

t exp
(

− 1
2z

(

α2w2
t + 4αwt

))

∫∞
0 (αwt + 1)2w

− 1
z

t exp
(

− 1
2z

(

α2w2
t + 4αwt

))

dwt

. (A.88)

The derivative d′(wt) has the same sign as the derivative of the numerator. The latter derivative is

1

z
(αwt + 1)w

− 1
z
−1

t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

[2αzwt − (αwt + 1)− (αwt + 1)αwt(αwt + 2)]

and has the same sign as

−
[

(αwt)
3 + 3(αwt)

2 + (3− 2z)αwt + 1
]

.

The function

Φ(x) ≡ x3 + 3x2 + (3− 2z)x+ 1

is equal to 1 for x = 0, and its derivative with respect to x is

Φ′(x) = 3x2 + 6x+ (3− 2z).

If z < 3
2 , then Φ′(x) > 0 for all x > 0, and hence Φ(x) > 0 for all x > 0. If z > 3

2 , then Φ′(x) has

the positive root

x′1 ≡ −1 +

√

2z

3
,

and is negative for 0 < x < x′1 and positive for x > x′1. Therefore, if Φ(x′1) > 0 then Φ(x) > 0 for

all x > 0, and if Φ(x′1) < 0 then Φ(x) has two positive roots x1 < x′1 < x2 and is positive outside

the roots and negative inside. Since

Φ(x′1) =

(

−1 +

√

2z

3

)3

+3

(

−1 +

√

2z

3

)2

+ (3− 2z)

(

−1 +

√

2z

3

)

+1 =
2z

3

(

3− 2

√

2z

3

)

,

Φ(x′1) is positive if

3− 2

√

2z

3
> 0 ⇔ z <

27

8
,
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and is negative if z > 27
8 . Therefore, if z < 27

8 then the derivative of d(wt) is negative, and if z > 27
8

then the derivative of d(wt) is negative for wt ∈ (0,m1) ∪ (m2,∞) and positive for wt ∈ (m1,m2),

where mi ≡ xi

α
for i = 1, 2. This proves Parts (i) and (ii).

The density d(wt) shifts to the right in the monotone likelihood ratio sense when a parameter

θ increases if

∂2 log [d(wt, θ)]

∂θ∂wt
> 0. (A.89)

Using (A.88), we find

∂ log[d(wt)]

∂wt
=

2α

αwt + 1
− 1

zwt
− 1

z

(

α2wt + 2α
)

. (A.90)

An increase in α (which also affects z from (3.20)) raises the right-hand side of (A.90). Therefore,

d(wt) satisfies (A.89) with respect to α. An increase in z also raises the right-hand side of (A.90).

Therefore, d(wt) satisfies (A.89) with respect to u⊤Σu. This proves Part (iii).

B Proofs of the Results in Section 4

Proof of Lemma 4.1: Using (2.1) and (4.1), we can write (4.4) and (4.5) as

dvt = (rvt − c̄t)dt+X⊤
t (µSt + D̄ − rSt)dt+ u⊤D̄dt+

(

X⊤
t (σSt + σ)⊤ + u⊤σ⊤

)

dBt, (B.1)

dwt = (rwt − ct)dt+ Y ⊤
t (µSt + D̄ − rSt)dt+ Y ⊤

t (σSt + σ)⊤dBt, (B.2)

respectively. If St, Xt, and Yt satisfy (4.7), (4.8), and (4.9), then (B.1) is identical to (3.3), and

(B.2) to (3.8). Therefore, if xt and yt maximize the objective of hedgers and of arbitrageurs,

respectively, given πt, then the same is true for Xt and Yt, given St. Moreover, if xt and yt

satisfy the market-clearing equation (3.15), then Xt and Yt satisfy the market-clearing equation

(4.6) because of (4.8) and (4.9). Since (B.1) is identical to (3.3), and (B.2) to (3.8), the dynamics

of arbitrageur wealth and the exposures of hedgers and arbitrageurs to the Brownian shocks are

the same in the equilibrium (St,Xt, Yt) as in (πt, xt, yt). The market prices ηt of the Brownian

risks in the two equilibria are (σ⊤)−1(D̄ − πt) and
(

(σSt + σ)⊤
)−1

(µSt + D̄ − rSt), and are the

same because of (4.7). The arbitrageurs’ Sharpe ratios in the two equilibria are
y⊤t (D̄−πt)√
y⊤t σ⊤σyt

and

Y ⊤
t (µSt+D̄−rSt)√

Y ⊤
t (σSt+σ)⊤(σSt+σ)Yt

, and are the same because of (4.7) and (4.9).

80



Proof of Proposition 4.1: Setting St = S(wt) and combining Ito’s lemma with (4.1), we find

µSt = µwtS
′(wt) +

1

2
σ⊤
wtσwtS

′′(wt)

=
(

r − q(wt)
− 1

γ

)

S′(wt)wt +
α2u⊤Σu

[α+A(wt)− F ′(wt)]2

[

A(wt)S
′(wt) +

1

2
S′′(wt)

]

, (B.3)

where the second step follows from (A.79) and (A.80), and

σSt = σwtS
′(wt)

⊤

=
α

α+A(wt)− F ′(wt)
σuS′(wt)

⊤, (B.4)

where the second step follows from (A.80). Multiplying (4.7) from the left by (σSt+σ)⊤, and using

(3.17), we find

µSt + D̄ − rSt =
αA(wt)

α+A(wt)− F ′(wt)
(σSt + σ)⊤σu. (B.5)

Substituting (µSt, σSt) from (B.3) and (B.4) into (B.5), we find the ODE

(

r − q(wt)
− 1

γ

)

S′(wt)wt+
α2u⊤Σu

2[α+A(wt)− F ′(wt)]2
S′′(wt)+D̄−rS(wt) =

αA(wt)

α+A(wt)− F ′(wt)
Σu.

(B.6)

Setting S(wt) ≡ D̄
r
+ Ŝ(wt), we find that the resulting ODE equates linear terms in Ŝ(wt), Ŝ

′(wt)

and Ŝ′′(wt) to a scalar times Σu. Hence, Ŝ(wt) must be collinear to Σu, which means that S(wt)

must have the form in (4.10). Substituting (4.10) into (B.6), we find that g(wt) solves the ODE

(4.11).

Substituting µSt from (B.3) into (4.2), and using (4.10) and (4.11), we can write expected

excess returns as (4.12). Substituting σSt from (B.4) into (4.3), and using (4.10), we can write the

covariance matrix of returns as (4.13).

Proof of Theorem 4.1: We start with the case where hedgers are short-lived. Since q(wt) and

A(wt) are continuous and positive in (0,∞), the functions multiplying g(wt), g
′(wt) and g′′(wt) in

(4.11) are continuous. Since, in addition, (4.11) is a linear ODE, it has a unique solution over any

interval [ǫ,M ] ⊂ (0,∞) with initial conditions g(ǫ) and g′(ǫ) (Murray and Miller (2013)). That

solution can be extended over (0,∞). We next derive properties of solutions to (4.11), as well as

the existence result, through a number of lemmas that parallel those in the proof of Theorem 3.1.
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Lemma B.1 (Limits at zero and infinity) Consider a solution g(wt) to (4.11), defined over

the interval (0,∞). If the limits of g(wt) at zero and infinity are finite, then they are equal to −α
r

and zero, respectively.

Proof: We first derive the limit at zero. Suppose that limwt→0 g
′(wt)wt exists, in which case it is

zero (as shown in the proof of Theorem 3.1 in the case of R(wt)). Since limwt→0 g(wt) is assumed

to exist, (4.11) implies that limwt→0
g′′(wt)

[α+A(wt)]2
exists. Since limwt→0A(wt)wt = max{γ,K},

lim
wt→0

g′′(wt)

[α+A(wt)]2
=

limwt→0 g
′′(wt)w

2
t

(max{γ,K})2
,

and hence limwt→0 g
′′(wt)w

2
t exists. As shown in the proof of Theorem 3.1 (in the case of F (wt)),

if limwt→0 g
′′(wt)w

2
t exists, it is zero. Taking the limit of both sides of (4.11) when wt goes to

zero and using limwt→0 g
′(wt)wt = limwt→0 g

′′(wt)w
2
t = 0, limwt→0A(wt)wt = max{γ,K} and

limwt→0 q(wt)
− 1

γ ∈ (0,∞), we find limwt→0 g(wt) = −α
r
.

To complete the proof for the limit at zero, we need to show that limwt→0 g
′(wt)wt exists. We

proceed by contradiction and assume that limwt→0 g
′(wt)wt does not exist, and hence lim supwt→0 g

′(wt)wt >

lim infwt→0 g
′(wt)wt. Since g

′(wt)wt oscillates between values close to lim supwt→0 g
′(wt)wt and val-

ues close to lim infwt→0 g
′(wt)wt, there exists ξ ∈ (lim infwt→0 g

′(wt)wt, lim supwt→0 g
′(wt)wt) and

a sequence {wtn}n∈N converging to zero such that g′(wtn)wtn = ξ and [g′(wt)wt]
′∣
∣

wt=wtn
alternates

between being non-positive and non-negative. Since

[

g′(wt)wt

]′
∣

∣

∣

wt=wtn

= g′′(wtn)wtn + g′(wtn) =
g′′(wtn)w

2
tn + ξ

wtn
,

where the second step follows from g′(wtn)wtn = ξ,

g′′(wtn)w
2
tn + ξ

must also alternate between being non-positive and non-negative. Taking the limit of (4.11) along

the sequence {wtn}n∈N, however, we find

α2u⊤Σu

2 (max{γ,K})2
lim
wt→0

g′′(wtn)w
2
tn +

(

r − lim
wt→0

q(wt)
− 1

γ

)

ξ − r lim
wt→0

g(wt) = α.

Hence, g′′(wtn)w
2
tn converges to a finite limit, which means that ξ can be chosen so that g′′(wtn)w

2
tn+

ξ can be non-zero and with a sign that does not change, a contradiction.
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We next derive the limit at infinity. Suppose that limwt→∞ g′(wt)wt exists, in which case it

is zero. The same argument as for the limit at zero implies that limwt→∞ g′′(wt) exists. That

limit has to be zero since limwt→∞ g′(wt)wt = 0. Taking the limit of both sides of (4.11) when

wt goes to zero and using limwt→∞ g′(wt)wt = limwt→∞ g′′(wt) = 0, limwt→∞A(wt) = 0 and

limwt→∞ q(wt)
− 1

γ ∈ (0,∞), we find limwt→∞ g(wt) = 0. The existence of limwt→∞ g′(wt)wt follows

by adapting the contradiction argument used for the limit at zero.

Lemma B.2 (Single crossing of solutions) Consider two solutions g1(wt) and g2(wt) to (4.11)

with initial conditions g1(ǫ) = g2(ǫ) and g′1(ǫ) > g′2(ǫ) for ǫ > 0. The solutions compare as follows:

• g1(wt) > g2(wt) for all wt ∈ (ǫ,∞), and g1(wt) < g2(wt) for all wt ∈ (0, ǫ).

• g′1(wt) > g′2(wt) for all wt ∈ (0,∞).

Proof: We first show the inequalities for wt > ǫ. Since g1(ǫ) = g2(ǫ) and g′1(ǫ) > g′2(ǫ), g1(wt) >

g2(wt) for wt close to and larger than ǫ. Proceeding by contradiction, suppose that there exists

wt > ǫ such that g1(wt) ≤ g2(wt) or g′1(wt) ≤ g′2(wt). The infimum m within that set is strictly

larger than ǫ since g1(wt) > g2(wt) and g′1(wt) > g′2(wt) for wt close to and larger than ǫ. Since

g1(ǫ) = g2(ǫ) and g′1(wt) > g′2(wt) for all wt ∈ (ǫ,m), g1(m) > g2(m). Hence, g′1(m) must be

equal to g′2(m). Since g′1(wt) > g′2(wt) for all wt ∈ (ǫ,m), g′′1 (m) ≤ g′′2 (m). Eq. (4.11) then implies

g1(m) ≤ g2(m), a contradiction. Therefore, g1(wt) > g2(wt) and g′1(wt) > g′2(wt) for all wt ∈ (ǫ,∞).

The inequalities for wt < ǫ follow from a similar argument (developed in the case of Q(wt) and

R(wt) in Lemma A.2).

Lemma B.3 (Boundary conditions over finite interval) For any ǫ > 0 and M > ǫ, there

exists a unique solution to (4.11) defined over the interval (0,∞) that satisfies g(ǫ) = −α
r

and

g(M) = 0.

Proof: We will consider solutions to (4.11) with g(ǫ) = −α
r
, and show that there exists a unique

g′(ǫ) such that g(M) = 0. For any ℓ ∈ (−∞,∞), the linear ODE (4.11) has a unique solution

over [ǫ,M ] with initial conditions g(ǫ) = −α
r
and g′(ǫ) = ℓ, and that solution can be extended over

(0,∞). We denote the solution derived for g′(ǫ) = ℓ by gℓ(wt).
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Consider the solutions g0(wt) and g1(wt). Since the ODE (4.11) is linear, the function h(wt) ≡
g0(wt) + ℓ [g1(wt)− g0(wt)] is also a solution. Since, in addition, h(ǫ) = −α

r
and h′(ǫ) = ℓ, h(wt)

coincides with the solution gℓ(wt).

Since g0(ǫ) = g1(ǫ) = −α
r
and g′1(ǫ) > g′0(ǫ), Lemma B.2 implies g1(wt) − g0(wt) > 0 for all

wt ∈ (ǫ,∞). Therefore, the function ℓ −→ g0(M) + ℓ [g1(M)− g0(M)] = gℓ(M) is invertible, and

so there exists a unique ℓ such that gℓ(M) = 0. The function gℓ(wt) corresponding to that ℓ is the

required solution.

Lemma B.4 (Negative and increasing g(wt)) For any ǫ > 0 and M > ǫ, the solution to (4.11)

constructed in Lemma B.3 is negative for all wt in [ǫ,M) and increasing.

Proof: We first show that the ℓ determined in Lemma B.3 is positive. Since gℓ(M) = 0, g1(M)−
g0(M) > 0 and gℓ(M) = g0(M) + ℓ [g1(M)− g0(M)], we need to show that g0(M) < 0. We will

show the stronger result that g0(M) < −α
r
. Setting wt = ǫ, g0(ǫ) = −α

r
and g′0(ǫ) = 0 in (4.11), we

find g′′0 (ǫ) < 0. Hence, g′0(wt) < 0 and g0(wt) < −α
r
for wt close to and larger than ǫ. Proceeding

by contradiction, suppose that there exists wt > ǫ such that g0(wt) ≥ −α
r
or g′0(wt) ≥ 0. The

infimum m within that set is strictly larger than ǫ since g0(wt) < −α
r
and g′0(wt) < 0 for wt close

to and larger than ǫ. Since g0(ǫ) = −α
r
and g′0(wt) < 0 for all wt ∈ (ǫ,m), g0(m) < −α

r
. Hence,

g′0(m) must be equal to zero. Since g′0(wt) < 0 for all wt ∈ (ǫ,m), g′′0 (m) ≥ 0. Since, however,

g0(m) < −α
r
and g′(m) = 0, (4.11) implies g′′0 (m) < 0, a contradiction. Therefore, g0(wt) < −α

r

and g′0(wt) < 0 for all wt ∈ (ǫ,∞). This in turn implies g0(M) < 0 and ℓ > 0.

We next show that gℓ(wt) < gℓ(ŵt) for all wt < ŵt in [ǫ,M ]. Suppose, by contradiction, that

there exist m2 > m1 in [ǫ,M ] such that gℓ(m1) ≥ gℓ(m2). If gℓ(m1) > gℓ(m2), then there exists

m3 ∈ (m1,m2) such that gℓ(m3) =
gℓ(m1)+gℓ(m2)

2 . Since g′ℓ(ǫ) = ℓ > 0 and gℓ(m1) > gℓ(m3), gℓ(wt)

reaches its maximum value over [ǫ,m3] at an interior point m. Setting g′ℓ(m) = 0 in (4.11), we find

that g′′ℓ (m) has the same sign as A(m)
α+A(m) + rgℓ(m). Since g′′ℓ (m) ≤ 0 at a maximum,

A(m)

α+A(m)
+ rgℓ(m) ≤ 0 ⇒ gℓ(m) ≤ − A(m)

r[α+A(m)]
< 0. (B.7)

Since gℓ(m3) < gℓ(m) < 0 = gℓ(M) and gℓ(m3) > gℓ(m2), gℓ(wt) reaches its minimum value in

[m3,M ] at an interior point m̂ > m3. Setting g′ℓ(m̂) = 0 in (4.11), we find that g′′ℓ (m̂) has the same
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sign as A(m̂)
α+A(m̂) + rgℓ(m̂). Since g′′ℓ (m̂) ≥ 0 at a minimum,

A(m̂)

α+A(m̂)
+ rgℓ(m̂) ≥ 0 ⇒ gℓ(m̂) ≥ − A(m̂)

r[α+A(m̂)]
. (B.8)

Since A(wt) is decreasing, (B.7) and (B.8) imply gℓ(m) < gℓ(m̂). Since, however, m is the maximizer

of gℓ(wt) over [ǫ,m3] and m̂ is the minimizer of gℓ(wt) over [m3,M ], gℓ(m) > gℓ(m̂), a contradiction.

If gℓ(m1) = gℓ(m2), a contradiction can be derived through the same argument, by distinguishing

the case where there exists wt ∈ (m1,m2) such that gℓ(wt) 6= gℓ(m1) = gℓ(m2) and replacing m1 or

m2 by wt, and the case where gℓ(wt) = gℓ(m1) = gℓ(m2) for all wt ∈ (m1,m2) and taking m1+m2
2

for m3. Therefore, gℓ(wt) < gℓ(ŵt) for all wt < ŵt in [ǫ,M ]. Since gℓ(M) = 0, gℓ(wt) < 0 for all

wt ∈ [ǫ,M).

Lemma B.5 (Boundary conditions over [0,∞]) A solution to (4.11), defined over the interval

(0,∞), and with finite limits at zero and infinity, exists. That solution is negative and increasing.

Proof: We will construct the solution as the simple limit of solutions with boundary conditions

at ǫ and M . Denote the solution constructed in Lemma B.3 by gǫ,M (wt). Since for M2 > M1,

gǫ,M2(M1) < 0 = gǫ,M1(M1) (as implied by Lemma B.4), Lemma B.2 implies g′ǫ,M1
(ǫ) > g′ǫ,M2

(ǫ),

and hence gǫ,M1(wt) > gǫ,M2(wt) for all wt ∈ (ǫ,∞). This means that the function M → gǫ,M(wt),

defined for given wt > ǫ and for M > wt, is decreasing. Since that function is bounded below by

−α
r
(as implied by Lemma B.4), it converges to a finite limit, denoted by gǫ(wt), when M goes to

infinity. That limit satisfies 0 ≥ gǫ(wt) ≥ −α
r
for all wt ∈ (ǫ,∞) and gǫ(wt) ≤ gǫ(ŵt) for all wt < ŵt

in (ǫ,∞) because these inequalities hold (strictly) for gǫ,M (wt) over (ǫ,M) (Lemma B.4).

We next take the limit of gǫ(wt) when ǫ goes to zero. Since for ǫ2 < ǫ1 and for all M > ǫ1,

gǫ2,M (ǫ1) > −α
r

= gǫ1,M (ǫ1) (as implied by Lemma B.4), Lemma B.2 (applied with M rather

than ǫ as starting value) implies g′ǫ2,M (M) < g′ǫ1,M(M), and hence gǫ2,M (wt) > gǫ1,M (wt) for all

wt ∈ (0,M). Taking limits when M goes to infinity, we find gǫ2(wt) ≥ gǫ1(wt) for all wt ∈ (ǫ1,∞).

Hence, the function ǫ → gǫ(wt), defined for given wt > ǫ, is increasing. Since that function is

bounded above by zero, it converges to a finite limit, denoted by g(wt), when ǫ goes to zero. That

limit satisfies 0 ≥ g(wt) ≥ −α
r
for all wt ∈ (0,∞) and g(wt) ≤ g(ŵt) for all wt < ŵt in (0,∞)

because these inequalities hold for gǫ(wt) over (ǫ,∞).
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Following a similar argument as in Lemma A.5, we can show that g(wt), viewed as a function

of wt, solves the ODE (4.11). Since 0 ≥ g(wt) ≥ −α
r
for all wt ∈ (0,∞) and g(wt) ≤ g(ŵt) for

all wt < ŵt in (0,∞), g(wt) has finite limits at zero and infinity. To show that g(wt) is negative

and increasing, we need to show that the inequalities 0 ≥ g(wt) ≥ −α
r
for all wt ∈ (0,∞) and

g(wt) ≤ g(ŵt) for all wt < ŵt in (0,∞) are strict. This can be done following a similar argument

as in Lemma B.4.

When hedgers are long-lived, the analysis in Lemma B.1 carries through, by observing addi-

tionally that limwt→0 F
′(wt)wt = limwt→∞ F ′(wt)wt = 0.

Proof of Proposition 4.2: Showing that the effects of wt on variance, covariance and correlation

converge to zero when wt goes to zero and to infinity amounts to showing that limwt→0 f(wt) =

limwt→∞ f(wt) = 0. To show that limwt→0 f(wt) = 0, we multiply the numerator and denominator

of f(wt) by wt:

lim
wt→0

f(wt) =
α limwt→0 g

′(wt)wt

α limwt→0wt + limwt→0A(wt)wt − limwt→0 F ′(wt)wt
. (B.9)

Since limwt→0A(wt)wt = max{γ,K}, limwt→0 F
′(wt)wt = 0 and limwt→0 g

′(wt)wt = 0, (B.9) im-

plies limwt→0 f(wt) = 0. To show that limwt→∞ f(wt) = 0, we follow the same procedure and note

that limwt→∞A(wt)wt = γ, limwt→∞ F ′(wt)wt = 0 and limwt→∞ g′(wt)wt = 0.

We next show that when hedgers are short-lived and arbitrageurs have logarithmic preferences,

f(wt) is hump-shaped. Since limwt→0 f(wt) = limwt→∞ f(wt) = 0, f(wt) ≥ 0 for all wt ∈ (0,∞)

and f(wt) > 0 for at least some wt ∈ (0,∞), there exists wt ∈ (0,∞) at which f(wt) is maximized.

If f(wt) is not hump-shaped, then we can proceed as in Lemma A.7 and choose ξ > 0 and (m̂i, ˆ̂mi)

for i = 1, 2, 3, such that m̂1 < ˆ̂m1 ≤ m̂2 < ˆ̂m2 ≤ m̂3 < ˆ̂m3, f(m̂i) = f( ˆ̂mi) = ξ for i = 1, 2, 3,

f ′(m̂i) > 0 and f ′( ˆ̂mi) < 0 for i = 1, 3, f ′(m̂2) < 0 and f ′( ˆ̂m2) > 0, f(wt) > ξ for all wt ∈ (m̂i, ˆ̂mi)

for i = 1, 3, and f(wt) < ξ for all wt ∈ (m̂2, ˆ̂m2).

For any γ, the derivative of f(wt) has the same sign as

g′′(wt)[α +A(wt)]− g′(wt)A
′(wt)

=
[α+A(wt)]

3

α2u⊤Σu

[

αA(wt)

α+A(wt)
+ rg(wt) +

(

q(wt)
− 1

γ − r
)

g′(wt)wt

]

− g′(wt)A
′(wt), (B.10)
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where the second step follows by substituting g′′(wt) from (4.11). Since for γ = 1, A(wt) =
1
wt

and

q(wt) =
1
ρ
, we can write (B.10) as

(αwt + 1)3

α2u⊤Σuw3
t

[

α

αwt + 1
+ rg(wt) + (ρ− r)g′(wt)wt

]

+
g′(wt)

w2
t

. (B.11)

Using (B.11) and f(m̂i) = f( ˆ̂mi) = ξ for i = 1, 2, 3, we find f̂ξ(m̂i) > 0 and f̂ξ( ˆ̂mi) < 0 for i = 1, 3,

and f̂ξ(m̂2) < 0 and f̂ξ( ˆ̂m2) > 0, where the function f̂ξ(wt) is defined by

f̂ξ(wt) ≡
1

αu⊤Σu

[

α

αwt + 1
+ rg(wt) +

(ρ− r)(αwt + 1)ξ

α

]

+
ξ

(αwt + 1)2
. (B.12)

Consider next the function

¯̂
fξ(wt) ≡ f̂ξ(wt)−

r

αu⊤Σu

[

g(wt)−
ξ

α
[αwt + log(wt)]

]

=
1

αu⊤Σu

[

α

αwt + 1
+

rξ

α
[αwt + log(wt)] +

(ρ− r)(αwt + 1)ξ

α

]

+
ξ

(αwt + 1)2
. (B.13)

Since f(wt) > ξ for all wt ∈ (m̂1, m̂1),

g′(wt) >
ξ

α

(

α+
1

wt

)

⇒ g( ˆ̂m1)−
ξ

α

[

α ˆ̂m1 + log( ˆ̂m1)
]

> g(m̂1)−
ξ

α
[αm̂1 + log(m̂1)] . (B.14)

Combining (B.14) with (B.13), f̂ξ(m̂1) > 0 and f̂ξ( ˆ̂m1) < 0, we find
¯̂
fξ(m̂1) >

¯̂
fξ( ˆ̂m1). We

likewise find
¯̂
fξ(m̂2) <

¯̂
fξ( ˆ̂m2) and

¯̂
fξ(m̂3) >

¯̂
fξ( ˆ̂m3). Hence,

¯̂
fξ(wt) is decreasing, increasing, and

then decreasing. Since
¯̂
fξ(wt) converges to minus infinity when wt goes to zero, it starts being

increasing, and since it converges to infinity when wt goes to infinity, it ends being increasing.

Hence, its first derivative changes sign at least four times, from positive, to negative, to positive,

to negative, to positive. Moreover, its second derivative changes sign at least three times, from

negative, to positive, to negative, to positive. The first and second derivatives of
¯̂
fξ(wt) are

¯̂
f ′
ξ(wt) =

1

αu⊤Σu

[

− α2

(αwt + 1)2
+ rξ

(

1 +
1

αwt

)

+ (ρ− r)ξ

]

− 2αξ

(αwt + 1)3
, (B.15)

¯̂
f ′′
ξ (wt) =

1

αu⊤Σu

[

2α2

(αwt + 1)3
− rξ

αw2
t

]

+
6α2ξ

(αwt + 1)4
, (B.16)
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respectively. The second derivative has the same sign as the function P (wt)− rξ
α
, where

P (wt) ≡
2α2w2

t

(αwt + 1)3
+

6α3u⊤Σuξw2
t

(αwt + 1)4
.

The derivative of P (wt) has the same sign as the expression

(2− αwt)(1 + αwt) + 6αu⊤Σuξ(1− 2αwt),

which is quadratic in wt, positive for wt = 0, and has a unique positive root. Hence, P (wt) is

hump-shaped, which means that
¯̂
f ′′
ξ (wt) can change sign at most twice, from negative, to positive,

to negative. This yields a contradiction, and hence f(wt) is hump-shaped.

Parts (i) and (ii) of the proposition follow from (4.13) and f(wt) being hump-shaped. To show

Part (iii), we use (4.13) to write the correlation as

Corrt(dRnt, dRn′t) =
f(wt)

[

u⊤Σuf(wt) + 2
]

(Σu)n(Σu)n′ +Σnn′

√

{f(wt) [u⊤Σuf(wt) + 2] (Σu)2n +Σnn}
{

f(wt) [u⊤Σuf(wt) + 2] (Σu)2n′ +Σn′n′

}

.

(B.17)

Differentiating (B.17) with respect to f(wt), we find that Corrt(dRnt, dRn′t) is increasing in f(wt)

if (4.15) holds and is decreasing in f(wt) if (4.15) holds in the opposite direction. Part (iii) then

follows from f(wt) being hump-shaped.

Proof of Proposition 4.3: We start by proving a lemma on the limit of g′(wt) when wt goes to

zero.

Lemma B.6 (Limit of g′(wt) at zero) For the solution to (4.11) constructed in Lemma B.5, the

limit of g′(wt) when wt goes to zero is infinite if γ < K and equal to α2γ

(ρ−r)z
[

γ+ γ
z

(

r
ρ−r

+1
)

−1
] if γ > K.

Proof: We start with the case where hedgers are short-lived. We use the equation

α2u⊤Σu

2[α +A(wt)]2wt
g′′(wt) +

(

r − q(wt)
− 1

γ

)

g′(wt)− r
g(wt) +

α
r

wt
= − α2

[α+A(wt)]wt
, (B.18)

which can be derived from (4.11) by subtracting α from both sides and dividing by wt. Consider

first the case γ > K, and suppose that g′(wt) converges to a finite limit when wt goes to zero.
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Since limwt→0 g
′(wt) is finite and limwt→0 g(wt) = −α

r
, limwt→0

g(wt)+
α
r

wt
= limwt→0 g

′(wt). Since,

limwt→0A(wt)wt = γ, limwt→0
α2

[α+A(wt)]wt
= α2

γ
. Since, in addition, q(wt)

− 1
γ converges to a finite

limit when wt goes to zero, (B.18) implies that g′′(wt)wt must converge to a finite limit, which has

to be zero because limwt→0 g
′(wt) is finite. Taking the limit of both sides of (B.18) when wt goes

to zero thus yields

lim
wt→0

q(wt)
− 1

γ lim
wt→0

g′(wt) =
α2

γ
. (B.19)

Substituting limwt→0 q(wt)
− 1

γ = limwt→0Q(wt) from (A.28) into (B.19), we find that limwt→0 g
′(wt)

is as in the lemma.

To complete the proof of the lemma for γ > K, we need to show that g′(wt) converges to

a finite limit when wt goes to zero, and does not have no limit or converge to infinity. Sup-

pose, by contradiction, that limwt→0 g
′(wt) does not exist, and hence lim supwt→0 g

′(wt)wt >

lim infwt→0 g
′(wt)wt. Since g′(wt) oscillates between values close to lim supwt→0 g

′(wt) and val-

ues close to lim infwt→0 g
′(wt), there exist ξ > ξ̂ in (lim infwt→0 g

′(wt), lim supwt→0 g
′(wt)) and

sequences {wtn}n∈N and {ŵtn}n∈N converging to zero with the following properties. For the for-

mer sequence, g′(wtn) = ξ, g′′(ŵtn) alternates between being non-positive and non-negative, and

g′(wt) ≥ ξ for each interval in which g′′(ŵtn) is non-negative at the lower end and non-positive at

the upper end. For the latter sequence, g′(ŵtn) = ξ̂, g′′(wtn) alternates between being non-positive

and non-negative, and g′(wt) ≤ ξ̂ for each interval in which g′′(wtn) is non-positive at the lower end

and non-negative at the upper end. Denote by wtn the element of the sequence corresponding to

the upper end of the interval, in which case the element corresponding to the lower end is wt,n+1.

Using (4.11) and g′(wtn) = g′(wt,n+1) = ξ, we find ĝξ(wtn) ≤ 0 and ĝξ(wt,n+1) ≥ 0, where the

function ĝξ(wt) is defined by

ĝξ(wt) ≡
αA(wt)

α+A(wt)
+ rg(wt) +

(

q(wt)
− 1

γ − r
)

ξwt. (B.20)

Consider next the function

¯̂gξ(wt) ≡ ĝξ(wt)− r[g(wt)− ξwt] =
αA(wt)

α+A(wt)
+ ξq(wt)

− 1
γwt. (B.21)

Since g′(wt) ≥ ξ over the interval [wt,n+1, wtn],

g(wtn)− g(wt,n+1) ≥ ξ (wtn − wt,n+1) ⇒ g(wt,n+1)− ξwt,n+1 ≤ g(wtn)− ξwtn. (B.22)
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Combining (B.21) with (B.22), ĝξ(wtn) ≤ 0 and ĝξ(wt,n+1) ≥ 0, we find ¯̂gξ(wtn) ≤ ¯̂gξ(wt,n+1), which

we can write as

αA(wt,n+1)

α+A(wt,n+1)
− αA(wtn)

α+A(wtn)
+ ξ

[

q(wt,n+1)
− 1

γwt,n+1 − q(wtn)
− 1

γwtn

]

≥ 0

⇔ α2[A(wt,n+1)−A(wtn)]

[a+A(wtn)][α +A(wt,n+1)](wt,n+1 − wtn)
+ ξq(wt,n+1)

− 1
γ + ξ

q(wt,n+1)
− 1

γ − q(wtn)
− 1

γ

wt,n+1 − wtn
wtn ≤ 0,

(B.23)

where the second step follows by dividing by wt,n+1−wtn < 0. The limits of the three terms in the

left-hand side of (B.23) when n goes to infinity are

lim
n→∞

α2[A(wt,n+1)−A(wtn)]

[a+A(wtn)][α +A(wt,n+1)](wt,n+1 − wtn)
= α2 lim

wt→0

A′(wt)w
2
t

γ2

= α2 lim
wt→0

R′(wt)wt −A(wt)wt

γ2
= −α2

γ
,

lim
n→∞

ξq(wt,n+1)
− 1

γ = ξ lim
wt→0

q(wt)
− 1

γ ,

lim
n→∞

ξ
q(wt,n+1)

− 1
γ − q(wtn)

− 1
γ

wt,n+1 − wtn
wtn = ξ lim

wt→0
Q′(wt)wt = ξ lim

wt→0
Q(wt)

R(wt)− γ

γ
= 0,

where the first limit follows by differentiating R(wt) = A(wt)wt and using limwt→0R
′(wt)wt = 0

(shown in Lemma A.1) and limwt→0A(wt)wt = γ, and the third limit follows from (A.25) and

limwt→0R(wt) = γ. Hence, taking the limit in (B.23) when n goes to infinity, we find

ξ lim
wt→0

q(wt)
− 1

γ ≤ α2

γ
.

Proceeding similarly for the sequence {ŵtn}n∈N, we find

ξ̂ lim
wt→0

q(wt)
− 1

γ ≥ α2

γ
,

which yields a contradiction since ξ̂ > ξ.13 Suppose next, by contradiction, that limwt→0 g
′(wt) =

∞, in which case g′′(wt) < 0 for small wt. The mean-value theorem implies that there exists

ŵt ∈ (0, wt) such that

rg′(wt)− r
g(wt) +

α
r

wt
= rwtg

′′(ŵt). (B.24)

13The argument establishing that g′(wt) converges to a finite limit when wt goes to zero can be suitably adapted
in the proof of Lemma A.8 to show that the asymptotic behavior of R(wt) for wt close to zero in the case γ < K has
the conjectured form.
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Substituting into (B.18), and using limwt→0 q(wt)
− 1

γ ∈ (0,∞) and g′′(wt) < 0 for small wt, we find

that the left-hand side converges to minus infinity when wt goes to zero. This yields a contradiction

because the right-hand side converges to a finite limit. This completes the proof of the lemma for

γ > K.

Consider next the case γ < K. Since limwt→0 q(wt)
− 1

γ = limwt→0 Q(wt) = 0, (B.19) rules out

that g′(wt) converges to a finite limit. Moreover, the same argument as in the case γ > K rules

out that g′(wt) has no limit. Therefore, g′(wt) ≥ 0 converges to infinity.

Eqs. (4.12) and (4.14) imply that the derivative of the absolute value of expected excess returns

has the same sign as

αu⊤Σu
[g′′(wt)A(wt) + g′(wt)A

′(wt)][α+A(wt)]− 2g′(wt)A(wt)A
′(wt)

[α+A(wt)]3
+

αA′(wt)

[α+A(wt)]2

αu⊤Σu

[

g′′(wt)A(wt)

[α+A(wt)]2
+

g′(wt)A
′(wt)[α−A(wt)]

[α+A(wt)]3

]

+
αA′(wt)

[α+A(wt)]2
. (B.25)

For γ > K, Lemma B.6 shows that limwt→0 g
′(wt) =

α2γ

(ρ−r)z
[

γ+ γ
z

(

r
ρ−r

+1
)

−1
] and limwt→0 g

′′(wt)wt =

0. Combining with limwt→0A(wt)wt = γ and limwt→0A
′(wt)w

2
t = −γ, we find that the limit of

(B.25) when wt goes to zero is

αu⊤Σu

γ

α2γ

(ρ− r)z
[

γ + γ
z

(

r
ρ−r

+ 1
)

− 1
] − α

γ
,

which is positive under the condition in the proposition. For γ < K, Lemma B.6 shows that

limwt→0 g
′(wt) = ∞, in which case g′′(wt) < 0 for small wt. Eqs. (B.24) and g′′(wt) < 0 im-

ply that the left-hand side of (B.18) is the sum of the three negative terms α2u⊤Σu
2[α+A(wt)]2wt

g′′(wt),

−q(wt)
− 1

γ g′(wt), and rg′(wt) − r
g(wt)+

α
r

wt
. Since the right-hand side is bounded for wt close to

zero, each of the three negative terms is bounded. Since limwt→0A(wt)wt = γ, the bounded-

ness of the first term means that g′′(wt)wt is bounded. Combining with limwt→∞ g′(wt) = ∞,

limwt→0A(wt)wt = γ and limwt→0A
′(wt)w

2
t = −γ, we find that the limit of (B.25) when wt goes

to zero is infinity.
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C Proofs of the Results in Sections 5 and 6

Proof of Proposition 5.1: We first compute the position Yt of arbitrageurs. Using (4.10) and

(B.4), we can write (4.9) as

σyt = σ
(

I + f(wt)uu
⊤Σ
)

Yt

⇔ yt =
(

I + f(wt)uu
⊤Σ
)

Yt

⇔ Yt + f(wt)u
⊤ΣYtu =

α

α+A(wt)− F ′(wt)
u, (C.1)

where I is the N × N identity matrix, and the third step follows from (3.18). Eq. (C.1) implies

that Yt is collinear with u. Setting Yt = νu in (C.1), we find

α

α+A(wt)− F ′(wt)
= ν + f(wt)νu

⊤Σu ⇒ ν =
α

[α+A(wt)− F ′(wt)][1 + u⊤Σuf(wt)]
,

and so

Yt =
α

[α+A(wt)− F ′(wt)][1 + u⊤Σuf(wt)]
u =

α

α+A(wt)− F ′(wt) + αu⊤Σug′(wt)
u. (C.2)

Eqs. (4.6) and (C.2) imply

∂Xnt

∂un
= −∂Ynt

∂un
= − α

α+A(wt)− F ′(wt) + αu⊤Σug′(wt)
. (C.3)

Eq. (4.10) implies

∂Snt

∂un
= g(wt)Σnn. (C.4)

Substituting (C.3) and (C.4) into (5.1), we find (5.2). Since limwt→0A(wt)wt = max{γ,K},
limwt→0 F

′(wt)wt = limwt→0 g
′(wt)wt = 0 and limwt→0 g(wt) = −α

r
, (5.2) implies limwt→0 λnt = ∞.

Since limwt→∞A(wt)wt = γ, limwt→∞ F ′(wt)wt = limwt→∞ g′(wt)wt = 0 and limwt→∞ g(wt) = 0,

(5.2) implies limwt→∞ λnt = 0.

Suppose next that hedgers are short-lived. Since −g(wt) > 0, A(wt) > 0 and g′(wt) ≥ 0,

λnt > 0. To show that λnt is decreasing in wt if γ = 1, we prove the following lemma.

Lemma C.1 (g′(wt) decreasing if γ = 1) For the solution to (4.11) constructed in Lemma B.5,

g′(wt) is decreasing if γ = 1.

92



Proof: If g′(wt) is not decreasing, then there exist m1 < m2 such that g′(m1) ≤ g′(m2). Consider

first the case where g′(m1) ≥ limwt→0 g
′(wt), and recall from Lemma B.6 that limwt→0 g

′(wt)

is positive for γ > K and infinity for γ < K. Recall also from the proof of Lemma B.1 that

limwt→∞ g′(wt)wt = 0, and hence limwt→∞ g′(wt) = 0. If g′(m1) < g′(m2), then we can choose

ξ > g′(m1) and (m̂2, ˆ̂m2) such that m̂2 < m2 < ˆ̂m2, g′(m̂2) = g′( ˆ̂m2) = ξ, g′′(m̂2) > 0 and

g′′( ˆ̂m2) < 0, and g′(wt) > ξ for all wt ∈ (m̂2, ˆ̂m2). If g′(m1) = g′(m2), then we can choose

ξ ≥ g′(m1) and (m̂2, ˆ̂m2) such that m̂2 < m2 < ˆ̂m2 and the remaining inequalities are weak.

Proceeding as in the proof of Lemma B.6, we find ¯̂gξ( ˆ̂m2) ≤ ¯̂gξ(m̂2). The derivative of ¯̂gξ(wt) is

¯̂g′ξ(wt) = ξ

[

−1

γ
q(wt)

− 1
γ
−1

q′(wt)wt + q(wt)
− 1

γ

]

+
α2A′(wt)

[α+A(wt)]2
. (C.5)

Since for γ = 1, A(wt) =
1
wt

and q(wt) =
1
ρ
, we can write (C.5) as

¯̂g′ξ(wt) = ξρ− α2

(αwt + 1)2
. (C.6)

Lemma B.6 implies that for γ = 1, limwt→0 g
′(wt) =

α2

ρ
. Since ξ ≥ g′(m1) ≥ limwt→0 g

′(wt) =
α2

ρ
,

(C.6) implies ¯̂g′ξ(wt) > 0 for all wt ∈ (0,∞). This contradicts ¯̂gξ( ˆ̂m2) ≤ ¯̂gξ(m̂2).

Consider next the case where g′(m1) < limwt→0 g
′(wt). If g′(m1) < g′(m2), then we can

choose ξ > g′(m1) and (m̂i, ˆ̂mi) for i = 1, 2 such that m̂1 < m1 < ˆ̂m1 ≤ m̂2 < m2 < ˆ̂m2,

g′(m̂i) = g′( ˆ̂mi) = ξ for i = 1, 2, g′′(m̂1) < 0 and g′′( ˆ̂m1) > 0, g′′(m̂2) > 0 and g′′( ˆ̂m2) < 0,

g′(wt) < ξ for all wt ∈ (m̂1, ˆ̂m1), and g′(wt) > ξ for all wt ∈ (m̂2, ˆ̂m2). If g′(m1) = g′(m2), then

we can choose ξ > 0 and (m̂i, ˆ̂mi) for i = 1, 2 such that m̂1 < m1 < ˆ̂m1 ≤ m̂2 < m2 < ˆ̂m2 and

the remaining inequalities are weak. Proceeding as in the case g′(m1) ≥ limwt→0 g
′(wt), we find

¯̂gξ( ˆ̂m1) ≥ ¯̂gξ(m̂1) and ¯̂gξ( ˆ̂m2) ≤ ¯̂gξ(m̂2). For γ = 1, (C.6) implies that for any ξ > 0, ¯̂g′ξ(wt) is

increasing and becomes positive for large wt. Hence, ¯̂g
′
ξ(wt) is either increasing, or decreasing and

then increasing. Since, ¯̂gξ( ˆ̂m2) ≤ ¯̂gξ(m̂2), ¯̂g
′
ξ(wt) is decreasing in at least part of (m̂2, ˆ̂m2). Hence,

it is decreasing in all of (m̂1, ˆ̂m1), which contradicts ¯̂gξ( ˆ̂m1) ≥ ¯̂gξ(m̂1).

Since−g(wt) and 1+A(wt)
α

+u⊤Σug′(wt) are positive, and −g(wt) is decreasing, λnt is decreasing

if A(wt) +αu⊤Σug′(wt) is decreasing. The latter function is decreasing for γ = 1 because A(wt) is

decreasing for all γ and Lemma C.1 shows that g′(wt) is decreasing for γ = 1.
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Proof of Corollary 5.1: We set

λnt = −g(wt)

(

1 +
A(wt)− F ′(wt)

α
+ g′(wt)u

⊤Σu

)

Σnn ≡ L(wt)Σnn. (C.7)

Using (C.7) and Ito’s lemma, we find

Covt(dΛt, dRt) = L′(wt)

∑N
n′=1Σn′n′

N
Covt(dwt, dRt), (C.8)

Covt(dΛt, dλnt) =
(

L′(wt)
)2 Σnn

∑N
n′=1 Σn′n′

N
Vart(dwt), (C.9)

Covt(d(u
⊤dRt), dλnt) = L′(wt)Σnnu

⊤Covt(dwt, dRt). (C.10)

The diffusion matrix of the return vector dRt is

(σSt + σ)⊤ =

(

α

α+A(wt)− F ′(wt)
σuS′(wt)

⊤ + σ

)⊤

=

(

αg′(wt)

α+A(wt)− F ′(wt)
σuu⊤Σ+ σ

)⊤

, (C.11)

where the first step follows from (B.4) and the second from (4.10). The covariance between wealth

and the return vector dRt is

Covt(dwt, dRt) = (σSt + σ)⊤σwt

=

(

αg′(wt)

α+A(wt)− F ′(wt)
σuu⊤Σ+ σ

)⊤
α

α+A(wt)− F ′(wt)
σu

=
α

α+A(wt)− F ′(wt)

[

u⊤Σuf(wt) + 1
]

Σu, (C.12)

where the second step follows from (A.80) and (C.11). Part (i) of the corollary follows by substi-

tuting (C.12) into (C.8). The proportionality coefficient is

CΛ(wt) = L′(wt)
α
∑N

n′=1 Σn′n′

N [α+A(wt)− F ′(wt)]

[

u⊤Σuf(wt) + 1
]

, (C.13)

and is negative when hedgers are short-lived and arbitrageurs have logarithmic preferences because

L(wt) is decreasing in wt (Proposition 5.1). Part (ii) of the corollary follows from (C.9). The

proportionality coefficient is positive regardless of the shape of L(wt). Part (iii) of the corollary

follows by substituting (C.12) into (C.10). The proportionality coefficient is negative when hedgers

are short-lived and arbitrageurs have logarithmic preferences because L(wt) is decreasing in wt.
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Proof of Corollary 5.2: The proportionality result follows from (4.12), (C.8), and (C.12). These

equations imply that the proportionality coefficient is

ΠΛ(wt) =
A(wt)

L′(wt)
∑N

n′=1
Σn′n′

N

. (C.14)

This coefficient is negative when hedgers are short-lived and arbitrageurs have logarithmic prefer-

ences because L(wt) is decreasing in wt.

Proof of Proposition 5.2: Using (C.7) to compute L′(wt), we can write (C.13) as

CΛ(wt) =

[

−g′(wt)
(

1 + A(wt)−F ′(wt)
α

+ g′(wt)u
⊤Σu

)

− g(wt)
(

A′(wt)−F ′′(wt)
α

+ g′′(wt)u
⊤Σu

)]

α+A(wt)− F ′(wt)

× α
∑N

n′=1 Σn′n′

N

[

u⊤Σuf(wt) + 1
]

, (C.15)

and ΠΛ(wt) as

ΠΛ(wt) =
A(wt)

[

−g′(wt)
(

1 + A(wt)−F ′(wt)
α

+ g′(wt)u⊤Σu
)

− g(wt)
(

A′(wt)−F ′′(wt)
α

+ g′′(wt)u⊤Σu
)]

×
∑N

n′=1 Σn′n′

N
. (C.16)

We denote the numerator and denominator of the fraction in the first line of (C.15) by NC(wt) and

DC(wt), respectively. We denote the numerator and denominator of the fraction in the first line of

(C.16) by NΠ(wt) and DΠ(wt), respectively, noting that NC(wt) = DΠ(wt).

Since limwt→0A(wt)wt = max{γ,K} and limwt→0 F
′(wt)wt = 0, limwt→0 DC(wt)wt = max{γ,K}.

Since, in addition, limwt→0 g(wt) = −α
r
, limwt→0 g

′(wt)wt = limwt→0 g
′′(wt)w

2
t = limwt→0 F

′′(wt)w
2
t =

0 and limwt→0A
′(wt)w

2
t = −max{γ,K}, limwt→0NC(wt)w

2
t = −max{γ,K}

r
. Hence limwt→0NC(wt)wt =

−∞. Since, in addition, limwt→0 f(wt) = 0, (C.15) implies that limwt→0C
Λ(wt) = −∞.

Since limwt→0 A(wt)wt = max{γ,K}, limwt→0NΠ(wt)wt = max{γ,K}. Since, in addition,

DΠ(wt) = NC(wt), limwt→0DΠ(wt)wt = −∞. Therefore, (C.16) implies that limwt→0Π
Λ(wt) = 0.

Since limwt→∞A(wt) = limwt→∞ F ′(wt) = 0 (because the limits of these functions multiplied

by wt are γ and zero, respectively), limwt→∞DC(wt) = α. Since, in addition, limwt→∞ g(wt) =
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limwt→∞ g′′(wt) = 0 and limwt→∞A′(wt) = limwt→∞ F ′′(wt) = limwt→∞ g′(wt) = 0 (because the

limits of the first two functions multiplied by w2
t are −γ and zero, respectively, and the limit of the

third function multiplied by wt is zero), limwt→∞NC(wt) = 0. Since, in addition, limwt→∞ f(wt) =

0, (C.15) implies that limwt→∞CΛ(wt) = 0.

We finally determine limwt→∞ΠΛ(wt) when hedgers are short-lived. Since limwt→∞A(wt)wt =

γ, limwt→∞NΠ(wt)wt = γ. We next derive limwt→∞DΠ(wt)wt assuming that g′′(wt)w
2
t has a (fi-

nite or infinite) limit when wt goes to infinity. Since limwt→∞ g(wt) is finite, limwt→∞ g′′(wt)w
2
t = 0.

Since limwt→∞A(wt) = limwt→∞A′(wt)wt = limwt→∞ g(wt) = limwt→∞ g′(wt)wt = limwt→∞ g′(wt) =

limwt→∞ g′′(wt)wt = 0, limwt→∞DΠ(wt)wt = 0. Therefore, (C.16) implies that limwt→∞ΠΛ(wt)

is plus or minus infinity. To show that the limit is −∞, we note that the largest-order term

in −g′(wt)
(

1 + A(wt)
α

+ g′(wt)u
⊤Σu

)

is −g′(wt), which is non-positive because g(wt) is increasing,

and that the largest-order term in −g(wt)
(

A′(wt)
α

+ g′′(wt)u
⊤Σu

)

is −g(wt)
A′(wt)

α
, which is negative

because g(wt) < 0 and A′(wt) < 0.

Proof of Proposition 6.1: We first derive the positions of hedgers and arbitrageurs, as well

as asset prices, in an equilibrium with positive supply. We next derive the Bellman equations of

hedgers and arbitrageurs. We finally show the equivalence with a zero-supply equilibrium.

Positive supply does not change the asset demands (3.6) and (3.13) of hedgers and arbitrageurs.

We write these demands in terms of the long-maturity assets, using the mapping derived in Lemma

4.1. (That is, we use (4.7) to replace D̄−πt by µSt+ D̄− rSt, and (4.8) and (4.9) to replace (xt, yt)

by (Xt, Yt).) Eqs. (3.7) and (3.13) become

Xt =

[

(σSt + σ)⊤(σSt + σ)
]−1

(µSt + D̄ − rSt)

α
− (σSt + σ)−1σu− F ′(wt)Yt

α
, (C.17)

Yt =

[

(σSt + σ)⊤(σSt + σ)
]−1

(µSt + D̄ − rSt)

A(wt)
, (C.18)

respectively. Using the market-clearing equation

Xt + Yt = s, (C.19)

we can write (C.17) as

Xt =

[

(σSt + σ)⊤(σSt + σ)
]−1

(µSt + D̄ − rSt)− α(σSt + σ)−1σu− F ′(wt)s

α− F ′(wt)
. (C.20)
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Substituting Xt and Yt from (C.20) and (C.18), respectively, into (C.19), we find that expected

excess returns are

µSt + D̄ − rSt =
αA(wt)

α+A(wt)− F ′(wt)
(σSt + σ)⊤bt, (C.21)

where

bt ≡ (σSt + σ)s+ σu. (C.22)

Substituting µSt + D̄ − rSt from (C.21) into (C.18), we find that the position of arbitrageurs is

Yt =
α

α+A(wt)− F ′(wt)
(σSt + σ)−1bt. (C.23)

Substituting ct from (A.14), µSt+ D̄− rSt from (C.21), and Yt from (C.23) into (B.2), we find that

the dynamics of arbitrageur wealth are given by (A.78) with

µwt =
(

r − q(wt)
− 1

γ

)

wt +
α2A(wt)

[α+A(wt)− F ′(wt)]2
b⊤t bt, (C.24)

σwt =
α

α+A(wt)− F ′(wt)
bt. (C.25)

Using (C.24) and (C.25), we find the following counterparts of (B.3) and (B.4):

µSt =
(

r − q(wt)
− 1

γ

)

S′(wt)wt +
α2

[α+A(wt)− F ′(wt)]2
b⊤t bt

(

A(wt)S
′(wt) +

1

2
S′′(wt)

)

,

(C.26)

σSt =
α

α+A(wt)− F ′(wt)
btS

′(wt)
⊤. (C.27)

Substituting σSt from (C.27) into (C.22) and solving for bt, we find

bt =
σ(s+ u)

1− α
α+A(wt)−F ′(wt)

S′(wt)⊤s
. (C.28)

Substituting (µSt, σSt) from (C.26) and (C.27) into (C.21), we find
(

r − q(wt)
− 1

γ

)

S′(wt)wt +
α2

2[α +A(wt)− F ′(wt)]2
b⊤t btS

′′(wt) + D̄ − rS(wt)

=
αA(wt)

α+A(wt)− F ′(wt)
σ⊤bt

⇔
(

r − q(wt)
− 1

γ

)

S′(wt)wt +
α2(s + u)⊤Σ(s+ u)

2 [α+A(wt)− F ′(wt)− αS′(wt)⊤s]
2S

′′(wt) + D̄ − rS(wt)

=
αA(wt)

α+A(wt)− F ′(wt)− αS′(wt)⊤s
Σ(s+ u), (C.29)
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where the second step follows from (C.28). The same argument as in the proof of Proposition 4.1

implies that S(wt) must have the form in (4.10). Substituting (4.10) into (C.29), we find that g(wt)

solves the ODE

α2(s+ u)⊤Σ(s+ u)

2 [α+A(wt)− F ′(wt)− αg′(wt)(s+ u)⊤Σs]
2 g

′′(wt) +
(

r − q(wt)
− 1

γ

)

g′(wt)wt − rg(wt)

=
αA(wt)

α+A(wt)− F ′(wt)− αg′(wt)(s + u)⊤Σs
. (C.30)

Substituting St from (4.10) into (C.28), we can write bt as

bt =
σ(s+ u)

1− α
α+A(wt)−F ′(wt)

g′(wt)(s + u)⊤Σs
. (C.31)

Substituting bt from (C.31) into (C.21) and (C.23), we can write µSt + D̄ − rSt and Yt as

µSt + D̄ − rSt =
αA(wt)

α+A(wt)− F ′(wt)− αg′(wt)(s + u)⊤Σs
(σSt + σ)⊤σ(s+ u), (C.32)

Yt =
α

α+A(wt)− F ′(wt)− αg′(wt)(s+ u)⊤Σs
(σSt + σ)−1σ(s + u), (C.33)

respectively. This completes the derivation of positions and prices: the position Yt of arbitrageurs

is given by (C.33), the position Xt of hedgers is given by s−Yt, and asset prices are given by (4.10),

where g(wt) solves the ODE (C.30).

We next derive the Bellman equation of arbitrageurs. To do that, we write (A.12) in terms of

the long-maturity assets, using (4.7) to replace D̄ − πt by µSt + D̄ − rSt, and (4.8) and (4.9) to

replace (xt, yt) by (Xt, Yt). We also note that the maximum in (A.12) is achieved for ĉt given by

(3.11) and for ŷt = yt
ŵt

wt
, and we substitute ct from (A.14), µSt+ D̄− rSt from (C.32), and Yt from

(C.33). This yields the following counterpart of (A.16):

ρq(wt) = q(wt)
1− 1

γ

+

(

q′(wt) +
(1− γ)q(wt)

wt

)(

rwt − q(wt)
− 1

γwt +
α2(s + u)⊤Σ(s+ u)A(wt)

[α+A(wt)− F ′(wt)− αg′(wt)(s+ u)⊤Σs]2

)

+
1

2

(

q′′(wt)−
γ(1− γ)q(wt)

w2
t

+
2(1 − γ)q′(wt)

wt

)

α2(s + u)⊤Σ(s+ u)

[α+A(wt)− F ′(wt)− αg′(wt)(s+ u)⊤Σs]2
.

(C.34)

Proceeding as in the proof of Proposition 3.4, we find the following counterpart of (3.21):

1 =
q(wt)

− 1
γ − r

ρ− r
A(wt)wt −

zs
(

A′(wt) +A(wt)
2
)

[α+A(wt)− F ′(wt)− αg′(wt)(s+ u)⊤Σs]2
, (C.35)
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where

zs ≡
α2(s + u)⊤Σ(s+ u)

2(ρ− r)
. (C.36)

We next derive the Bellman equation of hedgers. Using (4.7) to replace D̄−πt by µSt+D̄−rSt,

and (4.8) and (4.9) to replace (xt, yt) by (Xt, Yt), we find the following counterpart of (A.21):

ρ̄ = r + rF (wt)− r log(r)− αu⊤D̄ − 1

2
α2
[

X⊤
t (σSt + σ)⊤ − u⊤σ⊤

]

[(σSt + σ)Xt + uσ]

− F ′(wt)
[

rwt − ct + Y ⊤
t (µSt + D̄ − rSt)

]

− 1

2

[

F ′′(wt)− F ′(wt)
2
]

Y ⊤
t (σSt + σ)⊤(σSt + σ)Yt + αF ′(wt)u

⊤σ⊤(σSt + σ)Yt

⇔ ρ̄ = r + rF (wt)− r log(r)− αu⊤D̄ − 1

2
α2
[

bt − (σSt + σ)Yt − 2u⊤σ⊤
]

[bt − (σSt + σ)Yt]

− F ′(wt)
[

rwt − ct + Y ⊤
t (µSt + D̄ − rSt)

]

− 1

2

[

F ′′(wt)− F ′(wt)
2
]

Y ⊤
t (σSt + σ)⊤(σSt + σ)Yt + αF ′(wt)u

⊤σ⊤(σSt + σ)Yt, (C.37)

where the second step follows from (C.19) and (C.22). Using (C.23), we find

bt − (σSt + σ)Yt =
A(wt)− F ′(wt)

α+A(wt)− F ′(wt)
bt =

[A(wt)− F ′(wt)]σ(s + u)

α+A(wt)− F ′(wt)− αg′(wt)(s+ u)⊤Σs
, (C.38)

where the second step follows from (C.31). Substituting ct from (A.14), µSt+ D̄− rSt from (C.32),

Yt from (C.33), and bt − (σSt + σ)Yt from (C.38), we can write (C.37) as

ρ̄ =r + rF (wt)− r log(r)− αu⊤D̄ −
(

r − q(wt)
− 1

γ

)

F ′(wt)wt

− α2(s+ u)⊤Σ(s+ u)
{

F ′′(wt) +A(wt)
2
}

[α+A(wt)− F ′(wt)− αg′(wt)(s + u)⊤Σs]2
+

α2u⊤Σ(s+ u)A(wt)

α+A(wt)− F ′(wt)− αg′(wt)(s+ u)⊤Σs
.

(C.39)

The equilibrium is characterized by the ODEs (3.14), (C.30), (C.35) and (C.39). To show the

equivalence with a zero-supply equilibrium, we define the function

F̂ (wt) ≡ F (wt)− αg(wt)(s+ u)⊤Σs. (C.40)
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Using (C.40), we can write (C.30) and (C.35) as

α2(s + u)⊤Σ(s+ u)

2
[

α+A(wt)− F̂ ′(wt)
]2 g

′′(wt) +
(

r − q(wt)
− 1

γ

)

g′(wt)wt − rg(wt) =
αA(wt)

α+A(wt)− F̂ ′(wt)
,

(C.41)

1 =
q(wt)

− 1
γ − r

ρ− r
A(wt)wt −

zs
(

A′(wt) +A(wt)
2
)

[α+A(wt)− F̂ ′(wt)]2
, (C.42)

respectively. We next multiply (C.30) by α(s + u)⊤Σs and add it to (C.39). Using (C.40), we can

write the resulting equation as

ρ̄ = r + rF̂ (wt)− r log(r)− αu⊤D̄ −
(

r − q(wt)
− 1

γ

)

F̂ ′(wt)wt

−
α2(s+ u)⊤Σ(s+ u)

{

F̂ ′′(wt) +A(wt)
2
}

[α+A(wt)− F ′(wt)− αg′(wt)(s + u)⊤Σs]2
+

α2(s+ u)⊤Σ(s+ u)A(wt)

α+A(wt)− F ′(wt)− αg′(wt)(s+ u)⊤Σs

⇔ 1 =
rF̂ (wt)− r log(r)− αu⊤D̄ + ρ− ρ̄

ρ− r
+

q(wt)
− 1

γ − r

ρ− r
F̂ ′(wt)wt

−
zs

{

F̂ ′′(wt)−A(wt)
[

2α+A(wt)− 2F̂ ′(wt)
]}

[

α+A(wt)− F̂ ′(wt)
]2 . (C.43)

Eqs. (C.41), (C.42) and (C.43) are identical to (4.11), (3.21) and (3.22), respectively, except that

F (wt) is replaced by F̂ (wt) and u is replaced by s+u. Hence, a solution (q(wt), A(wt), F̂ (wt), g(wt))

to the system of (3.14), (C.41), (C.42) and (C.43), coincides with a solution (q(wt), A(wt), F (wt), g(wt))

to the system of (3.14), (3.21), (3.22) and (4.11) provided that we replace u by s + u in the latter

system. Since the function g(wt) is identical in the two cases, the price is the same in the positive-

supply equilibrium and in a zero-supply equilibrium in which u is replaced by s+ u. The position

Yt of arbitrageurs is also the same across the two equilibria because of (C.33) and F̂ (wt) = F (wt).

Since Yt is the same, the market-clearing equation (3.15) implies that the position Xt of hedgers in

the zero-supply equilibrium is equal to that in the positive-supply equilibrium minus s. Since posi-

tions and prices are the same across the two equilibria, the exposures of hedgers and arbitrageurs

to the Brownian shocks are also the same.

Proof of Proposition 6.2: The arguments in the proof of Proposition 6.1 that concern prices,

positions and the arbitrageurs’ Bellman equation remain valid for short-lived hedgers, provided
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that we set F (wt) = 0. Hence, S(wt) has the form in (4.10) and g(wt) solves the ODE

α2(s+ u)⊤Σ(s+ u)

2 [α+A(wt)− αg′(wt)(s+ u)⊤Σs]
2 g

′′(wt) +
(

r − q(wt)
− 1

γ

)

g′(wt)wt − rg(wt)

=
αA(wt)

α+A(wt)− αg′(wt)(s + u)⊤Σs
, (C.44)

which is obtained from (C.30) by setting F (wt) = 0. Substituting µSt from (C.26) into (4.2), and

using (4.10), (C.30), (C.31) and F (wt) = 0, we can write expected excess returns as (4.12).
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