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to 1% following receipt of an electricity bill, but the response varies considerably by household type
and season. Our results also suggest that spending "reminders" can reduce peak demand, particularly
during summer months. We discuss the implications for energy policy when intermittent billing combined
with inattention induces consumption cycles.
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1. Introduction

The neoclassical agent takes account of all present and future expected costs and benefits

when making decisions. Yet in many settings consuming a good and spending money on

it are separate experiences, and the true costs of one’s actions are only revealed ex post

and intermittently - often in the form of bills. This expenditure may not be salient to the

agent if the market environment makes prices or quantities opaque when consumption is

happening, particularly if the agent is billed later for decisions that are made over time.

The problem of salience is not simply one of uncertainty; forming rational expectations with

uncertainty requires cognitive processing of the distribution of outcomes, while insalient

costs facilitate inattention and incomplete cognitive processing (DellaVigna (2009)). An

agent may overconsume if he becomes inattentive to his spending when price or quantity

information is obscured.

Overconsumption has been demonstrated with static models in the context of toll road use

(Finkelstein (2007)), alcohol purchases (Chetty et al. (2007)), bank overdrafts (Stango and

Zinman (2011)), and monthly electricity consumption (Sexton (2011)). Yet the problem is a

fundamentally dynamic one if actions taken when expenditure is not salient are hysteretic or

deplete capital stocks, and if this type of spending is repeated. True expenditure is revealed

eventually; how does realizing that one has recently been inattentive and overconsumed -

and may soon repeat this behavior - affect present and future behavior? For how long after

an expenditure signal (a bill) is received do agents remain attentive? These problems are

very different from those faced by an impatient or even present-biased agent who simply

places less weight on the future but still acts with full awareness of expected costs.

The number of market environments in which signals about accumulated expenditure

are opaque or intermittent is large and growing. Health patients with chronic illnesses make

sequential decisions about medical treatments at different points in time than they are billed

for those decisions. Accounts allowing downloads of media, games, and software apps to

smart phones and tablet PCs are typically linked to credit cards that are billed monthly.

Many subscription services and household utilities are moving or have already moved to

automatic bank draft or credit card billing systems. Nonmarket decisions are also affected

by the relative salience of the true costs of an action. For example, the health costs of over

or under consumption of certain types of goods like fatty or sugary foods, harmful drugs,

and chronic medicines, are not apparent at the time of consumption.

Problems with salience are the rule rather than the exception in a world in which people

pay for a larger share of even basic consumption with credit cards, many additional types
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of consumption are billed weeks after consumption occurs, and many types of bill payments

are automated. We should not be surprised by a consumer who is shocked at his own

consumption or unhappy with the decisions that his past self has imposed on the wellbeing

of his current self because a lack of salience can facilitate intertemporal moral hazard1. This

poses costs and benefits for sellers, however, because opaque prices can increase sales but

also demand volatility when customers vacillate between overconsuming while inattentive

and underconsuming to compensate for past or future actions.

Dynamic analyses of salience are not as prevalent in the literature as static ones. For

example, Finkelstein (2007) shows that toll-road drivers who use EZ-Pass systems drive on

toll-roads more frequently and protest fee increases less frequently. Presumably these drivers

receive monthly bills, however. Does toll-road use decline after the driver is reminded of her

expenditure? This is the question we address in this paper2.

Using the motivating example of residential electricity consumption, we answer this ques-

tion with evidence from a unique panel data set of hourly household-level electricity use for

several thousand households in the San Diego suburbs. If electricity expenditures are only

salient to consumers when they receive a bill, then consumers should adjust behavior at the

point of salience (i.e., the beginning of the billing cycle) but then return to overconsump-

tion as their attention to the price fades. We test this prediction by studying changes in

household consumption behavior throughout their monthly billing cycle. Such “recency ef-

fects” of intermittently salient information, or effects that decline as time passes, have been

found with late payment fees for credit cards in Agarwal et al. (2013) and personalized home

energy reports with normative and educational messages in Allcott and Rogers (2012)3. In

1This is in contrast to rational addiction models (e.g. Becker and Murphy (1988)) in which the agents
act with full awareness of the intertemporal externality but engage in bad behavior anyway.

2Karlan et al. (2010) present a dynamic model with inattention to uncertain future costs (e.g., car
repairs or durable goods replacement) rather than periodic inattention to current spending, and Grubb and
Osborne (2012) have a dynamic component to learning about preferences in the context of insalient cell phone
usage costs. The focus of these models is related to but distinct from what we address in this paper. The
rational inattention literature (e.g., Sims (2003)), which has primarily addressed problems in macroeconomics
and finance, takes the point of view that agents face constraints in processing multiple flows of uncertain
information, but information is nevertheless freely available; agents therefore exhibit inertia and respond
sluggishly to aggregate updates but discretely to own shocks. This might be an appropriate explanation for
the inertia and variability in electricity consumption but this is beyond the scope of this paper. Within the
context of a consumption environment with inertia, we deal with agents periodically exposed to information
that is only freely available (or perfectly salient) in discrete intervals, between which agents forget the
information.

3Allcott and Rogers (2012) also find that reversion to past behavior is reduced when intermittent messages
are maintained over a long period of time.
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both cases, however, the information treatments are “unusual” in the sense that they are

designed to draw the agent’s attention and alter behavior. We show that the same pattern

of behavior is present with routine billing.

Our results suggest that households reduce consumption by 0.6% to 1% in the first week

of a new electricity billing cycle. These impacts are more pronounced in the summer, par-

ticularly if the weather is hot when the bill arrives, and among larger households with more

sensitivity to hourly weather fluctuations (which we take as an indication of air-conditioning

use). Within the day, reductions persist through the peak hours of afternoon and early

evening, providing the first evidence to our knowledge that a price reminder (a bill) can in-

duce peak load reductions in addition to general conservation. We also examine differential

responsiveness to billing information across households based on several novel measures of

household composition and capital stock.

These results are consistent with several possible theories of salience and inattention.

Households could be rationally inattentive and simply forgo the costs of calculating the

cost of energy at every instant within the month4. On the other hand, limited cognitive

processing of opaque price information may systematically bias down the effective price used

in decision making, in which case households would consume as if the good is cheap when

the price is not salient, and consume the optimal bundle when prices become salient again.

This response could be exacerbated if self-aware households expect to become inattentive

again in the future and preempt their future selves by underconsuming now5.

The rest of the paper proceeds as follows. Section 2 discusses the context of household

electricity use and “Smart Grid” infrastructure investment and associated policy implica-

tions. Section 3 presents the empirical approach and section 4 discusses the data used in our

empirical analysis. Section 5 discusses the results and section 6 concludes.

4However, it seems under this explanation rationally inattentive consumers should still form rational
expectations about prices they haven’t bothered to calculate, in which case consumers should guess their
effective prices correctly on average and not systematically overconsume in periods when price information
is unavailable.

5The repeated nature of the problem could present the opportunity for learning. Although we do not
address learning in this paper, it is more likely that an agent who learns about his tendency to be inattentive
puts in place better safeguards against eventual bad behavior. This could take the form of reducing the
persistence of the expenditures (e.g., changing electrical appliance settings while attentive), or putting himself
on an alternative consumption path that takes account of future inattention. Both of these explanations
would still lead to consumption cycles that follow price information. Regardless, our sample contains only
consumers that have lived in the same residence for at least three years, so any potential learning would
have likely already occurred before our study period.
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2. Background on Smart Electricity Meters

Energy efficiency has been controversially touted as a large untapped source of low-

cost pollution abatement, particularly for carbon dioxide. McKinsey Global Institute has

argued that cost effective investments in existing technology could reduce energy demand by

more than 20% (McKinsey (2007)). Adoption rates remain stagnant for a number of reasons

(Jaffe and Stavins (1994)) and more recently attention has turned to behavioral “nudges” for

households to alter electricity use habits (Allcott and Mullainathan (2010)). These include

goal setting, social norms, and personalized feedback about prices or quantities (e.g., Hsiaw

and Harding (2014), Allcott and Rogers (2012), Allcott (2011a)). In a number of recent

trials in different settings, savings of between 2% and 5% on average have been achievable

with various types of behavioral “nudges”.

Electric utilities are still learning about how to alter customer behavior using “smart

grid” infrastructure investments that retrofit the electricity grid with monitoring and com-

munication technology. These tools may improve salience as well as enable more creative

energy price structures and signalling schemes. In a few limited cases smart meters have

been enabled to communicate real-time information between customers and the utility, such

as price signals and other alerts. Eventually these meters may be able to send additional

information designed to shape behavior such as appliance-level disaggregated usage, security

breaches, or pollution levels. A large piece of the expected social return on these investments

is the potential for electricity conservation and reduced emissions.

One frequently discussed cause of inefficient electricity use is the lack of transparent in-

formation on prices or quantities available to households. The salience problem in household

electricity spending has several important features. First, the price structure itself is compli-

cated and can confuse customers. Most residences face a nonlinear “Increasing Block Tier”

(IBT) rate structure in which the marginal price the customer pays for a unit of electric-

ity is raised when the customer consumes above a given threshold within a given month.

There may be several usage thresholds, or tiers, which may be unevenly spaced and induce

marginal price increases that are nonlinear. A number of studies on this type of rate struc-

ture have shown that consumers do not respond to the marginal rate of the tier they are

on in any given month, and generally do not fully understand the pricing structure and its

implications for minimizing their monthly bill (Kahn and Wolak (2013), Ito (2012), Bushnell

and Mansur (2005)). The second source of salience problems with household electricity is

that consumption decisions are made in real-time whereas expenditure is only “experienced”

monthly when the bill arrives. The opportunity for a person to investigate which pricing
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tier they are on occurs only once a month, and ex post after thresholds have been exceeded.

The intermittency of quantity and price information makes it nearly impossible to respond

to marginal prices at the point of consumption.

Lastly, consumption decisions are disaggregated across appliances without price informa-

tion for individual uses. Even if the marginal price of a unit of electricity were known with

certainty, translating this price into the price of drying laundry or powering a flat screen

television for an hour is not a trivial task. This problem occurs partly because of the inter-

mittency in quantity information and partly because of the disaggregated and heterogenous

nature of end uses. We address the dynamic problem in this paper but we acknowledge that

solving the disaggregation problem could interact with our results in unexpected ways. For

example, if monthly bills were displayed by appliance we might estimate larger effects as

households adjust settings on their biggest sources of energy use. After a few monthly cycles

of adjustment, however, the reaction to a bill might diminish if households are satisfied with

their allocation across appliances. Jessoe and Rapson (2013), for example, show that real-

time consumption information provided by in-home displays causes persistent reductions in

energy use, which they attribute to households learning about disaggregated uses.

One argument for the smart grid has been that more salient prices and quantities would

help consumers make privately optimal electricity consumption choices, which would make

market-based policy instruments more efficient. Many authors have studied the effect of

improving electricity cost information on subsequent consumption. These studies fall into

two main categories. First, the use of “peak prices” in which customers are informed that

their prices will spike during certain hours on certain days in order for the utility to shift

demand away from peak hours when electricity grids are constrained. Peak-hour or real-time

price elasticities have been estimated in a number of field experiments including Jessoe and

Rapson (2013), Allcott (2011b), Wolak (2011) and Wolak (2007).

The second category covers the use of behavioral “nudges” or other non-price information

treatments designed to induce households to conserve energy, or reduce average consump-

tion for energy efficiency or environmental reasons. There have been a number of studies

evaluating the provision of real-time quantity information to households, and most of these

focus on reporting the number of kilowatt-hours used or saved rather than making prices

or total expenditures visible. Overall savings of 2% to 5% have been reported with these

programs (Darby (2006)) but many of the studies involve short-term trials with self-selected

participants. Rebound and long-run effects are also of interest. Allcott and Rogers (2012)

find that the effects of monthly or weekly information erode over time if the provision of in-
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formation ends, providing evidence for a dynamic component of intermittent salience. While

Allcott and Rogers (2012) study information nudges specially designed to induce behavioral

change and conservation, such as normative messages, we study routine billing and show

that simply receiving a bill acts like a nudge. An exception that spans both categories of

information treatments is Jessoe and Rapson (2013), who show that households with real-

time quantity information respond more to peak price signals than households facing peak

prices without the quantity information. This confirms that salience is important for both

prices and quantities6.

These two categories also differ in the data used to estimate the treatment effects. Hourly

data has been used to estimate the demand shifts from peak price instruments, but to our

knowledge has not been used to examine the time profile of non-price nudges. Yet the

question of what hours of the day that information nudges take hold is important for both

private market and public policy efficiency. Utilities want to shift demand away from peak

hours in order to avoid the costs of building and maintaining peak power generating plants

that are used only a few hours each year to avoid blackouts. In addition, the mix of fuels used

to generate electricity varies throughout the day, so the pollution emissions avoided because

of responses to nudges will depend on when households actually respond (Graff Zivin et al.

(2014)). Our results suggest that nudges can be effective during peak hours, particularly

among customers with the greatest peak demand.

The results in this paper raise three important issues for utility smart grid policy and

information feedback. First, attention and consumption may have stable steady states that

are difficult to alter with only periodic information; our results and those of Allcott and

Rogers (2012) and Jessoe and Rapson (2013) suggest that some “nudges” are transitory while

others can shift the steady state. Second, information updates will be more or less effective

depending on the customer’s consumption habits and appliance stock. Third, improving the

salience of prices may help utilities manage peak demand even absent an increase in peak

prices.

3. Empirical Approach

If the price of electricity is more salient when the bill arrives then we should observe lower

consumption following a new bill than during the rest of the month. Let yit be daily electricity

6Jin and Leslie (2003) show that quality salience also affects demand in the context of restaurant hygiene
ratings.
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consumption from a sample of individual households we will use to test for reductions in use

during the first week of each billing cycle relative to the rest of the month. We first examine

whether simply reminding the household about this cost - the arrival of the bill itself - reduces

consumption. We then examine the source of these reductions and how these responses vary

across customer segments. In order to estimate the consumption response to the arrival of

a bill, we estimate several dynamic panel specifications of the form:

yit = γyi,t−1 + αdDit + CDHt · Zi
′βc +HDHt · Zi

′βh

+βc2CDH
2
t + βh2HDH

2
t + βchCDHt ·HDHt + uiwm + εit (1)

where Dit is a dummy variable indicating a one-week window of time following a new

billing cycle (labeled “post” in the following tables). We don’t observe exactly when the

households read their bills, but given that bills are sent out (either by e-mail or U.S. mail)

on the morning of the first day of the new billing cycle, households are most likely to have

seen a new bill during the first week7. Some households may be affected by the price signal

outside the one-week window, in which case our estimates may be conservative8.

The variables CDHt and HDHt are Cooling and Heating Degree Hours, respectively.

Heating Degree Hours measure the amount of time and the extent to which the outdoor

temperature was below 65 degrees Farenheit each day, indicating the conditions in which

household heating is required to maintain indoor comfort. The differences between 65 degrees

and the actual temperature (if temperature is below 65) at each hour of the day are summed

over each 24 hour period. Likewise, Cooling Degree Hours are a measurement for exogenous

air-conditioning needs with temperatures above 65. The uiwm term captures household-time

fixed-effects. We report models with household and time fixed effects estimated separately as

well as household-by-weekday effects, household-by-calendar month effects, and household-

month-weekday effects to more flexibly capture household-specific weekly seasonality that

may change throughout the year. Zi is a vector of household-specific covariates constructed

from the data as described in section 4. We allow a household-specific relationship with

outdoor temperature by interacting Cooling and Heating Degree Hours with Zi.

7Unfortunately our data does not identify whether the bill was sent by email or U.S. post, or whether
the customer paid using automatic bill pay or another method.

8We check the robustness to different windows of time in section 5.
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4. Data

Our data was generously provided by San Diego Gas & Electric (SDG&E) and consists

of historical consumption and billing information for 30,000 households in Escondido, Cali-

fornia, a residential community in northeastern San Diego County. Starting in April, 2009,

SDG&E began installing digital smart meters on Escondido residences. These meters gather

and store hourly observations on electricity consumption. During our sample period (April

2009 to January 2010), the meters were not enabled to communicate with any devices in

the household, so the meters allow the researcher to observe consumption at high frequency

while nothing changed for the household or its occupants. We aggregate the hourly data to

daily electricity use as the dependent variable in our main analysis, but also present results

by hour of day.

We combined this hourly data set with billing information for the same households. The

billing information consists of the monthly bills during the sample period as well as three

years prior to the installation of the meters, including the dollar amount of the bill, the

quantity consumed during the month, and the dates of the billing cycle. We removed any

household that did not have the same account-holder for the entire three-year billing history

period in order to focus on households that are likely to have stable expectations about their

bills. Further, we removed any household that did not have a smart meter for more than

seven months so that we could observe responses over multiple billing cycles. The resulting

data set consists of 10,826 households.

The period SDG&E uses to calculate the bill for each month ends at midnight on the

last day of each billing cycle, and bills are sent by email or U.S. post the following morning.

Households in SDG&E have billing cycles that differ by the day of the calendar month at

which they begin. Our trimmed sample from Escondido has 12 different billing cycles that

start between the 30th of a given calendar month and the 10th of the subsequent calendar

month, and they are between 28 and 32 days long, although in the vast majority of cases

not more than 31 days.

The households in our sample are in one of three electricity rate classes: standard resi-

dential (DR), standard residential low income (DRLI), and general service (A). A detailed

description of the rates is provided in Table A.1. The general service A rate applies to small

commercial users that are also owner-occupied and are considered “residential” by the util-

ity. In the Escondido community we study this describes small farms, ranches, or orchards
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at which the owners also reside9. The A rate is a flat rate that varies by summer and winter.

The majority of our households, however, are on DR or DRLI rates which have an increas-

ing nonlinear block-tier structure with baseline usage and rate tiers that vary by summer

and winter. Rates increase to a new tier each month once the baseline allowed quantity is

consumed within that month, and again at 130% and 200% of the baseline. The DRLI rates

are slightly higher than DR for baseline consumption but much lower for the higher two tiers

(above 130% of baseline). Baseline allowed usage was close to 11 kWh per day during our

time frame - well below the average daily usage for both rate groups10. While an understand-

ing of the pricing context is useful, a number of studies have found that consumers do not

respond to the marginal rate of the tier they are on in any given month (Kahn and Wolak

(2013), Ito (2012), Bushnell and Mansur (2005)). In the case that consumers are responding

to marginal rates, our empirical results will provide a lower bound estimate of the response

to expenditure information since nearly all consumers will be in the lowest price tier when

they receive their bill during the first week of their new cycle.

We combine hourly consumption with hourly outdoor temperature data from several

weather stations in the Escondido area. We use the weather data in two ways. First, we

construct the Heating and Cooling Degree Hour measures11. Second, we use the hourly

variation in temperature with the hourly variation in household-specific consumption as

described below.

Summary statistics for variables used in the analysis are presented in Table A.2. The

means of daily and monthly usage and monthly bills (20.7 kWh, 621 kWh, and $115, respec-

tively) are in the range of of what we would expect for single family residences, although

the standard deviations and maximum values are large. This reflects the presence of a small

number of large residences including small ranches, orchards, or other small agricultural uses

in addition to more traditional suburban homes and apartments. The 99th percentiles of

these variables (87 kWh, 2371 kWh, and $592, respectively) are less extreme. The results

presented in the next section are very similar in magnitude when the models are estimated

after dropping the highest and lowest 1% of users12. The summary statistics for Cooling

9The A rate does not include multiunit housing like apartments, condominiums or townhouses.
10A time-of-use (TOU) rate was offered for A rate customers, and some larger customers were permanently

switched to TOU after exceeding a usage threshold, but none of these customers are present in the sample
used in this paper.

11Empirical electricity studies typically use monthly household data rather than daily, and transform raw
temperature data into “Heating Degree Days” and “Cooling Degree Days”. Our measure is exactly the same
at a higher frequency.

12Results from these specifications are available upon request.
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and Heating Degree Hours indicate the wide temperature variability in inland San Diego

county. A day with Cooling Degree Hours of 107 could indicate a short temperature spike in

the afternoon, or 10 hours of the day with temperatures at 75.7 degrees Farenheit. Extreme

days with Cooling Degree Hours approaching 500 are days in which temperatures exceeded

100 degrees in the afternoon and stayed in the 80’s through the night. Likewise, colder days

with Heating Degree Days around 400 can be interpreted as days in which the temperature

was in the 40s for most of the 24-hour period, or were in the upper 40’s during the day and

reached the 30’s at night.

Because of privacy concerns with smart meter data, we have only a limited set of

household-specific covariates and no common identifiers to match the smart meter data

to external datasets. The hourly smart meter data itself provides a unique set of household-

specific information, however. We take advantage of the hourly variation in energy usage to

infer characteristics about each household and use these constructed variables as household

covariates in Zi. These include the sensitivity of the household to hourly temperature fluc-

tuations, the volatility of the household’s daily consumption, and the lag persistence in the

individual household’s daily consumption series. These variables are meant to capture the

durable goods stock such as heating and cooling as well as household energy usage-related

preferences. We include all of these variables in Zi primarily to allow household-specific

temperature responses, but we also examine how the salience effect varies along several of

the dimensions that are measured, such as household size and air-conditioning use.

In order to construct these variables, we use the explanatory power of hourly tempera-

tures for hourly consumption as a proxy for the household building and behavioral charac-

teristics. We construct these by using the hourly data to estimate the following regression

independently for each household:

yih =
24∑
h=1

φihΨh +
10∑

m=1

βimMonth+
7∑

d=1

βidWeekday + βiC1{Temph > 65} · (Temph − 65)

+βiH1{Temph < 65} · (65− Temph) + εih ∀i (2)

where Ψh are hourly dummies and 1 is an indicator for whether the temperature was

above or below 65 degrees. The variable “fit” is the household-specific R-squared from

this regression. This measures how tightly the hourly consumption in the household is

explained by hourly temperature changes and seasonal patterns at the hourly, weekly, and

monthly level, which reflects heating, cooling, and insulation properties of the household.

10



As shown in Table A.2, seasonal and weather variations explain 41% of the variation in

hourly consumption for the average household, but this statistic varies considerably across

households, from almost no explanatory power (0.015) to high explanatory power (0.99).

“Pattern” is a proxy for daytime occupancy and measures the percentage difference between

the minimum and maximum φih for each household - a measure of the average variation

in consumption throughout the day for each household. A mean of -0.74 for this variable

indicates that for the average household, the lowest consuming hours at night are 74% below

the highest consuming peak hours in the afternoon or early evening. We also use βiC and

βiH to proxy for the air-conditioning and heating capacity of the household, respectively.

We rename these “hotco” and “coldco”, respectively. A mean of 0.027 for “hotco” in Table

A.2 says that the average household increases usage by 0.027 kWh in response to a 1 degree

temperature increase in a given hour, or that a 10-degree increase over 10 hours would raise

consumption by 2.7 kWh for the average household. The “coldco” variable has a symmetric

interpretation for cold temperatures below 65 degrees. That the average of “coldco” is

negative indicates that electricity is less important for heating than cooling in this region,

and that often households experience cold temperatures during nighttime hours in which less

electricity is being used on average regardless of weather.

Additionally, we constructed measures of household-specific interday volatility and lag-

persistence in energy consumption over the study period. We ran household-specific regres-

sions of daily total consumption on lagged consumption (and Cooling and Heating Degree

Hours to capture dependence net of serial correlation in weather) and captured each house-

hold’s autoregressive coefficient in a variable called “persist”. Strong persistence might

indicate a household that has a high cost of adjustment in energy consumption or one with

less flexible, more habit-driven occupants. A mean of 0.27 for the “persist” variable suggests

that daily consumption is persistent, but not close to a random walk on average. We also

obtained household-specific volatility by calculating the daily raw differences in consump-

tion, and taking the standard deviation of these differences in consumption by household.

This standard deviation, labeled “dayonday” in Table A.2, was around 5 kWh for the av-

erage household, however there are a small number of highly variable households that skew

the distribution of this volatility measure. Finally, we proxy for income by categorizing the

households’ 3-year average monthly use by percentile.
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5. Results

5.1. Salience and the arrival of the bill

Results from estimation of equation (1) are reported in Table A.3 and Figure B.1. Ta-

ble A.3 reports estimates of the bill arrival effect across specifications that offer differing

flexibility in household-specific seasonality and temperature responses. Recall from equation

(1) that we allow temperature responses and seasonal effects (weekly and monthly) to be

household-specific, and that we allow for the possibility of lag dependence in consumption.

The first four columns of Table A.3 omit the lagged dependent variable and the the last five

columns include it. All specifications include a quadratic function of Cooling and Heating

Degree Hours as well as the full set of household covariates, but only some of the specifica-

tions include interactions. Columnn (1) reports results from a basic OLS regression in which

all the houshold covariates enter linearly and are not interacted with temperature. Month

and weekday dummies that are not household-specific are also included. The coefficient on

Dit (labeled as “post” in the tables) is the conditional average effect on consumption of being

in the first week following the arrival of a bill. The coefficient reveals a reduction of 0.28

kWh per day or 1.35% of average daily consumption in response to the issuance of a bill.

The remaining columns add temperature flexibility (in the form of household-temperature

interactions), seasonal flexibility (in the form of household-specific weekday and month dum-

mies), and lagged dependent variables to capture persistence. These richer specifications

lead to a slight reduction in the size of the bill effect, but the size of the reduction is largely

consistent across specifications. In column (2) we add household fixed effects to the basic

OLS regression in column (1) to control for household-specific characteristics that are not

captured by our constructed covariates (which are swept out in all the fixed effects spec-

ifications). Column (3) includes household-month and household-weekday effects to allow

for heterogeneity in seasonal behavior, and column (4) includes household-weekday-month

effects to allow for household-specific weekly patterns to vary across months of the year.

Both columns (3) and (4) allow household-specific temperature responses by interacting the

full Zi vector with Heating and Cooling Degree Days. These specifications represent more

flexible approaches to estimating the regression from column (2). Column (5) adds a lagged

dependent variable to the OLS specification from column (1). The coefficient on the lagged

variable is highly significant and fairly large (0.83), although ignoring unit-specific hetero-

geneity (omitting fixed effects) in OLS estimation of dynamic panels is known to be biased

upward. Column (6) adds more temperature-household covariate interactions and produces

similar results. Columns (7) through (9) add a lagged dependent variable to the more flexible
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specifications from columns (2) through (4), respectively.

The estimates from the more flexible specifications range from 0.13 to 0.20 kWh per day,

or 0.6% to 1.0% of average daily consumption. The size of the impact is relatively small,

but consistent with the recent literature on behavioral nudges in energy consumption. To

place this in context, field experiments with the express purpose of reducing consumption

have lead to changes in demand between 2% and 5%. Throughout the rest of the paper we

report results from the specification in column (9) because it offers the most flexibility for

capturing household heterogeneity in seasonality and weather responses.

In order to trace out the average response throughout the billing cycle, we estimated the

specification in column (9) of Table A.3 using a dummy variable for each day in the billing

cycle instead of the “post” variable. Figure B.1 plots a moving average of these coefficients

and their confidence intervals. A moving average is helpful to visualize the time path of

the effect because the estimates at the billing cycle-day level are quite noisy. The reference

observation in this regression is day 0, or the day after the last day of the previous cycle and

the day on which the bill for that cycle is sent to the household.

It is important to notice that consumption appears to be 0.1 to 0.3 kWh lower in the first

week to 10 days of the billing cycle than during the rest of the month, and consumption rises

throughout the month until around the 20th day of the billing cycle. There is a slight decline

after the 20th day of the billing cycle. One possible explanation for this is that bills are due

19 days following the beginning of a new cycle. To the extent that some households wait until

the due date to pay their bill, and the bill becomes salient again during the payment, we might

expect a decline. Another possibility is that the 20th day of the billing cycle corresponds

to some households entering a new calendar month13. The beginning of a calendar month

might affect consumption for several reasons, for example, if calendar months correspond

to new paychecks and budgeting cycles because of payroll timing. However, many payroll

systems do not issue paychecks on the first of the calendar month and there is considerable

13In our sample the billing cycle rarely extends beyond 31 days. A 32nd billing cycle day occured for
less than 1% of households and occurred on only three calendar days for those houses (longer billing cycles
occasionally happened for more houses in parts of the data that were dropped before estimation). Tempera-
tures happened to be unusually cold on these three days, and consumption for the fraction of houses on the
32nd day of their billing cycle was even lower than what our quadratic polynomial weather model predicts.
These three days seem to exhibit weather-driven low consumption outliers. For this reason we dropped any
household-day observations on the 32nd day of their individual billing cycle when estimating the cycle-day
coefficients plotted in figure B.1. In specifications where they are included, there is a steep drop on day
32 but this is only identified off a small number of observations under unusual conditions. However, these
household-day observations were included in all other specifications reported in this paper.
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heterogeneity in pay cycles in California. Including a dummy variable for first week of the

calendar month does not change the results in Figure B.1 or Table A.3.

5.2. Heating and cooling as the adjustment mechanism

In order to uncover the mechanism by which households respond to reminders, we esti-

mate our model by season, by quintile of our air conditioning demand proxy, and by hour

of day (Tables A.4 and A.5, and Figures B.2, B.3 and B.4). The evidence reveals that the

bill reminder effect works primarily through reductions in the use of air conditioning at peak

times on hot days. This suggests that non-price, information-based “nudges” normally tar-

geted for overall conservation can also address the goals of peak load curtailment for which

price-based instruments like TOU or real-time rates are normally used.

In Table A.4 we examine the bill response in different seasons and under different tem-

perature conditions. The largest estimated reductions occur on hot days in the summer,

although colder days in the winter also account for a significant portion of the response.

Columns (1) and (3) show that the average bill response is about 50% larger in the summer

than in the winter. When the “post” variable is interacted with cooling degree and heating

degree hours, allowing the response to vary with temperature during the period in which bill

response occurs (columns (2) and (4)), the marginal effects of bill arrival are also largest in

the summer, when they are driven by warm temperatures. In contrast, the marginal effects

in winter are driven by cold temperatures, but the effects are more muted than those found

for summer. The marginal effects at the mean cooling and heating degree hours for each

season are slightly larger than the coefficients in columns (1) and (3), and the distribution

of marginal effects is negatively skewed.

Figure B.2 plots kernel density estimates of the distributions of marginal effects for sum-

mer and winter. The summer plot includes the density plots evaluated at relatively hot

versus relatively mild days (the 75th and 25th percentile of Cooling Degree Hours), and the

winter plot includes the density plots evaluated at relatively cold versus relatively mild days

(the 75th and 25th percentile of Heating Degree Hours). The mass of the distribution of

these marginal effects lies primarily below zero with a much larger tail of negative responses

during the summer. Large changes in Cooling Degree Hours drive the shift during the sum-

mer, whereas the winter effects are driven by Heating Degree Hours. These results indicate

that to the extent that households respond to the bill arrival, they do so by reducing the

use of the heating or cooling systems that they are likely to be running at the time. Be-

cause many households in San Diego are heated with natural gas but cooled with electric air

conditioning units, the effect on electricity in summer is considerably larger.
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To confirm that air conditioning is driving the response, we estimated our model sep-

arately for each quintile of our air-conditioning proxy. The results reported in Table A.5

indicate that households that are more sensitive to temperature increases above 65 degrees

within a given day (our air-conditioning proxy) are also more responsive to the arrival of

a bill. It should be noted that our proxy combines households likely to have larger air-

conditioning units and those likely to use air-conditioning more intensively, so we are not

able to separate preferences from technology. The effect is larger across quintiles in terms

of the estimated coefficient and as a percentage of the average daily consumption in each

quintile, with the effect of the arrival of the bill being 0.3% in the lowest quintile and 1.2%

in the highest quintile. The absolute effect of a bill arrival is an order of magnitude larger

for households in the highest quintile of air conditioning than those in the lowest quintile,

and the relative effect is four times as large.

Finally, using the hourly data we show that adjustments primarily come during peak

hours in summer months for households with more air conditioning demand (Figures B.3

and B.4). Figure B.3 shows the conditional means of consumption at each our of the day for

summer and winter separately, conditioning on all the covariates in our econometric model.

The graph shows that the average summer effect is not only larger, but it occurs during hours

in which air-conditioning use and aggregate peak demand are likely to be highest: between

noon and 8 p.m. The dip in the size of the effect in the late afternoon may be attributed to air

conditioning needs accumulating during the day as houses heat up, or by residents arriving

home from school and work, or both. Figure B.4 shows the same information for summer

only, plotted by quintile of our air-conditioning measure. The effects are larger during hot

hours of the day and for households with a larger air-conditioning proxy, however the highest

quintile group reduces its response dramatically between 4 p.m. and 7 p.m. This pattern

is consistent with households who want to conserve, that have identified air-conditioning

as the most effective mechanism, but who “give-in” to air-conditioning demand during the

hottest hours of the day. Alternatively these households may not “pre-cool” their houses

in the morning but turn up the air conditioning when they really need it late in the day.

Nonetheless, the fact that the overall salience effect is largest during the summer, on the

hottest days, during peak hours, among houses with the most weather sensitivity suggests

that air conditioning is a major component of adjustment.

5.3. Heterogeneity in salience effect across customer segments and time

The effect of price salience on consumption also varies across customers segmented by

home size (or percentile of average use) and rate structure. In Table A.6, we split the sam-
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ple by a proxy for income - the quintiles of historical average monthly electricity use. The

magnitude of the absolute bill arrival effect increases monotonically across the quintiles, al-

though the responses are not statistically different in percentage terms. Similarly, in Table

A.7 we show that responses are smaller in absolute terms for households on the low in-

come rate than the standard residential rate but approximately equal in terms of percentage

reductions. However, despite their much larger average consumption, general service rate

customers (e.g., small agricultural operations with residences or commercial living facilities)

have a comparable absolute response and a much smaller percentage response. This could

reflect either greater attention paid to energy costs by profit maximizers.

In Table A.8 we examine whether our “post” variable defined as the first seven days of

a new billing cycle properly captures the time in which the bill is seen by the household.

We reestimate our preferred base specification from Table A.3 with “post” redefined as the

first three days of the billing cycle, the first seven days, 10 days, and 14 days. The effect

dissipates as the window of time expands, consistent with the price becoming less salient

and the household returning to a consumption path chosen with an opaque price. The last

column of this table includes a dummy variable for each of the first three weeks of the billing

cycle. The reference observation in this case is a day in the final nine or 10 days of the

billing cycle. As shown in Figure B.1, there is a slight consumption decline late in the cycle.

The results in Table A.8 confirm this; while conditional average consumption in the first

week is 0.14 kWh below the late cycle average, consumption in the third week is highest at

0.14 kWh above the final days in the cycle. If additional reminders about energy costs or

consumption budgets occur in those final days such as the payment of the bill or the receipt

of a paycheck, then it is possible that the average salience effect is closer to the difference

between the third week average and the first week, or at least somewhat larger than the 0.1

to 0.2 kWh per day average effect we report in Table A.3.

6. Conclusion

In neoclassical demand theory, the costs of decisions are known at the time choices are

made. For goods like electricity use, water consumption, and medical treatments for chronic

illness, however, expenditure is only ”experienced” intermittently while choice occurs at

greater frequency. Digital tracking and the proliferation of automated payments have made

intermittent cost signals more common for an expanding share of goods, from toll road access

and software downloads to standard consumption goods paid by credit card or other “bill-

me-later”-type systems. Yet we know surprisingly little about how these payment patterns
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affect decisions. This paper exploits hourly household electricity consumption data collected

by “smart” electricity meters to examine dynamic consumer behavior under intermittent

signals.

Our results suggest that residential energy consumers reduce consumption by 0.6% to 1%

in the week after receiving a bill. The response magnitudes are larger for larger households,

but the percentage responses are almost the same across household sizes. Most interestingly,

reductions continue through the peak hours of the day, providing the first evidence to our

knowledge that information signals (as opposed to direct time-of-use pricing) can reduce

peak electricity demand. Summertime cooling is a key driver of this peak demand reduction,

suggesting that thermostat adjustments are a low cost response to the billing information

signal.

For the energy industry specifically, our analysis raises important issues for optimizing

the return on smart grid investments. Achieving demand response and conservation through

household behavioral change has proven frustrating for policy makers and utilities. Our

results provide an explanation: when a bill reminds a household about a component of their

budget constraint, initial responses evaporate as salience fades and households revert back to

their higher consumption patterns. In the short run, however, the households that are most

information-elastic also happen to be the most valuable for electric utilities to target: large

households that use a lot of air conditioning on hot days. The smart grid will enable new

information technologies and platforms. Once customers have become accustomed to these

new formats, will they continue to use the information? Our results suggest that the salience

of periodic alerts is real, but small, and that the persistence of electricity demand choices is an

important component of price and quantity salience. Another remaining question for future

research is how frequently do households need to be “nudged” with feedback, reminders, or

normative messages in order to permanently shift the long run consumption path or achieve

a given conservation goal. The medical literature offers a cautionary tale with regards to

lulling effects that may results if reminders are too frequent (Pop-Eleches et al. (2011)).

Our results raise questions about how utilities might segment their market alerts by

individual consumption patterns in addition to demographic and geographic information,

and how behavioral “nudges” must be structured to push the household to a new steady

state consumption path as opposed to achieving only transitory deviations. Whether these

results generalize to markets other than electricity and what they imply for firm pricing

models and cash flow management are rich areas for future research.
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Appendix A. Tables

Table A.1: SDG&E Rate Structures 4/15/2009 to 1/31/2009

Rates ($/kWh)
Dates DR DRLI A (flat rate)

4/15/2009 Baseline (11.5 kWh/day) 0.04363 0.04854 0.06544
101% to 130% of Baseline 0.0638 0.06871
131% to 200% of Baseline 0.21818 0.16067

Over 200% of Baseline 0.23818 0.16067
5/1/2009 Baseline (11.8 kWh/day) 0.01692 0.02183 0.07508

101% to 130% of Baseline 0.03709 0.042
131% to 200% of Baseline 0.20379 0.14472

Over 200% of Baseline 0.22379 0.14472
9/1/2009 Baseline (11.8 kWh/day) 0.01692 0.02183 0.07239

101% to 130% of Baseline 0.03709 0.042
131% to 200% of Baseline 0.1988 0.13973

Over 200% of Baseline 0.2188 0.13973
11/1/2009 Baseline (11.5 kWh/day) 0.04455 0.04946 0.06253

101% to 130% of Baseline 0.06472 0.06963
131% to 200% of Baseline 0.21019 0.15268

Over 200% of Baseline 0.23019 0.15268
1/1/2010 Baseline (10.8 kWh/day) 0.06026 0.05867 0.07222

101% to 130% of Baseline 0.08103 0.07944
131% to 200% of Baseline 0.18952 0.1394

Over 200% of Baseline 0.20952 0.1394
Notes: During the time span our data covers (April 15, 2009 to January 31, 2010), residential electricity

rates changed several times by small amounts. This table describes in detail the rates faced by our sample
of households.
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Table A.2: Summary statistics

Variable Mean Std. Dev. Min. Max.

Panel A. Observed Variables

Daily usage (kWh) 20.7 18.3 0 629

Monthly usage (kWh) 621 509 0 14310

Bill ($) 115 127 5.07 2955

CDH 107 113 0 503

HDH 118 118 0 444

Panel B. Constructed Variables

Usage percentile 56.5 27.2 0.396 99.9

Persist 0.27 0.20 -0.61 1.23

Dayonday 5.13 3.49 0.013 51.6

Hotco 0.026 0.032 -0.10 0.28

Coldco -0.008 0.017 -0.17 0.19

Fit 0.41 0.17 0.015 0.99

Pattern -0.74 1.14 -106 -0.003

Notes: Our sample has 10,826 households observed between 71 and 228 days for a

total of 2,914,313 observations for all variables except daily consumption. Occasional

technical problems with the smart meter data system caused missing observations on

daily consumption for some days during the sample period. The sample size of daily

consumption observations is 2,044,222. The variables in panel B were consructed from

household-specific monthly, daily, and hourly data treating each household separately.

Persist is the household-specific coefficient on lagged consumption. Dayonday is the

interday standard deviation of daily consumption. Hotco and Coldco are household

specific coefficients on hourly hot and cold temperatures, respectively, and Fit is the R2

from the regression that produced those coefficients. Pattern is the percentage difference

in average hourly use between the highest and lowest hours of the day. These variables

are described in more detail in Section 4.
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Table A.4: Regression Results for the Response to the Arrival of a Bill, by
Season and Temperature

June-Sept. Oct.-Jan.
1 2 3 4

y(t-1) 0.41*** 0.41*** 0.45*** 0.45***
(0.00327) (0.00327) (0.0244) (0.0244)

Post -0.22*** -0.14***
(0.0165) (0.0183)

Post*CDH -0.0018*** 0.00024
(0.00011) (0.000245)

Post*HDH 0.0013*** -0.0011***
(0.00029) (0.000112)

Marginal Bill -0.28*** -0.19***
Effect (kWh) (0.018) (0.019)

N 932963 932963 673769 673769
R2 0.511 0.511 0.278 0.278
Notes: Robust standard errors are reported in parentheses. The dependent variable is

daily total consumption measured in kWh. Post is a dummy variable indicating the first
week of a new billing cycle. All regressions include all household covariates listed in panel
B of Table A.2, a quadratic in Cooling and Heating Degree Hours, the interaction of the
household covariates with Cooling and Heating Degree Hours, and house-by-month-by-
weekday fixed effects.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.5: Regression Results for the Response to a Bill by Air-conditioning Use

Households divided by quintile of air-conditioning proxy
1 2 3 4 5

Full Sample

y(t-1) 0.49*** 0.37*** 0.40*** 0.41*** 0.41***
(0.0529) (0.00820) (0.00540) (0.00483) (0.00460)

Post -0.041** -0.085*** -0.18*** -0.33*** -0.41***
(0.0189) (0.0157) (0.0223) (0.0279) (0.0396)

Mean consumption (kWh/day) 15.0 13.9 18.1 22.0 34.4
Percent reduction 0.3% 0.6% 1.0% 1.5% 1.2%

N 322217 321874 320924 322890 318827
R2 0.260 0.203 0.308 0.436 0.562

Summer Months Only, Allowing Bill Response to Vary with Temperature

y(t-1) 0.37*** 0.37*** 0.40*** 0.40*** 0.41***
(0.0126) (0.0111) (0.00605) (0.00551) (0.00528)

Post*CDH -0.00016 -0.00023* -0.0011*** -0.0026*** -0.0049***
(0.000126) (0.000125) (0.000213) (0.000281) (0.000370)

Post*HDH 0.00048 0.00036 -0.00016 0.00096 0.0038***
(0.000493) (0.000423) (0.000546) (0.000657) (0.000953)

Marginal -0.015 -0.03 -0.19*** -0.42*** -0.74***
Effects (kWh) (0.0215) (0.0202) (0.0333) (0.0442) (0.0599)

Mean consumption (kWh/day) 14.5 14.0 19.0 24.7 40.7
Percent reduction 0.1% 0.2% 1.0% 1.7% 1.8%

N 186468 185957 187078 185991 187469
R2 0.148 0.227 0.348 0.475 0.599

Notes: Robust standard errors are reported in parentheses. The dependent variable is daily total consumption
measured in kWh. Post is a dummy variable indicating the first week of a new billing cycle. All regressions include all
household covariates listed in panel B of Table A.2, a quadratic in Cooling and Heating Degree Hours, the interaction
of the household covariates with Cooling and Heating Degree Hours, and house-by-month-by-weekday fixed effects.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.6: Regression Results for the Response to a Bill by Household Size

Households divided by quintile of average bill
1 2 3 4 5

y(t-1) 0.38*** 0.38*** 0.39*** 0.40*** 0.45***
(0.00672) (0.00714) (0.00525) (0.00488) (0.0116)

Post -0.084*** -0.16*** -0.21*** -0.29*** -0.36***
(0.0106) (0.0166) (0.0224) (0.0283) (0.0422)

Mean consumption (kWh/day) 7.5 12.6 17.3 23.7 42.3
Percent reduction 1.1% 1.3% 1.2% 1.2% 0.9%

N 321871 321685 320735 321197 321244
R2 0.311 0.364 0.403 0.444 0.500
Notes: Robust standard errors are reported in parentheses. The dependent variable is daily total consumption measured in

kWh. Post is a dummy variable indicating the first week of a new billing cycle. All regressions include all household covariates
listed in panel B of Table A.2, a quadratic in Cooling and Heating Degree Hours, the interaction of the household covariates
with Cooling and Heating Degree Hours, and house-by-month-by-weekday fixed effects.
* p < 0.10, ** p < 0.05, *** p < 0.01

Table A.7: Regression Results for the Response to a Bill by Rate Class

Households divided by electricity rate
Residential Low Income General Service

y(t-1) 0.42*** 0.36*** 0.49***
(0.00280) (0.00426) (0.0332)

Post -0.19*** -0.16*** -0.20**
(0.0146) (0.0170) (0.0856)

Mean consumption (kWh/day) 21.2 15.8 36.6
Percent reduction 0.9% 1.0% 0.5%

N 1061309 447864 97559
R2 0.484 0.425 0.437
Notes: Robust standard errors are reported in parentheses. The dependent variable is daily total consumption

measured in kWh. Post is a dummy variable indicating the first week of a new billing cycle. All regressions
include all household covariates listed in panel B of Table A.2, a quadratic in Cooling and Heating Degree
Hours, the interaction of the household covariates with Cooling and Heating Degree Hours, and house-by-
month-by-weekday fixed effects.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.8: Robustness of Regression Results to Different Periods Following Bill Arrival

1 2 3 4 5
y(t-1) 0.43*** 0.43*** 0.43*** 0.43*** 0.43***

(0.00649) (0.00649) (0.00650) (0.00650) (0.00650)

3 Day -0.22*** Week 1 -0.14***
(0.0190) (0.0125)

7 Day -0.20*** Week 2 0.095***
(0.0118) (0.0128)

10 Day -0.18*** Week 3 0.14***
(0.0111) (0.0122)

14 Day -0.070***
(0.0103)

N 1606732 1606732 1606732 1606732 1606732
R2 0.465 0.465 0.465 0.465 0.465
Notes: Robust standard errors are reported in parentheses. The dependent variable is daily total consump-

tion measured in kWh. 3 Day is a dummy variable indicating the first three days of a new billing cycle. 7
Day, 10 Day, and 14 Day are defined similarly. Column 2 reproduced the results from column 9 of Table
A.3, our preferred specification. Column 5 includes a dummy variable for each of the first three weeks of
the billing cycle. All regressions include all household covariates listed in panel B of Table A.2, a quadratic
in Cooling and Heating Degree Hours, the interaction of the household covariates with Cooling and Heating
Degree Hours, and house-by-month-by-weekday fixed effects.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Appendix B. Figures
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Figure B.1: Conditional consumption throughout the billing cycle.
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Figure B.2: Marginal effects of bill arrival at different cooling degree hours during the summer and heating

degree hours in the winter.
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Figure B.3: Conditional response to bill arrival by hour of day in summer and in winter.
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Figure B.4: Conditional response to bill arrival by hour of day in summer for each quintile of air-conditioning.
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