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1 Introduction

The equity premium, namely the expected return on equities less the risk-

free rate, is an important economic quantity for many reasons. It is an input

into the decision process of individual investors as they determine their asset

allocation between stocks and bonds. It is also a part of cost-of-capital calcu-

lations and thus investment decisions by firms. Finally, financial economists

use it to calibrate and to test, both formally and informally, models of asset

pricing and of the macroeconomy.1

The equity premium is usually estimated by taking the sample mean of

stock returns and subtracting a measure of the riskfree rate such as the average

Treasury Bill return. As is well known (Merton, 1980), it is difficult to estimate

the mean of a stochastic process. If one is computing the sample average, a

tighter estimate can be obtained only by extending the data series in time

which has the disadvantage that the data are potentially less relevant to the

present day.

Given the challenge in estimating sample means, it is not surprising that

a number of studies investigate how to estimate the equity premium using

techniques other than taking the sample average. These include making use of

survey evidence (Claus and Thomas, 2001; Graham and Harvey, 2005; Welch,

2000), data on the cross section (Polk, Thompson, and Vuolteenaho, 2006),

and data on stock return volatility (Pástor and Stambaugh, 2001). The branch

of the literature most closely related to our work uses the accounting identity

that links prices, dividends, and returns (Blanchard, 1993; Constantinides,

2002; Fama and French, 2002; Donaldson, Kamstra, and Kramer, 2010). The

idea is simple in principle, but the implementation is inherently complicated by

1See, for example, the classic paper of Mehra and Prescott (1985), and surveys such

as Kocherlakota (1996), Campbell (2003), Mehra and Prescott (2003), DeLong and Magin

(2009).
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the fact that the formula for returns is additive, while incorporating estimates

of future dividend growth requires multi-year discount rates which are multi-

plicative.2 As DeLong and Magin (2009) discuss in a survey of the literature,

it is not clear why such methods would necessarily improve the estimation of

the equity premium.

In this paper, we propose a method of estimating the equity premium that

incorporates additional information contained in the time series of prices and

dividends in a simple and econometrically-motivated way. Like the papers

above, our work relies on a long-run relation between prices, returns and divi-

dends. However, our implementation is quite different, and grows directly out

of maximum likelihood estimation of autoregressive processes. First, we show

that our method yields an economically significant difference in the estimation

of the equity premium. Taking the sample average of monthly log returns

and subtracting the monthly log return on the Treasury bill over the postwar

period implies a monthly equity premium of 0.43%. Our maximum likelihood

approach implies an equity premium of 0.32%. In annual terms, these translate

to 5.2% and 3.9% respectively. Assuming that returns are approximately log-

normally distributed, we can also derive implications for the equity premium

computed in levels: in monthly terms the sample average implies an equity

premium of 0.53%, or 6.37% per annum, while maximum likelihood implies an

equity premium of 0.42% per month, or 5.06% per annum.

Besides showing that our method yields economically significant differ-

ences, we also perform a Monte Carlo experiment to demonstrate that, in

finite samples and under a number of different assumptions on the data gener-

ating process, the maximum likelihood method is substantially less noisy than

the sample average. For example, under our benchmark simulation, the sam-

2Fama and French (2002) have a relatively simple implementation in which they replace

price appreciation by dividend growth in the expected return equation. We will discuss their

paper in more detail in what follows.
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ple average has a standard error of 0.089%, while our estimator has a standard

error of only 0.050%.

Further, we derive formulas that give the intuition for our results. Max-

imum likelihood allows additional information to be extracted from the time

series of the dividend-price ratio. This additional information implies that

shocks to the dividend-price ratio have on average been negative. In contrast,

ordinary least squares (OLS) implies that the shocks are zero on average by

definition. Because shocks to the dividend-price ratio are negatively corre-

lated with shocks to returns, our results imply that shocks to returns must

have been positive over the time period. Thus maximum likelihood implies an

equity premium that is below the sample average. Not surprisingly, given this

intuition, we show by Monte Carlo simulations that the effect of our procedure

is stronger, the more persistent the predictor variable.

The remainder of our paper proceeds as follows. Section 2 describes our

statistical model and estimation procedure. Section 3 describes our results.

Section 4 describes the intuition for our efficiency results and how these re-

sults depend on the parameters of the data generating process. Section 5 shows

the applicability of our procedure under alternative data generating processes.

First, we show how to adapt our procedure to account for conditional het-

eroskedasticity. Second, we consider the performance of our estimation proce-

dure from Section 2 when the likelihood function is mis-specified in important

ways. Third, we consider the implications of structural breaks for our analysis.

Section 6 concludes.
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2 Statistical Model and Estimation

2.1 Statistical model

Let Rt+1 denote net returns on an equity index between t and t+1, and Rf,t+1

denote net riskfree returns between t and t+ 1. We let rt+1 = log(1 +Rt+1)−
log(1 +Rf,t+1). Let xt denote the log of the dividend-price ratio. We assume

rt+1 − µr = β(xt − µx) + ut+1 (1a)

xt+1 − µx = θ(xt − µx) + vt+1, (1b)

where, conditional on (r1, . . . , rt, x0, . . . , xt), the vector of shocks [ut+1, vt+1]
>

is normally distributed with zero mean and covariance matrix

Σ =

 σ2
u σuv

σuv σ2
v

 .
We assume that the dividend-price ratio follows a stationary process, namely,

that θ < 1; later we discuss the implications of relaxing this assumption.

Note that our assumptions on the shocks imply that µr is the equity premium

and that µx is the mean of xt. While we focus on the case that the shocks

are normally distributed and iid, we also explore robustness to alternative

distributional assumptions.

Equations (1a) and (1b) for the return and predictor processes are standard

in the literature. Indeed, the equation for returns is equivalent to the ordi-

nary least squares regression that has been a focus of measuring predictability

in stock returns for almost 30 years (Keim and Stambaugh, 1986; Fama and

French, 1989). We have simply rearranged the parameters so that the mean

excess return µr appears explicitly. The stationary first-order autoregression

for xt is standard in settings where modeling xt is necessary, e.g. understanding

long-horizon returns or the statistical properties of estimators for β.3 Indeed,

3See for example Campbell and Viceira (1999), Barberis (2000), Fama and French (2002),

Lewellen (2004), Cochrane (2008), Van Binsbergen and Koijen (2010).
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most leading economic models imply that xt is stationary (e.g. Bansal and

Yaron, 2004; Campbell and Cochrane, 1999). A large and sophisticated liter-

ature uses this setting to explore the bias and size distortions in estimation

of β, treating other parameters, including µr, as “nuisance” parameters.4 Our

work differs from this literature in that µr is not a nuisance parameter but

rather the focus of our study.

2.2 Estimation procedure

We estimate the parameters µr, µx, β, θ, σ2
u, σ

2
v and σuv by maximum like-

lihood. The assumption on the shocks implies that, conditional on the first

observation x0, the likelihood function is given by

p (r1, . . . , rT ;x1, . . . , xT |µr, µx, β, θ,Σ, x0) =

|2πΣ|−
T
2 exp

{
−1

2

(
σ2
v

|Σ|

T∑
t=1

u2t − 2
σuv
|Σ|

T∑
t=1

utvt +
σ2
u

|Σ|

T∑
t=1

v2t

)}
. (2)

Maximizing this likelihood function is equivalent to running ordinary least

squares regression. Not surprisingly, maximizing the above requires choosing

means and predictive coefficients to minimize the sum of squares of ut and vt.

This likelihood function, however, ignores the information contained in the

initial draw x0. For this reason, studies have proposed a likelihood function

that incorporates the first observation (Box and Tiao, 1973; Poirier, 1978),

4See for example Bekaert, Hodrick, and Marshall (1997), Campbell and Yogo (2006),

Nelson and Kim (1993), and Stambaugh (1999) for discussions on the bias in estimation of

β and Cavanagh, Elliott, and Stock (1995), Elliott and Stock (1994), Jansson and Moreira

(2006), Torous, Valkanov, and Yan (2004) and Ferson, Sarkissian, and Simin (2003) for

discussion of size. Campbell (2006) surveys this literature. There is a connection between

estimation of the mean and of the predictive coefficient, in that the bias in β arises from the

bias in θ (Stambaugh, 1999), which ultimately arises from the need to estimate µx (Andrews,

1993).
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assuming that it is a draw from the stationary distribution. In our case, the

stationary distribution of x0 is normal with mean µx and variance

σ2
x =

σ2
v

1− θ2
,

(Hamilton, 1994). The resulting likelihood function is

p (r1, . . . , rT ;x0, . . . , xT |µr, µx, β, θ,Σ) =(
2πσ2

x

)− 1
2 exp

{
−1

2

(
x0 − µx
σx

)2
}
×

|2πΣ|−
T
2 exp

{
−1

2

(
σ2
v

|Σ|

T∑
t=1

u2t − 2
σuv
|Σ|

T∑
t=1

utvt +
σ2
u

|Σ|

T∑
t=1

v2t

)}
. (3)

We follow Box and Tiao in referring to (2) as the conditional likelihood and

(3) as the exact likelihood. Recent work that makes use of the exact likelihood

in predictive regressions includes Stambaugh (1999) and Wachter and Waru-

sawitharana (2009, 2012), who focus on estimation of the predictive coefficient

β.5 Other previous studies have focused on the effect of incorporating this

first term (referred to as the initial condition) on unit root tests (Elliott, 1999;

Müller and Elliott, 2003).6

We derive the values of µr, µx, β, θ, σ2
u, σ

2
v and σuv that maximize the

likelihood (3) by solving a set of first-order conditions. We give closed-form

expressions for each maximum likelihood estimate in Appendix A. Our so-

lution amounts to solving a polynomial for the autoregressive coefficient θ,

after which the solution of every other parameter unravels easily. Because

our method does not require numerical optimization, it is computationally ex-

pedient. In what follows, we refer to this procedure as maximum likelihood

5Wachter and Warusawitharana (2009, 2012) use Bayesian methods rather than maxi-

mum likelihood.
6We could extend our results to multiple predictor variables (Kelly and Pruitt (2013), for

example, allow multiple valuation ratios to predict returns), though to keep this manuscript

of manageable size, we do not do so here. The likelihood function in (3) admits a general-

ization to multiple predictors, as can be found in Hamilton (1994).
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estimation (MLE) even when we examine cases in which it is mis-specified.

Depending on the context, we may also refer to it as our benchmark proce-

dure.

In this paper, we compare estimating the equity premium using maximum

likelihood versus the sample mean.7 Given that our goal is to estimate µr,

which is a parameter determining the marginal distribution of returns, why

might it be beneficial to jointly estimate a process for returns and for the

dividend-price ratio? Here, we give a general answer to this question, and go

further into specifics in Section 4. First, a standard result in econometrics says

that maximum likelihood, assuming that the specification is correct, provides

the most efficient estimates of the parameters, that is, the estimates with the

(weakly) smallest asymptotic standard errors (Amemiya, 1985). Furthermore,

in large samples, and assuming no mis-specification, introducing more data

makes inference more reliable rather than less. Thus the value of µr that max-

imizes the likelihood function (3) should be (asymptotically) more efficient

than the sample mean because it is a maximum likelihood estimator and be-

cause it incorporates more data than a simpler likelihood function based only

on the unconditional distribution of the return rt.

This reasoning holds asymptotically as the sample size grows large. Several

practical considerations might be expected to work against this reasoning in

finite samples. First, one might ask whether maximum likelihood delivers a

substantively different, and more reliable, estimator than the sample mean.

The asymptotic results say only that maximum likelihood is better (or, tech-

nically, at least as good), but the difference may be negligible. Second, even

if there is an improvement in asymptotic efficiency for maximum likelihood, it

7Another point of comparison is the estimate of the mean return from the conditional

likelihood (2). Simulation results show that this estimator is less efficient than both the

estimator from the exact likelihood and the sample mean. Additional information in regards

to this estimator is available from the authors upon request.

7



could easily be outweighed in practice by the need to estimate a more compli-

cated system. Finally, estimation of the equity premium by the sample mean

does not require specification of the predictor process. Mis-specification in the

process for dividend-price ratio could outweigh the benefits from maximum

likelihood. These questions motivate the analysis that follows.

2.3 Data

We calculate maximum likelihood estimates of the parameters in our predictive

system for the excess return of the value-weighted market portfolio from CRSP.

Recall that our object of interest is rt, the logarithm of the gross return in

excess of the riskfree asset: rt = log(1 + Rt) − log(1 + Rf
t ). We take Rt to

be the monthly net return of the value-weighted market portfolio and Rf
t to

be the monthly net return of the 30-day Treasury Bill. We use the standard

construction for the dividend-price ratio that eliminates seasonality, namely,

we divide a monthly dividend series (constructed by summing over dividend

payouts over the current month and previous eleven months) by the price.

3 Results

3.1 Point estimates

Table 1 reports estimates of the parameters of our statistical model given in

(1). We report estimates for the 1927-2011 sample and for the 1953-2011

postwar subsample. For the postwar subsample, the equity premium from

MLE is 0.322% in monthly terms and 3.86% per annum. In contrast, the

sample average (given under the column labeled “OLS”) is 0.433% in monthly

terms, or 5.20% per annum. The annualized difference is 133 basis points.

Applying MLE to the 1927–2011 sample yields an estimated mean of 4.69%

per annum, 88 basis points lower than the sample average.
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Table 1 also reports results for maximum likelihood estimation of the pre-

dictive coefficient β, the autoregressive coefficient θ, and the standard devi-

ations and correlation between the shocks. The estimation of the standard

deviations and correlation are nearly identical across the two methods, not

surprisingly, because these can be estimated precisely in monthly data. Esti-

mates for the average value of the predictor variable, the predictive coefficient

and the autoregressive coefficient are noticeably different. The estimate for the

average of the predictor variable is lower for maximum likelihood estimation

(MLE) than for OLS in both samples. The difference in the postwar data is 4

basis points, an order of magnitude smaller than the difference in the estimate

of the equity premium. Nonetheless, the two results are closely related, as we

will discuss in what follows.

3.2 Efficiency

We now return to the question of efficiency. We ask, does our maximum

likelihood procedure reduce estimation noise in finite samples? We simulate

10,000 samples of excess returns and predictor variables, each of length equal

to the data. Namely, we simulate from (1), setting parameter values equal

to their maximum likelihood estimates, and, for each sample, initializing x

using a draw from the stationary distribution. For each simulated sample, we

calculate sample averages, OLS estimates and maximum likelihood estimates,

generating a distribution of these estimates over the 10,000 paths.8

Table 2 (Panel A) reports the means, standard deviations, and the 5th,

50th, and 95th percentile values of a simulation calibrated using the postwar

sample. While the sample average of the excess return has a standard devi-

8In every sample, both actual and artificial, we have been able to find a unique solution

to the first order conditions such that θ is real and between -1 and 1. Given this value for θ,

there is a unique solution for the other parameters. See Appendix A for further discussion

of the polynomial for θ.
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ation of 0.089, the maximum likelihood estimate has a standard deviation of

only 0.050 (unless stated otherwise, units are in monthly percentage terms).

9 Besides lower standard deviations, the maximum likelihood estimates also

have a tighter distribution. For example, the 95th percentile value for the

sample mean of returns is 0.47, while the 95th percentile value for the maxi-

mum likelihood estimate is 0.40 (in monthly terms, the value of the maximum

likelihood estimate is 0.32). The 5th percentile is 0.18 for the sample average

but 0.24 for the maximum likelihood estimate.

Table 2 also shows that the maximum likelihood estimate of the mean of the

predictor has a lower standard deviation and tighter confidence intervals than

the sample average, though the difference is much less pronounced. Similarly,

the maximum likelihood estimate of the regression coefficient β also has a

smaller standard deviation and confidence intervals than the OLS estimate,

though again, the differences for these parameters between MLE and OLS are

not large. The results in this table show that, in terms of the parameters of

this system at least, the equity premium is unique in the improvement offered

by maximum likelihood. This is in part due to the fact that estimation of

first moments is more difficult than that of second moments in the time series

(Merton, 1980). However, the result that the mean of returns is affected more

than the mean of the predictor shows that this is not all that is going on. We

return to this issue in Section 4.

Figure 1 provides another view of the difference between the sample mean

and the maximum likelihood estimate of the equity premium. The solid line

shows the probability density of the maximum likelihood estimates while the

dashed line shows the probability density of the sample mean.10 The data gen-

9Table A.1 shows an economically significant decline in standard deviation for the long

sample as well: the standard deviation falls from 0.080 to 0.058. It is noteworthy that our

results still hold in the longer sample, indicating that our method has value even when there

is a large amount of data available to estimate the sample mean.
10Both densities are computed non-parametrically and smoothed by a normal kernel.
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erating process is calibrated to the postwar period, assuming the parameters

estimated using maximum likelihood (unless otherwise stated, all simulations

that follow assume this calibration). The distribution of the maximum likeli-

hood estimate is visibly more concentrated around the true value of the equity

premium, and the tails of this distribution fall well under the tails of the distri-

bution of sample means.11 For the remainder of the paper, we refer to this data

generating process, namely (1) with parameters given by maximum likelihood

estimates from the postwar sample, as our benchmark case. Unless otherwise

specified, we simulate samples of length equal to the postwar sample in the

data (707 months).

It is well known that OLS estimates of predictive coefficients can be biased

(Stambaugh, 1999). Panel A of Table 2 replicates this result: the “true”

value of the predictive coefficient β in the simulated data is 0.69, however, the

mean OLS value from the simulated samples is 1.28. That is, OLS estimates

the predictive coefficient to be much higher than the true value, and thus

the predictive relation to be stronger. The bias in the predictive coefficient

is associated with bias in the autoregressive coefficient on the dividend-price

ratio. The true value of θ in the simulated data is 0.993, but the mean OLS

value is 0.987. Maximum likelihood reduces the bias somewhat: the mean

maximum likelihood estimate of β is 1.24 as opposed to 1.28, but it does not

eliminate it. Note that the estimates of the equity premium are not biased;

the mean for both maximum likelihood and the sample average is close to the

population value.

These results suggest that 0.69 is probably not a good estimate of β, and

11In Table 2, we used coefficients estimated by maximum likelihood to evaluate whether

MLE is more efficient than OLS. Perhaps it is not surprising that MLE delivers better esti-

mates, if we use the maximum likelihood estimates themselves in the simulation. However,

Table A.3 shows nearly identical results from setting the parameters equal to their sample

means and OLS estimates. We perform more extensive robustness checks in Section 5.
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likewise, 0.993 is likely not to be a good estimate of θ. Does the superior

performance of maximum likelihood continue to hold if these estimates are

corrected for bias? We turn to this question next. We repeat the exercise

described above, but instead of using the maximum likelihood estimates, we

adjust the values of β and θ so that the mean computed across the simulated

samples matches the observed value in the data. The results are given in

Panel B. This adjustment lowers β and increases θ, but does not change the

maximum likelihood estimate of the equity premium. If anything, adjusting

for biases shows that we are being conservative in how much more efficient our

method of estimating the equity premium is in comparison to using the sample

average. The sample average has a standard deviation of 0.138, while the

standard deviation of the maximum likelihood estimate if 0.072. Namely, after

accounting for biases, maximum likelihood gives an equity premium estimate

with standard deviation that is about half of the standard deviation of the

sample mean excess return.12 We will refer to this as our benchmark case with

bias-correction.

3.3 The equity premium in levels

So far we have defined the equity premium in terms of log returns. However,

our result is also indicative of a lower equity premium using return levels. For

simplicity, assume that the log returns log (1 +Rt) are normally distributed.

Then

E[Rt] = E
[
elog(1+Rt)

]
− 1 = eE[log(1+Rt)]+

1
2
Var(log(1+Rt)) − 1.

Using the definition of the excess log return, E [log(1 +Rt)] = E[rt]+E[log(1+

Rf
t )], so the above implies that

E[Rt −Rf
t ] = eE[rt]eE[log(1+Rf

t )]+ 1
2
Var(log(1+Rt)) − 1− E[Rf

t ].

12Table A.2 shows results under bias correction and fat-tailed shocks. Our results are

virtually unchanged.
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Our maximum likelihood method provides an estimate of E[rt] and all other

quantities above can be easily calculated using sample moments. Taking the

sample mean of the series Rt − Rf
t for the period 1953-2011 yields a risk

premium that is 0.530% per month, or 6.37% per annum. On the other hand,

using the above calculation and our maximum likelihood estimate of the mean

of rt gives an estimate of E[Rt − Rf
t ] of 0.422% per month, or 5.06% per

annum.13 Thus our estimate of the risk premium in return levels is 131 basis

lower than taking the sample average, in line with our results for log returns.

3.4 Comparison with Fama and French (2002)

Fama and French (2002) also propose an estimator that takes the time series

of the dividend-price ratio into account in estimating the mean return. Noting

the following return identity:

Rt =
Dt

Pt−1
+
Pt − Pt−1
Pt−1

,

and taking the expectation:

E[Rt] = E

[
Dt

Pt−1

]
+ E

[
Pt − Pt−1
Pt−1

]
,

they propose replacing the capital gain term E[(Pt−Pt−1)/Pt−1] with dividend

growth E[(Dt −Dt−1)/Dt−1]. They argue that, because prices and dividends

are cointegrated, their mean growth rates should be the same. They find that

the resulting expected return is less than half the sample average, namely

4.74% rather than 9.62%.

While their argument seems intuitive, a closer look reveals a problem. Let

Xt = Dt/Pt, and let lower-case letters denote natural logs. Then

dt+1 − dt = xt+1 − xt + pt+1 − pt. (4)

13In the data, in monthly terms for the period 1953-2011, the sample mean of Rt is

0.918%, the sample mean of Rf
t is 0.387%, the sample mean of log(1 + Rf

t ) is 0.386% and

the variance of log(1 +Rt) is 0.194%.
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Because Xt is stationary, E[xt+1 − xt] = 0 and it is indeed the case that

E[dt+1 − dt] = E[pt+1 − pt]. (5)

However, exponentiating (4) and subtracting 1 implies

Dt+1 −Dt

Dt

=
Xt+1

Xt

Pt+1

Pt
− 1. (6)

That is, stationarity of Xt implies (5), but not E[(Pt−Pt−1)/Pt−1] = E[(Dt−
Dt−1)/Dt−1]. Namely it does not imply that the average level growth rates are

equal.

For expected growth rates to be equal in levels, (6) shows that it must be

the case that E
[
Xt+1

Xt

Pt+1

Pt

]
= E

[
Pt+1

Pt

]
. It seems unlikely that there are general

conditions under which this holds. Note that it follows from E[log(Xt+1/Xt)] =

0 and Jensen’s inequality that E[Xt+1/Xt] > 1.14 This implies that the es-

timator proposed by Fama and French (2002) is inconsistent for the equity

premium, and thus it is not necessary (or possible) to evaluate efficiency.

Nonetheless, our results show that assuming cointegration of prices and

dividends can be very informative for estimation of the mean return.15 Indeed,

the intuition that we will develop in the next section is closely related to

14Indeed, if we assume that growth rates of dividends and prices are log-normal, a neces-

sary and sufficient condition for equality of expected (level) growth rates is that the variances

of the log growth rates are equal:

Var(dt+1 − dt) = Var(pt+1 − pt). (7)

To see this, note that (5), combined with log-normality, implies that

E

[
Dt+1

Dt

]
e−

1
2Var(dt+1−dt) = E

[
Pt+1

Pt

]
e−

1
2Var(pt+1−pt).

If (7) holds, then the second terms on the right and left hand side cancel, yielding the result.

This is a knife-edge result in which the variance of the log dividend-price ratio xt and the

covariance of xt with log price changes cancel out. However, it is well-known that prices are

more volatile than dividends (Shiller, 1981).
15This point is also made by Constantinides (2002), who suggests adjusting the mean
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that conjectured by Fama and French (2002): The sample average of realized

returns is “too high” because shocks to discount rates (proxied for by the

dividend-price ratio) were negative on average over the sample period.

4 Discussion

4.1 Source of the gain in efficiency

What determines the difference between the maximum likelihood estimate

of the equity premium and the sample average of excess returns? Let µ̂r

denote the maximum likelihood estimate of the equity premium and µ̂x the

maximum likelihood estimate of the mean of the dividend-price ratio. Given

these estimates, we can define a time series of shocks ût and v̂t as follows:

ût = rt − µ̂r − β̂(xt−1 − µ̂x) (8a)

v̂t = xt − µ̂x − θ̂(xt−1 − µ̂x). (8b)

By definition, then,

µ̂r =
1

T

T∑
t=1

rt −
1

T

T∑
t=1

ût − β̂
1

T

T∑
t=1

(xt−1 − µ̂x). (9)

As (9) shows, there are two reasons why the maximum likelihood estimate of

the mean, µ̂r, might differ from the sample mean 1
T

∑T
t=1 rt. The first is that

the shocks ût may not average to zero over the sample. The second, which

depends on return predictability, is that the average value of xt might differ

from µ̂x.

It turns out that only the first of these effects is quantitatively important

for our sample. For the period January 1953 to December 2001, the sample

return by the difference in the valuation ratio between the first and last observation. Con-

stantinides derives conditions such that the resulting estimator has lower variance than the

mean return.
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average 1
T

∑T
t=1 ût is equal to 0.1382% per month, while β̂ 1

T

∑T
t=1(xt−1 − µ̂x)

is −0.0278% per month. The difference in the maximum likelihood estimate

and the sample mean thus ultimately comes down to the interpretation of the

shocks ût. To understand the behavior of these shocks, we will argue it is

necessary to understand the behavior of the shocks v̂t. And, to understand

v̂t, it is necessary to understand why the maximum likelihood estimate of the

mean of xt differs from the sample mean.

4.1.1 Estimation of the mean of the predictor variable

To build intuition, we consider a simpler problem in which the true value of

the autocorrelation coefficient θ is known. We show in Appendix A that the

first-order condition in the exact likelihood function with respect to µx implies

µ̂x =
(1 + θ)

1 + θ + (1− θ)T
x0 +

1

(1 + θ) + (1− θ)T

T∑
t=1

(xt − θxt−1). (10)

We can rearrange (1b) as follows:

xt+1 − θxt = (1− θ)µx + vt+1.

Summing over t and solving for µx implies that

µx =
1

1− θ
1

T

T∑
t=1

(xt − θxt−1)−
1

T (1− θ)

T∑
t=1

vt, (11)

where the shocks vt are defined using the mean µx and the autocorrelation θ.

Consider the conditional maximum likelihood estimate of µx, the estimate

that arises from maximizing the conditional likelihood (2). We will call this

µ̂cx. Note that this is also equal to the OLS estimate of µx, which arises from

estimating the intercept (1− θ)µx in the regression equation

xt+1 = (1− θ)µx + θxt + vt+1
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and dividing by 1− θ. The conditional maximum likelihood estimate of µx is

determined by the requirement that the shocks vt average to zero. Therefore,

it follows from (11) that

µ̂cx =
1

1− θ
1

T

T∑
t=1

(xt − θxt−1).

Substituting back into (10) implies

µ̂x =
(1 + θ)

1 + θ + (1− θ)T
x0 +

(1− θ)T
(1 + θ) + (1− θ)T

µ̂cx.

Multiplying and dividing by 1− θ implies a more intuitive formula:

µ̂x =
1− θ2

1− θ2 + (1− θ)2T
x0 +

(1− θ)2T
1− θ2 + (1− θ)2T

µ̂cx. (12)

Equation 12 shows that the exact maximum likelihood estimate is a weighted

average of the first observation and the conditional maximum likelihood esti-

mate. The weights are determined by the precision of each estimate. Recall

that

x0 ∼ N
(

0,
σ2
v

1− θ2

)
.

Also, because the shocks vt are independent, we have that

1

T (1− θ)

T∑
t=1

vt ∼ N
(

0,
σ2
v

T (1− θ)2

)
.

Therefore T (1 − θ)2 can be viewed as proportional to the precision of the

conditional maximum likelihood estimate, just as 1− θ2 can be viewed as pro-

portional to the precision of x0. Note that when θ = 0, there is no persistence

and the weight on x0 is 1/(T + 1), its appropriate weight if all the observa-

tions were independent. At the other extreme, as θ approaches 1, less and less

information is conveyed by the shocks vt and the “estimate” of µ̂x approaches

x0.
16

16We cannot use (12) to obtain our maximum likelihood estimate because θ is not known

(more precisely, the conditional and exact maximum likelihood estimates of θ will differ).

Because of the need to estimate θ, the conditional likelihood estimator for µx is much less

efficient than the exact likelihood estimator; a fact that is not apparent from these equations.
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While (12) rests on the assumption that θ is known, we can nevertheless

use it to qualitatively understand the effect of including the first observation.

Because of the information contained in x0, we can conclude that the last T

observations of the predictor variable are not entirely representative of values

of the predictor variable in population. Namely, the values of the predictor

variable for the last T observations are lower, on average, than they would be

in a representative sample. It follows that the predictor variable must have

declined over the sample period. Thus the shocks vt do not average to zero, as

OLS (conditional maximum likelihood) would imply, but rather, they average

to a negative value.

Figure 2 shows the historical time series of the dividend-price ratio, with

the starting value in bold, and a horizontal line representing the mean. Given

the appearance of this figure, the conclusion that the dividend-price ratio has

been subject to shocks that are negative on average does not seem surprising.

4.1.2 Estimation of the equity premium

We now return to the problem of estimating the equity premium. Equation 9

shows that the average shock 1
T

∑T
t=1 ût plays an important role in explaining

the difference between the maximum likelihood estimate of the equity premium

and the sample mean return. In traditional OLS estimation, these shocks

must, by definition, average to zero. When the shocks are computed using the

(exact) maximum likelihood estimate, however, they may not.

To understand the properties of the average shocks to returns, we note that

the first-order condition for estimation of µ̂r implies

1

T

T∑
t=1

ût =
σ̂uv
σ̂2
v

1

T

T∑
t=1

v̂t. (13)

This is analogous to a result of Stambaugh (1999), in which the averages of the

error terms are replaced by the deviation of β and of θ from the true means.
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Equation 13 implies a connection between the average value of the shocks to

the predictor variable and the average value of the shocks to returns. As the

previous section shows, MLE implies that the average shock to the predictor

variable is negative in our sample. Because shocks to returns are negatively

correlated with shocks to the predictor variable, the average shock to returns

is positive.17 Note that this result operates purely through the correlation of

the shocks, and is not related to predictability.18

Based on this intuition, we can label the terms in (9) as follows:

µ̂r =
1

T

T∑
t=1

rt − 1

T

T∑
t=1

ût︸ ︷︷ ︸
Correlated shock term

− β̂
1

T

T∑
t=1

(xt−1 − µ̂x)︸ ︷︷ ︸
Predictability term

. (14)

As discussed above, the correlated shock term accounts for more than 100%

of the difference between the sample mean and the maximum likelihood es-

timate of the equity premium, and is an order of magnitude larger than the

predictability term. Our argument above can be extended to show why these

terms tend to have opposite signs. When the correlated shock term is posi-

tive (as is the case in our data), shocks to the dividend-price ratio must be

negative over the sample. The estimated mean of the predictor variable will

therefore be above the sample mean, and the predictability term will be neg-

ative. Figure A.2 shows that indeed these terms tend to have opposite signs

in the simulated data.19

17This point is related to the result that longer time series can help estimate parameters

determined by shorter time series, as long as the shocks are correlated (Stambaugh, 1997;

Singleton, 2006; Lynch and Wachter, 2013). Here, the time series for the predictor is slightly

longer than the time series of the return. Despite the small difference in the lengths of the

data, the structure of the problem implies that the effect of including the full predictor

variable series is very strong.
18Ultimately, however, there may be a connection in that variation in the equity premium

is the main driver of variation in the dividend-price ratio and thus the reason why the shocks

are negatively correlated.
19There is a small opposing effect on the sign of the predictability term. Note that the
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This section has explained the difference between the sample mean and

the maximum likelihood estimate of the equity premium by appealing to the

difference between the sample mean and the maximum likelihood estimate of

the mean of the predictor variable. However, Table 1 shows that the differ-

ence between the sample mean of excess returns and the maximum likelihood

estimate of the equity premium is many times that of the difference between

the two estimates of the mean of the predictor variable. Moreover, Table 2

shows that the difference in efficiency for returns is also much greater than the

difference in efficiency for the predictor variable. How is it then that the dif-

ference in the estimates for the mean of the predictor variable could be driving

the results? Equation 13 offers an explanation. Shocks to returns are far more

volatile than shocks to the predictor variable. The term σ̂uv/σ̂
2
v is about −100

in the data. What seems like only a small increase in information concerning

the shocks to the predictor variable translates to quite a lot of information

concerning returns.

4.2 Properties of the maximum likelihood estimator

In this section we investigate the properties of the maximum likelihood esti-

mator, and, in particular, how the variance of the estimator depends on the

persistence of the predictor variable, the amount of predictability, and the

correlation between the shocks to the predictor and the shocks to returns.

4.2.1 Variance of the estimator as a function of the persistence

The theoretical discussion in the previous section suggests that the persistence

θ is an important determinant of the increase in efficiency from maximum

sample mean in this term only sums over the first T − 1 observations. If the predictor

has been falling over the sample, this partial sum will lie above the sample mean, though

probably below the maximum likelihood estimate of the mean.
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likelihood. Figure 3 shows the standard deviation of estimators of the mean of

the predictor variable (µx) in Panel A and of estimators of the equity premium

(µr) in Panel B as functions of θ. Other parameters are set equal to their

benchmark values, adjusted for bias in the case of β. For each value of θ, we

simulate 10,000 samples.

Panel A shows that the standard deviation of both the sample mean and

MLE of µx are increasing in θ. This is not surprising; holding all else equal,

an increase in the persistence of θ makes the observations on the predictor

variable more alike, thus decreasing their information content. The standard

deviation of the sample mean is larger than the standard deviation of the

maximum likelihood estimate, indicating that our results above do not depend

on a specific value of θ. Moreover, the improvement in efficiency increases

as θ grows larger. Consistent with the results in Table 2, the size of the

improvement is small.

Panel B shows the standard deviation of estimators of µr. In contrast

to the case of µx, the relation between the standard deviation and θ is non-

monotonic for both the sample mean of excess returns and the maximum

likelihood estimate of the equity premium. For values of θ below about 0.998,

the standard deviations of the estimates are decreasing in θ, while for values

of θ above this number they are increasing. This result is surprising given the

result in Panel A. As θ increases, any given sample contains less information

about the predictor variable, and thus about returns. One might expect that

the standard deviation of estimators of the mean return would follow the same

pattern as in Panel A. Indeed, this is the case for part of the parameter space,

namely when the persistence of the predictor variable is very close to one.

However, an increase in θ has two opposing effects on the variance of the

estimators of the equity premium. On the one hand, an increase in θ decreases

the information content of the predictor variable series, and thus of the return

series, as described above. On the other hand, for a given β, an increase in θ
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raises the R2 in the return regression. Because innovations to the predictable

part of returns are negatively correlated with innovations to the unpredictable

part of returns, an increase in θ increases mean reversion (this can be seen

directly from the expressions for the autocovariance of returns in Appendix B).

This increase in mean reversion has consequences for estimation of the eq-

uity premium. Intuitively, if in a given sample there is a sequence of unusually

high returns, this will tend to be followed by unusually low returns. Thus

a sequence of unusually high observations or unusually low observations are

less likely to dominate in any given sample, and so the sample average will

be more stable than it would be if returns were iid (see Appendix C). Be-

cause the sample mean is simply the scaled long-horizon return, our result is

related to the fact that mean reversion reduces the variability of long-horizon

returns relative to short-horizon returns. For θ sufficiently large, the reduc-

tion in information from the greater autocorrelation does dominate the effect

of mean-reversion, and the variance of both the sample mean and the maxi-

mum likelihood estimate increase. In the limit as θ approaches one, returns

become non-stationary and the sample mean has infinite variance.

Panel B of Figure 3 also shows that MLE is more efficient than the sample

mean for any value of θ. The benefit of using maximum likelihood increases

with θ. Indeed, while the standard deviation of the sample mean falls from 0.14

to 0.12 as θ goes from 0.980 to 0.995, the maximum likelihood estimate falls

further, from 0.14 to 0.06. It appears that the benefits from mean reversion

and from maximum likelihood reinforce each other.

4.2.2 Variance of estimator under alternative parameter assump-

tions

The previous section established the importance of the persistence of the

dividend-price ratio in the precision gains from maximum likelihood. In this

section we focus on the two aspects of joint return and dividend-price ratio
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process that affect how information about the distribution of the dividend-

price ratio affects inference concerning returns: the predictive coefficient β

and the correlation of the shocks ρuv.

We first consider the role of predictability. In the historical sample, pre-

dictability works against us in finding a lower equity premium. Indeed, as (9)

shows, the difference between the maximum likelihood estimator can be de-

composed into a term originating from non-zero shocks, and a term originating

from predictability. More than 100% of our result comes from the correlated

shock term; in other words the predictability term works against us. Without

the predictability term, our equity premium would be 0.29% per month rather

than 0.32%.

This result is not surprising given that the intuition in Section 4.1 points

to negative ρuv rather than positive β as the source of our gains. If this is

correct, we should be able to document efficiency gains in simulations where

the predictive coefficient is reduced or eliminated entirely. Indeed, Table 2

shows that if we bias-correct β and θ, the efficiency gains are even larger than

when parameters are set to the maximum likelihood estimates. In this section,

we take this analysis a step further, and set β exactly to zero. We repeat the

exercise from Section 4.2.1, calculating the standard deviation of the estimates

across different values of θ. When we repeat the estimation, we do not impose

β = 0, which will work against us in finding efficiency gains.

Panel C of Figure 3 shows the results. First, because returns are iid, the

standard deviation of the sample mean is independent of θ and is a horizontal

line on the graph. The standard deviation of the maximum likelihood estimate

is, however, decreasing in θ. As θ increases, the information contained in the

first data point carries more weight. Thus the estimator is better able to

identify the average sign of the shocks to the dividend-price ratio and thus

to expected returns. Consider, for example, an autocorrelation of 0.998 (the

bias-corrected value in Panel B of Table 2). As Panel C shows, the standard
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deviation of the MLE estimator is 0.12 while the standard deviation of the

sample mean is 0.17, or nearly 50% greater.20 Thus neither the reduction in

the equity premium that we observe in the historical sample, nor the efficiency

of the maximum likelihood estimator depend on the predictability of returns.

So far we have shown how changes in the persistence, and changes in the

predictability of returns impact the efficiency of our estimates. In particular,

the efficiency of our estimates does not depend on return predictability. On

what, then, does it depend? The above discussion suggests that it depends,

critically, on the correlation between shocks to the dividend-price ratio and

to returns, because this is how the information from the dividend-price ratio

regression finds its way into the return regression. We look at this issue specif-

ically in Panel D of Figure 3, where we set the correlation between the shocks

to equal zero. In this figure, returns are no longer iid, which explains why the

standard deviation of the sample mean estimate rises as θ increases. On other

hand, though there is return predictability, the lack of correlation implies that

there is no mean reversion in returns, so the increase is monotonic, as opposed

to what we saw in Panel B.21 Most importantly, this figure shows zero, or neg-

ligible, efficiency improvements from MLE. In fact, for all but extremely high

values of θ, MLE performs very slightly worse than the sample mean, perhaps

because it relies on biased estimates of predictability.22 This exercise has little

empirical relevance as the correlation between returns and the dividend-price

20Wachter and Warusawitharana (2015) show in a Bayesian setting that, if one holds

a belief that there is no predictability, the posterior distribution for the autoregressive

coefficient shifts upward towards unity. Cochrane (2008) makes an analogous point using

frequentist methods.
21However, if the equity premium were indeed varying over time, one would expect return

innovations to be negatively correlated with realized returns (Pastor and Stambaugh, 2009).
22Though the data generating process assumes bias-corrected estimates, MLE will still

find values of β that are high relative to the values specified in the simulation. This will

hurt its finite-sample performance.
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ratio is reliably estimated to be strongly negative.23 Nonetheless, it is a stark

illustration of the conditions under which our efficiency gains break down.

5 Estimation under Alternative Data Gener-

ating Processes

This section shows the applicability of our procedure under alternative data

generating processes. Section 5.1 shows how to adapt our procedure to cap-

ture conditional heteroskedasticity in returns and in the predictor variable.

Section 5.1 and Section 5.2 consider the performance of our benchmark pro-

cedure when confronted with data generating processes that depart from the

stationary homoskedastic case in important ways. Our aim is to map out

cases where mis-specification overwhelms the gains from introducing data on

the dividend-price ratio, and when it does not. Finally, Section 5.3 analysis

the consequences of structural breaks for our results.

5.1 Conditional Heteroskedasticity

As is well-known, stock returns exhibit time-varying volatility (French, Schw-

ert, and Stambaugh, 1987; Bollerslev, Chou, and Kroner, 1992). In this section

we generalize our estimation method to take this into account. Because of our

focus on maximum likelihood, a natural approach is to use the GARCH model

of Bollerslev (1986). We will refer to this method as GARCH-MLE, and, for

consistency, continue to refer to the method described in Section 2 as MLE.

We ask three questions: (1) Do we still find a lower equity premium when we

apply GARCH-MLE to the data? (2) Is GARCH-MLE efficient in small sam-

23It does suggest, however, that including data on predictor variables that have low per-

sistence and/or low realized correlations with returns will not impact estimates of the equity

premium nearly to the extent of the dividend-price ratio.
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ples? (3) If we simulate data characterized by time-varying volatility and apply

(homoskedastic, and therefore mis-specified) MLE, do we still find efficiency

gains?

While the traditional GARCH model is typically applied to return data

alone, our method closely relies on estimation of a bivariate process with cor-

related shocks. Allowing for time-varying volatility of returns but not of the

dividend-price ratio seems artificial and unnecessarily restrictive. Following

Bollerslev (1990), who estimates a GARCH model on exchange rates, we con-

sider two correlated GARCH(1,1) processes. We assume

rt+1 − µr = β(xt − µx) + ut+1 (15a)

xt+1 − µx = θ(xt − µx) + vt+1, (15b)

where, conditional on information available up to and including time t, ut+1

vt+1

 ∼ N

0,

 σ2
u,t+1 ρuvσu,t+1σv,t+1

ρuvσu,t+1σv,t+1 σ2
v,t+1

 , (15c)

with

σ2
u,t+1 = ωu + αuu

2
t + δuσ

2
u,t, (15d)

σ2
v,t+1 = ωv + αvv

2
t + δvσ

2
v,t. (15e)

We assume initial conditions

σ2
u,1 =

ωu
1− αu − δu

,

σ2
v,1 =

ωv
1− αv − δv

.

Note that ωu

1−αu−δu and ωv

1−αv−δv represent the unconditional means of σ2
u,t and

σ2
v,t respectively.24 The bivariate GARCH(1,1) log-likelihood function is there-

24Applying the law of iterated expectations, we find Eu2t = E[Et−1u
2
t ] = Eσ2

u,t. The

result for σu follows under stationarity by taking the expectation of the left and right hand

sides of (15d), and the same argument works for σv.
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fore

l(r1, . . . , rT ;x1, . . . , xT |µr, µx, β, θ, ωu, αu, δu, αv, δv, ρuv, x0) =

T∑
t=1

log
[
(1− ρ2uv)σ2

u,tσ
2
v,t

]
+

1

1− ρ2uv

T∑
t=2

 u2t
σ2
u,t

+ 2ρuv
utvt√
σ2
u,tσ

2
v,t

+
v2t
σ2
v,t

 .

(16)

This likelihood function conditions on x0, and thus is the GARCH analogue

of the conditional maximum likelihood function (2). However, unlike in the

homoskedastic case, there is no analytical expression for the unconditional dis-

tribution of x0 (Diebold and Schuermann, 2000).25 For this reason, we adopt

a two-stage method that allows us both to estimate conditional heteroskedas-

ticity, and to take into account the initial observation on the dividend-price

ratio. While this represents a departure from “pure” maximum likelihood, it

nonetheless allows us to consistently and efficiently estimate parameters.

We proceed as follows. First, we maximize the function (16) across the full

25In principle we could capture this distribution by simulating from the conditional bivari-

ate GARCH(1,1) over a long-period of time. To integrate this method into our optimization

would not be easy however; for each function evaluation in our numerical optimization, we

would need to simulate this distribution with enough accuracy to capture subtle effects of,

say, the autoregressive coefficient θ along with the GARCH parameters. This would be

challenging given that the parameter range of interest implies that xt is highly persistent.

We would then need to repeat the procedure thousands of times in our Monte Carlo sim-

ulations. It is hard to see the benefits (in terms of finite-sample efficiency gains) that this

procedure would have over the more computationally feasible procedure that we do adopt.
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set of parameters. We then maximize

l(r1, . . . , rT ;x0, . . . , xT |µr, µx, β, θ, ωu, αu, δu, αv, δv, ρuv) =

log

(
ωv

(1− αv − δv) (1− θ2)

)
+

(x0 − µx)2

ωv
(1− αv − δv)

(
1− θ2

)
+

T∑
t=1

log
[
(1− ρ2uv)σ2

u,tσ
2
v,t

]
+

1

1− ρ2uv

T∑
t=1

 u2t
σ2
u,t

+ 2ρuv
utvt√
σ2
u,tσ

2
v,t

+
v2t
σ2
v,t

 ,

(17)

where we fix the estimates of ωu, αu, δu, ωv, αv, δv and ρuv from the first

stage, and obtain new estimates of µr, µx, β and θ. The first two terms on the

right hand side of (17) represents a density for the initial observation x0. This

density, which is normal with standard deviation E[σv,t]/(1 − θ2), represents

an approximation to the true unknown density. By performing the estimation

in two stages, we can make sure that the mis-specification in the second stage

doesn’t contaminate our GARCH estimation. Indeed, the GARCH estimation

we perform in the first stage is the standard one in the literature. As mentioned

above, we refer to this procedure as GARCH-MLE.

We report estimates in Table A.4. Similarly to previous studies (e.g.

French, Schwert, and Stambaugh (1987)), we find that return volatility is

moderately persistent, with a monthly autocorrelation of 0.72. Volatility of

the dividend-price ratio is somewhat more persistent, with a monthly auto-

correlation of 0.89. The average conditional volatilities of ut and vt are nearly

identical to the unconditional volatilities in our benchmark case. Most im-

portantly, given the focus of this study, the average equity premium is very

close to what we found in our benchmark estimation: 0.335% per month, as

opposed to 0.322%. The sample mean is 0.433% per month. Thus the finding

of a lower equity premium is robust to time-varying volatility, which answers

the first question we pose in the introduction to this section.

We now move on to the question of efficiency. We simulate 10,000 samples
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from the process (15) using parameter values estimated by GARCH-MLE. We

consider the performance of OLS (where we report sample means for the equity

premium and the dividend-price ratio), the benchmark MLE procedure, and

GARCH-MLE. Table 3 reports the means, standard deviations, and the 5th,

50th, and 95th percentiles of each parameter estimate.26 We find that both

MLE and GARCH-MLE are more efficient than the sample mean, and they

are both about as efficient as each other. The efficiency gains are similar to

what we see when the data generating process is homoskedastic (Table 2).

We conclude that our estimation works well in the presence of time-varying

volatility, both when we consider a method that explicitly takes time-varying

volatility into account, and when we consider a (mis-specified) method that

does not.

5.2 Non-stationarities in the dividend-price ratio

The previous section shows that our method works equally well for a bivariate

GARCH(1,1) model as for our benchmark homoskedastic model. This may be

because our method essentially translates information from long-run changes in

the dividend-price ratio to information about returns. These long-run changes

are sufficiently large that short-term volatility fluctuations do not alter their

interpretations. Here, and in the sections that follow, we consider alternative

models that have the potential to dramatically alter the interpretation of the

time series of the dividend-price ratio, and thus the model’s results for the

equity premium. As in Section 4.2.2 where we set the correlation between

shocks to the dividend-yield and returns to be zero, our aim is to “turn off” the

gains from our method. However, in that case, a zero correlation was clearly

counterfactual. Here, we consider models which, at least on a purely statistical

26For the volatility parameters σu and σv, we report the square root of the unconditional

means of σ2
u,t and σ2

v,t for GARCH-MLE.
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level, could account for the data. To focus on our main mechanism, we consider

homoskedastic returns; however, the results of the previous section strongly

suggest that these findings are also robust to conditional heteroskedasticity.

5.2.1 The random walk model

Given the observed high autocorrelation of the dividend-price ratio, a natural

extension is to consider a random walk. One immediate question that we face

in assuming a random walk is the role of the predictive coefficient β. If the

dividend-price ratio were to follow a random walk, and if β were nonzero,

then the equity premium would be undefined. That is, excess stock returns,

which would be non-stationary in this case, would not possess an unconditional

mean. Any method, including the sample mean and our maximum likelihood

procedure would give meaningless results. For this reason, when we consider

a non-stationary dividend-price ratio (in this and in the subsequent section),

we assume β = 0.

We therefore simulate 10,000 artificial samples from the process

rt+1 − µr = ut+1

xt+1 = xt + vt+1.

For each sample, we then apply our benchmark maximum likelihood procedure,

as well as OLS regression.27 For parameters µr and µx (this is a parameter

in the estimation, not in the data generating process), we compare our max-

imum likelihood results with the sample means. Our benchmark maximum

27In our previous simulations, we initialize x0 using a draw from the stationary distribu-

tion. Clearly this is not possible in this case. We report simulation results with x0 set equal

to its value in the data, but we have obtained identical results from randomizing over x0.

Other parameters are as follows: µr equals to its benchmark maximum likelihood estimate,

σu the standard deviation of returns, σv the standard deviation of differences in the log

dividend-price ratio, and ρuv to the correlation between returns and differences in the log

dividend-price ratio.
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likelihood procedure is mis-specified because it assumes stationarity and al-

lows for predictability. Of course assumptions of OLS are also violated, as

discussed above.

Table 4 shows the results. Maximum likelihood still estimates the equity

premium without bias, as shown by the fact that the average estimate of µr is

exactly equal to the true value from the simulation. As previously discussed,

the predictive coefficient and the autoregressive coefficient are biased upward

and downward respectively, and this is clearly shown in the table. As a result,

maximum likelihood still identifies a positive β and a stationary dividend-price

ratio, even though these are not the characteristics of the data generating

process.

Besides correctly estimating the equity premium, maximum likelihood leads

to significant gains in efficiency, even relative to our benchmark case. The stan-

dard deviation of the maximum likelihood estimate is only 30% of the standard

deviation of the sample mean. The spread between the fifth and ninety-fifth

percentile also falls by a factor greater than three. In this case, our estima-

tion method does not pick up the non-stationarity in the dividend-price ratio

(nor does OLS). However, the intuition of Section 4 still holds in this limiting

case, and the model successfully estimates the equity premium with increased

precision.

5.2.2 Predictor with Time Trend

The previous section shows that our method can still be effective under a

random-walk model for the dividend-price ratio. What about other forms of

non-stationarity? Using the intuition from Section 4, we can reason backwards

to find a model seems particularly likely to cause problems for our estimation

method. Such a model would lead our method to conclude that the average

shock is non-zero more often than it is.

These considerations lead us to consider a time trend in the dividend-price
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ratio. As in the case of the random walk model, we set β equal to zero so the

equity premium is still well-defined. We therefore consider

rt+1 − µr = ut+1 (18a)

xt+1 − µx = ∆ + θ(xt − µx) + vt+1, (18b)

where ∆ denotes the time trend. We consider a calibration of (18) that both

fits the data, and represents a worst-case scenario from the point of view of our

method. With the exceptions of ∆ and β, we set the parameters to equal those

of our benchmark calibration. We then set ∆ so that the in-sample average of

shocks to the dividend-price ratio is exactly zero. Because
∑T

t=1 v̂t in the data

is −1.051, and because the length of the sample is 707 months, this implies a

value of ∆ of −0.1487%.

We simulate 10,000 samples from (18). For each of these we compute OLS

and find the sample mean of the predictor variable and of the equity premium.

We also run our benchmark maximum likelihood estimation, which is highly

mis-specified in this case. For consistency, we continue to refer to this as

maximum likelihood.

Results are shown in Table 5. Unlike in the case of the random walk, in

this case mis-specification has serious consequences for the estimation of the

equity premium. Whereas the sample mean finds, on average, the correct

value, maximum likelihood finds a lower value: 0280% versus 0.322%. The

maximum likelihood estimator has a lower standard error, but this doesn’t

matter because it is in fact an inconsistent estimator for the equity premium.

Why does the maximum likelihood estimator fail in this case? Consider

first the estimation of the process for xt. The true mean of xt is undefined.

However, in every sample there will be an observed mean. This sample mean

will be on average lower than the true value of µx because the time trend

lowers the level of the dividend-price ratio. The MLE will be slightly higher

than the sample mean because it will correct for what it sees as an unusual
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series of shocks. However, what appears to be an unusual series of shocks is

in fact the time trend.

Now consider the estimation of the equity premium. Unlike the mean of xt,

the equity premium is well-defined because we have set β to equal zero. This

is why the sample mean finds the correct answer. The maximum likelihood

estimator, however, uses information from the predictor variable equation,

information that is, in this case, incorrect. This information indicates that,

on average, shocks have been positive to returns over each sample period, and

thus it is necessary to adjust the equity premium downward.

While it would probably be nearly impossible to reject this time-trend

model on purely statistical grounds, it seems unappealing from the point of

view of economics. It implies that market participants would have known

in advance about the decrease in the dividend-price ratio over the post-war

sample, which is hard to believe. Not surprisingly given this basic intuition,

equilibrium models of the asset prices tend to imply not (18), but rather the

autoregressive process (1b), at least as an approximation.28

5.3 Structural Breaks

So far, we have assumed that a single process characterizes returns and the

dividend-price ratio over the postwar period. Studies including Pástor and

Stambaugh (2001), Lettau and Van Nieuwerburgh (2008) and Pettenuzzo and

Timmermann (2011) argue that this period has been characterized by a struc-

tural break. The presence of a structural break could have several implications

for our findings. Recall that the reason for our lower point estimate of the eq-

uity premium is the decline in the dividend-price ratio over the sample period.

In a limiting case, where this decline is due entirely to a structural break, then

28Hansen, Heaton, and Li (2008) also present an example where a time-trend model

for valuation ratios creates problems for interpretation of statistical findings. They argue

similarly that the time trend model is an implausible description on economic grounds.
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our finding of a lower equity premium could completely disappear because the

dividend-price ratio would no longer be declining over each sub-sample. As a

related point, a structural break could make it less likely that we would find

efficiency gains because, while the relevant sample size would be smaller, the

persistence of the dividend-price ratio would be smaller as well.

To evaluate the effects, we use the framework of Lettau and Van Nieuwer-

burgh (2008), whose model is most similar to the one we consider. Lettau and

van Nieuwerburgh find evidence for a structural break in the dividend-price

ratio in 1994. Accordingly, we re-estimate our model on each sub-period. The

results are reported in Table 6. This table shows that maximum likelihood

still leads to substantially lower point estimates as compared with the sample

mean. Consider first the 1953–1994 subperiod. This subperiod is characterized

by relatively high returns, as indicated by a sample mean of 0.439%, slightly

higher than our full sample average. However, this period is characterized by a

striking decline in the dividend-price ratio, a fact that is largely undiminished

by breaking the sample in 1994 (see Figure 2). Our model thus attributes

the high observed equity premium to an unusual series of shocks rather than

a high true mean. The point estimate for the equity premium, at 0.315%, is

lower than the point estimate for the full sample.

For the second sub-period, from 1995-2011, observed returns were lower,

leading to a sample mean of 0.411%. Again, the dividend-price ratio de-

clined over this sub-sample, so the maximum likelihood estimate is lower than

the sample mean, at 0.336%. Thus maximum likelihood continues to have a

substantial effect on the equity premium estimate, despite the presence of a

structural break.

We now turn to the question of efficiency. Panel A1 of Table 7 shows sim-

ulation results when the parameters and the length of each fictitious sample

are set to match the 1953–1994 subsample. We still do find efficiency gains,

but they are indeed smaller than in our benchmark case. The standard error

34



on the equity premium falls from 0.086 for the sample mean to 0.062 for max-

imum likelihood (in comparison, for our benchmark case, the sample mean

had a standard error of 0.089 and the maximum likelihood estimate had a

standard error of 0.050). Panel A1 also reveals the extent of the bias in the

predictive and autoregressive coefficients. The mean estimate of β is substan-

tially higher than its true value, and the mean of θ is substantially lower. This

bias was also apparent in our benchmark case discussed in Section 3.2, but

it is more substantial because of the reduction in sample size. Motivated by

these results, we also consider a bias-corrected simulation, where, as before,

we choose the true values of the parameters so that the mean in simulation

matches the observed point estimates. As Panel A2 shows, the efficiency gain

from maximum likelihood is almost as large as for our benchmark simulation

when we correct for bias. The reason is that θ is higher than in Panel A1

(though it is still below the full-sample estimate), and the sample size is lower.

We repeat this analysis for the 1995–2011 subsample, with results shown

in Panel B. Panel B1 shows the results without the bias correction. In this

case, because the sample size is so short, we still see efficiency gains despite the

relatively low value of the autocorrelation. We also attempt a bias correction

in Panel B2. Our results indicate the difficulties of inference over short time

periods in the presence of persistent regressors. Even if we set the predictive

coefficient to zero and the autocorrelation to 0.999, we are unable to quite

match the values in the data (though we come close). Under this calibration,

a short sample, combined with a high degree of persistence implies that the

standard errors for maximum likelihood are less than half as large as for the

sample mean. In other words, our efficiency gains are larger than even in the

full sample.

To summarize, because a structural break does not entirely explain the

decline in the price-dividend ratio, our method still produces substantially

lower estimates of the equity premium than the sample mean, even when we

35



take a structural break into account. Moreover, our efficiency gains are the

same or larger than in our benchmark case.

6 Conclusion

A large literature has grown up around the empirical quantity known as the

equity premium, in part because of its significance for evaluating models in

macro-finance (Mehra and Prescott (1985)) and in part because of its prac-

tical significance as indicated by discussions in popular classics on investing

(e.g. Siegel (1994), Malkiel (2003)) and in undergraduate and masters’ level

textbooks.

Estimation of the equity premium is almost always accomplished by taking

sample means. The implicit assumption is that the period in question con-

tains a representative sample of returns. We show that it is possible to relax

this assumption, and obtain a better estimate of the premium, by bringing

additional information to bear on the problem, specifically the information

contained separately in prices and dividends.

We show that the time series behavior of prices, dividends and returns,

suggests that shocks to returns have been unusually positive over the post-war

period. Thus the sample average will overstate the equity premium. We show

that this intuition can be formalized with the standard econometric technique

of maximum likelihood. Applying maximum likelihood rather than taking the

sample average leads to an economically significant reduction in the equity

premium of 1.3 percentage points from 6.4% to 5.1%. Furthermore, Monte

Carlo experiments indicate that the small-sample noise is greatly reduced.

Our method differs from the sample mean in that we require assumptions

on the data generating process for the dividend-price ratio. We have shown

that our findings are robust to a wide range of variations in these assumptions.

Specifically, it is not necessary for returns to be homoskedastic, or even for the
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dividend-price ratio to be stationary. We also show that our method works well

in the presence of structural breaks. The main conclusion from our findings

is that the generous risk compensation offered by equities over the postwar

sample may in part be an artifact of that period, and may not be a reliable

guide to what investors will experience going forward.
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Table 1: Maximum Likelihood and OLS Estimates

1953–2011 1927–2011
OLS MLE OLS MLE

µr 0.433 0.322 0.464 0.391
µx −3.545 −3.504 −3.374 −3.383
β 0.828 0.686 0.623 0.650
θ 0.992 0.993 0.992 0.991
σu 4.414 4.416 5.466 5.464
σv 0.046 0.046 0.057 0.057
ρuv −0.961 −0.961 −0.953 −0.953

Notes: Estimates of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with standard deviations σu and σv and
correlation ρuv. rt is the continuously-compounded CRSP return minus the 30-day Treasury
Bill return and xt is the log of the dividend-price ratio. Data are monthly. Means and
standard deviations of returns are in percentage terms. Under the OLS columns, parameters
are estimated by ordinary least squares, except for µr and µx, which are equal to the sample
averages of excess returns and the log dividend-price ratio respectively. Under the MLE
columns, parameters are estimated using maximum likelihood.
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Table 2: Small-sample distribution of estimated parameters

True Value Method Mean Std. Dev. 5 % 50 % 95 %

Panel A: DGP calibrated to maximum likelihood estimates

µr 0.322
Sample 0.322 0.089 0.175 0.322 0.467
MLE 0.323 0.050 0.241 0.324 0.404

µx −3.504
Sample −3.508 0.231 −3.894 −3.507 −3.126
MLE −3.508 0.221 −3.875 −3.507 −3.145

β 0.686
OLS 1.284 0.699 0.420 1.145 2.639
MLE 1.243 0.670 0.440 1.103 2.541

θ 0.993
OLS 0.987 0.007 0.973 0.988 0.996
MLE 0.987 0.007 0.974 0.989 0.996

σu 4.416
OLS 4.408 0.119 4.213 4.408 4.603
MLE 4.406 0.119 4.211 4.406 4.600

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Panel B: DGP calibrated to bias-corrected estimates

µr 0.322
Sample 0.324 0.138 0.097 0.327 0.546
MLE 0.322 0.072 0.205 0.323 0.441

µx −3.504
Sample −3.510 0.582 −4.464 −3.512 −2.567
MLE −3.510 0.557 −4.425 −3.506 −2.601

β 0.090
OLS 0.750 0.643 −0.009 0.610 1.989
MLE 0.686 0.601 0.036 0.528 1.881

θ 0.998
OLS 0.991 0.007 0.978 0.992 0.999
MLE 0.992 0.006 0.979 0.993 0.998

σu 4.424
OLS 4.417 0.118 4.223 4.416 4.611
MLE 4.417 0.118 4.225 4.416 4.612

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Notes: We simulate 10,000 monthly samples from the data generating process (DGP)

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with standard deviations σu and σv and
correlation ρuv. The sample length is as in postwar data. In Panel A parameters are set
to their maximum likelihood estimates. In Panel B parameters are set to their maximum
likelihood estimates with θ and β adjusted for bias. We conduct maximum likelihood esti-
mation (MLE) for each sample path. As a comparison, we take sample means to estimate
µr and µx (Sample) and use ordinary least squares to estimate the slope coefficients and
the variance and correlations of the residuals (OLS). The table reports the means, standard
deviations, and 5th, 50th, and 95th percentile values across simulations.
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Table 3: Small-sample distribution of estimators under conditional heteroskedasticity

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.335
Sample 0.335 0.088 0.190 0.335 0.478
MLE 0.335 0.049 0.253 0.335 0.415

GARCH-MLE 0.335 0.049 0.252 0.335 0.414

µx −3.569
Sample −3.570 0.225 −3.945 −3.570 −3.204
MLE −3.571 0.214 −3.926 −3.572 −3.222

GARCH-MLE −3.571 0.214 −3.922 −3.571 −3.224

β 0.689
OLS 1.288 0.694 0.425 1.156 2.621
MLE 1.244 0.668 0.436 1.103 2.554

GARCH-MLE 1.236 0.664 0.436 1.100 2.531

θ 0.993
OLS 0.987 0.007 0.973 0.988 0.996
MLE 0.987 0.007 0.974 0.989 0.996

GARCH-MLE 0.987 0.007 0.974 0.989 0.996

σu 4.351
OLS 4.343 0.131 4.128 4.341 4.565
MLE 4.342 0.131 4.126 4.340 4.563

GARCH-MLE 4.341 0.133 4.125 4.339 4.566

σv 0.045
OLS 0.045 0.001 0.043 0.045 0.047
MLE 0.045 0.001 0.043 0.045 0.047

GARCH-MLE 0.045 0.001 0.043 0.045 0.047

ρuv −0.959
OLS −0.959 0.003 −0.964 −0.959 −0.954
MLE −0.959 0.003 −0.964 −0.959 −0.954

GARCH-MLE −0.959 0.003 −0.964 −0.960 −0.954

Notes: We simulate 10,000 monthly data samples from

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt follow GARCH processes with conditional correlation ρuv. The parameter
σu equals

√
E[σ2

ut] and similarly for σv. Parameters are set equal to estimates from GARCH-
MLE as described in Section 5.1. For each sample path, we estimate parameters by OLS
(and report sample means for µr and µx), by MLE (assuming homoskedastic shocks), and
by GARCH-MLE.
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Table 4: Small-sample distribution of estimators when the dividend-price ratio follows a

random walk

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.322
Sample 0.325 0.166 0.050 0.327 0.599
MLE 0.322 0.047 0.246 0.323 0.401

µx undefined
Sample −2.988 0.699 −4.130 −2.996 −1.845
MLE −2.986 0.637 −4.006 −2.997 −1.971

β 0
OLS 0.710 0.608 0.005 0.571 1.883
MLE 0.629 0.562 0.062 0.467 1.729

θ 1.000
OLS 0.992 0.006 0.980 0.994 1.000
MLE 0.993 0.006 0.981 0.995 0.999

σu 4.423
OLS 4.413 0.117 4.221 4.414 4.605
MLE 4.415 0.117 4.223 4.417 4.607

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.962
OLS −0.962 0.003 −0.967 −0.962 −0.957
MLE −0.962 0.003 −0.967 −0.962 −0.957

Notes: We simulate 10,000 monthly data samples from

rt+1 − µr = ut+1

xt+1 = xt + vt+1

where ut and vt are Gaussian and iid over time with correlation ρuv. For each sample path
we conduct (mis-specified) maximum likelihood estimation (MLE) of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1.

For comparison, we take sample means to estimate µr and µx (Sample) and use ordinary
least squares to estimate the slope coefficients and the variance and correlations of the
residuals (OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th
percentile values across simulations.
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Table 5: Small-sample distribution of estimators when the dividend-price ratio has a time

trend

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.322
Sample 0.322 0.168 0.044 0.321 0.599
MLE 0.280 0.145 0.044 0.280 0.516

µx −3.504
Sample −3.682 0.234 −4.066 −3.682 −3.292
MLE −3.663 0.223 −4.028 −3.661 −3.296

β 0
OLS 0.590 0.684 −0.255 0.460 1.880
MLE 0.514 0.660 −0.270 0.375 1.756

θ 0.993
OLS 0.987 0.007 0.974 0.988 0.996
MLE 0.988 0.007 0.975 0.989 0.996

σu 4.416
OLS 4.410 0.117 4.219 4.410 4.602
MLE 4.409 0.117 4.218 4.410 4.601

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Notes: We simulate 10,000 monthly data samples from

rt+1 − µr = ut+1

xt+1 − µx = ∆ + θ(xt − µx) + vt+1

where ut and vt are Gaussian and iid over time with correlation ρuv. We set µr, µx, θ,
σu, σv and ρuv to their benchmark maximum likelihood estimates (Table 1) and ∆ to the

mean residual (1/T )
∑T

t=1 v̂t = −0.14868. For each sample path we conduct (mis-specified)
maximum likelihood estimation (MLE) of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1.

For comparison, we take sample means to estimate µr and µx (Sample) and use ordinary
least squares to estimate the slope coefficients and the variance and correlations of the
residuals (OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th
percentile values across simulations.
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Table 6: Sub-sample estimates

1953–1994 1995–2011
OLS MLE OLS MLE

µr 0.439 0.315 0.411 0.336
µx −3.342 −3.337 −4.048 −3.955
β 2.538 2.186 2.614 1.968
θ 0.977 0.981 0.972 0.979
σu 4.205 4.210 4.840 4.842
σv 0.043 0.043 0.051 0.051
ρuv −0.967 −0.967 −0.948 −0.949

Notes: Estimates of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with correlation ρuv. rt is the continuously-
compounded CRSP return minus the 30-day Treasury Bill return and xt is the log of the
dividend-price ratio. Two monthly data samples are considered: 1953–1994 and 1995–2011.
Means and standard deviations of returns are in percentage terms. Under the OLS columns,
parameters are estimated by ordinary least squares, except for µr and µx, which are equal
to the sample averages of excess returns and the log dividend-price ratio respectively. Under
the MLE columns, parameters are estimated using maximum likelihood.
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Table 7: Small-sample distribution of estimators in simulations calibrated to subsamples

from Table 6

True Value Method Mean Std. Dev. 5 % 50 % 95%

Panel A1: DGP calibrated to 1953–1994 period

µr 0.315
Sample 0.315 0.086 0.176 0.315 0.457
MLE 0.316 0.062 0.214 0.315 0.417

µx −3.337
Sample −3.336 0.097 −3.494 −3.337 −3.179
MLE −3.336 0.093 −3.488 −3.337 −3.183

β 2.186 MLE 2.983 1.133 1.518 2.776 5.122

θ 0.981 MLE 0.973 0.012 0.951 0.975 0.988

Panel A2: DGP calibrated to 1953–1994 period with bias correction

µr 0.315
Sample 0.315 0.115 0.125 0.314 0.504
MLE 0.315 0.080 0.184 0.315 0.447

µx −3.337
Sample −3.336 0.166 −3.610 −3.337 −3.061
MLE −3.336 0.158 −3.595 −3.336 −3.074

β 1.400 MLE 2.185 0.961 1.007 1.983 4.066

θ 0.990 MLE 0.981 0.010 0.962 0.983 0.993

Panel B1: DGP calibrated to 1995–2011 period

µr 0.336
Sample 0.333 0.187 0.028 0.332 0.639
MLE 0.334 0.110 0.153 0.335 0.516

µx −3.955
Sample −3.952 0.145 −4.194 −3.951 −3.712
MLE −3.953 0.139 −4.183 −3.952 −3.721

β 1.968 MLE 3.841 2.220 1.158 3.358 8.071

θ 0.979 MLE 0.958 0.024 0.913 0.963 0.986

Panel B2: DGP calibrated to 1995–2011 period with bias correction

µr 0.336
Sample 0.331 0.339 −0.232 0.336 0.891
MLE 0.332 0.152 0.083 0.332 0.582

µx −3.955
Sample −3.941 1.091 −5.741 −3.949 −2.161
MLE −3.941 1.079 −5.733 −3.952 −2.175

β 0 MLE 2.109 1.877 0.136 1.620 5.831

θ 0.999 MLE 0.976 0.020 0.937 0.981 0.996

Notes: We simulate 10,000 monthly samples from the data generating process (DGP)

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with correlation ρuv. In Panel A, sample
length and paramaters are for the 1953–1994 subsample, without bias correction (A1) and
with bias correction (A2). In Panel B is constructed similarly for the 1995-2011 sample,
except that here the bias-correction is partial. For each sample path, we conduct maximum
likelihood estimation (MLE) and, for comparison, take sample means to find µr and µx

(Sample). The table reports the means, standard deviations, and 5th, 50th, and 95th
percentile values across simulations.

51



0 0.2 0.4 0.6 0.8

0

1

2

3

4

5

6

7

8

D
en
si
ty

Equity premium (monthly units)

MLE

Sample Mean

Figure 1: Densities of the estimators of the equity premium in repeated samples of length

equal to the postwar data. The solid line shows the density of the maximum likelihood

estimate while the dashed line shows the density of the sample mean.
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Figure 2: The logarithm of the dividend-price ratio over the period January 1953 to De-

cember 2011 (the postwar sample). The dotted line indicates the mean, and the black dot

the initial value.
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Figure 3: Standard deviation of estimators of the mean of the log-dividend price ratio

(Panel A) and of the equity premium (Panels B–D). Estimators are the sample mean (dots)

and maximum likelihood (crosses). For each value of the autocorrelation θ, we simulate

10,000 monthly samples and calculate the standard deviation of estimates across samples.

Parameters other than θ are set equal to their maximum likelihood estimates with the

following exceptions. In Panel B, the predictive coefficient is bias-corrected. In Panel C,

the predictive coefficient is set equal to zero. In Panel D, the predictive coefficient is bias-

corrected and the correlation of the shocks is set equal to zero.
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Appendix

A Derivation of the Maximum Likelihood Estimators

We denote the maximum likelihood estimate of parameter q as q̂. Here we derive

the estimators for µr, µx, β, θ, σ2u, σ2v and σuv. We note in particular that σ̂2u is

the estimator of σ2u, not the square of the estimator of σu, and similarly for σ̂2v .

Maximizing the exact log likelihood function is the same as minimizing the function

L:

L(β, θ, µr, µx, σuv, σu, σv) = log(σ2v)− log(1− θ2) +
1− θ2

σ2v
(x0 − µx)2

+ T log(|Σ|) +
σ2v
|Σ|

T∑
t=1

u2t − 2
σuv
|Σ|

T∑
t=1

utvt +
σ2u
|Σ|

T∑
t=1

v2t ,

where |Σ| = σ2uσ
2
v − σ2uv. The first-order conditions arise from setting the following

partial derivatives of the likelihood function to zero:

0 =
∂

∂β
L =

σ2v
|Σ|

T∑
t=1

ut(µx − xt−1)−
σuv
|Σ|

T∑
t=1

(µx − xt−1)vt (A.1a)

0 =
∂

∂θ
L =

θ

1− θ2
− θ (x0 − µx)2

σ2v

− σuv
|Σ|

T∑
t=1

ut(µx − xt−1) +
σ2u
|Σ|

T∑
t=1

vt(µx − xt−1)

(A.1b)

0 =
∂

∂µr
L = − σ

2
v

|Σ|

T∑
t=1

ut +
σuv
|Σ|

T∑
t=1

vt (A.1c)

0 =
∂

∂µx
L = −1− θ2

σ2v
(x0 − µx)

+
σ2v
|Σ|

T∑
t=1

βut −
σuv
|Σ|

T∑
t=1

(βvt − (1− θ)ut)−
σ2u
|Σ|

T∑
t=1

(1− θ)vt

(A.1d)

0 =
∂

∂σuv
L = −T 2σuv

|Σ|
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+ 2
σuvσ

2
v

|Σ|2
T∑
t=1

u2t − 2
σ2uσ

2
v + σ2uv
|Σ|2

T∑
t=1

utvt + 2
σuvσ

2
u

|Σ|2
T∑
t=1

v2t

(A.1e)

0 =
∂

∂σ2u
L = T

σ2v
|Σ|
− σ4v
|Σ|2

T∑
t=1

u2t + 2
σuvσ

2
v

|Σ|2
T∑
t=1

utvt −
σ2uv
|Σ|2

T∑
t=1

v2t (A.1f)

0 =
∂

∂σ2v
L =

1

σ2v
+ T

σ2u
|Σ|
− (1− θ2)(x0 − µx)2

1

σ4v

− σ2uv
|Σ|2

T∑
t=1

u2t + 2
σuvσ

2
u

|Σ|2
T∑
t=1

utvt −
σ4u
|Σ|2

T∑
t=1

v2t .

(A.1g)

Define the residuals

ût = rt − µ̂r − β̂(xt−1 − µ̂x)

v̂t = xt − µ̂x − θ̂(xt−1 − µ̂x).

We now outline the algebra that allows us to solve these first-order conditions.

Step 1: Express µ̂x in terms of θ̂ and the data.

Combining the first-order conditions (A.1c) and (A.1d) gives

T∑
t=1

v̂t =
(

1 + θ̂
)

(µ̂x − x0) , (A.2)

which we can write as

µ̂x =

(
1 + θ̂

)
x0 +

∑T
t=1

(
xt − θ̂xt−1

)
(

1 + θ̂
)

+
(

1− θ̂
)
T

. (A.3)

Step 2: Express the covariance matrix in terms of µ̂x, θ̂, µ̂r, β̂ and

the data.

The first-order conditions (A.1e), (A.1f) and (A.1g) give the relations
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T σ̂2u = − σ̂uv
σ̂2v

σ̂uv + (1− θ̂2)(x0 − µ̂x)2
(
σ̂uv
σ̂2v

)2

+

T∑
t=1

û2t , (A.4)

(T + 1)σ̂2v = (1− θ̂2)(x0 − µ̂x)2 +

T∑
t=1

v̂2t , (A.5)

σ̂uv
σ̂2v

=

∑T
t=1 ûtv̂t∑T
t=1 v̂

2
t

. (A.6)

Step 3: Solve for θ̂ in terms of the data. This also gives µ̂x and σ̂2
v

in terms of the data.

Combining the first-order conditions (A.1a) and (A.1b) gives

0 =
T∑
t=1

(µ̂x − xt−1)v̂t + σ̂2v
θ̂

1− θ̂2
− θ̂(x0 − µ̂x)2. (A.7)

Here µ̂x and v̂t are functions of only θ̂ and the data, so if we combine (A.7) and

(A.5) we can get an equation for θ̂:

0 = (T + 1)

T∑
t=1

(µ̂x − xt−1)v̂t +
θ̂

1− θ̂2

T∑
t=1

v̂2t − T θ̂(x0 − µ̂x)2.

Because we require that −1 < θ̂ < 1, we can multiply this by(
(T + 1)− (T − 1)θ̂

)2 (
1− θ̂2

)
and rearrange to obtain

0 = T
(
θ̂ − 1

)(
(T + 1)

(
1− θ̂2

)
+ 2θ̂

)( T∑
t=0

xt − θ̂
T−1∑
t=1

xt

)2

+
(

(T + 1)− (T − 1)θ̂
)(

θ̂ − 1
)( T∑

t=0

xt − θ̂
T−1∑
t=1

xt

)

×

[
2T θ̂(1 + θ̂)

(
T−1∑
t=1

xt

)
−
(

(T + 1) + (T − 1)θ̂
)( T∑

t=0

xt +
T−1∑
t=1

xt

)]

+
(

(T + 1)− (T − 1)θ̂
)2

56



×

[
θ̂
((

1− θ̂2
)
T + 1

)(T−1∑
t=1

x2t

)
+
(
θ̂2(T − 1)− (T + 1)

) T∑
t=1

xtxt−1 + θ̂
T∑
t=0

x2t

]
.

This is a fifth-order polynomial in θ̂ where the coefficients are determined by the

sample. As a consequence, it is very hard to establish analytical results on existence

and uniqueness of solutions that would be accepted as estimators of θ. Nevertheless,

in lengthy experimentation and simulation runs we have always found that this

polynomial only has one root within the unit circle of the complex plane and that

this root is real. Therefore this root is a valid MLE of θ. Given this solution for θ̂,

(A.3) gives the estimator for µx and (A.5) gives the estimator for σ2v .

Step 4: Solve for µ̂r and β̂ in terms of the data. This also gives the

solution for σ̂uv and σ̂2
u.

The first-order condition (A.1c) gives

T∑
t=1

ût =
σ̂uv
σ̂2v

T∑
t=1

v̂t. (A.8)

Combining this with the first-order condition (A.1a) yields

β̂ = βOLS +
σ̂uv
σ̂2v

(
θ̂ − θOLS

)
, (A.9)

where

θOLS =
1

1
T

∑T
t=1 x

2
t−1 −

(
1
T

∑T
t=1 xt−1

)2
[

1

T

T∑
t=1

xt−1xt−

(
1

T

T∑
t=1

xt−1

)(
1

T

T∑
s=1

xs

)]

is the OLS coefficient of regressing xt on xt−1 and

βOLS =
1

1
T

∑T
t=1 x

2
t−1 −

(
1
T

∑T
t=1 xt−1

)2
[

1

T

T∑
t=1

xt−1rt−

(
1

T

T∑
t=1

xt−1

)(
− 1

T

T∑
s=1

rs

)]

is the OLS coefficient of regressing rt on xt−1.

Equations (A.6), (A.8) and (A.9) constitute a system of three equations in the

three unknowns µ̂r, β̂ and σ̂uv
σ̂2
v

. The solution is
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µ̂r =
1

J

[
1

T

T∑
t=1

rt −

(
1

T

T∑
t=1

xt − µ̂x

)
F − βOLSH

1 + (θ̂ − θOLS)H

−

(
1

T

T∑
t=1

xt−1 − µ̂x

)
βOLS(1 + θ̂H)− θOLSF

1 + (θ̂ − θOLS)H

]
(A.10)

β̂ =
βOLS + (θ̂ − θOLS)F

1 + (θ̂ − θOLS)H
− (θ̂ − θOLS)G

1 + (θ̂ − θOLS)H
µ̂r (A.11)

σ̂uv
σ̂2v

=
F − βOLSH

1 + (θ̂ − θOLS)H
− G

1 + (θ̂ − θOLS)H
µ̂r, (A.12)

where

J = 1− G

1 + (θ̂ − θOLS)H

[
1

T

T∑
t=1

xt − µ̂x − θOLS

(
1

T

T∑
t=1

xt−1 − µ̂x

)]

F =

∑T
t=1 rtv̂t∑T
t=1 v̂

2
t

G =

∑T
t=1 v̂t∑T
t=1 v̂

2
t

H =

∑T
t=1(xt−1 − µ̂x)v̂t∑T

t=1 v̂
2
t

.

Expressions (A.10) and (A.11) provide the estimators for µr and β because they

depend only on the data and µ̂x and θ̂, which we have already expressed in terms of

the data. Finally, (A.12) gives the estimator the estimator of σuv via (A.5), which

further yields the estimator of σ2u via (A.4).

B Mean Reversion in Returns

Consider the effect of a series of shocks on excess returns (in this subsection, we will

assume, for expositional reasons, that the mean excess return is zero):

rt = βxt−1 + ut

rt+1 = βθxt−1 + βvt + ut+1

rt+2 = βθ2xt−1 + βθvt + βvt+1 + ut+2
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and so on. Thus, for k ≥ 1, the autocovariance of returns is given by

Cov (rt, rt+k) = θkβ2Var(xt) + θk−1βσuv, (B.1)

where Var(xt) = σ2v/(1−θ2). An increase in θ increases the variance of the predictor

variable. In the absence of covariance between the shocks u and v, this effect would

increase the autocovariance of returns through the term θkβ2Var(xt). However,

because u and v are negatively correlated, the second term in (B.1), θk−1βσuv is also

negative. We show below that this second term dominates the first for all positive

values of θ up until a critical value, at which point the first comes to dominate.

Assume θ > 0, β > 0 and σuv < 0, as we estimate the case to be in our data.

Substituting in Var(xt) = σ2v/(1 − θ2), multiplying by (1 − θ2) > 0 and dividing

through by θk−1β > 0 shows that the autocovariance of returns is negative whenever

−σuvθ2 + βσ2vθ + σuv < 0.

The left-hand side is a quadratic polynomial in θ with a positive leading coefficient.

As a result, whenever this polynomial has two real roots in θ, the entire expression

is negative if and only if θ lies in between those roots. Indeed, the polynomial has

two real roots because its discriminant equals β2σ4v+4σ2uv > 0. Let θ1 be the smaller

of the two roots and let θ2 be the larger one, that is,

θ2 =
−βσ2v +

√
β2σ4v + 4σ2uv

−2σuv
.

Under our assumptions it is straightforward to prove that θ1 < −1 and −1 < θ2 < 1,

so the only possible change of sign of the return autocovariance happens at θ2. In

particular, Cov (rt, rt+k) < 0 whenever θ < θ2 and Cov (rt, rt+k) > 0 whenever

θ > θ2.

C The Variance of the Sample Mean Return

By definition

1

T

T∑
t=1

rt = µr + β

(
1

T

T∑
t=1

xt−1 − µx

)
+

1

T

T∑
t=1

ut,
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thus

Var

(
1

T

T∑
t=1

rt

)
= β2Var

(
1

T

T∑
t=1

xt−1

)
+ Var

(
1

T

T∑
t=1

ut

)

+ 2βCov

(
1

T

T∑
t=1

xt−1,
1

T

T∑
t=1

ut

)
.

The variance of the average predictor is available and it depends on θ. The variance

of the average residual does not depend on θ. Finally, the covariance of the average

predictor and the average predictor depends on θ and ρuv. It is not a trivial quantity

because even though ut is uncorrelated with xt−1, it is correlated with xt via vt

whenever ρuv 6= 0 and thus it is also correlated with xt+1, xt+2, . . . , xT−1 whenever

θ 6= 0.

In particular,

Var

(
1

T

T∑
t=1

ut

)
= σ2u

1

T
,

Var

(
1

T

T∑
t=1

xt−1

)
=

σ2v
1− θ2

[
1

T

(
1 + 2

θ

1− θ

)
+

2

T 2

θ(θT − 1)

(1− θ)2

]
,

Cov

(
1

T

T∑
t=1

xt−1,
1

T

T∑
t=1

ut

)
= σuv

[
1

T

1

1− θ
+

1

T 2

θT − 1

(1− θ)2

]
,

so that

Var

(
1

T

T∑
t=1

rt

)
=

1

T

(
σ2u + 2β

σuv
1− θ

+ β2
σ2v

1− θ2

)
− 1

T 2
2β

1− θT

(1− θ)2

(
βθ

σ2v
1− θ2

+ σuv

)
.

It follows that

Var

(
1

T

T∑
t=1

rt

)
=

1

T

(
σ2u + β2

σ2v
1− θ2

+ 2β
σuv

1− θ

)
+O

(
1

T 2

)
.

The term σ2u + β2σ2v/(1 − θ2) measures the contribution of the return shocks and

the predictor to the variability of the sample-mean return. The term βσuv/(1 − θ)

measures the contribution of the covariance of the return shocks and the predictor
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shocks to the variability of the sample-mean return. The former term increases as

θ increases, which says that the sample-mean return is more variable because the

predictor is more variable. At the same time, the latter term becomes more negative

as θ increases, so that in fact the overall variability of the sample-mean return can

decrease.
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Table A.1: Small-sample distribution of estimators: calibration to 1927–2011 sample

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.391
Sample 0.390 0.080 0.258 0.389 0.522
MLE 0.391 0.058 0.295 0.390 0.485

µx −3.383
Sample −3.383 0.196 −3.710 −3.385 −3.063
MLE −3.384 0.190 −3.701 −3.384 −3.074

β 0.650
OLS 1.039 0.547 0.336 0.941 2.063
MLE 1.018 0.530 0.345 0.923 2.007

θ 0.991
OLS 0.987 0.006 0.976 0.988 0.995
MLE 0.987 0.006 0.977 0.989 0.994

σu 5.464
OLS 5.460 0.119 5.265 5.459 5.655
MLE 5.458 0.119 5.263 5.458 5.653

σv 0.057
OLS 0.057 0.001 0.055 0.057 0.059
MLE 0.057 0.001 0.055 0.057 0.059

ρuv −0.953
OLS −0.953 0.003 −0.958 −0.953 −0.948
MLE −0.953 0.003 −0.958 −0.953 −0.948

Notes: We simulate 10,000 monthly samples from

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with standard deviations σu and σv and
correlation ρuv. The sample length is set to match the 1927–2011 sample, and parameters are
set to their maximum likelihood estimates over this period. We conduct maximum likelihood
estimation (MLE) for each sample path. As a comparison, we take sample means to estimate
µr and µx (Sample) and use ordinary least squares to estimate the slope coefficients and
the variance and correlations of the residuals (OLS). The table reports the means, standard
deviations, and 5th, 50th, and 95th percentile values across simulations.
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Table A.2: Small-sample distribution of estimators: t-distributed shocks

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.322
Sample 0.323 0.138 0.098 0.320 0.552
MLE 0.322 0.072 0.204 0.322 0.440

µx −3.504
Sample −3.504 0.578 −4.454 −3.498 −2.543
MLE −3.504 0.549 −4.404 −3.498 −2.589

β 0.090
OLS 0.746 0.634 −0.007 0.601 1.947
MLE 0.683 0.594 0.040 0.533 1.836

θ 0.998
OLS 0.991 0.007 0.978 0.993 0.999
MLE 0.992 0.006 0.980 0.993 0.998

σu 4.430
OLS 4.419 0.185 4.136 4.411 4.727
MLE 4.419 0.185 4.136 4.410 4.727

σv 0.046
OLS 0.046 0.002 0.043 0.045 0.049
MLE 0.046 0.002 0.043 0.045 0.049

ρuv −0.961
OLS −0.961 0.004 −0.967 −0.961 −0.954
MLE −0.961 0.004 −0.967 −0.961 −0.954

Notes: We simulate 10,000 monthly samples from

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where [ut, vt] has a bivariate t-distribution. The sample length is as in postwar data. Param-
eters are set to their maximum likelihood estimates (assuming normally distributed shocks)
where β and θ are adjusted for bias. We conduct benchmark maximum likelihood estimation
(MLE) for each sample path (this assumes normality and is therefore mis-specified). As a
comparison, we take sample means to estimate µr and µx (Sample) and use ordinary least
squares to estimate the slope coefficients and the variance and correlations of the residuals
(OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th percentile
values across simulations. We set the degrees of freedom for the t-distribution to 5.96. This
matches the average kurtosis of the estimated residuals for returns and the dividend-price
ratio, and takes into account that the kurtosis is downward biased.
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Table A.3: Small-sample distribution of estimators: Calibration to OLS estimates

True Value Method Mean Std. Dev. 5 % 50 % 95 %

Panel A: January 1953 to December 2011

µr 0.433
Sample 0.432 0.082 0.297 0.431 0.565
MLE 0.432 0.049 0.352 0.432 0.513

µx −3.545
Sample −3.550 0.192 −3.865 −3.551 −3.232
MLE −3.550 0.184 −3.854 −3.552 −3.242

β 0.828
OLS 1.414 0.715 0.512 1.276 2.801
MLE 1.372 0.689 0.515 1.241 2.675

θ 0.992
OLS 0.986 0.007 0.971 0.987 0.995
MLE 0.986 0.007 0.972 0.988 0.995

σu 4.414
OLS 4.410 0.118 4.215 4.410 4.603
MLE 4.408 0.118 4.214 4.408 4.601

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Panel B: January 1927 to December 2011

µr 0.464
Sample 0.463 0.082 0.326 0.462 0.596
MLE 0.464 0.058 0.367 0.463 0.560

µx −3.374
Sample −3.373 0.200 −3.702 −3.373 −3.044
MLE −3.373 0.194 −3.690 −3.374 −3.054

β 0.623
OLS 1.019 0.543 0.322 0.925 2.051
MLE 0.995 0.527 0.329 0.903 1.983

θ 0.992
OLS 0.987 0.006 0.976 0.988 0.995
MLE 0.988 0.006 0.977 0.989 0.995

σu 5.466
OLS 5.465 0.121 5.269 5.463 5.668
MLE 5.463 0.121 5.268 5.461 5.666

σv 0.057
OLS 0.057 0.001 0.055 0.057 0.059
MLE 0.057 0.001 0.055 0.057 0.059

ρuv −0.953
OLS −0.953 0.003 −0.958 −0.953 −0.948
MLE −0.953 0.003 −0.958 −0.953 −0.948

Notes: We simulate 10,000 monthly samples from

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with standard deviations σu and σv and
correlation ρuv. The sample length is as in postwar data. Parameters are set to their OLS
estimates. We conduct maximum likelihood estimation (MLE) for each sample path. As a
comparison, we take sample means to estimate µr and µx (Sample) and use ordinary least
squares to estimate the slope coefficients and the variance and correlations of the residuals
(OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th percentile
values across simulations. 64



Table A.4: Estimation of a predictive regression with heteroskedasticity

Panel A: Panel B: Panel C:
Means and coefficients Volatility parameters Covariance matrix

µr 0.335 ωu 4.763 σ∗
u 4.351

µx −3.569 αu 0.029 σ∗
v 0.045

β 0.688 δu 0.719 ρuv −0.959
θ 0.993 ωv 1.855× 10−4

αv 0.016
δv 0.892

Notes: We estimate the bivariate process

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where, conditional on information available up to and including time t,[
ut+1

vt+1

]
∼ N

(
0,

[
σ2
u,t+1 ρuvσu,t+1σv,t+1

ρuvσu,t+1σv,t+1 σ2
v,t+1

])
,

and

σ2
u,t+1 = ωu + αuu

2
t + δuσ

2
u,t,

σ2
v,t+1 = ωv + αvv

2
t + δvσ

2
v,t.

Here, rt is the continuously compounded return on the value-weighted CRSP portfolio in
excess of the return on the 30-day Treasury Bill and xt is the log of the dividend-price ratio.
Starred parameters are implied by other estimates, namely σ∗

u =
√
ωu/(1− αu − δu) and

σ∗
v =

√
ωv/(1− αv − δv). Parameters are estimated using a two-stage process by which

the means and coefficients (Panel A) are treated as fixed and the volatility parameters
(Panels B and C) are estimated using conditional maximum likelihood in the first stage,
and the volatility parameters are treated as fixed, while the means and coefficients are re-
estimated in the second stage. Data are monthly, from January 1953 to December 2011.
Means and standard deviations of returns are in percentage terms.
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Figure A.1: Histogram of maximum likelihood estimates of θ, the autocorrelation of the

dividend-price ratio from simulated data. We simulate 10,000 monthly data samples from

(1) with length and parameters as in the postwar data series.
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Figure A.2: We simulate 10,000 monthly data samples from (1) with length and parameters

as in the postwar data series. The figure shows the joint distribution of the predictability

term β̂ 1
T

∑T
t=1(xt−1−µ̂x) and the correlated shock term 1

T

∑T
t=1 ût that sum to the difference

between the maximum likelihood estimate and the sample mean.
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