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1 Introduction

Two of the most central questions in international economics are “Why do nations trade?”
and “How should a nation conduct its trade policy?” The theory of comparative advan-
tage is one of the most influential answers to the former question. Yet, it has had little
impact on answers to the latter question. Our goal in this paper is to explore the relation-
ship between comparative advantage and optimal trade policy.

Our main result can be stated as follows. The trade taxes that maximize domestic
welfare in the models we consider, which we label optimal trade taxes, should be uni-
form across imported goods and weakly monotone with respect to comparative advan-
tage across exported goods. Examples of optimal trade taxes include (i) a zero import
tariff accompanied by export taxes that are weakly increasing with comparative advan-
tage or (ii) a uniform, positive import tariff accompanied by export subsidies that are
weakly decreasing with comparative advantage. While the latter pattern accords well
with the observation that countries tend to protect their least competitive sectors in prac-
tice, in our model larger subsidies do not stem from a greater desire to expand production
in less competitive sectors. Rather, they reflect tighter constraints on the ability to exploit
monopoly power by contracting exports. Put simply, countries have more room to ma-
nipulate world prices in their comparative-advantage sectors.

Our starting point is a canonical Ricardian model of trade. We focus on this model be-
cause this is the oldest and simplest theory of comparative advantage as well as the new
workhorse model for quantitative work in the field; see Eaton and Kortum (2012). We
consider a world economy with two countries, Home and Foreign, one factor of produc-
tion, labor, a continuum of goods, and Constant Elasticity of Substitution (CES) utility, as
in Dornbusch et al. (1977), Wilson (1980), Eaton and Kortum (2002), and Alvarez and Lu-
cas (2007). Labor productivity can vary arbitrarily across sectors in both countries. Home
sets trade taxes in order to maximize domestic welfare, whereas Foreign is passive. In the
interest of clarity we assume no other trade costs in our baseline model.

In order to characterize the structure of optimal trade taxes, we use the primal ap-
proach and consider first a fictitious planning problem in which the domestic government
directly controls consumption and output decisions. Using Lagrange multiplier methods,
we then show how to transform this infinite dimensional problem with constraints into
a series of simple unconstrained, low-dimensional problems. This allows us to derive
sharp predictions about the structure of the optimal allocation. Finally, we demonstrate
how that allocation can be implemented through trade taxes and relate optimal trade
taxes to comparative advantage.
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Our approach is flexible enough to be used in more general environments that fea-
ture non-CES utility, arbitrary neoclassical production functions, and trade costs. In
all such extensions we demonstrate that our techniques remain well-suited to analyz-
ing optimal trade policy and show that our main insights are robust. For example, our
main prediction—that optimal trade taxes are uniform across imported goods and weakly
monotone with respect to comparative advantage across goods—holds without further
qualification in a Ricardian model with uniform iceberg trade costs. Perhaps surprisingly,
given the leap in generality, this prediction is only somewhat more nuanced without CES
utility or with arbitrary neoclassical production functions.

The approach developed here can also be used for quantitative work. We apply our
theoretical results to study the design of optimal trade policy in a world economy com-
prising two countries: the United States and the Rest of the World. We consider two
separate exercises. In the first exercise, all goods are assumed to be agricultural goods,
whereas in the second, all goods are assumed to be manufactured goods. We find that
U.S. gains from trade under optimal trade taxes are 20% larger than those obtained under
laissez-faire for the agricultural case and 33% larger for the manufacturing case. Inter-
estingly, a significant fraction of these gains arises from the use of trade taxes that are
monotone in comparative advantage. Under an optimal uniform tariff, gains from trade
for both the agriculture and manufacturing exercises would only be 9% larger than those
obtained under laissez-faire. While these two-country examples are admittedly stylized,
they suggest that the economic forces emphasized in this paper may be quantitatively
important as well. We hope that future quantitative work, in the spirit of Ossa (2011), will
further explore this issue in an environment featuring a large number of countries and a
rich geography of trade costs.

Our paper makes two distinct contributions to the existing literature. The first one, at
the intersection of international trade and public finance, is related to the classical prob-
lem of optimum taxation in an open economy; see e.g. Torrens (1844) and Mill (1844). In
his survey of the literature, Dixit (1985) sets up the general problem of optimal taxes in
an open economy as a fictitious planning problem and derives the associated first-order
conditions. As Bond (1990) demonstrates, such conditions impose very weak restrictions
on the structure of optimal trade taxes. Hence, optimal tariff arguments are typically cast
using simple general equilibrium models featuring only two goods or partial equilibrium
models. In such environments, characterizing optimal trade taxes reduces to solving the
problem of a single-good monopolist/monopsonist and leads to the prediction that the
optimal tariff should be equal to the inverse of the (own-price) elasticity of the foreign
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export supply curve.1

In this paper we go beyond the previous prediction by studying the relationship be-
tween comparative advantage and optimal trade taxes in the context of a canonical Ri-
cardian model. In this environment, countries buy and sell many goods whose prices
depend on the entire vector of net imports through their effects on wages. Thus the (own-
price) elasticity of the foreign export supply curve no longer provides a sufficient statistic
for optimal trade taxes. Nevertheless our analysis shows that for any wage level, optimal
trade taxes must satisfy simple and intuitive properties. What matters for one of our main
results is not the entire schedule of own-price and cross-price elasticities faced by a coun-
try acting as a monopolist, which determines the optimal level of wages in a non-trivial
manner, but the cross-sectional variation in own-price elasticities across sectors holding
wages fixed, which is tightly connected to a country’s comparative advantage.

The paper most closely related to ours is Itoh and Kiyono (1987), which shows that in
a Ricardian model with Cobb-Douglas preferences, export subsidies that are concentrated
on “marginal” goods are always welfare-enhancing. Though the logic behind their result
is distinct from ours—a point we come back to in Section 4.3—it resonates well with our
finding that, at the optimum, export subsidies should be weakly decreasing with com-
parative advantage, so that “marginal” goods should indeed be subsidized more. Our
analysis extends the results of Itoh and Kiyono (1987) by considering a Ricardian envi-
ronment with general CES utility and, more importantly, by solving for optimal trade
taxes rather than providing examples of welfare-enhancing policies.2 Beyond general-
ity, our results also shed light on the simple economics behind optimal trade taxes in a
canonical Ricardian model: taxes should be monotone in comparative advantage because
countries have more room to manipulate prices in their comparative-advantage sectors.

More broadly, these novel results have implications for the recent debate regarding
the consequences of micro-level heterogeneity for the welfare gains from trade; see Help-
man (2013). In recent work, Arkolakis et al. (2012) have shown that, depending on how
the question is framed, answers to micro-level questions may be of no consequence for
predicting how international trade affects welfare within a broad class of models. These
results rely on calibrating certain macro responses, thereby holding them fixed across
models. Melitz and Redding (2013) offer a different perspective in which these behavioral
responses are not held fixed. Regardless of these debatable methodological choices, our
paper emphasizes policy margins that bring out the importance of micro structure. Our

1This idea is at the center of recent work emphasizing the role of terms-of-trade manipulation in the
analysis of optimal tariffs and its implication for the WTO; see Bagwell and Staiger (1999).

2Opp (2009) also studies optimal trade taxes in a two-country Ricardian model with CES utility, but his
analysis focuses on optimal tariffs that are uniform across goods.
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qualitative results—that trade taxes should be monotone in comparative advantage—and
our quantitative results—that such trade taxes lead to substantially larger welfare gains
than uniform trade taxes—illustrate that the design of and the gains associated with op-
timal trade policy may crucially depend on the extent of micro-level heterogeneity. Here,
micro-level data matter, both qualitatively and quantitatively, for answering a key nor-
mative question in the field: How should a nation conduct its trade policy?3

The second contribution of our paper is technical. The problem of finding optimal
trade taxes in a canonical Ricardian model is infinite-dimensional (since there is a contin-
uum of goods), non-concave (since indirect utility functions are quasi-convex in prices),
and non-smooth (since the world production possibility frontier has kinks). To make
progress on this question, we follow a three-step approach. First, we use the primal ap-
proach to go from taxes to quantities. Second, we identify concave subproblems for which
general Lagrangian necessity and sufficiency theorems problems apply. Third, we use
the additive separability of preferences to break down the maximization of a potentially
infinite-dimensional Lagrangian into multiple low-dimensional maximization problems
that can be solved by simple calculus. Beyond the various extensions presented in this
paper, the same approach could be used to study optimal trade taxes in economies with
alternative market structures such as Bertrand competition, as in Bernard et al. (2003), or
monopolistic competition, as in Melitz (2003).

From a technical standpoint, our approach is also related to recent work by Amador
et al. (2006) and Amador and Bagwell (2013) who have used general Lagrange multiplier
methods to study optimal delegation problems, including the design of optimal trade
agreements, and to Costinot et al. (2013) who have used these methods together with
the time-separable structure of preferences typically used in macro applications to study
optimal capital controls. We briefly come back to the specific differences between these
various approaches in Section 3. For now, we note that, as in Costinot et al. (2013), our ap-
proach relies heavily on the observation, first made by Everett (1963), that Lagrange mul-
tiplier methods are particularly well suited for studying “cell-problems,” i.e., additively
separable maximization problems with constraints.4 Given the importance of additively
separable utility in the field of international trade, we believe that these methods could

3Though we have restricted ourselves to a Ricardian model for which the relevant micro-level data
are heterogeneous productivity levels across goods, not firms, the exact same considerations would make
firm-level data critical inputs for the design of optimal policy in imperfectly competitive models.

4In spite of this mathematical connection, there is no direct relationship between the results of Costinot
et al. (2013), derived in a dynamic endowment economy, and the results of this paper, derived in a static
Ricardian economy. From an economic standpoint, our predictions about the structure of optimal taxes rely
crucially on the endogenous allocation of labor across sectors according to comparative advantage; they
therefore have no counterparts in an endowment economy.
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prove useful beyond the question of how comparative advantage shapes optimal trade
taxes. We hope that our paper will contribute to make such methods part of the standard
toolbox of trade economists.

The rest of our paper is organized as follows. Section 2 describes our baseline Ricar-
dian model. Section 3 sets up and solves the planning problem of a welfare-maximizing
country manipulating its terms-of-trade. Section 4 shows how to decentralize the solution
of the planning problem through trade taxes and derive our main theoretical results. Sec-
tion 5 explores the robustness of our main insights to the introduction of non-CES utility,
general production functions, and trade costs. Section 6 applies our theoretical results to
the design of optimal trade taxes in the agricultural and manufacturing sectors. Section 7
offers some concluding remarks. All formal proofs can be found in the Appendix.

2 Basic Environment

2.1 A Ricardian Economy

Consider a world economy with two countries, Home and Foreign, one factor of produc-
tion, labor, and a continuum of goods indexed by i.5 Preferences at home are represented
by the Constant Elasticity of Substitution (CES) utility,

U(c) ≡ ´i ui(ci)di,

where c ≡ (ci) ≥ 0 denotes domestic consumption; ui(ci) ≡ βi (c
1−1/σ

i − 1)
/
(1− 1/σ)

denotes utility per good; σ ≥ 1 denotes the elasticity of substitution between goods; and
(βi) are exogenous preference parameters such that

´
i βidi = 1. Preferences abroad have

a similar form with asterisks denoting foreign variables. Production is subject to constant
returns to scale in all sectors. ai and a∗i denote the constant unit labor requirements at
home and abroad, respectively. Labor is perfectly mobile across sectors and immobile
across countries. L and L∗ denote labor endowments at home and abroad, respectively.

2.2 Competitive Equilibrium

We are interested in situations in which the domestic government imposes ad-valorem
trade taxes-cum-subsidies, t ≡ (ti), whereas the foreign government does not impose

5All subsequent results generalize trivially to economies with a countable number of goods. Whenever
the integral sign “

´
” appears, one should simply think of a Lebesgue integral. If the set of goods is finite or

countable, “
´

” is equivalent to “∑.”
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any tax. Each element ti ≥ 0 corresponds to an import tariff if good i is imported or an
export subsidy if it is exported. Conversely, each element ti ≤ 0 corresponds to an import
subsidy or an export tax. Tax revenues are rebated to domestic consumers through a
lump-sum transfer, T. Here, we characterize a competitive equilibrium for arbitrary taxes.
Next, we will describe the domestic government’s problem that determines optimal taxes.

At home, domestic consumers choose consumption to maximize utility subject to their
budget constraints; domestic firms choose output to maximize profits; the domestic gov-
ernment balances its budget; and the labor market clears:

c ∈ argmaxc̃≥0
{´

i ui(c̃i)di
∣∣ ´

i pi (1 + ti) c̃idi ≤ wL + T
}

, (1)

qi ∈ argmaxq̃i≥0 {pi (1 + ti) q̃i − waiq̃i} , (2)

T =
´

i piti (ci − qi) di, (3)

L =
´

i aiqidi, (4)

where p ≡ (pi) ≥ 0 is the schedule of world prices; w ≥ 0 is the domestic wage; and
q ≡ (qi) ≥ 0 is domestic output. Similarly, utility maximization by foreign consumers,
profit maximization by foreign firms, and labor market clearing abroad imply

c∗ ∈ argmaxc̃≥0
{´

i u∗i (c̃i)di
∣∣ ´

i pi c̃idi ≤ w∗L∗
}

, (5)

q∗i ∈ argmaxq̃i≥0 {piq̃i − w∗a∗i q̃i} , (6)

L∗ =
´

i a∗i q∗i di, (7)

where w∗ ≥ 0 is the foreign wage and q∗ ≡
(
q∗i
)
≥ 0 is foreign output. Finally, good

market clearing requires
ci + c∗i = qi + q∗i . (8)

In the rest of this paper we define a competitive equilibrium with taxes as follows.

Definition 1. A competitive equilibrium with taxes corresponds to a schedule of trade taxes
t ≡ (ti), a lump-sum transfer, T, a pair of wages, w and w∗, a schedule of world prices, p ≡ (pi),
a pair of consumption schedules, c ≡ (ci) and c∗ ≡

(
c∗i
)
, and a pair of output schedules, q ≡ (qi)

and q∗ ≡
(
q∗i
)
, such that conditions (1)-(8) hold.

By Walras’ Law, competitive prices are only determined up to a normalization. For
expositional purposes, we set prices throughout our analysis so that the marginal utility
of income in Foreign, that is the Lagrange multiplier associated with the budget constraint
in (5), is equal to one. Hence the foreign wage, w∗, also represents the real income of the
foreign consumer.
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2.3 The Domestic Government’s Problem

We assume that Home is a strategic country that sets ad-valorem trade taxes t ≡ (ti) and a
lump-sum transfer T in order to maximize domestic welfare, whereas Foreign is passive.6

Formally, the domestic government’s problem is to choose the competitive equilibrium
with taxes, (t, T, w, w∗, p, c, c∗, q, q∗), that maximizes the utility of its representative con-
sumer, U (c). This leads to the following definition.

Definition 2. The domestic government’s problem is maxt,T,w≥0,w∗≥0,p≥0,c,c∗,q,q∗ U(c) subject to
conditions (1)-(8).

The goal of the next two sections is to characterize how unilaterally optimal trade
taxes, i.e., taxes that prevail at a solution to the domestic government’s problem, vary
with Home’s comparative advantage, as measured by the relative unit labor requirements
a∗i /ai. To do so we follow the public finance literature and use the primal approach as in,
for instance, Dixit (1985).7 Namely, we will first approach the optimal policy problem of
the domestic government in terms of a relaxed planning problem in which domestic con-
sumption and domestic output can be chosen directly (Section 3). We will then establish
that the optimal allocation can be implemented through trade taxes and characterize the
structure of these taxes (Section 4).8

3 Optimal Allocation

3.1 Home’s Planning Problem

Throughout this section we focus on a fictitious environment in which there are no taxes
and no competitive markets at home. Rather the domestic government directly controls

6In other words, we focus on the best-response of the domestic government to zero taxes abroad. We
conjecture that many of our qualitative predictions about the domestic government’s best-response would
extend to other foreign policy vectors, and in turn, apply to the Nash equilibrium of a game in which both
countries are strategic. Of course, from a quantitative standpoint, welfare at Home may be much lower in
such a Nash equilibrium.

7An early application of the primal approach in international trade can be found in Baldwin (1948).
8As will become clear, our main results do not hinge on this particular choice of instruments. We

choose to focus on trade taxes-cum-subsidies for expositional convenience because they are the simplest
tax instruments required to implement the optimal allocation. It is well known that one could allow for
consumption taxes, production taxes, or import tariffs that are not accompanied by export subsidies. One
would then find that constraining consumption taxes to be equal to production taxes or import tariffs to
be equal to export subsidies, i.e. restricting attention to trade taxes-cum-subsidies, has no effect on the
allocation that a welfare-maximizing government would choose to implement.
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domestic consumption, c, and domestic output, q, subject to the resource constraint,

´
i aiqidi ≤ L. (9)

In other words, we ignore the equilibrium conditions associated with utility and profit
maximization by domestic consumers and firms; we ignore the government’s budget con-
straint; and we relax the labor market clearing condition into inequality (9). We refer to
this relaxed maximization problem as Home’s planning problem.

Definition 3. Home’s planning problem is maxw∗≥0,p≥0,c≥0,c∗,q≥0,q∗ U(c) subject to conditions
(5)-(9).

In order to prepare our discussion of optimal trade taxes, we will focus on the foreign
wage, w∗, net imports m ≡ c− q, and domestic output, q, as the three key control vari-
ables of the domestic government. To do so, we first establish that the conditions for an
equilibrium in the rest of the world—namely, foreign utility maximization, foreign profit
maximization, and good and labor market clearing—can be expressed more compactly as
a function of net imports and the foreign wage alone.

Lemma 1. (w∗, p, m, c∗, q∗) satisfies conditions (5)-(8) if and only if

pi = pi (mi, w∗) ≡ min
{

u∗′i (−mi) , w∗a∗i
}

, (10)

c∗i = c∗i (mi, w∗) ≡ max {−mi, d∗i (w
∗a∗i )} , (11)

q∗i = q∗i (mi, w∗) ≡ max {0, mi + d∗i (w
∗a∗i )} , (12)

for all i, with d∗i (·) ≡ u∗′−1
i (·), u∗′i (−mi) ≡ ∞ if mi ≥ 0, and

´
i a∗i q∗i (mi, w∗) di = L∗, (13)´
i pi(mi, w∗)midi = 0. (14)

According to Lemma 1, when Home’s net imports are high, mi + d∗i (w
∗a∗i ) > 0, foreign

firms produce good i, the world price is determined by their marginal costs, w∗a∗i , and
foreign consumers demand d∗i (w

∗a∗i ).
9 Conversely, when Home’s net imports are low,

mi + d∗i (w
∗a∗i ) < 0, foreign firms do not produce good i, foreign consumption is equal to

Home’s net exports,−mi, and the world price is determined by the marginal utility of the
foreign consumer, pi (mi, w∗) = u∗′i (−mi) . Equations (13) and (14), in turn, derive from
the foreign labor market clearing condition and the foreign consumer’s budget constraint.

9Recall that good prices are normalized so that the marginal utility of income in Foreign is equal to one.
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Let p (m, w∗) ≡ (pi(mi, w∗)), c∗ (m, w∗) ≡ (c∗i (mi, w∗)), and q∗ (m, w∗) ≡ (q∗i (mi, w∗))
denote the schedule of equilibrium world prices, foreign consumption, and foreign out-
put as a function of Home’s net imports and the foreign wage. Using Lemma 1, we can
characterize the set of solutions to Home’s planning problem as follows.

Lemma 2. Suppose that (w0∗, p0, c0, c0∗, q0, q0∗) solves Home’s planning problem. Then
(w0∗, m0 = c0 − q0, q0) solves

max
w∗≥0,m,q≥0

´
i ui(qi + mi)di (P)

subject to

´
i aiqidi ≤ L, (15)´

i a∗i q∗i (mi, w∗) di ≤ L∗, (16)´
i pi(mi, w∗)midi ≤ 0. (17)

Conversely, suppose that
(
w0∗, m0, q0) solves (P). Then there exists a solution to Home’s plan-

ning problem,
(
w0∗, p0, c0, c0∗, q0, q0∗), such that p0 = p

(
m0, w0∗), c0 = m0 + q0, c0∗ =

c∗
(
m0, w0∗), and q0∗ = q∗

(
m0, w0∗).

The first inequality (15) corresponds to the resource constraint at home and does not
merit further comment. The final two inequalities, (16) and (17), are the counterparts of
equations (13) and (14) in Lemma 1. One can think of Inequality (17) as Home’s trade
balance condition. It characterizes the set of feasible net imports. If Home were a small
open economy, then it would take pi(mi, w∗) as exogenously given and the solution to
(P) would coincide with the free trade equilibrium. Here, in contrast, Home internalizes
the fact that net import decisions affect world prices, both directly through their effects
on the marginal utility of the foreign consumer and indirectly through their effects on the
foreign wage, as reflected in inequality (16).

Two technical aspects of Home’s planning problem are worth mentioning at this point.
First, in spite of the fact that the foreign consumer’s budget constraint and the foreign
labor market clearing condition must bind in a competitive equilibrium, as shown in
Lemma 1, the solution to Home’s planning problem can be obtained as the solution to a
new relaxed problem (P) that only features inequality constraints. This will allow us to
invoke Lagrangian necessity theorems in Section 3.2. Second, Home’s planning problem
can be decomposed into an inner and an outer problem. Define W∗ as the set of values
for w∗ such that there exist import and output levels m, q ≥ 0 that satisfy (15)-(17). The
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inner problem takes w∗ ∈ W∗ as given and maximizes over import and output levels,

V(w∗) ≡ max
m,q≥0

´
i ui(qi + mi)di (Pw∗)

subject to (15)-(17). The outer problem then maximizes the value function from the inner
problem over the foreign wage,

max
w∗∈W∗

V(w∗).

It is the particular structure of the inner problem (Pw∗) that will allow us to make
progress in characterizing the optimal allocation. In the next two subsections, we will
take the foreign wage w∗ as given and characterize the main qualitative properties of the
solutions to (Pw∗). Since such properties will hold for all feasible values of the foreign
wage, they will hold for the optimal one, w0∗ ∈ arg maxw∗∈W∗ V(w∗), and so by Lemma
2, they will apply to any solution to Home’s planning problem.10 Of course, for the pur-
poses of obtaining quantitative results we also need to solve for the optimal foreign wage,
w0∗, which we will do in Section 6.

Two observations will facilitate our analysis of the inner problem (Pw∗). First, as we
will formally demonstrate, (Pw∗) is concave, which implies that its solutions can be com-
puted using Lagrange multiplier methods. Second, both the objective function and the
constraints in (Pw∗) are additively separable in (mi, qi). In the words of Everett (1963),
(Pw∗) is a “cell-problem.” Using Lagrange multiplier methods, we will therefore be able
to transform an infinite dimensional problem with constraints into a series of simple un-
constrained, low-dimensional problems.

3.2 Lagrangian Formulation

The Lagrangian associated with (Pw∗) is given by

L (m, q, λ, λ∗, µ; w∗) ≡
´

i ui (qi + mi) di− λ
´

i aiqidi− λ∗
´

i a∗i q∗i (mi, w∗) di− µ
´

i pi(mi, w∗)midi,

where λ ≥ 0, λ∗ ≥ 0, and µ ≥ 0 are the Lagrange multipliers associated with constraints
(15)-(17). As alluded to above, a crucial property of L is that it is additively separable in
(mi, qi). This implies that in order to maximize Lwith respect to (m, q), one simply needs

10This is a key technical difference between our approach and the approaches used in Amador et al.
(2006), Amador and Bagwell (2013), and Costinot et al. (2013). The basic strategy here does not consist
in showing that the maximization problem of interest can be studied using general Lagrange multiplier
methods. Rather, the core of our approach lies in finding a subproblem to which these methods can be
applied. Section 5 illustrates the usefulness of this approach by showing how our results can easily be
extended to environments with non-CES utility and arbitrary neoclassical production functions.
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to maximize the good-specific Lagrangian,

Li (mi, qi, λ, λ∗, µ; w∗) ≡ ui (qi + mi)− λaiqi − λ∗a∗i q∗i (mi, w∗)− µpi(mi, w∗)mi,

with respect to (mi, qi) for almost all i. In short, cell problems can be solved cell-by-cell,
or in the present context, good-by-good.

Building on the previous observation, the concavity of (Pw∗), and Lagrangian necessity
and sufficiency theorems—Theorem 1, p. 217 and Theorem 1, p. 220 in Luenberger (1969),
respectively—we obtain the following characterization of the set of solutions to (Pw∗).

Lemma 3. For any w∗ ∈ W∗,
(
m0, q0) solves (Pw∗) if and only if

(
m0

i , q0
i
)

solves

max
mi,qi≥0

Li (mi, qi, λ, λ∗, µ; w∗) (Pi)

for almost all i, with the Lagrange multipliers (λ, λ∗, µ) ≥ 0 such that constraints (15)-(17) hold
with complementary slackness.

Let us take stock. We started this section with Home’s planning problem, which is
an infinite dimensional problem in consumption and output in both countries as well
as world prices and the foreign wage. By expressing world prices, foreign consumption
and foreign output as a function of net imports and the foreign wage (Lemma 1), we
then transformed it into a new planning problem (P) that only involves the schedule
of domestic net imports, m, domestic output, q, and the foreign wage, w∗, but remains
infinitely dimensional (Lemma 2). Finally, in this subsection we have taken advantage of
the concavity and the additive separability of the inner problem (Pw∗) in (mi, qi) to go from
one high-dimensional problem with constraints to many two-dimensional, unconstrained
maximization problems (Pi) using Lagrange multiplier methods (Lemma 3).

The goal of the next subsection is to solve these two-dimensional problems in (mi, qi)

taking the foreign wage, w∗, and the Lagrange multipliers, (λ, λ∗, µ), as given. This is all
we will need to characterize qualitatively how comparative advantage affects the solu-
tion of Home’s planning problem and, as discussed in Section 4, the structure of optimal
trade taxes. Once again, a full computation of optimal trade taxes will depend on the
equilibrium values of (λ, λ∗, µ), found by using the constraints (15)-(17) and the value of
w∗ that maximizes V(w∗), calculations that we defer until Section 6.
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3.3 Optimal Output and Net Imports

Our objective here is to find the solution
(
m0

i , q0
i
)

of

max
mi,qi≥0

Li (mi, qi, λ, λ∗, µ; w∗) ≡ ui (qi + mi)− λaiqi − λ∗a∗i q∗i (mi, w∗)− µpi(mi, w∗)mi.

While the economic intuition underlying our results will become transparent once we re-
introduce trade taxes in Section 4, we focus for now on the simple maths through which(
m0

i , q0
i
)

comes about. We proceed in two steps. First, we solve for the output level q0
i (mi)

that maximizes Li (mi, qi, λ, λ∗, µ; w∗), taking mi as given. Second, we solve for the net
import level m0

i that maximizes Li
(
mi, q0

i (mi) , λ, λ∗, µ; w∗
)
. The optimal output level is

then simply given by q0
i = q0

i
(
m0

i
)
.

Since Li (mi, qi, λ, λ∗, µ; w∗) is strictly concave and differentiable in qi, the optimal out-
put level, q0

i (mi), is given by the necessary and sufficient first-order condition,

u′i
(

q0
i (mi) + mi

)
≤ λai, with equality if q0

i (mi) > 0.

The previous condition can be rearranged in a more compact form as

q0
i (mi) = max {di (λai)−mi, 0} . (18)

Note that the domestic resource constraint (15) must be binding at any solution of (Pw∗).
Otherwise the domestic government could strictly increase utility by increasing output.
Thus λ must be strictly positive by Lemma 3, which implies that q0

i (mi) is well-defined.
Let us now turn to our second Lagrangian problem, finding the value of mi that maxi-

mizes Li
(
mi, q0

i (mi) , λ, λ∗, µ; w∗
)
. The same arguments as in the proof of Lemma 3 imply

that the previous Lagrangian is concave in mi with a kink at mi = MI
i ≡ −d∗i (w

∗a∗i ) < 0,
when Foreign starts producing good i; see equation (12). Accordingly, we cannot search
for maxima of Li

(
mi, q0

i (mi) , λ, λ∗, µ; w∗
)

by looking for stationary points. But this tech-
nicality is of little consequence for our approach, the end goal of which is the maximiza-
tion of the Lagrangian with respect to mi, not the location of its stationary points.

To study how Li
(
mi, q0

i (mi) , λ, λ∗, µ; w∗
)

varies with mi, we consider three regions
separately: mi < MI

i , MI
i ≤ mi ≤ MI I

i , and mi > MI I
i , where MI I

i ≡ di (λai) > 0 is the
import level at which Home stops producing good i; see equation (18). First, suppose that
mi < MI

i . In this region, equations (10), (12), and (18) imply

Li

(
mi, q0

i (mi) , λ, λ∗, µ; w∗
)
= ui (di (λai))− λaidi (λai) + λaimi − µmiu∗′i (−mi) .

12
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Figure 1: Optimal net imports.

CES utility further implies u∗′i
(
c∗i
)
= β∗i

(
c∗i
)−1/σ. Thus, Li is strictly increasing if mi ∈(

−∞, mI
i
)

and strictly decreasing if mi ∈
(
mI

i , MI
i
)
, with mI

i ≡ −
(

σ∗
σ∗−1

λai
µβ∗i

)−σ∗
. Fur-

thermore, by definition of MI
i ≡ −d∗i (w

∗a∗i ) = −(w∗a∗i /β∗i )
−σ∗ , the interval

(
mI

i , MI
i
)

is
non-empty if ai

a∗i
< AI ≡ σ∗−1

σ∗
µw∗

λ . When the previous inequality is satisfied, the concavity

of Li implies that Home exports mI
i units of good i, as illustrated in Figure 1a, whereas

Foreign does not produce anything.
Second, suppose that mi ∈

[
MI

i , MI I
i
]
. In this region, equations (10), (12), and (18)

imply

Li

(
mi, q0

i (mi) , λ, λ∗, µ; w∗
)

= ui (di (λai))− λaidi (λai) + (λai − (λ∗ + µw∗) a∗i )mi − λ∗a∗i d∗i (w
∗a∗i ) ,

which is strictly decreasing in mi if and only if ai
a∗i

< AI I ≡ λ∗+µw∗
λ . When ai

a∗i
∈
[
AI , AI I),

the concavity of Li implies that Home will export MI
i units of good i, as illustrated in

Figure 1b. For these goods, Foreign is at a tipping point: it would start producing if
Home’s exports were to go down by any amount. In the knife-edge case, ai

a∗i
= AI I , the

Lagrangian is flat between MI
i and MI I

i so that any import level between MI
i and MI I

i is

13



optimal, as illustrated in Figure 1c. In this situation, either Home or Foreign may produce
and export good i.

Finally, suppose that MI I
i ≤ mi. In this region, equations (10), (12), and (18) imply

Li

(
mi, q0

i (mi) , λ, λ∗, µ; w∗
)
= ui (mi)− (λ∗ + µw∗) a∗i mi − λ∗a∗i d∗i (w

∗a∗i ) ,

which is strictly increasing if mi ∈
(

MI I
i , mI I

i
)

and strictly decreasing if mi ∈
(
mI I

i , ∞
)
,

with mI I
i ≡ di

(
(λ∗ + µw∗) a∗i

)
. Furthermore, by definition of MI I

i ≡ di (λai),
(

MI I
i , mI I

i
)

is non-empty if ai
a∗i

> AI I ≡ λ∗+µw∗
λ . When this inequality is satisfied, the concavity of Li

implies that Home will import mI I
i units of good i, as illustrated in Figure 1d.

We summarize the above observations in the following proposition.

Proposition 1. If
(
m0

i , q0
i
)

solves (Pi), then optimal net imports are such that: (a) m0
i = mI

i , if
ai/a∗i < AI ; (b) m0

i = MI
i , if ai/a∗i ∈

[
AI , AI I); (c) m0

i ∈
[
MI

i , MI I
i
]

if ai/a∗i = AI I ; and (d)
m0

i = mI I
i , if ai/a∗i > AI I , where mI

i , MI
i , mI I

i , MI I , AI , and AI I are the functions of w∗ and
(λ, λ∗, µ) defined above.

Proposition 1 highlights the importance of comparative advantage, i.e., the cross-
sectoral variation in the relative unit labor requirement ai/a∗i , for the structure of op-

timal imports. Recall that mI
i ≡ −

(
σ∗

σ∗−1
λai
µβ∗i

)−σ∗
< 0, MI

i ≡ −d∗i (w
∗a∗i ) < 0, and

MI I
i ≡ di (λai) > 0. Thus Proposition 1 implies that Home is a net exporter of good i,

m0
i < 0, only if ai/a∗i ≤ AI I . Using Lemmas 2 and 3 to go from (Pi) to Home’s planning

problem, this leads to the following corollary.

Corollary 1. At any solution to Home’s planning problem, Home produces and exports goods in
which it has a comparative advantage, ai/a∗i < AI I , whereas Foreign produces and exports goods
in which it has a comparative advantage, ai/a∗i > AI I .

According to Corollary 1, there will be no pattern of comparative advantage reversals
at an optimum. Like in a free trade equilibrium, there exists a cut-off such that Home
exports a good only if its relative unit labor requirement is below the cut-off. Of course,
the value of that cut-off as well as the export levels will, in general, be different from those
in a free trade equilibrium.

4 Optimal Trade Taxes

We now demonstrate how to implement the solution of Home’s planning problem using
trade taxes in a competitive equilibrium.
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4.1 Wedges

Trade taxes cause domestic and world prices to differ from one another. To prepare our
analysis of optimal trade taxes, we therefore start by describing the wedges, τ0

i , between

the marginal utility of the domestic consumer, u′i(c
0
i ) = βi

(
c0

i
)− 1

σ , and the world price,
p0

i , that must prevail at any solution to Home’s planning problem:

τ0
i ≡

u′i
(
c0

i
)

p0
i
− 1. (19)

By Lemma 1, we know that if
(
w0∗, p0, c0, c0∗, q0, q0∗) solves Home’s planning problem—

and hence satisfies conditions (5)–(8)—then p0
i = pi

(
m0

i , w0∗). By Lemma 2, we also know
that if

(
w0∗, p0, c0, c0∗, q0, q0∗) solves Home’s planning problem, then

(
w0∗, m0 = c0 − q0, q0)

solves (P). In turn, this implies that
(
m0 = c0 − q0, q0) solves (Pw∗) for w∗ = w0∗, and by

Lemma 3, that
(
m0

i , q0
i
)

solves (Pi) for almost all i. Accordingly, the good-specific wedge
can be expressed as

τ0
i =

u′i
(
q0

i
(
m0

i
)
+ m0

i
)

pi
(
m0

i , w0∗) − 1,

for almost all i, with pi(m0
i , w0∗) and q0

i (m
0
i ) given by equations (10) and (18) and m0

i
satisfying conditions (a)-(d) in Proposition 1. This further implies

τ0
i =


σ∗−1

σ∗ µ0 − 1, if ai
a∗i

< AI ≡ σ∗−1
σ∗

µ0w0∗

λ0 ;
λ0ai

w0∗a∗i
− 1, if AI < ai

a∗i
≤ AI I ≡ µ0w0∗+λ0∗

λ0 ;
λ0∗
w0∗ + µ0 − 1, if ai

a∗i
> AI I .

(20)

Since AI < AI I , we see that good-specific wedges are (weakly) increasing with ai/a∗i .
For goods that are exported, ai/a∗i < AI I , the magnitude of the wedge depends on the
strength of Home’s comparative advantage. It attains its minimum value, σ∗−1

σ∗ µ0 − 1,
for goods such that ai/a∗i < AI and increases linearly with ai/a∗i for goods such that
ai/a∗i ∈ (AI , AI I). For goods that are imported, ai/a∗i > AI I , wedges are constant and
equal to their maximum value, λ0∗

w0∗ + µ0 − 1.

4.2 Comparative Advantage and Trade Taxes

Let us now demonstrate that any solution
(
w0∗, p0, c0, c0∗, q0, q0∗) to Home’s planning

problem can be implemented by constructing a schedule of trade taxes, t0 = τ0, and a
lump-sum transfer, T0 =

´
i piτ

0
i m0

i di. Since the domestic government’s budget constraint
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is satisfied by construction and the resource constraint (9) must bind at any solution to
Home’s planning problem, equations (3) and (4) trivially hold. Thus we only need to
check that we can find a domestic wage, w0, such that the conditions for utility and profit
maximization by domestic consumers and firms at distorted local prices p0

i
(
1 + t0

i
)
, i.e.,

conditions (1) and (2), are satisfied as well.
Consider first the problem of a domestic firm. At a solution to Home’s planning prob-

lem, we have already argued in Section 3.3 that for almost all i,

u′i
(

q0
i + m0

i

)
≤ λ0ai, with equality if q0

i > 0.

By definition of τ0, we also know that u′i
(
q0

i + m0
i
)
= u′i

(
c0

i
)
= p0

i
(
1 + τ0

i
)
. Thus if

t0
i = τ0

i , then
p0

i

(
1 + t0

i

)
≤ λ0ai, with equality if q0

i > 0. (21)

This implies that condition (2) is satisfied, with the domestic wage in the competitive
equilibrium given by the Lagrange multiplier on the labor resource constraint, w0 = λ0.

Let us turn to the domestic consumer’s problem. By definition of τ0, if t0
i = τ0

i , then

u′i
(

c0
i

)
= p0

i

(
1 + t0

i

)
.

Thus for any pair of goods, i1 and i2, we have

u′i1

(
c0

i1

)
u′i2

(
c0

i2

) =
1 + t0

i1
1 + t0

i2

p0
i1

p0
i2

. (22)

Hence, the domestic consumer’s marginal rate of substitution is equal to the domestic
relative price. By Lemma 1, we know that trade must be balanced at a solution to Home’s
planning problem,

´
i p0

i m0
i di = 0. Together with T0 =

´
i piτ

0
i m0

i di =
´

i pit0
i m0

i di, this
implies ´

i p0
i
(
1 + t0

i
)

c0
i di =

´
i p0

i
(
1 + t0

i
)

q0
i di + T0. (23)

Since conditions (4) and (21) imply
´

i p0
i
(
1 + t0

i
)

q0
i di = λ0L, equation (23) implies that the

domestic consumer’s budget constraint must hold for w0 = λ0. Combining this observa-
tion with equation (22), we can conclude that condition (1) must hold as well.

At this point, we have established that any solution
(
w0∗, p0, c0, c0∗, q0, q0∗) to Home’s

planning problem can be implemented by constructing a schedule of trade taxes, t0 = τ0,
and a lump-sum transfer, T0 =

´
i piτ

0
i m0

i di. Since Home’s planning problem, as described
in Definition 3, is a relaxed version of the domestic government’s problem, as described in
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Figure 2: Optimal trade taxes.

Definition 2, this immediately implies that
(
t0, T0, w0, w0∗, p0, c0, c0∗, q0, q0∗) is a solution

to the original problem. Conversely, suppose that
(
t0, T0, w0, w0∗, p0, c0, c0∗, q0, q0∗) is a

solution to the domestic’s government problem, then
(
w0∗, p0, c0, c0∗, q0, q0∗) must solve

Home’s planning problem and, by condition (1), the optimal trade taxes t0 must satisfy

t0
i =

u′i
(
c0

i
)

νp0
i
− 1,

with ν > 0 the Lagrange multiplier on the domestic consumer’s budget constraint. By
equation (19), this implies that 1 + t0

i = 1
ν (1 + τ0

i ). Combining this observation with
equation (20), we obtain the following characterization of optimal trade taxes.

Proposition 2. At any solution of the domestic government’s problem, trade taxes, t0, are such
that: (a) t0

i = (1 + t̄) (AI/AI I)− 1, if ai/a∗i < AI ; (b) t0
i = (1 + t̄)

((
ai/a∗i

)
/AI I)− 1, if

ai/a∗i ∈
[
AI , AI I]; and (c) t0

i = t̄, if ai/a∗i > AI I , with t̄ > −1 and AI < AI I .

Proposition 2 states that optimal trade taxes vary with comparative advantage as
wedges do. Trade taxes are at their lowest values, (1 + t̄) (AI/AI I)− 1, for goods in which
Home’s comparative advantage is the strongest, ai/a∗i < AI ; they are linearly increasing
with ai/a∗i for goods in which Home’s comparative advantage is in some intermediate
range, ai/a∗i ∈

[
AI , AI I]; and they are at their highest value, t̄, for goods in which Home’s

comparative advantage is the weakest, ai/a∗i > AI I .
Since only relative prices and hence relative taxes matter for domestic consumers and

firms, the overall level of taxes is indeterminate. This is an expression of Lerner symmetry,
which is captured by the free parameter t̄ > −1 in the previous proposition. Figure 2
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illustrates two polar cases. In Figure 2a, there are no import tariffs, t̄ = 0, and all exported
goods are subject to an export tax that rises in absolute value with comparative advantage.
In Figure 2b, in contrast, all imported goods are subject to a tariff t̄ = AI I

AI − 1 ≥ 0, whereas
exported goods receive a subsidy that falls with comparative advantage. For expositional
purposes, we focus in the rest of our discussion on the solution with zero import tariffs,
t̄ = 0, as in Figure 2a.

To gain intuition about the economic forces that shape optimal trade taxes, consider
first the case in which foreign preferences are Cobb-Douglas, σ∗ = 1, as in Dornbusch
et al. (1977). In this case, AI = 0 so that the first region, ai/a∗i < AI , is empty. In the
second region, ai/a∗i ∈

[
AI , AI I], there is limit pricing: Home exports the goods and sets

export taxes t0
i < t̄ = 0 such that foreign firms are exactly indifferent between producing

and not producing those goods, i.e., such that the world price satisfies p0
i = λ0ai/ν(1 +

t0
i ) = w0∗a∗i . The less productive are foreign firms relative to domestic firms, the more

room Home has to manipulate prices, and the bigger the export tax is (in absolute value).
Finally, in the third region, ai/a∗i > AI I , relative prices are pinned down by the relative
unit labor requirements in Foreign. Since Home has no ability to manipulate these relative
prices, a uniform import tariff (here normalized to zero) is optimal.

In the more general case, σ∗ ≥ 1, as in Wilson (1980), Eaton and Kortum (2002), and
Alvarez and Lucas (2007), the first region, ai/a∗i < AI , is no longer necessarily empty.
The intuition, however, remains simple. In this region the domestic government has in-
centives to charge a constant monopoly markup, proportional to σ∗/(σ∗ − 1). Specifically,
the ratio between the world price and the domestic price is equal to 1/(1 + t0

i ) =
σ∗

σ∗−1
ν

µ0 .

In the region ai/a∗i ∈
[
AI , AI I], limit pricing is still optimal. But because AI is increasing

in σ∗, the extent of limit pricing, all else equal, decreases with the elasticity of demand in
the foreign market.

4.3 Discussion

Proposition 2 accords well with the observation that governments often protect a small
number of less competitive industries. Yet in our model, such targeted subsidies do not
stem from a greater desire to expand production in these sectors. On the contrary, they re-
flect tighter constraints on the ability to exploit monopoly power by contracting exports.
According to Proposition 2, Home can only charge constant monopoly markups for ex-
ported goods in which its comparative advantage is the strongest. For other exported
goods, the threat of entry of foreign firms leads markups to decline together with Home’s
comparative advantage.
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An interesting issue is whether the structure of optimal trade taxes described in Propo-
sition 2 crucially relies on the assumption that domestic firms are perfectly competitive.
Since Home’s government behaves like a domestic monopolist competing à la Bertrand
against foreign firms, one may conjecture that if each good were produced by only one
domestic firm, then Home would no longer have to use trade taxes to manipulate prices:
domestic firms would already manipulate prices under laissez-faire. This conjecture,
however, is incorrect for two reasons.

The first reason is that although the government behaves like a monopolist, the do-
mestic government’s problem involves non-trivial general equilibrium considerations.
Namely, it internalizes the fact that by producing more goods at home, it lowers foreign
labor demand, which must cause a decrease in the foreign wage and an improvement of
Home’s terms-of-trade. These considerations are captured by the foreign resource con-
straint (16) in Home’s planning problem. As we discuss in more details in Section 6.1,
provided that the Lagrange multiplier associated with that constraint, λ0∗, is not zero,
the optimal level of the markup charged by the domestic government will be different
from what an individual firm would have charged, i.e., σ∗/ (σ∗ − 1). In our quantitative
exercises, such general-equilibrium considerations have small effects on optimal taxes.

The second reason is that to manipulate prices, Home’s government needs to affect the
behaviors of both firms and consumers: net imports depend both on supply and demand.
If each good were produced by only one domestic firm, Home’s government would still
need to impose good-varying consumption taxes that mimic the trade taxes described
above (plus output subsidies that reflect general equilibrium considerations). Intuitively,
if each good were produced by only one domestic firm, consumers would face monopoly
markups in each country, whereas optimality requires a wedge between consumer prices
at home and abroad.

As mentioned in the Introduction, our findings are related to the results of Itoh and
Kiyono (1987). They have shown that in the Ricardian model with Cobb-Douglas pref-
erences considered by Dornbusch et al. (1977), export subsidies may be welfare enhanc-
ing. A key feature of the welfare-enhancing subsidies that they consider is that they are
not uniform across goods; instead, they are concentrated on “marginal” goods. This is
consistent with our observation that, at the optimum, export taxes should be weakly de-
creasing (in absolute value) with Home’s relative unit labor requirements, ai/a∗i , so that
“marginal” goods should indeed be taxed less. The economic forces behind their results,
however, are orthogonal to those emphasized in Proposition 2. Their results reflect the
general-equilibrium considerations alluded to above: by expanding the set of goods pro-
duced at home, the domestic government can lower the foreign wage and improve its
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terms-of-trade. In contrast, the heterogeneity of taxes across goods in Proposition 2 de-
rives entirely from the structure of the inner problem (Pw∗), which takes the foreign wage
as given. This implies, in particular, that Proposition 2 would still hold if Home were a
“small” country in the sense that it could not affect the foreign wage.11

5 Robustness

In this section we incorporate general preferences, general technology, as well as trade
costs into the Ricardian model presented in Section 2. Our goal is twofold. First, we want
to demonstrate that Lagrange multiplier methods, and in particular our strategy of identi-
fying concave cell-problems, remain well suited to analyzing optimal trade policy in these
alternative environments. Second, we want to explore the extent to which the predictions
derived in Section 4 hinge on the assumption of CES utility, the fact that comparative
advantage derives from differences in technologies alone, or the absence of trade costs.
To save on space, we focus on sketching alternative environments and summarizing their
main implications.

5.1 Preferences

While the assumption of CES utility is standard in the Ricardian literature—from Dorn-
busch et al. (1977) to Eaton and Kortum (2002)—it implies strong restrictions on the
demand-side of the economy: own-price elasticities and elasticities of substitution are
both constant and pinned down by a single parameter, σ. In practice, price elasticities
may vary with quantities consumed and substitution patterns may vary across goods.

Here we relax the assumptions of Section 2 by assuming (i) that Home’s preferences
are weakly separable over a discrete number of sectors, s ∈ S ≡ {1, ..., S}, and (ii) that
subutility within each sector, Us, is additively separable, though not necessarily CES.
Specifically, we assume that Home’s preferences can be represented by the following util-
ity function,

U = F(U1(c1), ...., US(cS)),

where F is a strictly increasing function; cs ≡ (ci)i∈I s is the consumption of goods in

11The observation that optimal trade policy may not converge towards zero as the economy becomes
arbitrarily small is related to the point made by Gros (1987) in a monopolistically competitive model and
Alvarez and Lucas (2007) in a Ricardian model.
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sector s, with I s the set of goods that belongs to that sector; and Us is such that

Us (cs) =
´

i∈I s us
i (ci)di.

Foreign’s preferences are similar, and asterisks denote foreign variables. Section 2 cor-
responds to the special case in which there is only one sector, S = 1, and Us is CES,
us

i (ci) ≡ βs
i

(
c

1−1/σs

i − 1
)/

(1− 1/σs).12

For expositional purposes, let us start by considering an intermediate scenario in
which utility is not CES while maintaining the assumption that there is only one sec-
tor, S = 1. It should be clear that the CES assumption is not crucial for the results derived
in Sections 2.2-3.2. In contrast, CES plays a key role in determining the optimal level

of net imports, mI
i = −

(
σ∗

σ∗−1
λai
µβ∗i

)−σ∗
, in Section 3.3 and, in turn, in establishing that

trade taxes are at their lowest values, (1 + t̄) (AI/AI I) − 1, for goods in which Home’s
comparative advantage is the strongest in Section 4.2. Absent CES utility, trade taxes
on imported goods would still be uniform, but trade taxes on exported goods, like the
optimal monopoly markup, would now also vary with the elasticity of demand.

Now let us turn to the general case with multiple sectors, S ≥ 1. With weakly
separable preferences abroad, one can check that foreign consumption in each sector,
cs∗ ≡

(
c∗i
)

i∈I s , must be such that

cs∗ ∈ argmaxc̃≥0
{

Us∗ (c̃)|
´

i∈I s ps
i c̃idi ≤ Es∗} ,

Accordingly, by the same argument as in Lemma 1, we can write the world price and
foreign output for all s ∈ S and i ∈ I s as

ps
i (mi, w∗, Es∗) ≡ min

{
us∗′

i (−mi) νs∗ (Es∗) , w∗a∗i
}

, (24)

and
qs∗

i (mi, w∗, Es∗) ≡ max {mi + ds∗
i (w∗a∗i /νs∗ (Es∗)), 0} , (25)

where ν (Es∗) is the Lagrange multiplier associated with the constraint,
´

i∈I s ps
i c̃idi ≤ Es∗.

In this situation, Home’s planning problem can still be decomposed into an outer
problem and multiple inner problems, one for each sector. At the outer level, the gov-
ernment now chooses the foreign wage, w∗, together with the sectoral labor allocations
in Home and Foreign, Ls and Ls∗, and the sectoral trade deficits, Ds, subject to aggregate

12The analysis in this section trivially extends to the case in which only a subset of sectors have additively
separable utility. For this subset of sectors, and this subset only, our predictions would remain unchanged.
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factor market clearing and trade balance. At the inner level, the government treats Ls,
Ls∗, Ds, and w∗ as constraints and maximizes subutility sector-by-sector. More precisely,
Home’s planning problem can be expressed as

max
{Ls,Ls∗,Ds}s∈S ,w∗∈W∗

F(V1(L1, L1∗, D1, w∗), ..., VS(LS, LS∗, DS, w∗))

subject to

∑s∈S Ls = L,

∑s∈S Ls∗ = L∗,

∑s∈S Ds = 0,

where the sector-specific value function is now given by

Vs (Ls, Ls∗, Ds, w∗) ≡ max
ms,qs≥0

´
i∈I s us

i (mi + qi)di

subject to

´
i∈I s aiqidi ≤ Ls,´

i∈I s a∗i qs∗
i (mi, w∗, w∗Ls∗ − Ds) di ≤ Ls∗,´

i∈I s ps
i (mi, w∗, w∗Ls∗ − Ds)midi ≤ Ds.

Given equations (24) and (25), the sector-specific maximization problem is of the same
type as in the baseline case (program P). As in Section 3.2, we can therefore reformu-
late each infinite-dimensional sector-level problem into many two-dimensional, uncon-
strained maximization problems using Lagrange multiplier methods. Within any sector
with CES utility, all of our previous results hold exactly. Within any sector in which util-
ity is not CES, our previous results continue to hold subject to the qualification about
monopoly markups discussed above.

5.2 Technology

As is well known, the Ricardian model can always be interpreted as a neoclassical model
with multiple factors of production under the restriction that all goods use factors of pro-
duction in the same proportions. In practice, however, factor intensities do differ across
sectors. Thus, relative production costs depend not only on productivity differences—as
in our baseline model—but also on factor intensities and factor prices. Here we generalize

22



the model of Section 2.1 to allow for arbitrary neoclassical production functions. In spite
of the generality of this new environment, we find that our main prediction survives:
due to limit pricing, taxes remain weakly monotone with respect to relative cost across
exported goods.

The new environment can be described as follows. There are multiple factors of pro-
duction indexed by n, each of which are perfectly mobile across goods and immobile
across countries. We now denote by L ≡ (Ln) ≥ 0 the exogenous vector of factor en-
dowments at home. Production of each good is subject to constant returns to scale. If
li ≡ (lin) units of each factor are employed in sector i at home or abroad, then total output
is given by fi (li) or f ∗i (li). The Ricardian model considered in Section 2.1 corresponds to
the special case in which fi (li) = li/ai.

The competitive equilibrium can still be described as in Section 2.2. Besides the fact
that multiple factor markets must now clear at home and abroad, the only additional
equilibrium condition is that firms must choose unit factor requirements to minimize
their costs,

ai(w) ≡ (ain(w)) = argminai≡(ain) { ai · w| fi (ai) ≥ 1} ,

where w ≡ (wn) is now the vector of factor prices and · denotes the scalar product. A
similar condition holds abroad, with asterisks denoting foreign factor prices and foreign
production functions.

Regarding Home’s planning problem, the same argument as in Lemma 1 implies that
the world price, foreign consumption, foreign unit factor requirements, and foreign pro-
duction can be expressed more compactly as functions of net imports and foreign factor
prices alone. Similarly, Home’s planning problem can still be decomposed into an outer
problem and an inner problem. At the inner level, the government treats the vector of
foreign factor prices, w∗ ≡ (w∗n), as given and chooses net imports and output, m, q ≥ 0,
as well as domestic unit factor requirements, a ≥ 0. At the outer level, the government
then chooses the vector of foreign factor prices, w∗. Using the same approach as in Section
3.2 and substituting for the optimal unit factor requirements, we can then reduce Home’s
Problem to maximizing with respect to (mi, qi) the good-specific Lagrangian,

Li (mi, qi, λ, λ∗, µ; w∗) ≡ ui (qi + mi)−λ · ai(λ)qi−λ∗ · a∗i (w∗) q∗i (mi, w∗)−µpi (mi, w∗)mi,

where λ ≡ (λn) and λ∗ ≡ (λ∗n) now denote the vectors of Lagrange multipliers associated
with the domestic and foreign resource constraints, respectively.

Solving for optimal output and net imports follows similar arguments as in Section
3.3. First, we find optimal output, q0

i (mi), as a function of net imports. Second, we find
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the value of mi that maximizes Li. As in the baseline model, the Lagrangian has two
kinks. The first one occurs at mi = MI

i ≡ −d∗i
(
w∗ · a∗i (w∗)

)
< 0, when Foreign starts

producing good i, and the second occurs at mi = MI I
i ≡ di (λ · ai(λ)) > 0, when Home

stops producing good i. Letting γi ≡ λ · ai(λ) and γ∗i ≡ w∗ · a∗i (w∗) denote the unit
costs of production in the two countries and considering separately the three regions
partitioned by the two kinks, we obtain the following generalization of Proposition 1.

Proposition 3. Optimal net imports are such that: (a) m0
i = mI

i ≡ −
(

σ∗
σ∗−1

γi
µβ∗i

)−σ∗
, if γi

γ∗i
<

µ σ∗−1
σ∗ ; (b) m0

i = MI
i , if γi

γ∗i
∈
[
µ σ∗−1

σ∗ , λ∗·a∗i (w∗)
γ∗i

+ µ
)

; (c) m0
i ∈

[
MI

i , MI I
i
]

if γi
γ∗i

=
λ∗·a∗i (w∗)

γ∗i
+

µ; and (d) m0
i = mI I

i ≡ di
(
λ∗ · a∗i (w∗) + µγ∗i

)
, if γi

γ∗i
>

λ∗·a∗i (w∗)
γ∗i

+ µ.

Starting from Proposition 3 and using the same arguments as in Section 4.1, one can
show that wedges should be constant and equal to σ∗−1

σ∗ µ− 1 in Region (a) and linear in
λγi
γ∗i

in Region (b). This implies that optimal taxes on exported goods should be constant
for goods in which Home’s relative cost is the lowest (Region a) and monotone in relative
costs for other goods (Region b). Like in our baseline Ricardian model, the previous
monotonic relationship reflects the constraints on the ability of the domestic government
to manipulate world prices in that region.

Proposition 3, however, differs from Proposition 1 in two important respects. First, it
establishes a relationship between imports and relative costs, not a relationship between
imports and comparative advantage. Since unit costs of production—unlike unit labor
requirements in a Ricardian model—are endogenous objects, it is a priori possible that
no goods may fall into Regions (a), (b), and (d).13An important question, therefore, is
whether there are other canonical models for which Proposition 3 can be re-stated in terms
of primitive assumptions about technology and factor endowments. Another prominent
example for which this is the case is the Heckscher-Ohlin model considered by Dornbusch
et al. (1980). In an economy with a continuum of goods, CES utility, two factors (capital
and labor), and identical technologies across countries, one can show that at the solution
of the planning problem, the capital-abundant country should have relatively lower costs
in the capital-intensive sectors. Accordingly, optimal taxes should be constant on the most
capital-intensive goods and monotone in capital intensity for other exported goods, i.e.
monotone in comparative advantage.

The second difference between Propositions 1 and 3 is more subtle and relates to op-
timal taxes on imported goods. Compared to the baseline Ricardian model, the domestic

13This would happen if all goods are produced by both countries, perhaps because in the short-run there
are factors of production specific to each sector in all countries, as assumed in the Ricardo-Viner model. In
such a situation, all goods would fall in Region (c).
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government may now manipulate the relative price of its imports. In the Ricardian model,
those relative prices were pinned down by relative unit labor requirements abroad. In this
more general environment, the domestic government may affect the relative price of its
imports by affecting relative factor demand abroad and, in turn, relative factor prices.
Whenever the vector of Lagrange multipliers associated with the foreign resource con-
straint, λ∗, is not collinear with the vector of foreign factor prices, w∗, it will have in-
centives to do so, thereby leading to taxes on imported goods that may now vary across
goods.

Based on the quantitative results presented in Section 6, we expect the manipulation
of relative factor demand abroad to be relatively unimportant in practice. Even when
considering a country as large as the United States, we find that λ∗ is close to zero. This
is suggestive of most countries being “small” in the sense that they cannot affect factor
market clearing conditions in the rest of the world. Yet, as our analysis demonstrates,
this does not imply that most countries would not want to manipulate world prices to
their advantage. Even if λ∗ is equal to zero—so that λ∗ is trivially collinear with w∗—
Proposition 3 shows that a small, but strategic country would like to impose taxes on
exported goods that are weakly monotone in relative costs. Put differently, whereas the
ability to affect factor prices in the rest of the world clearly depends on country size, the
incentives for limit pricing do not.

5.3 Trade Costs

Trade taxes are not the only forces that may cause domestic and world prices to diverge.
Here we extend our model to incorporate exogenous iceberg trade costs, δ ≥ 1, such that
if 1 unit of good i is shipped from one country to another, only a fraction 1/δ arrives. In
the canonical two-country Ricardian model with Cobb-Douglas preferences considered
by Dornbusch et al. (1977), these costs do not affect the qualitative features of the equilib-
rium beyond giving rise to a range of commodities that are not traded. We now show that
similar conclusions arise from the introduction of trade costs in our analysis of optimal
trade policy.

We continue to define world prices, pi, as those prevailing in Foreign and let

φ (mi) ≡
{

δ, if mi ≥ 0,
1/δ, if mi < 0,

(26)

denote the gap between domestic and world prices in the absence of trade taxes.
As in our benchmark model, the domestic government’s problem can be reformulated
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and transformed into many two-dimensional, unconstrained maximization problems us-
ing Lagrange multiplier methods. In the presence of trade costs, Home’s objective is to
find the solution

(
m0

i , q0
i
)

of the good-specific Lagrangian,

max
mi,qi≥0

Li (mi, qi, λ, λ∗, µ; w∗) ≡ ui (qi + mi)− λaiqi

− λ∗a∗i q∗i (mi, w∗)− µpi(mi, w∗)φ (mi)mi,

where pi (mi, w∗) and q∗i (mi, w∗) are now given by

pi (mi, w∗) ≡ min
{

u∗′i (−miφ (mi)) , w∗a∗i
}

, (27)

q∗i (mi, w∗) ≡ max
{

miφ (mi) + d∗i (w
∗a∗i ), 0

}
. (28)

Compared to the analysis of Section 3, if Home exports −mi > 0 units abroad, then
Foreign only consumes −mi/δ units. Conversely, if Home imports mi > 0 units from
abroad, then Foreign must export miδ units. This explains why φ (mi) appears in the two
previous expressions.

The introduction of transportation costs leads to a new kink in the good-specific La-
grangian. In addition to the kink at mi = δMI

i ≡ −δd∗i (w
∗a∗i ), there is now a kink at

mi = 0, reflecting the fact that some goods may no longer be traded at the solution of
Home’s planning problem. As before, since we are not looking for stationary points,
this technicality does not complicate our problem. When maximizing the good-specific
Lagrangian, we simply consider four regions in mi space: mi < δMI

i , δMI
i ≤ mi < 0,

0 ≤ mi < MI I
i , and mi ≥ MI I

i .
As in Section 3, if Home’s comparative advantage is sufficiently strong, ai/a∗i ≤ 1

δ AI ≡
1
δ

σ∗−1
σ∗

µw∗
λ , then optimal net imports are m0

i = δ1−σ∗mI
i ≡ −

(
σ∗

σ∗−1
λai
µβ∗i

)−σ∗
δ1−σ∗ . Similarly,

if Foreign’s comparative advantage is sufficiently strong, ai/a∗i > δAI I ≡ δ
λ∗+µw∗

λ , then
optimal net imports are m0

i = δ−σ∗mI I
i ≡ di

(
(λ∗ + µw∗) δa∗i

)
. Relative to the benchmark

model, there is now a range of goods for which comparative advantage is intermediate,
ai/a∗i ∈

(
1
δ AI I , δAI I

)
, in which no international trade takes place. For given values of

the foreign wage, w∗, and the Lagrange multipliers, λ, λ∗, µ, this region expands as trade
costs become larger, i.e., as δ increases.

Building on the previous observations, we obtain the following generalization of Propo-
sition 1.

Proposition 4. Optimal net imports are such that: (a) m0
i = δ1−σ∗mI

i , if ai/a∗i ≤ 1
δ AI ; (b)

m0
i = δMI

i , if ai/a∗i ∈
(

1
δ AI , 1

δ AI I
)

; (c) m0
i ∈

[
δMI

i , 0
]

if ai/a∗i = 1
δ AI I ; (d) m0

i = 0,
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if ai/a∗i ∈
(

1
δ AI I , δAI I

)
; (e) m0

i ∈
[
0, MI I

i
]

if ai/a∗i = δAI I ; and ( f ) m0
i = δ−σ∗mI I

i , if

ai/a∗i > δAI I .

Using Proposition 4, it is straightforward to show, as in Section 4.1, that wedges across
traded goods are (weakly) increasing with Home’s comparative advantage. Similarly, as
in Section 4.2, one can show that any solution to Home’s planning problem can be imple-
mented using trade taxes and that the optimal taxes vary with comparative advantage as
wedges do. In summary, our main theoretical results are also robust to the introduction
of exogenous iceberg trade costs.

6 Applications

To conclude, we apply our theoretical results to two sectors: agriculture and manufactur-
ing. Our goal is to take a first look at the quantitative importance of optimal trade taxes
for welfare, both in an absolute sense and relative to the simpler case of uniform import
tariffs.

In both applications, we compute optimal trade taxes as follows. First, we use Propo-
sition 1 to solve for optimal imports and output given arbitrary values of the Lagrange
multipliers, (λ, λ∗, µ), and the foreign wage, w∗. Second, we use constraints (15)-(17) to
solve for the Lagrange multipliers. Finally, we find the value of the foreign wage that
maximizes the value function V(w∗) associated with the inner problem. Given the opti-
mal foreign wage, w0∗, and the associated Lagrange multipliers,

(
λ0, λ0∗, µ0), we finally

compute optimal trade taxes using Proposition 2.

6.1 Agriculture

In many ways, agriculture provides an ideal environment in which to explore the quan-
titative importance of our results. From a theoretical perspective, the market structure in
this sector is arguably as close as possible to the neoclassical ideal. And from a measure-
ment perspective, the scientific knowledge of agronomists provides a unique window
into the structure of comparative advantage, as discussed in Costinot and Donaldson
(2011). Finally, from a policy perspective, agricultural trade taxes are pervasive and one
of the most salient and contentious global economic issues, as illustrated by the World
Trade Organization’s current, long-stalled Doha round.

Calibration. We start from the Ricardian economy presented in Section 2.1 and assume
that each good corresponds to one of 39 crops for which we have detailed productivity
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data, as we discuss below. All crops enter utility symmetrically in all countries, βi =

β∗i = 1, and with the same elasticity of substitution, σ = σ∗. Home is the United States
and Foreign is an aggregate of the rest of the world (henceforth R.O.W.). The single factor
of production is equipped land. We also explore how our results change in the presence
of exogenous iceberg trade costs, as in Section 5.3.

The parameters necessary to apply our theoretical results are: (i) the unit factor re-
quirement for each crop in each country, ai and a∗i ; (ii) the elasticity of substitution, σ;
(iii) the relative size of the two countries, L∗/L; and (iv) trade costs, δ, when relevant. For
setting each crop’s unit factor requirements, we use data from the Global Agro-Ecological
Zones (GAEZ) project from the Food and Agriculture Organization (FAO); see Costinot
and Donaldson (2011). Feeding data on local conditions—e.g., soil, topography, eleva-
tion and climatic conditions—into an agronomic model, scientists from the GAEZ project
have computed the yield that parcels of land around the world could obtain if they were
to grow each of the 39 crops we consider in 2009.1415 We set ai and a∗i equal to the aver-
age hectare per ton of output across all parcels of land in the United States and R.O.W.,
respectively.

The other parameters are chosen as follows. We set σ = 2.9 in line with the median es-
timate of the elasticity of substitution across our 39 crops in Broda and Weinstein (2006).16

We set L = 1 and L∗ = 10.62 to match the relative acreage devoted to the 39 crops con-
sidered, as reported in the FAOSTAT data in 2009. Finally, in the extension with trade
costs, we set δ = 1.72 so that Home’s import share in the equilibrium without trade pol-
icy matches the U.S. agriculture import share—that is, the total value of U.S. imports over
the 39 crops considered divided by the total value of U.S. expenditure over those same
crops—in the FAOSTAT data in 2009, 11.1%.

Results. The left and right panels of Figure 3 report optimal trade taxes on all traded
crops i as a function of comparative advantage, ai/a∗i , in the calibrated examples without
trade costs, δ = 1, and with trade costs, δ = 1.72, respectively.17 The region between

14While there are 43 crops in the original GAEZ database, we collapse this to 39 because of our need to
merge the GAEZ crops with those in the FAOSTAT data (on trade flows and land usage). In doing so, we
combine wetland rice and dryland rice, pearl millet and foxtail millet, and phaseolus bean and gram, in
each case taking the maximum predicted GAEZ yield as the yield of the combined crop. In addition, we
dropped jatropha from the analysis because this crop is not tracked in the FAOSTAT data.

15The GAEZ project constructs output per hectare predictions under different assumptions on a farmer’s
use of complementary inputs (e.g. irrigation, fertilizers, and machinery). We use the measure that is con-
structed under the assumption that irrigation and a “moderate” level of other inputs (fertilizers, machinery,
etc.) are available to farmers.

16The elasticity of substitution estimated by Broda and Weinstein (2006) are available for 5-digit SITC
sectors. When computing the median across our 39 crops, we restrict ourselves to 5-digit SITC codes that
can be matched to raw versions of the 39 FAO crops.

17We compute optimal trade taxes, throughout this and the next subsection, by performing a grid search
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Figure 3: Optimal trade taxes for the agricultural case. The left panel assumes no trade
costs, δ = 1. The right panel assumes trade costs, δ = 1.72.

the two vertical lines in the right panel corresponds to goods that are not traded at the
solution of Home’s planning problem.

As discussed in Section 4.2, the overall level of taxes is indeterminate. Figure 3 focuses
on a normalization with zero import tariffs. In both cases, the maximum export tax is close
to the optimal monopoly markup that a domestic firm would have charged on the foreign
market, σ/ (σ− 1) − 1 ' 52.6%. The only difference between the two markups comes
from the fact that the domestic government internalizes the effect that the net imports of
each good have on the foreign wage. Specifically, if the Lagrange multiplier on the foreign
resource constraint, λ0∗, were equal to zero, then the maximum export tax, which is equal
AI/AI I− 1, would simplify to the firm-level markup, σ/ (σ− 1)− 1. In other words, such
general equilibrium considerations appear to have small effects on the design of optimal
trade taxes for goods in which the U.S. comparative advantage is the strongest. In light
of the discussion in Section 4.3, these quantitative results suggest that if domestic firms
were to act as monopolists rather than take prices as given, then the domestic government
could get close to the optimal allocation by only using consumption taxes that mimic the
optimal trade taxes.

The first and second columns of Table 1 display U.S. and R.O.W. welfare gains from
trade, i.e. the percentage change in total income divided by the CES price index rela-

over the foreign wage w∗ so as to maximize V(w∗). Since Foreign cannot be worse off under trade than
under autarky—whatever world prices may be, there are gains from trade—and cannot be better off than
under free trade—since free trade is a Pareto optimum, Home would have to be worse off—we restrict
our grid search to values of the foreign wage between those that would prevail in the autarky and free
trade equilibria. Recall that we have normalized prices so that the Lagrange multiplier associated with the
foreign budget constraint is equal to one. Thus w∗ is the real wage abroad.
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No Trade Costs (δ = 1) Trade Costs (δ = 1.72)
U.S. R.O.W. U.S. R.O.W.

Laissez-Faire 39.15% 3.02% 5.02% 0.25%
Uniform Tariff 42.60% 1.41% 5.44% 0.16%
Optimal Taxes 46.92% 0.12% 5.71% 0.04%

Table 1: Gains from trade for the agricultural case.

tive to autarky, in the baseline model with no trade costs, δ = 1. Three rows report
the values of these gains from trade under each of three scenarios: (i) a laissez-faire
regime with no U.S. trade taxes, (ii) a U.S. optimal uniform tariff, and (iii) U.S. opti-
mal trade taxes as characterized in Proposition 2.18 In this example, optimal trade taxes
that are monotone in comparative advantage increase U.S. gains from trade in agricul-
ture by 20% (46.92/39.15 − 1 ' 0.20) and decrease R.O.W.’s gains from trade by 96%
(1− 0.12/3.02 ' 0.96), both relative to the laissez-faire case. This suggests large ineffi-
ciencies from terms-of-trade manipulation at the world level. Interestingly, we also see
that more than half of the previous U.S. gains arise from the use of non-uniform trade
taxes since a uniform tariff would increase U.S. gains by only 9% (42.60/39.15− 1 ' 0.09).

The third and fourth columns of Table 1 revisit the previous three scenarios using the
model with trade costs, setting δ = 1.72. Not surprisingly, as the U.S. import shares goes
down from around 80% in the model without trade costs to its calibrated value of 11.1% in
the model with trade costs, gains from trade also go down by an order of magnitude, from
39.15% to 5.02%. Yet, the relative importance of trade taxes that vary with comparative
advantage remains fairly stable. Even with trade costs, gains from trade for the United
States are 14% larger under optimal trade taxes than in the absence of any trade taxes
(5.71/5.02− 1 ' 0.14) and, again, slightly more than half of these gains arise from the use
of non-uniform trade taxes (5.44/5.02− 1 ' 0.08).

6.2 Manufacturing

There are good reasons to suspect that the quantitative results from Section 6.1 may not
generalize to other tradable sectors. In practice, most traded goods are manufactured
goods and the pattern of comparative advantage within those goods may be very differ-
ent than within agricultural products. We now explore the quantitative importance of
such considerations.

18Scenarios (i) and (ii) are computed using the equilibrium conditions (1)-(8) in Section 2.2. In scenario
(i), we set ti = 0 for all goods i. In scenario (ii) we set ti = t for all imported goods, we set ti = 0 for other
goods, and we do a grid search over t to find the optimal tariff.
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Calibration. As in the previous subsection, we focus on the baseline Ricardian economy
presented in Section 2.1 and the extension to iceberg trade costs presented in Section 5.3.
Home and Foreign still correspond to the United States and R.O.W., respectively, but
we now assume that each good corresponds to one of 400 manufactured goods that are
produced using equipped labor.19

Compared to agriculture, the main calibration issue is how to set unit factor require-
ments. Since one cannot measure unit factor requirements directly for all manufactured
goods in all countries, we follow the approach pioneered by Eaton and Kortum (2002)
and assume that unit factor requirements are independently drawn across countries and
goods from an extreme value distribution whose parameters can be calibrated to match
a few key moments in the macro data. In a two-country setting, Dekle et al. (2007) have
shown that this approach is equivalent to assuming

ai =

(
i
T

) 1
θ

and a∗i =

(
1− i
T∗

) 1
θ

, (29)

with θ the shape parameter of the extreme value distribution, that is assumed to be com-
mon across countries, and T and T∗ the scale parameters, that are allowed to vary across
countries. The goods index i is equally spaced between 1/10, 000 and 1− 1/10, 000 for
the 400 goods in the economy.

Given the previous functional form assumptions, we choose parameters as follows.
We set σ = 2.5 to match the median estimate of the elasticity of substitution among 5-
digit SITC manufacturing sectors in Broda and Weinstein (2006), which is very close to
the value used in the agricultural exercise.20 We set L = 1 and L∗ = 19.2 to match
population in the U.S. relative to R.O.W., as reported in the 2013 World Development
Indicators for 2009. Since the shape parameter θ determines the elasticity of trade flows
with respect to trade costs, we set θ = 5, which is a typical estimate in the literature; see
e.g. Anderson and Van Wincoop (2004) and Head and Mayer (2013). Given the previous
parameters, we then set T = 5, 194.8 and T∗ = 1 so that in the equilibrium without trade
policy Home’s share of world GDP matches the U.S. share, 26.2%, as reported in the World
Development Indicators for 2009. Finally, in the extension with trade costs, we now set
δ = 1.44 so that Home’s import share in the equilibrium without trade policy matches the
U.S. manufacturing import share—i.e., total value of U.S. manufacturing imports divided

19The number of goods is chosen to balance computational burden against distance between our model
and models with a continuum of goods such as Eaton and Kortum (2002). We find similar results with other
numbers of goods.

20SITC manufacturing sectors include “Manufactured goods classified chiefly by material,” “Machinery
and transport equipment,” and “Miscellaneous manufactured articles.”
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Figure 4: Optimal trade taxes for the manufacturing case. The left panel assumes no trade
costs, δ = 1. The right panel assumes trade costs, δ = 1.44.

by total value of U.S. expenditure in manufacturing—as reported in the OECD STructural
ANalysis (STAN) database in 2009, 24.7%.

Results. Figure 4 reports optimal trade taxes as a function of comparative advantage for
manufacturing. As before, the left and right panels correspond to the models without
and with trade costs, respectively, under a normalization with zero import tariffs. Like
in the agricultural exercise of Section 6.1, we see that the maximum export tax is close to
the optimal monopoly markup that a domestic firm would have charged on the foreign
market, σ/ (σ− 1)− 1 ' 66.7%, suggesting that the U.S. remains limited in its ability to
manipulate the foreign wage.

Table 2 displays welfare gains in the manufacturing sector. In the absence of trade
costs, as shown in the first two columns, gains from trade for the U.S. are 33% larger un-
der optimal trade taxes than in the absence of any trade taxes (36.85/27.70− 1 ' 0.33) and
86% smaller for the R.O.W. (1− 0.93/6.59 ' 0.86). This again suggests large inefficiencies
from terms-of-trade manipulation at the world level. Compared to our agricultural ex-
ercise, the share of the U.S. gains arising from the use of non-uniform trade taxes is now
even larger: more than two thirds (30.09/27.70− 1 ' 0.09 as compared to 0.33).

As in Section 6.1, although the gains from trade are dramatically reduced by trade
costs—they go down to 6.18% and 2.02% for the U.S. and the R.O.W, respectively—the
importance of non-uniform trade taxes relative to uniform tariffs remains broadly sta-
ble. In the presence of trade costs, gains from trade for the U.S., reported in the third
column, are 49% larger under optimal trade taxes than in the absence of any trade taxes
(9.21/6.18− 1 ' 0.49), and more than half of these gains (since 7.31/6.18− 1 ' 0.18) arise
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No Trade Costs (δ = 1) Trade Costs (δ = 1.44)
U.S. R.O.W. U.S. R.O.W.

Laissez-Faire 27.70% 6.59% 6.18% 2.02%
Uniform Tariff 30.09% 4.87% 7.31% 1.31%
Optimal Taxes 36.85% 0.93% 9.21% 0.36%

Table 2: Gains from trade for the manufacturing case

from the use of trade taxes that vary with comparative advantage.
In contrast to the equivalence results of Arkolakis et al. (2012), the present results

speak well to the importance of micro-level heterogeneity for the design of and gains from
trade policy. In this example, the functional form assumption imposed on the distribu-
tion of unit labor requirements—equation (29)—implies that the model satisfies a gravity
equation, as in Eaton and Kortum (2002). Conditional on matching the same trade elas-
ticity and observed trade flows, the welfare changes associated with any uniform trade
tax would be the same as in a simple Armington or Krugman (1980) model.21 This equiv-
alence is reflected in the fact that the optimal uniform tariff in the present example is
equal to the inverse of the trade elasticity multiplied by the share of foreign expendi-
ture on foreign goods, as established by Gros (1987) in the context of the Krugman (1980)
model. Since the United States is small compared to the rest of the world, this is roughly
1/θ ' 20%, both in the exercises with and without trade costs. In contrast, Figure 4 shows
that the optimal export tax is around 60% and slowly decreasing in absolute value with
Foreign’s relative unit labor requirements. As shown in Table 2, these differences in de-
sign are associated with significant welfare effects, at least within the scope of this simple
calibrated example.

Intuitively, the equivalence emphasized by Arkolakis et al. (2012) builds on the ob-
servation that at the aggregate level, standard gravity models are equivalent to endow-
ment models in which countries exchange labor and relative labor demand curves are
iso-elastic. Hence, conditional on the shape of these demand curves, the aggregate im-
plications of uniform changes in trade costs, i.e. exogenous demand shifters, must be
the same in all gravity models. For those particular changes, the micro-level assump-
tions through which iso-elastic demand curves come about—either CES utility functions
in the Armington model or an extreme value distribution in the Eaton and Kortum (2002)
model—are irrelevant. Trade taxes, however, are imposed on goods, not labor. When het-

21The basic argument is the same as the one used by Arkolakis et al. (2012) to establish that the welfare
changes associated with any movement in iceberg trade costs are the same in the Armington, Krugman
(1980), and Eaton and Kortum (2002) models. See Costinot and Rodríguez-Clare (2013) for a general dis-
cussion of the effects of trade policy in gravity models.
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erogeneous across goods, such taxes no longer act as simple labor demand shifters and
the equivalence in Arkolakis et al. (2012) breaks down. This is precisely what happens
when trade taxes are chosen optimally.

7 Concluding Remarks

Comparative advantage is at the core of neoclassical trade theory. In this paper we have
taken a first stab at exploring how comparative advantage across nations affects the de-
sign of optimal trade policy. In the context of a canonical Ricardian model of interna-
tional trade we have shown that optimal trade taxes should be uniform across imported
goods and weakly monotone with respect to comparative advantage across exported
goods. Specifically, export goods featuring weaker comparative advantage should be
taxed less (or subsidized more) relative to those featuring stronger comparative advan-
tage, reflecting the fact that countries have more room to manipulate world prices in their
comparative-advantage sectors.

Though the focus of our paper is primarily normative, the previous results also have
positive implications. Like perfectly competitive models providing a benchmark to iden-
tify market failures, we view our model with a welfare-maximizing government as a
useful benchmark to assess the importance of political-economy considerations in prac-
tice. Previous empirical work by Broda et al. (2008) and Bagwell and Staiger (2011) sug-
gests that terms-of-trade considerations do affect observed trade policies across countries
and industries. In future work it would be interesting to explore empirically the extent
to which comparative advantage shapes trade taxes across import-oriented and export-
oriented sectors. The extent to which it does may provide a new window on the prefer-
ences and constraints faced by policymakers, including in agriculture where protection-
ism remains a salient global policy issue.

At a technical level, characterizing optimal trade taxes in a Ricardian model is non-
trivial. As mentioned in the Introduction, the maximization problem of the country ma-
nipulating its terms-of-trade is infinite-dimensional, non-concave, and non-smooth. A
second contribution of our paper is to show how to use Lagrange multiplier methods to
solve such problems. Our basic strategy can be sketched as follows: (i) use the primal ap-
proach to go from taxes to quantities; (ii) identify concave subproblems for which general
Lagrangian necessity and sufficiency theorems apply; and (iii) use the additive separabil-
ity of preferences to break the Lagrangian into multiple low-dimensional maximization
problems that can be solved by simple calculus. Although we have focused on optimal
trade taxes in a Ricardian model, our approach is well suited to other additively separable

34



problems. For instance, one could use these tools to compute fully optimal policy in the
Melitz (2003) model, extending the results of Demidova and Rodríguez-Clare (2009) and
Felbermayr et al. (2011).

Finally, we have studied the quantitative implications of our theoretical results for the
design of unilaterally optimal trade taxes in agricultural and manufacturing sectors. In
our applications, we have found that trade taxes that vary with comparative advantage
across goods lead to substantially larger welfare gains than optimal uniform trade taxes.
In spite of the similarities between welfare gains from trade across models featuring dif-
ferent margins of adjustment—see e.g. Atkeson and Burstein (2010) and Arkolakis et al.
(2012)—this result illustrates that the design of and the gains associated with optimal
trade policy may crucially depend on the extent of heterogeneity at the micro level.
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A Proofs

A.1 Lemma 1

Proof of Lemma 1. (⇒) Suppose that (w∗, p, m, c∗, q∗) satisfies conditions (5)-(8). Let us start with

the first-order condition associated with utility maximization abroad. Since we have normalized

prices so that the marginal utility of income in Foreign is equal to one, the necessary first-order

condition associated with (5) implies

u∗′i (c∗i ) = pi, (30)´
i pic∗i di = w∗L∗. (31)

Turning to the necessary first-order condition associated with profit maximization abroad, condi-

tion (6), we get

pi ≤ w∗a∗i , with equality if q∗i > 0. (32)

Together with the definition of mi ≡ ci − qi, the good market clearing condition (8) implies

c∗i = q∗i −mi. (33)

Combining conditions (30), (32), and (33) and using the convention u∗′i (−mi) ≡ ∞ if mi ≥ 0, we

obtain equation (10). Similarly, we can rearrange equations (30) and (33) as

c∗i = d∗i (pi) , (34)

q∗i = c∗i + mi, (35)

where d∗i (·) ≡ u∗′−1
i (·) denotes the foreign demand for good i. Equation (12) immediately derives

from equations (32), (34), and (35). Equation (11) can then be obtained from equations (12) and

(33). To conclude, note that equations (7) and (12) immediately imply equation (13), whereas

equations (7) and (32) imply ´
i piq∗i di = w∗L∗.

Combining the previous expression with equations (10), (30), and (33), we obtain equation (14).

(⇐) Now suppose that (w∗, p, m, c∗, q∗) satisfies equations (10)-(14). Equations (10) and (11)

imply (30), whereas equations (10), (12), (13), and (14) imply equation (31). Since the foreign

consumer’s utility maximization problem is concave, the two first-order conditions (30) and (31)

are sufficient for condition (5) to hold. Similarly, equations (10) and (12) imply condition (32). Since

the foreign firm’s profit maximization problem is concave, this first-order condition is sufficient

for condition (6) to hold as well. Finally, equations (12) and (13) imply equation (7) and equations

(11) and (12) imply equation (8).
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A.2 Lemma 2

Proof of Lemma 2. (⇒) Suppose that
(
w0∗, p0, c0, c0∗, q0, q0∗) solves Home’s planning problem. By

Definition 3,
(
w0∗, p0, c0, c0∗, q0, q0∗) solves

max
w∗≥0,p≥0,c≥0,c∗,q≥0,q∗

´
ui (ci) di

subject to (5)-(9). By definition of m ≡ c− q, we know that ci = mi + qi for all i. By Lemma 1, we

also know that (w∗, p, c, c∗, q, q∗) satisfies conditions (5)-(8) if and only if equations (10)-(14) hold.

The two previous observations imply that
(
w0∗, m0 = c0 − q0, q0) solves

max
w∗≥,m,q≥0

´
i ui(qi + mi)di (P′)

subject to

´
i aiqidi ≤ L, (36)´

i a∗i q∗i (mi, w∗) di = L∗, (37)´
i pi(mi, w∗)midi = 0. (38)

The rest of the argument proceeds by contradiction. Suppose that
(
w0∗, m0, q0) solves (P′), but

does not solve (P). Then there must exist a solution
(
w1∗, m1, q1) of (P) such that at least one of the

two constraints (16) and (17) is slack. There are three possible cases. First, constraints (16) and (17)

may be simultaneously slack. In this case, starting from m1, one could strictly increase imports

for a positive measure of goods by a small amount, while still satisfying (15)-(17). This would

strictly increase utility and contradict the fact that
(
w1∗, m1, q1) solves (P). Second, constraint (16)

may be slack, whereas constraint (17) is binding. In this case, starting from w∗1 and m1, one could

strictly increase imports for a positive measure of goods and decrease the foreign wage by a small

amount such that (17) still binds. Since (15) is independent of w∗ and m and (16) is slack to start

with, (15)-(17) would still be satisfied. Since domestic utility is independent of w∗, this would

again increase utility and contradict the fact that
(
w1∗, m1, q1) solves (P). Third, constraint (17)

may be slack, whereas constraint (16) is binding. In this case, starting from w∗1 and m1, one could

strictly increase imports for a positive measure of goods and increase the foreign wage by a small

amount such that (16) still binds. For the exact same reasons as in the previous case, this would

again contradict the fact that
(
w1∗, m1, q1) solves (P).

(⇐) Suppose that
(
w0∗, m0, q0) solves (P). From the first part of our proof we know that at

any solution to (P), (16) and (17) must be binding. Thus
(
m0, q0, w0∗) solves (P′). Now con-

sider
(
w0∗, p0, c0, c0∗, q0, q0∗) such that p0 = p

(
m0, w0∗), c0 = m0 + q0, c0∗ = c∗

(
m0, w0∗), and

q0∗ = q∗
(
m0, w0∗). From Lemma 1,

(
w0∗, p0, c0, c0∗, q0, q0∗) therefore also satisfies constraints (5)-

(9). Furthermore, from the first part of our proof, any solution
(
w1∗, p1, c1, c1∗, q1, q1∗) to Home’s
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planning problem must also solve (P′) and, in turn, satisfy

´
i ui(q1

i + m1
i )di =

´
i ui(q0

i + m0
i )di.

This implies that
(
w0∗, p0, c0, c0∗, q0, q0∗) solves Home’s planning problem.

A.3 Lemma 3

Proof of Lemma 3. (⇒) Suppose that
(
m0, q0) solves (Pw∗). Let us first demonstrate that (Pw∗) is a

concave maximization problem. Consider fi(mi) ≡ pi(mi, w0∗)mi. By equation (10), we know that

fi(mi) =

{
miw∗a∗i , if mi > −d∗i (w

∗a∗i ),
miu∗′i (−mi), if mi ≤ −d∗i (w

∗a∗i ).
.

For mi > −d∗i (w
∗a∗i ), we have f ′i (mi) = w∗a∗i . For mi < −d∗i (w

∗a∗i ), σ∗ ≥ 1 implies f ′i (mi) =(
1− 1

σ∗
)

β∗i (−mi)
− 1

σ∗ > 0 and f ′′i (mi) =
1

σ∗
(
1− 1

σ∗
)

β∗i (−mi)
− 1

σ∗−1 > 0. Since

lim
mi→+−d∗i (w

∗a∗i )
f ′ (mi) = w∗a∗i > lim

mi→−−d∗i (w
∗a∗i )

(
1− 1

σ∗

)
w∗a∗i ,

fi is convex and increasing for all i.
Now consider gi(mi) ≡ a∗i q∗i

(
mi, w0∗). By equation (12), we know that

gi(mi) =

{
mia∗i + a∗i d∗i (w

∗a∗i ), if mi > −d∗i (w
∗a∗i ),

0, if mi ≤ −d∗i (w
∗a∗i ).

For mi > −d∗i (w
∗a∗i ), we have g′i (mi) = a∗i . For mi < −d∗i (w

∗a∗i ), g′ (mi) = 0. Thus gi is convex

and increasing for all i.
Since ui is strictly concave in (mi, qi), aiqi is linear in qi, and fi and gi are convex in mi, the

objective function is a concave functional, whereas the constraints are of the form G(m, q) ≤ 0,

with G a convex functional. Accordingly, Theorem 1, p. 217 in Luenberger (1969) implies the

existence of (λ, λ∗, µ) ≥ 0 such that
(
m0, q0) solves

max
m,q≥0

L (m, q, λ, λ∗, µ; w∗) ≡
´

i ui (qi + mi) di− λ
´

i aiqidi

− λ∗
´

i a∗i q∗i (mi, w∗) di− µ
´

i pi(mi, w∗)midi.
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and the three following conditions hold:

λ
(

L− ´i aiq0
i di
)

= 0,

λ∗
(

L∗ − ´i a∗i q∗i
(
m0

i , w∗
)

di
)

= 0,

µ
(´

i pi(m0
i , w∗)m0

i di
)

= 0.

Since
(
m0, q0) satisfies constraints (15)-(17), we therefore have

λ ≥ 0,
´

i aiq0
i di ≤ L, with complementary slackness, (39)

λ∗ ≥ 0,
´

i a∗i q∗i
(
m0

i , w∗
)

di ≤ L∗, with complementary slackness, (40)

µ ≥ 0,
´

i pi(mi, w∗)m0
i di ≤ 0, with complementary slackness. (41)

To conclude, note that if
(
m0, q0) solves maxm,q≥0 L (m, q, λ, λ∗, µ; w∗), then for almost all i,

(
m0

i , q0
i

)
must solve

max
mi ,qi≥0

Li (mi, qi, λ, λ∗, µ; w∗) ≡ ui (qi + mi)− λaiqi

− λ∗a∗i q∗i (mi, w∗)− µpi(mi, w∗)mi.

(⇐) Now suppose that
(
m0

i , q0
i

)
solves (Pi) for almost all i with λ, λ∗, µ such that conditions (39)-

(41) hold. This implies (
m0, q0) ∈ arg max

m,q≥0
L (m, q, λ, λ∗, µ; w∗) .

Suppose first that all Lagrange multipliers are strictly positive: λ > 0, λ∗ > 0, µ > 0, then

conditions (39)-(41) imply

´
i aiq0

i di = L,´
i a∗i q∗i

(
m0

i , w∗
)

di = L∗,´
i pi(m0

i , w∗)m0
i di = 0.

Thus Theorem 1, p. 220 in Luenberger (1969) immediately implies that
(
m0, q0) is a solution to

(Pw∗). Now suppose that at least one Lagrange multiplier is equal to zero. For expositional pur-

poses suppose that λ = 0, whereas λ∗ > 0 and µ > 0. In this case, we have

(
m0, q0) ∈ arg max

m,q≥0
L (m, q, 0, λ∗, µ; w∗)

and

´
i a∗i q∗i

(
m0

i , w∗
)

di = L∗,´
i pi(m0

i , w∗)m0
i di = 0.
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Thus Theorem 1, p. 220 in Luenberger (1969) now implies that
(
m0, q0) is a solution to

max
m,q≥0

´
i ui (qi + mi) di

subject to

´
i a∗i q∗i (mi, w∗) di ≤ L∗,´
i mi pi(mi, w∗)di ≤ 0.

Since
´

i aiq0
i di ≤ L by condition (39),

(
m0, q0) is therefore also a solution to (Pw∗). The other cases

can be dealt with in a similar manner.
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