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Options are redundant assets only in an idealized world of complete markets with no transactions 

costs, perfect information, and no restrictions on shorting.  Not surprisingly, since in the real 

world none of these assumptions hold, options are not simply functions of underlying stock 

prices and risk-free securities. 1 We show that the cross section of option volatilities contains 

information that forecasts the cross section of expected stock returns, and the cross section of 

stock-level characteristics forecasts option implied volatilities.   

In the direction of option volatilities predicting stock returns, we find that stocks with call 

options which have experienced increases in implied volatilities over the past month tend to have 

high returns over the next month. Puts contain independent information from call options, 

especially puts whose implied volatilities move opposite to the direction predicted by put-call 

parity.  After controlling for movements in call implied volatilities, increases in put option 

volatilities predict decreases in next-month stock returns. The strength and persistence of this 

predictability for stock returns from the cross section of option volatilities is remarkable for 

several reasons. 

First, the innovation in implied volatilities can be considered to be a very simple measure 

of news arrivals in the option market.  While strongest for the next-month horizon, the 

predictability persists at least up to six months. The predictability at the standard monthly 

horizon suggests the predictability is unlikely due to microstructure trading effects. In contrast, 

most of the previous literature investigating lead-lag effects of options versus stock markets 

focuses on intra-day or daily frequencies. These high frequency studies largely find that both the 

option and stock markets quickly react to news and that at daily frequencies or higher, options 

and stocks are fairly priced relative to each other.2  
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Second, the predictability is statistically very strong and economically large.  Decile 

portfolios formed on past changes in call option volatility have a spread of approximately 1% per 

month in both raw returns and alphas computed using common systematic factor models. Stocks 

sorted on past increases in their put implied volatilities after controlling for implied call 

volatilities exhibit spreads in average returns of greater than 1% per month between the extreme 

decile portfolios. The predictability of stock returns by option innovations is also robust in 

several subsamples. Whereas many cross-sectional strategies have reversed sign or become much 

weaker during the 2008-2009 financial crisis, the ability of option volatilities to predict returns is 

still seen in recent data.   

The predictability from options to stock returns is consistent with economies where 

informed traders choose the option market to trade first, such as those developed by Chowdhry 

and Nanda (1991) and Easley, O’Hara and Srinivas (1998). This causes the option market to lead 

the stock market where informed trading does not predominate.  Informed investors, however, 

would not always exclusively choose just one market to trade. In a noisy rational expectations 

model of informed trading in both stock and option markets (detailed in Appendix A), we show 

that informed trading contemporaneously moves both option and stock markets. Informed traders 

who receive news about future firm cashflows can trade either stocks, options, or both, and do so 

depending on the relative size of noise trading present in each market. Market makers, who are 

allowed to trade both stock and option markets, ensure that stock and option prices satisfy 

arbitrage bounds. The presence of noise traders in both stock and option markets allows 

informed traders to disguise their trades, so the prices do not immediately adjust to fully-

revealing efficient prices which would result in the absence of noise traders. The model implies 

that option volatilities can predict future stock returns. The model also indicates that the 
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predictability should be highest when the underlying volumes in both stock and option markets 

are largest, which we confirm in empirical tests.  

Importantly, the model shows that informed trading also gives rise to stock-level 

information predicting option returns. Thus, both directions of predictability from option markets 

to stock markets, and vice versa, arise simultaneously. Consistent with the model, we also 

uncover evidence of reverse directional predictability from stock price variables to option 

markets.  Many of the variables long known to predict stock returns also predict option implied 

volatilities.3 A very simple predictor is the past return of a stock: stocks with high past returns 

over the previous month tend to have call options that exhibit increases in volatility over the next 

month. In particular, stocks with abnormal returns of 1% relative to the CAPM tend to see call 

(put) implied volatilities increase over the next month by approximately 4% (2%).  

The model also predicts that past stock returns predict future increases in option 

volatilities and future decreases in realized stock returns, which we confirm in data. The intuition 

is that informed trading today causes prices to partially adjust, and this resolves some of the 

future uncertainty in firm cashflows. Since some information is revealed in prices, future realized 

volatility of stock prices decreases. The predictability of option volatilities is stronger in stocks 

which exhibit a lower degree of predictability and stocks whose options are harder to hedge, 

consistent with other rational models. Behavioral over-reaction theories predict that option 

implied volatilities should increase together with other measures of uncertainty such as earnings 

dispersion.  We find this is not the case.  

Our findings are related to a recent literature showing that option prices contain 

predictive information about stock returns.  Cao, Chen and Griffin (2005) find that merger 

information hits the call option market prior to the stock market, but focus only on these special 
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corporate events. Bali and Hovakimian (2009), Cremers and Weinbaum (2010), and Xing, 

Zhang, and Zhao (2010) use information in the cross section of options including the difference 

between implied and realized volatilities, put-call parity deviations, and risk-neutral skewness.  

Johnson and So (2012) show that the ratio of option market volume to equity market volume 

predicts stock returns. We control for all of these variables in examining the predictability of 

stock returns by lagged innovations in call and put option volatilities.  

Our paper is related to Cremers and Weinbaum (2010), who examine the predictability of 

stock returns from violations of put-call parity. In passing, they examine the predictability of 

joint call and put volatility changes on stock returns, but do not separately examine their effects. 

They interpret their findings of stock return predictability by option information as informed 

investors preferring to trade first in option markets. Like Cremers and Weinbaum, our results are 

consistent with informed trading stories, as we relate changes in option volatilities to 

contemporaneous changes in option volume. Different to Cremers and Weinbaum, we show that 

the predictability of stock returns by past changes in option implied volatilities arises in a model 

of informed trading, which predicts that there should be both predictability from the cross section 

of option to stock markets, and vice versa.  

Other related studies focus on predicting option returns, option trading volume, or the 

option skew in the cross section. Goyal and Saretto (2009) show that delta-hedged options with a 

large positive difference between realized and implied volatility have low average returns.  Roll, 

Schwartz and Subrahmanyam (2009) examine the contemporaneous, but not predictive, relation 

between options trading activity and stock returns. Dennis and Mayhew (2002) document cross-

sectional predictability of risk-neutral skewness, but do not examine the cross section of implied 

volatilities. In contrast to these studies, we focus on the strong predictive power of the lagged 



 

 

5 

 

stock return in the cross section, which to our knowledge has been examined only in the context 

of options on the aggregate market by Amin, Coval and Seyhun (2004). We also find many of 

the “usual suspects” in the commonly used stock characteristics that predict stock returns also 

predict the cross section of option-implied volatilities, like book-to-market ratios, momentum, 

and illiquidity measures.  

The rest of the paper is organized as follows. Section I covers the data and variable 

definitions. Sections II and III examine the predictive power of option implied volatility changes 

on the cross section of stock returns using stock portfolios and cross-sectional regressions, 

respectively. Section IV investigates the reverse direction of predictability from stock returns to 

realized and implied volatilities. Section V concludes.  

 

I. Data 

A. Implied Volatilities 

The daily data on option implied volatilities are from OptionMetrics. The OptionMetrics 

Volatility Surface computes the interpolated implied volatility surface separately for puts and 

calls using a kernel smoothing algorithm using options with various strikes and maturities.  The 

underlying implied volatilities of individual options are computed using binomial trees that 

account for the early exercise of individual stock options and the dividends expected to be paid 

over the lives of the options. The volatility surface data contain implied volatilities for a list of 

standardized options for constant maturities and deltas. A standardized option is only included if 

there exists enough underlying option price data on that day to accurately compute an 

interpolated value.  The interpolations are done each day so that no forward-looking information 

is used in computing the volatility surface. One advantage of using the Volatility Surface is that 
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it avoids having to make potentially arbitrary decisions on which strikes or maturities to include 

in computing an implied call or put volatility for each stock. In our empirical analyses, we use 

call and put options’ implied volatilities with a delta of 0.5 and an expiration of 30 days. For 

robustness we also examine other expirations, especially of 91 days, which are available in the 

internet appendix. Our sample is from January 1996 to December 2011.  In the internet appendix, 

we also show that our results are similar using implied volatilities of actual options rather than 

the Volatility Surface. 

 

 Table I here 

 

Table I contains descriptive statistics of our sample. Panel A reports the average number 

of stocks per month for each year from 1996 to 2011. There are 1261 stocks per month in 1996 

rising to 2312 stocks per month in 2011.  We report the average and standard deviation of the 

end-of-month annualized call and put implied volatilities of at-the-money, 30-day maturities, 

which we denote as CVOL and PVOL, respectively. Both call and put volatilities are highest 

during 2000 and 2001 which coincides with the large decline in stock prices, particularly of 

technology stocks, during this time. During the recent finance crisis in 2008-2009, we observe a 

significant increase in average implied volatilities from around 40% to 60% for both CVOL and 

PVOL.4 

 

B. Predictive Variables 

We obtain underlying stock return data from CRSP and accounting and balance sheet 

data from COMPUSTAT.  We construct the following factor loadings and firm characteristics 
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associated with underlying stock markets that are widely known to forecast the cross section of 

stock returns: 5 

Beta:  Following Scholes and Williams (1977) and Dimson (1979), we take into account non-

synchronous trading by estimating an extended version of the market model at the daily 

frequency to obtain the monthly beta of an individual stock:  

  didfdmidfdmidfdmiidfdi rRrRrRrR ,1,1,,3,,,21,1,,1,, )()()(    ,        (1)  

where diR ,  is the return on stock i on day d, dmR ,  is the market return on day d, and dfr ,  is the 

risk-free rate on day d.  We take Rm,d to be the CRSP daily value-weighted index and rf,d to be the 

Ibbotson risk-free rate. We estimate equation (1) for each stock using daily returns over the past 

month. The sum of the estimated slope coefficients, iii ,3,2,1
ˆˆˆ   , is the market beta of stock i 

in month t. The adjustment of betas to non-synchronous trading has little effect as we find very 

similar results using regular betas.  

Size:  Firm size is measured by the natural logarithm of the market value of equity (stock price 

multiplied by the number of shares outstanding in millions of dollars) at the end of the month for 

each stock.  

Book-to-Market Ratio (BM): Following Fama and French (1992), we compute a firm’s book-to-

market ratio in month t using the market value of its equity at the end of December of the 

previous year and the book value of common equity plus balance-sheet deferred taxes for the 

firm’s latest fiscal year ending in prior calendar year. To avoid issues with extreme observations 

we follow Fama and French (1992) and Winsorize the book-to-market ratios at the 0.5% and 

99.5% levels. 
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Momentum (MOM):  Following Jegadeesh and Titman (1993), the momentum variable for each 

stock in month t is defined as the cumulative return on the stock over the previous 11 months 

starting 2 months ago to avoid the short-term reversal effect, i.e., momentum is the cumulative 

return from month t–12 to month t–2.    

Illiquidity (ILLIQ):  We use the Amihud (2002) definition of illiquidity and for each stock in 

month t define illiquidity to be the ratio of the absolute monthly stock return to its dollar trading 

volume: tititi VOLDRILLIQ ,,, /|| , where Ri,t is the return on stock i in month t, and VOLDi,t is the 

monthly trading volume of stock i in dollars.   

Short-term reversal (REV): Following Jegadeesh (1990), Lehmann (1990), and others, we define 

short-term reversal for each stock in month t as the return on the stock over the previous month 

from t–1 to t. 

Realized volatility (RVOL): Realized volatility of stock i in month t is defined as the standard 

deviation of daily returns over the past month t, )var( ,, diti RRVOL  . We denote the monthly 

first differences in RVOL as ΔRVOL. 

The second set of predictive variables is from option markets: 

Implied volatility innovations: We define implied volatility innovations as the change in call and 

put implied volatilities, which we denote as ΔCVOL and ΔPVOL, respectively:6   

                                                          
, , , 1

, , , 1

,

.
i t i t i t

i t i t i t

CVOL CVOL CVOL

PVOL PVOL PVOL




  

  
  (2) 

While the first difference of implied volatilities is a very attractive measure because it is simple, 

it ignores the fact that implied volatilities are predictable in both the time series (implied 

volatilities exhibit significant time-series autocorrelation) and cross section (implied volatilities 

are predictable using cross-sectional stock characteristics). In the internet appendix, we consider 
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two other measures accounting for these dimensions of predictability, and find that volatility 

innovations constructed from both time-series and cross-sectional models also predict stock 

returns.  

Call/Put (C/P) volume: The relation between option volume and underlying stock returns has 

been studied in the literature, with mixed findings, by Stephan and Whaley (1990), Amin and 

Lee (1997), Easley, O’Hara, and Srinivas (1998), Chan, Chung, and Fong (2002), Cao, Chen, 

and Griffin (2005), and Pan and Poteshman (2006), and others.  Following Pan and Poteshman 

(2006), our first measure of option volume is the ratio of call/put option trading volume over the 

previous month.  

Call/Put open interest (C/P OI):  A second measure of option volume is the ratio of open 

interests of call options to put options.  

Realized-implied volatility spread (RVOL–IVOL): Following Bali and Hovakimian (2009) and 

Goyal and Saretto (2009), we control for the difference between the monthly realized volatility 

(RVOL) and the average of the at-the-money call and put implied volatilities, denoted by IVOL, 

(using the Volatility Surface standardized options with a delta of 0.50 and maturity of 30 days). 

Bali and Hovakimian (2009) show that stocks with high RVOL–IVOL spreads predict low future 

stock returns. Goyal and Saretto (2009) find similar negative effect of the RVOL–IVOL spread 

for future option returns.  

Risk-neutral skewness (QSKEW): Following Conrad, Dittmar and Ghysels (2012) and Xing, 

Zhang and Zhao (2010), we control for risk-neutral skewness defined as the difference between 

the out-of-the-money put implied volatility (with delta of 0.20) and the average of the at-the-

money call and put implied volatilities (with deltas of 0.50), both using maturities of 30 days. 

Xing, Zhang and Zhao (2010) show that stocks with high QSKEW tend to have low returns over 
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the following month. On the other hand, Conrad, Dittmar and Ghysels (2012) report the opposite 

relation using a more general measure of risk-neutral skewness based on Bakshi, Kapadia and 

Madan (2003), which is derived using the whole cross section of options. 

 

C. Correlations of Volatility Innovations 

Panel B of Table I presents the average firm-level cross correlations of the level and 

innovations in implied and realized volatilities. The average correlation between the levels of call 

and put implied volatilities (CVOL and PVOL) is 92%.  This high correlation reflects a general 

volatility effect, reflecting that when current stock volatility increases, implied volatilities of all 

option contracts across all strikes and maturities also tend to rise. Note that if put-call parity held 

exactly, then the correlation of CVOL and PVOL would be one. Put-call parity holds 

approximately (but not always, as Ofek, Richardson and Whitelaw (2004) and Cremers and 

Weinbaum (2010) exploit), so to examine the incremental predictive power of put volatilities, we 

will control for the general level volatility effect.7  The persistence of the level volatility factor is 

also reflected in the high correlation (66%) of past realized volatility with both CVOL and 

PVOL.  

The first differences in implied volatilities, ΔCVOL and ΔPVOL, have a lower 

correlation of 58% than the 92% correlation between the levels of CVOL and PVOL The 

positive correlation between ΔCVOL and ΔPVOL also reflects the common component in both 

call and put volatilities. The changes in implied volatilities are not correlated with either RVOL 

or ΔRVOL, with correlations of ΔCVOL with RVOL and ΔRVOL being 0.02 and 0.08, 

respectively. The correlations of ΔPVOL with RVOL and ΔRVOL are also low at 0.03 and 0.10, 

respectively. This shows that the forward-looking CVOL and PVOL estimates are reacting to 
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more than just past volatility captured by RVOL and that innovations in implied volatilities 

represent new information not captured by backward-looking volatility measures.   

 

II. Returns on Portfolios Sorted by Option Implied Volatilities 

 

A. Univariate Portfolio Sorts  

A.1. Portfolios Sorted by ΔCVOL 

Panel A of Table II shows that stocks that have past high changes in implied call 

volatilities have high future returns. We form decile portfolios ranked on ΔCVOL rebalanced 

every month. Portfolio 1 (Low ΔCVOL) contains stocks with the lowest changes in call implied 

volatilities in the previous month and Portfolio 10 (High ΔCVOL) includes stocks with the 

highest changes in call implied volatilities in the previous month. We equal weight stocks in each 

decile portfolio and rebalance monthly. Panel A of Table II shows the average raw return of 

stocks in decile 1 with the lowest ΔCVOL is 0.29% per month and this monotonically increases 

to 1.38% per month for stocks in decile 10.  The difference in average raw returns between 

deciles 1 and 10 is 1.09% per month with a highly significant Newey-West t-statistic of 3.45. 

This translates to a monthly Sharpe ratio of 0.26 and an annualized Sharpe ratio of 0.90 for a 

strategy going long High ΔCVOL stocks and shorting Low ΔCVOL stocks.   

 

 Table II here 

 

The differences in returns between deciles 1 and 10 are very similar if we risk adjust 

using the CAPM, at 1.04% per month, and the Fama-French (1993) model [FF3 hereafter] 

including market, size and book-to-market factors, at 1.00% per month. In the final column, we 
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do a characteristic match similar to Daniel and Titman (1997) and Daniel et al. (1997).  The 

Daniel and Titman (1997) characteristic matched procedure pairs each stock with a matching 

portfolio of firms that have approximately the same book-to-market ratios and size. We use 100 

portfolios, formed from the intersection of 10 portfolios sorted on size and 10 portfolios sorted 

on book-to-market ratios following Daniel and Titman (1997). This reduces the decile 1 and 10 

difference to 0.86% per month (t-statistic of 2.87), but this is still both economically large and 

statistically significant.  

 

A.2. Portfolios Sorted by ΔPVOL 

In Panel B of Table I, we form decile portfolios ranked on ΔPVOL rebalanced every 

month. Portfolio 1 (Low ΔPVOL) contains stocks with the lowest changes in put implied 

volatilities in the previous month and Portfolio 10 (High ΔPVOL) includes stocks with the 

highest changes in put implied volatilities in the previous month. Most of the returns to the 

ΔPVOL portfolios are approximately the same, with a notable difference for the stocks with the 

highest changes in past implied put volatilities, portfolio 10. The average raw return difference 

between High ΔPVOL and Low ΔPVOL deciles is –0.42% per month with a significant Newey-

West t-statistic of –2.03. The CAPM and FF3 alpha differences between deciles 1 and 10 are, 

respectively, –0.46% and –0.50% per month with the t-statistics of –2.14 and –2.46. As shown in 

the last column of Panel B, the characteristic matched portfolios of ΔPVOL also generate a 

negative and significant return difference, –0.42% per month with a t-statistic of –2.61.  

The positive (negative) return spreads in the ΔCVOL (ΔPVOL) portfolios are consistent 

with an informed trading story. An informed “bullish” trader who has good information that a 

stock is likely to go up next period, but the market does not completely react to the trades of that 
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informed investor this period, can buy a call, which increases call option volatilities this period, 

and subsequently the stock price goes up the following period. A similar story holds for a 

“bearish” informed investor betting a stock will decrease in value can buy a put, so increases in 

put implied volatilities forecast decreases in next-month stock returns.  

Put and call options, however, are linked by put-call parity. Although put-call parity is 

only approximate – as the options are American, some stocks pay dividends, and violations of 

put-call parity do occur – increases in call implied volatilities are generally associated with 

increases in put implied volatilities. This causes a large common component in all option 

volatilities; this is confirmed in Table I which shows that ΔCVOL and ΔPVOL have a 

correlation of 0.58. Thus, although an informed trader receiving positive news could buy a call 

this period, which tends to increase call volatilities, or sell a put, which tends to decrease put 

volatilities, call and put volatilities tend not to move in opposite directions, especially outside 

arbitrage bounds.  

The large common volatility component is perhaps responsible for some of the weaker 

predictability of ΔPVOL compared to the ΔCVOL portfolio sorts. To isolate the predictability of 

ΔPVOL compared to ΔCVOL (and also vice versa), we should control for the overall implied 

volatility level. A rough way to look at the incremental predictive power of ΔPVOL controlling 

for the overall implied option level is to subtract the change in implied call volatilities, ΔCVOL.  

 

A.3. Portfolios Sorted by ΔPVOL–ΔCVOL 

Panel C of Table II presents results from decile portfolios ranked on ΔPVOL–ΔCVOL 

rebalanced every month. Portfolio 1 (Low ΔPVOL–ΔCVOL) contains stocks with the lowest 

spread between ΔPVOL and ΔCVOL in the previous month and Portfolio 10 (High ΔPVOL–
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ΔCVOL) includes stocks with the highest spread between ΔPVOL and ΔCVOL in the previous 

month. Moving from deciles 1 to 10, average raw returns on the ΔPVOL–ΔCVOL portfolios 

decrease from 1.81% to 0.13% per month. The difference in average raw returns between deciles 

1 and 10 is –1.68% per month with a highly significant Newey-West t-statistic of –6.77. The 

differences in risk-adjusted returns between deciles 1 and 10 are very similar as well, with a 

CAPM alpha difference of –1.66% per month (t-statistic = –6.67) and a FF3 alpha difference of –

1.65% per month (t-statistic = –6.49). As shown in the last column of Panel C, the characteristic 

matched portfolios of ΔPVOL–ΔCVOL also generate a negative and significant return 

difference, –1.44% per month with a t-statistic of –5.31, between the extreme deciles 1 and 10.  

Simply taking the difference between ΔCVOL and ΔPVOL is a crude way of controlling 

for an overall volatility effect. We wish to test the predictability of ΔCVOL and ΔPVOL when 

jointly controlling for both effects – we expect to see stock returns increase most for those stocks 

where bullish investors drive upwards call option volatilities and simultaneously drive 

downwards put option volatilities.  We can jointly control for ΔCVOL and ΔPVOL effects in 

portfolios by constructing bivariate portfolio sorts, which we turn to now. 

 

B. Bivariate Portfolio Sorts  

B.1. Predictive Ability of ΔCVOL Controlling for ΔPVOL 

In order to examine the predictive power of ΔCVOL controlling for ΔPVOL, we need to 

create portfolios that exhibit differences in ΔCVOL with approximately the same levels of 

ΔPVOL. We do this in Panel A of Table III.  

 

 Table III here 
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We first perform a sequential sort by creating decile portfolios ranked by past ΔPVOL.8  

Then, within each ΔPVOL decile we form a second set of decile portfolios ranked on ΔCVOL.  

This creates a set of portfolios with similar past ΔPVOL characteristics with spreads in ΔCVOL 

and thus we can examine expected return differences due to ΔCVOL rankings controlling for the 

effect of ΔPVOL. We hold these portfolios for one month and then rebalance at the end of the 

month.  Table III, Panel A reports the monthly percentage raw returns of these portfolios.  As we 

move across the columns in Panel A, the returns generally increase from low to high ΔCVOL.  

The largest average portfolio returns are found near the top right-hand corner of Panel A, 

consistent with informed investors trading in option markets today to generate large positive 

ΔCVOL and large negative ΔPVOL changes which predict stock price movements next period.  

Conversely, the most negative portfolio returns lie in the bottom left-hand corner where the 

largest ΔPVOL changes and the most negative ΔCVOL movements predict future decreases in 

stock prices.  

In a given ΔPVOL decile portfolio, we can take the differences between the last and first 

ΔCVOL return deciles.  We then average these return differentials across the ΔPVOL portfolios.  

This procedure creates a set of ΔCVOL portfolios with nearly identical levels of ΔPVOL.  Thus, 

we have created portfolios ranking on ΔCVOL but controlling for ΔPVOL.  If the return 

differential is entirely explained by ΔPVOL, no significant return differences will be observed 

across ΔCVOL deciles. These results are reported in the column called “ΔCVOL10 – ΔCVOL1”.  

All of these return differences are around 1% per month or above, and they are highly 

statistically significant as well.    
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Panel A of Table III shows that the average raw return difference between the High 

ΔCVOL and Low ΔCVOL deciles is 1.38% per month with a t-statistic of 5.85. The average FF3 

alpha difference between the first and tenth ΔCVOL deciles averaged across the ΔPVOL 

portfolios is 1.36% per month with a t-statistic of 5.22.9  

 

B.2. Predictive Ability of ΔPVOL Controlling for ΔCVOL 

Panel B of Table III repeats the same exercise as Panel A but performs a sequential sort 

first on ΔCVOL and then on ΔPVOL.  This produces portfolios with different ΔPVOL rankings 

after controlling for the information contained in ΔCVOL, and allows us to examine the 

predictive ability of ΔPVOL controlling for ΔCVOL. This set of sequential sorts produces 

slightly lower returns in absolute value than Panel A, reflecting the smaller spreads in the raw 

ΔPVOL sorts (see Table II), but they are still economically very large and highly statistically 

significant.  

In Panel B, we observe the negative relation between increasing ΔPVOL and lower 

average returns in every ΔCVOL decile. Within each ΔCVOL decile, the average return 

differences between the High ΔPVOL and Low ΔPVOL portfolios (ΔPVOL10 – ΔPVOL1) are 

in the range of –0.81% to –1.69% per month with the Newey-West t-statistics ranging from –

2.21 to –4.47, with only two exceptions. The exceptions are deciles 4 and 6 where the average 

return differences between the high and low ΔPVOL deciles are still negative, but the t-statistics 

are statistically insignificant. The last two rows of Panel B average the differences between the 

first and tenth ΔPVOL deciles across the ΔCVOL deciles. This summarizes the returns to 

ΔPVOL after controlling for ΔCVOL.  The average return difference is –1.04% per month with a 

t-statistic of –6.40.  The average difference in FF3 alphas is very similar at –1.06% per month 
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with a t-statistic of –6.38.  Thus, there is a strong negative relation between ΔPVOL and stock 

returns in the cross section after taking out the effect of the common volatility movements due to 

ΔCVOL. 

 In both panels of Table III, we report the change in volume and open interest of calls and 

puts.  Call volume and open interest tend to increase with the change in call implied volatilities. 

This is also true for put volume and open interest.  This is consistent with the interpretation that 

the increase in implied volatilities may be due to informed investor demand. This increased 

demand, and the contemporaneous effect on option volatilities, may be due to the trading of 

options by certain investors with private information, which is borne out next period. Appendix 

A presents a model along these lines, and our results are consistent with this noisy rational 

expectations model of informed trading in both options and stock markets.  

 

C.  Characteristics of ΔCVOL and ΔPVOL Portfolios 

To highlight the firm characteristics, risk and skewness attributes of optionable stocks in 

the portfolios of ΔCVOL and ΔPVOL, Table IV presents descriptive statistics for the stocks in 

the various deciles. The decile portfolios in Table IV are formed by sorting optionable stocks 

based on ΔCVOL controlling for ΔPVOL (Panel A) and ΔPVOL controlling for ΔCVOL (Panel 

B) formed as described in the previous section.  In each month, we record the median values of 

various characteristics within each portfolio. These characteristics are all observable at the time 

the portfolios are formed. Table IV reports the average of the median characteristic values across 

months of: market beta (BETA), log market capitalization (SIZE), the book-to-market ratio 

(BM), the cumulative return over the 12 months prior to portfolio formation (MOM), the return 

in the portfolio formation month (REV), the Amihud (2002) illiquidity ratio (ILLIQ), the 
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realized skewness (SKEW), the co-skewness (COSKEW), and the risk-neutral skewness 

(QSKEW).10 The second columns in each panel report the next-month average return.  

 

 Table IV here 

 

In Panel A of Table IV, as we move from the low ΔCVOL to the high ΔCVOL decile, the 

average return on ΔCVOL portfolios increases from 0.27% to 1.65%. The return spread between 

the extreme decile portfolios is 1.38% per month with a t-statistic of 5.85. Controlling for 

ΔPVOL has produced a larger spread between the decile 10 and 1 returns of 1.09% in Table II, 

consistent with ΔCVOL and ΔPVOL representing different effects. In Panel A of Table IV, the 

difference in FF3 alphas between the decile portfolios 1 and 10 is 1.36% per month with a t-

statistic of 5.22. Consistent with there being little difference in the raw return spread versus the 

FF3 alpha spread, there are no discernible patterns of market BETA, size, and book-to-market 

ratios across the portfolios. Illiquidity also cannot be an explanation, as the ILLIQ loadings are 

U-shaped across the ΔCVOL deciles. In fact, stocks with the most negative and largest changes 

in ΔCVOL tend to be the most liquid stocks.  

There is, however, a strong reversal effect, with stocks in the low ΔCVOL decile having 

the highest past one-month return of 3.87% and stocks in the high ΔCVOL decile having the 

lowest past one-month return of –4.06%. In the internet appendix, we construct a five-factor 

model which augments the Fama-French (1993) model with a momentum factor (see Carhart, 

1997) and a short-term reversal factor. The difference in average returns between the low 

ΔCVOL and high ΔCVOL decile controlling for the five factors is 1.37% per month, with a t-

statistic of 5.24. Thus, the return differences to ΔCVOL are not due to short-term reversals.  
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We investigate whether the skewness attributes of optionable stocks provide an 

explanation for the high returns of stocks with large past changes in ΔCVOL in the last three 

columns of Table IV. Panel A shows there are no increasing or decreasing patterns across the 

ΔCVOL deciles for realized skewness (SKEW) or systematic skewness (COSKEW). There is, in 

contrast, a pronounced pattern of decreasing risk-neutral skewness (QSKEW) moving from 6.28 

for the first ΔCVOL decile to 2.25 for the tenth ΔCVOL decile. QSKEW is computed as the 

spread between the implied volatilities of out-of-the-money puts and at-the-money calls. 

Decreasing QSKEW across the ΔCVOL deciles is equivalent to these stocks experiencing 

simultaneous declines in past put volatilities as ΔCVOL increases. This is consistent with 

informed trading where informed bullish investors with a high degree of confidence in future 

price appreciation buy calls and sell puts. Below, in cross-sectional regressions we will control 

for QSKEW along with other regressors in examining ΔCVOL and ΔPVOL predictability. 

In Panel B of Table IV, we report similar descriptive statistics for the portfolios sorted on 

ΔPVOL after controlling for ΔCVOL. Like the ΔCVOL portfolios in Panel A, we observe no 

obvious patterns in BETA, SIZE, BM, or ILLIQ which can explain the returns of the ΔPVOL 

portfolios, which decrease from 1.39% for stocks with the lowest past ΔPVOL to 0.35% for 

stocks with the highest past ΔPVOL. The spread between deciles 1 and 10 is –1.04% per month 

with a highly significant t-statistic of –6.40. The difference in FF3 alphas between the extreme 

deciles is –1.06% per month with a t-statistic of –6.38.  

Like Panel A, there is a strong pattern of increasing past returns as we move across the 

ΔPVOL deciles. Past REV, however, goes in the same direction as the next-month returns, 

increasing from 5.67% for the first ΔPVOL decile (with a next-month return of 1.39%) to –

6.52% for the tenth ΔPVOL decile (with a next-month return of 0.35%). REV, therefore, cannot 



 

 

20 

 

simultaneously explain the opposite patterns of the high returns to past ΔCVOL stocks and the 

past low returns to past ΔPVOL stocks. When we compute alphas with respect to the five-factor 

model which includes a short-term reversal factor, we find the difference in alphas between the 

first and tenth ΔPVOL portfolios is –1.05% per month with a t-statistic of –6.56.  

In the internet appendix, we further examine the predictability of implied volatility 

innovations in different size, liquidity, and price buckets. We find that the predictability is 

strongest in the smallest stocks, but the predictability of both ΔCVOL and ΔPVOL is still 

economically large and highly statistically significant among big stocks. The degree of ΔCVOL 

and ΔPVOL predictability is also similar among relatively liquid versus relatively illiquid stocks, 

and low-priced stocks versus high priced stocks. The reduction, but not elimination, of the 

anomalous returns in the larger and more liquid stocks indicates that there may be some liquidity 

frictions involved in implementing a tradable strategy based on ΔCVOL and ΔPVOL predictors. 

In the internet appendix, we present further results for other screens related to liquidity and 

transactions costs, such as excluding the smallest, least-liquid, and lowest-priced stocks in the 

formation of our portfolios. In all these cases, there remain economically and statistically 

significant next-month returns from forming portfolios ranked on ΔCVOL and ΔPVOL.    

 

D. Long-Term Predictability 

We investigate the longer-term predictive power of ΔCVOL and ΔPVOL over the next 

six months by constructing portfolios with overlapping holding periods following Jegadeesh and 

Titman (1993). In a given month t, the strategy holds portfolios that are selected in the current 

month as well as in the previous K – 1 months, where K is the holding period (K = 1 to 6 

months).  At the beginning of each month t, we perform dependent sorts on ΔCVOL controlling 
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for ΔPVOL over the past month. Based on these rankings, 10 portfolios are formed for ΔCVOL. 

In each month t, the strategy buys stocks in the High ΔCVOL decile and sells stocks in the Low 

ΔCVOL decile, holding this position for K months. In addition, the strategy closes out the 

position initiated in month t – K. Hence, under this trading strategy we revise the weights on 1/K 

of the stocks in the entire portfolio in any given month and carry over the rest from the previous 

month. Decile portfolios of ΔPVOL are formed similarly. The profits of the above strategies are 

calculated for a series of portfolios that are rebalanced monthly to maintain equal weights.  

We report the long-term predictability results in Table V.  The average raw and risk-

adjusted return differences between High ΔCVOL and Low ΔCVOL portfolios are statistically 

significant for one- to six-month holding periods.  There is a pronounced drop in the magnitude 

of the average holding return, which is reduced by more than a half between months 1 and 2 

from 1.38% per month to 0.63% per month, respectively.  There is a further reduction to 0.34% 

per month after four months. There are similar reductions in the alphas across horizons.  Clearly 

the predictability of ΔCVOL is not just a one-month affair, but it is concentrated within the next 

three months.  The predictability of ΔPVOL also persists beyond one month. The average return 

difference between the extreme ΔPVOL decile portfolios controlling for ΔCVOL is –1.04% per 

month at the one-month horizon, and like the long-horizon return predictability pattern for the 

ΔCVOL portfolios, the predictability decreases by approximately half to –0.47% per month at 

the two-month horizon.  After three months, the economic and statistical significance of ΔPVOL 

portfolios disappear. 

 

 Table V here 
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In summary, ΔCVOL and ΔPVOL predictability persists for at least three months, even 

longer in the case of ΔCVOL, but the strength of the predictability is reduced by half after one 

month in both cases. 

 

E. Response of Option Markets 

The portfolio level analyses in Tables 2-5 shows the stock market reacts to option market 

information. As Table III shows, the large changes in option prices occur contemporaneously 

with option volume. Is all this information impounded in option prices today?11  

 We investigate this issue by looking at the pattern of implied volatilities in the pre- and 

post-formation months.  Taking the dependent 1010 sorts constructed in Table III, we compute 

the call and put implied volatilities from month t–6 to month t+6. In Figure 1, Panel A, we plot 

the level of call implied volatilities for the Low ΔCVOL and High ΔCVOL deciles from the 

dependent sorts of ΔCVOL controlling for ΔPVOL portfolios formed at time t from month t–6 to 

month t+6.  For the Low ΔCVOL decile, call implied volatilities decrease from 66% to 56% 

from month t–2 to month t, but then they increase to 58% in month t+1 and remain at about the 

same level over the next six months. Similarly, for the High ΔCVOL decile, call implied 

volatilities first increase from 55% to 66% from month t–2 to month t, but then they decrease to 

59% in month t+1 and remain around there over the next six months. Thus, after call option 

volatilities increase prior to time t, stock prices respond after time t, but there is little response of 

option markets after the initial increase in ΔCVOL.  

 

 Figure 1 here 
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Panel B of Figure 1 repeats the same exercise for the Low ΔPVOL and High ΔPVOL 

deciles, and also shows that there is no movement in put implied volatilities in the post-formation 

months. This is also consistent with the interpretation that informed traders move option prices 

today and there is little further adjustment, on average, in option markets while equity returns 

adjust over the next few months. While Figure 1 examines only the pre- and post-formation 

movements in option markets, we show below that consistent with the model in the appendix, 

informed traders contemporaneously move both stock and option markets in the pre-formation 

period. Today’s information in option volatilities, however, predicts stock returns for several 

months afterwards.  

 

III. Cross-Sectional Regressions with ΔCVOL and ΔPVOL 

While Table IV shows that it is unlikely most firm characteristics and skewness measures 

play a role in the predictability of the cross section of stock returns by CVOL and PVOL, it 

does not control simultaneously for multiple sources of risk. We investigate this now using Fama 

and MacBeth (1973) regressions of stock returns onto implied volatility changes with other 

variables. Specifically, we run the following cross-sectional regression: 

    1,,,3,,2,101,   titittittittti XPVOLCVOLR  ,                (3) 

where 1, tiR  is the realized return on stock i in month t+1 and tiX ,  is a collection of stock-

specific control variables observable at time t for stock i, which includes information from the 

cross section of stocks and the cross section of options. We estimate the regression in equation 

(3) across stocks i at time t and then report the cross-sectional coefficients averaged across the 

sample.  The cross-sectional regressions are run at the monthly frequency from March 1996 to 

December 2011. To compute standard errors we take into account potential autocorrelation and 



 

 

24 

 

heteroscedasticity in the cross-sectional coefficients and compute Newey-West (1987) t-statistics 

on the time series of slope coefficients. The Newey-West standard errors are computed with six 

lags.  

 

A. Coefficients on ΔCVOL and ΔPVOL  

Table VI, Panel A presents firm-level cross-sectional regressions with call and put 

implied volatility innovations first introduced individually and then simultaneously, together 

with controls for firm characteristics and risk factors.12 We also include ΔCVOL and ΔPVOL 

simultaneously in multivariate regressions with control variables to determine their joint effects 

on stock returns.  In the presence of risk loadings and firm characteristics, Regression (1) in 

Panel A of Table VI shows that the average slope coefficient on ΔCVOL is 1.57, which is highly 

significant with a t-statistic of 3.13.  In regression (2), the average slope on ΔPVOL is –1.85 with 

a t-statistic –3.78.  Regression (3) includes both ΔCVOL and ΔPVOL with coefficients of 3.78 

and –3.92, with t-statistics of 7.09 and –7.13, respectively.  These regressions confirm the 

robustness of ΔCVOL and ΔPVOL to predict future stock returns, as reported in Tables 2-5, 

except the regressions control for a comprehensive set of firm characteristics, risk, and skewness 

attributes. 

 

 Table VI here 

 

To provide an economic significance of the average slope coefficients in Table VI on 

ΔCVOL and ΔPVOL, we construct the empirical cross-sectional distribution of implied volatility 

innovations over the full sample (summarized in Table I). The difference in ΔCVOL (ΔPVOL) 
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values between average stocks in the first and tenth deciles is 22.4% (19.4%) for call (put) 

implied volatility innovations. If a firm were to move from the first decile to the tenth decile of 

implied volatilities while its other characteristics were held constant, what would be the change 

in that firm’s expected return?  The ΔCVOL coefficient of 3.78 in Table VI, Panel A represents 

an economically significant effect of an increase of %85.0%42.2278.3   per month in the 

average firm’s expected return for a firm moving from the first to the tenth decile of implied 

volatilities, and the ΔPVOL coefficient of –3.92 represents a similar decrease of 

%76.0%41.1992.3   per month.  These are smaller, but similar to, the 1.38% and –1.04% 

differences in the first and tenth deciles in Table IV for ΔCVOL and ΔPVOL, respectively 

because we control for the effects of all other firm characteristics, risk factors and loadings.  

 

B. Other Cross-Sectional Predictors  

In Panel A of Table VI, the signs of the estimated Fama-MacBeth coefficients on the 

stock characteristics are consistent with earlier studies, but some of the relations are generally 

not significant.  The log market capitalization (SIZE) and illiquidity (ILLIQ) coefficients are 

both insignificantly different from zero. The momentum (MOM) effect is weak as well. This is 

because we use optionable stocks that are generally large and liquid where the size and liquidity 

effects are weaker (see, for example, Hong, Lim and Stein, 2000). We do observe a significant 

book-to-market effect (see Fama and French (1992, 1993)) and a significant reversal effect (see 

Jegadeesh (1990) and Lehmann (1990)).  

The most interesting predictors for our purposes, however, are the ones that are related to 

volatility and the option market. In regressions (1)-(3), the coefficient on historical volatility, 

RVOL, is negative but statistically insignificant.13 Panel B of Table I reports that RVOL has very 
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low correlations of 0.02 and 0.03 with ΔCVOL and ΔPVOL, respectively.  This indicates that the 

effect of past volatility is very different from our cross-sectional predictability of ΔCVOL and 

ΔPVOL.  In regression (4), we drop RVOL and replace it by the RVOL–IVOL spread.  We do 

not include RVOL and RVOL–IVOL in the same regression because they are highly correlated.  

The ΔCVOL and ΔPVOL coefficients are similar across regressions (3) and (4).   

Pan and Poteshman (2006) find that stocks with high C/P Volume outperform stocks with 

low call-put volume ratios by more than 40 basis points on the next day and more than 1% over 

the next week. However, our results in Table VI provide no evidence for a significant link 

between C/P Volume and the cross-section of expected returns. This is consistent with Pan and 

Poteshman who show that publicly available option volume information contains little predictive 

power, whereas their proprietary measure of option volume emanating from private information 

does predict future stock returns.  As an alternative to option trading volume, we also examine 

C/P OI.  This variable is highly insignificant as well. 

There are stronger effects from alternative measures of implied volatility spreads.  In 

regression (4), RVOL–IVOL carries a negative and statistically significant coefficient, consistent 

with Bali and Hovakimian (2009). In regressions (1)-(4), the coefficients on risk-neutral 

skewness, QSKEW, are negative and highly significant as well.   This is similar to the pattern of 

QSKEW with the ΔCVOL and ΔPVOL average return patterns in Table IV, and it also confirms 

the negative predictive relation between option skew and future stock returns in Xing, Zhang and 

Zhao (2010).  The highly statistically significant loadings on ΔCVOL and ΔPVOL in the 

presence of the negative QSKEW and RVOL–IVOL coefficients imply that the information in 

option volatility innovations is different to the predictive ability of the option skew and the 

variance risk premium uncovered by previous authors. 
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Cremers and Weinbaum (2010) investigate how the call-put volatility spread, which is 

the difference between CVOL and PVOL, predicts stock returns and they also report the relation 

between ΔCVOL–ΔPVOL and stock returns in passing.14  They do not focus on univariate 

predictability of ΔCVOL or ΔPVOL or unconstrained joint predictability of these variables.15 

Cremers and Weinbaum point out that the strength of predictability from call-put volatility 

spreads declines during their sample period becoming insignificant over the second half of their 

sample, 2001-2005.  In the internet appendix, we show that the predictability from using ΔCVOL 

and ΔPVOL is robust to different sample periods. Specifically, the full sample 1996-2011 is first 

divided into two subsample periods (January 1996 – December 2003 and January 2004 – 

December 2011), and then for additional robustness it is divided into three subsample periods 

(January 1996 – December 2000, January 2001 – December 2005, and January 2006 – December 

2011). After controlling for firm characteristics, risk and skewness attributes, the average slope 

coefficients on ΔCVOL (ΔPVOL) are positive (negative) and highly significant for all subsample 

periods including 2001-2005.16 

 

C. Informed Trading  

The model of informed trading in Appendix A makes three predictions associated with 

the predictability of past changes in option volatilities for stock returns. First, the predictability 

should be greater (1) when past option volatilities have increased contemporaneously with stock 

prices, (2) when large changes in option volatilities are accompanied by unusually large trading 

volume in option markets, and (3) it should be especially strong when there is large trading 

volume in both option and stock markets.   
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C.1. Interactions with Past Stock Returns 

An informed investor can trade both stock and option markets, so intuitively both markets 

should respond contemporaneously.17 The predictability by past CVOL for future stock returns 

should be especially strong when stock markets have also moved with CVOL.  

In regressions (5)-(8) of Panel A, Table VI, we test whether there is greater predictability 

by CVOL and PVOL when past increases in option volatilities are accompanied by 

contemporaneous increases in stock returns. We create a variable “PastRetDecile,” which takes 

values from 1 to 10 for stocks ranked into deciles based on their past one-month returns (REV). 

We interact this with the CVOL and PVOL variables. A positive coefficient on the interaction 

term is evidence consistent with informed trading taking place in both option and stock markets.  

We find this is indeed the case. In each regression (5)-(8), the average slope coefficients 

on the ilePastRetDecCVOL interaction terms are positive with t-statistics above 2.2. Thus, 

CVOL predictability is strongest in stocks that have contemporaneously experienced increases 

in price over the previous period. This reflects that informed investors can also trade stocks, or 

the call option prices feedback onto stock prices, or both. The coefficients on 

ilePastRetDecPVOL are also positive, but the individual coefficients on PVOL and REV are 

themselves negative. Hence, the positive coefficient on ilePastRetDecPVOL  is also consistent 

with the model’s prediction that when investors’ demand of both stocks and options is high, the 

cross-market predictability of options to stocks is enhanced.  

 

C.2. Option Volume 
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We conduct a further investigation of informed trading in Panel B of Table VI by 

focusing on where trading takes place. We run cross-sectional regressions with the following 

regressors:18  

HighCallVol
,i tCVOL  = 







 

otherwise                  0

Volume Call  if     , MedianCVOL ti , (4) 

LowCallVol
,i tCVOL  = 
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otherwise                  0

Volume Call  if     , MedianCVOL ti , 

HighPutVol
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otherwise                  0

VolumePut   if     , MedianPVOL ti , 

LowPutVol
,i tPVOL  = 







 

otherwise                  0

VolumePut   if     , MedianPVOL ti . 

These partition CVOL and PVOL into whether call or put volatilities occur with relatively 

high or low option trading volume is determined based on the median change in option trading 

volume. Stocks with higher than median changes in call option trading volume are in the High 

Call Volume group, whereas stocks with lower than median changes in call option trading 

volume are in the Low Call Volume group. Similarly, stocks with higher (lower) than median 

changes in put option trading volume are in the High (Low) Put Volume group.  

The regressions with the variables in equation (4) nest those in the standard regression 

(3). For example, since HighCallVol LowCallVol
, , ,i t i t i tCVOL CVOL CVOL     , a regression of  

1, , 1, ,

HighCallVol HighCallVol LowCallVol LowCallVol
, 1 0, , 1t i t t i ti t t i tR CVOL CVOL           

nests the first regression where the CVOL coefficient does not vary with option trading 

volume,  
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, 1 0, 1, , , 1,i t t t i t i tR CVOL        

where 
1, 1,

HighCallVol LowCallVol
1,t t t
    . We expect that when changes in option volatilities are 

accompanied by unusually high option volume, the predictability from the option to the stock 

market should be stronger, all else equal.   

   We report the estimates of the asymmetric regressions in Panel B of Table VI. Regression 

(4) uses the same cross-sectional control variables as Panel A, but we do not report them for 

brevity. The average slope coefficients on lumeHighCallVo
,tiCVOL  and umeLowCallVol

,tiCVOL  are 

economically and statistically different from each other with values of 2.87 and 1.24, 

respectively. We reject the hypothesis that the coefficients are equal with a t-statistic of 2.14, 

suggesting the strongest predictability of call option volatility innovations is found when these 

are accompanied by greater than usual call option volume.  This is consistent with informed 

investors buying call options, leading to increases in call volatilities which predict future stock 

price appreciation.  

Similarly, we find the average slopes on HighPutVol
,i tPVOL  and LowPutVol

,i tPVOL  are also 

different, with values of –1.58 and –0.37, respectively. We reject that the coefficients are equal 

with a t-statistic of 2.33, which is consistent that informed investors with high-quality, sizeable 

information that stocks are trending down buy puts and that the price discovery is occurring in 

put options with larger than usual trading volume.  This causes increases in put option volatilities 

to lead next-month decreases in stock prices.  The effect of asymmetry is somewhat stronger on 

the put side than on the call side.  

In regressions (3) and (4) in Panel B of Table VI, we estimate the joint specifications 

with asymmetric responses of both call and put volatility innovations.  The last regression 



 

 

31 

 

specification controls for all factor risk and risk characteristics and the results are even stronger 

(p-value of 0.40%) compared to testing them without all controls (p-value of 2.78%). Moreover, 

the point estimates in regression (4) on HighCallVol
,i tCVOL  and LowCallVol

,i tCVOL  are 3.72 and 2.51, 

respectively, implying a 48% higher impact of ΔCVOL when call option volatility innovations 

are accompanied by greater than usual call option volume. Similarly, the average slopes on 

HighPutVol
,i tPVOL  and LowPutVol

,i tPVOL  are –3.38 and –1.27, respectively, implying more than a 

double impact of ΔPVOL when put option volatility innovations are accompanied by larger than 

usual put option volume. When we include both call and put volatility shocks simultaneously 

along with the control variables, the effect of asymmetry is again stronger on the put side than on 

the call side.   

 

C.3. Joint Option and Stock Volume 

A final implication of the informed trading model in Appendix A is that we expect to see 

the strongest predictability of ΔCVOL and ΔPVOL for stock returns in stocks whose options 

experience unusually large trading and the underlying stock volumes are large. The aggressive 

trading of informed investors in both stock and option markets leads to higher volumes in both 

markets, and subsequently predictable stock returns.  

We investigate this prediction in Table VII by forming bivariate portfolios of stocks 

sorted by ΔCVOL and ΔPVOL controlling for each other’s effects, and condition on options 

trading volume and stock volume. In Panel A, we separate stocks each month into two groups 

based on the median change in call options trading volume. Stocks with higher than median 

changes in call option trading volume are in the “High Call Volume” group and the other stocks 

are in the “Low Call Volume” group. Similarly, stocks are independently separated into two 
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groups based on the median change in trading volume of individual stocks. Stocks with higher 

change in trading volume are in the “High Stock Volume” group and stocks with lower change in 

trading volume are in the “Low Stock Volume” group. Then, for the two groups of stocks in 

“High Call Volume and High Stock Volume” and “Low Call Volume and Low Stock Volume,” 

we form bivariate decile portfolios of ΔCVOL controlling for PVOL along the lines of Section 

3.2.   

 

 Table VII here 

 

Panel A of Table VII shows that for stocks in “High Call Volume and High Stock 

Volume” group, the average return and FF3 alpha differences between the lowest and highest 

ΔCVOL portfolios are 1.42% and 1.35% per month, respectively, both with highly significant t-

statistics above 4.7. The return spreads are also positive and significant for stocks in “Low Call 

Volume and Low Stock Volume” group, but as expected the economic magnitudes are smaller; 

the average return and alpha differences between the lowest and highest ΔCVOL portfolios are 

0.89% and 0.87% per month with t-statistics of 2.52 and 2.45, respectively. These results 

indicate that the predictive power of ΔCVOL is stronger among firms whose options markets 

have larger volume and stock volume is larger.  

In Panel B of Table VII, we do a similar exercise for separate stocks into two groups 

based on the median change in put trading volume and the median change in stock volume. For 

the two groups of stocks in “High Put Volume and High Stock Volume” and “Low Put Volume 

and Low Stock Volume”, we form bivariate decile portfolios of ΔPVOL controlling for CVOL. 

For stocks in the “High Put Volume and High Stock Volume” group, the average return and FF3 
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alpha differences between the lowest and highest ΔPVOL portfolios are –1.20% and –1.26% per 

month, respectively, both with highly significant t-statistics of –4.82 and –5.32, respectively. 

Although the return and alpha spreads are negative and significant for stocks in “Low Put 

Volume and Low Stock Volume” group, the economic magnitudes are smaller in absolute value: 

the average return and alpha differences between the lowest and highest ΔPVOL portfolios are –

0.73% and –0.66% per month with t-statistics above 2.1 in absolute term. These results show that 

ΔPVOL predictability is also stronger among firms whose options markets have larger volume 

and stock volume is larger.  

 

D.  Systematic vs. Idiosyncratic Volatility Innovations 

Implied call and put volatilities contain both systematic and idiosyncratic components. 

The predictive power of ΔCVOL and ΔPVOL could be due to them reflecting news in systematic 

risk, idiosyncratic components, or both.     

We decompose the total implied variance into a systematic component and an 

idiosyncratic component using a conditional CAPM relation: 

2 2 2 2
, , , , ,i t i t m t i t     ,             (5) 

where 2
,ti  is the risk-neutral variance of stock i, 2

,tm  is the risk-neutral variance of the market 

m, ti ,  is the market beta of stock i, and 2
, ,i t  is the idiosyncratic risk-neutral variance of stock i, 

all at time t.  We estimate betas by using stock returns and also use beta estimates implied by 

option prices.  

 

D.1. Real Measure Betas 
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We refer to betas estimated from stock returns as physical or real measure betas. These 

are estimated using the past one year of daily returns on individual stocks and the market 

portfolio. We define the systematic and idiosyncratic call implied volatilities as: 

,,,,,,,

,,,

tmtititi
idio

ti

tmti
sys

ti

CVOL

CVOL





 


 (6) 

where the betas are from the physical measure. We use the corresponding expressions sys
tiPVOL ,  

and idio
tiPVOL ,  when put implied volatilities along with the corresponding betas are used to 

decompose the changes in put implied volatilities. The systematic vs. idiosyncratic 

decomposition is in terms of standard deviations and follows Ben-Horian and Levy (1980) and 

others, and it is consistent with our previous empirical work looking at changes in option 

volatilities, rather than variances.  We consider the predictive ability of first-difference 

innovations sysΔCVOL , sysΔPVOL , idioΔCVOL , and idioΔPVOL  on the cross section of stock 

returns.  As expected, the cross-sectional correlation of the innovations in the systematic 

component of volatilities, sysΔCVOL and sysΔPVOL , is very high at above 0.99, whereas the 

correlation between the idiosyncratic terms, idioΔCVOL  and idioΔPVOL , is much lower at 0.86. 

In Table VIII, we break up the innovations of CVOL and PVOL into systematic and 

idiosyncratic components while controlling for the usual risk characteristics.  Due to the 

extremely high correlation between the systematic sysΔCVOL and sysΔPVOL terms, we include 

only one term in each regression.  In the left panel of Table VIII, we decompose the systematic 

and idiosyncratic components using real measure betas.  The panel shows that the coefficients on 

idioΔCVOL  are positive, around 3.7, and statistically significant with t-statistics above 7.0.  The 

coefficients on idioΔPVOL  are approximately –3.9 with t-statistics around –7.0. The positive 
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coefficients on idioΔCVOL  and the negative coefficients on idioΔPVOL are reminiscent of the 

positive and negative coefficients on ΔCVOL and ΔPVOL, respectively, in Panel A of Table VI. 

The coefficients on the systematic components are negative, but statistically insignificant.  

Clearly it is changes in the idiosyncratic volatility components that are driving the predictability.  

 

 Table VIII here 

 

D.2. Risk-Neutral Betas 

We next examine betas estimated using option prices, which we term risk-neutral betas. 

Christoffersen, Jacobs and Vainberg (2008), among others, argue that betas computed from 

option prices contain different information than betas estimated from stock returns. Following 

Duan and Wei (2009), we compute a risk-neutral beta using the risk-neutral skewness of the 

individual stock, tiSkew , , and the risk-neutral skewness of the market, tmSkew , , using the 

following relation: 

         3/2
, , ,i t i t m tSkew Skew ,                   (7) 

where the risk-neutral measures of skewness are estimated following Bakshi, Kapadia, and 

Madan (2003).  We provide further details in Appendix B.  The volatility innovations for the 

systematic and idiosyncratic components are computed using equation (6) except the risk-neutral 

betas are used instead of the physical betas.  Similar to the physical betas, the correlation 

between the systematic components sysΔCVOL and sysΔPVOL  computed using risk-neutral betas 

is very high at above 0.99.   The correlation between idioΔCVOL  and idioΔPVOL  using risk-

neutral betas is 0.91. 



 

 

36 

 

 The right-hand panel in Table VIII reports the result of the systematic vs. idiosyncratic 

decomposition using risk-neutral betas.  We again observe the coefficients on the systematic 

components on sysΔCVOL  and sysΔPVOL  are statistically insignificant.  The coefficient on 

idioΔCVOL is around 3.5 with t-statistics above 4.0 and the coefficient on sysΔPVOL  is 

approximately –4.0 with t-statistics of –4.4.  These coefficients are very similar to the ones 

computed using physical betas.    

 In summary, the predictive ability of innovations in call and put volatilities for the cross 

section of stock returns stems from idiosyncratic, not systematic, components in volatilities and 

this result is robust to alternative measures of market beta.  Thus if the predictability from 

ΔCVOL and ΔPVOL is arising from informed investors placing trades in option markets, these 

investors tend to have better information about future company-specific news or events rather 

than the way these stocks are reacting to systematic factor risk.  

 

IV. Predicting the Cross Section of Implied Volatilities with Stock Returns 

So far, we have examined the predictability of past option volatility changes for future 

stock returns. According to the informed trading model in Appendix A, there should also be 

reverse predictability from stocks to options, so past stock returns should also predict option 

volatilities. We are interested in the simplest of variables, the abnormal stock return (or alpha) 

which is analogous to the change in the implied volatility for options and is a simple proxy for 

news arrivals in stock markets.   

 

A.  Predicting Option and Realized Volatilities 
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We examine the significance of information spillover from individual stocks to individual 

equity options based on the firm-level cross-sectional regressions: 

1,,,1,01,

1,,,1,01,1,

1,,,1,01,

1,,,1,01,
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                           (8) 

where the dependent variables, CVOL and PVOL, denote the monthly changes in call and put 

implied volatilities for stock i over month t to t+1, and RVOL denotes the monthly change in 

realized volatility of stock i over month t to t+1. Alpha is the abnormal return (or alpha) for 

stock i over the previous month t obtained from the CAPM model using a specification similar to 

regression (1).19  The monthly alphas are computed by summing the daily idiosyncratic returns 

over the previous month. To test the significance of information flow from stock to option 

market, the cross-section of implied volatility changes over month t+1 are regressed on the 

abnormal returns of individual stocks in month t. 

 The first two specifications in equation (8) examine how call and put volatilities over the 

next month respond to excess returns over the previous month.  The third cross-sectional 

regression in equation (8) looks at how call volatilities move relative to put volatilities.  Since 

call and put volatilities tend to move in unison for the same firm, predicting the spread between 

put and call implied volatilities, CVOL–PVOL, attempts to control for the common 

component in both call and put volatilities. The final regression in (8) predicts future firm-level 

realized volatilities in the cross section.  

 We deliberately do not use option returns as the dependent variable in equation (8).  

Option returns exhibit marked skewness and have pronounced non-linearities from dynamic 

leverage making statistical inference difficult (see, among others, Broadie, Chernov and 
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Johannes, 2008; Chaudhri and Schroder, 2009).  By focusing on implied volatilities we avoid 

many of these inference issues. Our analysis is most similar to Goyal and Saretto (2009), but 

they examine actual option returns predicted by the difference between implied and realized 

volatilities.20  

Table IX presents the Fama-MacBeth (1973) average slope coefficients and their Newey-

West t-statistics in parentheses. Strikingly, many of the same stock risk characteristics that 

predict stock returns also predict implied volatilities. Options where the underlying stocks 

experienced high abnormal returns over the past month tend to increase their implied volatilities 

over the next month.  Specifically, a 1% Alpha over the previous month increases call (put) 

volatilities by 4.15% (2.32%), on average, with a highly significant t-statistic of 10.58 (6.03). 

High book-to-market stocks tend to exhibit decreases in implied volatilities next period with a 

coefficient of –0.20 for call volatility changes and –0.13 for put volatility changes.  There is a 

statistically significant momentum effect for predicting call implied volatilities, but the 

coefficient is very small.  The illiquidity effect is strong for call, but weaker and insignificant, for 

put volatility changes. With the exception of BETA and SIZE, the standard stock characteristics 

have significant explanatory power in predicting option volatilities.  

 

 Table IX here 

 

The predictability of the option volatilities by option characteristics is in line with the 

literature. Consistent with Goyal and Saretto (2009), options with large RVOL tend to predict 

decreases in implied volatilities and so holding period returns on these options tend to be low. 

Increases in call and put open interest strongly predict future increases in call and put volatilities 
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(cf. Roll, Schwartz and Subrahmanyam, 2009). Finally, changes in call (put) implied volatilities 

tend to be lower (higher) for options where the smile exhibits more pronounced negative 

skewness.  

Table IX interestingly shows that some variables differentially predict call and put 

volatilities.  Note that call and put volatilities are correlated (Table I notes the cross sectional 

correlation is 0.58), but there is some independent movement. In the CVOL–PVOL column, 

Alpha and RVOL increase call volatilities more than put volatilities, while book-to-market 

decreases call volatilities less than put volatilities.    

Finally, the last column of Table IX shows that there is pronounced predictability in the 

cross section of realized volatilities. This predictability in realized volatilities is the opposite to 

the predictability in implied volatilities. In particular, the Alpha coefficient in the CVOL 

regression is 4.15, whereas the Alpha coefficient in the RVOL regression is –14.32, which is 

approximately 3.5 times larger in absolute value.  High past stock returns predict increases in 

future implied volatilities that are not accompanied by increases in realized volatilities.  In fact, 

future realized volatility tends to decline.  In contrast, the effects for most of the other stock 

characteristics are the same sign for both implied and realized volatilities.   

The findings that past stock returns predict option volatilities, the predictability of call 

volatilities is stronger than that of put volatilities, and that option volatility is forecasted to 

increase while realized volatility decreases all consistent with the model of informed trading in 

Appendix A. Intuitively, informed traders with good news trade both call options, which 

increases implied volatilities, and stocks. Prices do not perfectly adjust this period, leading to 

stock prices, and consequently call option prices, increasing in the next period. This leads to past 

high stock alphas predicting call option volatilities. The action of informed trading this period 
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resolves some uncertainty. Therefore, future realized volatility decreases over the following 

period. The predictability of call option volatilities is stronger than put volatilities for a given 

alpha because for good news released today, stock prices continue to adjust upward in the next 

period. This causes the price of calls to increase, and the price of puts to decrease. There is 

continued adjustment, but the stock has already moved toward its fundamental value. This partial 

adjustment today causes next period’s adjustment on the put option to be smaller as the put 

option delta becomes less negative.    

  

B.  Further Economic Investigation 

The predictability of option volatilities may be consistent with stories other than informed 

trading. To investigate, we form portfolios of option volatilities similar to the portfolio returns 

constructed in Section 3. We focus on predictability by Alphas. Table X reports the results of 

averaged next-month implied volatilities where the portfolios are rebalanced at the start of every 

month ranking on a stock’s Alpha over the previous month.  Table X reports the same familiar 

results as Table IX but now in a decile portfolio format. In Panel A, we use all stocks: options of 

stocks with low (high) past returns exhibit decreases (increases) in volatility, call and put 

volatilities both move but call volatilities move more, and realized volatilities tend to move in the 

opposite direction. Note that the differences in implied volatilities are across the extreme decile 

portfolios are highly statistically significant in all cases.  

 

 Table X here 

 

B.1. Behavioral Explanations 
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Option volatilities may simply be mispriced in the sense of a behavioral asset pricing 

model. In particular, past high returns on a stock lead agents to become more uncertain of the 

future prospects of that stock, and so agents over-estimate future volatility.  This is not reflected 

in realized fundamentals like future realized volatility. A behavioral model of this kind is 

developed by Barberis and Huang (2001). Goyal and Saretto (2009) appeal to this model to 

explain the positive returns on portfolios of option straddles that are long stocks with a large 

positive difference between historical and implied volatility and short stocks with a large 

negative difference between historical and implied volatility.  In the Barberis and Huang model, 

agents are loss averse over gains and losses narrowly defined over individual stocks (through 

mental accounting).  Agents perceive stocks with recent gains to be less risky and thus implied 

volatility declines.  

 According to Barberis and Huang, the greater uncertainty of stock returns when stock 

prices have recently risen should be reflected in other uncertainty measures. Following Diether, 

Malloy, and Scherbina (2002), we take earnings dispersion of analysts, DISP, as a proxy for 

uncertainty about individual stock movements. We expect that for the Barberis and Huang story 

to hold, the change in DISP should also increase across the Low Alpha to High Alpha deciles in 

Panel A, Table X.  This is not the case.  The average change of DISP decreases as we move from 

the Low to High Alpha deciles from 0.097 to –0.165.  That is, the DISP goes in the opposite 

direction to the CVOL numbers.  This casts doubt on a behavioral over-reaction story for 

volatilities, at least as articulated by Barberis and Huang. 

 

B.2. Other Rational Explanations 
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Predictability of option volatilities can arise from other rational channels. Lo and Wang 

(1995), for example, show that predictable returns affect option prices because they affect 

estimates of volatility.  An implication of this theory is that increases in predictability generally 

decrease option prices.  Lo and Wang’s argument is based on holding the unconditional time-

series variance of a stock constant, and estimates of predictability change the conditional 

variance. Although Lo and Wang work with time-series predictability, the same concept is true 

with cross-sectional predictability which we examine. All else being equal, when the underlying 

stock return is more predictable, current option volatilities should decline. Since the predictable 

components of both stock returns and option volatilities are persistent processes, we should also 

expect that when stock returns are more predictable, the predictability of future option volatilities 

should decline.  

To test this, we divide the sample into two groups of stocks based on the absolute 

residuals from the cross-sectional regressions of returns. We use the same control variables in 

Panel A of Table VI without CVOL and PVOL. Since our objective is to determine whether 

the predictability of future volatilities is different for stocks with high and low predictability, we 

exclude CVOL and PVOL in the first-stage cross-sectional regressions to avoid confounding 

the predictability of stock returns with the predictability of option volatilities. We divide the 

stock universe into two groups based on the median value of absolute residuals for each month. 

We label these two groups “High Cross-Sectional Predictability” and “Low Cross-Sectional 

Predictability.” Panel B of Table X shows predictability of future implied and realized volatilities 

is stronger for stocks with low cross-sectional predictability as the 10-1 differences in implied 

and realized volatilities across the extreme Alpha deciles are economically and statistically larger 

for stocks with low absolute residuals. The difference, however, for the predictability of CVOL 
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by past Alphas is only very slightly stronger for stocks with low cross-sectional predictability. 

Nevertheless, the overall results are consistent with Lo and Wang (1995): when stock returns are 

more predictable, the predictability of future volatilities declines.21 

 In demand-based option pricing models (see Bollen and Whaley, 2004; Garleanu, 

Pedersen and Poteshman, 2009), lagged stock returns could predict option volatilities because 

they forecast demand pressure of end users or unhedgeable components of option movements, 

which cannot be perfectly removed by option dealers.  For the former, the pattern of option 

volumes is consistent with the forecasted changes in option volatilities: across the option 

portfolios in Panel A of Table X, the change in option call volume increases as we move from 

the Low to High Alpha decile.  For the latter, we can examine how the predictability of option 

volatilities varies as the hedgeability of the underlying stock varies.  

In Panel C of Table X, we divide the universe into high and low volatility stocks based on 

the median level of realized volatility. Given basis risk, jump risk, and the inability to trade 

continuously, high volatility stocks are more unhedgeable than low volatility stocks. As shown in 

Panel C, we find stronger predictability for high volatility stocks because the 10-1 differences in 

implied and realized volatilities across the extreme Alpha deciles are economically and 

statistically larger for high volatility stocks. 

Second, we use the median ILLIQ measure of Amihud (2002) to split optionable stocks 

into two liquidity groups. Panel D of Table X considers liquid and illiquid stocks separately. We 

find that the predictability is less pronounced in liquid stocks: the CVOL spread between the 

Low Alpha and High Alpha portfolios is smaller, there is less relative movement of call 

volatilities vs. put volatilities, and there is also weaker predictability of future realized volatility. 
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Finally, we divide stocks into two groups based on the median volatility uncertainty, 

where volatility uncertainty is measured by the variance of daily changes in call implied 

volatilities in a month. Stocks with high variance of CVOL (or high volatility uncertainty) are 

harder to hedge, all else being equal, than stocks with low volatility uncertainty. Hence, Panel E 

of Table X shows that the predictability is more pronounced in stocks with high volatility 

uncertainty: the CVOL, CVOL – PVOL, and RVOL spreads between the Low Alpha and 

High Alpha portfolios are economically and statistically larger for stocks with higher volatility 

uncertainty. Overall, these results indicate that the predictability of implied and realized 

volatilities may be related to the lack of option hedgeability.  

 

V.  Conclusion 

We document the ability of option volatilities to predict the cross section of stock returns and 

that the cross section of stock returns to predicts option volatilities. Specifically, stocks with past 

large innovations in call option implied volatilities positively predict future stock returns, while 

stocks with previous large changes in put implied volatilities predict low stock returns. When 

decile portfolios are formed based on past first-differences in call volatilities, the spread in 

average returns and alphas between the first and tenth portfolios is approximately 1% per month 

and highly significant. After accounting for the effect of call implied volatilities, the average raw 

and risk-adjusted return differences between the extreme decile portfolios of put volatility 

changes are greater than 1% per month and also highly significant. This cross-sectional 

predictability of stock returns from call and put volatility innovations is robust to controlling for 

the usual firm characteristics and risk factors drawn from both equity and option markets, and 

appears in subsample periods including the most recent financial crisis. While strongest for the 
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next-month horizon, this predictability persists up to six months for call and up to four months 

for put volatility changes. 

We introduce a noisy rational expectations model of informed trading that 

contemporaneously moves both option and stock markets. Predictability from option to stock 

markets, and stock markets to option markets, arises from informed trading. The model also 

suggests that the predictability should be stronger when trading volumes in stock and option 

markets are higher. We find empirical evidence consistent with the model’s predictions. We also 

find that it is changes in the idiosyncratic, not systematic, components of implied volatilities that 

are driving this predictability, implying that investors first trading in option markets have better 

information about firm-specific news or events. 

In the other direction of predictability from stock market variables to option volatilities, 

many variables that predict the cross section of stock returns also predict the cross section of 

implied volatilities.  A particularly strong predictor is the lagged excess stock return. Options 

with underlying equities that have large price appreciations tend to increase in price over the next 

period.  In particular, a 1% return relative to the CAPM over the previous month causes call (put) 

option implied volatilities to increase by around 4% (2%) and the increase in volatilities is larger 

for call options than for put options.  At the same time, future realized volatilities are predicted to 

decline while option volatilities tend to rise.  These effects are in excess of the co-movements of 

next-month option volatility changes with several lagged cross-sectional stock and option 

characteristics. The predictability of option volatilities is strongest for those options that exhibit 

the weakest underlying stock return predictability and are hardest to hedge. Both are consistent 

with rational sources of option return predictability.  
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Appendix A: Model of Informed Stock and Option Trading 

This appendix presents a noisy rational expectations economy with stock and option 

securities. The underlying intuition of the model is that informed traders choose to trade in both 

stock and option markets, but the extent of their trading depends on the amount of noise trading 

present in the separate markets. The prices of the stock and options are linked through the actions 

of a market dealer, who can arbitrage between the two markets. Prices move through the trades 

of the informed investor, but they do not fully adjust to a fully-revealing rational expectations 

economy. Thus, there is predictability from option prices to stock returns, and from stock returns 

to option prices. The model also predicts that when noise traders’ demand of both stocks and 

options is high, the cross-market predictability of options to stocks (and vice versa) is enhanced.  

The two most related models are by Easley, O’Hara and Srinivas (1998) and Garleanu, 

Pedersen and Poteshman (2009). Like Easley, O’Hara and Srinivas (1998), we have informed 

traders, noise traders, and a market dealer. We also allow informed traders to place orders in the 

equity market, option market, or both. Easley, O’Hara and Srinivas show that if at least some 

informed investors choose to trade in options before trading in underlying stocks, option prices 

will predict future stock price movements. Informed traders may find it easier to hide their trades 

in equity markets, in which case stock markets will lead option markets. In the Easley, O’Hara 

and Srinivas model, the fundamental value of the stock is exogenously given and trades occur at 

bid-ask spreads determined by a market maker. Like standard micro structure models, the bid-

ask spreads reflect adverse selection. In our model, the price of the stock is endogenously 

determined and predictability of options to stock returns, and stock characteristics to option 

prices, occurs jointly because we allow simultaneous, rather than sequential, trading in both 

stock and option markets. Garleanu, Pedersen and Poteshman (2009) develop an equilibrium 
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model where the end-user demand of options affects option prices. They take the stock price as 

exogenous and do not model asymmetric information.  

 

Economy 

The firm is born at date 0, investors trade the stock at date 1, and the firm’s cashflows F 

are realized at date 2. The unconditional distribution of F is binomial where HF F  with 

probability 0.5 and LF F with probability 0.5. We denote the stock prices at time 0 and 1 as 0S  

and 1S , respectively.  

 We assume there is a call option written on the stock. The strike price of the call is K, 

L HF K F  , and the call matures at date 2.  We denote the call prices at time 0 and 1 as 0C  and 

1C , respectively. The payoff of the call at time 2 is 2 ( )C F K   . 

 There are informed agents, uninformed agents, and a market dealer, all with CARA 

utility with risk aversion . Informed agents observe a signal,  , just before date 1. The signal 

 takes value 1 with probability 0.5 and value 0 with probability 0.5. Conditional on  , F takes 

the following distribution:    
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where the parameter  , 1
2 1  , represents the quality of the signal  . We denote 

( ) (1 )(1 )p        , which implies that ( ) 1 (1 )p p    .  

 The informed traders trade both the stock and call options, and we denote their demands 

for the stock and call option are Iq  and Id , respectively. The representative market dealer also 

trades both the stock and the call option, and her demands are Dq  and Dd  for the stock and call, 

respectively. There are uninformed agents in both stock and option markets, and they cannot 

trade across markets. We denote uninformed stock demands as 2~ (0, )zz N  , and uninformed 

option demands as 2~ (0, )vv N  , where v and z are independent. We assume the call option is in 

zero net supply and there is one share outstanding of the stock. Hence, the market clearing 

conditions for the stock and call option markets are: 

 1,I Dq q z    (A.1)  

and 

 0.I Dd d v    (A.2) 

 

Equilibrium 

First consider the case where the informed trader receives no signal. We also assume that 

at date 0 there are no demand shocks in both markets. Since the informed trader and market 

dealer are identical they buy half a stock each at price 0S  and there is no trading in the option 

market.  

 After the informed trader receives the signal just prior to time 1, the informed trader 

solves  
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 1

,
max exp( )

I I
I

q d
E W       (A.3) 

subject to 

 1
1 1 1 12s.t. ,Iq S d C S   (A.4) 

where 1 2 1( ) ( )I I IW F S q C C d    . Taking the FOC with respect to Iq  and Id  gives 
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and 
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Note that the call option is a linear security, which results from the binomial distribution of the 

stock cashflows. If we were to specify a put option in place of a call option, the results would be 

equivalent.  

 The derivation for the optimal demand for the market maker is similar, except that the 

market maker cannot observe the signal . We assume the market maker has unlimited wealth, so 

she has no budget constraint. The FOC for the market maker’s optimization is 

   1

1

1
( ) ( ) log L

D H L D H
H

S F
q F F d F K

F S
 

       
 (A.7) 

 We can sum equations (A.5) and (A.7) to derive the price of the stock: 

   1

( , , ) 1
( , , ) ,

1 ( , , ) 1 ( , , )H L

G z v
S z v F F

G z v G z v


 

 
 

 (A.8) 

where the function ( , , )G z v  is given by 

    ( , , )
( )

exp (1 )( ) ( )
1 ( ) 2

H L HG z v
p

z F F v F K
p


 


     


 
 
 

. (A.9) 
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The call option price is determined from equation (A.6). Finally, we can obtain the informed and 

market maker demands Iq , Id , Dq , and Dd  using the market clearing conditions in equation 

(A.4) and the FOC equation (A.5).  

 This analysis assumes that the dealer does not anticipate that the informed trader is going 

to receive a signal. We can deal with the case that both the trader and dealer anticipate that the 

trader will receive a signal by sub-game perfect equilibrium. Upon the arrival of a signal, the 

previous solution is still valid. The only difference is that the budget constraint of the informed 

trader is changed to 1 1 0 1 0 1I I I Iq S d C q S d C   , where 0Iq  and 0Id  are the informed trader’s 

demand of the stock and option, respectively at time 0. In this setting we still assume that at time 

0 there are no noise trader shocks in the stock and option markets. Given the optimal trading 

strategy and the price of the stock and the option contingent upon the signal, we can derive the 

expected utility of the trader at time 0. The FOC with respect to 0Iq  and 0Id are always zero, so 

the optimal 0Iq  and 0Id are zero if we assume that shorting is not permitted and initial wealth is 

zero.  This is intuitive because the trader knows that he is going to receive an informative signal, 

so he prefers to wait until the signal is released to trade. Hence, even if the trader and dealer 

anticipate the arrival of the signal, the results will be the same as the equilibrium discussed, 

except equilibrium demand will change because the budget constraint of the informed trader is 

changed to 1 1 0I Iq S d C   compared to the previous budget constraint of  1
1 1 12I Iq S d C S  . 

 

Option-Stock Cross-Predictability 

Our empirical results show that the change in the call option volatility over the previous 

month is positively correlated with stock returns over the next month. In the context of the 

model, this translates to an increase in the call option’s price at date 1 being positively correlated 
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with the return of the stock from date 1 to date 2. Call option prices positively predict future 

stock returns if 1 1cov( , ) 0F S C  . We also find that increases in stock prices over the previous 

month are positively correlated with option volatilities over the next month. We can interpret this 

result in the model by examining the sign of 2 1 1cov( , )C C S . 

  The sign of 1 1cov( , )F S C is equal to the sign of  

    1 1 1 1 1 1cov( , ) var( ) ( ( ) ( ))( ( )) .F S S E F E F S E S S E S       (A.10) 

We can compute this expectation numerically. Also, given , we can compute (z,v) such that the 

inner term of the expectation is equal to zero by solving for 1 1( , , ) ( )S z v E S  .  

 The sign of 2 1 1cov( , )C C S turns out to be given by the same condition, 1 1( , , ) ( )S z v E S  , 

since  

    2 1 1 2 2 1 1 1 1cov( , ) ( ( ) ( ))( ( )) .C C S E C E C C E C S E S       (A.11) 

Using the model, we can examine conditions under which 1 1cov( , ) 0F S C   and 

2 1 1cov( , ) 0C C S  . 

 

Realized Volatility 

The model also predicts that there will be a negative correlation between realized 

volatility and the call option price. That is, if changes in the call option predict future stock 

returns, changes in the call option will predict a decrease in realized volatility. Intuitively, the 

arrival of information at time 1 shrinks the difference in the stock price between time 1 and time 

2 compared to time 0 and time 2 because some uncertainty is resolved and priced by the actions 

of informed traders.  

 We can compare 
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   1 0var( ) var( ),F S F S    (A.12) 

where we take 0S  as constant. The inequality can be simplified to yield 

   1 1 1 1 12cov( , ) var( ) cov( , ) cov( , ) 0.F S S F S F S S      (A.13) 

The condition 1 1cov( , ) 0F S S   is the same condition for the predictability of the stock return 

from the past call price. Thus, if the stock is predictable by the call option and current stock price 

is positively correlated with future cashflow, then volatility of the stock will decrease. 

Furthermore, even if the stock is not predictable by the call option, sufficiently high covariance 

between the current stock price and the future cashflow will predict a decreasing volatility of the 

stock.  

 

Limitations of the model 

Before we present a numerical example, it is worth noting several limitations of the 

model. First, in the model call price at time 1 is linear in the stock price. This results from 

assuming a binomial tree of the firm’s cashflows F. While analytically tractable, it makes the 

first implication of the model,  1 1cov( , ) 0F S C   identical to stock momentum effect, 

1 1cov( , ) 0F S S  . Thus, the predictability of options does not exist after controlling for past 

stock returns in the binomial setting, contrary to the empirical results in Section 4. With richer 

cashflow distributions, the call price may not be linear in the stock price, so that the 

predictability of the call will exist after controlling for past stock returns. However, it will be 

hard to analytically derive the equilibrium prices of calls and stocks with more general 

distributions.  
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 In the model, there is only a single stock and call option. Our empirical work documents 

predictability of stock returns from option volatilities, and vice versa, in the cross section. 

Extending the model to multiple stocks and their call/put options introduces large complexity in 

analyzing the equilibrium prices and joint predictability. The same intuition, however, will go 

through when there are multiple stocks. The informed trader receives multiple signals for each 

stock and trades multiple stocks and options simultaneously. There will be complex interactions 

resulting from the covariance structure of systematic risk from the stocks. However, similar 

predictability in our model will apply when the agent receives independent signals of 

idiosyncratic cashflows, and we consider idiosyncratic returns and option volatility changes. In 

our empirical work, we control for systematic risk using a wide range of factor loadings and risk 

characteristics.  

  

Numerical Example 

We take an option with strike ( )K E F , which is approximately at the money. We use 

the parameters 103HF  , 97LF  , 100K  , 0.7  , 1.5  , and 0.1z v   . With these 

parameters, we can compute  

   1 1

2 1 1

cov( , ) 0.0352

cov( , ) 0.0176

F S S

C C S

 

 
  

That is, predictability of options to stock returns and stocks to option prices arises jointly. The 

stock volatility decreases in period 2 as 1 1 1cov( , ) cov( , ) 0.0734F S F S S   . 

  Informed investors trade both stocks and calls and the extent of their trading depends on 

the amount of noise trading in stock and option markets. As they trade, both stock and option 

prices at time 1 change. Figure A.1 plots the stock and call prices as a function of uninformed 
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demand shocks given a good signal, 1  . Panel A graphs the stock price in the solid line as a 

function of the stock demand shock, z, while we hold the call demand shock at v=0. We plot the 

stock price as a function of the call demand shock, v, while holding the stock demand shock at 

z=0 in the dashed line. Panel B repeats the same exercises for the call price.  In both cases, as the 

noise trader presence is larger (higher uninformed demand), prices rise because the informed 

investor becomes more aggressive in trading, hiding behind the larger uninformed demand.  

 

 Figure A.1 here 

 

 In Figure A.2, we plot a pair of uninformed demand (z,v) such that there is no 

predictability between the call price and future stock returns given a good signal, 1  . The same 

condition is also responsible for inducing predictability between past stock returns and future call 

prices. These are pairs of (z,v) which satisfy the condition in equations (A.10) and (A.11).   We 

vary the stock demand shock over [ 1.96 ,1.96 ]z z  .  

 

 Figure A.2 here 

 

 The pairs of (z,v) such that there is no cross option-stock (and vice versa) predictability 

are the downward-sloping line in Figure A.2. Given a call demand shock, an increase in stock 

demand induces an increase in the stock price and by no-arbitrage the call price. To offset the 

increase in the stock return, the call demand shock has to decrease. Pairs of (z,v) where there is 

positive covariation, or where there are positive joint option-stock predictability relations lie to 

the upper right hand corner of Figure A.2. Thus, the model predicts that the predictability of 
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stock returns by option volatilities should be strongest in stocks that experience both large call 

and stock volume. This is borne out in the tests performed in Section 4.2.  

 

Extension to a Put Option 

Because this is a binomial model, the option price is linear in the stock price. We can 

introduce a put option market similar to the call option market. We now assume there are noise 

trader demands in the call market 2~ (0, )c cv N  and noise trader demands in the put market  

2~ (0, )p pv N  . These demands can be correlated. The informed trader and market dealer can trade 

the stock, call option, or put option, or all three. Denoting Iu  and Du  as the demand for the put of 

the informed trader and the market dealer, respectively, and 1P  as the put price at time 1 with 

strike K, we have  

   

1

1 1

1 1

( , , , ) 1
( , , , ) ,

1 ( , , , ) 1 ( , , , )

( ),

( ).

c p
c p H L

c p c p

H
L

H L

L
H

H L

G z v v
S z v v F F

G z v v G z v v

F K
C S F

F F

K F
P F S

F F




 
 

 


 




 



 (A.14) 

Empirically, we find that call volatility increases more than put volatility after a change in the 

past stock return. Translating this to the model, we can examine  

    2 1 2 1 1 1 1cov( , ) cov , ,C C P P S F S S      (A.15) 

where the equality is due to put-call parity, 2 2 ( ) ( )C P F K K F F K         and we 

substitute in the price of the call and the put from equation (A.14). This is the same as the 

condition for the predictability of the stock from the past call in equation (A.10) and it holds for 

any strike price.  
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The expected return of the call option is positive (the call delta is positive) and the 

expected return of the put option is negative (the put delta is negative). In fact, in this economy 

both calls and puts are simple linear securities of the stock. Suppose positive news is released at 

time 1. Informed traders cause the price of the stock to adjust upward, the price of calls to 

increase, and the price of puts to decrease. There is still adjustment of the stock price and options 

from time 1 to time 2, but the stock has already moved toward HF . This partial adjustment at 

time 1 causes the next period’s adjustment on the put option to be smaller, as the put option delta 

becomes less negative. A similar intuition works when the news is negative. 

Note also that 2 1 2 1( ) ( )C C P P   , or equivalently the difference between implied 

volatilities between calls and puts, is a trading strategy that is long calls and short puts. By put-

call parity, this strategy is exposed to underlying risk of the stock between time 1 and time 2. It is 

no surprise in our model that the condition for 2 1 2 1 1cov( , ) 0C C P P S    should be equal to 

 1 1cov ,F S S , as the conditions under which the long call-short put position is profitable are the 

same conditions under which the informed trader’s signal that a high F is more likely when 1S  is 

high.  

In this model, the put, call, and stock are linked by no arbitrage, and we cannot observe 

movements in put and call prices outside the no-arbitrage boundaries. The put and call options 

are also linear securities. In reality, put and call movements are non-linear and movements 

outside arbitrage bounds occur. Extensions to stochastic volatility, along the lines of Back 

(1993), and American options could be done to accommodate these facts.  
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Appendix B: Estimating Betas from Option Information 

We use the results in Bakshi, Kapadia, and Madan (2003) and Duan and Wei (2009) to 

obtain an estimate of a stock’s market beta from the cross section of options. Bakshi, Kapadia, 

and Madan (2003) introduce a procedure to extract the volatility, skewness, and kurtosis of the 

risk-neutral return density from a group of out-of-the-money call and put options. Duan and Wei 

(2009) use the results in Bakshi, Kapadia, and Madan (2003) and define the risk-neutral market 

beta as a function of the risk-neutral skewness of individual stocks and the risk-neutral skewness 

of the market. 

Let the τ-period continuously compounded return on the underlying asset i, Si, be 

)](/)(ln[)(,  iiti StSR  . Let Q
tE  represent the expectation operator under the risk-neutral 

measure. The time-t price of a quadratic, cubic, and quartic payoff received at time t+τ can be 

written as ])([)( 2
,,  
ti

rQ
tti ReEV  , ])([)( 3

,,  
ti

rQ
tti ReEW  , and ])([)( 4

,,  
ti

rQ
tti ReEX  , 

respectively, where r is the constant risk-free rate. 

Bakshi, Kapadia, and Madan (2003) show that the τ-period risk-neutral variance and 

skewness are 
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The expressions )(, tiV , )(, tiW , and )(, tiX  are given by: 
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where );(, iti KC   and );(, iti KP   are the time-t prices of European call and put options written on 

the underlying stock Si,t with a strike price Ki  and expiration date of τ. We follow Dennis and 

Mayhew (2002) and use the trapezoidal approximation to compute the integrals in equations 

(B.1) and (B.2) for out-of-the-money call and put options across different strike prices and use 

the Volatility Surface data on standardized options with the three-month T-bill return for the 

risk-free rate.   

 Duan and Wei (2009) show that the risk-neutral skewness of an individual stock, 

, ( )Q
i tSkew  , is related to the risk-neutral skewness of the market, , ( )Q

m tSkew  , through the relation 

          3/2
, ,( ) ( )Q Q

i t i m tSkew Skew   ,                  (B.7) 

where , ( )Q
i tSkew   and , ( )Q

m tSkew   are estimated using equation (B.2). In our empirical analyses, 

we use Volatility Surface standardized call and put options with =30 days to maturity to 

estimate the stock beta from equation (B.7).  We use Volatility Surface data on the S&P500 

index to compute the risk-neutral market skewness.   
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Table I 
Descriptive Statistics of Implied Volatilities 

 
Panel A presents the average number of stocks per month for each year from 1996 to 2011. Average and 
standard deviation of the monthly call and put implied volatilities (CVOL, PVOL) are reported for each year 
from 1996 to 2011. The last row presents the overall averages. The annualized implied volatilities are 
obtained from the Volatility Surface at OptionMetrics and cover the period from January 1996 to December 
2011. Panel B reports the average firm-level cross-correlations of the levels and changes in implied 
volatilities, and the levels and changes in realized volatility. 

 
 
 

Panel A: Summary Statistics for the Call and Put Implied Volatilities 
 

  CVOL PVOL 

Date # of stocks Average Stdev Average Stdev 

1996 1261 42.55 20.60 43.35 20.54 

1997 1507 45.09 20.64 45.68 20.41 

1998 1689 51.21 22.23 51.53 21.51 

1999 1755 57.10 24.23 57.82 23.96 

2000 1624 71.57 31.89 72.71 31.79 

2001 1589 62.64 28.63 64.63 29.84 

2002 1654 55.22 24.48 56.56 26.25 

2003 1616 43.54 19.08 44.05 19.07 

2004 1729 39.08 18.13 39.86 18.76 

2005 1873 37.12 18.61 38.11 18.79 

2006 1974 37.29 17.45 38.09 17.83 

2007 2114 39.70 18.54 40.37 18.86 

2008 2104 60.24 24.48 62.73 26.12 

2009 2089 60.55 26.12 60.26 25.75 

2010 2175 46.56 22.83 45.96 23.49 

2011 2312 48.28 24.88 48.96 26.54 

Average 1816 49.86 22.68 50.67 23.10 
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Table I (continued) 

 
 
 

Panel B:  Average Firm-Level Correlations 
 

 CVOL PVOL ΔCVOL ΔPVOL RVOL ΔRVOL 

CVOL 1      

PVOL 0.92 1     

ΔCVOL 0.27 0.15 1    

ΔPVOL 0.16 0.27 0.58 1   

RVOL 0.66 0.66 0.02 0.03 1  

ΔRVOL 0.02 0.03 0.08 0.10 0.47 1 
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Table II 
Decile Portfolios of Stocks Sorted by ΔCVOL and ΔPVOL 

 

In Panel A, Portfolio 1 (Low ΔCVOL) contains stocks with the lowest monthly changes in call implied volatilities in 
the previous month and Portfolio 10 (High ΔCVOL) includes stocks with the highest monthly changes in call 
implied volatilities in the previous month. We equal weight stocks in each decile portfolio and rebalance monthly. 
For each decile of ΔCVOL, the columns report the average raw returns, the CAPM and FF3 alphas, and the average 
returns in excess of the size and book-to-market matched benchmark portfolios (characteristic-control) following 
Daniel and Titman (1997). The row “10-1 Diff.” reports the difference in average raw and risk-adjusted returns 
between the High ΔCVOL and Low ΔCVOL deciles. Newey-West t-statistics are given in parentheses. Panel B 
reports the corresponding results from the decile portfolios of ΔPVOL. Panel C presents the corresponding results 
from the decile portfolios of ΔPVOL–ΔCVOL. 
 
 

Panel A:  Decile Portfolios of Stocks Sorted by ΔCVOL 
 

 
Return 

CAPM 

Alpha 

FF3 

Alpha 

Characteristic- 

Control 

Low ΔCVOL 0.29 –0.59 –0.74 –0.48 

2 0.50 –0.27 –0.43 –0.31 

3 0.65 –0.07 –0.23 –0.24 

4 0.79 0.09 –0.05 –0.10 

5 0.92 0.23 0.06 0.01 

6 1.01 0.30 0.13 0.07 

7 1.05 0.33 0.15 0.14 

8 1.18 0.44 0.25 0.26 

9 1.19 0.37 0.20 0.27 

High ΔCVOL 1.38 0.45 0.26 0.38 

10-1 Diff. 1.09 1.04 1.00 0.86 

t-stat. (3.45) (3.27) (3.21) (2.87) 
 
 
 

Panel B:  Decile Portfolios of Stocks Sorted by ΔPVOL 
 

 
Return 

CAPM 

Alpha 

FF3 

Alpha 

Characteristic- 

Control 

Low ΔPVOL 0.94 0.06 –0.08 0.08 

2 0.91 0.14 –0.01 0.03 

3 0.88 0.14 –0.03 –0.04 

4 0.84 0.13 –0.02 –0.08 

5 0.89 0.20 0.02 –0.01 

6 1.15 0.44 0.30 0.20 

7 0.98 0.25 0.09 0.07 

8 0.89 0.14 –0.05 0.01 

9 0.98 0.17 –0.02 0.08 

High ΔPVOL 0.52 -0.40 –0.58 –0.34 

10-1 Diff. –0.42 –0.46 –0.50 –0.42 

t-stat. (–2.03) (–2.14) (–2.46) (–2.61) 
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Table II (continued) 
 
 

Panel C:  Decile Portfolios of Stocks Sorted by ΔPVOL–ΔCVOL 
 

 
 

Return 

CAPM 

Alpha 

FF3 

Alpha 

Characteristic- 

Control 

Low ΔPVOL–ΔCVOL 1.81 0.94 0.72 0.71 

2 1.17 0.37 0.19 0.20 

3 1.06 0.31 0.14 0.15 

4 0.93 0.19 0.05 0.00 

5 0.94 0.23 0.10 0.08 

6 0.93 0.21 0.08 0.10 

7 0.82 0.09 –0.05 –0.03 

8 0.63 –0.13 –0.31 –0.21 

9 0.58 –0.22 –0.38 –0.26 

High ΔPVOL–ΔCVOL 0.13 –0.72 –0.93 –0.73 

10-1 Diff. –1.68 –1.66 –1.65 –1.44 

t-stat. (–6.77) (–6.67) (–6.49) (–5.31) 
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Table III 
Bivariate Portfolios of Stocks Sorted by ΔCVOL and ΔPVOL 

 

In Panel A, decile portfolios are first formed by sorting the optionable stocks based on ΔPVOL. Then, within each ΔPVOL decile, stocks are sorted into decile portfolios 
ranked based on the monthly changes in call implied volatilities (ΔCVOL) so that ΔCVOL1 (ΔCVOL10) contains stocks with the lowest (highest) ΔCVOL. The column 
labeled “ΔCVOL10 – ΔCVOL1” shows the average raw return difference between High ΔCVOL (ΔCVOL10) and Low ΔCVOL (ΔCVOL1) portfolios within each 
ΔPVOL decile. The last column reports the corresponding Newey-West t-statistics in parentheses. Panel B performs a similar dependent sort procedure but first 
sequentially sorts on ΔCVOL and then on ΔPVOL. The column labeled “ΔPVOL10 – ΔPVOL1” shows the average raw return difference between ΔPVOL5 and ΔPVOL1 
portfolios within each ΔCVOL decile. In Panels A and B, “Return Diff.” reports the average raw return difference between ΔCVOL10 (ΔPVOL10) and ΔCVOL1 
(ΔPVOL1) after controlling for ΔPVOL (ΔCVOL). “FF3 Alpha Diff.” reports the 10-1 differences in the FF3 alphas. The monthly change in option trading volume and 
the monthly change in open interest are reported. 
 
 

Panel A:  Decile Portfolios of Stocks Sorted by ΔCVOL Controlling for ΔPVOL 
 
 

ΔCVOL1 ΔCVOL2 ΔCVOL3 ΔCVOL4 ΔCVOL5 ΔCVOL6 ΔCVOL7 ΔCVOL8 ΔCVOL9 ΔCVOL10 ΔCVOL10–ΔCVOL1 t-stat. 

ΔPVOL1 0.23 0.85 0.12 0.93 0.92 0.74 1.21 1.68 1.03 1.76 1.54 (2.84) 

ΔPVOL2 0.62 0.21 0.83 0.45 0.84 0.69 1.08 0.89 1.44 2.09 1.47 (3.04) 

ΔPVOL3 0.28 0.69 0.57 0.78 0.86 0.51 0.86 1.35 1.07 1.80 1.52 (3.87) 

ΔPVOL4 0.60 0.18 0.38 1.12 0.65 0.78 0.85 0.71 1.29 1.96 1.36 (3.70) 

ΔPVOL5 0.11 0.46 0.60 0.89 0.93 1.08 1.00 1.07 1.05 1.75 1.63 (4.27) 

ΔPVOL6 0.79 1.28 0.71 0.96 1.22 1.25 1.17 1.05 1.48 1.58 0.79 (1.98) 

ΔPVOL7 0.10 0.59 0.50 1.04 1.12 1.11 1.19 1.17 1.22 1.81 1.71 (3.72) 

ΔPVOL8 0.53 0.49 1.07 0.89 0.66 0.74 1.03 0.85 1.30 1.29 0.76 (1.96) 

ΔPVOL9 0.21 0.39 0.39 1.10 1.02 1.09 1.12 1.00 1.71 1.81 1.60 (3.62) 

ΔPVOL10 –0.76 0.14 –0.18 0.72 1.21 0.94 0.97 0.48 1.22 0.62 1.38 (2.44) 

ΔVolumeC 7.9 –2.8 –27.0 –70.6 –63.0 –92.3 –72.6 –28.1 5.7 212.3 

ΔOIC 38.5 30.9 22.2 22.4 24.1 23.8 48.8 66.4 107.5 218.6 

Return Diff. 1.38 (5.85) 

FF3 Alpha Diff. 1.36 (5.22) 
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Table III (continued) 
 

 
Panel B:  Decile Portfolios of Stocks Sorted by ΔPVOL Controlling for ΔCVOL 

 
 

ΔPVOL1 ΔPVOL2 ΔPVOL3 ΔPVOL4 ΔPVOL5 ΔPVOL6 ΔPVOL7 ΔPVOL8 ΔPVOL9 ΔPVOL10 ΔPVOL10–ΔPVOL1 t-stat. 

ΔCVOL1 0.87 0.72 -0.11 0.58 1.04 0.20 0.33 -0.18 -0.11 -0.41 –1.28 (–3.61) 

ΔCVOL2 1.07 0.48 0.93 0.27 0.23 0.45 0.89 0.55 0.26 -0.10 –1.17 (–2.98) 

ΔCVOL3 1.44 0.80 0.70 0.88 0.27 0.58 0.31 0.50 0.62 0.34 –1.10 (–2.53) 

ΔCVOL4 0.81 1.08 0.74 0.67 1.05 0.71 0.84 0.97 0.49 0.54 –0.27 (–0.78) 

ΔCVOL5 1.91 1.08 0.80 0.85 1.03 0.86 0.91 0.88 0.79 0.10 –1.81 (–4.47) 

ΔCVOL6 0.99 0.73 0.94 0.80 1.21 1.24 0.82 1.51 0.92 0.92 –0.06 (–0.19) 

ΔCVOL7 1.41 0.95 1.25 1.45 0.90 1.13 1.06 1.09 0.70 0.60 –0.81 (–2.21) 

ΔCVOL8 1.73 1.87 1.32 1.31 0.76 0.85 0.94 1.27 1.31 0.49 –1.23 (–3.23) 

ΔCVOL9 1.57 1.30 1.44 0.91 1.43 1.45 1.13 1.01 1.07 0.60 –0.97 (–2.27) 

ΔCVOL10 2.13 2.24 1.65 1.53 1.56 1.42 1.37 1.24 0.19 0.44 –1.69 (–2.78) 

ΔVolumeP –5.0 –18.3 –33.2 –48.7 –58.6 –49.1 –33.5 –3.1 48.5 153.8 

ΔOIP 0.2 –2.3 2.0 5.3 4.6 18.0 28.0 44.5 64.5 112.2 

Return Diff. –1.04 (–6.40) 

FF3 Alpha Diff. –1.06 (–6.38) 
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Table IV 
Descriptive Statistics for Decile Portfolios of Stocks Sorted by ΔCVOL and ΔPVOL 

 
In Panel A, decile portfolios are first formed by sorting the optionable stocks based on ΔPVOL. Then, within each ΔPVOL decile, stocks are sorted 
into decile portfolios ranked based on the monthly changes in call implied volatilities (ΔCVOL) so that ΔCVOL1 (ΔCVOL10) contains stocks with 
the lowest (highest) ΔCVOL. Panel A presents average portfolio characteristics for each ΔCVOL decile averaged across the 10 ΔPVOL deciles to 
produce decile portfolios with dispersion in ΔCVOL, but which contain all ΔPVOL values. This procedure creates a set of ΔCVOL portfolios with 
similar levels of ΔPVOL, and thus these ΔCVOL portfolios control for differences in ΔPVOL. For each ΔCVOL decile (controlling for ΔPVOL), 
Panel A reports the average across the months in the sample of the median values within each month of various characteristics for the optionable 
stocks — one-month ahead return (Return), the 3-factor Fama-French alpha (FF3 alpha), the market beta (BETA), the log market capitalization 
(SIZE), the book-to-market ratio (BM), the cumulative return over the 12 months prior to portfolio formation (MOM), the return in the portfolio 
formation month (REV), a measure of illiquidity (ILLIQ), the realized skewness (SKEW), the co-skewness (COSKEW), and the risk-neutral 
skewness (QSKEW). SKEW and COSKEW are computed using daily returns over the past one year. QSKEW is defined as the difference between 
OTM put implied volatility and the average of ATM call and put implied volatilities. Panel B reports the corresponding results for the decile 
portfolios of ΔPVOL controlling for ΔCVOL. 
 
 

Panel A:  Decile Portfolios of Stocks Sorted by ΔCVOL Controlling for ΔPVOL 
 

 Return FF3 alpha BETA SIZE BM MOM REV ILLIQ SKEW COSKEW QSKEW 

Low ΔCVOL  0.27 –0.53 1.17 6.45 0.50 –1.18 3.87 0.110 0.29 –1.55 6.28 

2 0.53 –0.17 1.12 7.10 0.49 5.32 2.48 0.055 0.24 –0.94 5.36 

3 0.50 –0.17 1.11 7.45 0.48 8.77 1.83 0.037 0.22 –0.63 4.86 

4 0.89 0.24 1.08 7.64 0.47 10.59 1.24 0.030 0.21 –0.55 4.60 

5 0.94 0.33 1.07 7.72 0.47 12.01 0.80 0.028 0.21 –0.54 4.38 

6 0.89 0.26 1.08 7.73 0.47 12.18 0.39 0.027 0.21 –0.45 4.24 

7 1.05 0.40 1.11 7.63 0.48 11.57 –0.20 0.032 0.22 –0.34 4.13 

8 1.03 0.34 1.12 7.44 0.48 10.84 –0.98 0.041 0.21 –0.62 4.03 

9 1.28 0.53 1.17 7.10 0.49 9.33 –1.91 0.060 0.23 –1.07 3.67 

High ΔCVOL  1.65 0.83 1.23 6.45 0.50 3.51 –4.06 0.126 0.25 –1.73 2.25 
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Table IV (continued) 
 
 

Panel B:  Decile Portfolios of Stocks Sorted by ΔPVOL Controlling for ΔCVOL 
 

 Return FF3 alpha BETA SIZE BM MOM REV ILLIQ SKEW COSKEW QSKEW 

Low ΔPVOL  1.39 0.60 1.29 6.48 0.47 –0.89 5.67 0.10 0.31 –1.50 6.28 

2 1.13 0.41 1.15 7.04 0.48 4.69 3.90 0.06 0.25 –0.86 5.35 

3 0.97 0.31 1.07 7.40 0.49 8.04 2.89 0.04 0.22 –0.64 4.93 

4 0.93 0.29 1.02 7.62 0.49 9.07 1.93 0.03 0.21 –0.67 4.54 

5 0.95 0.32 1.00 7.71 0.49 9.93 1.10 0.03 0.20 –0.48 4.37 

6 0.89 0.25 1.01 7.72 0.49 10.70 0.30 0.03 0.20 –0.55 4.23 

7 0.86 0.19 1.04 7.63 0.49 11.28 –0.59 0.03 0.21 –0.64 4.03 

8 0.88 0.18 1.11 7.46 0.48 11.97 –1.71 0.04 0.21 –0.66 3.94 

9 0.62 –0.10 1.18 7.15 0.49 10.89 –3.32 0.06 0.23 –0.67 3.63 

High ΔPVOL  0.35 –0.45 1.38 6.50 0.47 6.91 –6.52 0.12 0.25 –1.59 2.62 
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Table V 
Long-Term Predictability 

 

This table presents the bivariate portfolios of ΔCVOL and ΔPVOL based on the dependent sorts. We hold these 
portfolios for 1 to 6 months and rebalance them monthly. In the first panel, decile portfolios are first formed by 
sorting the optionable stocks based on ΔPVOL. Then, within each ΔPVOL decile, stocks are sorted into decile 
portfolios ranked based on the monthly changes in call implied volatilities (ΔCVOL) so that ΔCVOL1 (ΔCVOL10) 
contains stocks with the lowest (highest) ΔCVOL. The second panel performs a similar dependent sort procedure 
but first sequentially sorts on ΔCVOL and then on ΔPVOL. The first panel reports the 1-month to 6-month ahead 
average raw and risk-adjusted return differences between High ΔCVOL and Low ΔCVOL portfolios after 
controlling for ΔPVOL. The second panel reports the 1-month to 6-month ahead average raw and risk-adjusted 
return differences between High ΔPVOL and Low ΔPVOL portfolios after controlling for ΔCVOL. Newey-West t-
statistics are reported in parentheses. 
 
 

1-month 2-month 3-month 4-month 5-month 6-month 

Ranking on ΔCVOL Controlling for ΔPVOL 

Average Return Diff. 1.38 0.63 0.47 0.34 0.29 0.25 

(5.85) (5.20) (4.32) (4.39) (4.17) (3.38) 

FF3 Alpha Diff. 1.36 0.59 0.44 0.32 0.27 0.23 

(5.22) (4.60) (3.72) (3.50) (3.37) (2.88) 

Ranking on ΔPVOL Controlling for ΔCVOL 

Average Return Diff. –1.04 –0.47 –0.27 –0.16 –0.11 –0.07 

(–6.40) (–6.60) (–3.82) (–2.64) (–2.12) (–1.54) 

FF3 Alpha Diff. –1.06 –0.48 –0.27 –0.15 –0.10 –0.07 

(–6.38) (–6.47) (–3.50) (–2.31) (–1.88) (–1.55) 
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Table VI 
Fama-MacBeth Cross-Sectional Regressions with Implied Volatility Innovations 

 
Panel A presents the firm-level cross-sectional regressions of equity returns on the monthly changes in call and put implied 
volatilities (ΔCVOL, ΔPVOL) after controlling for market beta (BETA), log market capitalization (SIZE), log book-to-
market ratio (BM), momentum (MOM), illiquidity (ILLIQ), short-term reversal (REV), realized stock return volatility 
(RVOL), the log call-put ratio of option trading volume (C/P Volume), the log ratio of call-put open interest (C/P OI), the 
realized-implied volatility spread (RVOL–IVOL), and the risk-neutral measure of skewness (QSKEW). PastRetDecile is a 
variable that takes values from 1 to 10 for stocks in decile portfolios ranked on past one-month return. Panel B reports the 
firm-level Fama-MacBeth cross-sectional regressions in equation (4). The one-month ahead returns of individual stocks are 
regressed on the asymmetric call and put implied volatility shocks; ΔCVOLHighCallVol, ΔCVOLLowCallVol, ΔPVOLHighPutVol, and 
ΔPVOLLowCallVol  are defined below equation (4). The results are presented for at-the-money 30-day options. The average 
slope coefficients and their Newey-West t-statistics are reported in parentheses. The last row reports the average R2 values 
and their Newey-West t-statistics in parentheses. 
 

Panel A:  Predicting Equity Returns by ΔCVOL, ΔPVOL and Other Predictors 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 

ΔCVOL 1.5729  3.7754 3.8148 0.2208  2.4701 3.6963 

 (3.13)  (7.09) (7.09) (0.29)  (3.15) (6.96) 

ΔPVOL  –1.8513 –3.9228 –4.0506  –3.0181 –3.7990 –5.1524 

  (–3.78) (–7.13) (–7.70)  (–4.33) (–6.98) (–6.71) 

ΔCVOL      0.3086  0.2822  

PastRetDecile     (2.63)  (2.37)  

ΔPVOL       0.3075  0.3321 

PastRetDecile      (2.23)  (2.37) 

BETA –0.0018 –0.0051 –0.0060 0.0086 –0.0953 –0.1029 –0.1033 –0.1004 

 (–0.03) (–0.09) (–0.10) (0.10) (–0.61) (–0.65) (–0.66) (–0.64) 

SIZE –0.1085 –0.0956 –0.1038 –0.0614 –0.1017 –0.0895 –0.0967 –0.0968 

 (–1.42) (–1.26) (–1.36) (–0.65) (–1.36) (–1.21) (–1.30) (–1.30) 

BM 0.3066 0.3100 0.3056 0.3472 0.3034 0.3078 0.3020 0.3032 

 (2.67) (2.69) (2.69) (2.48) (2.71) (2.74) (2.72) (2.73) 

MOM –0.0006 –0.0006 –0.0007 –0.0012 –0.0010 –0.0009 –0.0010 –0.0010 

 (–0.17) (–0.15) (–0.18) (–0.31) (–0.24) (–0.23) (–0.25) (–0.26) 

ILLIQ 0.1520 0.1595 0.1496 0.1326 0.1561 0.1600 0.1550 0.1509 

 (1.33) (1.40) (1.33) (1.21) (1.44) (1.47) (1.44) (1.40) 

REV –0.0192 –0.0236 –0.0203 –0.0182 –0.0193 –0.0232 –0.0203 –0.0201 

 (–2.40) (–2.82) (–2.50) (–2.16) (–2.43) (–2.82) (–2.52) (–2.51) 

RVOL -0.8069 –0.6731 –0.7221  –0.6201 –0.5033 –0.5388 –0.5536 

 (–1.31) (–1.09) (–1.17)  (–1.08) (–0.89) (–0.95) (–0.98) 

C/P Volume -0.0005 –0.0017 –0.0022 0.0051 –0.0043 –0.0059 –0.0059 –0.0058 

 (–0.01) (–0.04) (–0.05) (0.12) (–0.10) (–0.14) (–0.14) (–0.14) 

C/P OI 0.0653 0.0631 0.0641 0.0639 0.0659 0.0651 0.0642 0.0659 

 (1.19) (1.14) (1.17) (1.15) (1.19) (1.18) (1.17) (1.20) 

RVOL–IVOL    –0.6880     

    (–2.39)     

QSKEW –2.7798 –3.1336 –2.2963 –2.1563 –2.5636 (–2.9302 –2.0866 –2.1124 

 (–4.61) (–5.32) (–4.08) (–3.71) (–4.37) (–5.10) (–3.80) (–3.80) 

R2 9.00% 9.00% 9.15% 8.32% 9.31% 9.31% 9.45% 9.46% 

 (10.93) (10.95) (11.09) (11.63) (10.92) (10.93) (11.07) (11.07) 
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Table VI (continued) 
 
 
 

Panel B: Predicting Equity Returns by Asymmetric Volatility Shocks 
 

 (1) (2) (3) (4) 
HighCallVol
,i tCVOL  2.8653  4.2746 3.7228 

 (3.18)  (4.45) (4.74) 
LowCallVol
,i tCVOL  1.2417  3.4141 2.5113 

 (1.72)  (4.42) (3.60) 
HighPutVol
,i tPVOL   –1.5763 –3.7445 –3.3785 

  (–3.06) (–5.97) (–5.47) 
LowPutVol
,i tPVOL   –0.3728 –1.8225 –1.2716 

  (–0.49) (–2.52) (–1.95) 
 

Coefficient Tests  
HighCallVol LowCallVol
, ,i t i tCVOL CVOL    t = 2.14 

   

HighPutVol LowPutVol
, ,i t i tPVOL PCVOL    t = 2.33 

  

  

Joint Test 
    

HighCallVol LowCallVol
, ,i t i tCVOL CVOL   ,   

  
HighPutVol LowPutVol
, ,i t i tPVOL PCVOL     Wald = 7.16 

(p = 2.78%) 
Wald =11.04 
(p = 0.40%) 

  

Other Controls No No No Yes 
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Table VII 
Bivariate Portfolios of Stocks Sorted by ΔCVOL and ΔPVOL 

Conditioned on the Changes in Stock, Call, and Put Options Trading Volume 
 

In Panel A, for each month stocks are separated into two groups based on the median change in call options trading 
volume. Stocks with higher than median change in call options trading volume are in the “High Call Volume” group 
and stocks with lower than median change in call options trading volume are in the “Low Call Volume” group. 
Similarly, stocks are independently separated into two groups based on the median change in trading volume of 
individual stocks. Stocks with higher than median change in trading volume are in the “High Stock Volume” group 
and stocks with lower than median change in trading volume are in the “Low Stock Volume” group. Then, for the 
two groups of stocks in “High Call Volume and High Stock Volume” and “Low Call Volume and Low Stock 
Volume,” we form bivariate decile portfolios of ΔCVOL and ΔPVOL. In Panel A, decile portfolios are first formed 
by sorting the optionable stocks based on ΔPVOL. Then, within each ΔPVOL decile, stocks are sorted into decile 
portfolios ranked based on the monthly changes in call implied volatilities (ΔCVOL) so that ΔCVOL1 (ΔCVOL10) 
contains stocks with the lowest (highest) ΔCVOL. Panel A presents returns averaged across the 10 ΔPVOL deciles 
to produce decile portfolios with dispersion in ΔCVOL, but which contain all ΔPVOL values. This procedure 
creates a set of ΔCVOL portfolios with similar levels of ΔPVOL, and thus these ΔCVOL portfolios control for 
differences in ΔPVOL. In Panel A, “10-1 Return Diff.” reports the average raw return difference between 
ΔCVOL10 and ΔCVOL1 after controlling for ΔPVOL. “FF3 Alpha Diff.” reports the 10-1 differences in the FF3 
alphas. In Panel B, stocks are first separated into four groups based on the median change in put options trading 
volume and the median change in stock trading volume. Then, for the two groups of stocks in “High Put Volume 
and High Stock Volume” and “Low Put Volume and Low Stock Volume,” we form bivariate portfolios of ΔCVOL 
and ΔPVOL. In Panel B, decile portfolios are first formed by sorting the optionable stocks based on ΔCVOL. Then, 
within each ΔCVOL decile, stocks are sorted into decile portfolios ranked based on ΔPVOL. Panel B reports the 
average raw return and FF3 alpha differences between ΔPVOL10 and ΔPVOL1 after controlling for ΔCVOL. 
 
 
 
 

Panel A:  Decile Portfolios of ΔCVOL Controlling for ΔPVOL 
Conditioned on the Change in Call Volume and the Change in Stock Volume 

 
 

 Volume CallHigh  Volume Call Low  

 VolumeStock High  VolumeStock  Low  

 Return Return 

Low ΔCVOL 0.24 0.28 

2 0.42 0.60 

3 0.57 0.48 

4 1.15 0.79 

5 1.12 0.84 

6 0.95 0.88 

7 0.96 1.05 

8 1.02 1.06 

9 1.14 1.04 

High ΔCVOL 1.67 1.17 

10-1  Return Diff. 1.42 0.89 

t-stat. (5.17) (2.52) 

FF3 Alpha Diff. 1.35 0.87 

t-stat. (4.77) (2.45) 
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Table VII (continued) 
 
 

Panel B:  Decile Portfolios of ΔPVOL Controlling for ΔCVOL 
Conditioned on the Change in Put Volume and the Change in Stock Volume 

 
 
 

 VolumePut High  VolumePut  Low  

 VolumeStock High  VolumeStock  Low  

 Return Return 

Low ΔPVOL 1.47 1.37 

2 1.22 0.93 

3 0.87 1.10 

4 1.04 0.94 

5 0.81 0.71 

6 1.02 0.73 

7 1.00 0.94 

8 0.49 0.88 

9 0.71 0.54 

High ΔPVOL 0.26 0.64 

10-1  Return Diff. –1.20 –0.73 

t-stat. (–4.82) (–2.11) 

FF3 Alpha Diff. –1.26 –0.66 

t-stat. (–5.32) (–2.13) 
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Table VIII 
Predicting Returns by Systematic and Idiosyncratic Volatility Shocks 

 

This table presents the average slope coefficients and their Newey-West t-statistics in parentheses from the Fama-
MacBeth cross-sectional regressions in eq. (5) for the period of January 1996 to September 2008. The one-month 
ahead returns of individual stocks are regressed on the systematic and idiosyncratic components of the changes in 
call and put implied volatilities and the control variables. ΔCVOLsys, ΔCVOLidio, ΔPVOLsys, and ΔPVOLidio are 
defined in eq. (7) and are obtained from the physical measure of market beta (the left panel) and from the risk-
neutral measure of market beta (the right panel). The results are presented for at-the-money call and put options with 
30 days to maturity. The last row reports the average R2 values and their Newey-West t-statistics in parentheses. 
 
 

 
Physical Measure of 

Market Beta  
Risk-Neutral Measure of 

Market Beta 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

ΔCVOLsys –0.1994 –0.2470    –0.0053 –0.0058   

 (–0.31) (–0.40)    (–0.45) (–0.49)   

ΔCVOLidio 3.7376 3.7246 3.7376 3.7246  3.6147 3.5197 3.6007 3.5274 

 (7.26) (7.22) (7.26) (7.22)  (4.48) (4.23) (4.46) (4.22) 

ΔPVOLsys   –0.1709 –0.2027    –0.0027 –0.0054 

   (–0.27) (–0.33)    (–0.47) (–0.47) 

ΔPVOLidio –3.8647 –3.9927 –3.8647 –3.9927  –4.0196 –4.0340 –4.0102 –4.0152 

 (–7.18) (–7.74) (–7.18) (–7.74)  (–4.48) (–4.42) (–4.47) (–4.40) 

BETA 0.0181 0.0140 0.0041 -0.0021  0.0487 0.0539 0.0483 0.0534 

 (0.21) (0.11) (0.05) (–0.02)  (0.66) (0.71) (0.65) (0.70) 

SIZE –0.0990 –0.0558 –0.0990 –0.0558  –0.0961 –0.0874 –0.0951 –0.0866 

 (–1.30) (–0.60) (–1.30) (–0.60)  (–1.12) (–1.01) (–1.10) (–1.00) 

BM 0.3057 0.3405 0.3057 0.3405  0.3568 0.3621 0.3561 0.3610 

 (2.76) (2.56) (2.76) (2.56)  (3.23) (3.24) (3.23) (3.24) 

MOM –0.0007 –0.0012 –0.0007 –0.0012  –0.0002 –0.0004 –0.0003 –0.0004 

 (–0.19) (–0.31) (–0.19) (–0.31)  (–0.06) (–0.09) (–0.06) (–0.09) 

ILLIQ 0.1460 0.1269 0.1460 0.1269  0.0494 0.0456 0.0492 0.0458 

 (1.33) (1.19) (1.33) (1.19)  (0.29) (0.27) (0.29) (0.27) 

REV –0.0200 –0.0180 –0.0200 –0.0180  –0.0248 –0.0244 –0.0247 –0.0244 

 (–2.48) (–2.14) (–2.48) (–2.14)  (–2.78) (–2.71) (–2.77) (–2.71) 

RVOL –0.7432  –0.7432   –0.2583  –0.2644  

 (–1.28)  (–1.28)   (–0.57)  (–0.59)  

C/P Volume –0.0012 0.0044 –0.0012 0.0044  –0.0142 –0.0118 –0.0135 –0.0110 

 (–0.03) (0.10) (–0.03) (0.10)  (–0.25) (–0.21) (–0.24) (–0.19) 

C/P OI 0.0682 0.0679 0.0682 0.0679  0.0841 0.0829 0.0826 0.0811 

 (1.25) (1.21) (1.25) (1.21)  (1.20) (1.17) (1.18) (1.15) 

RVOL–IVOL  –0.6410  –0.6410   –0.5705  –0.5725 

  (–2.24)  (–2.24)   (–1.31)  (–1.31) 

QSKEW –2.3888 –2.2752 –2.3888 –2.2752  –0.7558 –0.9028 –0.7344 –0.8859 

 (–4.40) (–4.07) (–4.40) (–4.07)  (–0.75) (–0.80) (–0.73) (–0.78) 

R2 9.55% 8.86% 9.55% 8.86%  12.26% 12.15% 12.26% 12.14% 

 (10.97) (11.19) (10.97) (11.19)  (11.64) (11.58) (11.64) (11.58) 
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Table IX 
Predicting the Cross Section of Implied and Realized Volatilities 

 

This table presents coefficients from the cross-sectional regression in equation (12) which predict changes in 
options’ implied volatilities and the changes in realized volatility. The daily alphas are estimated based on the 
CAPM using daily return observations over the previous month.  The monthly Alphas are calculated by summing 
the daily alphas in a month. The dependent variables are, respectively, the next-month changes in call volatilities, 
ΔCVOL, the next-month changes in put volatilities, ΔPVOL, the change in call volatilities relative to put volatilities, 
ΔCVOL – ΔPVOL, and the change in realized volatilities, ΔRVOL. The average slope coefficients and their Newey-
West t-statistics from the firm-level cross-sectional regressions are reported. The control variables include market 
beta (BETA), log market capitalization (SIZE), log book-to-market ratio (BM), momentum (MOM), illiquidity 
(ILLIQ), realized volatility (RVOL), change in the call open interest (ΔOIC), change in the put open interest (ΔOIP), 
and the risk-neutral skewness (QSKEW). Newey-West t-statistics are given in parentheses. The sample period is 
from January 1996 to December 2011. 
 
 

ΔCVOL ΔPVOL 

CVOL – 

ΔPVOL ΔRVOL 

ALPHA 4.1504 2.3155 1.8349 –14.323 

(10.58) (6.03) (6.17) (–10.11) 

BETA –0.0163 0.0482 –0.0645 1.2080 

(–0.51) (1.04) (–1.76) (7.22) 

SIZE –0.0141 –0.0473 0.0332 –3.4680 

(–0.30) (–1.36) (0.81) (–39.35) 

BM –0.2038 –0.1332 –0.0706 –2.4210 

(–3.74) (–2.72) (–2.77) (–6.90) 

MOM 0.0016 0.0015 0.0001 0.0103 

(2.12) (1.96) (0.31) (1.36) 

ILLIQ 0.1878 0.1563 0.0315 1.1552 

(2.08) (1.55) (0.33) (4.36) 

RVOL –1.2887 –2.0157 0.7270 –60.765 

(–3.77) (–6.27) (3.06) (–36.44) 

ΔOIC –0.7151 –0.4676 –0.2475 –0.6412 

(–8.63) (–4.72) (–2.84) (–4.42) 

ΔOIP –0.3003 –0.2350 –0.0654 –0.4230 

(–7.90) (–5.01) (–1.60) (–4.53) 

QSKEW 26.606 –4.0769 30.683 –5.1930 

 (14.62) (–2.03) (10.53) (–2.63) 

R2 7.98% 5.56% 7.55% 34.30% 

(15.75) (11.60) (13.98) (41.83) 
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Table X 
Portfolio Level Analyses for Predicting Implied and Realized Volatilities 

 

This table presents portfolio level results for the predictive power of abnormal returns of individual stocks (CAPM 
alphas) for the future changes in implied and realized volatilities. The monthly alphas are calculated by summing the 
daily alphas in a month. The daily alphas are estimated based on the CAPM using daily return observations over the 
previous month. Decile portfolios are formed based on the monthly CAPM alphas and then the average values are 
reported for the next-month changes in call volatilities (ΔCVOL), the next-month change in call volatilities relative 
to put volatilities (ΔCVOL – ΔPVOL), and the next-month change in realized volatilities (ΔRVOL). Panel A reports 
results for all optionable stocks. Panel B shows results for stocks with high and low cross-sectional stock return 
predictability separately, where predictability is measured by the absolute value of residuals from the first stage 
cross-sectional regressions using the same predictors in Panel A of Table VI without ΔCVOL or ΔPVOL. Panel C 
provides results for stocks with high volatility and low volatility separately, where volatility of individual stocks is 
measured by the monthly realized volatility. Panel D shows results for Liquid and Illiquid stocks separately, where 
liquidity of individual stocks are determined by Amihud’s (2002) ILLIQ measure. Panel E presents results for stocks 
with high volatility uncertainty and low volatility uncertainty separately, where volatility uncertainty is proxied by 
the variance of daily changes in call implied volatilities in a month. Newey-West t-statistics are given in 
parentheses. The sample period is from January 1996 to December 2011. 
 
 

 
Panel A:  All Stocks 

 

 ΔCVOL ΔCVOL – ΔPVOL ΔRVOL 

Low Alpha –1.53 –0.82 –1.70 

2 –0.54 –0.39 3.20 

3 –0.37 –0.12 3.20 

4 –0.12 –0.11 2.77 

5 –0.04 –0.04 2.29 

6 0.20 0.19 1.67 

7 0.30 0.23 1.21 

8 0.52 0.22 -0.24 

9 0.60 0.39 -2.18 

High Alpha 0.59 0.66 -12.78 

10-1 Diff. 2.12 1.48 –11.08 

t-stat. (8.62) (7.01) (–11.34) 
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Table X (continued) 

 
 
 

Panel B:  High Cross-Sectional Predictability vs. Low Cross-Sectional Predictability 
 

 Stocks with Low Cross-Sectional Predictability 

 

Stocks with High Cross-Sectional Predictability 

 ΔCVOL ΔCVOL – ΔPVOL ΔRVOL  ΔCVOL ΔCVOL – ΔPVOL ΔRVOL 

Low Alpha –1.46 –0.83 0.14  –1.63 –0.74 –5.10 

2 –0.38 –0.50 6.32  –0.80 –0.28 –0.29 

3 –0.25 –0.29 6.13  –0.53 –0.10 0.33 

4 0.15 –0.07 5.82  –0.41 –0.19 0.24 

5 0.13 –0.02 5.14  –0.05 0.06 0.07 

6 0.50 0.21 4.58  –0.05 0.17 –0.62 

7 0.52 0.17 3.83  0.13 0.20 –1.00 

8 0.88 0.42 2.18  0.16 0.15 –2.08 

9 0.90 0.49 –0.32  0.42 0.40 –4.25 

High Alpha 0.64 0.73 –12.14  0.40 0.44 –14.11 

10-1 Diff. 2.10 1.56 –12.28  2.02 1.18 –9.01 

t-stat. (6.27) (6.50) (–10.10)  (9.31) (6.30) (–11.17) 
 

 
 
 
 

Panel C:  High Volatility vs. Low Volatility 

 

 Low Volatility Stocks 

 

High Volatility Stocks 

 ΔCVOL ΔCVOL – ΔPVOL ΔRVOL  ΔCVOL ΔCVOL – ΔPVOL ΔRVOL 

Low Alpha –0.33 –0.45 9.73  –2.16 –1.00 –7.63 

2 –0.29 –0.29 6.28  –1.04 –0.65 –0.58 

3 –0.14 –0.13 5.31  –0.66 –0.31 –1.11 

4 –0.14 –0.16 4.70  –0.37 –0.09 –1.08 

5 0.16 0.00 4.12  –0.13 0.05 –1.63 

6 0.24 0.16 3.95  0.05 0.25 –2.60 

7 0.51 0.27 3.74  0.16 0.36 –4.04 

8 0.44 0.19 3.54  0.36 0.39 –5.50 

9 0.77 0.34 3.23  0.53 0.51 –8.16 

High Alpha 0.91 0.33 3.53  0.42 0.68 –20.96 

10-1 Diff. 1.24 0.78 –6.20  2.58 1.69 –13.33 

t-stat. (5.56) (4.54) (–9.50)  (8.12) (6.67) (–10.09) 
 
 
 
 
 



 

 

86 

 

Table X (continued) 
 
 
 

Panel D:  Liquid vs. Illiquid Stocks 

 

 Liquid Stocks 

 

Illiquid Stocks 

 ΔCVOL ΔCVOL – ΔPVOL ΔRVOL  ΔCVOL ΔCVOL – ΔPVOL ΔRVOL 

Low Alpha –1.23 –0.30 –0.65  –1.89 –1.12 –4.02 

2 –0.51 –0.17 2.08  –0.65 –0.64 4.22 

3 –0.24 –0.14 2.17  –0.45 –0.37 3.83 

4 –0.19 –0.11 2.19  –0.24 –0.02 4.22 

5 0.03 –0.07 1.57  0.05 –0.11 3.44 

6 0.18 0.12 1.18  0.27 0.16 2.73 

7 0.38 0.33 0.85  0.25 0.34 0.83 

8 0.54 0.24 0.15  0.33 0.53 –0.61 

9 0.70 0.26 –1.04  0.63 0.54 –3.78 

High Alpha 0.79 0.31 –6.86  0.51 0.66 –17.61 

10-1 Diff. 2.02 0.61 –6.21  2.40 1.78 –13.59 

t-stat. (6.23) (4.52) (–6.87)  (7.79) (6.98) (–11.46) 
 
 
 
 

Panel E:  High Volatility Uncertainty vs. Low Volatility Uncertainty 

 

 Stocks with Low Volatility Uncertainty 

 

Stocks with High Volatility Uncertainty 

 ΔCVOL ΔCVOL – ΔPVOL ΔRVOL  ΔCVOL ΔCVOL – ΔPVOL ΔRVOL 

Low Alpha 0.18 –0.23 2.96  –2.39 –1.10 –5.68 

2 0.11 –0.18 3.51  –1.16 –0.54 2.70 

3 0.17 0.00 3.26  –0.89 –0.47 2.76 

4 0.20 –0.09 2.97  –0.81 –0.13 2.30 

5 0.34 –0.06 2.57  –0.52 0.03 1.93 

6 0.40 0.12 2.25  –0.14 0.14 1.25 

7 0.52 0.19 1.96  –0.11 0.29 –0.18 

8 0.58 0.15 1.21  0.05 0.46 –2.33 

9 0.91 0.26 0.61  0.45 0.63 –4.97 

High Alpha 1.16 0.22 –3.85  0.29 0.84 –18.55 

10-1 Diff. 0.98 0.45 –6.82  2.68 1.94 –12.88 

t-stat. (5.12) (3.78) (–9.70)  (8.63) (7.36) (–10.64) 
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Figure 1.  Implied Volatilities in the Pre- and Post-Formation Months 
 

Panel A graphs the level of call implied volatilities for the Low ΔCVOL and High ΔCVOL deciles from the 
dependent sorts of ΔCVOL and ΔPVOL portfolios formed at time t from month t–6 to month t+6. Panel B graphs 
the level of put implied volatilities for the Low ΔPVOL and High ΔPVOL deciles from the dependent sorts of 
ΔCVOL and ΔPVOL portfolios formed at time t from month t–6 to month t+6.  
 

Panel A 

 
 

Panel B 
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Figure A.1.   Stock and Call Prices as a Function of Uninformed Demand Shocks 
 

We plot the stock and call prices as a function of uninformed demand shocks given a good signal, 1  . 
Panel A graphs the stock price in the solid line as a function of the stock demand shock, z, while we hold 
the call demand shock at v=0. The stock price is plotted as a function of the call demand shock, v, while 
holding the stock demand shock at z=0 in the dashed line. Panel B repeats the same exercises for the call 
price.  In both cases, as the noise trader presence is larger (higher uninformed demand), prices rise 
because the informed investor becomes more aggressive in trading, hiding behind the larger uninformed 
demand. 

 
Panel A 

 
 

Panel B 
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Figure A.2.  Pairs of Call and Stock Demand Shocks Generating Predictability 
 

We plot pairs of uninformed demand (z,v) such that there is no predictability between the call price and 
future stock returns given a good signal, 1  . The same condition is also responsible for inducing 
predictability between past stock returns and future call prices. These are pairs of (z,v) which satisfy the 
condition in equations (A.10) and (A.11).  The stock demand shock varies over [ 1.96 ,1.96 ]z z  . 
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ENDNOTES 
                                                            
1 Many theoretical models jointly pricing options and underlying assets in incomplete markets 

have incorporated many of these real-world frictions. See Detemple and Selden (1991), Back 

(1993), Cao (1999), Buraschi and Jiltsov (2006), and Vanden (2008), among others. 

2 At the daily or intra-day frequencies Manaster and Rendleman (1982), Bhattacharya (1987), 

and Anthony (1988) find that options predict future stock prices.  Fleming, Ostdiek and Whaley 

(1996) document derivatives lead the underlying markets using futures and options on futures.  

On the other hand, Stephan and Whaley (1990) and Chan, Chung and Johnson (1993) find stock 

markets lead option markets.  Chakravarty, Gulen and Mayhew (2004) find that both stock and 

option markets contribute to price discovery, while Muravyev, Pearson and Broussard (2013) 

find that price discovery occurs only in the stock market. 

3 This predictability is inconsistent with standard arbitrage-free option pricing models, which a 

long literature has also shown. The earlier papers in this literature include Figlewski (1989) and 

Longstaff (1995).  More recently see Goyal and Saretto (2009) and Cao and Han (2013). 

4 There are many reasons why put-call parity does not hold, as documented by Ofek, Richardson 

and Whitelaw (2004) and Cremers and Weinbaum (2010), among others.  In particular, the 

exchange-traded options are American and so put-call parity only holds as an inequality.  The 

implied volatilities we use are interpolated from the Volatility Surface and do not represent 

actual transactions prices, which in options markets have large bid-ask spreads and non-

synchronous trades.  These issues do not affect the use of our option volatilities as we use 

predictive instruments observable at the beginning of each period. 

5 Easley, Hvidkjaer, and O’Hara (2002) introduce a measure of the probability of information-

based trading, PIN, and show empirically that stocks with higher probability of information-

based trading have higher returns. Using PIN as a control variable does not influence the 
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significantly positive (negative) link between the call (put) volatility innovations and expected 

returns. We also examine the effect of systematic coskewness following Harvey and Siddique 

(2000).  Including coskewness does not affect our results either. See the internet appendix. 

6 As an additional robustness check, we also consider proportional changes in CVOL and PVOL 

and find very similar results. The results from the percent changes in call and put implied 

volatilities (%ΔCVOL, %ΔPVOL) are available in the internet appendix. 

7 In the simplified model of Appendix A, put and call options are equivalent securities because 

we assume binomial payoffs.  

8  It is possible to construct bivariate portfolios ranking on ΔCVOL and ΔPVOL based on 

independent sorts, which are reported in the internet appendix.  Briefly, the return differences 

produced using independent sorts are larger than the ones reported in Table III.  Controlling for 

ΔPVOL, the average difference in returns (FF3 Alphas) between extreme ΔCVOL decile 

portfolios is 1.81% (1.80%) per month.  Controlling for ΔCVOL, the average difference in 

returns (FF3 Alphas) between extreme ΔPVOL decile portfolios is –1.27% (–1.26%) per month. 

9 If we augment the Fama-French (1993) regression with additional factors for momentum and 

short-term reversals, the alphas are almost unchanged.  These numbers are available in the 

internet appendix.  

10 SKEW and COSKEW are computed using daily returns over the past one year. Definitions of 

all other variables are given in Section 2. As discussed in the internet appendix, the calculation of 

COSKEW follows Harvey and Siddique (2000), where we regress stock returns on the market 

and the squared market returns. The slope coefficient on the squared market return is COSKEW 

of Harvey and Siddique (2000).  

11 We thank a referee for suggesting this analysis. 
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12  To address potential concerns about outlier observations, we eliminate the 1st and 99th 

percentiles of ΔCVOL and ΔPVOL and replicate Table VI. For further robustness check, in 

addition to excluding the 1st and 99th percentiles of ΔCVOL and ΔPVOL, we eliminate low-

priced stocks (price < $5 per share). As shown in the internet appendix, the average slope 

coefficients on ΔCVOL (ΔPVOL) remain positive (negative) and highly significant after 

eliminating the low-priced stocks as well as the extreme observations for call and put implied 

volatilities. 

13 This is similar to the cross-sectional volatility effect of Ang et al. (2006, 2009) where stocks 

with high past volatility have low returns, except Ang et al. work mainly with idiosyncratic 

volatility defined relative to the Fama and French (1993) model instead of total volatility. 

14 The internet appendix also shows that controlling for the Cremers and Weinbaum (2010) 

variable, CVOL–PVOL, in the regressions does not affect our main findings. We find that the 

coefficient on CVOL–PVOL is positive and statistically significant, consistent with Cremers and 

Weinbaum, but the coefficients on ΔCVOL and ΔPVOL are similar to those reported in Table VI 

and are highly statistically significant.  

15 We reject the null hypothesis that the average slope coefficients on the changes in call and put 

implied volatilities are identical, with a t-statistic of 2.17 (p-value = 3%). This implies that 

ΔCVOL and ΔPVOL have significant and different impacts on future stock returns, rejecting the 

constrained joint predictability of these variables. 

16 In the internet appendix, we also present results from the pooled panel regressions for the full 

sample period. The standard errors of the parameter estimates are clustered by firm and time. 

The pooled panel regression results indicate that after controlling for all firm characteristics, risk 

and skewness attributes, the slope coefficients on ΔCVOL (ΔPVOL) are positive (negative) and 
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highly significant, similar to our findings from the Fama-MacBeth regressions reported in Table 

VI, Panel A. 

17  The demand-based option pricing models of Bollen and Whaley (2004) and Garleanu, 

Pedersen and Poteshman (2009) do not directly predict that there should be lead-lag relations 

between option and stock markets. In addition to a demand effect in option markets, there must 

be a non-instantaneous response of the underlying stock market. Some rational and behavioral 

models explain this delayed reaction including information immobility (Van Nieuwerburgh and 

Veldkamp, 2009), limited attention (Hirshleifer, 2001), bounded rationality or limited updating 

of beliefs of agents in the stock market (Sargent, 1994), or the slow dissemination of news, or 

initial limited access to that news (see e.g. Hong and Stein, 1999). Our model in Appendix A 

shows that the action of informed traders can produce joint option market to stock market 

predictability, and vice versa, in a noisy rational expectations model.   

18  A similar econometric specification is proposed by Bali (2000) to test the presence and 

significance of asymmetry in the conditional mean and conditional volatility of interest rate 

changes. 

19 As shown in the internet appendix, almost identical results are obtained using past month stock 

returns. 

20 Our focus on cross-sectional predictability of implied volatilities is very different to most 

studies in the literature focusing on time-series relations like Harvey and Whaley (1992), who 

examine the predictability of the S&P 100 index option volatility, Christensen and Prabhala 

(1998) and Chernov (2007), who also focus on the aggregate index level, and Bollen and Whaley 

(2004), who investigate time-series predictability of 20 individual options but focus only on net 

buying pressure. 
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21 We also obtain similar results when we measure stock return predictability using time-series 

predictability measures as opposed to cross-sectional measures in Table X, Panel B.  See the 

internet appendix. 


