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Carry trades correspond to simple investment strategies that are funded by borrowing in low interest rate

currencies and invest in high interest rate currencies. What are their expected returns? According to the

uncovered interest rate parity (U.I.P.) condition, which assumes that investors are risk-neutral, expected carry

trade returns should be zero. Yet, empirically, borrowing in low interest rate currencies and investing in

Treasury bills of high interest rate currencies delivers large excess returns. This is the U.I.P puzzle, and it gave

rise to a large literature that studies the role of systematic risk in exchange rates and expectational errors. Our

paper revisits the empirical evidence on carry trades and deepens the puzzle.

Our paper explores the properties of the same carry trade investment strategy implemented with long-term

bonds, and compares it to the standard strategy that uses Treasury bills. We focus on the same set of G10

countries and consider the strongest predictors of bond and currency returns: the level and slope of the yield

curve. The first strategy we consider goes long the bonds of high interest rate currencies and short the bonds

of low interest rate currencies, whereas the second strategy goes long the bonds of flat yield curve currencies

and short the bonds of steep yield curve currencies. Most importantly, the investment horizon is one month,

as in the classic tests of the U.I.P. condition, not ten years, as in the tests of the U.I.P condition over long

horizons. We find that, as the maturity of the bonds increases, the average excess return declines to zero. In

other words, whereas the carry trade implemented with Treasury bills is profitable, the carry trade implemented

with long-term bonds is not. Similar results emerge in individual country time-series predictability tests: as

the maturity of the bonds increases, the predictability of the cross-country differences in dollar bond returns

disappears.

The downward-sloping term structure of carry trade risk premia that we uncover represents a challenge for

the leading models in international finance. To illustrate this point, we simulate the multi-country model of

Lustig, Roussanov, and Verdelhan (2011). This reduced-form model, derived from the term structure literature,

offers a flexible and transparent account of the U.I.P puzzle and thus a natural candidate to match the facts.

Yet, we show that it implies a counterfactual flat term structure of currency carry trade risk premia.

Our paper explains why other recent no-arbitrage models that replicate the U.I.P. puzzle fail to replicate

the carry trade risk premia at the long end of the yield curve. To do so, we derive a preference-free condition

that all dynamic no-arbitrage models need to satisfy. We rely on Alvarez and Jermann (2005)’s decomposition

of the stand-investor’s marginal utility or pricing kernel into a permanent and a transitory component, where
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the log of the transitory component is proportional to long term interest rates. To be precise, we show that

the difference between domestic and foreign long-term bond risk premia, expressed in domestic currency, is

determined by the difference in the volatilities of the permanent components of the stochastic discount factors

(SDFs, e.g., the growth rate of the stand-in investor’s marginal utility). Therefore, to obtain zero currency

carry trade risk premia at the long end of the yield curve, the volatilities of the permanent components need

to be equalized across currencies. Our preference-free result is the bond equivalent of the usual expression for

the carry trade risk premium in no-arbitrage models: when borrowing and investing in Treasury bills, the carry

trade risk premium is equal to the differences in volatilities of the SDFs (see Bekaert, 1996, Bansal, 1997, and

Backus, Foresi, and Telmer (2001). This condition is the basis of most explanations of the U.I.P. puzzles. Our

novel condition illustrates the shortcomings of the existing models.

Armed with our preference-free condition, we revisit a large class of dynamic asset pricing models that have

been used to study U.I.P. violations, ranging from the reduced-form term structure model of Vasicek (1977)

and Cox, Ingersoll, and Ross (1985) to their more recent multi-factor versions, to the Campbell and Cochrane

(1999) external habit model, the Bansal and Yaron (2004) long run risks model, the disaster risk model, and

the reduced-form model of Lustig, Roussanov, and Verdelhan (2011). We focus on models of the real SDF,

given that there is no evidence that inflation risk can account for U.I.P. deviations (if anything, U.I.P. works

better in high inflation environments, see Bansal and Dahlquist, 2000) or for cross-country variation in local

currency term premia. None of the models we consider can replicate our empirical findings in their standard

calibrations. But, when feasible, we show how to modify and calibrate these models to match the downward

term structure of carry trade risk premia.

Our results are related to, but different from, the long-run U.I.P condition. The long-run U.I.P condition

compares foreign and domestic long-term interest rates to long-term changes in exchange rates. Meredith

and Chinn (2005) find that long-run U.I.P is a potentially valid description of the data. However, empirical

tests lack power in finite samples: intuitively, there are few non-overlapping observations of 10-year windows

available so far. From no-arbitrage conditions, we show that long-run U.I.P. always holds for temporary shocks

and thus long-run U.I.P deviations have to come from permanent shocks to exchange rates. For long-run U.I.P

to hold at all times, exchange rates must not have any permanent shocks and thus be stationary in levels. Yet,

exchange rate stationarity in levels is sufficient but not necessary to satisfy our preference-free condition on the
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volatilities of the permanent SDF components. As a result, the carry trade risk premia on long-term bonds

could be zero without implying that long-run U.I.P always holds. Under some additional regularity conditions,

in that case, long-run U.I.P would hold on average in no-arbitrage models.

Recent work has documented a downward sloping term structure of risk premia in equity markets (van

Binsbergen, Brandt, and Koijen, 2012), real estate markets (Giglio, Maggiori, and Stroebel, 2015), and volatility

markets (Dew-Becker, Giglio, Le, and Rodriguez, 2017). Backus, Boyarchenko, and Chernov (2016) provide

a general analysis of the term structure of asset returns. Our work confirms the same pattern in currency

markets, and offers a preference-free interpretation. Our theoretical result, although straightforward, has not

been derived or used in the literature. On the one hand, at the short end of the maturity curve, currency risk

premia are high when there is less overall risk in foreign countries’ pricing kernels than at home (Bekaert, 1996,

Bansal, 1997, and Backus, Foresi, and Telmer, 2001). On the other hand, at the long end of the maturity curve,

local bond term premia compensate investors mostly for the risk associated with transitory innovations to the

pricing kernel (Bansal and Lehmann, 1997; Hansen and Scheinkman, 2009; Alvarez and Jermann, 2005; Hansen,

2012; Hansen, Heaton, and Li, 2008; Backus, Chernov, and Zin, 2014; Borovička, Hansen, and Scheinkman,

2016; Backus, Boyarchenko, and Chernov, 2016). In this paper, we combine those two insights to derive

general theoretical results under the assumption of complete financial markets. Foreign bond returns allow

us to compare the permanent components of the SDFs, which as Alvarez and Jermann (2005) show, are the

main drivers of the SDFs. Our preference-free condition does not apply to exchange rate models that allow for

market segmentation (see, e.g., Gabaix and Maggiori, 2015, and Bacchetta and van Wincoop, 2005, for leading

examples). It remains to be determined whether these models can fit our facts, so we leave this as an open

question for future research.

The rest of the paper is organized as follows. Section 1 focuses on the time-series and cross-section of foreign

bond risk premia. Section 2 compares recent no-arbitrage models to the empirical term structure of currency

carry trade risk premia. In Section 3, we derive the no-arbitrage, preference-free theoretical restriction imposed

on bond returns and SDFs. Section 4 links long-term U.I.P. to exchange rate stationarity. Section 5 concludes.

An Online Appendix contains supplementary material and all proofs not presented in the main body of the

paper.
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1 Foreign Bond Returns in the Time-Series and Cross-Section

We first describe the data and the notation, and then turn to our empirical results on the time-series and

cross-sectional properties of foreign government bond returns.

1.1 Data

Our benchmark sample, to which we refer as the G-10 sample, consists of a small homogeneous panel of

developed countries with liquid bond markets: Australia, Canada, Germany, Japan, New Zealand, Norway,

Sweden, Switzerland, and the U.K. The domestic country is the United States. We calculate the returns of

both coupon and zero-coupon bonds for these countries.

Our data on total return bond indices were obtained from Global Financial Data. The dataset includes a

10-year government bond total return index, as well as a Treasury bill total return index, in U.S. dollars and

in local currency. The data are monthly, starting in 1/1951 and ending in 12/2015. We use the 10-year bond

returns as a proxy for long maturity bond returns. While Global Financial Data offers, to the best of our

knowledge, the longest time-series of government bond returns available, the series have two key limitations.

First, they pertain to coupon bonds, while the theory presented in this paper pertains to zero-coupon bonds.

Second, they only offer 10-year bond returns, not the entire term structure of bond returns. To address these

issues, we also use zero-coupon bond prices. Our zero-coupon bond dataset covers the same benchmark sample

of G10 countries, but from at most 1/1975 to 12/2015, with different countries entering the sample at different

dates. The details are in the Data Appendix.

Finally, we collect data on inflation rates and sovereign credit ratings. Inflation rates are calculated using

monthly Consumer Price Index (CPI) data from Global Financial Data, whereas sovereign credit ratings are

from Standard & Poor’s, available over the 7/1989 to 12/2015 period. To construct averages of credit ratings,

we assign each rating to a number, with a smaller number corresponding to a higher rating. The details are in

the Data Appendix.

1.2 Notation

We now introduce our notation for bond prices, exchange rates, and bond and currency returns. In all cases,

foreign variables are denoted as the starred version of their U.S. counterpart.
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Bonds P
(k)
t denotes the price at date t of a zero-coupon bond of maturity k, while y

(k)
t denotes its continuously

compounded yield: logP
(k)
t = −ky(k)

t . The one-period holding return on the zero-coupon bond is R
(k)
t+1 =

P
(k−1)
t+1 /P

(k)
t . The log excess return on the domestic zero-coupon bond, denoted rx

(k)
t+1, is equal to

rx
(k)
t+1 = log

[
R

(k)
t+1/R

f
t

]
, (1)

where the risk-free rate is Rft = R
(1)
t+1 = 1/P

(1)
t . Finally, rft denotes the log risk-free rate: rft = logRft = y

(1)
t .

Exchange Rates The nominal spot exchange rate in foreign currency per U.S. dollar is denoted St. Thus,

an increase in St implies an appreciation of the U.S. dollar relative to the foreign currency. The log currency

excess return, given by

rxFXt+1 = log

[
St
St+1

Rf,∗t

Rft

]
= rf,∗t − r

f
t −∆st+1, (2)

is the log excess return of a strategy in which the investor borrows at the domestic risk-free rate, Rft , invests

at the foreign risk-free rate, Rf,∗t , and converts the proceeds into U.S. dollars at the end of the period.

Bond Risk Premia The log return on a foreign bond position (expressed in U.S. dollars) in excess of the

domestic (i.e., U.S.) risk-free rate is denoted rx
(k),$
t+1 . It can be expressed as the sum of the bond log excess

return in local currency plus the log excess return on a long position in foreign currency:

rx
(k),$
t+1 = log

[
R

(k),∗
t+1

Rft

St
St+1

]
= log

[
R

(k),∗
t+1

Rf,∗t

Rf,∗t

Rft

St
St+1

]
= log

[
R

(k),∗
t+1

Rf,∗t

]
+ log

[
Rf,∗t

Rft

St
St+1

]
= rx

(k),∗
t+1 + rxFXt+1. (3)

Taking conditional expectations, the total term premium in dollars consists of a foreign bond risk premium,

Et[rx
(k),∗
t+1 ], plus a currency risk premium, E[rxFXt+1] = rf,∗t − r

f
t − Et[∆st+1].

We are not the first to study the relation between domestic and foreign bond returns. Prior work, from

Campbell and Shiller (1991) to Bekaert and Hodrick (2001) and Bekaert, Wei, and Xing (2007), show that

investors earn higher returns on foreign bonds from a country in which the slope of the yield curve is currently

higher than average for that country. Ang and Chen (2010) and Berge, Jordà, and Taylor (2011) show that yield

curve variables can also be used to forecast currency excess returns. These authors, however, do not examine

the returns on foreign bond portfolios expressed in domestic currency. The following papers consider foreign
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bond returns in U.S. dollars: Dahlquist and Hasseltoft (2013) study international bond risk premia in an affine

asset pricing model and find evidence for local and global risk factors, while Jotikasthira, Le, and Lundblad

(2015) study the co-movement of foreign bond yields through the lenses of an affine term structure model. Our

paper revisits the empirical evidence on bond returns without committing to a specific term structure model.

1.3 Time-Series Predictability of Foreign Bond Returns

To study the properties of the cross-country differences in expected bond excess returns, we first run individual

currency predictability regressions on variables that can be used to predict bond and currency returns. We

focus on the level and the slope of the term structure, the two predictors that have been shown to forecast both

bond and currency returns.

We regress the 10-year dollar bond log excess return differential (rx
(10),$
t+1 −rx

(10)
t+1 ) on the short-term interest

rate differential (rf,∗t − rft , Panel A of Table 1) and on the yield curve slope differential ([y
(10,∗)
t − y

(1,∗)
t ] −

[y
(10)
t − y

(1)
t ], Panel B of Table 1), focusing on the post-Bretton Woods sample period (1/1975 – 12/2015).

Given that the 10-year dollar bond log excess return differential (left columns) can be decomposed into the sum

of currency log excess returns (rxFXt+1) and local currency bond log excess return differentials (rx
(10),∗
t+1 − rx(10)

t+1 )

as noted in Equation (3), we also regress each of those two components on the same predictors (middle and

right columns, respectively). By construction, the sum of the slope coefficients in the middle and right columns

equals the slope coefficients in the corresponding left column. For each individual country regression, we report

Newey-West standard errors with six lags. The panel regressions include country fixed effects and standard

errors are calculated using the Driscoll and Kraay (1998) methodology, which corrects for heteroskedasticity,

serial correlation, and cross-equation correlation.

When using interest rate differentials as predictors, there is no consistent evidence in support of predictabil-

ity of 10-year bond return differentials in dollars: indeed, out of nine countries, there is evidence of return

predictability only for Japan. The slopes and constants are insignificant for all the other countries in the sam-

ple. In a panel regression, the slope coefficient is small and not statistically different from zero. In joint tests

of all slope coefficients, they are marginally significant (at the 5% but not the 1% level) because of Japan. In

addition, we cannot reject the null that the constants are all zero. This evidence supports the view that there

is no difference between expected dollar returns on long bond returns in these countries.
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To better understand the lack of predictability, we decompose the dollar excess return differential into

currency log excess returns and local currency bond log excess return differentials. As seen in the table,

currency log excess returns are strongly forecastable by interest rate differentials (Hansen and Hodrick, 1980;

Fama, 1984): as documented in the existing literature, higher than usual interest rate differentials in a given

country pair predict higher than usual currency log excess returns. In a joint test of all slope coefficients, we

can reject the null that interest rates do not predict currency excess returns. But, while Treasury bill return

differentials in U.S. dollars are forecastable, long-term bond return differentials in U.S. dollars are not. The

deterioration of return predictability for long-maturity bonds, compared to Treasury bills, appears to be due to

the offsetting effect of local currency bond returns: higher than usual interest rate differences in a given country

predict lower local currency bond return differences. Again, we can reject the null that interest rate differences

do not predict local currency bond return differences at the 1% confidence level. In the panel regression, the

local bond return slope coefficient is −1.34, largely offsetting the 1.98 slope coefficient in the currency excess

return regression. The net effect on dollar bond returns is only 65 basis points, the slope coefficient is not

statistically significant, and the panel regression adjusted R2 is −0.05%.1 Thus, from the perspective of a U.S.

investor, the time variation in the currency excess return is largely offset by the variation in the local term

premium.

When using yield curve slope differentials as predictors, a similar finding emerges. On the one hand,

currency log excess returns are forecastable by yield curve slope differentials: a steeper than usual slope in a

given country predicts lower than usual currency log excess returns. On the other hand, a slope steeper than

usual in a given country also predicts higher local currency bond excess returns. In the panel regression, the

local bond excess return slope coefficient is 3.96, more than offsetting the −2.02 slope coefficient in the currency

excess return regression. The local currency bond return predictability merely confirm the results for U.S. bond

excess returns documented by Fama and Bliss (1987), Campbell and Shiller (1991), and Cochrane and Piazzesi

(2005). The net effect on dollar bond excess return differences is 194 basis points in a surprising direction: a

1Note that the local currency log bond excess return differential contains the interest rate differential with a negative sign:
rx

(10),∗
t+1 − rx(10)

t+1 = r
(10),∗
t+1 − r(10)

t+1 − (rf,∗t − rft ), where r
(10),∗
t+1 and r

(10)
t+1 are the foreign and domestic holding-period bond returns.

Thus, the local currency log bond excess return differential is highly predictable by the interest rate differential (right column of
Panel A in Table 1), simply because the interest rate spread in effect predicts itself, as it is a component (with a negative sign) of
the dependent variable. When we regress the local currency log return differential (instead of the excess returns) on the interest
rate differential, there is no evidence of predictability (see Online Appendix). Measurement error in the short rate could also give
rise to a negative relation, even in the absence of true predictability. The slope of the yield curves predicts the local currency log
return differential.
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steeper slope seems to weakly forecast higher dollar returns for foreign bonds, rather than lower dollar returns

as for foreign Treasury Bills. The slope coefficient in the panel regression is statistically significant. From

the perspective of a U.S. investor, the time variation in the currency excess return is more than offset by

the variation in the local term premium. This reverses the usual carry trade logic: investors want to short

the currencies with lower than average slopes to harvest the local bond term premium. We turn now to the

economic significance of these results.

To do so, we explore the risk-return characteristics of a simple investment strategy that goes long the foreign

bond and shorts the U.S. bond when the foreign short-term interest rate is higher than the U.S. interest rate (or

the foreign yield curve slope is lower than the U.S. yield curve slope), and goes long the U.S. bond and shorts

the foreign bond when the U.S. interest rate is higher than the foreign country’s interest rate (or the U.S. yield

curve slope is lower than the foreign yield curve slope). To assess the risk-return trade-off, investors commonly

look at the corresponding Sharpe ratios of an investment strategy, defined as the expected return less the

risk-free rate divided by its standard deviation. In the absence of arbitrage opportunities, there is a one-to-one

mapping from the R2s in predictability regressions to the unconditional Sharpe ratios on investment strategies

that exploit the predictability (see Cochrane, 1999, on p.75-76). Table 2 shows this mapping. The top panel

reports the results of the interest rate-based strategy, whereas the bottom panel focuses on the slope-based

strategy. The very low R2s reported in Table 1 lead to low returns and Sharpe ratios in Table 2.

In our sample, none of the individual country dollar returns on the interest rate level strategy are statistically

significant. The equally-weighted dollar return on the interest rate strategy is 0.70% per annum, and this return

is not statistically significant. The equally-weighted annualized Sharpe ratio is 0.11, not significantly different

from zero. Furthermore, with the exception of Sweden, none of the individual country dollar bond returns

on the slope strategy are statistically significant either, even though the currency excess returns and the local

currency bond returns typically are. The equally-weighted return on the slope strategy is −1.03% per annum,

and this dollar return is not statistically significant. The equally-weighted annualized Sharpe ratio is −0.13,

not significantly different from zero. In short, there is no evidence of economically significant dollar return

predictability. This is not to say that no significant return predictability exists in our sample. To the contrary,

there are large currency excess returns (with a Sharpe ratio of 0.47 for an equally-weighted portfolio in the

interest-rate strategy) — these are the well-known deviations from U.I.P., i.e. the carry trade returns — and
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Table 1: Dollar Bond Return Differential Predictability

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia 0.01 [0.03] -0.15 [0.97] -0.20 -0.02 [0.02] 1.29 [0.62] 0.56 0.03 [0.02] -1.44 [0.60] 1.51 0.21 492

Canada 0.02 [0.02] -1.10 [0.69] 0.11 -0.01 [0.01] 1.22 [0.53] 0.46 0.03 [0.01] -2.32 [0.46] 3.64 0.01 492

Germany 0.01 [0.02] 1.52 [1.21] 0.37 0.02 [0.02] 2.49 [0.99] 1.71 -0.01 [0.01] -0.97 [0.60] 0.48 0.53 492

Japan 0.06 [0.03] 2.37 [0.84] 1.13 0.07 [0.02] 3.11 [0.67] 3.48 -0.01 [0.02] -0.74 [0.52] 0.13 0.49 492

New Zealand -0.03 [0.04] 0.69 [0.87] -0.03 -0.07 [0.03] 2.23 [0.49] 3.14 0.04 [0.03] -1.54 [0.66] 1.62 0.12 492

Norway -0.02 [0.02] 0.72 [0.62] 0.08 -0.02 [0.02] 1.74 [0.57] 2.26 0.01 [0.01] -1.02 [0.41] 0.97 0.23 492

Sweden -0.00 [0.02] -0.64 [0.91] -0.02 -0.02 [0.02] 0.89 [0.91] 0.25 0.01 [0.01] -1.53 [0.49] 2.02 0.23 492

Switzerland 0.02 [0.02] 1.16 [0.82] 0.33 0.05 [0.02] 2.45 [0.78] 2.43 -0.03 [0.01] -1.29 [0.43] 1.69 0.25 492

United Kingdom -0.02 [0.03] 1.02 [1.18] 0.04 -0.05 [0.02] 2.69 [0.95] 2.44 0.03 [0.02] -1.67 [0.66] 1.39 0.27 492

Panel – – 0.65 [0.49] -0.05 – – 1.98 [0.44] 1.82 – – -1.34 [0.30] 1.37 0.00 4428

Joint zero (p-value) 0.44 0.04 0.00 0.00 0.00 0.00 0.04

Panel B: Yield Curve Slopes

Australia 0.06 [0.02] 3.84 [1.56] 1.54 0.00 [0.02] -1.00 [1.17] -0.02 0.05 [0.02] 4.84 [0.92] 7.65 0.01 492

Canada 0.04 [0.02] 4.04 [0.98] 2.25 -0.00 [0.01] -0.72 [0.66] -0.07 0.04 [0.01] 4.76 [0.63] 9.09 0.00 492

Germany 0.00 [0.02] 0.50 [1.77] -0.18 -0.01 [0.02] -3.05 [1.37] 1.15 0.01 [0.01] 3.55 [0.97] 4.07 0.11 492

Japan 0.00 [0.02] -0.32 [1.38] -0.19 -0.01 [0.02] -4.18 [1.08] 2.91 0.01 [0.01] 3.85 [0.82] 3.96 0.03 492

New Zealand 0.08 [0.04] 2.94 [2.04] 1.26 -0.01 [0.03] -1.60 [1.18] 0.62 0.09 [0.03] 4.55 [1.19] 7.41 0.05 492

Norway -0.00 [0.02] 0.59 [1.03] -0.12 -0.01 [0.02] -2.03 [0.92] 1.33 0.01 [0.01] 2.62 [0.59] 3.35 0.06 492

Sweden 0.02 [0.02] 3.12 [1.23] 2.12 -0.00 [0.02] -0.13 [1.14] -0.20 0.02 [0.01] 3.25 [0.71] 5.29 0.05 492

Switzerland 0.00 [0.02] 0.97 [1.17] -0.06 -0.02 [0.02] -3.59 [1.26] 1.97 0.02 [0.01] 4.55 [0.78] 8.82 0.01 492

United Kingdom 0.02 [0.03] 1.59 [1.53] 0.17 -0.02 [0.02] -3.17 [1.37] 2.11 0.04 [0.01] 4.75 [0.83] 7.95 0.02 492

Panel – – 1.94 [0.84] 0.42 – – -2.02 [0.73] 0.83 – – 3.96 [0.50] 6.08 0.00 4428

Joint zero (p-value) 0.07 0.00 0.96 0.00 0.00 0.00 0.00

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S.

nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for equality
between the slope coefficient in the bond dollar return difference regression and the slope coefficient in the currency excess return regression
for each country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in the
respective column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly.
The log returns and the yield curve slope differentials are annualized. The sample period is 1/1975–12/2015. The balanced panel consists of
Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. In individual country regressions, standard
errors are obtained with a Newey-West approximation of the spectral density matrix, with the lag truncation parameter (kernel bandwidth)
equal to 6. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998) methodology,
with the lag truncation parameter (kernel bandwidth) equal to 6.
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there are large local currency long-term bond returns (with a Sharpe ratio of 0.51 for an equally-weighted

portfolio in the interest-rate strategy) — these are related to the well-known deviations from the expectation

hypothesis, i.e. the local term premia. The two corresponding Sharpe ratios are larger than the one on the

U.S. aggregate stock market. However, the currency risk premia and the local term premia cancel out, so the

Sharpe ratio on foreign bond returns in dollars is not significant. From the vantage point of a U.S. investor,

there is no evidence of economically significant return predictability in long foreign bonds.

1.4 Cross-Sectional Properties of Foreign Bond Returns

After focusing on time-series predictability, we turn now to cross-sectional evidence, as in Lustig and Verdelhan

(2007). There is no mechanical link between the time-series and cross-sectional evidence. The time-series

regressions test whether a predictor that is higher than its average implies higher returns, while the cross-

sectional tests show whether a predictor that is higher in one country than in others implies higher returns

in that country (see Hassan and Mano, 2014). Our cross-sectional evidence echoes some papers that study

the cross-section of bond returns: Koijen, Moskowitz, Pedersen, and Vrugt (2016) and Wu (2012) examine

the currency-hedged returns on ‘carry’ portfolios of international bonds, sorted by a proxy for the carry on

long-term bonds. But these papers do not examine the interaction between currency and term risk premia, the

topic of our paper.

We sort countries into three portfolios on the level of the short-term interest rates or the slope of their yield

curves. Portfolios are rebalanced every month and those formed at date t only use information available at

that date. Portfolio-level log excess returns are obtained by averaging country-level log excess returns across all

countries in the portfolio. We first describe results obtained with the 10-year bond indices, reported in Table

3, and then turn to the zero-coupon bonds to study the whole term structure, presented in Figure 2.

1.4.1 Sorting by Interest Rates

We start with the currency portfolios sorted by short-term interest rates. In order to focus on the conditional

carry trade, we use interest rates in deviation from their past 10-year rolling mean as the sorting variable.2

Thus, the first (third) portfolio includes the conditionally low (high) interest rate currencies. Clearly, the

2The unconditional carry trade goes long in currencies with an average high interest rates (Hassan and Mano, 2014). That is
not the focus of our paper.
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Table 2: Dynamic Long-Short Foreign and U.S. Bond Portfolios

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Short-Term Interest Rates

Australia 1.28 [2.23] 14.27 0.09 [0.16] 3.55 [1.75] 11.40 0.31 [0.16] -2.27 [1.34] 8.46 -0.27 [0.15]

Canada -0.46 [1.42] 9.10 -0.05 [0.16] 0.86 [1.13] 6.97 0.12 [0.16] -1.31 [0.85] 5.50 -0.24 [0.15]

Germany 2.19 [1.93] 12.45 0.18 [0.16] 3.86 [1.72] 11.13 0.35 [0.16] -1.67 [1.16] 7.30 -0.23 [0.16]

Japan 0.93 [2.19] 14.31 0.07 [0.16] 1.54 [1.73] 11.31 0.14 [0.16] -0.61 [1.43] 9.03 -0.07 [0.16]

New Zealand 0.65 [2.56] 16.91 0.04 [0.16] 3.84 [1.87] 12.25 0.31 [0.17] -3.19 [1.76] 11.47 -0.28 [0.16]

Norway 0.69 [1.98] 13.00 0.05 [0.16] 3.17 [1.60] 10.61 0.30 [0.16] -2.48 [1.42] 8.99 -0.28 [0.16]

Sweden -0.40 [2.03] 12.85 -0.03 [0.15] 2.30 [1.73] 11.14 0.21 [0.16] -2.71 [1.38] 8.68 -0.31 [0.16]

Switzerland 0.57 [2.05] 12.84 0.04 [0.16] 1.14 [1.97] 12.22 0.09 [0.15] -0.57 [1.13] 7.62 -0.07 [0.16]

United Kingdom 0.89 [2.00] 12.76 0.07 [0.15] 3.09 [1.59] 10.26 0.30 [0.16] -2.20 [1.25] 8.21 -0.27 [0.15]

Equally-weighted 0.70 [1.00] 6.36 0.11 [0.16] 2.59 [0.87] 5.55 0.47 [0.17] -1.89 [0.60] 3.73 -0.51 [0.16]

Panel B: Yield Curve Slopes

Australia -1.88 [2.22] 14.26 -0.13 [0.16] 2.89 [1.80] 11.41 0.25 [0.17] -4.76 [1.34] 8.37 -0.57 [0.14]

Canada -2.07 [1.41] 9.08 -0.23 [0.15] 1.23 [1.10] 6.97 0.18 [0.16] -3.30 [0.83] 5.43 -0.61 [0.16]

Germany 1.98 [1.92] 12.46 0.16 [0.16] 5.17 [1.71] 11.09 0.47 [0.16] -3.19 [1.14] 7.25 -0.44 [0.15]

Japan -0.71 [2.21] 14.31 -0.05 [0.16] 4.60 [1.73] 11.24 0.41 [0.16] -5.31 [1.42] 8.90 -0.60 [0.16]

New Zealand -0.18 [2.57] 16.91 -0.01 [0.16] 3.49 [1.90] 12.26 0.28 [0.17] -3.67 [1.77] 11.45 -0.32 [0.15]

Norway -0.56 [2.05] 13.00 -0.04 [0.15] 2.84 [1.73] 10.61 0.27 [0.16] -3.40 [1.39] 8.97 -0.38 [0.15]

Sweden -3.62 [1.99] 12.81 -0.28 [0.16] 1.32 [1.75] 11.15 0.12 [0.17] -4.94 [1.38] 8.60 -0.57 [0.16]

Switzerland 0.47 [2.00] 12.84 0.04 [0.15] 4.80 [1.91] 12.15 0.40 [0.15] -4.33 [1.17] 7.51 -0.58 [0.16]

United Kingdom -2.73 [1.95] 12.73 -0.21 [0.16] 2.06 [1.61] 10.29 0.20 [0.16] -4.79 [1.30] 8.12 -0.59 [0.16]

Equally-weighted -1.03 [1.24] 7.82 -0.13 [0.16] 3.16 [1.08] 6.68 0.47 [0.16] -4.19 [0.80] 5.04 -0.83 [0.16]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the U.S. bond when the foreign short-term interest rate is higher than the U.S. interest rate (or the foreign yield curve slope is lower than the
U.S. yield curve slope), and go long the U.S. bond and short the foreign country bond when the U.S. interest rate is higher than the country’s
interest rate (or the U.S. yield curve slope is lower than the foreign yield curve slope). Results based on interest rate levels are reported in
Panel A and results based on interest rate slopes are reported in Panel B. The table reports the mean, standard deviation and Sharpe ratio
(denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government bond indices
in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in U.S. dollars
(rx(10),$ − rx(10), left panel). The holding period is one month. The table also presents summary return statistics for the equally-weighted
average of the individual country strategies. The slope of the yield curve is measured by the difference between the 10-year yield and the
one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000 samples
of non-overlapping returns. The log returns are annualized. The data are monthly and the sample is 1/1975–12/2015.
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classic uncovered interest rate parity condition fails in the cross-section: the currencies in the third portfolio

only depreciate by 60 basis points per year on average, not enough to offset the 2.65% interest rate difference and

thus delivering a 2.05% return. As a result, average currency excess returns increase from low- to high-interest-

rate portfolios, ranging from −0.61% to 2.05% per year over the last 40 years. Thus, the long-short currency

carry trade (invest in Portfolio 3, short Portfolio 1) implemented with Treasury bills delivers an average annual

log excess return of 2.05%− (−0.61%) = 2.66% and a Sharpe ratio of 0.36 (Panel B), higher than the Sharpe

ratio on the U.S. S&P500 equity index over the same period.

However, implementing the carry trade with long-term bonds does not yield a similar performance, as local

currency bond premia decrease from low- to high-interest-rate portfolios, from 3.53% to −0.25%, implying that

the 10-year bond carry trade entails a local currency bond premium of −0.25% − 3.53% = −3.78% (Panel

C). Therefore, the long-short currency carry trade implemented with long-term government bonds, which is

the sum of the two long-short returns above, delivers a negative average return of −3.78% + 2.66% = −1.12%

(Panel D) that is not statistically significant. This contrasts with the equivalent trade using Treasury bills. The

dollar bond risk premia (−1.12%) are statistically different from the carry trade risk premia (2.66%) because

the local term premia (−3.78%) are statistically significant. Investors have no reason to favor the long-term

bonds of a particular set of countries on the basis of average returns after converting the returns into the same

currency (here, U.S. dollars).

Inflation risk is not a good candidate explanation for local currency bond excess returns, because inflation

is higher and more volatile in countries that are in the last portfolio than in the first portfolio (Panel A of Table

3, left section). Similarly, sovereign default risk is not a plausible explanation, given that the countries in the

first portfolio tend to have slightly better credit ratings than the countries in the last portfolio. The relatively

high term premium of 3.53% in the first portfolio thus corresponds to relatively low inflation and default risk.

1.4.2 Sorting by Slopes

Similar results emerge when we sort countries into portfolios by the slope of their yield curves. There is

substantial turnover in these portfolios, more so than in the usual interest rate-sorted portfolios. On average,

the flat slope currencies (first portfolio) tend to be high interest rate currencies, while the steep slope currencies

(third portfolio) tend to be low interest rate currencies. As expected, average currency log excess returns decline

12



Table 3: Cross-sectional Predictability: Bond Portfolios

Sorted by Short-Term Interest Rates Sorted by Yield Curve Slopes

Portfolio 1 2 3 3− 1 1 2 3 1− 3

Panel A: Portfolio Characteristics

Inflation rate Mean 2.90 3.45 4.81 1.91 4.89 3.41 2.87 2.02
s.e. [0.16] [0.19] [0.23] [0.20] [0.23] [0.19] [0.18] [0.19]

Std 1.03 1.23 1.48 1.30 1.39 1.16 1.20 1.26

Rating Mean 1.45 1.25 1.49 0.04 1.54 1.38 1.28 0.25
s.e. [0.02] [0.02] [0.02] [0.04] [0.02] [0.02] [0.02] [0.03]

Rating (adj. for outlook) Mean 1.50 1.37 1.84 0.33 1.84 1.50 1.37 0.47
s.e. [0.03] [0.02] [0.02] [0.04] [0.02] [0.02] [0.02] [0.03]

y
(10),∗
t − r∗,ft Mean 1.52 0.92 -0.44 -1.96 -0.81 0.85 1.96 -2.76

Panel B: Currency Excess Returns

−∆st+1 Mean -0.44 0.11 -0.60 -0.16 -0.95 0.38 -0.36 -0.58

rf,∗t − rft Mean -0.17 0.54 2.65 2.81 3.35 0.55 -0.88 4.23

rxFXt+1 Mean -0.61 0.66 2.05 2.66 2.41 0.92 -1.24 3.65
s.e. [1.35] [1.44] [1.36] [1.14] [1.48] [1.38] [1.40] [1.18]

SR -0.07 0.07 0.23 0.36 0.26 0.11 -0.14 0.49

Panel C: Local Currency Bond Excess Returns

rx
(10),∗
t+1 Mean 3.53 2.60 -0.25 -3.78 -1.01 2.29 4.61 -5.61

s.e. [0.69] [0.69] [0.73] [0.77] [0.76] [0.69] [0.70] [0.74]

SR 0.80 0.58 -0.05 -0.77 -0.21 0.53 1.00 -1.18

Panel D: Dollar Bond Excess Returns

rx
(10),$
t+1 Mean 2.92 3.26 1.80 -1.12 1.40 3.21 3.36 -1.96

s.e. [1.56] [1.58] [1.57] [1.33] [1.64] [1.57] [1.62] [1.38]

SR 0.29 0.32 0.18 -0.13 0.14 0.33 0.32 -0.22

rx
(10),$
t+1 − rx(10)

t+1 Mean 0.14 0.48 -0.98 -1.12 -1.38 0.43 0.59 -1.96
s.e. [1.64] [1.64] [1.73] [1.33] [1.81] [1.63] [1.75] [1.38]

Notes: The countries are sorted by the level of their short term interest rates in deviation from the 10-year mean into three portfolios (left
section) or the slope of their yield curves (right section). The slope of the yield curve is measured by the difference between the 10-year yield
and the one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000
samples of non-overlapping returns. The table reports the average inflation rate, the standard deviation of the inflation rate, the average credit
rating, the average credit rating adjusted for outlook, the average slope of the yield curve (y(10),∗ − r∗,f ), the average change in exchange
rates (∆s), the average interest rate difference (rf,∗ − rf ), the average currency excess return (rxFX), the average foreign bond excess return
on 10-year government bond indices in foreign currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as the difference between the average
foreign bond excess return in U.S. dollars and the average U.S. bond excess return (rx(10),$ − rx(10)). For the excess returns, the table also
reports their Sharpe ratios (denoted SR). The holding period is one month. The log returns are annualized. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. The data are monthly and the sample is
1/1975–12/2015.
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from 2.41% per annum on the first portfolio (low slope, high short-term interest rates) to −1.24% per annum on

the third portfolio (high slope, low short-term interest rates) over the last 40 years (Panel B). Therefore, a long-

short position of investing in flat-yield-curve currencies (Portfolio 1) and shorting steep-yield-curve currencies

(Portfolio 3) delivers a currency excess return of 3.65% per annum and a Sharpe ratio of 0.49. Our findings

confirm those of Ang and Chen (2010): the slope of the yield curve predicts currency excess returns at the

short end of the maturity spectrum.

However, those currency premia are offset by term premia, as local currency bond excess returns and

currency excess returns move in opposite directions across portfolios. In particular, the first portfolio produces

negative bond average excess returns of −1.01% per year, compared to 4.61% on the third portfolio (Panel

C), so the slope carry trade generates an average local currency bond excess return of −5.61% per year. This

result is not mechanical: the spread in the slopes is about half of the spread in local currency excess returns.

The corresponding average dollar bond excess returns range from 1.40% to 3.36%, so the slope carry trade

implemented with 10-year bonds delivers an average annual dollar excess return of −1.96% (Panel D), which

is not statistically significant.

Importantly, this strategy involves long positions in bonds issued by countries with slightly lower average

inflation, less inflation risk and slightly better average sovereign credit rating, despite the higher term premium.

Therefore, the offsetting effect of local currency term premia is unlikely to be due to inflation or credit risk.

1.4.3 Looking Across Subsamples

To summarize the portfolio results and test their robustness across subsamples, Figure 1 plots the cumulative

returns on interest rate and slope carry strategies over the entire sample. The full line is the cumulative local

currency bond excess return (in logs), while the dashed line is the cumulative currency excess return (in logs).

The cumulative dollar excess return is the sum of these two (not shown). The top panels sort by interest rates

on the left and interest rate deviations on the right. The bottom panel sort by slope and slope deviations.

Overall, the same patterns reappear in each these plots, but there are three noticeable differences.

First, when we sort on interest rates, the off-setting effect of local currency bond excess returns is slightly

weaker, and the currency excess returns are larger, than when we sort on interest rate deviations. The latter sort

only captures the conditional carry premium, while the former captures the entire carry premium. The carry
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trade risk premium is somewhat larger when sorting on interest rates, as documented by Lustig, Roussanov,

and Verdelhan (2011) and Hassan and Mano (2014), as these sorts capture both the conditional carry trade

premium (long in currencies with currently high interest rates) and the unconditional carry trade premium (long

in currencies with high average interest rates). Since our paper is about the conditional currency carry trade,

we focus mainly on the demeaned sorts. Second, when we use interest rate (deviations) sorts, the negative

contribution of local currency bond premia weakens starting in the mid 80s (90s), compared to the earlier part

of the sample. This is not surprising given that interest rates started to converge across G10 countries in the

second part of the sample (Wright, 2011). In other words, when G10 countries have similar low interest rates,

these rates do not predict large differences in term premia across countries. Third, the offsetting effect of local

currency bond premia is larger when we sort on the slope of the yield curve, and it does not weaken in the

second part of the sample.

1.4.4 Looking Across Maturities

The results we discussed previously focus on the 10-year maturity. We now turn to the full maturity spectrum,

using the zero-coupon bond dataset. The panel is unbalanced, and because of data limitations, we can only

examine three-month holding period returns over the 4/1985–12/2015 sample, which mitigates predictability

(4/1985 is the first month for which we have data for at least three foreign bonds). As a result, the standard

errors are larger than in the benchmark sample. Building on the previous results, countries as sorted by the

slope of their term structures because the slope appears as the strongest predictor of both currency and term

premia over this sample. We sort only on the slope of the yield curve, not on the slope deviation from its

10-year mean, because of the shorter sample.

Our findings are presented graphically in Figure 2, which shows the dollar log excess returns as a function

of the bond maturity, using the same set of funding and investment currencies. Investing in the short-maturity

bills of countries with flat yield curves (mostly high short-term interest rate countries), while borrowing at

the same horizon in countries with steep yield curves (mostly low short-term interest rate countries) leads to

an average dollar excess return of 2.67% per year (with a standard error of 1.50%). This is the slope version

of the standard currency carry trade. However, when we implement the same strategy using longer maturity

bonds instead of short-term bills, the dollar excess return decreases monotonically as the maturity of the bonds
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Figure 1: FX Premia and Local Currency Bond Premia— The figure shows the cumulative log excess returns on interest
rate and slope carry investment strategies that go long in high interest rate (flat slope) currencies and short low interest rate (steep slope)
currencies. The full line is the cumulative log currency excess return. The dashed line is the cumulative log local currency bond excess return.
The cumulative log dollar excess return is represented by the sum of these 2 lines. At each date t, the countries are sorted by the interest rate
(slope of the yield curves) into three portfolios. The slope of the yield curve is measured by the difference between the 10-year yield and the
3-month interest rate at date t. The holding period is one month. The balanced panel consists of Australia, Canada, Japan, Germany, Norway,
New Zealand, Sweden, Switzerland, and the U.K. The data are monthly and the sample is 1/1975–12/2015.

increases. The zero-coupon findings confirm our previous results and seem to rule out measurement error in the

10-year coupon bond indices as an explanation. At the long end (15-year maturity), the bond term premium

more than offsets the currency premium, so the slope carry trade yields a (non-significant) average annual dollar

return of −2.18% (with a standard error of 2.28%). The average excess returns at the long-end of the yield

curve are statistically different from those at the short-end: the difference between those returns correspond

to the local term premia, which are equal to −4.85% with a standard error of 1.82%. Therefore, carry trade

strategies that yield positive average excess returns when implemented with short-maturity bonds yield lower
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(or even negative) excess returns when implemented using long-maturity bonds.3
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Figure 2: Long-Minus-Short Foreign Bond Risk Premia in U.S. Dollars— The figure shows the dollar log excess returns
as a function of the bond maturities. Dollar excess returns correspond to the holding period returns expressed in U.S. dollars of investment
strategies that go long and short foreign bonds of different countries. The unbalanced panel of countries consists of Australia, Canada, Japan,
Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. At each date t, the countries are sorted by the slope of their yield curves
into three portfolios. The first portfolio contains countries with flat yield curves while the last portfolio contains countries with steep yield
curves. The slope of the yield curve is measured by the difference between the 10-year yield and the three-month interest rate at date t. The
holding period is one quarter. The returns are annualized. The dark shaded area corresponds to one-standard-error bands around the point
estimates. The gray and light gray shaded areas correspond to the 90% and 95% confidence intervals. Standard deviations are obtained by
bootstrapping 10,000 samples of non-overlapping returns. Zero-coupon data are monthly, and the sample window is 4/1985–12/2015.

1.5 Robustness Checks

We consider many robustness checks, both regarding our time-series results and our cross-sectional results.

The time-series predictability robustness checks are reported in Section A of the Online Appendix, whereas the

cross-sectional portfolio robustness checks can be found in Section B of the Online Appendix.

3When we use interest rate sorts, the term structure is flat: The carry premium is 3.71% per annum (with a standard error
of 1.80%), while the local 10-year bond premium is only -0.21% per annum (with a standard error of 1.76%), so the dollar bond
premium at the 15-year maturity is 3.50% (with a standard error of 2.32%). As noted in the previous subsection and apparent in
the top panels of Figure 1, interest rates in levels do not predict bond excess returns in the cross-section over the 4/1985–12/2015
sample.
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As regards time-series predictability, we consider predictability regressions using inflation and sovereign

credit as additional controls, we consider an alternative decomposition of dollar bond returns into an exchange

rate component and a local currency bond return difference, we include predictability results with GBP as

the base currency and we report predictability results using different time-windows (10/1983–12/2007, 1/1975–

12/2007, 10/1983–12/2015) and investment horizons (three months). We find that our main results are robust

to those alternative specifications.

As regards cross-sectional currency portfolios, we consider different lengths of the bond holding period (three

and twelve months), different time windows, different samples of countries, sorts by (non-demeaned) interest

rate levels, and other potential explanations of excess returns. Our results appear robust to the choice of the

bond holding period and across time windows. Furthermore, our results appear robust across several samples

of countries. Introducing more countries adds power to the experiment, but forces us to consider less liquid

and more default-prone bond markets. In what may be of particular interest, we show that inflation risk or

credit risk are unlikely explanations for differences in term premia even in larger sets of countries and different

time windows. For both our benchmark sample (1/1975 – 12/2015) and a longer sample (1/1951 – 12/2015),

term premia are higher in low inflation countries. Thus, assuming that there is a positive association between

average inflation rates and exposure to inflation risk, inflation risk does not account for our findings. This is

true not only for our benchmark set of countries, but also for the extended sets of countries. Similarly, the

cross-sectional patterns in term premia we observe empirically are not likely to be due to sovereign default risk.

As seen in Table 3, countries with high average local currency bond premia have average credit ratings (both

unadjusted and adjusted for outlook) that are lower than or similar to the ratings of countries with low average

local currency bond premia. That finding is robust to considering different sample periods: it holds both in

the long sample period (1/1951 – 12/2015) and in the 7/1989–12/2015 period, during which full ratings are

available. Therefore, we find no empirical evidence in favor of an inflation- or credit-based explanation of our

findings in this sample of G-10 currencies, and thus pursue a simple interest rate risk interpretation that seems

the most relevant, especially over the last thirty years.
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2 The Term Structure of Currency Carry Trade Risk Premia: A Challenge

In this section, we show that the downward sloping term structure of currency carry trade risk premia is a

challenge even for a reduced-form model.

2.1 The Necessary Condition for Replicating the U.I.P Puzzle

We start with a review of a key necessary condition for replicating the U.I.P puzzle, established by Bekaert

(1996) and Bansal (1997) and generalized by Backus, Foresi, and Telmer (2001). To do so, we first introduce

some additional notation.

Pricing Kernels and Stochastic Discount Factors The nominal pricing kernel is denoted by Λt($); it

corresponds to the marginal value of a currency unit delivered at time t in the state of the world $. The nominal

SDF M is the growth rate of the pricing kernel: Mt+1 = Λt+1/Λt. Therefore, the price of a zero-coupon bond

that promises one currency unit k periods into the future is given by

P
(k)
t = Et

(
Λt+k
Λt

)
. (4)

SDF Entropy SDFs are volatile, but not necessarily normally distributed. In order to measure the time-

variation in their volatility, it is convenient to use entropy, rather than variance (Backus, Chernov, and Zin,

2014). The conditional entropy Lt of any random variable Xt+1 is defined as

Lt (Xt+1) = logEt (Xt+1)− Et (logXt+1) . (5)

If Xt+1 is conditionally lognormally distributed, then the conditional entropy is equal to one half of the con-

ditional variance of the log of Xt+1: Lt (Xt+1) = (1/2)vart (logXt+1). If Xt+1 is not conditionally lognormal,

the entropy also depends on the higher moments: Lt(Xt+1) = κ2t/2! + κ3t/3! + κ4t/4! + . . ., where {κit}∞i=2 are

the cumulants of logXt+1.4

4The literature on disaster risk in currency markets shows that higher order moments are critical for understanding currency
returns (see Brunnermeier, Nagel, and Pedersen, 2009; Gourio, Siemer, and Verdelhan, 2013; Farhi, Fraiberger, Gabaix, Ranciere,
and Verdelhan, 2013; Chernov, Graveline, and Zviadadze, 2011).
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Exchange Rates When markets are complete, the change in the nominal exchange rate corresponds to the

ratio of the domestic to foreign nominal SDFs:

St+1

St
=

Λt+1

Λt

Λ∗t
Λ∗t+1

. (6)

The no-arbitrage definition of the exchange rate comes directly from the Euler equations of the domestic and

foreign investors, for any asset return R∗ expressed in foreign currency terms: Et[Mt+1R
∗
t+1St/St+1] = 1 and

Et[M
∗
t+1R

∗
t+1] = 1.

Currency Risk Premia As Bekaert (1996) and Bansal (1997) show, in models with lognormally distributed

SDFs the conditional log currency risk premium Et(rx
FX) equals the half difference between the conditional

variance of the log domestic and foreign SDFs. This result can be generalized to non-Gaussian economies.

When higher moments matter and markets are complete, the currency risk premium is equal to the difference

between the conditional entropy of two SDFs (Backus, Foresi, and Telmer, 2001):

Et
(
rxFXt+1

)
= rf,∗t − r

f
t − Et(∆st+1) = Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
. (7)

According to the U.I.P. condition, expected changes in exchange rates should be equal to the difference

between the home and foreign interest rates and, thus, the currency risk premium should be zero. In the data,

the currency risk premium is as large as the equity risk premium. Any complete market model that addresses

the U.I.P. puzzle must thus satisfy a simple necessary condition: high interest rate countries must exhibit

relatively less volatile SDFs. In the absence of differences in conditional volatility, complete market models are

unable to generate a currency risk premium and the U.I.P. counterfactually holds in the model economy.

Why is the downward term structure of currency carry trade risk premia a challenge for arbitrage-free

models? Intuitively, the models need to depart from risk-neutrality in order to account for the U.I.P deviations

at the short end of the yield curve and large carry trade risk premia. Yet, for the exact same investment

horizon, the models need to deliver zero risk premia at the long end of the yield curve, thus behaving as if

investors are risk-neutral. In the rest of the paper, we highlight this tension and describe necessary conditions

for arbitrage-free models to replicate our empirical evidence.
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2.2 An Example: A Reduced-Form Factor Model

We start by showing that even a flexible, N -country reduced-form model calibrated to match the currency

carry trade risk premia does not replicate the evidence on long-term bonds.Several two-country models satisfy

the condition described in Equation (7) and thus replicate the failure of the U.I.P. condition, but they cannot

replicate the portfolio evidence on carry trade risk premia. The reason is simple: when those models are

extended to multiple countries, investors in the models can diversify away the country-specific exchange rate

risk and there are no cross-sectional differences in carry trade returns across portfolios. To the best of our

knowledge, only two models can so far replicate the portfolio evidence on carry trades: the multi-country long-

run risk model of Colacito, Croce, Gavazzoni, and Ready (2017) and the multi-country reduced-form factor

model of Lustig, Roussanov, and Verdelhan (2011). We focus on the latter because of its flexibility and close

forms, and revisit the long-run risk model in Section E of the Appendix, along with other explanations of the

U.I.P. puzzle. Moreover, in the Online Appendix, we cover a wide range of term structure models, from the

seminal Vasicek (1977) model to the classic Cox, Ingersoll, and Ross (1985) model and to the most recent,

multi-factor dynamic term structure models. To save space, we focus here on their most recent international

finance version, illustrated in Lustig, Roussanov, and Verdelhan (2014). To replicate the portfolio evidence on

carry trades, Lustig, Roussanov, and Verdelhan (2011, 2014) show that no-arbitrage models need to incorporate

global shocks to the SDFs along with country heterogeneity in the exposure to those shocks. Following Lustig,

Roussanov, and Verdelhan (2014), we consider a world with N countries and currencies in a setup inspired by

classic term structure models.

Using their benchmark calibration, we calculate the model-implied term structure of currency risk premia

when implementing the slope carry trade strategy (invest in low yield slope currencies, short the high yield slope

interest rate currencies). This is very similar to investing in high interest rate countries while borrowing in low

interest rate countries. The simulation details are provided in the Appendix. Figure 3, obtained with simulated

data, is the model counterpart to Figure 2, obtained with actual data. A clear message emerges: while this

model produces U.I.P. deviations (and thus currency risk premia) at the short end of the yield curve, the model

produces a flat term structure of currency carry trade risk premia. We turn now to a novel necessary condition

that dynamic asset pricing models need to satisfy in order to generate a downward-sloping term structure.
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Figure 3: Simulated Long-Minus-Short Foreign Bond Risk Premia in U.S. Dollars— The figure shows the simulated
average dollar log excess return of the slope carry trade strategy as a function of the bond maturities in the reduced-form model of Lustig,
Roussanov, and Verdelhan (2014). At each date t, currencies are sorted into three portfolios by the slope of their yield curve (measured as the
difference between the 10-year and the three-month yields). The first portfolio contains the currencies of countries with low yield slopes, while
the third portfolio contains the currencies of countries with high yield slope. The slope carry trade strategy invests in the first portfolio and
shorts the third portfolio. The model is simulated at the monthly frequency. The holding period is one month and returns are annualized.

3 Foreign Long-Term Bond Returns and the Properties of SDFs

In this section, we derive a novel, preference-free necessary condition that complete market models need to

satisfy in order to reproduce the downward sloping term structure of currency carry trade risk premia. To do

so, we first review a useful decomposition of the pricing kernel.

3.1 Pricing Kernel Decomposition

Our results build on the Alvarez and Jermann (2005) decomposition of the pricing kernel Λt into a permanent

component ΛP
t and a transitory component ΛT

t using the price of the long-term bond:

Λt = ΛP
t ΛT

t , where ΛT
t = lim

k→∞

δt+k

P
(k)
t

, (8)

where the constant δ is chosen to satisfy the following regularity condition: 0 < lim
k→∞

P
(k)
t

δk
<∞ for all t. Note

that ΛP
t is equal to:

ΛP
t = lim

k→∞

P
(k)
t

δt+k
Λt = lim

k→∞

Et(Λt+k)

δt+k
.
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The second regularity condition ensures that the expression above is a martingale. Alvarez and Jermann (2005)

assume that, for each t+ 1, there exists a random variable xt+1 with finite expected value Et(xt+1) such that

almost surely Λt+1

δt+1

P
(k)
t+1

δk
≤ xt+1 for all k. Under those regularity conditions, the infinite-maturity bond return

is:

R
(∞)
t+1 = lim

k→∞
R

(k)
t+1 = lim

k→∞
P

(k−1)
t+1 /P

(k)
t =

ΛT
t

ΛT
t+1

. (9)

The permanent component, ΛP
t , is a martingale and is an important part of the pricing kernel: Alvarez and

Jermann (2005) derive a lower bound of its volatility and, given the size of the equity premium relative to the

term premium, conclude that it accounts for most of the SDF volatility.5 In other words, a lot of persistence

in the pricing kernel is needed to jointly deliver a low term premium and a high equity premium. Throughout

this paper we assume that stochastic discount factors Λt+1

Λt
and returns Rt+1 are jointly stationary.

3.2 Main Preference-Free Result on Long-Term Bond Returns

We now use this pricing kernel decomposition to understand the properties of the dollar returns of long-

term bonds. Recall that the dollar term premium on a foreign bond position, denoted by Et[rx
(k),$
t+1 ], can be

expressed as the sum of foreign term premium in local currency terms, Et[rx
(k),∗
t+1 ], plus a currency risk premium,

Et[rx
FX
t+1] = rf,∗t − r

f
t − Et[∆st+1]. Here, we consider the dollar term premium of an infinite-maturity foreign

bond, so we let k →∞.

Proposition 1. The foreign term premium on the long-term bond in dollars is equal to the domestic term

premium plus the difference between the domestic and foreign entropies of the permanent components of the

pricing kernels:

Et[rx
(∞),$
t+1 ] = Et

[
rx

(∞)
t+1

]
+ Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
. (10)

5Proposition 2 in Alvarez and Jermann (2005) establishes that Lt

(
ΛP
t+1

ΛP
t

)
≥ Et logRt+1− logR∞t+1 for any return Rt+1 and that

L

(
ΛP
t+1

ΛP
t

)
L

(
Λt+1

Λt

) ≥Min{1, E logRt+1/R
f
t−E logR∞t+1/R

f
t

E logRt+1/R
f
t +L(1/R

f
t )

} for any positive return Rt+1 such that E logRt+1/R
f
t +L(1/Rft ) > 0. Alvarez and

Jermann (2005) take the latter expression to the data and report several lower bounds for the relative variance of the permanent
component in their Table 2, page 1989. These lower bounds, obtained with either yields or holding-period returns on long-term
bonds, range from 0.76 to 1.11. Thus, the variance of the permanent component is at least 76% of the total variance of the SDF.

23



To intuitively link the long-run properties of pricing kernels to foreign bond returns and exchange rates,

let us consider the simple benchmark of countries represented by stand-in agents with power utility and i.i.d.

consumption growth rates. In that case, all SDF shocks are permanent (Λt = ΛP
t for all t). As we shall see, such

model is counterfactual. In this model, the risk-free rate is constant, so bonds of different maturities offer the

same returns. Foreign bond investments differ from domestic bond investments only because of the presence

of exchange rate risk and, since consumption growth rates are i.i.d, exchange rates are stationary in changes

but not in levels. Finally, carry trade excess returns are the same at the short end, (see Equation (7)) and at

the long end (see Equation (10)) of the yield curve, so the term structure of currency carry trade risk premia

is flat. A power utility model with only permanent shocks cannot match the facts.

Let us now turn to the opposite case: a model without permanent shocks in the SDF (Λt = ΛT
t for all t).

In case of an adverse temporary innovation to the foreign pricing kernel, the foreign currency appreciates, so

a domestic position in the foreign bond experiences a capital gain. However, this capital gain is exactly offset

by the capital loss suffered on the long-term bond as a result of the increase in foreign interest rates. Hence,

interest rate exposure completely hedges the temporary component of the currency risk exposure. In this case,

as Equation (10) shows, the long-term bond risk premium in dollars should be equal to the domestic term

premium.

Beyond these two polar cases, Proposition 1 shows that in order to have differences across countries in bond

risk premia, once converted in the same currency, no-arbitrage models need conditional entropy differences in

the permanent component of their pricing kernels. If the domestic and foreign pricing kernels have identical

conditional entropy, then high local currency term premia are always associated with low currency risk premia

and vice-versa, so dollar term premia are identical across currencies.

Proposition 1 is thus the bond equivalent to the usual currency carry trade condition. We gather them

below to emphasize their similarities:

Et
(
rxFXt+1

)
= Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
,

Et[rx
(∞),$
t+1 ]− Et

[
rx

(∞)
t+1

]
= Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
.

To reproduce large currency carry trade risk premia, no-arbitrage models need large differences in the volatilities
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of their SDFs. To reproduce the absence of dollar bond risk premia, no-arbitrage models need to feature the

same volatilities of the martingale components of their SDFs. As will shall see, this condition is a key tool to

assess existing international finance models.

3.3 Additional Assumptions and Interpretation

Dynamic asset pricing models that generate small amounts of dollar return differential predictability may

produce moments in small samples that fall within the confidence intervals, but it is useful to have a clear

benchmark: Ours is no predictability in dollar bond return differentials for long bonds. This has been the null

hypothesis in this literature. Our paper shows that this null cannot be rejected at longer maturities.

In order to use Proposition 1 to interpret our empirical findings, two additional assumptions are required.

Assumption 1: First, since very long-term bonds are rarely available or liquid, we assume that infinite-

maturity bond returns can be approximated in practice by 10 and 15-year bond returns. The same assumption

is also present in Alvarez and Jermann (2005), Hansen, Heaton, and Li (2008), Hansen and Scheinkman (2009),

and Hansen (2012). It is supported by the simulation of the state-of-the-art Joslin, Singleton, and Zhu (2011)

term structure model (see section H of the Online Appendix).

Assumption 2: Second, we assume that the level and slope of the yield curve summarize all the relevant

information that investors use to forecast dollar bond excess returns. Proposition 1 pertains to conditional risk

premia and is, thus, relevant for interpreting our empirical time series predictability results and the average

excess returns of currency portfolios sorted by conditioning information (the level of the short-term interest rate

or the slope of the yield curve). Building portfolios sorted by conditioning variables is a flexible, non-parametric

approach to bringing in conditioning information. We cannot definitively rule out the possibility that there

other predictors, but in all of the models that we consider, the spanning hypothesis holds, and all relevant

information for forecasting returns is contained in the yield curve, except in pathological, knife-edge cases.

Hence, there are no ‘missing’ predictors in these models that are orthogonal to the level and the slope. There is

a lively empirical debate on whether there are unspanned macro variables that have incremental out-of-sample

forecasting power for bond returns (see Bauer and Hamilton, 2017, for a thorough evaluation of the empirical

evidence). In our models, there are no unspanned macro variables, except in knife-edge cases.

Under those two assumptions, a simple condition illustrates our empirical findings:
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Condition 1. In order for the conditional dollar term premia on infinite-maturity bonds to be identical

across countries, the conditional entropy of the permanent SDF component has to be identical across coun-

tries: Lt

(
ΛP
t+1

ΛP
t

)
= Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
, for all t.

If this condition fails, under Assumptions 1 and 2, portfolios sorted on conditioning variables produce non-

zero currency carry trade risk premia at the long end of the term structure, as the conditional dollar term

premia of long-maturity bonds differ across countries.6 Condition 1 is satisfied when permanent shocks are

common across countries (ΛP
t+1 = ΛP,∗

t+1 for all t) and thus, in the absence of permanent shocks, when exchange

rates are stationary in levels. But note that the stationarity is sufficient but not necessary to satisfy Condition

1.

To develop some intuition for this condition, we rely on an example from Alvarez and Jermann (2005), who

consider a model with conditionally log-normally distributed pricing kernels driven by both permanent and

transitory shocks.

Example 1. Consider the following pricing kernel (Alvarez and Jermann, 2005):

log ΛP
t+1 = −1

2
σ2
P + log ΛP

t + εPt+1,

log ΛT
t+1 = log βt+1 +

∞∑
i=0

αiε
T
t+1−i,

where α is a square summable sequence, and εP and εT are serially independent and normally distributed random

variables with mean zero, variance σ2
P and σ2

T , respectively, and covariance σTP . A similar decomposition applies

to the foreign pricing kernel.

In this economy, Alvarez and Jermann (2005) show that the domestic term premium is given by the following

expression: Et

[
rx

(∞)
t+1

]
= 1

2σ
2
T +σTP . Only transitory risk is priced in the market for long-maturity bonds: when

marginal utility is transitorily high, interest rates increase because the representative agent wants to borrow, so

long-term bonds suffer a capital loss. Permanent shocks to marginal utility do not affect the prices of long-term

6For some countries (Australia, Canada, and Sweden), time-series regressions show that the yield slopes predict dollar bond
returns with the “wrong” sign: while an increase in the yield slope decreases short-bond carry trade excess returns, it increases the
dollar long-bond excess returns (cf Table 1). To match this particular evidence, one may replace Condition 1 with the following

condition: if Et
(
rxFXt+1

)
= Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
> 0, then Et[rx

(∞),$
t+1 ] − Et

[
rx

(∞)
t+1

]
= Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
Λ
P,∗
t+1

Λ
P,∗
t

)
< 0. We do not

study this stricter condition as the amount of predictability on long-bond dollar excess returns is not economically significant, as
can be seen in Table 2.
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bonds at all. Similarly, the foreign term premium, in local currency terms, is Et

[
rx

(∞),∗
t+1

]
= 1

2 (σ∗T )2 + σ∗TP .

The currency risk premium is the difference in the two countries’ conditional SDF entropy:

Et
[
rxFXt

]
= rf,∗t − r

f
t − Et[∆st+1] =

1

2

(
σ2
T + 2σTP + σ2

P

)
− 1

2

(
(σ∗T )2 + 2σ∗TP + (σ∗P )2

)
.

As a result, the foreign term premium in dollars, given by Equation (7), is:

Et

[
rx

(∞),$
t+1

]
= Et

[
rx

(∞),∗
t+1

]
+ Et

[
rxFXt

]
=

1

2
σ2
T + σTP +

1

2

(
σ2
P − (σ∗P )2

)
.

In the Alvarez and Jermann (2005) example, Condition 1 is satisfied, provided that σ2
P = (σ∗P )2. Then the

foreign term premium in dollars equals the domestic term premium:

Et

[
rx

(∞),$
t+1

]
=

1

2
σ2
T + σTP = Et

[
rx

(∞)
t+1

]
.

This example illustrates our theoretical and empirical findings. It shows how SDFs can deliver carry trade risk

premia with Treasury bills, when σT 6= σ∗T or σTP 6= σ∗TP , while producing no carry trade risk premia with

long-term bonds when σP = σ∗P . It also shows that exchange rate stationarity (εPt+1 = ε∗,Pt+1) is a sufficient

but not a necessary condition to produce no carry trade risk premia with long-term bonds. This example,

however, lacks the time variation in risk premia that has been extensively documented in equity, bond, and

currency markets. We turn now to a second example, with time-varying risk premia, to better understand the

achievements and drawback of the reduced-form model presented in Section 2.2.

The Lustig, Roussanov, and Verdelhan (2014) model simulated in Section 2.2 builds on the seminal Cox,

Ingersoll, and Ross (1985) model and introduces multiple common and local shocks. In order to illustrate

the SDF decomposition and Condition 1 in a very transparent setting, we focus here on a simple two-country

version of the Cox, Ingersoll, and Ross (1985) model with only one kind of shocks per country.

Example 2. The two-country Cox, Ingersoll, and Ross (1985) model is defined by the following law of motions
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for the SDFs:

− log
Λt+1

Λt
= α+ χzt +

√
γztut+1,

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

− log
Λ∗t+1

Λ∗t
= α∗ + χ∗z∗t +

√
γ∗z∗t u

∗
t+1,

z∗t+1 = (1− φ∗)θ∗ + φ∗z∗t − σ∗
√
z∗t u
∗
t+1,

where zt and z∗t are the two state variables that govern the volatilities of the normal shocks ut+1 and u∗t+1.

The domestic risk-free rate is given by rft = α+(χ− 1
2γ)zt. The log bond prices are affine in the state variable z:

p
(n)
t = −Bn

0 −Bn
1 zt, where the bond price coefficients evolve according to the second-order difference equations:

Bn
0 = α+Bn−1

0 +Bn−1
1 (1− φ)θ,

Bn
1 = χ− 1

2
γ +Bn−1

1 φ− 1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1

The temporary and martingale components of the pricing kernel are:

ΛT
t = lim

n→∞

δt+n

P
(n)
t

= lim
n→∞

δt+neB
∞
0 +B∞1 zt ,

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−α−χzt−
√
γztut+1e−B

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1].

where the constant β is chosen in order to satisfy : 0 < limn→∞
P

(n)
t
δn < ∞. The limit of Bn

0 − Bn−1
0 is

finite: limn→∞B
n
0 − B

n−1
0 = α + B∞1 (1 − φ)θ, where B∞1 is defined implicitly in the second order equation

B∞1 = χ− 1
2γ +B∞1 φ− 1

2 (B∞1 )2 σ2 + σ
√
γB∞1 . As a result, Bn

0 grows at a linear rate in the limit. We choose

the constant β to offset the growth in Bn
0 as n becomes very large. Setting eβ = e−α−B

∞
1 (1−φ)θ guarantees that

Assumption 1 in Alvarez and Jermann (2005) is satisfied. The temporary pricing component of the SDF is

thus equal to: ΛT
t = eβt−B

∞
1 zt . In this two-country model, Condition 1 requires that

(
√
γ −B∞1 σ) zt =

(√
γ∗ −B∞∗1 σ∗

)
z∗t .
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There are two ways to ensure that this condition is satisfied, depending on whether the shocks are either

country-specific or common.

First, let us consider a model with only country-specific shocks and factors. Let us assume that these

countries share all of the parameters. Since zt and z∗t will differ, a necessary and sufficient condition is that

B∞1 =
√
γ/σ, and B∞,∗1 =

√
γ∗/σ∗. In this case, there are no permanent shocks to the pricing kernel. Long

bond prices absorb the full, cumulative effect of the shock the pricing kernel. To see why, note that in this case

B∞1 = χ/(1 − φ). The log currency risk premium is given by Et[rx
FX
t+1] = 1

2γ(zt − z∗t ) and the expected term

premium is simply Et[rx
(∞)
t+1 ] = 1

2γzt. The expected foreign log holding period return on a foreign long bond

converted into U.S. dollars is equal to the U.S. term premium: Et[rx
(∞),∗
t+1 ]+Et[rx

FX
t+1] = 1

2γzt. In a two-country

Cox, Ingersoll, and Ross (1985) model with country-specific shocks, Condition 1 implies some restrictions on

the model parameters, and more crucially, the absence of permanent shocks in the SDFs and thus in exchange

rates: exchange rates are stationary in levels. The case of country-specific shocks, however, is not the most

interesting as such shocks can be diversified away.

Second, let us consider a model with common shocks and common factors: zt = z∗t is a global state variable.

In this case, the two countries share the parameters σ = σ∗, φ = φ∗, θ = θ∗ which govern the dynamics of zt

and z∗t . Condition 1 then requires that
√
γ + B∞1 σ =

√
γ∗ + B∞∗1 σ. Note that B∞1 depends on χ and γ, as

well as on the global parameters φ and σ. Hence, we also need γ = γ∗ and χ = χ∗. In this case, Condition 1

requires that both countries have the same pricing kernel. This case illustrates the tension between the carry

trade at the short and the long end of the yield curve: in order to replicate the carry trade on Treasury bills,

the two-country Cox, Ingersoll, and Ross (1985) model needs to feature heterogeneous exposure to common

shocks; yet, in order to replicate the absence of carry trade returns on long term bonds, this model needs to

satisfy Condition 1 that prohibits such heterogeneous exposure to common shocks.

This reduced-form model shows the difference between unconditional and conditional risk premia. In the

case of a symmetric model (σ = σ∗, φ = φ∗, θ = θ∗), the unconditional risk currency risk premium is zero:

E[rxFXt+1] = 1
2γ(E[zt]−E[z∗t ]) = 0, while the conditional currency risk premium is not: Et[rx

FX
t+1] = 1

2γ(zt−z∗t ) 6=

0. The conditional risk premium moves with the two state variables zt and z∗t . These variables take different

values across countries because countries experience different shocks. Our work is about the conditional risk

premium: the portfolios are built by sorting on the level and slope of interest rates, which in this model are
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driven by the state variables zt and z∗t . When taking the average of all returns in the high interest rate portfolio

for example, we are averaging over low values of the state variables zt, not over all possible values of zt. In this

symmetric model, the average currency risk premium obtained by simply averaging all returns would be zero.

Yet, as its simulation show in the previous section, the average currency risk premium obtained on the high

interest rate portfolio (for example) is as large as in the data. Our portfolio and predictability tests thus are

about conditional risk premia, as is our preference-free condition.

Condition 1 is a diagnostic tool that can be applied to richer models. In the Online Appendix, we derive

parametric restrictions to implement Condition 1 in four classes of dynamic term structure models, from the

simple one-factor Vasicek (1977) and Cox, Ingersoll, and Ross (1985) models to their multi-factor versions. In

order to save space, we summarize the implications of Condition 1 in Table A18.

In the Online Appendix, we also consider leading structural macro-finance models. We focus on models of

the real SDF, because (i) there is no evidence to suggest that inflation risk can account for UIP deviations,

and (ii) inflation risk does not seem to account for the cross-country variation in local currency bond excess

returns, as shown in Section 1. We consider two-country versions of the habit, long-run risk, and disaster risk

models. In a nutshell, among the reduced-form term structure models we consider, Condition 1 implies novel

parameter restrictions for all models (and in some cases, it rules out all permanent shocks or the time-variation

in the price of risk). In order to save space, we summarize the implications of Condition 1 in Table 4. All

the intermediary steps to determine the two components of the pricing kernels are reported in the Appendix.

In the habit model with common shocks, the carry trade risk premia and Condition 1 requires that countries

exhibit the same risk-aversion and the same volatility of consumption growth shocks but they can differ in

the persistence of their habit levels. The long-run risk models satisfy Condition 1 only with common shocks

and for knife-edge parameter values. This model generically produces non-stationary real exchange rates. For

the disaster risk models, common shocks are also necessary for Condition 1 to hold and the downward term

structure of carry trade risk premia is consistent with heterogeneity in the rate of time preference, the rate of

depreciation, or the country-specific growth rate, but no heterogeneity in the coefficient of risk aversion, the

common and country-specific consumption drops in case of a disaster, and the probability of a disaster. Overall,

the term structure of carry trade raises the bar for international finance models.
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Table 4: Long-Run Risk-Neutrality: Dynamic Asset Pricing Model Scorecard

Symmetric Models Asymmetric Models
with Country-specific Shocks with Common Shocks

External Habit Model X XOnly heterogeneity in φ
No heterogeneity in (γ, σ2)

Long Run Risks Model No Only knife-edge cases

Disaster Model No XOnly heterogeneity in (R, λ, gw)
No heterogeneity in (γ,B, F, pt)

This table summarizes whether each class of models can satisfy Condition 1. The left section of the table focuses on models with
only country-specific shocks in which all countries have the same parameters. The right section focuses on models models with only
common shocks and heterogeneity in the parameters. In the external habit model (Campbell and Cochrane, 1999; Wachter, 2006;
Verdelhan, 2010; Stathopoulos, 2017), the parameters φ and B govern the dynamics of the surplus consumption ratio process. In
the long run risk model (Bansal and Yaron, 2004; Colacito and Croce, 2011; Bansal and Shaliastovich, 2013; Engel, 2016), Condition
1 is always violated except in knife-edge cases. In the disaster model (Farhi and Gabaix, 2016; Gabaix, 2012; Wachter, 2013), the
parameters R, λ, and gw govern the rate of time preference, the rate of depreciation and the country-specific growth rate, while the
parameters γ, B, F , pt are the coefficient of risk aversion, the common consumption drop in case of a disaster, the country-specific
consumption drop in case of a disaster, and the probability of a disaster. The details are in section E of the Online Appendix.

4 U.I.P. in the Long Run

Examining the conditional moments of one-period returns on long-maturity bonds, the focus of our paper,

is not equivalent to studying the moments of long-maturity bond yields in tests of the long-horizon U.I.P.

condition. In this section, we show the links and differences between these moments. To do so, we use again

the decomposition of the pricing kernel proposed by Alvarez and Jermann (2005). Exchange rate changes can

be represented as the product of two components, defined below:

St+1

St
=

(
ΛP
t+1

ΛP
t

ΛP,∗
t

ΛP,∗
t+1

)(
ΛT
t+1

ΛT
t

ΛT,∗
t

ΛT,∗
t+1

)
=
SP
t+1

SP
t

ST
t+1

ST
t

. (11)

Exchange rate changes reflect differences in both the transitory and the permanent component of the two

countries’ pricing kernels.7 If two countries share the same martingale component of the pricing kernel, then

7Note that SP
t+1, the ratio of two martingales, is itself not a martingale in general. However, in the class of affine term structure

models, this exchange rate component is indeed a martingale.
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the resulting exchange rate is stationary and Condition 1 is trivially satisfied. However, as already mentioned,

exchange rate stationarity is obviously not necessary for long-run risk neutrality. This exchange rate decom-

position implies a lower bound on the cross-country correlation of the permanent components of the SDFs. In

the interest of space, we present it in the Online Appendix and focus in the main text on its implications for

long-run U.I.P.

The definition of the transitory component of exchange rate changes, given by ∆sTt+1 =
(
λTt+1 − λTt

)
−(

λT,∗t+1 − λ
T,∗
t

)
, where λTt ≡ log ΛT

t = limk→∞(t+ k) log δ+ limk→∞ ky
(k)
t , implies that a currency experiences a

temporary appreciation when its long-term interest rates increase more than the foreign ones:

∆sTt+1 = log δ − log δ∗ + lim
k→∞

k
(

∆y
(k)
t+1 −∆y

(k),∗
t+1

)
. (12)

By backward substitution, it follows that the transitory component of the exchange rate in levels is given by

the spread in long-term yields:

sTt = s0 + t(log δ − log δ∗) + lim
k→∞

k
(
y

(k)
t − y

(k),∗
t

)
− lim
k→∞

k
(
y

(k)
0 − y(k),∗

0

)
. (13)

This decomposition of exchange rates implies that deviations from the long-run UIP are due to the permanent

component of exchange rates. We use rxFXt→t+k = k
(
y

(k),∗
t − y(k)

t

)
− ∆st→t+k to denote the currency excess

return over a holding period of k years.

Proposition 2. The expected rate of transitory depreciation is equal to the spread in the long-term interest

rates:

lim
k→∞

Et∆s
T
t→t+k = − lim

k→∞
k
(
y

(k)
t − y

(k),∗
t

)
.

Thus, the deviation from long-run U.I.P is the permanent component of the exchange rates:

lim
k→∞

Etrx
FX
t→t+k = lim

k→∞
k
(
y

(k),∗
t − y(k)

t

)
− lim
k→∞

Et∆st→t+k = − lim
k→∞

Et∆s
P
t→t+k.

If exchange rates are stationary in levels, in which case the permanent component of exchange rate changes

is zero, then long-run U.I.P. holds. In this case, the slope coefficient in the regression of long-run exchange
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rate changes on yield differences converges to one and the intercept converges to zero. This result is previewed

in Backus, Boyarchenko, and Chernov (2016), who show that claims to stationary cash flows earn a zero log

risk premium over long holding periods. It follows that long-run deviations from U.I.P. are consistent with no

arbitrage only if the exchange rate is not stationary in levels.

Let us go back to the symmetric two-country CIR model with country-specific factors presented in Example

2. In that model, the transitory component of the exchange rate is given by: sTt = s0+B∞1 ((zt − z0)− (z∗t − z∗0)) .

As already noted, the pricing kernel is not subject to permanent shocks when B∞1 =
√
γ
σ = χ

1−φ .8 In that case,

the exchange rate is stationary and hence st = sTt . The expected rate of depreciation is then equal to

lim
k→∞

Et[∆st→t+k] =
χ

1− φ
(zt − z∗t ) = − lim

k→∞
k
(
y

(k)
t − y

(k),∗
t

)
.

Even if exchange rates are not stationary in levels, as long as Condition 1 holds, then (under some additional

regularity conditions), long-run U.I.P holds on average, as the following proposition shows.

Proposition 3. If the stochastic discount factors Λt+1

Λt
and

Λ∗t+1

Λ∗t
are strictly stationary, and limk→∞

1
kL
(
Et

[
Λt+k

Λt

])
=

0 and limk→∞
1
kL
(
Et

[
Λ∗t+k
Λ∗t

])
= 0, then the per period long-run currency risk premium is given by:

lim
k→∞

1

k
E[rxFXt→t+k] = lim

k→∞
E
(
y

(k),∗
t − y(k)

t

)
− lim
k→∞

1

k
E[∆st→t+k] =

[
L

(
ΛP
t+1

ΛP
t

)
− L

(
ΛP,∗
t+1

ΛP,∗
t

)]
.

This immediately implies that the per period currency risk premium converges to zero on average, and

therefore long-run U.I.P. holds on average, if Condition 1 is satisfied. Importantly, unconditional long-run U.I.P.

does not necessarily require stationary exchange rates, as Condition 1 is a weaker condition that exchange rate

stationarity. Moreover, Condition 1 may hold while deviations from long-run U.I.P. still exist. Proposition 3

only implies that long-run U.I.P. holds on average, not at any date. As a result, the study of holding period

returns of long-term bonds, the topic of this paper, is not the same as the study of U.I.P. in the long-run.

8The restrictions B∞1 =
√
γ

σ
= χ

1−φ have a natural interpretation as restrictions on the long-run loadings of the exchange rate

on the risk factors:
∑∞
i=1 Et[∆st+i] =

∑∞
i=1 Et[mt+i −m∗t+i] =

∑∞
i=1 φ

i−1χ(z∗t − zt).
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5 Conclusion

While holding period bond returns, expressed in a common currency, differ across G10 countries at the short

end of the yield curve (the U.I.P. puzzle), they are rather similar at the long end. In other words, the term

structure of currency carry trade risk premia is downward-sloping. Replicating such a term structure is a

non-trivial for most models: recent no-arbitrage models of international finance that are able to address the

U.I.P. puzzle fail to replicate the downward-sloping term structure of carry trade risk premia.

We derive a preference-free result that helps assess existing models and guides future theoretical and em-

pirical work. In order to exhibit similar long-term bond returns when expressed in the same units, complete

market models need to exhibit the same volatility of the permanent components of their pricing kernels. This

condition implies novel parameter restrictions in the workhorse no-arbitrage models of international finance.

Our results show that exchange rate risk is different from equity and bond risk. In order to account for

the high equity premium and the low term premium, most of the variation in the marginal utility of wealth

in no-arbitrage models must come from permanent shocks. Yet, differences across countries in how temporary

shocks affect the marginal utility of wealth — and thus exchange rates — appear as natural way to align

no-arbitrage models with the downward-sloping term structure of carry trade risk premia.
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APPENDIX

A Data

Our zero-coupon bond dataset covers the same benchmark sample of G10 countries, but from at most 1/1975 to 12/2015. We use
the entirety of the dataset in Wright (2011) and complement the sample, as needed, with sovereign zero-coupon curve data sourced
from Bloomberg, estimated from government notes and bonds as well as interest rate swaps of different maturities. The panel is
unbalanced: for each currency, the sample starts with the beginning of the Wright (2011) dataset. The starting dates for each
country are as follows: 2/1987 for Australia, 1/1986 for Canada, 1/1973 for Germany, 1/1985 for Japan, 1/1990 for New Zealand,
1/1998 for Norway, 12/1992 for Sweden, 1/1988 for Switzerland, 1/1979 for the U.K., and 12/1971 for the U.S. For New Zealand,
the data for maturities above 10 years start in 12/1994. Yields are available for bond maturities ranging from three months to 15
years, in three-month increments.

To construct averages of credit ratings, we assign each rating to a number, with a smaller number corresponding to a higher
rating. In particular, a credit rating of AAA corresponds to a numerical value of 1, with each immediately lower rating getting
assigned the immediately higher numerical value: AA+ corresponds to a numerical value of 2 and AA to 3, all the way down to CC-
(22) and SD (23). We also construct rating series adjusted for outlook, as follows: a ‘Negative’ outlook corresponds to an upward
adjustment of 0.5 in the numerical value of the rating, a ‘Watch Negative’ outlook to an upward adjustment of 0.25, a ‘Stable’ or
‘Satisfactory’ outlook to no adjustment, and a ‘Positive’, ‘Strong’ or ‘Very Strong’ outlook to a downward adjustment of 0.5. For
example, a credit rating of BB (coded as 12) receives a numerical value of 12.5 with a ‘Negative’ outlook and a value of 11.5 with a
‘Positive’ outlook. In order to construct credit rating averages for portfolios formed before 7/1989, we backfill each country’s credit
rating by assuming that the country’s rating before 7/1989 is equal to its rating at the first available observation.

B Proofs

• Proof of Proposition 1:

Proof. The proof builds on some results in Backus, Foresi, and Telmer (2001) and Alvarez and Jermann (2005). Specifically,
Backus, Foresi, and Telmer (2001) show that the foreign currency risk premium is equal to the difference between domestic
and foreign total SDF entropy:

(ft − st)− Et[∆st+1] = Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
.

Furthermore, Alvarez and Jermann (2005) establish that total SDF entropy equals the sum of the entropy of the permanent
pricing kernel component and the expected log term premium:

Lt

(
Λt+1

Λt

)
= Lt

(
ΛP
t+1

ΛP
t

)
+ Et

(
log

R
(∞)
t+1

Rft

)
.

Applying the Alvarez and Jermann (2005) decomposition to the Backus, Foresi, and Telmer (2001) expression yields the
desired result.

To derive the Backus, Foresi, and Telmer (2001) expression, consider a foreign investor who enters a forward position in the
currency market with payoff St+1 − Ft. The investor’s Euler equation is:

Et

(
Λ∗t+1

Λ∗t
(St+1 − Ft)

)
= 0.

In the presence of complete, arbitrage-free international financial markets, exchange rate changes equal the ratio of the
domestic and foreign pricing kernels:

St+1

St
=

Λt+1

Λt

Λ∗t
Λ∗t+1

,

Dividing the investor’s Euler equation by St and applying the no arbitrage condition, the forward discount is:

ft − st = logEt

(
Λt+1

Λt

)
− logEt

(
Λ∗t+1

Λ∗t

)
.
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The second component of the currency risk premium is expected foreign appreciation; applying logs and conditional expec-
tations to the no arbitrage condition above leads to:

Et[∆st+1] = Et

(
log

Λt+1

Λt

)
− Et

(
log

Λ∗t+1

Λ∗t

)
.

Combining the two terms of the currency risk premium leads to:

(ft − st)− Et[∆st+1] = logEt

(
Λt+1

Λt

)
− Et

(
log

Λt+1

Λt

)
− logEt

(
Λ∗t+1

Λ∗t

)
+ Et

(
log

Λ∗t+1

Λ∗t

)
Applying the definition of conditional entropy in the equation above yields the Backus, Foresi, and Telmer (2001) expression.

To derive the Alvarez and Jermann (2005) result, first note that since the permanent component of the pricing kernel is a
martingale, its conditional entropy can be expressed as follows:

Lt

(
ΛP
t+1

ΛP
t

)
= −Et

(
log

ΛP
t+1

ΛP
t

)
.

The definition of conditional entropy implies the following decomposition of total pricing kernel entropy:

Lt

(
Λt+1

Λt

)
= logEt

(
Λt+1

Λt

)
− Et

(
log

ΛT
t+1

ΛT
t

ΛP
t+1

ΛP
t

)
or, using the above expression for the conditional entropy of the permanent pricing kernel component:

Lt

(
Λt+1

Λt

)
= − logRft − Et

(
log

ΛT
t+1

ΛT
t

)
+ Lt

(
ΛP
t+1

ΛP
t

)
.

The Alvarez and Jermann (2005) result hinges on:

lim
k→∞

R
(k)
t+1 = ΛT

t /Λ
T
t+1.

Under the assumption that 0 < lim
k→∞

P
(k)
t

δk
<∞ for all t, one can write:

lim
k→∞

R
(k)
t+1 = lim

k→∞

Et+1

(
Λt+k
Λt+1

)
Et
(

Λt+k
Λt

) =
lim
k→∞

Et+1(Λt+k/δ
t+k)

Λt+1

lim
k→∞

Et(Λt+k/δ
t+k)

Λt

=

ΛP
t+1

Λt+1

ΛP
t

Λt

= ΛT
t /Λ

T
t+1.

Thus, the infinite-maturity bond is exposed only to transitory pricing kernel risk.

• Proof of Proposition 2:

Proof. The transitory component of the exchange rate in levels is given by the spread in long-term yields:

sTt = s0 + t(log δ − log δ∗) + lim
k→∞

k
(
y

(k)
t − y

(k),∗
t

)
− lim
k→∞

k
(
y

(k)
0 − y(k),∗

0

)
.

This follows directly from the definition of the transitory component of the pricing kernel. Note that limk→∞ k
(
y

(k)
t − y

(k),∗
t

)
is not a constant. If it was, the transitory component of the exchange rate would always be a constant.

This, in turn, implies that the rate of appreciation over longer holding periods is given by:

lim
k→∞

∆sTt→t+k = lim
k→∞

k(log δ − log δ∗) + lim
k→∞

k
(
y

(k)
t+k − y

(k),∗
t+k

)
− lim
k→∞

k
(
y

(k)
t − y

(k),∗
t

)
.

After taking conditional expectations, this expression simplifies to:

lim
k→∞

Et∆s
T
t→t+k = − lim

k→∞
k
(
y

(k)
t − y

(k),∗
t

)
,
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where we have used log δ = − limk→∞Ety
(k)
t+k = − limk→∞E(ykt ); the average long yield in logs is equal to log δ under

regularity conditions given in Borovička, Hansen, and Scheinkman (2016) on page 2515 and 2516.

• Proof of Proposition 3:

Proof. We start from the following equation:

lim
k→∞

1

k
E[rxFXt→t+k] = lim

k→∞
E
(
y

(k),∗
t − y(k)

t

)
− lim
k→∞

1

k
E[∆st→t+k] = lim

k→∞
(1/k)E

[
Lt

(
Λt+k
Λt

)
− Lt

(
Λ∗t+k
Λ∗t

)]
.

This follows from the definition of the currency risk premium Et[rxt→t+k] = Lt
(

Λt+k
Λt

)
−Lt

(
Λ∗t+k
Λ∗t

)
in equation (7), extended

to longer horizons. Next, we note that L(xt+1) = ELt(xt+1) + L(Et(xt+1)). Given the stationary of the stochastic discount

factor, we know that limk→∞(1/k)L
(
Et

Λt+k
Λt

)
= 0. Hence limk→∞(1/k)L

(
Λt+k

Λt

)
= limk→∞(1/k)ELt

(
Λt+k

Λt

)
. It then

follows that

lim
k→∞

(1/k)E

[
Lt

(
Λt+k
Λt

)
− Lt

(
Λ∗t+k
Λ∗t

)]
= lim
k→∞

(1/k)

[
L

(
Λt+k
Λt

)
− L

(
Λ∗t+k
Λ∗t

)]
=

[
L

(
ΛP
t+1

ΛP
t

)
− L

(
ΛP,∗
t+1

ΛP,∗
t

)]
.

The last equality follows directly from the Alvarez-Jermann decomposition of the pricing kernel (see Alvarez and Jermann
(2005)’s proposition 6).
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