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1 Introduction

The protection of property rights is widely viewed as a cornerstone of effi ciency and economic

growth (e.g., Coase, 1960, Alchian, 1965, Demsetz 1967, Barro 1998).1 But whether property

rights are effectively protected depends on the political economy of the respective society and

its institutions. Among political institutions, checks and balances have long been viewed as

an essential tool to limit the power of government to expropriate its subjects. The ideas date

back at least to the Roman republic (Polybius [2010], Macchiavelli [1984]) and, in modern

times, to Montesquieu’s Spirit of the Laws (1748 [1989]) and the Federalist papers, the

intellectual foundation of the United States Constitution. In Federalist papers #51, James

Madison argued for the need to contrive the government “as that its several constituent

parts may, by their mutual relations, be the means of keeping each other in their proper

places.”Riker (1987) concurs: “For those who believe, with Madison, that freedom depends

on countering ambition with ambition, this constancy of federal conflict is a fundamental

protection of freedom.”

In modern political economy checks and balances have been associated with various

beneficial consequences.2 North and Weingast (1989) argued that the checks and balances

established by the Glorious Revolution in 1688 provided “the credible commitment by the

government to honour its financial agreement [that] was part of a larger commitment to

secure private rights”.3 Similarly, Root (1989) has argued that checks and balances on British

monarchs led to lower borrowing costs compared to the French Kings. Persson, Roland, and

Tabellini (1997, 2000) model checks and balances as the separation of taxing and spending

decisions within budgetary decision-makings. They argue that properly designed checks and

balances improve the accountability of elected offi cials and thereby voter utility and limit

rent-seeking by politicians. Keefer (2004) argues that “The absence of multiple veto players

in countries often means that some groups in society are less represented than they otherwise

would be.”4

1Alchian (2008) defines private property as “the exclusive authority to determine how a resource is used.”
2Recent research in political economy, however, has also pointed out that in some domains check and

balances may lead to ineffi ciencies (e.g., see Diermeier and Myerson, 1999, on ineffi ciencies of bicameralism
due to incentives to create restrictive internal procedures and grid-lock).

3Much of the literature on the political economy of checks and balances has focused on incentives for
expropriation by a monarch and the associated commitment problem (e.g. North and Weingast 1989, Root
1989). Our approach allows us to consider the issue of democratic expropriation, e.g., the expropriation of
a minority by a majority. This was one of the central concerns of, e.g., Montesquieu and Madison, and led
to various power sharing arrangements from multi-cameralism to Federal political structures.

4In a recent paper, Acemoglu, Robinson, and Torvik (2011) have argued that this phenomenon can be
used to explain why voters may sometimes dismantle checks and balances. Under checks and balances,
politicians receive less rents throug the political process which makes them more susceptible to be bribed by
elites. Removing checks and balances leads to more rents, but better policy outcomes for the majority.
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In this paper, we study political mechanisms that ensure protection of individuals’prop-

erty. Checks and balances come in different forms such as the separation of powers between

the legislative, executive, and judicial branches of government, multi-cameralism, or feder-

alism. However, at its core are institutional limits on majority rule, usually in the form

of veto rights for individuals or groups, and supermajority requirements. Such limits allow

individuals or collectives to block any redistribution without their consent. In our model,

these serve as abstract representations of checks and balances.5 Those include a president

with veto powers, a supreme court that can strike down a law as unconstitutional, or the

Spartan Gerousia, the Council of Elders, that could veto motions passed by the Apella, the

citizens’assembly (Plutarch [2010]). If we interpret property rights as institutions that sus-

tain allocations unless changed by the legislature, we can formally investigate the effect of

checks and balances on the allocation of property rights and prerogatives.6.

Much of existing work has interpreted veto rights as constraints on collective choice

processes. They correspond to individual or collective rights to block any undesirable re-

allocation. Often, though not always, they are formalized in constitutions or codes of law.

Formally, they are features of the game-form. But property rights can be protected in other

ways. That is, the protection of property rights can also be understood as equilibrium out-

comes of interacting economic agents. The property rights of an individual may be respected

in equilibrium not because he is entitled or powerful enough to protect them on his own, i.e.

has veto power, but because others find it in their respective interest to respect such rights.

Specifically, members of a coalition, formed in equilibrium, have an incentive to oppose the

expropriation of each other because they know that once a member of the group is expro-

priated, others will be next in the line for expropriation. Such groups serve as endogenous

blocking coalitions, i.e. collections of agents that in equilibrium can prevent any path that

makes any of the members worse off. That is, an agent’s incentive to protect a particular

property rights system hinges on the rational foresight of what might happen once the re-

distributive process is initiated. This means that property rights systems can be stable even

in the absence of explicit veto powers.7

Paradoxically, adding additional exogenous protection (e.g., by increasing the number of

5Some scholars have argued that veto player arrangements are the most important feature of political
governance structures (e.g., Tsebelis 2002).

6While we use the language of “voting”and “vetos”which suggests a legislative process, our model can
also be interpreted as power struggle between individuals and coalitions. Here a “veto”simply means that
an individual has the military or economic means to block any redistribution without his consent.

7Similar effects can be observed in models of legislative bargaining in dynamic policy environments with
a persistent proposer (Diermeier and Fong, 2011). In that model it is the fact that the persistent agenda
setter, effectively the sole veto player, can always reconsider a proposal that induces a group of voters to
“protect”each other’s allocation.
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veto players) may lead to the break-down of an equilibrium with stable property rights (see

Example 2), as the newly empowered agent (e.g., one who was granted or has acquired on

his own veto power) now no longer as an incentive to protect others. A similar effect can

occur with additional super-majority requirements. Thus, by adding additional constraints,

in the form of veto players or super-majority requirements, the protection property rights

may inadvertently be eroded. In other words, agents’property rights may be well-protected

in the absences of formal constraints, while strengthening formal constraints may worsen

property rights protection. Consider the following example.

Example 1 Five legislators decide how to split 15 units of wealth, with the status quo being

(1, 2, 3, 4; 5). Legislator #5 is the sole veto player and reallocation requires a majority of

votes. For the sake of simplicity we assume that when agents are indifferent, they support the

proposer. In a standard legislative bargaining model in the tradition of Baron and Ferejohn

(1989a) a proposer makes a proposal to the legislature and the game ends when the proposal

is accepted. In this setting a proposer, say legislator #5, would simply build a coalition

to expropriate two agents, say agents #3 and #4, and capture the surplus resulting in the

allocation (1, 2, 0, 0; 12). But this logic does not hold in a dynamic model where the agreed

upon allocation can be reallocated in the subsequent periods. That is, with the new status

quo (0, 0, 2, 1; 12), agent #5 might propose to expropriate agents #1 and #2 by proposing

(0, 0, 0, 0; 15), which is accepted in equilibrium. Anticipating this, agents #1 and #2 should

not agree to the first expropriation, thus becoming the effective guarantors of property rights

of agents #3 and #4.8

To demonstrate which allocations are stable when further reallocations are possible, con-

sider the simplest possible case. Allocation (0, 0, 0, 0; 15) is stable as agent #5 has veto

power, while allocations where where a single agent among #1—4 has some wealth and the

rest has zero (e.g., (0, 1, 0, 0; 14), (3, 0, 0, 0; 12), or (1, 1, 0, 0; 13)) are unstable, as the veto

player can always use two of the remaining agents to redistribute all wealth to himself. Al-

location (1, 1, 1, 0; 12) ,however, is stable: in order to improve his position, the veto player

must either move to (0, 0, 0, 0; 15) or to an unstable allocation (which ultimately leads to the

same result). For any such transition, the veto player will not get enough votes from players

with suffi cient foresight. Notice, however, that (1, 1, 1, 1; 11) is unstable: the veto player can

expropriate one of the non-veto ones and gain consent of the remaining three as they know

that there will be no further reallocations after the initial expropriation. In general, one

can prove that allocation (x1, x2, x3, x4;x5) is stable if and only if among the four non-veto

8We will see the later that the original status quo allocation (1, 2, 3, 4; 5) is not stable either. The allocation
(3, 3, 3, 0; 6), however, is stable, and there is an equilibrium where it is reached.
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agents, three have the same wealth (positive or zero), and the remaining agent has zero.

This simple example points out to an important phenomenon, which is much more gen-

eral. Protection of property rights may not be based on a formal set of rules, but emerge from

equilibrium behavior of economic agents, whose commitment to protection of property rights

hinges on rational foresight. The critical element is the observation that property rights are

dynamic in nature. For example, the right to own a parcel of land means that the owner

benefits from the income stream generated from the asset. In a political economy context

this means that we can capture property rights as equilibrium phenomena that generate a

stream of benefits to individuals according to a status quo allocation of assets. A status quo

allocation of assets stays in place for the next period unless it is changed by the political

decision mechanism in which case the newly chosen allocation becomes the status quo for

the next period.

The logic of endogenous veto power explains how a small change in formal political rules

might lead to a dramatic reallocation. In a historical context, this might help to explain why

rulers often oppose even small concessions to the political opposition. Many monarchs from

Charles I of England to Nicholas II of Russia, for instance, would not concede any of their

formidable formal power until the very end (Schwarz and Sonin, 2009).

Our next example demonstrates the workings of this logic formally. A small change in

political rights, an addition of a veto player, drastically changes the equilibrium: the process

of redistribution will involve the majority of agents (with about one half of agents being

expropriated) and the most part of the society’s wealth.

Example 2 To see this, let us modify Example 1. There are again five agents, and three

votes are required to make a change, but now there are two veto players instead of one,

agents #4 and #5. If only these two players may make a proposal, all allocations of the

type (0, 0, 0;x4, x5) are stable, and those of the type (x1, x2, x3;x4, x5), where one or two

out of x1, x2, x3 are zeroes, are unstable (the two veto players will get the vote of one agent

with zero and redistribute the assets of the remaining two agents). But then any allocation

such that x1 = x2 = x3 = 1 is stable, because, within the realm of stable states, it is

impossible to improve the welfare of the veto players without hurting all of non-veto players.

Proceeding inductively, one can prove that an allocation is stable if and only if x1 = x2 = x3.

Thus, the allocation (1, 1, 0; 1, 12) with two veto players, players #4 and #5, is unstable as

x1 = x2 6= x3. The addition of a new veto player (agent #4) leads to expropriation of agents

#1 and #2: if there is an offer to move to (0, 0, 0; 3, 12), (0, 0, 0; 2, 13), or (0, 0, 0; 1, 14),

there will be the majority of three, including both veto players, in support of this motion.9

9We ignore for the moment the possibility that agent #5 might block moving to (0, 0, 0; 2, 13) in hope
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We see here an interesting phenomenon. The naive intuition would suggest that giving

one extra player (agent #4 in this example) veto power would make it more diffi cult for

agent #5 to expropriate the rest of the group. Our analysis, however, shows that this is not

the case. On the contrary, the introduction of a new veto player breaks the stable coalition

of non-veto players, and makes #5, the agenda-setter, more powerful. Beforehand, non-

veto players sustained an equal allocation, precisely because they were individually more

vulnerable. With only one veto player and an equal allocation for agents #2, #3, and #4,

the three non-veto players formed an endogenous veto group, which blocked any transition

that hurts the group as a whole (even one of them). Here, an additional veto player makes

expropriation more, not less, likely.

The example provides another important observation. With one veto player, #5, al-

location (1, 1, 0, 1; 12) is stable. Adding one veto player (say, agent #4) makes allocation

(1, 1, 0; 1, 12) unstable as agent #4 would now be willing to join #3 and #5 in expropriating

#1—2. The critical role is played by #4: previously, he was opposing expropriation of #1—2

as he would have been vulnerable in the next round. Once he is safe as a veto player, he

ceases to oppose the expropriation of #1—2. A resulting stable allocation is (0, 0, 0;x, y),

where x ≥ 1, y ≥ 12, and x + y = 15. Both the amount of wealth being redistributed and

the number of agents affected by expropriation is significant. The number of agents who

stand to lose is two, close to half the total number of agents, and a fifth of the total wealth

is redistributed through voting (this last number would be even greater if the veto player

#5 were poorer in the beginning).

Changes to the set of veto players is not the only significant change to consider. We

can explore the impact of changing supermajority rules. Like veto players, supermajority

rules are usually considered safeguards to make reallocation more diffi cult. As we will see in

the next example, this intuition is flawed. Adding super-majority requirements may lead to

additional redistribution.

Example 3 As above, consider an economy with five agents, which makes redistributive

decisions by majority, and one of which (#5) has veto power. With one veto player, #5,

allocation (1, 1, 1, 0; 12) is stable. Now, instead of a change in the number of veto agents,

consider a change in the supermajority requirements. If a new rule requires four votes, rather

than three, the status quo allocation becomes unstable. Instead, (1, 1, 0, 0; 13) becomes stable,

and this move is supported by coalition of four agents out of five. (The veto-player, #5,

benefits from the move, #4 is indifferent as he gets 0 in both allocations, and #1—2 support

this move as they realize that with the new supermajority requirement they form a group

that the eventual outcome is (0, 0, 0; 1, 14) which player #5 prefers.
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which is suffi cient to protect its members against any expropriation.) Thus, an increase in

supermajority may result in expropriation and redistribution.

A naive view of supermajority requirements suggests that raising the supermajority re-

quirement should strengthen property rights. As Example 3 demonstrates, this might pro-

duce the opposite: a number of agents are expropriated. Proposition 5 below establishes that

this phenomenon, as well the one discussed in Example 2, is generic: adding a veto plater

or raising the supermajority requirement almost always leads to a wave of redistribution.

To provide a general characterization of politically stable allocations of wealth, we use

the approach developed in Acemoglu, Egorov, and Sonin (2008) and Acemoglu, Egorov, and

Sonin (2012). In particular, we characterize the (Markov perfect) political equilibrium and

the stable allocations as outcomes of a non-cooperative voting game. More precisely, we

show that stable allocations correspond to the von Neumann-Morgenstern stable set, and

may be found using a recursive algorithm. We then use this characterization to obtain the

comparative statics results described above.10

Our results also provide a new perspective on the role of veto players on policy stability.

The existing literature has focused on the role of veto players in a static environment. One

approach has conceptualized veto players as constraints on majority rule in a social choice

theoretic environment (e.g., Tsebelis, 2002). Another approach has adapted the sequential

bargaining approach developed by Baron and Ferejohn (1989b). Examples include Romer

and Rosenthal (1978), Diermeier and Myerson (1994), McCarthy (2000), Cameron and Mc-

Carthy (2004), and Persson, Roland, and Tabellini (1997, 2000). The policy environments

in these models, however, are static: once a decision is made it is not revised and the chosen

policy does not influence future decisions. (See Bernheim, Rangel, and Rayo, 2006, on the

power of the last proposer in a legislative setting.)

Tsebelis (2002) summarizes the main insights of the standard (static) veto players theory

on policy consequences as follows: “The veto players theory expects policy stability (im-

possibility of significant change of the status quo) to be caused by many veto players, by

big ideological distances among them, by high qualified majority thresholds (or equivalents)

in any collective veto player.”11 Keefer (2004) asserts that “as the number of veto players

10Our analysis contains the results of Diermeier and Fong (2011) and Diermeier and Fong (2012) as a
special case. Diermeier and Fong considered a single persistent proposer, who also, by definition, was the
single veto player. We separate proposer and veto power, which allows us to study the effects of changing
the number of veto players and super-majority rules.
11Spiller and Tomassi (2008, in Handbook of NIE) argue that “The main deterrent to stable policies is

that government controls both the administrative and the legislative processes. Thus, political changes that
bring about a change in government can also bring about legislative changes. By having few institutional
checks and balances, such systems have an inherent instability that raises questions about their ability to
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increases, independent of their preferences, their incentives to offer favors to special interests

diminishes,”and corroborates this with empirical evidence.

Our analysis shows that in a dynamic policy environment this intuition no longer holds.

Examples of continuing policies include entitlements such as social security, monetary policy,

but also allocations of land, property and privileges, and many others. In such environments,

the policy or allocation remains in effect unless it is changed by the legislature. There is a

growing literature in political economy that has investigated dynamic policy environments

(Baron, 1996, Battaglini and Coate, 2007, 2008, Battaglini and Palfrey, 2007, Bowen and

Zahran, 2012, Dekel, Jackson, and Wolinsky, 2009, Diermeier and Fong, 2011, Dixit, Gross-

man, and Gul, 2000, Duggan and Kalandrakis, 2011, Kalandrakis, 2004, 2007, Morelli, 1999).

Our analysis shows that once we consider a dynamic policy environment policy stability

should be viewed as an equilibrium phenomenon that is sustained by the long-run incentives

of political agents. Adding additional veto players or strengthening super-majority require-

ments changes the dynamic equilibrium of the political economy and may lead to significant

redistribution and policy change.

The remainder of the paper is organized as follows. Section 2 introduces our general

model. In Section 3, we establish the existence of (pure-strategy Markov perfect) equilibrium

in a non-cooperative game and provide full characterization of stable wealth allocations.

Section 4 focuses on the impact of changes in the number of veto players or supermajority

requirements. Section 5 contains an extension, in which collective decisions over wealth

distribution are preceded by an investment stage.

2 Setup

Consider a set N of n = |N | political agents who have to choose an outcome out of a finite
set A of feasible allocations. We assume that A ⊂ Rn, and we will use lower indices (xi) to
denote the amount that individual i gets under allocation x ∈ A. Throughout, we focus on
the case where agents redistribute b indivisible objects, so

A =
{
x ∈ (N ∪ {0})n :

∑n

i=1
xi = b

}
.

Time is discrete and indexed by t > 0, and in each period there is a status quo xt ∈ A. The
initial status quo x0 is given exogenously, while xt for t ≥ 1 is determined through a voting

provide regulatory commitment.”Making a more general point, Allston and Mueller (2008, in Handbook of
NIE) state: “A set of universally shared beliefs in a system of checks and balances is what separates populist
democracies from democracies with respect for the rule of law.”Gehlbach and Malesky (2010) provide a
formal model where more numerous veto players might help a policy reform.
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procedure in period t. More precisely, in period t an alternative x defeats xt−1 and becomes

xt if it gains the support of a winning coalition of agents.12 In each period t, each agent i

gets instantaneous utility xti and acts as to maximize his continuation utility

U t
i = xti +

∞∑
j=1

βjxt+ji ,

where β ∈ (0, 1) is a common discount factor. We will focus on the case where β is close to
1, i.e. individuals are suffi ciently forward-looking.13

To define which coalitions are powerful enough to redistribute, we use the language of

winning coalitions. Let V ⊂ N be a non-empty set of veto players (denote v = |V |; without
loss of generality, let us assume that V corresponds to the last v agents n− v+1, . . . n), and
let k ∈ [v, n] be a positive integer. A coalition W is winning if and only if (a) V ⊂ W and

(b) |W | ≥ k. The set of winning coalitions is denoted by W:

W =
{
X ∈ 2N \ {∅} : |X| ≥ k and V ⊂ X

}
.

In this case, we say that the society is governed by a k-rule with veto players V , meaning that

a transition is successful if it is supported by at least k players and no veto player opposes it.

We will compare the results for different k and V . We maintain the assumption that there is

at least one veto player– that V is non-empty– throughout the paper; this helps us capture

various political institutions, e.g., a supreme court, but it is also helpful in ruling out cycles.

We do no require that k > n/2, so we allow for minority rules. For example, 1-rule with the

set of veto players {i} is a dictatorship of legislator i.
The timing of the game below uses the notion of a protocol (e.g., Acemoglu, Egorov, and

Sonin, 2012, Ray and Vohra, 2013). A protocol is a sequence (permutation) of legislators who

are able to make proposals. We assume that only veto players are able to make proposals,14 so

the sequence is described by the order of veto players, π1, . . . , πv (e.g., according to seniority

or in alphabetical order). The protocol is the same for all states and defines both the sequence

in which legislators make proposals and vote (both assumptions are non-consequential for

the results). More precisely, the timing of the game in period t ≥ 1 is the following.15

12Acemoglu, Egorov and Sonin (2012) consider an environment where political power may depend on the
state. The characterization results in this paper are made possible by keeping power allocation (i.e. the set
of all possible winning coalitions in each state) constant, which is natural in a legislative bargaining context.
13This assumption is common in dynamic bargaining models and allows us to focus on long-run outcomes.

See, e.g., Acemoglu, Egorov, and Sonin (2009, 2012) and Diermeier and Fong (2011).
14This assumption simplifies the analysis and formal statements considerably, but it is not necessary for

the main results in this paper.
15There are many game forms that would yield to identical results. For example, we could have each

agenda-setter nominate an alternative and then proceed to choosing one that will be put for a vote against
the status-quo. To simplify the exposition and proofs, we opted for a simpler game.
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1. For j = 1, legislator πj is recognized as an agenda-setter as described by the protocol

(π1, . . . , πv), and either proposes an alternative zj 6= xt−1 or passes (in which case we

write zj = ∅).

2. If legislator j passed and j < v, the game moves to stage 1 with j increased by 1, and

if j = n, then xt = xt−1 and the game moves to stage 5.

3. If zj 6= ∅, then all legislators vote in a sequence given by protocol π, yes or no.

4. If the set of those who voted yes, Y j,is a winning coalition, i.e. Y j ∈ W, then the new
allocation is xt = zj, otherwise xt = xt−1.

5. Each legislator i receives an instantaneous payoff xti.

The equilibrium concept we use in this game of full information is Markov Perfect equilib-

rium in pure strategies, with an additional requirement: we impose that when a legislator is

indifferent between continuation payoffs given by the two subgames, he votes yes, and when

he is indifferent between making a proposal and not, he does not.16 One can interpret it as

that proposing a redistribution, as well as resisting a redistribution, is slightly costly, but

passively approving it is not. We do not model cost of redistribution explicitly to simplify

exposition and to save on notation.

3 Analysis

Our strategy is as follows. We start by proving some basic results about equilibria of the non-

cooperative game described above. Then, we characterize stable allocations, i.e. allocations

with no expropriations, and demonstrate that the stable allocations correspond to equilibria

of the non-cooperative game. We then proceed to studying comparative statics with respect

to the number of veto players, different voting rules (majority requirements), and equilibrium

paths that follow an exogenous shock to some agent’s wealth.

3.1 Non-cooperative Characterization

Every pure-strategy Markov Perfect Equilibrium (MPE) σ of the non-cooperative game gives

rise to a transition mapping φ = φσ (we will omit σ whenever it leads to no ambiguity).

This mapping is defined as follows: If xt is the allocation in period t, then the allocation

16This assumption is technical and allows for a simpler characterization of stable allocations. Without it,
the main insights on stability and the effects of majority requirements would still hold, but would be less
transparent.
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in period t + 1 determined by the profile of equilibrium strategies σ is xt+1 = φ (xt). The

Markovian property ensures that this transition mapping is well-defined. The usefulness

of the mapping φ is twofold: first, it allows us to capture equilibrium paths in terms of

allocations and transitions rather than individuals’agenda-setting and voting strategies (i.e.,

more concisely), and second, it allows continuation utilities to be written in a very simple

form. If allocation xt is chosen in period t, then the continuation utility of legislator i from

period t onwards is

U t
i

(
xt
)
= xt +

∞∑
j=1

βj
[
φj
(
xt
)]
i
.

Iterating the mapping φ gives a sequence of mappings φ, φ2, φ3, . . ., which must converge

if φ is acyclic. (Mapping φ is acyclic if x 6= φ (x) implies x 6= φτ (x) for any τ > 1; we will

show that every MPE satisfies this property.) Denote this limit by φ∞, which is simply φt0

for some t0 as the set A is finite. We say that mapping φ is one-step if φ = φ∞ (this is

equivalent to φ = φ2), and we call an MPE σ simple if φσ is one-step. Given an MPE σ,

we call allocation x stable if φσ (x) = x. Naturally, φ∞σ maps any allocation into a stable

allocation.

Our first result deals with existence of an equilibrium. The following theorem shows

that an MPE exists for any protocol when the discount factor β is suffi ciently high. More

importantly, it demonstrates formally that our approach is essentially protocol-free and

justifies our focus on simple MPE: for any two protocols, the fixed point of an equilibrium

transition mapping under one protocol is a reshuffl ing of a fixed point of the equilibrium

transition mapping of the other protocol.

Proposition 1 There exists β0 < 1 such that for any discount factor β ∈ (β0, 1):

1. For any protocol π, there exists a Markov Perfect Equilibrium σ. Moreover, there is a

simple MPE.

2. Every MPE σ is acyclic. If a transition mapping χ is the limit of transition iterations

under some MPE σ (i.e., χ = φ∞σ for some σ), then there is a simple MPE σ′ such

that χ = φσ′.

Apart from existence, this result implies that we can, without any loss of generality, focus

on simple equilibria. Indeed, they always exist (part 1) and they result in the same ultimate

allocations that an MPE can support (part 2); moreover, we show in the Appendix that the

set of mappings that may be supported by a simple MVE does not depend on the protocol

σ. The proof of Proposition 1 is technically cumbersome and is relegated to the Appendix.
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Proposition 1 shows existence of an equilibrium. The following Example 4 demonstrates

that the equilibrium is not necessarily unique: there may be multiple equilibria. However,

the set of stable allocations that may be reached with these equilibria is the same for any

protocol.

Example 4 Suppose there are b = 3 units of wealth, four agents, the required num-

ber of votes is k = 3, and the set of veto players is V = {#4}. In this case, there

is a simple equilibrium with transition mapping φ, under which allocations (0, 0, 0; 3),

(1, 1, 0; 1), (1, 0, 1; 1) and (0, 1, 1; 1) are stable. Specifically, we have the following tran-

sitions: φ (2, 1, 0; 0) = φ (1, 2, 0; 0) = (1, 1, 0; 1); φ (0, 2, 1; 0) = φ (0, 1, 2; 0) = (0, 1, 1; 1);

φ (2, 0, 1; 0) = φ (1, 0, 2; 0) = φ (1, 1, 1; 0) = (1, 0, 1; 1); and any allocation with x4 = 2

has φ (x) = (0, 0, 0; 3). However, another mapping φ′ coinciding with φ except that

φ′ (1, 1, 1; 0) = (1, 1, 0; 1) may also be supported in equilibrium.

3.2 Stable Allocations

Our next goal is to get a more precise characterization of equilibrium mappings and stable

allocations. Let us define a binary relation B (interpreted as a “dominance”relation) on A
as follows:

x B y ⇐⇒ {i ∈ N : xi ≥ yi} ∈ W and xj > yj for some j ∈ V .

Intuitively, allocation x dominates allocation y if some agenda-setter strictly prefers x to y

so as to be willing to make this motion, and there is a winning coalition that (weakly) prefers

x to y. Note that this does not imply that x will be proposed or supported in an actual

voting against y because of further changes this move may lead to. Following the standard

definition (von Neumann and Morgenstern, 1947, Greenberg, 1990), we call a set of states

S ⊂ A von Neumann-Morgenstern- (vNM-)stable if the following two conditions hold: (i)
For no states x, y ∈ S it holds that y B x (internal stability); and (ii) For each x 6∈ S there
exists y ∈ S such that y B x (external stability).

Below, we prove that in our case, the vNM-stable set is unique, and corresponds to the

fixed points of transition mappings of non-cooperative equilibria described in Proposition 1.

Let us denote q = k − v, the number of non-veto players that is required in any winning

coalition; d = m − q + 1 = n − k + 1, the size of a minimal blocking coalition of non-

veto players; and, finally, r = bm/dc, the maximum number of pair-wise disjoint blocking

coalition that non-veto players may be split into.

Proposition 2 1. For the binary relation B, a vNM-stable set exists and is unique.
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2. Each element x of this set S has the following structure: the set of non-veto players

M = N \V may be split into a disjoint union of r groups G1, . . . , Gr of size d and one

(perhaps empty) group G0 of size m− rd, such that inside each group, the distribution
of wealth is equal: xi = xj = xGk whenever i, j ∈ Gk for some k ≥ 1, and xi = 0 for
any i ∈ G0. In other words, up to a permutation of members in M :

x ∈ S⇔ x =

λ1, . . . , λ1︸ ︷︷ ︸
d times

, λ2, . . . , λ2︸ ︷︷ ︸
d times

, . . . , λr, . . . , λr︸ ︷︷ ︸
d times

, 0, . . . , 0︸ ︷︷ ︸
m−rd times

;xm+1, . . . , xn︸ ︷︷ ︸
veto players

 .
3. There exists β0 < 1 such that for any discount factor β ∈ (β0, 1) and any MPE σ,

φσ (x) = x⇔ x ∈ S.

The proof of Parts 1 and 2 is important for understanding the structure of endogenous

veto groups, and we prove it in the text (the proof of Part 3 is technical, and we relegate it

to the Appendix). We show that starting from any wealth allocation x ∈ S, it is impossible
to redistribute the units between agents without making at least d agents worse off, and thus

no redistribution would gain support from a winning coalition. In contrast, starting from

any allocation x /∈ S, such redistribution is possible. Furthermore, our proof will show that
in any transition, the number of individuals who are worse-off as a result is limited to the

d− 1 richest non-veto players.

Proof of Proposition 2, Parts 1 and 2. We will prove that set S, as defined in Part

2, is vNM-stable, thus ensuring existence. To show internal stability, suppose that x, y ∈ S
and y B x, and let the r groups be G1, . . . , Gr and H1, . . . , Hr, respectively. Without loss

of generality, we can assume that each set of groups is ordered so that xGj and yHj are

non-increasing in j for 1 ≤ j ≤ r. Let us prove, by induction, that xGj ≤ yHj for all j.

The induction base is as follows. Suppose that the statement is false and xG1 > yH1 ; then

xG1 > ys for all s ∈ M . This yields that for all agents i ∈ G1, we have xi > yi. Since the

total number of agents in G1 is d, G1 is a blocking coalition, and therefore it cannot be true

that yj ≥ xj for a winning coalition, contradicting that y B x.

For the induction step, suppose that xGl ≤ yHl for 1 ≤ l < j, and also assume, to obtain

a contradiction, that xGj > yHj . Given the ordering of groups, this means that for any l, s

such that 1 ≤ l ≤ j and j ≤ s ≤ r, xGl > yHs . Consequently, for agent i ∈
⋃j
l=1Gl to have

yi ≥ xi, he must belong to
⋃j−1
s=1Hs. This implies that for at least jd− (j − 1) d = d agents

in
⋃j
l=1Gl ⊂ M , it cannot be the case that yi ≥ xi, which contradicts the assumption that

y B x. This establishes that xGj ≤ yHj for all j, and therefore
∑

i∈M xi ≤
∑

i∈M yi. But

y B x would require that xi ≤ yi for all i ∈ V with at least one inequality strict, which

implies b =
∑

i∈N xi <
∑

i∈N yi = b, a contradiction. This proves internal stability of set S.
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Let us now show that the external stability condition holds. To do this, we take any x 6∈ S
and will show that there is y ∈ S such that y B x. Without loss of generality, we can assume

that xi is non-increasing for 1 ≤ i ≤ m (i.e., non-veto players are ordered from richest to

poorest). Let us denote Gj = {(j − 1) d+ 1, . . . , jd} for 1 ≤ j ≤ r and G0 =M \
(⋃r

j=1Gj

)
.

Since x 6∈ S, it must be that either for some Gj, 1 ≤ j ≤ r, the agents in Gj do not get the

same allocation, or they do, but some individual i ∈ G0 has xi > 0. In the latter case, we

define y by

yi =


xi if i ≤ dr or i > m+ 1;
0 if dr < i ≤ m;

xi +
∑

j∈G0 xj if i = m+ 1

(In other words, we take everything possessed by individuals in G0 and distribute it among

veto players, for example, by giving everything to one of them). Obviously, y ∈ S and y B x.

If there exists a group Gj such that not all of its members have the same amount of

wealth, let j be the smallest such number. For i ∈ Gl with l < j, we let yi = xi. Take the

first d − 1 members of group Gj, Z = {(j − 1) d+ 1, . . . , jd− 1}. Together, they possess
z =

∑jd−1
i=(j−1)d+1 xi > (d− 1)xjd (the inequality is strict precisely because not all xi in

Gj are equal). Let us now take these z units and redistribute it among all the agents

(perhaps including those in Z) in the following way. For each s : j < s < r, we let

y(s−1)d = y(s−1)d+1 = · · · = ysd−1 = x(s−1)d; this makes these d agents having the same

amount of wealth and being weakly better off as the agent with number (s− 1) d was the
richest among them.

Now, observe that in each group s, we spend at most (d− 1)
(
x(s−1)d − xsd−1

)
≤

(d− 1)
(
x(s−1)d − xsd

)
. For s = r, we take d agents as follows: D = {(r − 1) d, . . . ,m} ∪ Z ′,

where Z ′ ⊂ Z is a subset of the first d− (m− (r − 1) d+ 1) = rd−m− 1 agents needed to
make D a collection of exactly d agents (notice that Z ′ = ∅ if |G0| = d − 1 and Z ′ = Z if

G0 = ∅). For all i ∈ D, we let yi = x(r−1)d (thus making all members of G0 weakly better

off and spending at most (d− 1)x(r−1)d units) and we let yi = 0 for each i ∈ Z \ Z ′. We
have thus defined yi for all i ∈M and distributed

c ≤ (d− 1)
(
xjd − x(j+1)d + · · ·+ x(r−2)d − x(r−1)d + x(r−1)d

)
= (d− 1)xjd,

thus having z − c > 0 remaining in our disposal. As before, we let ym+1 = xm+1 + z − c

and yi = xi for i > m + 1. We have thus constructed y ∈ S such that ym+1 > xm+1 and

{i ∈ N : yi < xi} ⊂ Z. The latter, given |Z| ≤ d− 1, implies {i ∈ N : yi ≥ xi} ∈ W, which
means y B x. This completes the proof of external stability, and thus S is vNM-stable.

Let us now show that S is a unique stable set defined by B. Suppose not, so there is S′

that is also vNM-stable. Let us prove that x ∈ S ⇔ x ∈ S′ by induction on
∑

i∈M xi. The
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induction base is trivial: if xi = 0 for all i ∈ M , then x ∈ S by definition of S. If x /∈ S′,
then there must be some y such that y B x. But for such y,

b =
∑

i∈N
yi ≥

∑
i∈V

yi >
∑

i∈V
xi =

∑
i∈N

xi = b,

a contradiction.

The induction step is as follows. Suppose that for some x with
∑

i∈M xi = j > 0, x ∈ S
but x /∈ S′ (the vice-versa case is treated similarly). By external stability of S′, x /∈ S′

implies that for some y ∈ S′, y B x, which in turn yields that
∑

i∈V yi >
∑

i∈V xi. We have∑
i∈M

yi = b−
∑

i∈V
yi < b−

∑
i∈V

xi =
∑

i∈M
xi = j.

For y such that
∑

i∈M yi < j induction yields that y ∈ S ⇔ y ∈ S′, and thus y ∈ S.
Consequently, there exists some y ∈ S such that y B x, but this contradicts x ∈ S. This
contradiction establishes uniqueness of the stable set.�

The characterization of stable allocations obtained in Proposition 1 gives several impor-

tant insights. First, the set of stable allocations (fixed points of any transition mapping

under any MPE) does not depend on the mapping; it maps into itself when either the veto

players V or the non-veto players N \ V are reshuffl ed in any way. Second, the allocation of

wealth among veto players does not have any effect on stability of allocations. Third, each

stable allocation has a well-defined “class”structure: every non-veto player with a positive

allocation is part of a group of size d (or a multiple of d) of equally-endowed individuals who

have incentives to protect each other’s interests.17

To demonstrate how this protection works, consider the following example.

Example 5 There are b = 15 units. Take n = 5 individuals with one veto agent (#5)

and a supermajority requirement k = 4 (i.e., a supermajority of four-fifths is needed for a

transition). Then d = 2 and r = 2, so stable allocations have two groups of size two. In

particular, allocation x = (4, 4, 2, 2; 3) is stable. Let φ be a transition mapping for some

simple MPE σ.

Suppose that we, exogenously, remove a unit from agent #2 and give it to the veto player;

i.e., consider y = (4, 3, 2, 2; 4). This resulting allocation is unstable, and agent #1 will

necessarily be expropriated. The way redistribution may take place is not unique; for example,

φ (y) = (3, 3, 2, 2; 5) is possible, but so are φ (y) = (2, 3, 3, 2; 5) or φ (y) = (2, 3, 2, 3; 5).

17It is permissible that two groups have equal allocations, xGj = xGk
, or that members of some or all

groups get zero. In particular, any allocation x where xi = 0 for all i ∈ M is in S. Notice that if non-veto
players get the same under two allocations x and y, so x|M = y|M , then x ∈ S ⇔ y ∈ S; moreover, this is
true if xi = yπ(i) for all i ∈M and some permutation π on M .
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Now suppose that one of the agents possessing two units, say agent 3, was expropriated,

i.e., take z = (4, 4, 1, 2; 4). Then it is possible that the other member, agent 4, would be

expropriated as well: φ (z) = (4, 4, 1, 1; 5). But it is also possible that one of the richer agents

may be expropriated instead: e.g., a transition to φ (z) = (4, 1, 1, 4; 5) would be supported by

all agents except agent #2.

Example 5 demonstrates that equilibrium protection that agents provide to each other

extends beyond members of the same economic class. In the latter case, agent #2 would op-

pose a move from (4, 4, 2, 2; 3) to (4, 4, 1, 2; 4) if the subgame the next move is to (4, 1, 1, 4; 5) .

This corresponds to a coalition among economic classes.

We see that in general, an exogenous shock may lead to expropriation, on the subsequent

equilibrium path, of agents belonging to different wealth groups; the particular path depends

on the equilibrium mapping, which is not unique. However, if we apply the refinement that

only equilibria with a “minimal”(in terms of the number of units that need to be transferred)

redistribution along the equilibrium path are allowed, then only the agents with exactly the

same wealth endowment would suffer from the redistribution that follows a shock.

Also, Example 5 demonstrates the mechanism of mutual protection among players with

the same wealth. If a non-veto player becomes poorer, at least d−1 agents other agents would
suffer in the subsequent redistribution. This makes them willing to oppose any redistribution

from any of their members. Their number, if we include the initial expropriation target

himself, is d, which is suffi cient to block a transition. Thus, members of the same economic

class have an incentive to act as a politically cohesive coalition, in which its members mutually

protect each others’economic interests.

The next proposition generalizes Example 5 to establish the mutual protection result

formally. It also highlights that protection of a non-veto player is sustained, in equilibrium, by

equally endowed or richer individuals, rather than by those who has less wealth. Proposition

3 focuses on equilibrium consequences of a negative shock to some agent’s wealth, starting

with a stable allocation.

Proposition 3 Consider any MPE σ and let φ = φσ. Suppose that the voting rule is not

unanimity (k < n), so d > 1. Take any stable allocation x ∈ S, some non-veto plater i ∈M ,
and let new allocation y ∈ A be such y|M\{i} = x|M\{i} and yi < xi. Then:

1. Player i will never be as well off as before the shock, but he will not get any worse

off: yi ≤ [φ (y)]i < xi. Furthermore, the number of agents that suffer as a result of a

redistribution on the equilibrium path defined by σ is given by:∣∣∣{j ∈M \ {i} : [φ (y)]j < yj

}∣∣∣ = d− 1;
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2. Suppose, in addition, that for any k ∈ M with xk < xi, xk ≤ yi, i.e., the shock did

not make agent i poorer than the agents in the next wealth group. Then [φ (y)]j < yj

implies xj ≥ xi, i.e., members of poorer wealth groups do not suffer from redistribution.

The essence of Proposition 3 is that following a negative shock to some agent’s wealth

(yi < xi), at least d − 1 other agents are expropriated, and agent i never fully recovers. If
the shock is relatively minor so the ranking of agent i relative to other wealth groups did not

change (weak inequalities are preserved),18 then it must be equally endowed or richer people

who suffer from subsequent redistribution. Thus, in the initial stable allocation x, they have

incentives to protect i from the negative shock. This result may be extended to the case

when a negative shock affects more than one (but less than d) non-veto players. The proof

is straightforward when all the affected agents belong to the same wealth group. However,

this requirement is not necessary. If expropriated agents belong to different groups, then

the lower bound of the resulting wealth after redistribution is the amount of wealth that

the poorest (post-shock) agent possesses. In this case, the number of agents who suffer as a

result of the redistribution following the shock is still limited by d− 1.
Our next step is to derive comparative statics with respect to different voting rules given

by k and v.

4 Comparing Voting Rules

Suppose that we vary the supermajority requirement, k, and the number of veto players, v.

The following result easily follows from the characterization in Proposition 2.

Proposition 4 Fix the number of individuals n.

1. The size of each group Gj, j ≥ 1, is decreasing as the majority requirement k increases.
In particular, for k = v + 1, d = n − v = m, and thus all the non-veto players form

a single group; for k = n (unanimity rule), d = 1, and so each agent can veto any

change.

2. The number of groups is weakly increasing in k, from 1 when k = v + 1 to m when

k = n (from 0 when k < v + 1).

3. The size of each group Gj, j ≥ 1 does not depend on the number of veto players, but
as v increases, the number of groups weakly decreases, reaching zero for v > n− d.

18Note that this will always be the case if, e.g., yi = xi − 1.
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The last result is most remarkable. The size of groups does not depend on the number

of veto players, but only on the majority requirement as it determines the minimal size of

blocking coalitions. As the majority requirement increases, groups become smaller. This has

a very simple intuition: as redistribution becomes harder (it is necessary to get approval of

more agents), it takes fewer non-veto players to defend themselves; as such, smaller groups

are suffi cient. Conversely, the largest group (all non-veto players together) is formed when

a single vote from a non-veto player is suffi cient for veto players to accept a redistribution;

in this case, non-veto players can only keep a positive payoff by holding equal amounts.

Example 6 Suppose that k = v + 1; as before, d = n − v. In this case, an allocation x is
stable if xi = xj for all non-veto players i and j, i.e., if all non-veto players hold the same

amount. This is consistent with Proposition 1 of Diermeier and Fong (2011), which shows

this result for the special case n = 3, v = 1. More generally, a single group of non-veto

players with positive amount of wealth may be formed if and only if k − v ≡ q ≤ (m+ 1) /2.
In this case, some n− k + 1 non-veto players belong to the group and get the same amount,
and the rest get zero.

One important implication of Proposition 4 is that k and v affect the economic het-

erogeneity of the society in equilibrium, at least for the non-veto players. Indeed, take n

large and v small (so that m is large enough to be interesting) and start with the smallest

possible value of k = v + 1. Then all the non-veto players possess the same allocation in

any equilibrium. In other words, all agents, except perhaps those explicitly endowed with

veto power, must be equal. If we increase k, then two groups will form, one of which may

possess a positive amount, while the rest possesses zero, which is clearly more heterogenous

than for k = v + 1. If we increase k further beyond v + (m+ 1) /2, then both groups may

possess positive amounts and a third group will form further, etc. In other words, as k

increases, so does the number of groups, which implies that the society becomes less and

less homogenous and can support more and more groups of smaller size. We see that in this

model, heterogeneity of the society is directly linked to diffi culty of expropriation, measured

by the degree of majority needed for expropriation or, equivalently, by the minimal size of a

coalition that is able to resist attempts to expropriate. If we interpret the equally-endowed

groups as economic classes, then we have the following result: the more politically diffi cult it

is to expropriate, the larger is the number of classes in a society.

Proposition 4 dealt with comparing stable allocations for different k and v. We now

study whether or not an allocation that was stable under some rules k and v remains stable

if these rules change. For example, suppose that we make an extra individual a veto player

(increase v), or increase the majority rule requirement (increase k). A naive intuition would
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say that in both these cases, individuals would not be worse off from better property rights

protection. As the next proposition shows, in general, the opposite is likely to be true. Let

Sk,V denote the set of stable allocations under the supermajority requirement k and the set

of veto players V.

Proposition 5 Suppose that allocation x is stable for k (k < n) and V (x ∈ Sk,V ). Then:

1. If we increase the number of veto players by granting an individual i /∈ V veto power

so that the new veto set is V ∪ {i}, then allocation x ∈ Sk,V ∪{i} if and only if xi = 0;

2. Suppose k + 1 < n and all groups Gj, j ≥ 0, had different amounts of wealth under x:
xGj 6= xGj′ for j

′ 6= j (and x|M 6= 0). If we increase the majority requirement from k

to k′ = k + 1, and k′ < n, then x /∈ Sk+1,V .

The first part of this proposition suggests that adding a veto player makes an allocation

unstable, and therefore will lead to a redistribution hurting some individual. There is only

one exception to this rule: if the new veto player had nothing to begin with, then the

allocation will remain stable. On the other hand, if the new veto player had a positive

amount of the good, then, while he will be weakly better off from becoming a veto player,

there will be at least one other non-veto player who will be worse off. Indeed, removing

a member of one of the groups Gj without changing the required sizes of the groups must

lead to redistribution. This logic would not apply if V ′ = N , when all agents become veto

players; however, the proposition is still true in this case because then i would have to be

the last non-veto player, and under k < n he would have to get xi = 0 in a stable allocation

x. Interestingly, removing a veto player i (making him non-veto) will also make x unstable

as long as xi > 0. This is, of course, less surprising, as this individual may be expected to

be worse off.

The second part says that if all groups got different allocations (which is the typical case),

then an increase in k would decrease the required group sizes, leading to redistribution. When

some groups have equal amounts of wealth in a stable allocation, then allocation x may, in

principle, remain stable. This is trivially true when all non-veto players get zero (xi = 0 for

all i /∈ V ), but, as the following Example 7 demonstrates, this is possible in other cases as
well.

Example 7 Suppose n = 7, V = {#7}, b = 6 and the supermajority requirement is k = 5.
Then x = (1, 1, 1, 1, 1, 1; 0) is a stable allocation, because d = 3 and the non-veto players

form two groups of size three. If we increase k to k′ = 6, then x remains stable, as then

d′ = 2 and x has three groups of size two.
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5 Veto Power and Incentives to Invest

Our analysis so far has focused on the game of pure redistribution. This allowed us to identify

two distinctive sources of property rights: legal rights (here modeled as exogenous veto

power) and equilibrium property rights.19 In Section 3, we showed that the consequences of

these rights might be different: in particular, in response to a shock, agents with equilibrium

property rights may suffer, and this makes them protect each other on the equilibrium path.

A natural question is whether equilibrium property rights are different from legal ones when

it comes to important economic activities such as production, investment, and, ultimately,

the implications for economic growth. While a comprehensive analysis of these issues is,

obviously, beyond the scope of the paper, we argue below that the distinction between two

types of property rights has very real implications. To show why, we consider a very simple

extension to the game of Section 2. Consider first the following example.

Example 8 Take four agents n = 4 and assume that one of them is veto; V = {#4}; let
b = 12. The supermajority requirement is k = 2, i.e., it takes the veto player and one non-

veto player to redistribute successfully. In this case, the size of the minimal blocking coalition

of non-veto players is d = 3. Start with a stable allocation x = (3, 3, 3; 3).

Suppose that before the redistribution game is played, in period 0, some agents (a subset

L) get an opportunity to work and produce: if an individual i works, he gets a disutility c < 1

from labor, but creates 1 unit of wealth that initially goes to him: x0i = xi + 1. Assume also

that agents know who has a production opportunity and who does not.

The incentives of the veto player #4 are clear: he produces whenever he is given an

opportunity to, because he will keep the product of his labor. Now, consider the incentives

that agent #1 face. He is only going to keep the product of his labor if the other two non-veto

players produce successfully, so that each of them gets 4 units. Therefore, he will not invest

unless L ⊂ {1, 2, 3}, and even in that case, multiple equilibria are possible: with the three
non-veto players investing and with the three of them not investing. The reason for this

multiplicity is that under the threat of redistribution, production is a coordination game: a

agent can retain what he produces only if all the agents in his group get richer; otherwise

he gets expropriated. For example, if #1 is the only one who invested, the allocation is

x0i = (4, 3, 3; 3), which will lead, after redistribution, to x
t
i = (3, 3, 3; 4) from the next period

on. This means that if the opportunity to produce comes to all the agents with equal probability

and independently, then a veto player is ex ante strictly more likely to invest than a non-veto

19Recall that all we mean by "legal rights" here is that they are modeled as exogenous veto power. No
reallocation is possible without the consent of the current asset holder. As we discussed above such exogenous
veto power can rest in explicit legal protections or in the ability to defend allocations unilaterally by force.
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player —even though they may be equal in terms of the initial endowment.

Now let us modify the example by increasing the supermajority requirement to k = 3. In

that case, d = 2; let us start with a stable allocation x̃ = (4, 4, 0; 4). Again, the veto player

makes the effi cient decision to produce: he does so whenever he has an opportunity. Agents

#1 and #2 produce only if both of them have an opportunity to do so: indeed, if only one

agent produces, he is going to be expropriated: e.g., if x̃0 = (5, 4, 0; 4), then redistribution

may lead to (4, 4, 0; 5) or (0, 4, 4; 5), but in any case agent #1 would not keep the extra unit

that he produces. In other words, agents #1 and #2 are again less likely to produce than the

veto player. However, in this case, they do not need to have agent #3 producing in order to

coordinate on production. This implies that production by non-veto players is a more likely

event when property rights are better defended: when it is harder to expropriate, coordination

between fewer players is needed for a production decision to be undertaken.

The intuition developed in Example 8 holds more generally. To study the consequences

of different types of property rights, we develop a simple growth model below.

For simplicity and tractability, let us focus on the case where q ≤ (m+ 1) /2, so that
in any stable allocation, there is only one group of non-veto agents with positive allocation

(see Example 6); in addition, assume that there is only one veto player. In this case, the

condition q ≤ (m+ 1) /2 may then be rewritten as k ≤ n/2 + 1. These assumptions ensure

that the distribution of wealth is characterized by only two variables: the amount that the

veto player possesses and the amount that non-veto players possess.

Assume that in the beginning every period (which starts with allocation xt−1 inherited

from the previous period) each agent gets an opportunity to produce with probability p,

independently across agents and periods; production requires effort c > 0. Let L denote the

set of agents who have the opportunity to produce. All agents observe who belongs to L and

make production decisions (eti ∈ {0, 1}). After producing and observing the intermediate
outcome x̃t given by

x̃ti = xt−1i + ei,

they play a within-period redistribution game as in Section 2, with the additional assumption

that voting against a proposal costs an agent ε ∈ (0, 1).20 We are interested in Markov Perfect
equilibria of the game with pure production strategies along the equilibrium path.

To obtain a precise characterization, let us furthermore assume that the initial allocation,

x0, is stable in the corresponding game without production, i.e., x0 ∈ S, and the group
structure among non-veto players is already established, namely, x0i > 1 for some i ∈ n \ V
20In the basic setup, we assume that agents weakly prefer to agree with proposals, now we assume that

they strictly prefer to do so.
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(let the set of such non-veto players be G). Finally, let us focus on MPEs with minimal

redistribution on the equilibrium path: for every x, the difference ‖φσ (x)− x‖ achieves its
minimum among all possible MPEs σ. The next example illustrates this concept.

Example 9 Consider again Example 4: there are four agents, one of them (#4) has veto

power, with k = 3 and b = 3 . Then the equilibrium φ described there is minimal: in

particular, φ ((2, 1, 0; 0)) = (1, 1, 0; 1). On the other hand, if we take ψ equal to φ except that

ψ ((2, 1, 0; 0)) = (0, 1, 1; 1), then ψ may be supported in a simple MPE, but is not minimal.

Focusing on minimal equilibria appears to be a reasonable equilibrium selection criterion

as the actual process of transferring units of wealth might involve some costs. Under the

assumptions discussed above, we get the following results.

Proposition 6 Suppose that the status-quo x0 is a stable allocation, and let G be the subset

of non-veto players with x0i > 1. There exists β0 > 0 such that for any discount factor

β ∈ (β0, 1) , there exists a threshold p0 > 0 such that for any p ∈ (0, p0):
(i) the veto player (i = #n) produces whenever he has the opportunity (i ∈ L);
(ii) there always exists a minimal MPE where non-veto players never produce. In any

minimal MPE, non-veto players with zero endowment produce nothing: for i /∈ V , xt−1i = 0

implies ei = 0.

(iii) in the equilibrium maximizing social welfare, non-veto players from group G produce

whenever all of them have this opportunity, i.e., G ⊂ L implies ei = 1 for i ∈ G.

In other words, veto players make an effi cient decision to produce. As for non-veto players,

there always exists an equilibrium where they do not invest at all. They may only invest if

all members of their group have an opportunity to do so; only then may they coordinate on

investment.

Proposition 6 yields an important conclusion: equilibrium property rights enjoyed by

non-veto players create less incentives to invest, and ultimately lead to ineffi cient outcomes.

For non-veto players whose property rights are just an equilibrium phenomenon, production

effectively becomes a game of coordination. Producing alone does not make sense, as the

successful producer would be expropriated along the equilibrium path. It is only worth the

effort if there are multiple agents that will produce and will be able (and willing) to protect

each other (and obviously, if the result of production was uncertain, the decision to produce

would be even harder to coordinate on). As a result, non-veto players produce only if some

other players produce, and therefore they do so less frequently than veto players do. It is

straightforward to show that in the absence of redistribution, they would be more investment

by non-veto players.
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Let us now study comparative statics, focusing on the following variable of interest: g =

maxσ E
∑

i∈N
ei, where the maximum is taken over all minimal MPEs (and this maximum

does not depend on the period). This g has a natural interpretation as (average) economic

growth.

Proposition 7 Under the assumptions of Proposition 6, in the minimal MPE that maxi-

mizes social welfare:

1. the growth rate g = maxσ E
∑

i∈N
ei is increasing in p, the rate at which production

opportunities arrive;

2. the growth rate g is increasing in k, the degree of property rights protection.

These comparative statics results are intuitive: the more often individuals have a chance

to produce, the faster wealth accumulates. The smaller is the group of agents that needs to

coordinate, the more likely they are to succeed in coordinating. This finding has important

implications: the harder it is to expropriate, the more likely we have production or investment

decisions, resulting in faster economic growth. Remarkably, this effect does not result from

the actions of agents whose property rights are legally protected (veto players), but rather

from those who only enjoy equilibrium property rights.

This analysis yields the following important insights. First, property rights have different

implications for growth: the individuals who have legal rights are more likely to produce and

to accumulate wealth than other agents. Non-veto players who possess property rights in

equilibrium also can invest, but do so less frequently and only if they are able to coordinate.

In other words, while the equilibrium effects we study in this paper are able to maintain a

status quo, they are less effective in promoting growth and investment, especially if expropri-

ation is relatively easy. Second, production decisions by individuals or groups of individuals

may be different even if their observed wealth is the same: these decisions depend on whether

their property rights are protected by law or are sustained in equilibrium by others’fear of

being expropriated. These insights may be helpful for understanding allocations of wealth

and means of production, economic growth, and social structure in a historical perspective.

6 Conclusion

The modern political economy literature on checks and balances has mainly concentrated

on public spending with less attention being paid to the original motivation of protecting

property rights. The reason may lie in the intuition that the relationship between additional
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checks and balances and better protection of rights seems so obvious that there is little left

to explain. Yet, from a political economy perspective property rights systems are to be

understood as equilibrium outcomes rather than exogenous fixed constraints. Legislators

cannot commit to entitlements, prerogatives, and rights. Rather, any allocation must be

maintained in equilibrium. By varying the characteristic of the political institutions (here

modeled as checks and balances) one can assess the consequences for economic institutions

(property rights).

Our approach suggests shows that a dynamic perspective may lead to a more subtle

understanding of the effects of checks and balances such as veto players and super-majority

rules. Traditionally, such features are viewed as constraints on collective choice; they are

exogenous to political behavior. Our model shows that a dynamic environment may lead to

the emergence of endogenous veto groups: groups of players that sustain a stable allocation

in equilibrium. Our analysis also shows that stable allocations give rise to an “economic

classes”structure. That is, non-veto players with a positive allocation are part of a group

of equally-endowed individuals who have incentives to protect each other’s interests. The

effect of exogenous constraints on endogenous veto groups is complex. One the one hand,

endogenous veto groups may protect each other in equilibrium even in the absence of formal

veto rights. One the other hand, adding more veto players may lead to more instability

and policy change if such additions upset dynamic equilibria where agents were mutually

protecting each other.

Our results point to the importance of looking beyond formally defined property rights,

and more, generally, beyond formal institutions. While formal institutions provide better

incentives for investment and production, the incentives provided by informal equilibrium

institutions are substantial as well. Thus, a change in formal institutions might strengthen

protection of property rights of designated agents, yet have negative consequences for pro-

tection of property rights of the others, and, as a result, a negative overall effect.
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Appendix

Proofs

Our strategy of proof is the following. First, we prove three auxiliary lemmas; then, we

complete the proof of Proposition 2. After that, we prove Proposition 1.

Let β0 =
(
|A|
|A|+1

) 1
|A|
. We show that for β ∈ (β0, 1), and any acyclic mapping φ, if an

individual prefers the ultimate allocation φ∞ (x) to φ∞ (y), then he prefers the continuation

utility starting from x to one starting from y.

Lemma 1 Suppose β ∈ (β0, 1). Then for any acyclic mapping φ, any agent i ∈ N and any

allocations x, y ∈ A, [φ∞ (x)]i > [φ
∞ (y)]i implies Ui (x) > Ui (y).

Proof of Lemma 1. Simple algebra shows that β satisfies
(
1− β|A|

)
|A| > β|A|. Now,

since φ is acyclic, we have φ∞ = φt for t ≥ |A|. Using these two results, we get

Ui (x) =
(
xi + [φ (x)]i + · · ·+

[
φ|A|−1 (x)

]
i

)
+

β|A|

1− β [φ
∞ (x)]i

≥ β|A|

1− β [φ
∞ (x)]i >

1− β|A|

1− β |A|+
β|A|

1− β ([φ
∞ (x)]i − 1)

≥ 1− β|A|

1− β |A|+
β|A|

1− β [φ
∞ (y)]i

≥
(
yi + [φ (y)]i + · · ·+

[
φ|A|−1 (y)

]
i

)
+

β|A|

1− β [φ
∞ (y)]i = Ui (y) .

�

To formulate the next lemma, we introduce the following notation. Take any (not nec-

essarily simple) MPE σ; then for each status quo x there is a set of stages Jx ⊂ {1, . . . , v}
such that if stage j ∈ Jx is reached, agent πx,j proposes an alternative zx,j 6= ∅, and it is
accepted in subsequent voting.

Lemma 2 Suppose β > β0 =
(
|A|
|A|+1

) 1
|A|
. For any (acyclic) MPE σ and any x ∈ A:

1. if proposal y is accepted at some stage j, then the set of agents

{i ∈ N : [φ∞σ (y)]i ≥ [φ
∞
σ (x)]i} ∈ W;

2. if proposal y is accepted at some stage j, then for any i ∈ V , Ui (y) ≥ Ui (x);

3. the set of agents {i ∈ N : Ui (φσ (x)) ≥ Ui (x)} ∈ W;
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4. the set of agents {i ∈ N : [φ∞σ (x)]i ≥ xi} ∈ W;

5. either φ∞σ (x) = x or φ∞σ (x) B x.

Proof of Lemma 2. Part 1. Suppose not; then take any i ∈ N for whom the opposite

holds: [φ∞σ (y)]i < [φ∞σ (x)]i. By Lemma 1, this must imply Ui (y) < Ui (x). Hence, the set

{i ∈ N : Ui (y) ≥ Ui (x)} /∈ W. But this implies that y cannot be the outcome of the voting
at that stage, which contradicts the assumption.

Part 2. This is trivial: if Ui (y) < Ui (x) and y is accepted in equilibrium, it means that

agent i votes Y es, but it would be a best response to vote No and thus veto the proposal,

which cannot be true in an equilibrium.

Part 3. This statement is trivial if φσ (x) = x. Otherwise, Jx 6= ∅ and at the stage

j = min Jx, the proposal zx,j = φσ (x) is made and is accepted. Each agent i gets utility

Ui (φσ (x)) if it is accepted and utility Ui (x) if it is not. Assuming, to obtain a contradiction,

that {i ∈ N : Ui (φσ (x)) ≥ Ui (x)} /∈ W, would imply that the proposal cannot be accepted
in equilibrium; this proves the result.

Part 4. The statement is trivial if φσ (x) = x, so consider the case φσ (x) 6= x. Consider

a mapping φ0 : A→ A given by φ0 (y) = φ (y) if y 6= x and φ0 (x) = x; since φ is acyclic, φ0
is acyclic, too. Consider an individual i ∈ N such that [φ∞σ (x)]i < xi. Since φ

∞
0 (φσ (x)) =

φ∞σ (x) and φ∞0 (x) = x, then applying Lemma 1 to mapping φ0 yields Ui (φσ (x)) <

xi/ (1− β). Rearranging, we have Ui (φσ (x)) < xi + βUi (φσ (x)), which is equivalent to

Ui (φσ (x)) < Ui (x). Thus, {i ∈ N : [φ∞σ (x)]i < xi} ⊂ {i ∈ N : Ui (φσ (x)) < Ui (x)}, and
hence {i ∈ N : [φ∞σ (x)]i ≥ xi} ⊃ {i ∈ N : Ui (φσ (x)) ≥ Ui (x)}. By Part 3, the latter is win-
ning, which, coupled with monotonicity, completes the proof.

Part 5. If φ∞σ (x) 6= x, then the set Jx 6= ∅. Assume, to obtain a contradiction,

that φ∞σ (x) 7 x. Since {i ∈ N : [φ∞σ (x)]i ≥ xi} ∈ W by Part 4, it must be that for all

i ∈ V : [φ∞σ (x)]i = xi. Consider the agent k = πmin Jx ∈ V who makes the proposal

at the stage min Jx. Let us prove that
[
φlσ (x)

]
k
= xk for all l ≥ 1. Indeed, suppose

first that some l,
[
φlσ (x)

]
k
> xk. But then Part 4 (given that k ∈ V ) would imply that

[φ∞σ (x)]k =
[
φ∞σ
(
φlσ (x)

)]
k
≥
[
φlσ (x)

]
k
> xk, contradicting the earlier result. Now suppose

that
[
φlσ (x)

]
k
≤ xk for all l, but

[
φlσ (x)

]
k
< xk for some l. But in that case, Uk (φσ (x)) <

xk/ (1− β), implying Uk (φσ (x)) < Uk (x), which contradicts the result of Part 2. Hence,[
φlσ (x)

]
k
= xk for all l ≥ 1. This implies that Uk (φσ (x)) = Uk (x) = xk/ (1− β).

Consider the utility of agent k if he passes on his chance to propose. If |Jx| = 1, then

in that stage x remains the status quo, and k gets continuation utility U ′k = xk + βUk (x) =

xk + βxk/ (1− β) = xk/ (1− β) = Uk (x). If |Jx| > 1, then some proposal y 6= x is accepted,

and from Part 2 we know that in this case, U ′k = Uk (y) ≥ Uk (x). In either case, U ′k ≥ Uk (x),
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so his out-of-equilibrium continuation utility if he passes is at least as high as his utility from

making the proposal. In other words, he does not strictly prefer to make the proposal, which

is impossible in the set of equilibria that we consider. This contradiction completes the proof.

�

Lemma 3 Any MPE σ is acyclic.

Proof of Lemma 3. Part 1. Suppose that there is a cycle starting from x: φσ (x) 6= x,

but φlσ (x) = x for some l > 1. Similarly to Part 2 of Lemma 2, we can prove that for any

i ∈ V , Ui
(
φj+1σ (x)

)
≥ Ui

(
φjσ (x)

)
for any j, which means that Ui (x) = Ui (φσ (x)) = · · · =

Ui
(
φl−1σ (x)

)
, and therefore xi = [φσ (x)]i = · · · =

[
φl−1σ (x)

]
i
. Consider the agent k = πmin Jx ;

as in the proof of Part 5 of Lemma 2, we can show that by passing on the opportunity to

make his proposal, he can guarantee U ′k ≥ xk/ (1− β) = Uk (φσ (x)) = Uk (x) which he gets

if he follows the equilibrium play. But this means that he is not strictly better off by making

a proposal, which is impossible. This contradiction completes the proof. �

Proof of Proposition 2. Part 1, Part 2: Proven in the text.

Part 3. We let β ∈ (β0, 1), with β0 defined above. Let D = {x ∈ A : φσ (x) = x}; we
then must prove that D = S. To do so, we prove that D is vNM-stable with respect to

the binary relation B; given the results of Part 1 and Part 2, this will imply that D = S.

We need to show that D satisfies internal stability and external stability. We also know, by

Lemma 3, that φσ is acyclic, and thus mapping φ
∞
σ is well-defined and D is nonempty.

External stability: Take any x /∈ D. Let y = φ∞σ (x) 6= x (because φσ is acyclic). By Part

5 of Lemma 2, y B x, which proves external stability.

Internal stability: Suppose, to obtain a contradiction, that for some x, y ∈ D, y B x. We

know that if the current state is x, no alternative is accepted (because x ∈ D), and thus

|Jx| = ∅. Let us show that this means that at no stage any agent makes a proposal. Indeed,
suppose that at stage j, agent πj makes a proposal that is rejected. Then equilibrium play

gives him Uπj (x) = xπj/ (1− β), whereas if he passes, then, by Part 2 of Lemma 2, he will
get U ′πj ≥ Uπj (x), which means that proposing is not strictly better then passing. Given our

equilibrium refinement, this means that no proposal is made at any stage when the state is

x.

Now take k ∈ V that satisfies yk > xk and consider stage j with πj = k. If, at this stage,

agent k made proposal y, then it would be accepted, because y B x means, in particular,

that {i ∈ N : yi ≥ xi} ∈ W, and thus {i ∈ N : Ui (y) ≥ Ui (x)} ∈ W (as, of course, Ui (y) =

yi/ (1− β) and Ui (x) = xi/ (1− β)). We showed that in equilibrium, k does not make
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any proposal in this subgame, and gets Uk (x). But then he would be able to get more by

proposing y, as Uk (y) = yk/ (1− β) > xk/ (1− β) = Uk (x). Hence, he has a profitable

deviation in this subgame, which is impossible. This contradiction proves that D is also

internally stable. Thus, it is vNM-stable, and given uniqueness, coincides with S. This

completes the proof. �

Proof of Proposition 1. Part 1. Let us prove a stronger result: for any mapping φ

such that φ (x) = x for any x ∈ S and for any x /∈ S, φ (x) ∈ S and φ (x) B x. (Existence

of such a mapping follows from external stability of mapping S implying that for any S we

can pick such φ (x) ∈ S; clearly, equilibrium σ with φσ = φ will be simple because φ2 = φ.)

To construct σ, take the following strategy profile. First, define continuation utilities of

each agent i if the current period ends with state x, Ui (x) = xi +
∑∞

t=1

[
φt (x)

]
i
. If the

current state is x ∈ A \ S, the last agenda-setter i with [φ (x)]i > xi proposes a transition to

φ (x), and all agents [φ (x)]j ≥ xj support this proposal while the rest vote against it, so it

is accepted in equilibrium. Other agenda-setters – earlier and later – do not propose. (We

do not need to define voting strategies for these proposals if they are made, or for any other

proposal made by agent i, explicitly: the continuation equilibrium play is defined for any

outcome of any given voting, either the proposal y or the status quo x, and thus the rule that

agents support the proposal y whenever Ui (y) ≥ Ui (x) gives a unique set of strategies.) If

the current state is x ∈ S, then no agenda-setter makes a proposal; again, this defines voting
strategies if some proposal is made. This set of strategies (call it σ) is clearly Markovian. We

need to check that this is indeed an equilibrium, i.e., that there is no one-step deviation, and

that it satisfies the requirements we imposed on agents’actions when they are indifferent.

If strategies in σ are played, mapping φσ = φ is implemented, and therefore continuation

utilities are indeed given by Ui (x). This automatically implies that all voting strategies that

we specified are best responses; moreover, we required agents to vote Y es whenever they are

indifferent. We only need to consider agenda-setting strategies. First, suppose x ∈ A \ S,
and agent j gets a chance to propose after i. By the choice of agent i, it must be that

[φ (x)]j ≤ xj (in fact, equality must hold), so Uj (φ (x)) ≤ Uj (xj), and the agent i is not

better off making the proposal φ (x). Suppose he makes some other proposal y; this is a

profitable deviation only if y is to be accepted (otherwise, passing yields the same utility).

If y is accepted, Part 1 of Lemma 2 also implies that {k ∈ N : [φ (y)]k ≥ [φ (x)]k} ∈ W
(because mapping φ is simple). Since j is strictly better off from this deviation, it must be

that Uj (y) > Uj (x) = xj/ (1− β), which means that either yj > xj or [φ (y)]j > xj; in either

case, [φ (y)]j > xj = [φ (x)]j. Now, we have shown that φ (y) B φ (x), but this is impossible

for φ (x) , φ (y) ∈ S.
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Let us now suppose that agent j gets a chance to propose before agent i. Then he is

not strictly better off proposing φ (x), because i would do so along the equilibrium path if j

passes. Suppose he proposes some y 6= φ (x); then again it is only profitable if y passes. For

this to be true, it must be that {k ∈ N : [φ (y)]k ≥ [φ (x)]k} ∈ W. But if j is strictly better
off, it must be that [φ (y)]j > [φ (x)]j, again implying φ (y) B φ (x), which cannot be true.

Consider the possibility that agent i deviates. He does not want to deviate by pass-

ing, since [φ (x)]i > xi and thus Ui (φ (x)) > Ui (x). Suppose that he deviates to

proposing some y 6= φ (x); again, φ (x) must be accepted. We analogously get that

{k ∈ N : [φ (y)]k ≥ [φ (x)]k} ∈ W and [φ (y)]j > [φ (x)]j, leading to the same contradiction.

Thus, there is no profitable deviation if x ∈ A \ S.
Finally, suppose that for some x ∈ S, some agent j ∈ V deviates and proposes some

y 6= x. For this to be profitable, y must be accepted, which would imply, again by Part 1 of

Lemma 2, that {k ∈ N : [φ (y)]k ≥ xk} ∈ W. Again, similarly to earlier cases, we must have
[φ (y)]j ≥ xj if the deviation is to be profitable. But then φ (y) B x for x, φ (y) ∈ S, which
is impossible. This contradiction completes the proof that σ is a MPE and that it satisfies

the refinements.

Part 2. Acyclicity of any MPE was proved in Lemma 3. Now take mapping χ = φ∞σ for

some σ. From Part 3 of Proposition 2 it follows that φσ (x) = x⇔ x ∈ S; since σ is acyclic,
χ (x) = x ⇔ x ∈ S. By Part 5 of Lemma 2, φ∞σ (x) = x or φ∞σ (x) B x, which implies that

for any x /∈ S, χ (x) B x. Consequently, mapping χ satisfies the conditions specified in the

proof of Part 1, and there is a simple equilibrium σ′ with φσ′ = χ = φ∞σ . This proves Part

2. �

Proof of Proposition 3. Part 1. Lemma 2 implies that φ (y) B y; in particu-

lar, for each j ∈ V , [φ (y)]j ≥ yj and for at least one of them the inequality is strict.

Suppose, to obtain a contradiction, that
∣∣∣{j ∈M \ {i} : [φ (y)]j < yj

}∣∣∣ < d − 1; then∣∣∣{j ∈M : [φ (y)]j < xj

}∣∣∣ < d. But we also have that for each j ∈ V , [φ (y)]j ≥ xj, with at

least inequality strict. This means φ (y) B x, which is impossible, given that x, φ (y) ∈ S.
Now suppose, to obtain a contradiction, that

∣∣∣{j ∈M \ {i} : [φ (y)]j < yj

}∣∣∣ > d − 1. But
then for at least d agents [φ (y)]j < yj, which contradicts φ (y) B y. This contradiction proves

that
∣∣∣{j ∈M \ {i} : [φ (y)]j < yj

}∣∣∣ = d−1. It remains to prove that yi ≤ [φ (y)]i < xi. Sup-

pose not, i.e., either [φ (y)]i < yi or [φ (y)]i ≥ xi. In the first case, we would have that at

least d agents have [φ (y)]j < yj, contradicting φ (y) B y. In the second case, [φ (y)]i ≥ xi,

coupled with the already established
∣∣∣{j ∈M \ {i} : [φ (y)]j < yj

}∣∣∣ = d − 1, would mean∣∣∣{j ∈M : [φ (y)]j < xj

}∣∣∣ = d − 1, and therefore φ (y) B x. This is impossible, and this
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contradiction completes the proof.

Part 2. This proof is similar to the proof of internal stability in the proof of Proposition

2. Denote φ (y) = z; then z B y and x, z ∈ S. We know that x and z have the group structure
by Part 2 of Proposition 2; then let the r groups be G1, . . . , Gr for x and H1, . . . , Hr for z,

respectively. Without loss of generality, we can assume that each set of groups are ordered

so that xGj and zHj are nonincreasing in j for 1 ≤ j ≤ r. Suppose, to obtain a contradiction,

that for some agent i′ ∈ M with xi′ ≤ yi < xi, zi′ < yi′ . In that case, among the set

{j ∈M : xj ≥ xi} there are at most d − 1 agents with zj < yj; similarly, among the set

{j ∈M : xj < xi} there are at most d− 1 agents with zj < yj.

We can now proceed by induction, similarly to the proof of Proposition 2, and show that

xGj ≤ zHj for all j. Base: suppose not, then xG1 > zH1 ; then xG1 > zs for all s ∈ M . But
this mean that for all agents l ∈ G1 have xl > zl; since their total number is d, we get a

contradiction. Step: suppose xGl ≤ zHl for 1 ≤ l < j, and suppose, to obtain a contradiction,

that xGj > zHj . Given the ordering of groups, this means that for any l, s such that 1 ≤ l ≤ j

and j ≤ s ≤ r, xGl > zHs . Consequently, for a agent i
′′ ∈

⋃j
l=1Gl to have zi′′ ≥ xi′′ , he must

belong to
⋃j−1
s=1Hs. This implies that for at least jd− (j − 1) d = d agents in

⋃j
l=1Gl ⊂M ,

zi′′ ≥ xi′′ does not hold (denote this set by D. If that is true, it must be that
⋃j
l=1Gl includes

all the agents in D, including agents i and i′ found earlier, and in particular, xGj ≤ yi < xi.

But on the other hand, these d agents are not in
⋃j−1
s=1Hs. In particular, this implies that

for any i′′ ∈ D, zi′′ < xGj , but xi′ ≥ xGj , which means zi < xi′ . But zi ≥ yi by Part 1 of this

Proposition, so yi < xi′ . But this contradicts with the way we chose i′ to satisfy xi′ ≤ yi < xi.

This proves that such i′ cannot exist, and thus the d− 1 agents other than i who are made
worse off satisfy xj ≥ xi. �

Proof of Proposition 4. This result immediately follows from the formulas m = n−v,
d = n− k + 1, r = bm/dc and from Proposition 2. �

Proof of Proposition 5. Part 1. If k < n, then d > 1. An allocation x is stable only

if |{j ∈M : xj > 0}| is divisible by d. If x is stable and some agent i with xi > 0 is made

a veto agent, then the set |{j ∈M ′ : xj > 0}| = |{j ∈M : xj > 0}| − 1 and is not divisible
by d, thus x becomes unstable. At the same time, if xi = 0, then the group structure for all

groups with a positive amount is preserved; thus x remains a stable allocation.

Part 2. In this case, the size of each group in x is d > 2, and every positive amount is

possessed by either none or d non-veto players. If k increases by 1, d decreases by 2. Then

allocation x becomes unstable, except for the case x|M = 0. �

Proof of Proposition 6. We first show that a minimal equilibrium exists; moreover,
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we can construct on-equilibrium production strategies explicitly. We will use the following

notation: for a vector of payoffs x and a coalition X, we write x+X to denote a vector defined

by [
x+X

]
i
=

{
xi + 1 if i ∈ X,
xi if i /∈ X.

Fix for a moment the number of units available in a society as b. For every such b let us

construct, for every x /∈ S, a set Zx ⊂ S consisting of all y ∈ S such that y B x. Consider a

subset Z ′x ⊂ Zx consisting of all y ∈ Zx that achieve miny∈Zx ‖y − x‖1. Let us now order all
elements of Z ′x lexicographically according to the preferences of player 1 (from high to low),

then player 2, etc, and let φ (x) ∈ Z ′x be the first element. In other words, φ (x) maximizes
z1 among z ∈ Z ′x; among those that also maximize z1, φ (x) maximizes z2, etc. This element
φ (x) is uniquely defined for every x /∈ S. Let us define φ (x) = x if x ∈ S, and let us repeat
this construction and definition for all values of b ≥ 0.
We construct an equilibrium where in each stage of redistribution which starts with x̃t,

an immediate transition to xt = z (x̃t) is achieved. Since p is assumed to be small, this is

possible. Notice that in this way, the only veto player who benefits from a redistribution is

the first one, player n− v + 1; moreover, if x|M = y|M , then [φ (x)] |M = [φ (y)] |M , i.e., the
allocations that non-veto players get only depend on the allocations that they possess before

a redistribution.

Next, let us define production strategies. Suppose that the current state is x = xt−1. In

all cases, we will require that veto players make the effi cient investment, ei = 1 whenever

i ∈ L∩ V . To define strategies of other players, consider the case where x ∈ S. If ‖x|M‖ = 0
(i.e., if non-veto players possess nothing), then they choose ei = 0. Otherwise, for x ∈ S,
there is a group of non-veto players G of size d which possesses a positive amount xG. If

xG > 1, then let us again require that all non-veto players choose ei = 0. If, however, xG = 1,

we require that a player i ∈ L∩M invests if and only if xi = 0 and |{j < i : j ∈ G ∪ L}| < d.

This specifies strategies for any x ∈ S, and therefore gives continuation utilities for any
combination of investment decisions that players make if x /∈ S; for such x, we can therefore
pick (possibly mixed) strategies that form an equilibrium at period t if the continuation play

is given by the strategies above. Finally, it is easy to verify that given the redistribution

mapping φ, investment strategies that we defined for x ∈ S are part of equilibrium, i.e., no
player has an incentive to deviate. We have thus proved existence of an equilibrium with

the properties required by Part (ii) of the Proposition.

To prove Part (i), suppose that player n (the veto player) considers whether to invest. If

without him investing the (temporary) allocation would be x̃, then if he invests, it would be

x̃+{n}. If x̃ is stable then so is x̃+{n}, and if they are not, then any minimal mapping would
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transfer exactly the same amount to player n during the redistribution phase. Consequently,

player n will invest whenever he has the opportunity to do so and for any strategy profile

that other players play.

To prove Part (iii), note that on the equilibrium path, we only need to study production

decisions for x ∈ S and where xG > 2. Notice that it is never a best response to produce

if |L ∩M | < d, because all new units will be expropriated immediately. It is also never a

best response for i ∈ G to produce if |L ∩M | = d, but L ∩M 6= G, because d units will be

expropriated (so the amount possessed by i will not increase), and moreover, in a minimal

equilibrium, possessing exactly xi = xG guarantees that i will not be expropriated, while

possessing xi + 1 need not guarantee that. Hence, i ∈ G does not invest, and therefore the

rest do not invest, since a minimal equilibrium would require that the newly created units

(by less than d players) will be moved to the veto player.

If |L ∩M | = d and L∩M = G, it is straightforward to see that having players in group G

produce is an equilibrium. Moreover, if |L ∩M | > d and G ⊂ L∩M , it is an equilibrium for
these players in G to produce and for the rest not to (because the units created by i ∈M \G
will be transferred to player n). Finally, let us prove that there cannot be an equilibrium

where more than d units are produced. Indeed, if so, then some of these units must be

expropriated. Moreover, in a minimal equilibrium, all units produced by players in M \ G
will be taken, and thus such players do not have incentives to produce. This contradicts

the assertion that more than d units are produced, which shows that exactly d units are

produced in the best equilibrium where only pure strategies are played along the equilibrium

path. �

Proof of Proposition 7. From Proposition 6, it follows that

g = p+ dpd = p+ (n− k + 1) pn−k+1.

Therefore, g is increasing in p. Consider

(d+ 1) pd+1

dpd
=
d+ 1

d
p ≥ 3

2
p,

because d ≥ 2. Since we are considering small p, this ratio is less than 1. Consequently, g is
decreasing in d, and thus is increasing in k. This completes the proof. �
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