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Introduction 

The continuing growth in the GDP share of health spending in the US has been a 

perennial issue of academic and policy concerns over the last 5 decades. As Figure 1 indicates, 

the share has risen from 5.19% in 1960 to 17.6% in 2010. Among the three spending components 

by source of financing, the fastest growth has been in Medicare and Medicaid, which increased 

more than 10-fold since 1967. Going forward, the actuaries at the Center for Medicare and 

Medicaid forecast total health spending to rise at the rate of GDP growth + 1% per annum. Such 

expansion is untenable over the long haul. We address two basic questions: a. Does an 

equilibrium upper-bound exist? b. what are the major forces that drive the expansion in health 

spending and the dynamic interaction between the latter and economic growth? 

Current literature has dealt with these issues in different ways, but has viewed them 

primarily in a static macro-economic environment or via dynamic models based on exogenously 

given trends of income growth and demographic changes. There have been much fewer attempts 

to consider the issue in a model of endogenous growth where population aging and health 

spending are endogenously determined (but see Ehrlich and Kim, 2005). The literature that links 

health spending to GDP trends via a formal model (see especially Hall and Jones [HJ], 2007), 

has not attempted to endogenize income growth and demographic changes, which are thought to 

be major factors behind the growing share of health spending in GDP (SHS in GDP). 

Furthermore, growth in per-capita income, trends in fertility and longevity, and the evolution of 

medical technology seem to be highly interdependent.  

These interdependencies can be described by a circular diagram (see Figure 2): the 

growth of health spending is influenced by the aging of the population brought about by rising 

longevity and generally falling fertility trends. The latter are part of the demographic transition 
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which has been common to all countries that have successfully attained a regime of self-

sustaining growth, powered by technological progress or innovative human capital ─ knowledge, 

education, and skill formation. And technological innovations, including medical, which lead to 

per-capita income growth, exert distinct effects on the demand for health and health spending. 

But causal effects can go in opposite direction as well: a major channel our paper tries to unlock 

is the impact of specific types of health spending on economic growth. It follows, then, that an 

endogenous growth model (EGM), which views all the preceding variables as simultaneously 

determined, may provide better insights concerning future trends in all.  

We offer a prototype model that attempts to accomplish this task using an overlapping-

generations endogenous growth model with human-knowledge capital serving as engine of 

growth. The model features three co-existing generations of representative old parents, young 

parents, and children, and three phases of life: young age, adulthood, and old age. Altruistic 

young parents make all consumption and investment decisions in their own health and their 

children’s knowledge and health. The model can thus account for reproductive choices, survival 

probabilities to adulthood and old age, consumption and health spending over the life cycle and 

across generations, and endogenous growth in per-capita income powered by persistent human 

knowledge formation and discrete technological advances as well.  

This type of human-capital based endogenous growth model (EGM) has been developed 

and applied in a number of previous works (e.g., Becker, Murphy, and Tumura, 1991, Ehrlich 

and Lui [EL], 1991, and Ehrlich and Kim [EK], 2007). The novelty of the current model is that it 

treats survival probabilities to adulthood and old age as additional endogenous variables, thus 

accounting for life expectancy and population aging as well. In the extended version of the 

model, we also allow health maintenance within any given phase of life to produce “health 
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benefits” as an independent consumption good. The implicit derived-demand for health spending 

stems, therefore, from the role of health care in promoting longevity and health maintenance, or 

what Ehrlich and Chuma (1990) called the “quantity and quality of life”.  

Both the basic and extended prototype models are limited by a number of simplifying 

assumptions. All choices are made by individuals, i.e., the model is essentially that of a 

competitive economy comprised of independent representative agents. For simplicity, we allow 

for the existence of a fully balanced, pay-as-you-go social security system of defined benefits 

that works as a kind of annuities markets to eschew the need to account for physical capital in 

our analysis. 1  There is thus no government subsidization of health care services through 

Medicare or Medicaid, nor does the model account for any moral hazard stemming from 

asymmetric information or an actuarially unfair insurance system.  

Furthermore, the model does not allow for an expanding number of overlapping 

generations and corresponding life phases as longevity keeps growing. We leave the 

development of such extensions for future work. For these reasons, the model cannot be expected 

to forecast precisely the steady-state levels of life expectancy and SHS in GDP under current 

parameters. Yet the model is sufficiently general to allow us to analyze the role of the main 

factors driving population aging and life expectancy trends, the rising SHS in the economy, as 

well as the role of health in economic growth.  

More specifically, we aim to address the following key issues: Can SHS reach a steady 

state level in a balanced-endogenous-growth equilibrium? If so, what can be said about the 

economic forces leading to this level and their dynamic evolution? And what would be the 

impact of shifts in the basic parameters dictating these paths? Also, is the growth in health 
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spending just a derivative of economic growth or does some health spending affect economic 

growth as well? If so, what policy insights follow from such mutual interdependencies?   

Part I features our basic setup. In part II we present a baseline model where health spending 

is restricted to include investments in life-protection which affect the probabilities of survival 

from young age to adulthood and from adulthood to old age i.e., the quantity of life. These 

investments are determined along with fertility and investment in knowledge capital, and thus 

population aging, consumption, and income growth. In part III we extend the model by 

recognizing health maintenance and remedial medical care as a separate, but related source of 

health spending which enhances the quality of life by providing distinct health benefits along 

with ordinary consumption. We solve the extended model and its nested baseline model 

numerically via calibrated simulations analyzed in part IV. In part V we summarize the model’s 

implications about the main forces driving the expansion of SHS, and in part VI we discuss some 

empirical evidence bearing on health and growth. We conclude by highlighting the model’s 

policy inferences and the insights it offers about the impact of investment in education and health 

on economic growth. 

 

I. The Basic Setup 

We specify a representative-agent model comprised of three overlapping generations and 

corresponding discrete phases of life: young age, adulthood, and old age. 2 Survival from one 

phase to the other is uncertain. Young parents are the only earners in the economy and make all 

life-cycle choices: rearing, educating, and protecting their children while securing their own 

adulthood and old-age needs. Parents are motivated by altruism (companionship) toward their 

children.3 
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The economic environment: The economy is fully competitive. Labor (L) is homogeneous, 

and its supply per parent is fixed by the productive time constraint per period (=1). Output of 

goods is a function of labor time and production capacity per worker, (H0 + Ht), where Ht is the 

stock of human knowledge of the current generation’s representative worker, and H0 is endowed 

physical ability defined in units of Ht. Assuming a linear goods-production technology, and 

given a zero-profits condition for firms, “full-income” per capita equals (Y/L) = w(H0 + Ht). This 

yields a time-invariant rental rate per unit of production capacity, w=1, which also assures full 

employment. 

Health v. human capital: As the source of production capacity, human capital may in 

principle include both knowledge (education, experience, skill) and health components. But 

lumping together these components would defy the objective of disentangling the specific role of 

health from that of productive knowledge. To sharpen the distinction, we ascribe the level of 

production capacity and its evolution over succeeding generations (t) to knowledge capital which 

each generation of parents produces by investing in the education of their children (ht), and 

which becomes operational as the latter reach adulthood. The continuous formation of 

knowledge capital (Ht) thus serves as the economy’s engine of per-capita income growth. By 

contrast, we view health as an asset contributing to the quantity and quality of life.  

In the baseline model health is viewed as an implicit asset which protects future survival, 

and hence the survival of knowledge capital as well. Health is thus represented by the conditional 

probabilities of survival to phase j, πj,t, as they evolve over discrete phases of the life-cycle (j) 

and across overlapping generations (t).  The magnitudes of these probabilities, and hence life 

expectancy, in turn, are affected by parental investments in their children’s as well as their own 

life protection (Ijt) which range from proper diet and exercise to spending on preventive and life-
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saving health services and related medical research. In our extended model, however, we treat 

health also as an asset conferring consumption benefits that are derived via spending on health 

maintenance and remedial medical care (Mjt), conditional on survival.4   

The engine of growth: The representative agent’s education or knowledge capital at 

adulthood powers productivity and per-capita income growth across generations of adults. The 

production function requires, however, direct interaction between parents and children: 

(1)  Ht+1=A(H0 + Ht) ht,   

where Ht and Ht+1 measure the human capital attainments of parents and children; ht denotes 

investment in education as a fraction of production capacity allocated by the parent toward 

building knowledge in the child, and A is a knowledge-transfer technological parameter. Note 

that by this specification, all investments in human capital are restricted to be made by parents at 

the offspring’s young age. By equation (1) a necessary condition for the existence of a steady 

state of growth in human capital, and thus in per-capita income is that Ah > 1. 

Survival from young age to adulthood and from adulthood to old age: Survival is 

uncertain. It is determined by corresponding conditional probabilities: π1 is the probability of 

survival of children to adulthood given birth (the probability of which is taken to be 1), and π2 is 

the conditional probability of parents’ survival to old age, given survival to adulthood. Young 

parents affect these probabilities through health investments in life protection, I1 and I2. The 

endogenous choice variables for young parents thus include: investments in the quantity (n) and 

well-being of children, (vnt); children’s knowledge capital (ntht) and survival to adulthood (ntI1t); 

as well as their own survival to old age (I2t) and well-being through “savings” θ ─ all stated as 

fractions of production capacity.  
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II. The Baseline Model  

In the baseline model the choice variables are investment in the quantity, knowledge capital and 

life protection of children, as well as their own life protection and consumption. Accordingly, the 

outcome variables are specified as follows: 

Consumption per parent at young adulthood: This variable is constrained by the parent’s 

full income at the productive phase of life, net of education and health investments and savings:  

(2)  C1,t    = (H0 + Ht)(1- νnt - ht nt - I1t nt - I2t - θ ).  

Old age consumption: is similarly constrained by the parent’s accumulated savings at the 

old-age, retirement phase. We model the latter in the form of defined-benefits PAYG social 

security system financed by premiums levied on young adults, and is balanced at all periods. 

This “forced savings” avoids the need to introduce savings as a distinct choice variable, although 

we could also allow for voluntary savings via a national annuities market with a given rate of 

interest. Old age income is thus provided by defined benefits per surviving old adult: St+1. Since 

the system is balanced, the expected defined benefits must equal expected premiums, levied via a 

tax, θ, on the young worker’s income:  π2,t St+1 = π1,t nt θ(H0 + Ht+1). Thus, in equilibrium, 

(3)  C2,t+1 ≡ St+1 = (π1,t/ π2,t)nt θ(H0 + Ht+1),   

and young parents take the defined benefits value St+1 as given. 

The altruism function:  Parents obtain altruistic or “companionship” benefits they derive 

vicariously from the quantity and productive capacities they helped generate in their surviving 

children via their investments in them.5 Companionship benefits are thus given by: 

(4) C3,t+1 = B (π1,t nt)β(H0 + Ht+1),  

where β >1 is needed to get interior solutions in the quantity and quality of children, nt and Ht+1.  
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The expected life-time utility function: We specify the utility operator associated with 

each “consumption” component as an iso-elastic, or constant relative risk aversion function and 

assume that all consumption components are strongly-additive. Expected utility is then given by: 

(5) EUt (H0 + Ht) =[1/(1-σ)][C 1,t
1-σ-1]+δπ2,t {[1/(1-σ)][C2,t+1

1-σ-1] + [1/(1-σ)][C3,t+1
1-σ-1]}, 

with π1, and π2 denoting the probabilities of survival to adulthood and old age. In the baseline 

model we focus on health spending exclusively as a means of influencing these probabilities.  

1. The Life-Protection Production Functions.  

We specify the phase-specific (j) life-protection functions controlling children’s (t+1) 

and own (t) generations’ survival probabilities as hyperbolic and concave production functions: 6  

(6) πj (Ij , Ht) = ΓjH (Ht)  – Dj
j

jj Ik 
 )( , where   

(6a) ΓjH (Ht) = ΓjH
U (1 - j

tj H





0 ),   

 (6b) kj =
j

jjLtjH DH /1]/))([( 
 , 

with ΓjH (Ht = ∞) = ΓjH
U, πj (Ij = 0) = ΓjL , and πj (Ij = ∞, Ht) = ΓjH (Ht). This specification is designed 

to capture the role of the main inputs governing the production of health as life protection, along 

with the necessary constraints that need to be imposed on health outcomes measured as survival 

probabilities. The direct inputs are the shares of full income, I1 and I2, the representative parent’s 

generation spends to protect their child’s and their own survival to the next phase of life which 

include personal, medical and scholarly inputs such as exercise, diet, medical check-ups, related 

medical products and services, and health-related research and development. In equation (6) 

these inputs raise the survival probabilities by lowering the degree to which the initial levels of 

these probabilities can potentially deteriorate, or “depreciate” over the next phase of life, 

Dj
j

jj Ik 
 )( .  
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Consistent with the empirical literature on health production, equation (6) also recognizes, 

however, the role of general education as an indirect input which enhances the initial level of 

survival probability at which a person enters into a new phase of life, and thereby both the 

average and the marginal productivity of any direct inputs expanded on life-protection. 7 Both 

inputs are subject to diminishing marginal productivity within a given period, or phase of life. In 

equation (6), η0j >0 , ηj > 0, and εj > 0 assure the concavity of both of its components. 

Furthermore, the production function must also constrain the output of these inputs 

πj (Ij , Ht) not to exceed or fall short of upper and lower bounds. In equation (6a) this requires that 

even the highest levels of individual general education (predetermined by parents) cannot raise 

survival probabilities above some upper bound ΓjH
U <1 or fall below a lower bound fj ΓjH

U > 0 at 

any given level of Ij, both reflecting the state of the arts in health sciences. An example of shifts 

in ΓjH
U is breakthroughs in the treatment of Leukemia in children and adolescents which have 

raised survival rates from 3% in 1964 to 92% in 2003-2009 (see LLS facts 2013). Stated 

formally, for given Ij, ΓjH (Ht = ∞) = ΓjH
U and  ΓjH [Ht = H(0)] = fj ΓjH

U, where fj denotes the 

fraction of ΓjH
U that is attainable at the lowest level of one’s predetermined knowledge. The 

magnitude of fj , in turn, is reflected in the value of the coefficient η0 in equation (6a), which must 

equal by definition to η0 = [1- fj ]/[ 1)0( H ]. By the same token, life protection inputs cannot 

produce survival probabilities exceeding an upper bound or fall short of a lower bound. Stated 

formally, πj (Ij =0|Ht) = πjL > 0; πj (Ij → ∞|Ht) = ΓjH (Ht) ≤ 1, and πjL < ΓjH
U.  

Life expectancy and the GDP-share of health spending SHS: Before moving to 

optimization analysis we define two concepts which play a crucial role in our simulation analysis 

as well.  In our overlapping generation model period life expectancy (LE) is defined as 

(6c)  LEt = T + π1,t T + π1,t π2,t T = (1+ π1,t + π1,t π,2t)T,   
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where T is the length of each phase of life 8.  The full-income share of health expenditure, or 

SHS (Ω), in turn, is defined as Ωt = nt I1t + I2t.   

2. Optimization Analysis 

Parents maximize their lifetime utility in equation (5) with respect to our 4 control 

variables: nt, ht, and Ijt (j=1,2), subject to equations (1)-(6). The first-order conditions for interior 

solutions equalize the marginal rates of substitution between future and present consumption and 

the discounted gross return on investments in children as follows: 

(7)   (C2,t+1 / C1,t )σ  =  δ *
nR ,  where 

 Rn* ≡ Bπ1
βπ2β(nt) β-1(H0 + Ht+1)(C2,t+1 /C3,t+1)σ / [(H0 + Ht) (v+h+I1,t)] 

(8)   (C2,t+1 / C1,t )σ  =  δ *
hR ,   where 

 Rh* = A π1
 β π2B(nt) β-1(C2,t+1 /C3,t+1)σ

.   

(9)   (C2,t+1 / C1,t )σ  =  δ *
,1 tIR ,  where 

tIR ,1
* = '1 π1

β-1π2Bβnt
β-1[(H0 + Ht+1)/ (H0 + Ht)][(C2,t+1/ C3,t+1)]σ. 

 (10)   (C2,t+1 / C1,t )σ  =  δ tIR ,2
*   where 

tIR ,2
* = '2 [Ut+1(2)] / [C2, t+1

-σ (H0 + Ht)],  and      

Ut+1(2) ≡ {[1/(1-σ)][C 2,t+1
1-σ-1]+ [1/(1-σ)][C3,t+1

1-σ-1]}. 

In equilibrium, *
nR  = *

hR . This produces a closed-form solution for ht* - one of our key 

results: 

(8a)   ht
* = [(v+ I1,t)/ (β-1)] – [βH0/A(β-1)(H0 + Ht)]. 

Similarly, in equilibrium *
,1 tIR = Rh*. We can thus solve for the optimal value of I1,t from 

(9a)   [1/ π1
’ (I1,t

*) ] = [β(H0 + Ht+1)] / [Aπ1 (H0 + Ht)] = (β/Aπ1){Aht
 + [H0/( H0 + Ht)]} 

where π1
’ =ε1D1

)1(
11

1)( 


Ik  from equation (6). 
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Proposition 1: Optimal investment in the probability of survival from young age to 

adulthood (I1,t
*) will directly increase the steady-state rate of investment in human capital ht

*, 

thus the corresponding per capita income growth rate, and vice versa.  

By (8a) the steady-state income growth rate Ah* = (1+g*) = A[(v+ I1*)/ (β-1)], while 

being independent of  any other endogenous variables, is monotonically related to the rate of 

investment in children’s survival to adulthood. Similarly, equation (9a) implies that the steady 

state level of investment in children’s life protection [π1
*/ π1

’ (I1,t
*)] = βh*  is monotonically 

related just to investment in knowledge as an endogenous variable. These optimality conditions 

expose two basic principles linking the two components of human capital as a productive asset: 

the greater the investment in survival to adulthood (v+h) – the period in which returns to 

productive knowledge (education) accrue – the greater is the incentive to invest in that 

knowledge. By the same token, the larger the investment in productive knowledge, the greater is 

the incentive to protect the resulting asset’s viability (health).   

Proposition 2: Investment in health that raises the parent’s probability of survival from 

adulthood to old age (I2,t) is not expected to have any growth effects. Its optimal value is 

motivated by the wealth-driven “private value of life saving”, as assessed by the parent.  

Stated in terms of the shadow price of life protection of oneself, equation (10) becomes: 

(10a) 1/ '2  = δ[Ut+1(2)] / [C1, t
-σ (H0 + Ht) ],  

where '2 =ε2D2
)1(

22
2)( 


Ik from equation (6). Equations (9a) and (10a) require that the 

marginal costs of investing in the life protection of child and self would be equal to their 

marginal returns. Multiplying (9a) and (10a) by production capacity or full income, (H0 + Ht), 

the LHS becomes the marginal cost of the last dollar spent on self-protection and the RHS 

denotes the “shadow price of life protection”. The RHS of equation (10a) would then also 
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represent the standard definition of the “private value of own life saving” as perceived by the 

parent at adulthood: the numerator denotes the discounted utility from living to old age, while the 

denominator denotes the marginal utility of income for the young parent.9  

  3. Equilibrium Solutions 

The optimality conditions in equations (7)-(10) represent a system of second-order simultaneous 

difference equations, so no analytical solutions can be obtained. The dynamic system we solve 

for via numerical analysis has been partly derived in previous studies (EL 1991 and EK 2007) so 

we shall here point out just its basic properties. In earlier studies the focus was on the existence 

of two stable steady states solutions: a “stagnant equilibrium”, in which human capital and 

income per agent remain constant, and a “growth equilibrium” in which both rise without limit. 

Takeoff from stagnation to growth equilibrium must raise the share of productive capital parents 

invest in educating their children above the critical level Ah* >1 in equation (2). But trigger 

parameters, which by our model may include upward shifts in the technology of life and health 

protection as well as learning, can also shift the economy from one growth-equilibrium to 

another by raising the steady-state level of investment in knowledge capital, h* (see section III). 

The sufficient conditions that assure the existence and stability of such steady states – 

stagnant or growth equilibrium – include the concavity of the utility and life-protection 

production functions, as well as the parametric restrictions that allow for interior solutions for the 

system’s control variables, Ijt, nt and ht: β(1 – σ) < 1, β > 1, 1/2 ≤ σ < 1, and ηj, εj> 0. 

4. Illustrating the Solution of the Baseline Model through Numerical Analysis  

To illustrate the equilibrium properties of the baseline model, we need to solve it 

numerically. The parameters we use in this illustration are adopted, however, from the calibrated 

simulations of the extended model in which the baseline model is nested. This has the advantage 
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of linking the analytically simplified baseline model with the extended model in which health 

spending serves also as a means of producing health maintenance or “remedial care” to smooth 

out fluctuation in health status due to incidents of morbidity within a given phase of life. This 

way, the dynamic solutions of the two models become comparable within a unified system.10  

General solution - there is a Steady State: The dynamic solutions for the variables 

governing optimal investment in the health and life protection of children, I1, as well as 

children’s education, h, and  thus the rate of knowledge-capital formation and per-capita income 

growth, (1+g), are the same for the baseline and the extended model, as indicated by proposition 

1. We therefore plot them in Figure 3. In Figure 4 we also present the dynamic solutions for 

other key endogenous variables in the baseline model along with their counterparts in the 

extended model, notably the rate of fertility, population aging, and the share of health spending 

in full income, SHS.  As these figures indicate, the dynamic system emerging from our calibrated 

simulations in the following section, which are targeted to link with observed empirical data on 

key control variables, suggests that the US is in a growth equilibrium regime. This contains the 

response to the first question we set out to explore: there is, in principle, a balanced and stable 

steady state solution for our model in which the “control variables” of the model - the shares of 

the representative agent’s productive capacity that are devoted to bear, educate, and protect the 

lives of children and adults - reach a constant level asymptotically while the “state variables” 

representing human capital formation, income, and consumption (including “altruistic 

consumption”) grow without bound. The shadow prices of life-protection and population aging 

also reach a constant level asymptotically.  

In particular, as both Figure 3-1.D and 4.C indicate, our key variable of interest, the share 

of production capacity devoted to life-protection, does have an upper bound. The simulation 
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produces an equilibrium solution for this share, which stands for the full-income share of health 

spending. In the baseline model, the steady-state value of this variable, Ω(t) = nt I1,t + I2,t, is 

estimated to be 18.28% of production capacity (but see section III). The linkage with GDP, 

however, is a matter of interpretation: if we interpret the share of time spent by the representative 

agent on life-protection as “protective health care services”, reflected by doctors and researchers, 

then the solution for Ω would mimic the share of SHS in “market income”, or GDP. If preventive 

health care inputs include individual time spent outside the labor market, then Ω would include 

opportunity costs of leisure time, which is not captured in GDP, but then Ω would be a share of 

“full income”, rather than GDP.  

What brings about the steady state solution? The “secret” lies in the dynamic behavior of 

the shadow price of investment in life protection I1 and I2 relative to consumption. This can be 

seen from equations (9a) and (10a). The equilibrium rates of investment in life protection for 

children and adults are set in any given period when the shadow price of life protection, or the 

parent’s assessment of the value of life saving, measured in real terms (VLS*), is equalized with 

that of health investment, MCπj. As (9a) and (10a) indicate, optimal VLS* is rising over time by 

the force of increasing lifetime income, or wealth, due to persistent human capital formation. The 

latter, in turn, raises the derived demand for life-protection I1, I2, and thus the share of health 

spending in full income Ω(t) = nt I1t + I2,t , despite the drop in fertility (n) in the early part of the 

transition to a steady state. But diminishing returns to life protection, which raise its shadow 

price relative to consumption, slows down the rise in life protection spending Ω(t) and eventually 

brings it to a halt.  

This can be seen clearly if we first ignore the role of general education as an efficiency 

parameter in equation (6). But even if we allow for the role of the latter as capturing continuous 
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improvements in medical knowledge, it has a limited force in equation (6), since (1- j
tj H





0 ) 

has a limit of 1 when Ht approaches an infinite value. The accumulation of knowledge capital 

mainly extends the period over which optimal VLSj* keeps rising. It is ultimately the tension 

between the ever rising VLS* and the diminishing returns to investment in life protection which 

brings about a predictable steady-state share of income that is spent on life and health protection.  

Equation (6) still allows, however, for the possibility that life expectancy continue to rise 

without limit. This could occur as a result of exogenous breakthroughs in life-saving technology, 

which are captured by the coefficients ΓjH
U and Dj in equation (6).  Since they occur discretely, 

such shocks are not subject to diminishing returns, although their impact may wear off over time. 

 

III. The Extended Model 

The baseline model treats spending on health and life protection as being motivated strictly 

by demand for quantity of life, i.e., survival to the next phase of life. Such spending is 

prospective – an investment in future health. But some health spending can also affect well-being 

contemporaneously by smoothing out the effects of morbidity on healthy time via health 

maintenance and remedial care spending within a given phase of life. 11 Morbidity in a given 

phase, however, is generally inversely related to the conditional probability of survival to that 

phase. In the extended model we therefore model healthy time as a function of both effective 

health maintenance at phase j and the probability of survival to that phase, and treat the health 

benefits obtained from healthy time as a good complementary to ordinary consumption. 12
  By 

the structure of the model, such remedial care thus becomes the dominant component of health 

spending at old age, where there is no allowance for investment in survival to a future phase. 

This makes it important to incorporate remedial care, Mj, into our extended prototype model.  
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1. Adding Health as Consumption and Health Spending as Remedial Medical Care 

Formally, we distinguish the flow of health benefits HBj consumed by a representative parent 

in phase j from ordinary consumption, here named Xj. HBj is assumed to be derived from the 

amount of healthy time within phase j, HTj, which can be lost due to incidences of morbidity, but 

which can be regained through health maintenance and remedial medical care at adulthood and 

old age, Mj.13 The frequency of morbidity can be linked to the predetermined probability of 

survival to j, πj. The full linkage between HBj (Mj, πj) and its determinants is spelled out below.  

To account for the degree of complementarity between the pair of goods HBj and Xj, the 

utility of consumption of generation t at phase j=1,2 is specified as a CES function: 

 (11) U(HBj,t , Xj,t) = [1/(1-σ)] [N (HBj,t
 ρ +Xj,t

ρ)(1-σ)/ρ-1]  

where ρ dictates the extent to which HB and X are substitutes or complements (ρ = 1 or -∞  imply 

they are perfect substitutes or complements, respectively), and N is a normalization factor.14 

While Xj is purchasable at a market price (normalized at 1), however, the flow of health benefits 

HB (Mj, πj) must be derived from a production process and related transformations. First, HTj,t 

must be converted to nominal health benefits via: 

(11a) HBj,t ≡ cj
eHTj,t ,  

where cj
e is the unit value of HTj in nominal terms.15 Second, the prospect of morbidity losses (L) 

can be mitigated through remedial care and effective health maintenance by the representative 

agents of generation t at adulthood (j=1) and of generation t-1 at old age (j=2), which are 

enhanced by the general level of education at time t, Ht.16 The production function of healthy 

time can thus be stated symmetrically to that in equation (6) as follows:  

(12)   jm
jtjmjmtHjtjt mkDHHTHmHT 




 )()(),,(  > 0, where 

(12a) )1()( 0
m

tm
U

HtH HHTHHT 



  > 0 
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(12b) )()(),,0( jtHjtjt LHHTHmHT   ,  

(12c) 0)/( /1


 jm
jmjjm DLk  ,   

and mjt ≡ Mj/TCj  denotes the share of total consumption outlays (TCj) devoted to remedial 

medical spending, Mj. 

The idea behind equation (12) is that the representative agent in generation t enters a 

given phase of life, j, with a level of morbidity-free healthy time which varies as a function of the 

agent’s knowledge capital and spending on remedial care. As a function of knowledge capital 

(Ht), equation (12a) indicates that HTH cannot exceed an upper limit HTH
U (as Ht →∞), or fall 

below a lower limit HTH (Ht = H0) = fm HTH
U, with H0 > 0 denoting an initial Ht level, and fm is a 

positive fraction of HTH
U, which determines the value of the coefficient η0m in equation (12a). 

The prospect of morbidity, however, can inflict a loss of healthy time, which we link below with 

the agent’s probability of survival to phase j. In the absence of any remedial care (m=0), the 

maximal potential loss of healthy time, is thus given by L(πj) in equation (12b). The loss can be 

limited, however, by remedial care spending as indicated by equation (12), subject to the 

following upper and lower bounds: HT(mjt=∞|Ht) = HT(Ht), and HT(mjt =0|Ht) = HT(Ht) – L(πj) = 

HT(Ht) – jm
jmkD )( . The latter equality constrains the level of kjm as stated in equation (12c).  

But the link between the maximum potential time loss to morbidity L(πj) and survival 

risks needs to be further spelled out. In a given phase of life, Lj depends on both the probability 

of morbidity, πmj , and its severity, or frequency. It is plausible to expect a strong link between 

πmj, and the predetermined probability of survival to phase j, πj. While a higher πj implies that a 

surviving agent enters phase j healthier, thus with a lower risk of morbidity, however, the 

frequency of morbidity would be higher for those entering phase j less healthy – partly because 



20 
 

they are older on average over time – and thus with a higher risk of non-survival, (1-πj). The 

latter is especially potent at old age. 17 We account for these opposing effects as follows: 

(12d) jj
jjjjj LL 

 )1()( 0  .  

Equations (11a-12d) thus link HBj (Mj, πj) with its direct (Mj) and predetermined (πj) 

determinants. Also, the “budget constraint” limiting parental total spending on the inputs 

producing the consumption goods HBj,t and Xj,t can now be stated as  

(13) Mj,t + Xj,t = TC0
j,t , 

for any level of non-consumption spending given by the RHS of equations (2) and (3). 

2. Optimization analysis in the Extended Model 

The young parent’s optimization problem can be described heuristically as a two-stage 

process. In the second stage, we maximize the utility function (11) with respect to the 

consumption inputs Mj and Xj , subject to the budget constraint (13), and given values of πj. The 

solution produces the following indirect utility function for generation t: 

(11b) V(TCj) ≡ U(HBj (Mj*), Xj*) = [1/(1-σ)] [N(HBj* ρ +X*j 
ρ)(1-σ)/ρ-1]. 

Omitting subscripts, note that by equation (11b) the marginal utilities a representative 

parent derives from remedial care and ordinary consumption spending must be equal, or  

∂U/∂M = (∂U/∂HB)(∂HB/∂X)=∂U/∂X. This condition allows us to solve for the optimal ratio of 

health benefit to ordinary consumption in producing any utility level:   

(14) ∂HB/∂M = (HB*/X*)1-ρ.  

The value of M* can then be extricated from equation (14) using equations (11a-12d) as 

follows:  

(14a) TCkDcTCXHBM mmm
e m })]/1)(/(*)/*{[(* )1/(11 

   , where X* =T C - M* by (13).  
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In the first stage maximization process we can now insert the indirect utility function 

V(TC)=U(HB*, X*) into the life-time utility function in equation (5) and proceed with  

maximizing the latter with respect to the control variables n, h, I1 and I2 as in the baseline model: 

(5a) EU’t (H0 + Ht) = V(TC* 1,t) + δπ2{V(TC*2,t+1)+ [1/(1-σ)][C3,t+1
1-σ-1]}.  

The optimality conditions become:  

(15)   MU(TC1,t )/MU(TC2,t+1)  =  δ Rn*; where MU ≡ TCTCV  /)(  

Rn* ≡ Bπ1π2β(nt) β-1(H0 + Ht)/{MU(TC2,t+1 )C3,t+1
σ * [(H0 + Ht)(v+h+I1,t)]} 

(16)  MU(TC1,t )/MU(TC2,t+1) =  δ Rh*; 

Rh* = A π1
 β π2B(nt) β-1

 /[MU(TC2,t+1 )(C3,t+1)σ] 

(17)  MU(TC1,t )/MU(TC2,t+1) =  δ R*I1; 

tIR ,1
* = π1

β-1π2Bβnt
β-1[(H0 + Ht+1)/ (H0 + Ht)] [MU(TC2,t+1 )(C3,t+1)σ] 

(18)  MU(TC1,t )/MU(TC2,t+1) =  δ R*I2; 

tIR ,2
*  = [Ut+1(2)] / [MU(TC2,t+1 )(H0 + Ht)];   

where Ut+1(2) ≡ {V(TC 2,t+1)+ [1/(1-σ)][C3,t+1
1-σ-1]}. 

It is straightforward to see that by combining equations (15) and (16) we obtain the same 

solutions given by equations (8a) and (9a). This implies that the optimal investments in 

knowledge capital (h) and children’s life protection (I1), hence Proposition 1, are unaffected by 

remedial care. Not only do the steady state values of h and I1 stay the same, but also their 

transitional paths remain identical in the baseline and extended models. Hence: 

Proposition 3: Health maintenance and remedial medical care at adulthood and old age 

can raise the quality of life by generating direct health benefits and possible indirect increases in 

life protection.  They have no impact on economic growth, essentially because they do not affect 
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the incentive to invest in children’s knowledge capital, which, by our prototype model, drives 

human capital formation and growth.  

Note, however, that remedial care spending on children, which is subsumed under spending on 

the latter’s well-being and life protection (vnt + I1t nt), does contribute to growth by proposition 1. 

3. Simulation Methodology  

The numerical methodology we use to solve our extended model and its nested baseline 

portion must account for the dynamic evolution of SHS in GDP and all its simultaneously 

determined variables. These include the components of health care spending associated with life 

protection and remedial care over different phases of the life cycle, as well as human capital 

formation, per-capita income growth, and the population dynamics resulting from the evolution 

of fertility and survival probabilities and hence life expectancy and the aging of the population 

across generations at adulthood. To account for the combined tasks, the numerical analysis 

involves the computation of optimal solutions for all key control and state variables, based on the 

optimality conditions governing the choices of the representative parent in a given generation 

(equations 15-18), and then passing the relevant solution values on to the overlapping generation 

to derive the next representative parent’s solutions for the corresponding control and state 

variables that are conditional on those of the previous generation.  

In the extended model, unlike the baseline model, the solution to the system involves a two-

step optimization process to account for optimal values of remedial care inputs (M) and ordinary 

consumption (X), given the budget constraint on total consumption spending as set by the 

optimal values of all other control variables entering equations (2) and (3). The full-income share 

of health spending (SHS) now includes the remedial care component as well. Note that since the 

choice of remedial care at old age is actually done by the previous (grandparents’) generation, 
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the relevant remedial care decision variables are M1,t and M2,t-1. SHS thus becomes:                   

(19) Ωt = nt I1t + I2t + M1t /(Ht+H0)+ m2,t-1θ. 18
  

A. Calibration  

We calibrate the model’s parameters using US data and consensus estimates. Based on 

Gruber (2006), we set the inter-temporal elasticity of substitution at 2 (or the coefficient of risk 

aversion at σ = 0.5). Consistent with many studies, we take the time preference parameter to be 

1.5%, thus setting our discount factor at δ = (1/1.015)30. The unit cost of raising children, ν, is 

calculated from Table 5 in Juster and Stafford (1991).  The table reports the average fraction of 

time allocated to childcare to be 6.29%.  Since average total fertility rate was 2.1 in the period 

1970-1980, ν is estimated to be 3.0% (=6.29/2.1) of full income (c.f. EK 2007). To approximate 

the lower bounds of survival probabilities ΓjL, we have searched for the earliest historical data 

reported for the US. The values we selected – 0.67 for Γ1L and 0.37 for Γ2L – are taken from the 

historical life tables for the US in 1850 (Haines, 1998).   

The remaining parameters of the model, A, β, B, θ, Dj, εj, ηj, ΓjH
U, fj, ρ, N, cj

e, L0j, γj, φj, HTH
U, 

ηm, Dmj, εmj, and fm are then calibrated subject to the optimality conditions for interior solutions, 

and by requiring that the solutions meet four targets, the first three in the steady state: 1)  growth 

rate of real per-capita income of 1.846%; 2) total fertility rate (TFR) of 2.03; 3) a smoothed 

consumption level for parents over the life-cycle; but 4) the income-share of health spending 

(SHS) is targeted to be 17.9% in generation 2 of our numerical simulations.   

The first target is designed to match the real average per-capita GDP growth rate in the US 

from 1970 to 2008, based on Madison (2003) and BEA. Since TFR has exhibited a generally 

declining secular trend, we have targeted it to match the average TFR over the period 1991-2010, 

based on National Vital Statistics Reports.  Our third target is compatible with data from the 
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2010 Consumer Expenditure Survey showing that average consumption of a consumer unit 

headed by a person in the age groups 35-64 and 65 and older is roughly the same. The fourth 

target is aimed to match the current SHS in GDP as reported by the Statistical Abstract of the 

United States (2011). 19   

 

IV. Simulation Results of the Extended Model 

1. Basic results 

The extended model’s simulation results confirm the principal results derived from the baseline 

model: an equilibrium steady state exists and is dynamically stable by virtue of the forces 

controlling the production of both life protection and its maintenance. They also indicate that 

health maintenance and remedial care, Mj, account for a significant part of total health spending 

despite the fact that we restrict them in this analysis to contribute pure consumption benefits. 

2.   Transitional Paths  

As seen by the shape of the dynamic paths of the model’s key control and state variables 

in Figure 3, our calibrated simulations are successful in producing realistic dynamic paths, or 

secular trends, of health spending and population aging, along with per-capita income growth. 

Despite the technical limitations of the model, the calibrated simulations produce numerical 

solutions for some of the steady state control variables of the model that are of reasonable, 

although generally understated, orders of magnitude, including fertility, aging, survival 

probabilities and even life expectancy and SHS, as indicated in Table 1 (see also section V)20 

The paths indicate that the US has been on a transitional evolution path from some past 

steady states to a new steady state of growth. The model’s limitations do not enable us to 

pinpoint where the transitional shocks have occurred – these may have taken place in the 1940s 
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as a result of medical breakthroughs (a la Acemoglu and Johnson [AJ], 2007, or Hansen, 2013) 

or in the 1960s via major institutional changes in health financing, or even in the 1970s as a 

result of improvements in information technology, and they may also reflect residual influences 

of earlier take-off parameters. The transition paths in Figure 3 do mimic, however, the observed 

historical trends in key endogenous variables, especially in recent decades.  

Indeed, while all the key control and state variables including investments in survival 

probabilities I1 and I2, and the overall spending on remedial care, hence SHS, rise monotonically 

toward their steady state values, fertility (n) shows a declining trend. Also, while remedial care at 

old age (m2) exhibits an increasing trend, essentially due to rising personal wealth and the greater 

need to maintain good health as longevity rises, remedial care at young adulthood (m1), which is 

much smaller quantitatively by our numerical analysis, falls slightly over time. Furthermore, the 

speeds at which some variables converge on their steady-state levels are quite different. While 

fertility, survival from young age to adulthood, π1, and investment in human capital, h (and thus 

the growth rate of per-capita income) already tend to approach their steady state levels, this is not 

the case for population aging and life expectancy, and especially for SHS and the survival 

probability to old age, π2, where the dynamic paths are progressing more slowly toward their 

asymptotic values.   

This pattern generally applies to the baseline model as well: while investment in 

knowledge capital and life protection, h and I1, and thus the probability of survival to adulthood, 

π1, and the income growth rate, remain unchanged, confirming proposition 3.  However, other 

control and state variables show changes of varying degrees (see Figure 4). Compared with the 

baseline model, however, the allowance for remedial care increases markedly the share of health 

spending in full income (Ω=SHS) or GDP, and population aging, caused mainly by a reduction 
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in fertility (n), but a much more modest increase in life expectancy due to just a minor rise in life 

protection at, and survival to, old age (I2
* and π2*). The latter is not a surprising result, since 

remedial care by definition does not affect survival probability.  

Since we calibrate the extended model to match the estimated SHS of generation 2 with its 

current level in the US of 17.9% of GDP, Fig. 3-1.D can be used to project that the steady-state 

level of SHS in the stylized economy of the extended model may reach about 21.5% of full 

income. This figure is higher than the one implied by the baseline model, as indicated by the 

dashed path in Fig. 4C- about 18%. Fig. 3-1.D also allows us to illustrate the hypothetical 

number of generations it might take the stylized economy of our extended model to reach its 

steady-state level. Since a literal steady state is achievable only as time goes to infinity, we use 2 

measures to determine how long it would take the economy to reach an approximate steady state 

SHS level. Fig 4C indicates that it would take 4 generations for the economy to reach 95% of its 

steady state level. Alternatively, it would also take 4 generations to reach an SHS level at which 

its rate of change going forward is less than 1%. The corresponding projections based on 

baseline economy indicate that it would take the economy even longer - 5 generations - to reach 

a steady state level, starting with the current generation. The implication is that remedial care 

raises the equilibrium SHS level but lowers the period of transition it may take to reach it, 

essentially because of the added restraining force of a rising shadow price of remedial care.21  

3.   Comparative dynamics  

Table 1 presents the qualitative results of the effects of shifts in the calibrated parameters 

of our model. The comparative dynamic effects are not entirely predictable, as they are affected 

by feedback and general equilibrium effects as well. We therefore attempt to rationalize the 

estimated effects in Table 1 on the basis of the direct effects that are exerted by the primary 
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economic forces at work: wealth (expected utility) and growth effects, implicit productivity and 

shadow-price effects, and changes in preferences.   

a. Shifts in production parameters generating positive wealth effects, and positive or zero 

growth effects: These include upward shifts in the productivity of knowledge transfer (A), such 

as the PC revolution; advances in the life protection of kids (Γ1H
U), such as breakthroughs in the 

treatment of childhood leukemia and lymphoma that lead to significant increases in the 

children’s survival rates; or increases in the effectiveness of general knowledge capital as an 

efficiency parameter in life protection (η1). These technological advances increase the optimal 

investments in children’s education and health (h and I1) and lift up the transition paths of 

children’s survival probability and the steady-state rate of economic growth. The positive wealth 

effect also raises the demand for survival to old age and for quality of life (HBj and Xj), and 

hence for spending on survival to, and remedial care for, old age (I2 and m2), which lead to 

increases in both life expectancy and the GDP share of health spending (Ω). Since fertility (n*) - 

a parental good - also rises, population aging falls as a result.22  

Upward shifts in the efficiency of general knowledge capital which enhance old-age 

survival, Γ2H
U and η2, in contrast, generate positive wealth effects but no growth effects by 

proposition 2. Their effects are generally similar to those of Γ1H
U and η1 except that 

improvements in the quantity of life are offset by reductions in quality of life (HBj and Xj). 

b. Shifts in production parameters generating negative wealth effects but positive growth 

effects: These apply to upward shocks in the unit cost of bearing and caring for children. Such 

shocks raise the marginal cost of the quantity of children relative to investments in their 

education and life protection. In this case, while h*, I1*, g* and life expectancy (LE) likewise 
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increase, fertility (n*) declines, which raises population aging (PA). The decline in wealth also 

lowers investment in, and survival to, old age (I2, and π2*), and thus SHS (Ω*) as well.  

c. Shifts in production parameters generating positive wealth effects, but negative 

productivity and growth effects:  These include the parameters controlling the life-protection of 

children to adulthood (equation 6). Improvements in life-protective devises that limit the 

potential deterioration in survival risks, represented by a decline in D1 and ε1, raise π1 at any level 

of investment in life protection (I1) but at the same time they reduce the marginal productivity of 

additional investments in life protection. In equilibrium, the net effect would be a rise in π1* and 

π2*, and hence in life expectancy, LE, but a reduction in I1* and I2* if the “price” elasticity of the 

derived-demand for life protection is less than 1. SHS therefore declines. Optimal investment in 

education, h*, (hence the growth rate, g*) and total spending on consumption and remedial care 

at adulthood also fall in this case. But the positive wealth effect generated by a higher π1* raises 

fertility (n*) along with life expectancy. Population aging thus falls.  

d. Shifts in production parameters generating positive wealth but negative productivity 

and zero growth effects: A similar analysis to that in item 3 applies when we allow for a 

downward shift in the parameters D2, and (generally) ε2 controlling the life-protection production 

function (6) at adulthood. Here we generally get an increase in π2, life expectancy, and fertility, 

but zero effects on knowledge formation and economic growth and a decline in total 

consumption spending because of competition between quantity and quality of life.  

e. Shifts in parameters governing remedial care production: These include the parameters 

Dmj, εmj, HTH
U and ηm, in equation (12). The effects of shifts in these parameters at the phase of 

adulthood (j=1) are similar to those of D0j, εj, and ηj in equation (6): a reduction in Dm1 and εm1, 

and an increase in HTH
U and ηm (reinforcing the role of H as efficiency parameter) increase 
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healthy time, but decrease the marginal productivity of remedial care inputs, m1, as healthy time 

gets closer to its upper limit. While the resulting wealth effect on HB1 is positive, the shadow 

“price” effect can dominate it because of the higher marginal costs of the more expensive 

medical treatment. The net effects, as estimated in Table 1, are higher health benefits and 

ordinary consumption at adulthood, HB1*, and X1*, generally offset by lower such benefits at old 

age, and lower investment in life protection at adulthood I2* (hence π2*) and remedial (m1* and 

m2*). Life expectancy, SHS*, and fertility also fall in this case.  

Symmetrically, technological improvements in remedial care production at old age, Dm2, 

or εm2, generate a tradeoff between HB* and X* at old age and their counterparts at adulthood. 

But the effects of these shocks deviate from those of their parametric counterparts at adulthood 

(Dm1, or εm1) by actually raising I2*, and π2*, and thus life expectancy. Here, the wealth effect 

dominates the weaker shadow price effect essentially because the conditional probability of 

survival from adulthood to old age is significantly lower than that from young age to adulthood. 

 f. Shifts in preference parameters and social security taxes: Such shifts tend to induce 

tradeoffs between different expected utility-enhancing variables. A lower β, has essentially the 

same effects as a rise in the marginal cost of children’s quantity, raising investment in knowledge 

capital, growth, and life expectancy, as well as consumption, health benefits, and remedial care 

at adulthood, but reducing optimal fertility (n*), and thus increasing population aging. A 

decrease in the mandated social security tax (θ), in contrast, will increase fertility but also raise 

investment in survival to old age (I2*) and life expectancy, as well as conventional consumption 

spending, remedial medical care, and health benefits at old age at the expense of the latter’s 

counterparts at adulthood. Other parametric effects are less predictable as they are influenced by 

the parameter magnitudes and by feedback and general-equilibrium effects as well. 
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V. What Are the Major Forces Driving the Expansion in Health Spending? 

Our numerical analysis forecasts the steady-state level of the equilibrium full-income 

SHS to be about 21.5%. This is in all likelihood an underestimate of the equilibrium rate as a 

percentage of GDP, because of the limitations of our prototype model which is based on a 

private economy with a private health system and allows for only three overlapping generations. 

The model thus abstracts from externalities in health care provision, government subsidies, 

actuarially unfair health insurance, or related inefficiencies that may have contributed to the 

expansion of health spending over time. Yet, to the extent that government contribution to 

health-care through Medicare and Medicaid reflects a social planner’s optimal spending in the 

absence of any externalities, we can use the numerical solutions of the model to identify the 

major forces which account for the actual level and trend of SHS over time. As pointed out in 

section II.4, we also take SHS to be an approximation of the GDP-share of health spending on 

the assumption that both market spending and market income differ from full spending and full 

income by the same percentage of added opportunity costs of time.  

We start with the breakdown of the steady state level of SHS by its four sources in 

equation (19), as estimated by our simulations. Of the total, investment in life protection at 

young age (nI1) and adulthood (I2) account for 5.52% and 78.9%, respectively, while remedial 

medical care at adulthood [M1 /(Ht+H0)] and at old age (m2,t-1θ) account for 3.83% and 11.96%, 

respectively. Note that the last two items measure total spending on remedial medical care by 

surviving populations from generation t and t-1, which reflect the latter’s expected survival 

probabilities, rather than the contribution of surviving representative agents. The latter are much 

higher as shares of consumption spending at old age (m2 =13%) relative to adulthood (m1= 2%). 
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By this analysis it appears that total investment in all measures of life protection at 

adulthood (I2), which range from basic research on life-saving chemical entities to improving 

survival from potentially fatal diseases, account for the lion’s share of the level of SHS, as well 

as its trend over time. While the fraction of SHS spent on remedial medical care for non-fatal 

diseases seems modest (the difference in the steady state values of SHS in the extended vs. 

baseline model, where we shut-off the remedial medical care channel, is only 3.2%), life-

protection spending (I1 and I2) also accounts for remedial medical care in avoiding potentially 

fatal diseases. Indeed, protective and remedial medical care inputs appear to involve significant 

interactions by our analysis of comparative dynamics.  

The related time trends of these components of SHS (nt I1t, I2t and the share of remedial 

care for non-fatal diseases in SHS, Tmt in Figure 3.4.B) indicate that the continuing growth in I2t 

and Tmt are also the main drivers of the trend in SHS going forward. As indicated by our 

optimality conditions and propositions 2 and 3, the trends in all components of SHS over the 

estimated transition paths to a new steady state can be ascribed largely to the factors contributing 

to the growth in wealth (see below). Indeed, the “wealth elasticity” of demand for total medical 

spending by generation 2 (calibrated to match the current value of SHS) is estimated to be 1.108 

by our model. 23 The “wealth elasticities” of demand for total spending on the life protection of 

children and adults (I1 and I2 multiplied by full income) are likewise estimated to be 1.049 and 

1.132 respectively. Note, however, that elasticities greater than 1, which drive the progression of 

SHS and its components over time, apply only over the transition to a new steady state – they 

converge to unitary elasticities as SHS approaches its steady-state value.  

Table 2 present the responsiveness of the steady state level of SHS to a 10% upward and 

downward shifts in the major technological parameters affecting SHS by letting each type of 
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shift produce a new steady-state equilibrium SHS level. While the alternative directional changes 

do not produce identical results (elasticities are somewhat smaller for upward changes, as our 

model predicts) their order of magnitude produces a robust ranking. The results, recorded in 

elasticity terms, indicate that the greatest force affecting the equilibrium levels of SHS has been 

breakthroughs in biological and medical sciences which raise the upper-bound of survival 

probabilities - Γ1H
U and Γ2H

U - and especially the latter. The corresponding elasticities are close 

to 1%. The second most important factor is the technological breakthroughs in knowledge 

transfer, which enhance human capital formation and economic growth, which are captured by 

the shocks in parameter A. These elasticities are also indicative of the major triggers that have 

produced the observed transitional dynamics in key variables. By the results in Table 2, the 

observed takeoffs in SHS and in economic growth, for example, may have been produced largely 

by breakthroughs in treatment of historically fatal diseases, such as blood-cell cancers in the 

early 1960s, and the hi-tech revolution of the 1970s and early 1980s, respectively.   

 

VI. Some Supporting Empirical Evidence 

  One of the key insights offered by our model are the distinct impacts of investments in 

the life protection of children versus adults, I1,t and I2,t. By proposition 1, optimal investment in 

children’s survival to adulthood (π1
*) is expected to enhance investment in the knowledge 

component of human capital, thereby raising the steady-state rate of growth in per-capita income 

as well. By proposition 2, in contrast, investment in adults’ survival to old age is expected to 

produce personal consumption benefits but no direct effects on growth. Such sharp differences 

arise in our model because of its simplifying distinction between phases of life that are devoted 

exclusively to education or work. But the thrust of the two propositions is that survival to the 

phase of labor-market participation permits fuller use of knowledge acquired at younger ages. 
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While we have not pursued an empirical implementation of these propositions in this 

paper, preliminary evidence developed in EL (1991) using an international panel of 65 countries 

between 1960 and 1985, indicates that a higher initial probability of survival to adulthood (π1) 

has a positive and significant effect on the long-term rate of economic growth, measured as the 

average growth rate of per-capita real GDP from 1960 to 1985. A higher probability of survival 

to old age, by contrast, was found to have a weaker and insignificant effect on growth.24 

These results are compatible with propositions 1 and 2. They may also provide new 

insights into recent studies dealing with the impact of life expectancy on economic growth. 

Acemoglu and Johnson [AJ] (2007), e.g., identify the 1940s as a period involving shocks in 

medical innovation, such as increased accessibility of Penicillin and further development of 

antibiotics, and use these shocks to predict subsequent changes in life expectancy. They then use 

the predicted changes as instrumental variables to test their effect on concurrent levels of GDP 

per-capita using an international panel of 75 countries over the period 1940–1980 or 1940–2000. 

They find a positive but insignificant effect of their life expectancy measure on the level of GDP, 

but a negative effect on GDP per capita, using OLS and IV regression methods.  

AJ do not specify the precise channel through which life expectancy is expected to affect 

changes in the level of GDP per-capita. In an interesting recent study published in this journal, 

Hansen (2013) addresses this issue. He explores this issue using a somewhat smaller 

international panel data over a similar time period by regressing separately the level of GDP per-

capita and the level of a Mincerian measure of human capital per-capita (comprising both 

average years of schooling and average work experience) on life expectancy at birth 20 years 

earlier to see if the latter’s effect on growth is consistent with its effect on education. His results 

indicate the existence of positive and significant effects of life expectancy at birth on subsequent 
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educational attainments.25  But the effect of life expectancy on the level of GDP per-capita 

remains negative, albeit mainly insignificant, in his analysis as well.                                        

Our model offers an alternative explanation for these findings. First, propositions 1 and 2 

address the impact of investment in knowledge capital (education) on the long-term rate of 

economic growth. Both AJ and Hansen specify GDP levels as the dependent variables and 

“stock” measures of either life expectancy or educational attainment as explanatory variables. An 

alternative specification of these two variables as investment flows has been shown to yield 

results that are more compatible with a positive impact of education on the long-term rate of 

economic growth (see Ehrlich, 2007, section 6.3). More importantly, our analysis suggests that 

investment in life protection at young age and survival to adulthood, not life expectancy at birth, 

determines the long-term GDP growth rates. In recent decades, however, changes in life 

expectancy may have come about mainly from an increase in survival probabilities from 

adulthood to old age,  and proposition 1 indicates that these survival probabilities may not have a 

significant effect on investment in education or the economy’s steady state growth rate. Indeed, 

some shocks in medical innovations may even lower the growth in GDP in the long term, as 

indicated by our comparative dynamics analysis in part IV, section 3.c. 26   

 

Conclusion 

Like Hall and Jones [HJ] (2007), we view the rising share of health spending (SHS) in 

the economy as driven by consumer demand in a competitive economy setting. They view the 

continuous increase in SHS as driven by rising per-capita wealth and a larger than unitary 

income elasticity of demand. We attempt to take a further step, by endogenizing some of the 

main forces affecting SHS – economic growth and population aging. Using a human-knowledge-
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based endogenous growth framework, we have attempted to address the four issues listed in the 

introduction. We show that SHS can reach steady state equilibrium level under given states of 

the art in health sciences along with population aging and economic growth. We also 

characterize the dynamic process leading to such equilibrium and quantify the major forces 

contributing to the level and trend of SHS over time and going forward via numerical 

simulations.  

Relevance to the endogenous growth literature: Our stylized model offers a way to 

distinguish between two key components of human capital: education or knowledge capital, 

serving as an engine of per-capita income growth, and health capital reflected by probabilities of 

survival and health maintenance, serving as a facilitator of knowledge capital formation. A key 

result we derive through this distinction is the role of investment in life protection of children as 

a direct determinant of the long-term rate of economic growth, essentially because such 

investment works to protect the return on investment in education, and thus knowledge capital 

formation and growth. This framework also enables us to treat the levels and dynamic paths of 

health spending, population aging, and economic growth as components of a dynamic general-

equilibrium system driven by optimal investments in fertility, education, and protective and 

remedial health care.  The main implication of our analysis is that there is a steady state 

equilibrium solution for all the control and state variables of the model, including the share of 

health spending in GDP (SHS). Interestingly, some developed countries, including the US, have 

already begun exhibiting some slowdown in the growth of SHS in recent years (see Figure 5). 

But exogenous and discrete scientific breakthroughs in life sciences can shift upward the 

transition paths and steady state solutions of life expectancy, the share of health spending in 

GDP, and in some cases even the rate of per-capita income growth.  
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The existence of an equilibrium steady state solution of the model is not an artifact of our 

restrictive OLG framework, which allows for only three overlapping generations and three finite 

phases of life. We can in principle allow for continuous expansion of the number of overlapping 

generations and life phases as longevity keeps growing, which would not change our basic 

results. The key to the equilibrium solution are the diminishing returns to health-care inputs in 

the production of life-saving and health maintenance services, or preventive and remedial care, 

within any given phase of life. This brings about a rising shadow price of life and health 

protection relative to consumption which counteracts, and ultimately checks, the influence of the 

continuous growth in the demand for health spending above that of GDP. Indeed, consistent with 

HJ, our “income elasticities” of demand for health spending especially at old age, as estimated in 

a GE context, clearly exceed unity for the generation of adults in our numerical analysis 

(calibrated to match current SHS). However, these elasticities affect the behavior of SHS only 

over its transitional dynamic path. The elasticities ultimately converge on a unitary value at the 

equilibrium steady state of growth. 

As stressed in section V, our numerical analysis cannot be expected to yield precise 

forecasts of the steady state solutions for SHS or LE (see fn. 20) largely because our model does 

not account for the separate role of government in determining health spending, and is subject to 

a restrictive life-cycle structure. Yet the dynamic patterns of the simulated paths of SHS, fertility, 

life expectancy, and population aging are consistent with the US historical trends. The model is 

also consistent with a rather stable long term growth rate in GDP per-capita, indicating that the 

average shares of per-capita income spent on rearing and protecting children, v and I1, have not 

shifted significantly over the long haul.  
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Relevance to the literature on health and growth: The main new insight our paper offers 

about the association between health and growth is that shocks in exogenous parameters that 

raise investment in the probability of survival to the productive phase of adulthood will increase 

the level of investment in education and knowledge, and thus the steady-state rate of per-capita 

income growth.  However, as Table 1 and our analysis in section V indicate, not all exogenous 

parameter shocks have similar effects on life expectancy or economic growth. For example, our 

numerical analysis indicates that exogenous breakthroughs in health sciences, which have led to 

significant increases in survival probabilities to old age (Γ2H
U and η2), do not affect investment in 

education, but they do raise SHS and life expectancy. Also, some beneficial shocks in life-saving 

technologies (a reduction in D01 and ε1 in equation 6) generate favorable effects on life 

expectancy but may diminish the productivity of investment in life protection, and may thus lead 

to an inverse relation between life expectancy and economic growth.  

Likewise some shocks in exogenous parameters raising remedial medical care at old age 

may increase life expectancy, but will have no effect on the rate of economic growth and 

knowledge formation. These ambiguous relations concerning the association between life 

expectancy and educational attainments or growth may further explain the results reported in 

both AJ (2007) and Hansen (2013).  

More generally, changes in parameters that raise investments in or the efficacy of 

knowledge capital or survival probabilities to adulthood and especially old age may be the main 

forces that drive up the income share of health spending, SHS, over the period of transition to a 

stable steady-state equilibrium.  

Some policy ramifications: Our numerical analysis in section III.4.B indicates that the 

steady-state level of SHS may rise just 3-4 percentage points above its current level - from 17.9 
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to 21.43 in 4 generations. The increase may be well understated because our model does not 

allow for any government involvement in health financing or for inefficient use of medical 

services under actuarially unfair health insurance. Yet it indicates the critical role shadow prices 

can play in bringing about balanced growth equilibrium and an upper limit to health spending as 

a fraction of the economy, under any given state of the arts in medical and biological sciences.  

So while the analysis applies to a private economy with a competitive health care system 

and actuarially fair health insurance, it implies that efficient reforms in the current mixed system 

that seek to restrain the growth in SHS and increase the speed of its convergence on a steady 

state level following breakthroughs in life sciences, will benefit from relying on the rationing 

role of explicit marginal cost pricing, especially in the case of costly new medical treatments, 

even if we allow basic services to be universally subsidized. Not doing so would inevitably entail 

balancing the system through some form of physical rationing, which is far less efficient.  

The analysis also puts an emphasis on investment in children’s survival to adulthood as 

yielding high social return because they protect, and thus induce investments in the knowledge 

component of human capital which promotes economic growth. By the same token policies that 

induce larger investment in education increase the motivation to protect this investment by 

investing in life protection and adopting healthier lifestyle which promote the probability of 

survival to older age. By contrast, the analysis indicates the limitations of health financing 

policies which encourage the use of remedial care services covered by reimbursement insurance 

policies, as the latter encourage excessive use of remedial medical services at the expense of the 

more individually and socially productive preventive medical care and life protection.  
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Footnotes 

                                                           
1 This has been the convention in the human-capital based endogenous growth literature, on the implicit assumption 
that human capital and physical capital are complements in production. 

2 Although restricting the life span to just three generations puts a limit on human longevity and life expectancy in 
this framework, this does not automatically assures an interior-equilibrium solution for our key variables, nor would 
our basic results change if we allowed for continually increasing life phases and overlapping generations.   

3 Our model expands the basic elements of the endogenous growth models of Lucas (1987), Becker, Murphy, and 
Tamura (1990), and especially Ehrlich and Lui (1991) and Ehrlich and Kim (2007) to integrate health and life 
expectancy as a basic endogenous variable in addition to fertility and human capital formation.  

4 A technical reason for modeling survival probabilities rather the health stock as key “state variables” is that we 
cannot model the evolution of the health stock as a continuous process within our OLG framework, as we need to 
allow for discreet changes in the conditional probabilities of survival across different phases of life and the 
corresponding overlapping generations. We distinguish, however, investment in life protection which enhances 
survival to the next phase of life, and health maintenance or remedial care, which enhances lower morbidity within a 
given phase. These distinctions follow the formal analysis in Ehrlich (2000) and Ehrlich and Yin (2005). 

5 In this overlapping-generations framework, parents thus maximize children’s lifetime utility indirectly through the 
“bequest” they leave in the form of investments’ in children’s well-being, survival, and productive capacity, so the 
latter can then mature to assume the productive decision-making role as parents.   

6
 The choice of this functional form is dictated by the need to account for upper and lower limits of key control and 

state variables (e.g., πj) and to allow for staggered transitional paths for these variables over the transition to the 
steady-state growth equilibrium. Power functions, e.g., would not qualify. The function exhibits diminishing returns 
to both increments in inputs (Ij) and outputs (πj). A decrease in Dj and an increase in ΓjH

U raise the marginal products 
of Ij, but while the rise in ΓjH

U also raises the level of πj, the fall in Dj lowers it. The assumption of diminishing 
returns is logically justified by the fact that within a given phase of life and the limitation of human physiology and 
medical technology, doubling health care inputs cannot double survival probabilities on the margin. Note that 
proposition 1 in the following subsection holds for any functional form of equation (6) that is concave in Ij. 

7 In a growth context, the continuous formation of knowledge capital – our engine of growth – can also be positively 
correlated with continuous advances in medical technology. Equation (6) also allows, however, for breakthroughs in 
medical technology which can raise the upper bound of survival probability or lower the rate at which it may 
depreciate at adulthood or old age, as given by Dj. We take the levels of ΓjH

U and ΓjL in this analysis to be constant in 
all generations. In our numerical analysis we use historical data to calibrate the value of ΓjL. See section III.3.A. 

8 Equation (6c) is the conventional definition of LE in a given period, t.  We can alternatively use the cohort 
definition of LE by replacing π1t with π1, t-1.  The difference between the two, however, vanishes in a steady state. 

9
 In equation (9a), the shadow price of life protection represents the value to parents from a marginal increase in the 

survival probability of children to adulthood, as determined by the companionship function.  

10
 Technically, the numerical solution of the baseline model is derived from the calibrated simulations of the 

extended model after shutting down remedial care and the health benefits it yields as an independent good. The 
parameter values we adopt from the extended model are: A = 9.5593, ν = 0.03, β = 1.23, B = 0.235, σ = 0.5,  
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δ = 0.015, θ = 0.1955, D1 = 0.000012, ε1 = 2, η1 = 1, Γ1L = 0.67, Γ1H

U = 0.99, f1 = 0.9596, D2 = 0.016, ε2 = 2.5, 
 η2 = 1, Γ2L  = 0.37, Γ2H

U
  = 0.95, and f2 = 0.9368. See section III.3.A for a complete analysis. 

11 Though it may mainly speed up recovery from illness, remedial care may confer life protection or “preventive” 
benefits as well, thus enhancing survival to the next phase of life, πj. In our model, however, the protective 
component of remedial care is accounted for as “investment in life protection” (Ij). Our more narrowly defined 
“remedial care” at adulthood and old age is then restricted to lower time loss due to non-life-threatening illness 
within these phases. Note that parental investment in children’s well-being (v) and survival to adulthood, I1 includes 
both protective and remedial, the benefits of which are motivated by the companionship function, C3,t+1. 

12
 To simplify an otherwise quite complex computational analysis, we focus on the beneficial effects of healthy time 

on consumption and abstract from any effects of remedial care on productive capacity at both adulthood and the old-
age phase of retirement.  This would not affect, however, the basic qualitative results of the model. In the context of 
our analytical framework, this would not affect, however, the basic qualitative results of the model.  

13 We use the term remedial medical care at adulthood and old age to denote spending on health maintenance, or 
recovery from non-fatal diseases, since remedial care can also be a part of life protection.  In the case of children, 
spending on health maintenance as consumption is subsumed under the parent’s cost of bearing and rearing children 
(vn) as well as investing in their survival to adulthood (nI1), both motivated by the parental altruism function (4).  
 
14 The normalization factor N is added to enable a linkage between the numerical analyses used in the baseline and 
the extended model. See the discussion in section 3.A. 
 
15 This makes the absolute measure of health benefits HBt comparable to that of conventional goods, Xt , otherwise in 
a growth equilibrium the magnitude of HBt would become negligible relative to that of Xt. Since we do not model 
separately the choice of consumption vs. labor time, we link the unit value of the latter to that of total time or 
production capacity, assuming that the fraction of healthy time within any given phase of life augments the 
productivity of time in all its uses. In the numerical analysis we specify cj

e as an arbitrary fraction (1/2) of total 
production capacity (Ht+H0) without loss of generality, since the specific fraction has no effect on the results.  

16
 We assume that representative agents at adulthood and old age benefit from the same medical knowledge at time t, 

Ht, due to spillover effects – all physicians share such knowledge in providing remedial care. Allowing for different 
education levels for the overlapping generations (Ht and Ht-1) has a negligible effect in the numerical analysis. 

17
 As recent evidence indicates, the incidence of serious diseases, such as Alzheimer has been increasing over time 

as the average age of baby boomers entering old age has been on the rise. Note that at time t, the representative 
agent in the phase of adulthood has a predetermined probability of survival π1t, but the corresponding agent in the 
old age phase at time t+1 has a probability of survival π2,t-1 as determined by the previous generation (t-1). 

18
 Recall that θ is the share of the young adult’s full income the latter pays to support the elderly, and thus (m2,t-1θ) is 

the full-income share of remedial care spent by the elderly on remedial care, where m2,t-1 = M2,t-1/TC2,t-1. 

19 The resulting calibrated parameters are: A = 9.5593, β = 1.23, B = 0.235, θ = 0.1955, D1 = 0.000012, ε1 = 2, η1 =1, 
Γ1H

U  = 0.99, f1 = 0.9596, D2 = 0.016, ε2 = 2.5, η2 = 1, Γ2H
U

  = 0.95, f2 = 0.9368, ρ = -0.2, N =2.4943, 
 cj

e = 0.5(Ht + H0), L01 = 422, γ1 = 1, φ1 = 0.1, L02 = 1410, γ2 = 2, φ2 = 0.1, HTH
U = 674, ηm = 1, fm= 0.94, Dm1 = 0.221, 

εm,1 = 1.5, Dm2 = 78, and εm2 = 2. Note that most of the parameters representing preferences are taken from Ehrlich 
and Kim (2007), which are compatible with consensus values in the literature. The fraction 0.5 multiplying cj

e is 
irrelevant in the calibration.  Setting it to 0.6, e.g., just rescales other parameters without changing the solutions. 
  
20

 A comment is warranted about the steady-state value of life expectancy, projected to be 81.37. This value is an 
artifact of our numerical identification of all phases of life to last over 30 years, i.e., for the retirement phase of old 
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age to end at age 90. Our model can be easily extended by allowing the last phase of life to be longer without 
affecting our basic results. If we allow for that phase to be extended to 35 years, rather than 30, which is currently 
more realistic, our estimated life expectancy would rise from its current 79.6 to 85.2 in the steady state.   

21
 In this context, we have also conducted an additional experiment by eliminating the role of knowledge capital in 

the life protection and remedial medical care production functions (6) and (12). As indicated in our analysis of 
section II.4, this would lead mainly to a shortening of the transition to a new growth equilibrium steady state. 
Indeed, this is what we find. Our experiment shows that SHS would then converge on a new equilibrium steady state 
of SHS in just 3 generations. 

22
 The effects differ slightly for this pair of parameters (A vs. Γ1H

U or η1) in that A does not affect the production 
function of life protection at young age (or adulthood) and thus h*, I1* π1* as implied by equations (8a) and (9a).   
23

 The “wealth elasticity” of total medical spending is computed in our numerical analysis as 1 + dln(SHS)/dln(Y), 
where Y stands for full income.  We discretize the total differentiation, which accounts for all feedback effects, by 
estimating the percentage change in SHS divided by percentage change in Y as estimated for generation 2.  

24
 The net growth rate, g, was measured as the average growth rate in per-capita GDP between 1960 and 1985; π1 

was measured as the probability of survival from age 0 to 25 in 1960 or the closes year before it for which data were 
available; and π2 was similarly measured as the probability of survival from age 50 to 75, all in log form. The 
weighted OLS regression included both probability measures and initial (1960) per-capita GDP as covariates. The 
inclusion of the latter was required by the model. 

25
 This finding at the macro level supports recent literature indicating that health investment at early childhood 

produce favorable schooling benefits at later ages (see Bleakley, 2007 and Lucas, 2010). 

26 Note also that by our model the yearly growth rate of income is measured as (1+g) ≡ (H0 + Ht+1)/( H0 + Ht) = Ah +  
[H0/ (H0 + Ht)]. If the annual growth rates over the long sample period approximate the long-term rate of growth, 
this measure converges on the steady state growth rate Ah*, and a transitional term that is negatively related to the 
concurrent level of per-capita GDP. 



Figure 1. US Health Spending by Private and Public Components – 
GDP Shares 1960-2011 

 

 

 



 

Figure 2. Health, Aging, and Endogenous Economic Growth 
– Possible Directions of Causality  

 

 



Figure 3-1 Transitional Paths of Endogenous Variables in the Extended Model 

 

   

   

See text for calibrated parameters.  All charts (except for SHS and aging) start at generation 1; charts of SHS and Aging start at generation 2. 



Figure 3-2 Transitional Paths of Endogenous Variables in the Extended Model 

 

   

   

See notes to Figure 3-1. 



Figure 3-3 Transitional Paths of Endogenous Variables in the Extended Model 

 

   

   

See notes to Figure 3-1. 



Figure 3-4 Transitional Paths of Endogenous Variables in the Extended Model 

 

   

See notes to Figure 3-1. 



Figure 4 Transitional Paths of Endogenous Variables: Baseline vs. Extended Models 

 

   

   

See notes to Figure 3-1. 



Figure 5 Share of Health Spending in Different Health Care Systems 

 

 

 



Table 1 Comparative Dynamics for the Extended Model* 

    Endogenous Variables 
Shift in 

calibrated 
parameters 

n  h  I1  I2  Ω  1+g  Aging  LE  m1  m2  HB1  HB2  X1  X2  π1  π2 

A  +  0  0  +  +  +  ‐  +  ‐  +  +  +  +  +  0  + 
ν  ‐  +  +  +  ‐  +  +  +  +  ‐  +  +  +  +  +  + 
B  +  0  0  +  +  0  ‐  +  ‐  +  ‐  ‐  ‐  +  0  + 
δ  ‐  0  0  ‐  ‐  0  +  ‐  +  ‐  +  +  +  ‐  0  ‐ 
σ  ‐  0  0  +  +  0  +  +  +  ‐/+  +  ‐  +  ‐  0  + 
β  +  ‐  ‐  ‐  +  ‐  ‐  ‐  ‐  +  ‐  ‐  ‐  ‐  ‐  ‐ 
θ  ‐  0  0  ‐  +  0  +  ‐  ‐  +  ‐  +  ‐  +  0  ‐ 
D1  ‐  +  +  ‐  +  +  +  ‐  +  ‐  +  +  +  +  ‐  ‐ 
ε1  ‐  +  +  ‐  +  +  +  ‐  +  ‐  +  +  +  +  ‐  ‐ 

Γ1HU(η1)  +  +  +  +  +  +  ‐  +  ‐  +  +  +  +  +  +  + 
D2  ‐  0  0  +  +  0  +  ‐  +  ‐  +  +  +  ‐  0  ‐ 
ε2  ‐  0  0  +  +  0  +  ‐/+  ‐  ‐/+  ‐  +/‐  ‐  ‐  0  ‐/+ 

Γ2HU(η2)  +  0  0  +  +  0  ‐  +  ‐  +  ‐  ‐  ‐  ‐  0  + 
ρ  ‐  0  0  ‐  ‐  0  +  ‐  ‐  ‐  ‐  +  +  ‐  0  ‐ 

HTHU(ηm1)  ‐  0  0  ‐  ‐  0  +  ‐  ‐  ‐  +  +  +  +/‐  0  ‐ 
Dm1  +  0  0  +  +  0  ‐  +  +  +  ‐  +  ‐  +  0  + 
εm1  +  0  0  +  +  0  ‐  +  +  +  ‐  +  ‐  +  0  + 
Dm2  +  0  0  ‐  +  0  ‐  ‐  +  +  +  ‐  +  ‐  0  ‐ 
εm2  +  0  0  ‐  +  0  ‐  ‐  +  +  +  ‐  +  ‐  0  ‐ 

Value of Endogenous Variables at Steady State 
Extended Model  1.015  0.181  0.0117  0.169  0.2143  1.01846  0.291 81.37 0.02  0.129 0.952  0.799 
Baseline Model  1.180  0.181  0.0117  0.169  0.183  1.01846  0.246 81.36   0.952  0.798 
* Quantitative results for steady state solutions.  Results for X1, X2, HB1, and HB2 are shown for the latest computed generation. 

 



Table 2: Impact of Model Parameters on the steady-state level of SHS* 

 

 Elasticities 
Parameter -10% +10% 

A 0.314 0.272 
ν -0.0386 -0.0344 
B 0.178 0.153 
δ -0.253 -0.263 

σ  0.217 0.321 

β  0.0418 0.0715 

θ  0.0362 0.0243 

D1  0.0068 0.0061 

ε1  0.062 0.0515 

η1  7.48x10-5 2.71x10-14 

Γ1HU  0.369 0.331 

D2  0.0745 0.0646 

ε2  0.156 0.115 

η2  0.000268 9.54x10-14 

Γ2HU  0.961 0.800 

ρ  -0.674 -0.677 

HT0U  -0.214 -0.185 

Dm1  0.0123 0.0114 

εm1  0.062 0.0588 

Dm2  0.0335 0.0314 

εm2  0.053 0.043 
* The table summarizes the impacts of model parameter on the steady-state level of SHS in the extended 
model.  We allow each parameter to shift down 10% or up 10%, and then calculate the percentage change 
in the steady-state values of SHS.  The recorded results are thus approximate elasticities. 

 

 




