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1 Introduction

Fostering economic growth is one of the primary objectives of economists and policymakers. The

amount of resources invested in research is often at the heart of the debate regarding how to best

achieve this. Less well known, however, is what role the composition of research plays in determining

growth, particularly when considering the breakdown between basic and applied research. In this

paper, we aim to fill this gap by studying the differential effects of basic versus applied research on

economic growth.

The distinction between basic and applied research is economically important and relates to the

breadth of the scientific examination being undertaken. According to the NSF, basic research invest-

ment refers to a “systematic study to gain more comprehensive knowledge or understanding of the

subject under study without specific applications in mind.” Conversely, applied research is defined as

a “systematic study to gain knowledge or understanding to meet a specific, recognized need.” Many

policy reports, most recently the Economic Report of the President (JEC, 2010, 2016), argue that

basic research is underfunded both by private and public entities.

Figure 1: Composition of Research Investment in
France and the US
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Figure 2: Basic Research Intensity and Number
of Industries

.0
4

.0
6

.0
8

.1
BA

SI
C

 R
ES

EA
R

C
H

 IN
TE

N
SI

TY

0 2 4 6 8
NUMBER OF 1 DIGIT SIC INDUSTRIES

Average Fitted values

Notes: Figure 1 plots the composition of total research spending for the US and France. The data for the US come from the

National Science Foundation, Division of Science Resources Statistics (NSF/SRS), while the data for France come from the French

Ministry of Research. Figure 2 uses 13,708 firm-year observations from French firm level data for the period 2000-2006. The

dependent variable is the ratio of total firm investment in basic research divided by total firm investment in applied research. The

red line represents a linear fit of the firm-year observations, after controlling for firm size (log employment). See Section 3.1 for

further details.

Three empirical features of basic and applied research are of special importance. First, in countries

such as France and the US, almost half of total research investment is allocated to basic research (see

Figure 1). Second, contrary to conventional wisdom, a significant share of basic scientific research

involves the private sector. In France almost 15% of total basic research in the economy is undertaken

by the private sector. Similarly for the US economy, Howitt (2000), estimates that around 22% of all

basic research during the period 1993-1997 was performed by private enterprises. Finally, there are
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significant differences in the incentives of firms to invest into basic research. Figure 2 plots the ratio of

basic to applied research according to the multi-industry presence of firms for a sample of French firms

between 2000 and 2006. The figure suggests that investment into basic research increases as the scope

of a firm’s activities expands, even after controlling for firm size. These stylized facts suggest that

ignoring the composition of research investment and the differential incentives behind each of them

might prevent economists and policymakers from designing the most effective policies for productivity

growth.

Despite clear empirical importance and considerable policy interest, the differential nature of the

roles played by basic and applied research in the growth process is still relatively unexplored, and many

related questions remain to be answered: How sizable are the spillovers from basic research? What are

the potential inefficiencies in a competitive economy, and what are the appropriate government policies

to mitigate them and promote economic growth? This paper attempts to answer these important

questions.

In order to understand the potential inefficiencies in research investment and to design appropriate

industrial policies to address them, it is necessary to adopt a structural framework that explicitly

models the incentives of private and public entities for the different types of research. We propose a

general equilibrium, multi-industry framework with private firms and a public research sector. In our

model, basic research has two distinct features relative to applied research. First, it generates spillovers

that affect subsequent innovations both within and across industries. Applied research, on the other

hand, only generates incremental innovations within a targeted industry. Second, the potential returns

from basic research depend on whether it was generated in the private or the public sector. In line

with the “Ivory Tower” theory of academic research, basic research by private firms in our model will

turn into consumer products faster than that undertaken by public research labs.

To highlight the key economic forces, we first consider a benchmark economy with tractable func-

tional forms, characterize the dynamic equilibrium analytically, and discuss the resulting dynamics

and inefficiencies. Our ultimate goal in this paper is to undertake a quantitative investigation of

the impacts of various innovation policies on the aggregate economy. As such, we then generalize

our benchmark framework to allow for greater quantitative flexibility and estimate the structural

parameters.

We estimate the structural parameters of our model using French firm-level data for the period

2000-2006. Information about research investment comes from the annual R&D Survey conducted

by the French Ministry of Research. The advantage of this data is that it includes information on

the basic and applied research expenditures of firms. To measure the breadth of a firm’s activities

we combine two datasets (“Enquete Liaisons Financieres” (LIFI), “Enquete Annuelle des Entreprises”

(EAE)) that allow us to precisely identify a firm’s links to different industries not only through product

lines within the same firm, but also through their ownership links. Finally we use the balance sheet

data from these firms to measure firm dynamics and NBER patent citation data to measure the quality

of innovation. The final sample is composed of 13,708 firm-year observations.

These features of our data allow us to identify and estimate the key spillovers involved in each
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type of research. We identify the cross-industry spillovers associated with basic research through the

investment choices of multi-industry firms. Consistent with our model, we observe that investment

into basic research increases as the scope of a firm’s activities expands. The intuition is that as

the range of a firm’s products and industries becomes more diversified, its incentive for investing in

basic research relative to applied research should increase due to better appropriability of potential

knowledge spillovers. Similarly, we identify the within-industry spillovers of basic and applied research

through their impact on subsequent innovations. We show that patents derived from basic research

efforts are associated with higher quality of follow-up innovations for approximately 8 years. To

further inform the model parameters on firm dynamics, we simultaneously target a rich set of firm

characteristics related to multi-industry presence, profitability, age, and entry/exit patterns.

Our main result is the quantification of the inefficiencies due to dynamic misallocation in research.

We find that 89% of spillovers from basic research across industries are not internalized and that basic

research makes applied innovation 60% more productive. As a result, there is a dynamic misallocation

of research efforts, which reduces welfare by 3.6 percentage points in consumption equivalent terms.

One striking feature of the solution to the social planner’s problem is that the fraction of resources

devoted to research activities is not substantially greater than in the decentralized equilibrium. Indeed,

the dominant misallocation here is not that between production and research, as is common in this

class of models, but among the various types of research activities, in this case, applied and basic

innovation. Another striking feature is that in the case of applied innovation, there is actually an

overinvestment in the decentralized economy due to the strategic complementarity between basic

research spillovers and the returns to applied research.

This raises an important question: to what extent can public policies address this inefficiency? The

first policy we analyze is a uniform research subsidy to private firms. In this environment, subsidizing

overall private research is ineffective since this policy oversubsidizes applied research, which is already

overinvested in due to competition. Therefore, the welfare improvement from such a subsidy is limited

unless the policymaker is able to discriminate between types of research projects at the firm level. We

thus consider a hypothetical type-dependent research subsidy and find that the optimal policy is to

subsidize basic research by 50% and applied research by 14%. Finally, we show that increased funding

to public basic research labs (e.g., universities) can have significant welfare improvements, especially

when the speed of the transmission of their research findings to the private sector is increased.

Related Literature Our main contribution is to the macro literature on endogenous technical

change. Although the different characteristics of basic and applied research, and public and private

research have been widely recognized to be of first-order importance by policymakers, these issues have

received insufficient attention from the economic growth literature. In particular, models of endogenous

technological change (see Aghion, Akcigit, and Howitt (2014) for a recent survey) mainly considered

a uniform type of (applied) research and ignored basic research investment in the economy. A few

exceptions are Aghion and Howitt (1996, 2009), Cozzi and Galli (2009, 2014), Gersbach, Schneider,

and Schneller (2013), Gersbach and Schneider (2015), Morales (2004), and Mansfield (1995), who
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have considered theoretical models with both basic and applied research investment. We contribute

to this literature by building a model with rich firm dynamics as in Klette and Kortum (2004) and

Lentz and Mortensen (2008) that is estimated with new firm-level micro data on firms’ research

investment. In addition to including the private investment in basic research, we enrich the analysis

of the distinct features of basic research by introducing a novel method to identify within- and cross-

industry spillovers.

Methodologically, our paper is related to the growing branch of endogenous growth with firm dy-

namics that estimates these models structurally using micro data. For instance, Lentz and Mortensen

(2008, 2016) use a panel of Danish firms, Acemoglu, Akcigit, Bloom, and Kerr (2013), Akcigit and

Kerr (2016), and Garcia-Macia, Hsieh, and Klenow (2015) use US Census of Manufacturing and Peters

(2015) uses Indonesian micro data, and Ates and Saffie (2014) use Chilean firm-level data to estimate

enriched versions of the quality-ladder models. A number of papers have also studied the role of

innovation policy in similar class of models. For instance, Atkeson and Burstein (2015) study the im-

pact of policy-induced changes in innovative investment by firms on growth in aggregate productivity.

More recently, Akcigit, Hanley, and Stantcheva (2016) use a mechanism design approach to solve for

the optimal design of innovation policy using a quality-ladder model with asymmetric information on

firm types. Finally, Garicano, Lelarge, and Van Reenen (2016) have used firm-level data to study the

impact of size-dependent policies on misallocation of factors of production in France. These papers

do not consider the distinction between basic and applied research, whereas our focus here is to esti-

mate the associated spillovers using French firm-level data and design relevant policies around these

spillovers.

Consistent with our results, some papers show that the speed of technology diffusion is linked to

the ability of inventors to utilize ideas for production (Akcigit, Celik, and Greenwood, 2016), or to the

existing patent rights over those technologies (Galasso and Schankerman, 2015). In the same spirit,

Bloom, Schankerman, and Van Reenen (2013) identify technology and product market spillovers for

US manufacturing firms. They show that small firms generate lower social returns to R&D because

they operate in technological niches. Our paper, suggests that their result can be rationalized by

these firms’ lower incentives to invest into basic research which is more difficult to appropriate. In our

framework, more public basic research investment stimulates more private applied research. In that

regard, our results are parallel with the findings of Cozzi and Impullitti (2010) and Impullitti (2010)

which show that increases in the technological content of public spending encourages more private

R&D spending in the US.

The rest of the paper is organized as follows. The discussion of our theoretical framework con-

sists of two parts: In Section 2 we provide a benchmark version of the main model, characterize its

dynamic equilibrium in an intuitive manner, and discuss the main mechanisms. We then describe a

generalization of the benchmark model that we bring to the data and estimate. Section 3 describes

the estimation and identification of the model. Section 4 provides a detailed discussion of the welfare

effects of various policies on the decentralized economy. Section 6 concludes. The Appendix con-

tains omitted proofs and derivations (A), the data description (B), further details on within-industry
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spillovers (C), robustness checks on the stylized facts (D), and further details on identification (E).

2 Theory: Growth with Basic and Applied Research

Our theoretical framework will depart from standard endogenous growth models in a number of ways.

First, we introduce a distinction in the appropriability of innovations from basic and applied research.

Following the influential literature on basic science, we consider the possibility that basic research not

only generates spillovers within an industry, but also across industries (Nelson, 1959). We thus model

an economy in which firms can operate in multiple industries, a feature that endogenously generates

incentives for firms to invest into basic research.

A second key feature of our model is the distinction between embodied and disembodied knowledge

in the economy. Both private firms and public research labs are investing into basic research in this

economy. However successful basic research in the the private sector is more likely to be immediately

turned into a consumer product (embodied), as opposed to simply increase the stock of knowledge

available for future innovators (disembodied). This will induce a delay in the effect of public basic

research. The ivory tower nature of academic research has been widely discussed in academic and

policy circles, with a formal analysis being provided by Aghion, Dewatripont, and Stein (2008).1

For ease of exposition and intuition, in this section, we will first outline a simplified baseline

framework with myopic (one-period-ahead maximizing) firms that highlights the key elements of the

main model. After deriving the theoretical results and discussing the main economic forces at play, in

Section 2.3 we will describe the generalizations we make to the benchmark model.

2.1 Baseline Model

We consider a representative household economy in continuous time. The household consists of a

measure M of workers. Each worker has one unit of labor that is supplied inelastically in the labor

market. There is a unique final good Z (t). The economy is a closed economy, there is no physical

capital investment and all expenses are in terms of the labor units. Therefore, Z (t) will also be equal

to household consumption at time t.

2.1.1 Production

Production is divided into three major sectors: downstream, midstream, and upstream. The upstream

sector produces intermediate goods (yij) that are used to produce industry aggregates (Yi) in the

midstream sector. Finally, the downstream sector combines these industry aggregates into the final

good (Z). We will now describe them in detail.

1In their model the academic sector is a precommitment mechanism that allows scientists to freely pursue their own
interests. Consistent with our model, academic scientists may therefore end up working on projects with little immediate
economic value. An important difference however is that in their setup there is full appropriability of the innovation.
We relax this assumption and show that it generates a delay in the innovation process with consequences for economic
growth.
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Downstream Sector The final good Z(t) is produced in the downstream sector by infinitely many

competitive firms that combine inputs from M different industries according to the following constant

elasticity of substitution (CES) production function

Z (t) =

[
1

M

∑M

i=1
Yi (t)

γ−1
γ

] γ
γ−1

. (1)

In this production function, Yi (t) is the aggregate output from industry i ∈ {1, ...,M}. The economy

consists of M ∈ Z+ industries. In the context of firm-level data, each industry i can be thought of

as a different 1-digit Standard Industrial Classification (SIC) code and Z(t) is simply the aggregate

GDP of the economy.2 We normalize the price of the final good to 1 at every instant t without any

loss of generality. For notational simplicity, time subscripts will henceforth be suppressed.

Midstream Sector Each industry aggregate Yi is produced competitively, combining inputs from

a continuum of product lines. Let yij denote the production of upstream good j in industry i by the

firm that has the best technology in that product line. Industry aggregate i is produced according to

the following CES production function

Yi =

[∫ 1

0
y
ε−1
ε

ij dj

] ε
ε−1

. (2)

Upstream Sector In product line j, the firm that has the latest (and also the best) technology

produces as a monopolist according to the following linear production technology that takes only labor

as an input

yij = qijlij (3)

where qij > 0 is the labor productivity associated with product line j and lij is the number of

production workers employed. Let us denote the wage rate in the economy by w in terms of the final

good. The specification in (3) implies that each product yij has a constant marginal cost of production

w/qij > 0. We denote the productivity index of industry i by

q̄i ≡
(∫ 1

0
qε−1
ij dj

) 1
ε−1

. (4)

Definition of a Firm In this model, as in Klette and Kortum (2004), a firm is defined as a

collection of product lines in which it is the lead producer. These product lines can come from

multiple industries. In what follows, mf ∈ {1, ..,M} will denote the number of industries in which

the firm actively operates, nif ∈ Z+ will denote the number of product lines firm f owns in a given

industry i, and finally nf will stand for the total number of product lines owned by the firm and will

satisfy nf ≡
∑

i∈m nif . For notational tractability, henceforth we will drop the firm index f , when it

creates no confusion.
2Note that we introduce this multi-industry structure in order to model cross-industry spillovers. To avoid any

additional theoretical complications, we will focus on symmetric equilibria in which industry aggregates assume a common
value.

6



A firm’s payoff in a given product line j in industry i depends on its productivity level qij . There-

fore, the payoff-relevant state of a firm is denoted by

q = (q1,q2, . . . ,qm)

where qi = {qi,1, qi,2, . . . , qi,ni} is a multi-set keeping track of all the productivity levels of the firm

in industry i where it has the best technology.3 Working with such a large and complex state space

proves burdensome in practice. Later on, we will impose sufficient assumptions that allow us to use a

much simpler equivalent representation of a firm’s product portfolio.

Example 1 An example is helpful to summarize the description so far. Figure 3 illustrates an example

of an economy that consists of M = 3 industries. It also shows an example of a firm (f) that operates

in m = 2 industries (i = 1 and i = 3) and has n1 = 3 product lines in industry i = 1 and n3 = 2

product lines in i = 3. This firm does not currently operate in industry i = 2.

Figure 3: Example of a firm

 
                     Firm f   (𝒏𝟏𝒇 = 𝟑, 𝒏𝟐𝒇 = 𝟎, 𝒏𝟑𝒇 = 𝟐, 𝒂𝒏𝒅 𝒎𝒇 = 𝟐) 

      1 0 

quality level 
 q 

  product 
line j 

quality level 
 q 

0       1 

  product 
line j 

      1 

quality level 
 q 

0 

  product 
line j 

Industry 3 Industry 2 Industry 1 

  

A firm’s portfolio of products will expand through successful innovation. Likewise, it will lose

product lines when other firms or potential entrants successfully innovate on one of its product lines

(thus stealing it). These innovations will be the source of economic growth in this economy. The next

subsection will describe the details of the innovation technology.

2.1.2 Innovation and Technological Progress

In this economy, there are two types of innovations (basic and applied) and two different groups of

agents (private and public sectors) generating productivity growth.

Firms invest in both basic and applied research, thus generating innovations that drive produc-

tivity growth. As Nelson (1959) and Aghion and Howitt (1996) describe it, fundamental advances

in technological knowledge come through basic innovation and open up windows of opportunity for

future research. Applied innovation builds on these existing basic innovations, thus realizing these

opportunities. That being said, innovations eventually run into diminishing returns. If the latest basic

innovation in a product line becomes outdated, applied innovations in that product line become less

3A multi-set is a generalization of a set that can contain more than one instances of the same member. For instance,
given j 6= j′, a multiset qif can contain qif (j) and qif (j′) regardless of whether qif (j) = qif (j′).
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productive until a new basic innovation introduces additional fundamental knowledge that can make

the applied innovation more productive again. Therefore, there will be complementarity between the

two types of innovation at the aggregate level.

These innovations come from two sources: First, the private sector invests in both basic and applied

innovation with the goal of increasing their market share. Second, the government uses tax revenues to

fund public research labs to produce basic innovations. In what follows, we are going to describe firms’

research technology and the distinction between basic and applied research. Then we will describe the

public research technology.

Research by Private Firms Firms choose their flow rate of innovation and pay a labor cost that

is increasing and convex in this rate. Basic and applied research levels are chosen separately, and

there is no complementarity between them in terms of research costs. For the innovation production

function, we will follow the literature (see Klette and Kortum (2004), Lentz and Mortensen (2008),

Acemoglu, Akcigit, Hanley, and Kerr (2016), and Acemoglu, Akcigit, Bloom, and Kerr (2013)). Firms

undertake innovation by combining their existing, non-tradable intangible capital with researchers

(hired at wage rate w, as with production workers) in a Cobb-Douglas production function. In our

model, the intangible capital stock in a particular industry i is proxied by the number of product lines

ni that a firm owns in that industry. The production function for applied and basic research then

takes the following form

Ai = n
1− 1

νa
i H

1
νa
ai Ωa and Bi = n

1− 1
νb

i H
1
νb
bi Ωb

where Ωa,Ωb > 0 are scale parameters, νa, νb > 1 are the inverse of the innovation production function

elasticities with respect to researchers and Hai and Hbi denote the number of researchers that firm f

needs to hire in order to generate the Poisson flow rates for applied (Ai) and basic research (Bi) in

industry i.

The above specifications, which are standard in this class of models, capture the idea that a firm’s

knowledge capital facilitates innovation.4 Let us define ai ≡ Ai/ni and bi ≡ Bi/ni as the applied

and basic innovation intensities. Similarly, let ha(ai) ≡ Hai/ni and hb(bi) ≡ Hbi/ni be defined as

the number of researchers per product line hired for applied and basic research. As a result, we can

summarize the cost of doing applied and basic research as

Ca (ai | ni) = wnia
νa
i ξa and Cb (bi | ni) = wnib

νb
i ξb (5)

where w is the wage rate, ξa ≡ Ω−νaa , and ξb ≡ Ω−νbb . Notice that total cost is directly proportional to

the number of product lines.

Similar to Klette and Kortum (2004), Lentz and Mortensen (2008), Acemoglu, Akcigit, Hanley,

and Kerr (2016), and Acemoglu, Akcigit, Bloom, and Kerr (2013), both applied and basic research

are directed toward particular industries but undirected within those industries. In other words, once

4It also simplifies the analysis by making the problem proportional to the number of product lines.
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a firm chooses Ai and Bi, the realization of innovations will take place on a random product within

industry i.

Innovation through basic research introduces a new generation of fundamental technical knowledge.

The utilization of this fundamental knowledge for production requires that the firm have what we

call industry-specific working knowledge. This translates one of the main insights on basic research

presented in the introduction into our model. Although the knowledge generated by basic research is

often applicable to many industries, the ability to turn it into patents and capture its full economic

value critically depends on the spectrum of activities and technologies operated by the firm. In the

model, we say that each firm has sufficient working knowledge for utilization only in the industries

where it has undertaken production (m). For now, we take the joint distribution Γm,n over m and n

as given but we will endogenize it in the generalized model in Section 2.3.

Let qij(t) be the highest productivity technology for producing j in industry i. When a firm that

has working knowledge in i produces a basic innovation that has a direct application in industry i and

product line j, the same firm uses this basic knowledge for production and patents this new high-value

technology. As a result, the firm improves qij(t) by ηq̄i(t)

qij (t+ ∆t) = qij (t) + ηq̄i(t) (6)

where η > 0 is the step size, and q̄i is the productivity index defined in equation (4). When the firm

produces this new innovation, it adds this product line with the productivity improvement into its

portfolio q(t+ ∆t) = q(t) ∪ {qij(t+ ∆t)}, which generates per-period profit of π (qij(t+ ∆t)). Going

back to Example 1, firm f would increase its total number of product lines from 5 to 6 with this basic

innovation.

Moreover, basic research features two potential spillovers:

• within-industry spillover : Each new basic innovation changes the evolution of the product line

by introducing a radically new technology. The introduction of this new basic technology causes

subsequent applied innovations to be larger until the latest basic technology becomes outdated

through some random process. We refer to product lines just hit by basic innovation as hot

product lines, as opposed to cold product lines, whose latest basic innovation has become out-

dated.

• cross-industry spillover : Each new basic innovation has the potential for spillovers into other

industries. With some probability a basic innovation will generate an additional basic innovation

in some other industry. If the firm has working knowledge in this other industry, it can use the

innovation for production. Otherwise, the new technology contributes to the pool of existing

basic knowledge and will eventually contribute to a new consumer product made by some other

producer.

These two types of spillovers lie at the heart of our analysis; therefore, we will now discuss each in

more detail.
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Within-Industry Spillover from Basic Research Applied research makes use of the within-

industry spillover from basic research and builds on the existing latest basic technological knowledge

in a product line. The productivity of each applied innovation is a function of how depreciated the

latest basic technology is. If the latest basic knowledge in j is undepreciated (i.e., still hot), a successful

applied innovation will benefit from it and improve the latest productivity qij(t) of that product line

by ηq̄i(t), as in expression (6): qij(t+∆t) = qij(t)+ηq̄i(t). If the latest basic technology of the product

line is depreciated (i.e., cold), a successful applied innovation will improve the latest productivity only

by an amount proportional to λ < η so that

qij(t+ ∆t) = qij(t) + λq̄i(t). (7)

We assume that a new basic technology depreciates (innovations run into diminishing returns) at a

Poisson rate ζ > 0. On the other hand, a new basic innovation reactivates the product line until the

next time it cools down again. Let us denote the arrival rate of basic innovations to product lines

by τb. Then during a small time interval ∆t, each product line will be subject to the transition rates

denoted in Table 1:

Table 1: Transition matrix for within-industry spillovers

hot cold

hot 1− ζ∆t ζ∆t

cold τb∆t 1− τb∆t

Figure 4 illustrates the implications of within-industry spillovers. In every industry, at any point

in time, some product lines will be hot (red dotted lines) and some product lines will be cold, in

cases where the latest technology is outdated (black solid lines). We will denote the share of hot

product lines by αi ∈ [0, 1]. In a balanced-growth-path equilibrium, the share of the hot product

lines will be determined through the transition rates in Table 1 and will remain invariant. An applied

innovation is more productive if the latest basic knowledge in that product line is still “hot” and

improves the productivity by ηq̄i; otherwise, the contribution is only λq̄j where η > λ. This highlights

the complementarity between basic and applied research.

Figure 4: Within-industry spillover
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Cross-Industry Spillover from Basic Research Basic research features an additional element

of uncertainty arising from random spillovers into other industries. When a firm successfully innovates

through basic research, the resulting new fundamental knowledge will be applied first by that firm to

increment the productivity of a random product in the target industry.

The characteristic feature of basic research we wish to capture is that it often has applications in

many industries other than the one for which it was originally intended. Therefore, we will assume

that when a basic innovation occurs, it applies with probability one to the target industry, and with

probability p ∈ (0, 1), it generates an additional basic innovation in another industry determined by

nature at random. Thus, p is our measure of the intensity of cross-industry spillovers. Let 1i,i′ be an

indicator function that takes a value of one if a basic innovation in industry i has an application in

industry i′ and zero otherwise. Then the unconditional probabilities satisfy

Pr
[
1i,i′ = 1

]
=

{
p

M−1 if i′ 6= i

1 if i′ = i
. (8)

The spillover innovation in industry i′ will be of step size η as well but will not generate additional cross-

industry spillovers. This new innovation will be used by the same firm f if it has working knowledge

in i′. Otherwise the production potential of this innovation will be used by the next inventor in that

product line.

This structure captures a hypothesis put forth by Nelson (1959). When a firm generates some

basic knowledge, it can turn this into an immediate application only in the sectors in which it has

working knowledge. In order to capture the full return from new basic scientific knowledge in industries

where a firm is not present but the knowledge could have an application, the innovating firm must

first patent and then license or sell the innovation to other firms in those industries. However, the

applications of significant scientific advances are often not immediate and firms can generally turn

them into patentable applications only in their own industries using their expertise in the field.

Example 2 Cross-industry spillovers are depicted in Figure 5. Firm f from Example 1 now produces

a basic innovation in industry 3. This adds a new product line to the firm’s portfolio and hence the

number of product lines of the firm goes from 2 to 3 in i = 3. In addition, this basic knowledge has a

potential application in industries i = 1 and i = 2 with probability p. The spillover in industry i = 1

is used by the firm since it has working knowledge there. However, the application in i = 2 is not

immediate to the firm due to lack of working knowledge and therefore it is not used by the current firm

but contributes to the pool of basic knowledge in i = 2, which can be used by another firm in the future.

Recall that m denotes the number of industries in which a firm has working knowledge. Then the

probability of a utilized spillover for the firm is

ρm ≡
p (m− 1)

M − 1
∈ [0, 1).

This highlights the well-known appropriability problem of basic research. There is a significant chance

that the new basic knowledge will be relevant to multiple industries, but it is not always clear that a
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Figure 5: Cross-industry spillover
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firm will be in a position to exploit all of these avenues of production and patenting. However, firms

operating in more industries will have a greater probability of being able to directly use all facets of a

basic innovation. As Nelson puts it, firms that have fingers in many pies have a higher probability of

using the results of basic research. A broad technological base increases the probability of benefiting

from successful basic research.

Public Basic Research In our model, the academic sector will be the other source of basic knowl-

edge creation. One of the main tasks of public research labs in an economy is to produce the necessary

basic scientific knowledge that will be part of the engine for subsequent applied innovations and growth.

We assume that the public research sector consists of a measure U of research labs per industry. Each

lab receives the same transfer R̄ from the government to finance its research which results in an overall

funding level of R = R̄× U ×M .

We assume that each public research lab generates a flow rate of u by hiring hu researchers with

the same basic research technology as a one-product firm in (5), so that u = Ωbh
1
νb
u .5 This specification

implies that the government can affect the basic knowledge pool in the economy through the amount

of funds R allocated to the academic sector. The flow rate of basic innovation from the academic

sector will satisfy

u =
(
R̄/w

) 1
νB Ωb (9)

where u is the academic basic innovation flow per lab. In this economy, R is a policy lever controlled

by the policymaker. As with private firms, each basic innovation generated by the academic sector

applies to industry i and a random product line j and makes that product line hot. However, this

innovation by public labs will turn into output only upon a subsequent private applied innovation. In

addition to i, the same basic knowledge will contribute to the basic knowledge pool in another industry

i′ 6= i and line j′ with probability p ∈ (0, 1) . Note that the equilibrium fraction of hot product lines α

will be determined by the aggregate rates of public (u) and private (bm) basic research as well as the

cool-down rate (ζ).

5In reality, public research labs may have a different research technology than private labs. However, obtaining data
on both the inputs and outputs of individual public labs is difficult. The separate estimation of public and private
innovation production functions is left for future research.
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Remark It is important to note that we assume that innovation done by public labs is turned into

consumer products only upon subsequent innovation by private firms. The lag between the

creation of publicly funded innovations and actual goods production is empirically shown in a

large literature.6 This important issue is generally overlooked in the theoretical growth literature.

Inclusion of this feature generates some new and interesting dynamics, such as the importance

of involvement of the private sector in basic research.

Entry and Exit The research technology for a single outside entrant is assumed to be the same as

that of applied innovation for a firm with a single product line. Thus if an outside entrant hires he

researchers, it produces a flow probability of entry of ae = h
1
νa
e Ωa.

There is a mass E of outside entrants per industry. Varying this parameter will control the relative

importance of outside entry in the economy. This will imply that creative destruction arising from

new entrants will be equal to E × ae.
In our model, there will be both endogenous and exogenous channels for firm exit. First, a firm

that loses all of its product lines to other competitors will have a value of zero and thus will exit.

Second, each firm has an exogenous death rate κ > 0. When this occurs, the firm sells all of its

product lines to random firms at a “fire sale” price P.7 On the flip side, firms will receive a buyout

option with a probability that is proportional to their number of products.

Labor Market Labor is split between production (Lp) and research labor. Research labor can be

further subdivided into that devoted to private basic (Lb), public basic (Lu), private applied research

(La) and firm entry (Le). Since the total labor supply is M workers, the labor market clearing condition

is given by

M = Lp + Lb + La + Le + Lu.

The labor utilization from each component can be expressed in a more concise form when we investigate

the properties of the dynamic equilibrium in the next section.

Household Problem Finally, we close the model by describing the household problem that de-

termines the equilibrium interest rate in this model. The household consumes the final good and

maximizes the following lifetime utility

W0 =

∫ ∞
0

exp (−δt) C(t)1−γ − 1

1− γ
dt (10)

where C (t) is consumption at time t, γ is the constant relative risk aversion parameter, and δ is the

discount rate. The household owns all the firms in the economy, which generates a risk-free flow return

of r in aggregate. The household also supplies labor in the economy, through which it earns wage

rate w (t). Finally, the household pays a lump-sum tax T (t) ≥ 0 every instant. Thus, the household’s

6Rosenberg and Nelson (1994), and Mowery, Nelson, Sampat, and Ziedonis (2004), among several others.
7The exact value of this price will not play any role for the equilibrium determination.
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intertemporal maximization is simply to maximize (10) subject to the following budget constraint

C (t) + Ȧ (t) ≤ r (t)A (t) +Mw (t)− T (t)

where A (t) is the asset holdings of the household.

2.2 Equilibrium

In this section, we characterize the dynamic equilibrium of our model. Our focus is on a symmetric

balanced-growth-path (SBGP) equilibrium where all industries start with the same initial conditions

at time t = 0 and all aggregate variables grow at the same endogenous rate g.

In this model, three variables affect the payoff of the firm: the number of product lines n, the

number of industries m, and the relative productivity

q̂ij ≡ qij/q̄i (11)

of its product lines, which is the absolute productivity in line j normalized by the productivity index

q̄i in industry i. Thus, each incumbent firm is characterized by its state k ≡ (q̂, n,m) .

More specifically, given a government policy sequence [T (t)]∞t=0, an SBGP equilibrium is composed

of a sequence of intermediate good quantities, prices, the basic and applied innovation rates of private

firms and entrants, the wage rate and interest rate, the joint distribution of multi-industry presence

and product count, hot and cold product line productivity distributions, the fraction of hot product

lines, i.e., [yk (t) , pk (t) , bk (t) , ak (t) , ae (t) , w (t) , r (t) , Γm,n (t) ,FH (t) ,FL (t) , α (t)]∞t=0, such that

all firms choose quantity and price to maximize their profits, incumbent and entrant firms invest in

research to maximize their firm value, the labor market clears, the household maximizes its discounted

sum of future utilities, and the distributions satisfy the relevant flow equations.

Solution of the Model The standard monopoly profit maximization delivers the following familiar

equilibrium price and quantities (interested readers are referred to the Appendix Section A for the

detailed derivations)

yj = q̂εjZ and pj =
1

Mq̂j
. (12)

Clearly, a monopolist’s quantity is increasing and price decreasing in the relative productivity q̂ of

the product line. Finally, the equilibrium profits of the monopolist are again increasing in its relative

productivity q̂ and the average market size Z/M :

π(q̂) =
q̂ε−1

ε

Z

M
. (13)

Next, only in this section, we focus on myopic firms that maximize their one-period-ahead returns (as

opposed to forward-looking firms that maximize the discounted sum of future profits). This will allow

us to provide some useful analytical results and highlight the key economic forces of our model. In

our quantitative analysis (Section 3), we will generalize this and focus on forward-looking firms.
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Myopic Firms Consider now a firm that has n product lines in m industries. Moreover, in an

SBGP, an α fraction of product lines are hot. Then the maximization problem when deciding for the

amount of basic research can be written as

max
bm

{
nbm (1 + ρm)V H − w̃nbνbξb

}
where V H ≡ EHq̂ π (q̂ + η) is the expected return to a successful basic innovation and w̃ ≡ w

Z/M is the

normalized wage rate. Several observations are in order. First, the expected return from basic research

investment is increasing as the firm has fingers in more pies as Nelson argued (higher ρm). Second,

the innovations are undirected within industries; therefore, the firm has to form an expectation for

the expected profit EHq̂ π (q̂ + η), which means that we have to keep track of the invariant relative

productivity distribution to compute V H . Finally, both the returns and the costs are proportional to

the number of product lines n, which makes the problem much more tractable and the quantitative

solution manageable. Now we can express the first-order condition as

bm =

[
(1 + ρm)V H

νbξbw̃

] 1
νb−1

The most important result here is the fact that basic research investment is increasing in the multi-

industry presence of the firm. The strength of this positive relationship will be mainly governed by

the probability of the cross-industry spillover parameter p, which will help us match Figure 2.

Fact 1 A firm’s basic research investment is increasing in its multi-industry presence.

Both private firms and public research labs are generating basic research in this economy. It

is useful to break down total basic research into its embodied and disembodied components. The

distinction is based on whether the basic knowledge is immediately turned into a consumer product

(embodied) or simply added to the stock of knowledge available for future innovators (disembodied).

We obtain the following aggregates

Embodied: τ eb ≡
M∑
m=1

µm(1 + ρm)bm

Disembodied: τdb ≡
M∑
m=1

µm(p− ρm)bm + (1 + p)u (14)

Total: τb ≡ τ eb + τdb

where we define the mass of product lines owned by firms inm industries by µm, which can be computed

from the joint distribution using µm ≡
∑∞

n=1 n · Γm,n. Then τ eb and τdb correspond respectively to the

embodied and disembodied components of basic research. Note that the disembodied component

includes both private spillovers that are unused and the results of public basic innovation. Finally, τb

is simply the overall flow of basic innovation, including all spillovers.

Using this aggregate rate and the cool-down rate ζ, we can express the steady-state flow equation:

the number of product lines that become hot must be equal to the number of product lines that cool
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down. In other words, we must have αζ = (1 − α)τb. As a result, the steady-state fraction of hot

product lines is

α =
τb

ζ + τb
. (15)

The share of hot product lines, those having basic knowledge that can be turned into better consumer

products (α), is increasing in the amount of basic research flow. This expression highlights the role of

public policy in affecting the knowledge stock. The more money is allocated to public basic research,

the higher will be the basic research flow from public research labs (u), which will then increase the

fraction of hot product lines through τb, as in (14) and (15).

However, a bigger α is meaningful only when there is subsequent applied research that turns this

existing basic knowledge stock into consumer products. Therefore, we now turn to the applied research

decision of the firms. Their maximization problem is simply

max
a

{
na
[
αV H + (1− α)V C

]
− w̃naνaξa

}
where V H ≡ EHq̂ π (q̂ + η) is the expected returns from hot product lines and V C ≡ ECq̂ π (q̂ + λ) is that

from cold ones and w̃ = w
Z/M is the normalized wage rate. When investing in applied research, firms

form two types of expectations. The first one is due to the undirected nature of research: firms have

to form expectations over the relative productivity q̂ that they are going to land on. The second, and

more important one, is due to the complementarity between basic and applied research: firms take

into account the fraction of hot product lines. Firms invest in applied research according to

a =

[
αV H + (1− α)V C

νaξaw̃

] 1
νa−1

.

The crucial observation here is the complementarity between basic and applied research. In equilibrium

V H > V C since hot product lines are associated with a larger step size η. Hence, if there are more hot

product lines (a higher α), each firm increases its investment in applied research.

Fact 2 Basic and applied research investments are complementary. In particular, higher public basic

research investment encourages firms to invest more in applied research.

However, the fraction of hot product lines α is not sufficient to determine the incentives for applied

research alone due to the correlation between this product state and productivity. The incentives

will be a function of the fraction of hot and cold product lines and the average qualities within those

types. In particular, firms must know the values of EHq̂ (q̂ + η)ε−1 and ECq̂ (q̂ + λ)ε−1 due to the exact

form of the profit function in equation (13). Therefore, Lemma 1 describes the laws of motion for the

type-specific productivity distributions.

Let us denote the aggregate rate of applied innovation by τa such that

τa =
M∑
m=1

µmam + Eae. (16)

Note that in the baseline model, am = a for all m, but this will not necessarily be the case in the

general model in Section 2.3. Recall that τ eb denotes the arrival rate of embodied basic research, as
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defined in (14). Now we can denote the aggregate rate of creative destruction (the rate at which firms

lose product lines to other firms) by τ :

τ ≡ τa + τ eb . (17)

Creative destruction is determined by the rate at which incumbents produce basic innovations which

can be embodied into production immediately (τ eb ), and by the rate at which incumbents and entrants

produce applied innovations (τa). Now we are ready to state the following lemma.

Lemma 1 Let FH(·, t) and FC(·, t) be the aggregate product cumulative measures by type (hot or cold).

The flow equations for these objects are, respectively,

ḞH(q̂) = −τ [FH(q̂)−FH(q̂ − η)] + τ ebFC(q̂ − η)− ζFH(q̂) + τdb FC(q̂) + gq̂[∂FH(q̂)/∂q̂]

ḞC(q̂) = −τa [FC(q̂)−FC(q̂ − λ)]− τbFC(q̂) + ζFH(q̂) + gq̂[∂FC(q̂)/∂q̂]

Proof. See Appendix A.

The labor market clearing condition can now be expressed in terms of the above endogenous

variables. One additional relationship we will exploit is that between the mass of labor devoted to

production and the normalized wage rate. This can be derived from the goods production specification

(see Section A in the Appendix for its detailed derivation)

Lp =
Z

w

(
ε− 1

ε

)
Using this and the symmetric nature of the equilibrium, we express the labor market clearing condition

as an average over industries

1 =
1

w̃

(
ε− 1

ε

)
+ ξb

(∑
m

µmb
νb
m + Uuνb

)
+ ξa(a

νa + Eaνae ) (18)

This expression equates the labor supply per industry (= 1 since the total labor supply is M) to labor

demand for production workers; private basic researchers, which is a function of the multi-industry

presence of the firms; public basic researchers, which is determined by public policy; incumbent applied

researchers; and entrant basic researchers.

Finally, plugging the equilibrium intermediate good quantity (12) into the aggregate production

functions (2) and (1), we find that the aggregate output is

Z = q̄Lp/M (19)

This expression simply says that the aggregate output is equal to the product of the number of

workers employed for production and the aggregate productivity index of the economy. In an SBGP

equilibrium, the labor allocated for production is constant. Therefore the growth rate of aggregate

output (and also output per worker) will be equal to the growth rate of the productivity index q̄. The

following proposition provides the exact growth rate of the productivity index.
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Proposition 1 In an SBGP, the growth rate of the productivity index is

g =
τa

[
αEHq̂ (q̂ + η)ε−1 + (1− α)ECq̂ (q̂ + λ)ε−1 − 1

]
+ τ eb

[
Eq̂ (q̂ + η)ε−1 − 1

]
ε− 1

(20)

Proof. See Appendix A

This growth expression shows that the engines of economic progress include both applied and basic

innovation. More important, the basic knowledge stock in the economy, represented by α, makes each

applied innovation more valuable and contributes more to growth (since η > λ). This expression shows

how public funding can contribute to growth through its indirect impact on private research.

To sum up, let us briefly discuss the sources of inefficiency and what policy can achieve in this

model. First, as in standard quality ladder models, there are intertemporal spillovers within each

product line. Second, firms simply enjoy the expected duration of monopoly power due to the com-

petition channel of creative destruction. As a result, the private value of innovation differs from the

social value of innovation. It is also worth highlighting that in this model, there could be either

over- or underinvestment in R&D. In addition to the standard channels, our model features additional

spillovers due to basic research, both within and across industries. Finally, there are additional static

distortions due to monopoly power. However, since we are primarily interested in the dynamic inef-

ficiencies associated with innovation and basic research, we will consider the case of a social planner

who is still subject to monopoly distortions on the production side.

All of these inefficiencies will generate room for innovation policy, and our estimated model will

govern whether there is over- or underinvestment in the various types of research expenditures in the

decentralized equilibrium. It will also provide a framework within which to evaluate the effects of

these innovation policies.

2.3 Generalizations of the Model

The previous section introduced a simplified version of the main model to highlight the key economic

forces in analytical forms. Our ultimate goal in this paper is to bring this general equilibrium frame-

work to the data. Therefore, this section generalizes the baseline model to provide richer and more

realistic dynamics (with forward-looking firms and heterogeneous innovation qualities, for instance)

for the economy and its agents and to give the model some more flexibility to match the data (e.g.,

introducing the fixed cost of doing basic research). Those not interested in the technical details can

skip directly to the quantitative Section 3.

Stochastic Innovation Step Sizes Stokes (1997) argued that technological breakthroughs do not

necessarily derive from basic research. According to the “Pasteur Quadrant” hypothesis, applied

research efforts can potentially also lead to important technological changes. Our first generalization

takes this possibility into account by introducing stochastic innovation step sizes into the model. We

assume, as in Klette and Kortum (2004) and Lentz and Mortensen (2008), that these step sizes are

drawn from exponential distributions. For basic research, the mean of the distribution is always η.
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For applied research, the distribution mean is η if the product line is hot and λ if it is cold. It is

important to note that we do not take any stand on the comparison of the average step sizes (η > λ

or vice versa) and let them be determined by the data.

Fixed Cost of Basic Research In our sample, some firms do not invest in basic research. To

capture this fact, we generalize the basic research technology by introducing a fixed cost of doing

basic research. At each instant, a firm with n product lines draws a fixed labor cost of doing basic

research nφ ≥ 0, where φ is distributed according to the distribution B(·). Then a firm that operates

in n product lines and has a fixed cost of basic research φ this period has the following cost function

Cb(bm | n, φ) = ncb(bm | φ). This implies that firms will follow a cutoff rule as a function of their

multi-industry presence φ∗m such that they will not invest in basic research if φ > φ∗m. Otherwise, in

addition to the variable cost, they will also pay the fixed cost.

Industry Expansion (Start-up Buy-outs) In the baseline model, we took the working knowledge

of the firms (m) as exogenously given. We now endogenize m by introducing the possibility of buy-out

offers for new entrants. The economy features E × ae flow of entry at any instant. We will assume

that a ς fraction of new entrants will meet a randomly selected incumbent firm. Thus, an incumbent

will have a flow rate of incoming buy-out offers

x ≡ ςEae/F.

where F is the equilibrium measure of firms. If n̄ denotes the average number of product lines per firm,

then F = 1/n̄. Clearly this new company will be from a new industry with probability (1−m/M)

or from an industry that already exists in the incumbent’s portfolio with probability m/M. Our goal

is to keep the M&A margin as tractable as possible, and we will achieve this by assuming that the

M&A price that the incumbent firm has to pay is equal to the full surplus of the new merger. The

resulting invariant joint distribution Γm,n over multi-industry presence m and firm product count n is

described in Appendix A.

Forward-Looking Firms For expositional purposes, in the previous section we described the model

with myopic firms that maximize their one-period-ahead returns. For the rest of our analysis, we relax

this assumption and consider firms that maximize the discounted sum of future returns. The analysis

of this new model is very similar to that of the previous model except that the returns to innovation

take the form of a value function that takes into account all future contingencies. The following

proposition provides the exact forms of the value of a firm that has a productivity portfolio q̂ and

operates in m industries.

Proposition 2 Let the value of a firm with a productivity portfolio q̂ in m industries be denoted by

V(q̂,m). This value is equal to

V(q̂,m) =
Z

M

∑
q̂∈q̂

V (q̂) + nVm


19



where

V (q̂) =
q̂ε−1

ε [r + τ + κ+ g (ε− 2)]

and

(r − g)Vm = max
a,b


−w̃

[
ha(a) + hb(b) + 1(b>0)φ]

]
+a
[
αV H + (1− α)V C + Vm

]
+ b (1 + ρm)

[
V H + Vm

]
+x
(
1− m

M

)
[Vm+1 − Vm]− τVm + κEq̂V (q̂t)

 . (21)

The analogous production values are defined as V H ≡ EHq̂,ηV (q̂ + η) and V C ≡ ECq̂,λV (q̂ + λ).

Proof. See Appendix A

This important result has a number of implications. First, the value of a firm has a tractable

additive form across product lines. Moreover, the firm value has two major components: the first

component is the production value V (q̂), which simply computes the sum of the future discounted

profits where the effective discount rate takes into account the rate of creative destruction τ , the

exogenous destruction rate κ, and the obsolescence of the relative productivity q̂ due to the growth of

q̄. The second component is the R&D option value Vm, which is a direct function of the multi-industry

presence due to the associated internalization of spillovers. Finally, because of the stochastic nature

of step sizes, the expectations now integrate over the productivity (which are type specific) and step

size.

Welfare Finally, we close this section by describing the SBGP equilibrium welfare. In an SBGP

equilibrium that has an initial consumption C0 and a growth rate of g, welfare is computed as

W (C0, g)SBGP =

∫ ∞
0

exp (−δt)
(
C0e

gt
)1−γ

1− γ
dt =

1

1− γ

 C
1−γ
ε−1

0

ρ− (1− γ) g
− 1

ρ


We will report our results in consumption-equivalent terms. In particular, when two different

public policies T1 and T2 generate different SBGP equilibrium welfare values as W (CT10 , gT1) and

W (CT20 , gT2), we will report β such that

W (βCT10 , gT1) = W (CT20 , gT2).

In other words, β constitutes the compensating differential in initial consumption that equalizes

the welfare of the two proposed policy environments. It therefore provides an intuitive measure for

evaluating policy tools. This completes the description of the theoretical environment. Now we are

ready to move on to the quantitative analysis.

3 Quantitative Analysis

To test and estimate our model, we rely on a unique combination of datasets on French innovative

firms between 2000 to 2006. The final sample is composed of 13,708 firm-year observations, for which

we provide descriptive statistics in Table 12 of Appendix B. Details regarding data sources, and data

organization are provided in Appendix B.
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3.1 Data

R&D Information Information about research investment comes from the annual R&D Survey

conducted by the French Ministry of Research. The survey is conducted in annual waves of cross-

sectional data, and covers a representative sample of French firms of more than 20 employees investing

in R&D. The questionnaire includes extensive information about the financing of R&D. It not only

breaks down R&D investment according to the source of the funds but also provides its allocation to

different types of research. The distinction between basic and applied research is based on the Frascati

manual, and is therefore similar to the NSF definition presented in the introduction

Multi-Industry Activity To measure multi-industry presence, we count the number of distinct

SIC codes in which a firm is present. Our data allow us to identify a firm’s links to different industries

not only through product lines within the same firm but also through its majority ownership links.

We use “Enquete Liaisons Financieres” (LIFI) to identify multiple activities within the same business

group. In addition, we use “Enquete Annuelle des Entreprises” (EAE) to identify multiple activities

within the same firm.

The LIFI data is based on a yearly survey by INSEE. It covers all economic activities but restricts

its attention to firms that either employ more than 500 employees or generate more than 60 million

euros in revenue, or hold more than 1.2 million euros of traded shares. However, since 1998 the survey

is cross-referenced with information from Bureau Van Dijk and thus covers almost the whole economy.

The LIFI survey contains information that makes it a unique data set for studying multi-market

activity. Besides providing information on direct financial links between firms, it also accounts for

indirect stakes and cross-ownership when identifying the head of the group. This is important as it

allows us to precisely reconstruct the group structure even in the presence of pyramids. This feature

allows us to obtain a reliable account of the structure of business groups in the French economy and,

as a consequence, reliable measures of our key variable, their multi-market presence.

Since, at the same time, each firm can also operate in several markets, we cross-reference the data

set with the EAE survey by the Ministry of Industry (“Enquete Annuelle des Entreprises”). The

survey is filled out by French firms with more than 20 workers and contains information not only on

the different markets in which a firm operates but also information on market dedicated sales for each

segment. The data cover the vast majority of French firms and span the period 2000-2006.

Balance-Sheet Information We use the firm- and industry-level data sets based on accounting

data extracted again from the EAE files. The data also include unique firm identifiers allowing us to

match them to the R&D and LIFI data.

3.2 Computer Algorithm Outline

An equilibrium of this model is described by a system of five equations in the five variables (τa, τ
e
b , τ

d
b , w̃, g).

This system can be evaluated using the following procedure:
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1. Calculate α and the distribution of q̂ using τa, τ
e
b , τdb , and g according to equations (1) and (15).

2. Calculate g using, τa, τb, and the distribution over q̂ with equation (20).

4. Calculate V H = EHq̂,ηV (q̂ + η) and V C = ECq̂,λV (q̂ + λ) using the relevant step size distribution

and the type-specific productivity distributions.

5. Find am and bm using first-order conditions with w̃ from equation (21).

6. Impose an upper bound on n and find the steady state Γm,n using the flow equations in A.

7. Compute the updated values of τa, τ
e
b , and τdb using (16) and (14).

8. The difference between the conjectured and updated values of τa, τ
e
b , τdb , and g in conjunction

with the labor market clearing differential from (18) constitute the five desired equations.

We use Powell’s (Powell (1970)) hybrid equation solver to solve this set of equations for a given set

of parameters. To minimize the SMM objective function, we perform a search over the parameter space

using a combination of a naive simulated annealing algorithm and a Nelder-Mead simplex (Nelder and

Mead (1965)) algorithm. See Zangwill and Garcia (1981) for more information on solving systems of

nonlinear equations.

3.3 Estimation

In this section we describe the estimation strategy used. We will assume that the fixed costs are drawn

from a lognormal distribution B(φ) with mean φ̄ and variance σ2. As a result, the set of parameters

of the model is

θ = {δ, γ, ε, p, η, λ, E, U, νa, νb, ξa, ξb, κ, φ̄, σ, ζ, ς} ∈ Θ.

In our data set, for each firm f and each time period t, we have a vector of N observables from the

actual data yft ≡
[
y1
ft . . . yNft

]′
N×1

including the number of industries in which the firm is present,

sales, profits, and labor costs. Let the entire data set be denoted by y.

We use the simulated method of moments (SMM) for the estimation.8 Define Λ (y) and Λ(θ) to

be, respectively, the vectors of real data moments (generated from y) and equilibrium model moments

(generated for some vector of parameters θ). Since certain moments require knowledge of the joint

distribution of firms over the number of products and industries (m,n) and the portfolio of product

qualities q, which has no apparent analytic form, we simulate a large panel of firms to calculate Λ(θ)

to a high degree of accuracy.9

Our proposed estimator minimizes a quadratic form of the difference between these two vectors

θ̂ = arg min
θ∈Θ

[Λ(θ)− Λ(y)] ·W · [Λ(θ)− Λ(y)] (22)

8See Bloom (2009) and Lentz and Mortensen (2008) for further description and usage information on SMM.
9For our results, we simulate 32K firms with a burn-in time of 100 years and 100 time steps per year.
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where W is the weighting matrix. We use a diagonal weighting matrix with entries equal to the inverse

square of the data moment value, or in notational terms Wii = 1/Λi(y)2 and Wij = 0 for i 6= j. In

our estimation, we use 26 moments which we denote as Λ(1)−Λ(26). We pick moments that are most

informative for the unique features of our model.

Status Quo Policies We also take into account that, during the period we consider, there was

existing government support for R&D activities in France. In our data set 10% of coporate R&D is,

on average, publicly funded. Therefore in our estimation, we introduce a uniform subsidy to the total

R&D spending of the firm ψ = 0.10. The government has a balanced budget every period, so that the

sum of total subsidies (S) and public research funding (R) must be equal to tax revenues, that is

T = S +R = ψ

[
M∑
m=1

µmCB(bm | φ) + CA(a)

]
+ UCB(u | φ̄)

where T is a lump-sum tax on consumers. In France, during 2000-2006, the fraction of GDP devoted

to public research labs and academic institutions was approximately 0.5%. Therefore, we pick R/Z,

which is the share of GDP devoted to public basic research, to be 0.5%.

3.4 Identification

In this section we explain the moments that are used to identify our parameters. Since we are minimiz-

ing the weighted distance between the theoretical and empirical moments according to the objective

function in (22), all parameters are identified jointly. Nevertheless, given the dynamics in our model,

we can still provide a heuristic discussion of identification. In Appendix E Table 15, we provide a

Jacobian matrix that reports the sensitivity of each moment to each parameter. This way, we verify,

at least locally, that the moments that we use to identify certain parameters are indeed informative.

Note that here m̂ denotes the number of industries in which a firm has one or more products,

rather than the number of industries in which the firm has working knowledge (m). Since m is not

directly observable, we must compute the distribution over m̂ through simulation to in order to match

the data.

Basic Research Intensity by Number of Industries, Λ(1-8): We define basic research inten-

sity as the ratio of spending on basic research to spending on applied research. Since the effect of

multi-industry presence on this quantity is of critical importance to our model, we have one moment

for each m̂ ∈ {1, . . . ,M}. Given a set of parameters and an equilibrium of the model, this moment’s

value for a given m̂ is

Λ(1− 8) = Em
[
h̄mb
hma

∣∣∣∣ m̂]
In our estimation, we use M = 10. However, in the data there are only a handful of firms with

m̂ > 8, so we have one moment for each m̂ ∈ {1, . . . , 7} and a final moment which is averaged over

m̂ ∈ {8, 9, 10}. The way in which this moment increases with m̂ identifies the cross-industry spillover
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Figure 6: Basic Research Intensity
vs Spillover Parameter p
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Table 2: Basic Research and Multi-Market Activity

1-Digit SIC 2-Digit SIC 3-Digit SIC 4-Digit SIC

Log # of Industries 0.032*** 0.027*** 0.024*** 0.021***
(0.01) (0.00) (0.00) (0.00)

Log Employment 0.003** 0.002 0.001 0.001
(0.00) (0.00) (0.00) (0.00)

Year & Organization F. E. YES YES YES YES

N 13708 13708 13708 13708

Notes: Pooled data for the period 2000-2006. Estimates are obtained using
Tobit models and relate to the marginal effect of the regressors at the sample
mean. Basic Research Intensity is defined as the ratio of total firm investment
in basic research divided by total firm investment in applied research. Log #
of Industries is the number of distinct SIC codes in which a firm is present.
Year FE denotes year fixed effects, and Organization FE denotes whether
the firm operates its activity as a conglomerate or as a business group. See
the Appendix for the definition of variables. Robust standard errors clustered
at the firm level are in parentheses. One star denotes significance at the 10%
level, two stars denote significance at the 5% level, and three stars denote
significance at the 1% level.

parameter p in our model. Additionally, the overall level provides us with some identification power

for the basic research cost parameters (ξb,νb) .

Figure 6 plots the empirical (red line, which is the same as Figure 2 in the Introduction) and model

counterparts for these moments for different spillover parameter p = {0.00, 0.05, 0.11, 0.15}. The figure

makes it clear that our cross-industry spillover parameter p is identified by matching the basic research

intensity of multi-industry firms.

Table 2 provides further evidence about the relationship between multi-industry presence and basic

research intensity, controlling for size. To account for zeros in the the dependent variable, we estimate

a Tobit model. In all specifications basic research intensity is increasing in the number of industries.

According to the benchmark estimation, presence in an additional industry increases a firm’s basic

research intensity by 3 percentage points on average. In terms of magnitude, this corresponds to a

50% increase in the average basic intensity of a single industry firm.10

Extensive Margin of Basic Research Investment by Number of Industries, Λ(9-16): We

use the share of positive basic research spending by each m̂ to identify the mean φ̄ and variance σ2 of

the fixed cost distribution basic research. This is simply the probability that the idiosyncratic fixed

cost draw is less than the cutoff for a certain m̂

Λ(9− 16) = Em,φ
[
1(φ<φ∗m)

∣∣ m̂] .
Though not plotted here, one can see in the Jacobian matrix in Table 15 that the average fixed cost

parameter φ̄ strongly influences the level of this moment for all values of m̂. Furthermore, the fixed

cost variance parameter σ induces a tilt in these moments across different m̂ values. That is to say,

increasing σ raises the probability of performing basic research for low m̂ firms an lowers it for high

10Table 14 in Section D of the Appendix provides a rich set of robustness checks in terms of control variables, alternative
measures of multi-industry presence, and estimation methods. Most important, it exploits historical ownership structures
and changes in government policies as instrumental variables. The IV estimates are larger in magnitude and seem to
suggest that the positive correlation is not driven by omitted variables.
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m̂ firms. This is consistent with the intuition of the model and with the properties of the lognormal

distribution.

Distribution of m, Λ(17-18): We track two moments relating to the distribution of m̂, the mean

and mean squared. They are given by

Λ(17) = Em̂ [m̂] and Λ(18) = Em̂

[
m̂2
]

Looking to the Jacobian matrix, one can see that the mean m value and the mass of potential en-

trants are closely linked, as successful entrants start with the lowest working knowledge value m = 1.

Similarly, the mean of m2 is strongly influenced by the entrant buyout probability parameter ς. In-

tuitively, when entrants are more likely to be bought out by incumbents, which results in industry

expansion with probability z, this will concentrate industry expertise in existing firms, thus increasing

the dispersion of m.

Empirically, we calculate the share of firms as a function of the number of 1-Digit SIC industries,

which is the number of distinct SIC codes in which a firm is present. On average firms are present in 2

distinct industries as defined by 1-digit SIC codes. Although nearly 44% of the firms are operating in

only one industry, the remaining firms occupy a large spectrum of industries. The full distribution is

plotted in Figure 7, and the results are very similar when using more disaggregate SIC classifications

(up to the 4-digit SIC level) or when changing the definition of an industry link.11

Figure 7: Distribution of Firms by Number of Industries
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11Figures available upon request.
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Profitability, Λ(19): Firm profitability is defined as the ratio of profits to sales. For a given panel

of firms, this moment is given by

Λ(19) =
1

ε
− Em,n,q̂

[
w̃
[
hma + h̄mb

]
1
n

∑
i q̂
ε−1
i

]

Notice that there is one fixed component from static production side that yields information on the

value of ε and another from dynamic R&D expenditures that yields information on R&D cost and step

size parameters. Consistent with this, though this moment value arises from a multitude of factors,

the major determinants are ε and the various fixed and variable R&D cost parameters.

Exit Rate, Λ(20): As exit occurs when firms either receive the exogenous destruction shock or

lose their last product, the predicted exit rate will be

Λ(20) = κ+ τ ·
∑
m

Γm,1

However, for consistency, we simply use the value from the simulated firm sample. This moment serves

primarily to determine the value of the rate of exogenous destruction κ. Additionally, as the bulk of

equilibrium creative destruction τ arises from applied research, this also provides information on the

applied R&D cost parameters νa and ξa.

Total Research Intensity, Λ(21): We have one moment to track the level of R&D overall: the

ratio of total research labor expenditures spending to total production labor expenditures. Since

research spending is proportional to n, R&D expenditures per product will be the same across firms

with the same m, while employment will be a function of the portfolio of product qualities. Because

the wage is common to both types of labor, this will simply be the ratio of R&D employment to

production employment given by

Λ(21) = Em,n,q̂

[
w̃
[
hma + h̄mb

](
ε−1
ε

)
1
n

∑
i q̂
ε−1
i

]

Conditional on innovation rates, this moment give us information on cost side of R&D, namely the

research production function parameters, as well the benefit side, in the form of innovation step sizes

for basic and applied research, η and λ (see Table 15).

Firm Growth, Λ(22): We have a moment for employment growth amongst firms. This is cal-

culated conditional on the firm not exiting, since we do not observe the last period’s growth rate for

exiting firms. The moment is calculated by looking at the one-year growth rate of total employment

by a firm. This moment is sensitive to the overall rates of exit and creative destruction, and as such,

yields information on a broad array of parameters. As seen in Table 15, one parameter for which it

shows particular distinction is the CRRA parameter γ.
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Aggregate Growth, Λ(23): The aggregate growth rate gives information on the effectiveness

of research spending absent effects coming from the distribution of firm size and its relation to firm

growth, particularly on innovation step sizes.

In our model the household’s welfare depends crucially on the level of aggregate growth, and hitting

that moment is of particular importance. For that purpose, we boost the weighting on the aggregate

growth moment.12

Within-industry Spillover (Hot vs Cold Product Lines), Λ(24): In order to quantify the

spillovers associated with basic research, we turn to patent citation data. The model predicts that

innovations that build off of previous basic research should have a larger step size on average. If we

take citations as a proxy for step size, then patents that cite basic research should themselves have

more citations.

This effect will diminish with the age of the patent due to product line cooldown. Thus the average

time after which a public innovation is indistinguishable from a private innovation should be

Λ(24) =
1

ζ

(τa
τ

)
This yields direct information on the value of the cooldown rate ζ, as seen in the Jacobian matrix.

To estimate the cooldown rate of innovations deriving from basic research, we use the NBER patent

data set covering the period 1974-2006. Two empirical issues need to be addressed: (i) distinguishing

patents derived from basic and applied research, and (ii) capturing the idea of successively less original

contributions. We address the first point by distinguishing between patents applied for by corporations

from patents applied for by public institutions. We address the second point by computing a citation-

based measure of the marginal contribution of citing patents over time.13

For each patent we first identify citing patents across time. For each of the citing patents we

then compute their cumulative 10-years-forward citations. Our measure, Quality of Citing Patents,

captures the marginal importance of each successive citing patent. Table 3 tests the mean difference

of this measure between patents originated in the public sector, and patents originated in the private

sector.

Table 3 confirms that public patents are followed up by higher quality patents relative to private

patents. The difference oscillates between 0.3 to 0.7 citations, and is statistically significant in the

first 7 years. The importance of citing patents is stable until the original public patent is 8 years

old, at which point there is a significant drop in citations of citing patents from 2.4 to 1.7. This

is when the difference between private and public, in terms of citations, becomes economically and

12Increasing the weighthing factor to 3 was sufficient to align the aggregate growth rate in the data and the model.
13The use of US patent data was linked to the availability for a long time horizon of publicly available data on patents

granted, depositor classification, and the associated citations. The analysis of our final data set will focus exclusively
on French patenters but the construction of the different variables uses information from the entire data set. While our
proxy is simple to measure in the data, it potentially misclassifies the contribution of private basic patents. However,
given that our interest lies in the relative difference between those two groups of patents across time, time invariant
errors in the classification should not impact our conclusions. Appendix C provides a more detailed explanation of the
construction of the variables.
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Table 3: Citation Differences for Public and Private Patents

Age 1 2 3 4 5 6 7 8 9 10

Difference .3** .3** .62*** .28** .41** .23 .71*** .08 .39 .14
(0.15) (0.15) (0.17) (0.14) (0.18) (0.17) (0.25) (0.16) (0.25) (0.24)

Notes: Differences in citation patterns of 15383 patents granted by the USPTO to French private (92%) and public (8%)
depositors. The difference is computed in terms of Quality of Citing Patents across patent age. Quality of Citing Patents
is computed as the 10-years-forward citations of the citing patents and is measured for patents granted in the period 1975-
1985. Two sample t-test with unequal variances were used. One star denotes significance at the 10% level, two stars denote
significance at the 5% level, and three stars denote significance at the 1% level.

statistically non-significant. The results are similar when using the Wilcoxon-Mann-Whitney test.

This time pattern will yield direct information on the value of the cooldown rate ζ.

Firm Age, Λ(25-26): Firm age is highly correlated with firm size. We track the average age of

firms for those above and below the median firm size. This yields information entry and exit patterns,

as well as on the rate of creative destruction. Moment Λ(25) is the average age of firms below the

median firm size, while moment Λ(26) is the average age for those firms above it.

3.5 Estimation Results

Table 4 reports the values of the estimated structural parameters. The estimated values of the discount

rate and CRRA utility parameters are within their standard macro ranges. The elasticity of substi-

tution parameter generates 17%(= 1/ε) gross profits, resulting in 7.9% net profits after subtracting

R&D expenses as a share of sales.

Table 4: Parameter Estimates

# Description Sym Value # Description Sym Value

1. Discount Rate δ 0.038 9. Applied Cost Curvature νa 1.367
2. CRRA Utility Parameter γ 2.933 10. Basic Cost Curvature νb 1.538
3. Elasticity of Substitution ε 5.800 11. Applied Cost Scale ξa 1.228
4. Cross-industry Spillover p 0.113 12. Basic Cost Scale ξb 5.437
5. Basic Step Size η 0.079 13. Exogenous Exit Rate κ 0.006
6. Applied Step Size λ 0.049 14. Basic Fixed Mean φ̄ -4.761
7. Mass of Entrants E 0.502 15. Basic Fixed Std. Dev. σ 0.327
8. Mass of Academic Labs U 0.491 16. Product Cooldown Rate ζ 0.116

17. Buyout Rate ς 0.454

One of the most important parameters of our model is the cross-industry spillover parameter

p = 0.11, which measures the probability that a basic innovation will have an additional immediate

application. This estimate affects the extent to which basic innovations contribute to cross-sectional

growth. In equilibrium, firms operate in two industries out of 10 on average. Therefore, any given

spillover is not embodied with probability 89%(= 8/9). Given that the probability of having a spillover

is 11%, the probability of having a disembodied spillover is 10%(= 0.11 ∗ 0.89).

The estimated innovation size of basic research is η = 7.9% and the innovation size of each new

applied innovation is λ = 4.9%. This implies that basic research (hot product lines) makes applied
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innovation 60%(= 7.9/4.9− 1) more productive.

Additionally, each basic innovation has a within-industry spillover. The cool-down rate of hot

product lines is estimated to be ζ = 0.12, which indicates that a basic innovation affects the subsequent

innovations in the same product line for almost 8.3(= 1/0.12) years on average.

The elasticity of applied innovation counts with respect to the research dollars spent is estimated

to be 0.73 (= 1/νa) and similarly the elasticity of basic innovation with respect to the basic research

investment is 0.65 (= 1/νb). These values are close to the elasticity estimates in the literature, which

typically finds a value around 0.5 (Griliches (1990), Pakes and Griliches (1984) and Kortum (1992,

1993)).

3.6 Goodness of Fit

In this section, we will first focus on the moments that we targeted in our estimation and then turn

to the moments that we did not directly target but still find useful in understanding the model’s

performance.

Targeted Moments Table 5 contains the moments from the actual data and our estimated model.

Table 5: Moments Used in Estimation

# Description Model Data # Description Model Data

Λ(1-8) Basic Research Extensive See Figure 9 Λ(21) R&D/Labor 0.284 0.260
Λ(9-16) Basic Research Intensive See Figure 8 Λ(22) Employment Growth 0.111 0.103
Λ(17) Mean Industries 2.217 2.203 Λ(23) Aggregate Growth 0.013 0.015
Λ(18) Mean Square Industries 7.213 6.975 Λ(24) Spillover Differential 8.378 8.000
Λ(19) Return on Sales 0.032 0.032 Λ(25) Age, Small Firms 11.53 14.99
Λ(20) Exit Rate 0.082 0.091 Λ(26) Age, Large Firms 18.69 24.87

The results indicate that the model performs very well in generating firm and industry dynamics

similar to those in the data. Consistent with our data, a significant fraction of innovating firms invest

in basic research. In particular, 29% of firms are investing in basic research, which was 27% in the

data. We also capture the positive relationship between the extensive margin of basic research and

multi-industry presence, as evidenced in Table 5 and Figure 8.

The positive correlation between multi-industry presence of a firm and its basic research intensity

was one of the major predictions of our model. As explained previously in the text, multi-industry

presence plays an important role in increasing basic research incentives, by allowing a greater potential

to internalize the positive spillovers from basic research. In our reduced-form analysis, we confirmed the

significant and positive correlation between multi-industry presence and basic research intensity. This

has been the key moment to identify the cross-industry spillover parameter. Our model successfully

generates this positive correlation.

In the data, firms operate on average in 2.2 industries, and the same is true in the model. Fur-

thermore, we find the mean squared in the model to be 7.2, compared to 7.0 observed in the data.
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Figure 8: Fraction Positive Basic By # Industries
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Figure 9: Basic Research Intensity By # Industries
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In addition, the mean profitability is 3.2% in the model and in the data. The prime determinants

of profitability are the step sizes for basic and applied innovation. However, these also affect the

investment levels for both types of research, since this increases the return to successful innovation.

Therefore, the step size parameters are set to be a compromise between hitting the profitability moment

and the research investment and growth moments.

We are targeting additional moments regarding research investments. The first is the average ratio

of total research labor to production labor by incumbent firms. The model comes very close to hitting

this ratio exactly (28.4% vs 26.0%), largely in order to hit the aggregate growth and return on sales.

All of these components of the economy determine the aggregate growth rate. Our model matches

the observed growth rate closely. Our model economy grows at a rate of 1.3%, while the French

economy grew at an average rate of 1.5% during the period studied (2000-2006).

Untargeted Moments In this part, we discuss our model’s prediction about some of the moments

that we did not directly target.

Interestingly, in the data the correlation between profitability and basic research intensity is not

significantly different from zero. The same implication emerges from our model. In the baseline

model, the correlation between profitability and basic research intensity is only 0.04. This result

emerges because basic research investment is determined through the multi-industry presence of the

firms, whereas profitability is determined by the share of hot and cold product lines, type of research

investment, and the productivity distribution F(q̂) in the economy.

Our model naturally generates a positive correlation between multi-industry presence and firm

size, which is also empirically true in the data. This arises since both of these moments are strongly

correlated with firm survival. In the model, we find a correlation of 0.52 between the log employment

and multi-industry presence. In the data, this value is 0.76.

Another stylized fact in our data is that the firm size distribution is highly skewed. This is a well-
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known feature that is documented extensively in the literature. For detailed references, see Aghion,

Akcigit, and Howitt (2014). In our model, we capture this fact with a skewness of the firm size

distribution of 4.12. This value is 3.07 in the data.

Our estimates indicate that entrants play an important direct role in overall growth. The innovation

rate from entrants is 0.43%, whereas that number is 0.92% for incumbents. That implies that entrants

account for 32% of growth. Though our number is for the French economy, our number is in line with

Foster, Haltiwanger, and Krizan (2001) who find that 25% of productivity growth in the US comes

from new entry.

We will now focus on the details of the equilibrium and the social planner’s problem to study the

efficiency properties of this economy. Then we will turn to various policies that could address this

inefficiency.

3.7 Status Quo: Baseline Economy

Table 6 provides equilibrium values for some of the important variables in the model:

Table 6: Decentralized Economy: Endogenous Variables (in percentages)

ψ R/Z τa τeb τdb Lp Lb Lu Le La α g β
subsidy public applied embodied disembodied production labor in labor in entrant labor in share growth welfare
rate basic innovation basic basic labor private public labor private of hot rate

in GDP innovation innovation basic basic applied product lines

10 0.5 22.0 0.58 0.28 85.6 0.53 0.52 4.5 8.9 6.9 1.34 100.0

In this table, τa denotes the aggregate rate of applied innovation by incumbents and entrants,

whereas τ eb and τdb denote the aggregate rates of embodied and disembodied basic innovation, respec-

tively. The next five columns report the labor allocations into production, private basic, public basic,

entry, and applied research. The remaining columns report the fraction of hot product lines α, the

growth rate g, and the welfare in consumption equivalent terms β.

In our benchmark economy, 85.6% of labor is used for production, and 14.4% is employed for

innovation activities. Among researchers, roughly 7% are engaged in basic research activities. Note

that this composition within innovation activities will be the central focus of the policy analysis, since

uninternalized (potential) spillovers are one of the main sources of inefficiency. In order to the study

the welfare properties of this economy, we normalize the benchmark welfare to β = 1.00 and compare

it to the social planner’s optimum, which we will analyze next.

3.8 Quantifying the Social Planner’s Optimum

In this section, we provide the solution to the social planner’s problem. Recall that while the basic

innovation done by the private sector turns into a consumer product immediately, those done by the

public sector (e.g., universities) come from the “Ivory Tower” and turn into a consumer product with

some delay. In order for this to happen, a private firm must do some applied innovation that builds

on the basic knowledge, which happens after 5 years on average (= 1/τa = 1/0.22). This introduces
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the possibility that policies relating to public-private sector partnerships or patenting rights of public

researchers could reduce this delay. We will consider this case in Section 5.

Before going into the details of the solution, it may be useful to provide an overview of the potential

inefficiencies present in this economy, both static and dynamic:

1. monopoly distortions on the production side,

2. (in)efficient applied research investment by private firms,

3. (in)efficient basic research investment by private firms,

4. (in)efficient basic research investment by public research labs,

5. (in)efficient level of entry.

Since our focus is on innovation policies, we consider a social planner who controls the R&D

production in the economy while being subject to the same monopoly distortions on the production

side (hence we do not consider a production subsidy in our policy analysis either). Table 7 summarizes

these results.

Table 7: Social Planner’s Optimum (in percentages)

τSP
a τe,SP

b τd,SP
b LSP

p LSP
b LSP

u LSP
e LSP

a α g β

19.1 5.1 0.2 82.9 5.6 0.5 3.7 7.3 31.1 1.80 103.6

One striking feature of the solution to the social planner’s problem under both scenarios is that

the fraction of labor devoted to research activities is not substantially greater than in the decentral-

ized equilibrium. In particular, the total labor allocated to production activities was 85.6% in the

decentralized economy, while it is 82.9% when set by the social planner. Hence, there is a slight

overinvestment in production labor relative to research labor, but this misallocation is quantitatively

quite small.

Indeed, the dominant misallocation here is not that between production and research, as is common

in this class of models, but among the various types of research activities, in this case, applied and

basic innovation. In the decentralized economy, only 1.05% of the total labor force is devoted to basic

research, whereas in the social planner’s economy, this number rises to 6.1%. In other words, the

social planner devotes 36% of research labor to basic research, whereas this fraction was only 7% in

the decentralized economy. This happens on both the intensive and the extensive margins of basic

research. In fact, the planner finds it optimal to employ nearly all private research labs, regardless of

their fixed cost draw.

Another interesting and important finding is that in the case of applied innovation, there is actually

an overinvestment in the baseline economy. The applied research labor utilization (including entrants)

is 13.6% in the decentralized case. This figure drops to 11% in the social planner’s solution. This is

in spite of the fact that the fraction of hot product lines rises from 7% to 31%, meaning the average
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step size of an applied innovation rises by almost a third.

The net result of the above changes is that growth rises from 1.34% to 1.8%. Overall, the decen-

tralized economy’s welfare corresponds to a decrease of 3.6% in consumption-equivalent terms from

the social planner’s optimum. The following policy experiments will try to bridge this gap.

4 Policy Analysis

In this section, we analyze the impact of different types of research subsidies when public basic research

features delayed applicability (the “Ivory Tower” effect).14 Given our distinction between basic and

applied research, it seems natural to propose different subsidy policies for different types of research

spending. However, this could potentially generate a moral hazard problem, since firms would have

an incentive to misreport the type of research they undertake, which is very difficult for a policymaker

to verify. However, it is still useful to consider this hypothetical case to form a benchmark.

This section is organized as follows: Section 4.1 starts with this hypothetical case, Section 4.2

considers a uniform research subsidy as in the real world, and finally Section 4.3 combines both

uniform subsidy and public research funding using feasible policy tools.

4.1 Type-Dependent Research Subsidy

Assume first that the policymaker can distinguish between different types of research efforts and

accordingly provide differentiated subsidy rates. Let ψa and ψb denote the applied research and basic

research subsidy rates, respectively. The share of GDP allocated to public research (R/Z) is kept

constant by the policymaker. Note that an increase in the subsidy rate (ψa or ψb) reduces research

costs for the firm and leads to an increase in research effort as a result. The following table reports

the optimal subsidy rates and resulting equilibrium variables.

Table 8: Type-Dependent Research Subsidy (in percentages)

ψTD
a ψTD

b R/Z τTD
a τe,TD

b τd,TD
b LTD

p LTD
b LTD

u LTD
e LTD

a αTD gTD βTD

14 50 0.5 19.3 4.50 0.38 83.1 5.3 0.50 3.7 7.5 29.6 1.75 103.0

Since the underinvestment is mainly in basic research, the optimal type-dependent subsidy dictates

a much larger subsidy rate for it, namely, ψb = 50% and ψa = 14%. Here, the major component of

policy is a fivefold increase in the subsidy rate for basic research, whereas the subsidy rate on applied

innovation remains roughly the same.

The large value for the basic research subsidy is straightforward to understand. There are spillovers

associated with basic innovation that are not internalized by firms. By subsidizing this type of in-

novation, we can mitigate this effect. This policy can almost achieve the level of welfare seen in the

social planner’s case in Table 7 (103.6% vs 103.0%).

14In Section 5, we will go to the other extreme and consider optimal policies when public basic research also has
immediate applicability.
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As discussed above, this policy is hard to implement in the real world due to the moral hazard

problem. Therefore, we focus on a policy providing a uniform subsidy across the economy.

4.2 Uniform Private Research Subsidy

With this policy, the government subsidizes a fraction ψ of each firm’s total research investment,

keeping the share of funds allocated to academic research constant. Note that such a policy subsidizes

not only basic research but also applied research similar to the current R&D subsidy policy in the

U.S. and around the world. Table 9 summarizes the results of the optimal uniform subsidy rate.

Table 9: Uniform Research Subsidy (in percentages)

ψUP R/Z τUP
a τe,UP

b τd,UP
b LUP

p LUP
b LUP

u LUP
e LUP

a αUP gUP βUP

31 0.5 25.4 1.52 0.26 81.8 1.54 0.49 5.41 10.8 13.2 1.70 100.8

Our analysis of the baseline economy and the planner’s economy documented a slight underinvest-

ment in research overall and a large misallocation between the different types of research. A uniform

subsidy is therefore ill suited to address these issues as it cannot directly affect the allocation between

research types, and any attempt to subsidize basic research will only worsen the overinvestment in

applied research. Although the optimal type-dependent basic subsidy is 50%, the optimal uniform

subsidy is only 31%, due to cross-subsidization of applied research whose optimal level was 14%.

Under this policy, we are allocating a larger fraction of the labor force to research relative to the

social planner’s economy. Overall, the researcher’s share goes up to 18% from 14%. As a result, we

have too few workers devoted to production of the consumption good (81.8%) relative to the social

planner’s allocation (82.9%), which reduces the initial consumption of the baseline economy. Even

though we have more labor working for research, the economy grows at a lower rate (1.7%) than the

social planner’s (1.8%). This interesting result emerges due to the misallocation of researchers between

basic and applied innovation. The welfare gain from this policy is 0.8 percentage points, which is only

27%(= 0.8/3.0) as large as that for the type-dependent policy.

Although the underinvestment in basic research is sizable, the uniform policy partially makes up for

this at the cost of worsening the overinvestment in applied research. The main lesson to be drawn from

this is that when considering a uniform research subsidy, one should take into account the negative

welfare effects associated with oversubsidization of applied research. Finding a feasible method to

differentiate basic and applied research is essential for better innovation policies.

4.3 Optimal Feasible Policy: Uniform Subsidy and Academic Budget

Our final policy experiment combines optimal uniform subsidy rate with the optimal public funding

level for academic research as a fraction of GDP (R/Z). We will allow both the uniform subsidy rate

and the academic funding rate to be chosen by the policymaker. The advantage of considering both

types of policies is to introduce more freedom to control the incentives for both types of research in a

largely separate way. In particular, ψ and R/Z are going to be the choice variables in this exercise.
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The following table contains the results of this experiment

Table 10: Optimal Academic And Uniform Policy (in percentages)

ψ R/Z τa τeb τdb Lp Lb Lu Le La α g β

31 0.7 25.4 1.5 0.6 81.6 1.5 0.7 5.4 10.8 15.5 1.72 100.8

When considered jointly, the optimal uniform R&D subsidy is 31% and the optimal fraction of

GDP allocated for public research is 0.7%. These figures are respectively only 10% and 0.5% in

France (and in the benchmark case). Such a policy increases the fraction of hot product lines from

6.9% to 15.5%. However, one should also note that this policy makes a rather limited contribution to

growth and welfare due to the Ivory Tower nature of academic research. The growth rate increases 0.02

percentage points relative to the optimal uniform policy of Table 9. These improvements are mitigated

by the delayed applicability of the academic research which is partly a consequence of missing property

rights for academic innovations. Policies that speed up this delay could potentially have important

contributions to growth and welfare, which is our focus in the next section.

5 Public Basic Research with Immediate Applicability

So far we have assumed that public innovations have a delayed effect on productivity in a particular

product line. A basic innovation by the public sector impacts the economy only after a private firm

utilizes it with its own applied innovation, which happens every 5 years on average. This generates

some disembodied basic innovations in equilibrium. However, one can argue that some policies enhance

the applicability of academic innovations by allowing universities to retain ownership of inventions

made using federal funds or by building joint ventures with the private sector. This is an interesting

policy question, which we can analyze in our setting. We will study this appropriability problem by

considering a scenario where basic academic research is immediately turned into an innovation. It

should be noted that academic research, as we have all experienced, has a much wider set of objectives

than purely generating consumer products (such as education, to say the least). Although we believe

that they are also very important, our analysis will abstract from those considerations and will mainly

focus on productivity consequences.

Table 11 considers this new environment where public basic research functions very much like pri-

vate basic research in terms of its applicability. Therefore, in Panel A we again report the equilibrium

values of the status quo economy as in Table 6. When academic research has immediate applicability,

equilibrium welfare improves by 0.4 percentage point and becomes 100.4. In Table 11, we renormalize

this new benchmark to 100.0% (dividing it by 100.4) and the following panels report their welfare

numbers relative to this new benchmark.

Panel B solves for the social planner problem. This time the welfare gap between the two is bigger

(=4.5%). This is due to the fact that the planner wants to allocate 2.3% of the workforce into public

basic research whereas the current policies allocate only 0.5% of the workforce. In addition, private

35



firms invest too much into applied research (La = 8.9% compared to 7%) and too little into basic

research (Lb = 0.5% compared to 4.6%).

Table 11: Policy Experiments with Immediate Applicability of Public Basic Research (in percentages)

ψ R/Z τa τeb τdb Lp Lb Lu Le La α g β

A. Benchmark Status Quo with Immediate Applicability of Public Basic Research

10.0 0.5 22.0 0.7 0.0 85.6 0.5 0.5 4.5 8.9 6.8 1.37 100.0

B. Social Planner with Immediate Applicability of Public Basic Research

N/A N/A 18.5 6.5 0.0 82.6 4.6 2.3 3.5 7.0 35.8 1.93 104.5

C. Optimal Uniform Policy with Immediate Applicability of Public Basic Research

29.7 0.5 25.1 1.5 0.0 82.1 1.5 0.5 5.3 10.6 12.8 1.70 100.6

D. Optimal Academic and Uniform Policy with Immediate Applicability of Public Basic Research

26.1 3.3 23.5 2.3 0.0 81.2 0.9 3.3 4.9 9.7 24.7 1.92 102.7

Panel C focuses on the optimal uniform R&D subsidy and the results are very similar to Table

9. Equilibrium welfare improves slightly by 0.6 percentage points. The contribution of R&D subsidy

is yet again mitigated by the fact that uniform subsidy increases the applied research investment to

La = 10.6, furthering the overinvestment.

Panel D studies the optimal uniform subsidy together with the optimal fraction of GDP allocated

for academic research. Under this policy, the optimal rates are 26.1% and 3.3%, respectively. This

policy combination increases the growth rate to 1.92% and achieves the highest welfare result among all

policies considered. By using the level of academic funding to reach the proper share of researchers,

the policymaker is able to lower the uniform subsidy, thus reducing needless cross-subsidization of

applied research. Under the current policy 81.2% of the labor force is allocated to production, a

significant reduction over that of the baseline case in Panel A. This time around, the composition of

workers between applied and basic research is closer to the social optimum. The resulting welfare is

2.7% higher than the status quo economy and closes 60% (=2.7/4.5) of the gap between the social

planner and the decentralized economy.

To summarize our findings, we first considered the most widely discussed policy, which is a uniform

subsidy. Using this tool optimally yielded limited improvement in welfare due to oversubsidization of

applied research, as the policy could not distinguish between research types with different spillover and

productivity implications. Considering a policy combination that governs both private and academic

research in which the researchers can appropriate the returns to their innovations could generate a

significant improvement. The first main conclusion to be drawn for innovation policy is the importance

of recognizing different types of research and the impact of policies on them. The second is that it is

important to take into account both the direct and indirect effects of academic research on productivity

growth and the role of researchers’ appropriability of their outcomes when considering growth and

innovation policies.
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6 Conclusion

In this paper, we distinguished between basic and applied research and identified spillovers associated

with each. Our quantitative analysis highlighted the importance of this distinction. Indeed, in the

competitive equilibrium, applied research is overinvested in and basic research is underinvested in. As

a result, imposing a uniform research subsidy does not generate the expected welfare improvement

due to inefficient cross-subsidization of applied research. The key message of our paper is therefore

that standard R&D policies can accentuate the dynamic misallocation in the economy.

Interestingly, our policy experiment relative to the uniform research subsidy closely resembles a

recent reform of French R&D policy. In 2008 the French government introduced a 30% tax credit

for all R&D related expenditures of firms. While the new system represented a significant subsidy to

private R&D, with an annual budget of 5 billion Euros, its effectiveness in boosting innovation has

been widely criticized [Larousserie (2015)].

Our findings can account for the limited impact of such policies, and point to the need for targeting

basic research more directly. Our paper took a first step in trying to quantify the inefficiencies

regarding different types of research and innovation efforts. There are still important open questions

awaiting further study. In particular, the effect of university licensing and collaboration opportunities

between universities and the private sector are two examples. We hope further structural work will

be undertaken to enhance our understanding of the aforementioned issues, which can then guide the

relevant innovation policies.
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Appendix

A Theoretical Proofs

As the downstream production technology is unchanged in the generalized model and we continue to
impose symmetry across the industries. This implies that

Pi = P =
1

M
and Yi = Y = Z. (23)

Henceforth, we can drop the industry index i. The perfectly competitive firm that produces midstream
good Yi takes equilibrium prices P and pj as given while maximizing its profit

max
yj

{
P

[∫ 1

0
y
ε−1
ε

j dj

] ε
ε−1

−
∫ 1

0
pjyjdj

}
.

This maximization leads to the following inverse demand for upstream good j

pj = P

(
Y

yj

) 1
ε

.

Monopolist in product line j, j has productivity qj . The firm takes the demand function for its product
as given and solves the following maximization problem

πj = max
yj

{
PY

1
ε y

ε−1
ε

j − w

qj
yj

}
This delivers the following optimal quantity

yj =

[
1

M

(
ε− 1

ε

)(qj
w

)]ε
Z

Plugging this into the production function for midstream goods, we find a relationship between wage

w and aggregated productivity q̄ ≡
(∫

qε−1
j dj

) 1
ε−1

w =
1

M

(
ε− 1

ε

)
q̄ (24)

With this, we can greatly simplify the expression of the firm’s quantity and price choices as a function
of its normalized productivity q̂j = qj/q̄

yj = q̂εjZ and pj =
1

Mq̂j

Denote variables normalized by Z/M with a “∼”. Then the normalized profit and labor are given by

π̃j =
q̂ε−1
j

ε
and lj =

q̂ε−1
j

w̃

(
ε− 1

ε

)
. (25)

where w̃ is the normalized wage. Note that by construction
∫
q̂ε−1
j dj = 1. As a result, we integrate 25

over j to find profit share and production labor share as

M
∫ 1

0 πjdj

Z
=

1

ε
and

wLP
Z

=
ε− 1

ε
. (26)

Finally, we combine 24 and 26 to find the final output as a function of aggregate productivity q̄ and
total production labor LP :

Z = q̄LP /M.
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Proof of Lemma 1 Let FH(·, t) and FC(·, t) be the aggregate product cumulative measures by type
(hot or hold) at time t. For a small time step ∆, hot distribution FH(·, t) will satisfy

FH(q̂, t+ ∆) =FH(q̂/(1 + ∆g), t)−∆τ [FH(q̂/(1 + ∆g), t)−FH(q̂/(1 + ∆g)− η, t)]
+ ∆τ ebFC(q̂/(1 + ∆g)− η, t)−∆ζFH(q̂/(1 + ∆g), t) + ∆τdb FC(q̂/(1 + ∆g), t)

Similarly, the cold distribution FC(·, t) will satisfy

FC(q̂, t+ ∆) =FC(q̂/(1 + ∆g), t)−∆τa [FC(q̂/(1 + ∆g), t)−FC(q̂/(1 + ∆g)− λ, t)]
−∆τbFC(q̂/(1 + ∆g), t) + ∆ζFH(q̂/(1 + ∆g), t)

Finally, for i ∈ {H,C}, calculating

Ḟi(q̂) =
Fi(q̂, t+ ∆)−Fi(q̂, t)

∆

and taking the limit as ∆→ 0 yields the desired flow equations. Note that for this we use

Fi(q̂/(1 + ∆g), t)−Fi(q̂, t)
∆

= −gq̂[∂Fi(q̂)/∂q̂]

Proof of Proposition 1. Let F(·, t) be the distribution over q at time t. Similarly, let
FH(·, t) and FC(·, t) be the product type (hot/cold) conditional distributions. Thus, we will have
F(q, t) = αFH(q, t) + (1 − α)FC(q, t). The evolution of the aggregated productivity index q̄ is then
given by

q̄ε−1(t+ ∆t) =

∫ ∞
0

qε−1dF(q, t+ ∆t)

=α

∫ ∞
0

qε−1dFH(q, t+ ∆t) + (1− α)

∫ ∞
0

qε−1dFC(q, t+ ∆t)

=α

∫ ∞
0

[
∆τ (q + ηq̄)ε−1 + (1−∆τ)qε−1

]
dFH(q, t)

+ (1− α)

∫ ∞
0

[
∆τa (q + λq̄)ε−1 + ∆τ eb (q + ηq̄)ε−1 + (1−∆τ)qε−1

]
dFC(q, t)

Thus the differential is

q̄ε−1(t+ ∆t)− q̄ε−1(t)

∆
=α

∫ ∞
0

τ
[
(q + ηq̄)ε−1 − qε−1

]
dFH(q, t)

+ (1− α)

∫ ∞
0

(
τa

[
(q + λ)ε−1 − qε−1

]
+ τ eb

[
(q + η)ε−1 − qε−1

])
dFC(q, t)

and the normalized differential is

q̄ε−1(t+ ∆t)− q̄ε−1(t)

∆q̄ε−1(t)
=α

∫ ∞
0

τ
[
(q̂ + η)ε−1 − q̂ε−1

]
dFH(q̂, t)

+ (1− α)

∫ ∞
0

(
τa

[
(q̂ + λ)ε−1 − q̂ε−1

]
+ τ eb

[
(q̂ + η)ε−1 − q̂ε−1

])
dFC(q̂, t)

Finally, the growth can be expressed compactly as

g =
ατEHq̂

[
(q̂ + η)ε−1 − q̂ε−1

]
+ (1− α)

(
τaECq̂

[
(q̂ + λ)ε−1 − q̂ε−1

]
+ τ ebECq̂

[
(q̂ + η)ε−1 − q̂ε−1

])
ε− 1
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This can also be rearranged into

g =
τa

(
αEHq̂

[
(q̂ + η)ε−1 − q̂ε−1

]
+ (1− α)ECq̂

[
(q̂ + λ)ε−1 − q̂ε−1

])
+ τ ebEq̂

[
(q̂ + η)ε−1 − q̂ε−1

]
ε− 1

Proof of Proposition 2. The firm value, in general form, can be expressed as

rVt(q̂,m)− V̇t(q̂,m)

= max
a,b



∑
q̂∈q̂

1
ε q̂
ε−1Zt

M − nwt
[
ha(a) + hb(b) + 1(b>0)φ]

]
+na

[
αEHq̂ Vt (q̂∪{q̂ + η} ,m) + (1− α)ECq̂ Vt (q̂∪{q̂ + λ} ,m)− Vt (q̂,m)

]
+nb (1 + ρm) [Vt (q̂∪{q̂ + η} ,m)− Vt (q̂,m)]

+
∑

q̂∈q̂ τ
[∑

q̂∈q̂ [Vt (q̂\ {q̂} ,m)− Vt (q̂,m)]
]

+xmM

[
αEHq̂ Vt (q̂∪{q̂ + η} ,m) + (1− α)ECq̂ Vt (q̂∪{q̂ + λ} ,m)− p′m − Vt (q̂,m)

]
+x
(
1− m

M

) [
αEHq̂ Vt (q̂∪{q̂ + η} ,m+ 1) + (1− α)ECq̂ Vt (q̂∪{q̂ + λ} ,m+ 1)− pm − Vt (q̂,m)

]
+nκ [Eq̂Vt (q̂ ∪ {q̂} ,m)− P − Vt (q̂,m)]

+κ [nP − Vt (q̂,m)]



.

Now, conjecture Vt(q̂) = Zt
M

[∑
q̂∈q̂ V (q̂t) + nVm

]
. When we substitute the conjecture into the the

above expression and using the prices

pm = Vm+1 + Eq̂,sV (q̂t+∆t + ŝ)

p′m = Vm + Eq̂,sV (q̂t+∆t + ŝ)

we find

(r − g)Vm = max
a,b


−w̃

[
ha(a) + hb(b) + 1(b>0)φ]

]
+a
[
αV H + (1− α)V C + Vm

]
+b (1 + ρm)

[
V H + Vm

]
+x
(
1− m

M

)
[Vm+1 − Vm]

−τVm + κEq̂V (q̂t)

 .

and

V ′(q̂t)gq̂ + [τ + κ+ r − g]V (q̂t) =
1

ε
q̂ε−1.

Note that the last expression is a differential equation as a function of q̂. Then

V (q̂t) =
q̂ε−1
t

ε [r + τ + κ+ g (ε− 2)]
.

This completes the proof.

Derivation of Multi-industry Distribution Γm,n.
We assume that when a firm loses its last product in a particular industry, it maintains a foothold
there, in the sense that it still receives buy-out offers and can still directly use basic research relevant
to that industry. When a firm loses all of its products or receives a destructive shock, it ceases to exist.
We wish to find the joint distribution over the number of industries a firm is in and how many product
lines it owns. For notational convenience, let us denote the basic research flow from m-industry firms
by b̂m = B(φm)bm. Let us also denote the expansion rate of a firm into a new industry by em. Here
the expansion rate comes purely from buy-out offers by entrants. So given a per firm buy-out offer
rate of x, a firm in m industries will expand at rate

em = x

(
M −m
M

)
=

(
ςEae
F

)(
M −m
M

)
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Then the flow equation for firms in m industries with n products is

Outflow Inflow[
a1 + b̂1 + τ + κ

+e1 + κ

]
Γ1,1 = ae + 2τΓ1,2[

am + b̂m + τ + κ
+em + κ

]
Γm,1 = 2τΓm,2 + em−1Γm−1,1 for m ≥ 2[

n
(
am + b̂m + τ + κ

)
+em + κ

]
Γm,2 =

{ (
am + b̂m (1− ρm) + κ

)
Γm,n−1

+3τΓm,n+1 + em−1Γm−1,n

}
for m ≥ 1

[
n
(
am + b̂m + τ + κ

)
+em + κ

]
Γm,n =


(n− 1)

(
am + b̂m (1− ρm) + κ

)
Γm,n−1

+(n− 2)ρmb̂mΓm,n−2

+(n+ 1)τΓm,n+1 + em−1Γm−1,n

 for n ≥ 3, m ≥ 1

where we use the convention Γm,−1 = Γm,0 = 0 and e0 = 0. The first line equates the outflows from
(m = 1, n = 1) that happen once the firm loses its product at the rate τ + κ, acquires a new product

line at the rate κ, innovates a new good at the rate a1 + b̂1 on average or expands into a new industry
at the rate e1. On the other hand, inflow happens from outsiders at the rate ae and from the firms with
2 products that lose one of their products at the rate 2τ . Similar reasoning applies to the subsequent
lines.

Using values for the Γm,n distribution gives us the mass of firms in a given (m,n) state. The

total mass of firms is then F =
∑M

m=1

∑∞
n=1 Γm,n. We ultimately want the mass of products in given

industry state m. To get this we simply evaluate

µm =
∞∑
n=1

n · Γm,n

B Data Organization

Data Organization

We first identify the ownership status of each firm in the economy and the head of the group with
which the firm is affiliated. Indeed, our data source (LIFI) defines a group as a set of firms controlled,
directly or indirectly, by the same entity (the head of the group). We rely on a formal definition of
control, requiring that a firm holds directly or through cross-ownership at least 50% of the voting
rights in another firm’s general assembly. We do not expect this to be a major source of bias in our
sample as most French firms are private and ownership concentration is strong even among listed
firms. Firms that do not conform to this definition are classified as stand-alone firms.

We then match the ownership information to our balance-sheet data and to our survey on lines
of business within firms. We drop firms that appear in the ownership data but for which we cannot
find balance-sheet information. We also delete as outliers firm-year observations whose ROA falls
outside a multiple of five of the interquartile range and firms that report 0 employment or which have
negative sales. Based on our two sources of information we identify the main line of business from
the balance sheets and the different segments of the firm from the survey on lines of business. For
computational convenience we create a new firm-group identifier that allows us to aggregate at the
same time business groups, business groups with multi-divisional firms, exclusively multi-divisional
firms and true stand-alone firms. We then define four measures of multi-market activity. The first
measure counts each market in which the firm-group is present either via its ownership links or its
multi-divisional structure. The second measure counts each market in which the firm-group is present
with at least 9 employees via its ownership links or its multi-divisional structure. The third measure
counts each market in which the firm-group is present exclusively via its ownership links. The final
measure counts each market in which the firm-group is present exclusively via its ownership links and
excluding financial activities.
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We then define firm characteristics from balance-sheet data. There are three possible organizational
types and comparison issues might arise. Taking the firm as the economic unit of interest has the
advantage of simplicity since information is directly available in the balance sheets. However, this
method has the disadvantage of not being comparable across organizational types. Indeed, most
information for multi-divisional firms is aggregated across lines of segment, whereas firms belonging
to business groups have market-specific information. Similar to existing studies by the Ministry
of Research (Dhont-Peltrault and Pfister (2011)), we decided to aggregate the information to the
economic unit at the highest level of control: the firm level for stand-alone and multi-divisional firms,
and the business group level for firms affiliated through majority ownership.15

In a final step we match the firms’ balance-sheet and patent information to information contained
in the R&D Survey. We focus on firms for which we have R&D information. Again we aggregate at the
highest level of control. As before, one has to be cautious in aggregating on the basis of variables that
might be prone to double-counting. When constructing information on the basic R&D intensity of a
firm this is not the case as we are focusing exclusively on “internal” research expenditures. Therefore,
if a member of the group contracts out research with another member of the group, then one will be
counted as “external” research expenditures and the other one as “internal” expenditures. To correct
for outliers in the dependent variable, we drop firm-year observations whose basic research intensity,
conditional on positive basic research, falls outside a multiple of five of the interquartile range. In
addition we exclude firm-year observations whose total R&D to sales ratio falls outside a multiple of
five of the interquartile range.16

Policy Environment

It is useful to describe the policy environment in France during the period of our data. The share of
GDP devoted R&D expenditures in France was on average 2.2% between 2000 and 2006. Innovation
policy during the sample period featured a mix of measures to support R&D investment of firms
through public financing. The main instrument to stimulate private innovation activity during that
period consisted of approximately 2.5 billion euros of yearly subsidies allocated to firms either through
ministries or government agencies such as OSEO-ANVAR. Note that our R&D survey allows us to
directly measure this form of public financing in our sample. Finally, the R&D tax credit system was
seen by the government as a secondary policy measure until a major reform in 2008 that increased the
base and the rate of the the tax credit.

Variable List

All variables are organized and computed according to the method set out in the previous section.
To summarize, we decided to aggregate the information to the economic unit at the highest level of
control: the firm level for stand-alone and multi-divisional firms, and the business group level for
firms affiliated through majority ownership. In the remainder of the document we will, for the sake of
notational convenience, refer generically to firms.

• Basic Research Intensity: total basic research by firm i in year t divided by total applied research
of firm i in year t. The formulation of the survey questions related to the type of research
undertaken is directly derived from the definitions provided by the Frascati Manual;

• # of Industries: sum of all distinct SIC codes within firm i in year t irrespective of organizational
form (business group or multi-divisional structure). Industries are successively defined at the
4-,3-,2- and 1-digit SIC levels;

• # of Industries - Weighted Sum: weighted sum of all distinct bilateral 1-digit SIC links within
firm i in year t. Weights are computed on the basis of the empirical frequency of each bilateral
SIC link in each year t;

• # of Patent Classes Applied: sum of cumulated distinct patent-class applications within firm
i in year t. Cumulated patent-class applications are computed for the period leading from

15In addition to the economic rationale for constructing the data at the highest level of control there is also a legal
argument. Indeed most public administrations and tribunals define the eligibility of firms for subsidy programs with
respect to the business groups to which they belong.

16Alternatively, we exclude firm-year observations whose basic to applied R&D ratio falls above the 99th percentile of
the distribution. The results are qualitatively similar.
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1993 to year t. Patent classes are successively defined at the 5,4,3,2 and 1-digit levels (EPO
Classification);

• # of Patent Classes Granted: sum of cumulated distinct patent-class grants within firm i in
year t. Cumulated patent-class grants are computed for the period leading from 1993 to year t.
Patent classes are successively defined at the 5-,4-,3-,2- and 1-digit levels (EPO Classification);

• Financial Int.: binary indicator equal to 1 if firm i in year t is present in a financial industry, 0
otherwise;

• Foreign HQ: binary indicator equal to 1 if the headquarters of firm i in year t are located outside
France, 0 otherwise;

• Market Share: weighted average of total sales of firm i, year t in industry k divided by total
industry sales in year t. Weights are computed on the basis of the industry share of employment
within firm i in year t;

• Outsourcing to Univ.: binary indicator equal to 1 if firm i in year t has outsourced R&D to
French universities, 0 otherwise;

• Profitability - ROA: weighted average of EBIDTA divided by total fixed assets of all subsidiaries
within firm i in year t. Weights are computed on the basis of the subsidiaries’ share of employ-
ment within firm i in year t;

• Profitability - ROS: weighted average of EBIDTA divided by total sales of all subsidiaries within
firm i in year t. Weights are computed on the basis of the subsidiaries’ share of employment
within firm i in year t;

• Public R&D Funds: binary indicator equal to 1 if firm i in year t has received French public
funds, 0 otherwise;

• Research Area: weighted average of the share of respectively biotech / software / environmental
research in research expenditures in firm i in year t. Weights are computed on the basis of the
subsidiaries’ share of total R&D within firm i in year t;

• Total Employment: total employment of firm i in year t;

• IV - State Present in 1986: binary indicator equal to 1 if the French state had a non-zero equity
stake in firm i in 1986;

• IV - SOE in 1986: binary indicator equal to 1 if the French state had a controlling equity stake
in firm i in 1986.

Table 12 provides the descriptive statistics of the key variables.

C Construction of Within-Industry Spillovers

Figure 10 provides a graphical intuition for the computation of the citation information.
Patent A is granted in 1978. In 1981, when patent A is 3 years old, it receives citations from

both patent B and patent C, which was applied for in 1981. Patent B in the following 10 years was
cited by patents V, W and X, whereas patent C was only cited by patents Y and Z. The average
citation of citing patents for patent A at age 3 is therefore 2.5. The timing of the computation implies
that we need to be cautious with respect to possible truncation. We therefore compute our measure
for patents between 1975 and 1985. This implies that, inclusive of the 10-years-forward lag, we can
observe without truncation all our patents until the age of 10.

Robustness Checks Table 13 provides robustness checks for the estimates on the cool-down rate
of patents originating from basic and applied research. The top panel of the table measures Quality
of Citing Patents computing the 5-years-forward citations of the citing patents and is measured for
patents granted in the period 1975-1985. The bottom panel re-classifies university patents that were
defined as private depositors. In both cases results are unchanged, with a citation difference between
public and private patents that becomes statistically non-significant at year 8. Indeed, in France,
most of the academic patents are accounted for in the “public” category. French universities generally
manage their patents through public research institutions with which academics are typically affiliated,
one example being the CNRS.
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Table 12: Descriptive Statistics

25th 75th Standard
Variable Mean Percentile Median Percentile Deviation Min Max N

R&D Investment
R&D To Sales 0.11 0.01 0.04 0.14 0.17 0.00 0.86 13708
Basic Research Intensity 0.06 0.00 0.00 0.02 0.19 0.00 1.57 13708
Number of Industries
1-Digit SIC 2.21 1 2 3 1.48 1 10 13708
4-Digit SIC 4.97 1 2 5 8.87 1 130 13708
Balance Sheet
Total Employment 1497.88 24 93 506 8445.93 1 195746 13708
Return on Sales 0.032 0.02 0.07 0.13 0.63 -39.39 7.36 13708
Age 21.17 8.79 18.92 30.55 14.97 0 86 13708
Ownership Structure
Financial Intermediary 0.05 0 0 0 0.22 0 1 13708
Foreign HQ 0.23 0 0 0 0.41 0 1 13708
Public and Private R&D
Public Subsidy to Private Investment 0.09 0 0 0.04 0.4 0 30.9 13708
Collaboration with Universities .15 0 0 0 0.36 0 1 13708

Note: Pooled data for the period 2000-2006. R&D To Sales is defined as the ratio of total firm research and development
expernditures to total firm sales. Basic Research Intensity is defined as the ratio of total firm investment in basic
research to total firm investment in applied research. Number of Industries is the sum of all distinct SIC codes within
the firm. Return on Sales is the ratio of earnings before interest, taxes, depreciation and amortization to total firm sales.
Total Employment total employment of the firm. Age is the difference between the current year and the year of the
firm’s incorporation. Financial Intermediary binary indicator equal to 1 if the firm is present in a financial industry,
0 otherwise. Foreign HQ: binary indicator equal to 1 if the headquarters of the firm are located outside France, 0
otherwise. Public Subsidy to Private Investment binary indicator equal to 1 if the firm has received French public funds
for innovation expenditures, 0 otherwise. Collaboration with Universities binary indicator equal to 1 if the firm has
received French public funds for innovation expenditures, 0 otherwise.

Figure 10: Computing the Cool-Down Rate

Akcigit, Hanley, and Serrano-Velarde

OA-3 Construction of Within-Industry Spillover

Figure 11 provides a graphical intuition for the computation of the citation information.

Figure 11: Computing the Cooling Down Rate
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Patent A is granted in 1978. In 1981, when patent A is 3 years old, it receives citations
from both patent B and patent C which applied in 1981. Patent B in the following 10 years was
cited by patents V, W and X, whereas patent C was only cited by patents Y and Z. The average
citation of citing patents for patent A at age 3 is therefore 2.5. The timing of the computation
implies that we need to be cautious with respect to possible truncation. We therefore compute
our measure for patents between 1975 and 1985. This implies that, inclusive of the 10 year
forward lag, we can observe without truncation all our patents until the age of 10.

Robustness Checks Figure 12 provides robustness checks for the estimates on the cooling
down rate of patents originating from basic and applied research. The left panel of the figure
measures Average Citations of Citing Patents computing the 5 year forward citations of the
citing patents and is measured for patents granted in the period 1975-1985. The right panel
re-classifies university patents which were defined as private depositors. In both cases results
are unchanged with a citation difference between public and private patents that becomes
statistically non-significant at year 8. Indeed in France most of the academic patents are
accounted for in the “public” category. French universities generally manage their patents
through public research institutions to which academics are typically affiliated, one example
being the CNRS.

OA-4

D Robustness Checks on Reduced-Form Results

In this section we provide further robustness checks on the correlation between a firm’s basic research
incentives and its multi-industry presence. Our baseline specification is related to the number of
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Table 13: Citation Patterns for Public and Private Patents

Age 1 2 3 4 5 6 7 8 9 10

5-Yr-Forward Citations .15** .16** .28*** .16** .22** .15** .33*** .08 .18 .15
(0.07) (0.07) (0.08) (0.06) (0.07) (0.07) (0.11) (0.08) (0.11) (0.12)

10-Yr-Forward Citations .3** .3** .62*** .28** .42** .23 .71*** .08 .39 .15
Including Univ. (0.15) (0.15) (0.17) (0.14) (0.18) (0.17) (0.25) (0.16) (0.25) (0.24)

Note:The table computes Average Citations of Citing Patents computing the 5-years-forward citations of the citing patents

and re-classifying university patents as public patents. The table reports differences in citation patterns using two sample

t-tests with unequal variances. One star denotes significance at the 10% level, two stars denote significance at the 5% level,

and three stars denote significance at the 1% level

distinct 1-digit SIC activities in which a firm operates but extends to finer SIC classifications. All
results are presented in Table 14.

Confounding Factors Columns (1) and (2) check robustness of the results with respect to con-
founding factors. Column (1) estimates the model only allowing for year and organization fixed effects,
whereas column (2) includes a set of potential confounding factors. Results in column (1) suggest that
presence in an additional industry, not accounting for other variables such as size, is associated on
average with a 1.4 percentage-point higher basic research intensity of firms. In column (2) the set of
regressors includes controls for size, profitability and headquarter localization. The impact of multi-
industry presence is slightly lower but remains statistically significant.17 Estimates on the localization
of headquarters are also statistically significant at the 5% level. Total employment and profitability
on the other hand are not.

Measures of Multi-Industry Presence Columns (3) and (4) provide alternative measures for
the multi-industry presence of firms. Column (3) defines multi-industry presence on the basis of a
firm’s technological spectrum. To do so we use EPO patent data for French applicants. We define as
the number of technology classes in which a firm is present as the cumulative distinct patent classes
granted to the firm between 1993 and t. The coefficient is very similar in magnitude and precision to
the one obtained using distinct 1-digit SIC industries. Column (4) measures multi-industry presence
as a weighted sum of all distinct bilateral 1-digit SIC links within firm i in year t considering only
distinct legal entities linked by majority ownership. Weights are computed on the basis of the empirical
frequency of each bilateral SIC link in each year t. Intuitively, if a given bilateral industry link is rare,
then industries are more likely to be very different. Multi-industry presence is still positively related
to basic research intensity, the different point estimate being linked to the different support of the
weighted industry variable.

Causality and Instrumental Variables Columns (5) and (6) address the potential concern of
reverse causality, i.e. basic research leading to a larger economic scope of firms. We exploit historical
ownership structures that affected a firm’s multi-industry presence as instrumental variables. The two
instruments are defined as State Ownership 1985-1987 and State Owned between 1985-1987.

The rationale behind our identification strategy is as follows. In 1981 Francois Mitterrand was
elected president of the Republic and implemented a vast nationalization program across industries.
Even before that period the tradition of French state intervention resulted in a significant fraction of
the economy being under state control. Consistent with Colbertist policies, the state also modified the
economic scope of its firms by merging unrelated firms into large conglomerates of national champions.
In 1987, however, Jacques Chirac was elected prime minister on a liberal platform and this marked
the beginning of privatizations, which continued into the 90s. The embedded exclusion restriction

17Further checks on control variables included market shares, R&D subsidies, collaborations with universities, the
presence of financial intermediaries, state in the capital of the firm, industry fixed effects and the use of a mean patent
scaling method.
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Table 14: Basic Research Intensity and Multi-Market Activity, Robustness Checks

Covariates Alternative Measures Instrumental Variables Estimation

(1) (2) (3) (4) (5) (6) (7) (8)
No Yes Patent Weighted State Present SOE Heckman Negative

Based Links in 1986 in 1986 Binomial

# of Industries 0.014*** 0.011*** 0.012*** 0.028*** 0.023*** 0.020** 0.045*** 0.007***
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00)

Log Employment 0.002 0.003 0.018*** -0.003 -0.002 0.012*** -0.001
(0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

Foreign HQ -0.010** -0.010 -0.048** -0.004 -0.005 -0.041*** -0.006
(0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.00)

Profitability 0.006 0.016 0.005 0.005 0.005 0.025** 0.005
(0.00) (0.01) (0.01) (0.00) (0.00) (0.01) (0.00)

Year & Organization FE YES YES YES YES YES YES YES YES

N 13708 13706 3709 14823 13707 13707 13707 13707

Notes: Pooled data for the period 2000-2006. Basic Research Intensity is defined as the ratio of total firm investment
in basic research divided by total firm investment in applied research. Columns 1 and 2 re-estimate the Tobit model
with different sets of regressors. Columns 3 and 4 modify the measure of a firm’s multi-industry presence. Column
3 uses patent applications of French firms to the European patent office (1993-2003) to count the number of distinct
technological fields in which they are present (1-digit IPC classification). Column 4 weights each bilateral industry link
of a firm by the empirical frequency of this link in the French economy, thus giving more weight to less related industries.
Columns 5 and 6 re-estimate the model by instrumenting contemporary multi-industry presence by historical ownership
structures. More specifically, we exploit the nationalization wave of the Mitterrand era that preceded the privatization
of the 90s. The idea is that state ownership effectively increased the scope of a firm’s economic activities. Column 5 uses
state participation in the capital of a firm in 1986 as an instrument. Column 6 uses state ownership of a company in
1986 as an instrument. Both instruments accurately predict an increased multi-industry presence nowadays. Columns
7 and 8 estimate the relationship between multi-industry presence and basic research intensity by using a Heckman
model and a negative binomial model. Tobit estimates relate to the marginal effect of the regressors with respect to the
uncensored variable mean and are evaluated at the sample mean of covariates (except for categorical variables evaluated
for firms that are present in 1 industry, non-foreign owned, in 2002). Robust standard errors clustered at the firm level
in parentheses. See Appendix B for the definition of variables.

therefore requires that state control in the 80 be associated today with a greater basic research intensity
of firms only because of politically motivated mergers. The implicit assumption is that when these
firms became private they adjusted their research spending from the social to the private optimum
but did not adjust their multi-industry presence. First-stage estimates show that state ownership in
the 80s is associated on average with 1.2 more industry links for firms between 2000 and 2006. The
associated F-test are well above the critical levels related to weak instruments tables.18 Columns 5
and 6 present the instrumented LATE coefficients related to multi-industry presence of the second
stage. The coefficients are nearly twice as large in magnitude with respect to the non-instrumented
coefficients of columns 1 and 2.

Estimation Columns (7) and (8) use alternative estimation methods for the baseline model with co-
variates. Column (7) presents estimates of the Heckman selection model, whereas column (8) presents
estimates from a negative binomial model. In both cases estimates suggest a positive and statistically
significant relation between basic research intensity and multi-industry presence.

18The tables are available upon request.
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E Identification: Target Moments and Parameter Sensitivity

In this section, we provide a sensitivity analysis. In particular, in Table 15 we report the percentage
change in the moment (row) for a 5% change in the parameter (column) from its baseline value, while
keeping the rest of the parameters at their benchmark values. We report the average of the +5% and
-5% changes. Therefore, these values can be interpreted as a double-sided discrete approximation.

Table 15: Jacobian Matrix for Parameter Estimation

Parameter: δ γ ε p η λ E U νa νb ξa ξb κ φ̄ σ ζ ς

Moment:
Basic extensive m = 1 -1 -1 -6 0 14 -9 -4 1 -12 64 33 -26 -0 88 4 1 -0
Basic extensive m = 2 -1 -1 -5 1 13 -8 -4 1 -11 59 31 -25 -0 81 3 1 -0
Basic extensive m = 3 -1 -1 -5 1 12 -8 -4 1 -11 54 29 -24 -0 74 2 1 -0
Basic extensive m = 4 -1 -1 -5 2 11 -8 -3 1 -10 50 27 -23 -0 68 2 1 -0
Basic extensive m = 5 -1 -1 -5 2 11 -7 -3 1 -10 45 25 -22 -0 62 1 1 -0
Basic extensive m = 6 -1 -1 -4 2 10 -7 -3 0 -9 42 23 -20 -0 56 1 1 -0
Basic extensive m = 7 -1 -1 -4 3 9 -6 -3 0 -9 38 21 -19 -0 51 0 0 -0
Basic extensive m ≥ 8 -1 -1 -4 3 8 -6 -3 0 -8 34 19 -18 0 45 -0 0 -0
Basic intensive m = 1 -1 -1 -2 0 18 -11 -3 1 -15 88 45 -32 -0 82 3 1 -0
Basic intensive m = 2 -1 -1 -2 1 17 -10 -3 1 -14 81 43 -31 -0 74 3 1 -0
Basic intensive m = 3 -1 -1 -1 2 16 -10 -3 1 -14 75 41 -30 -0 68 2 1 -0
Basic intensive m = 4 -1 -1 -1 2 16 -10 -3 1 -13 70 38 -29 -0 61 1 1 -0
Basic intensive m = 5 -1 -1 -1 3 15 -9 -3 1 -12 65 36 -27 -0 55 1 1 -0
Basic intensive m = 6 -1 -1 -1 3 14 -9 -2 1 -12 60 34 -26 -0 50 0 1 -0
Basic intensive m = 7 -1 -1 -0 4 13 -8 -2 1 -11 56 32 -25 -0 45 -0 1 -0
Basic intensive m ≥ 8 -1 -1 -0 4 12 -8 -2 1 -11 50 30 -24 0 39 -1 1 -0
Mean m -0 -0 0 0 0 -0 -1 0 -0 0 0 -0 -0 0 -0 0 0
Mean m2 -1 -0 -0 0 0 -0 -1 0 -1 1 0 -1 -0 1 -0 0 4
Return on sales 6 3 -25 2 -9 7 5 2 4 -21 -8 9 1 -20 0 3 9
Exit Rate -1 -1 -4 0 -0 0 1 -0 3 -0 -4 0 1 -0 -0 -0 1
R&D/labor -1 -1 6 -1 5 -0 -0 -0 -0 9 3 -3 -1 9 -0 -0 -2
Employment growth 7 10 2 -2 3 8 1 2 13 0 15 1 0 15 9 5 10
Aggregate growth -1 -1 -3 0 2 4 0 -0 2 4 -2 -2 -0 4 0 -0 -0
Spillover differential 0 0 0 -0 -0 0 0 -0 0 -2 -1 1 0 -2 -0 -5 0
Age, small firms -0 1 4 1 0 0 -3 1 -1 0 3 0 -1 1 -0 0 3
Age, large firms 0 -1 3 -0 1 -1 -3 -0 -4 2 5 -2 -0 1 0 -0 2

Note: All values are in percentage terms.
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