
NBER WORKING PAPER SERIES

INFERENCE OF BIDDERS’ RISK ATTITUDES IN ASCENDING AUCTIONS WITH
ENDOGENOUS ENTRY

Hanming Fang
Xun Tang

Working Paper 19435
http://www.nber.org/papers/w19435

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
September 2013

We are grateful to the associate editor and three anonymous referees whose constructive comments
substantially improved the paper. We also thank Dan Ackerberg, Federico Bugni, Xu Cheng, Flavio
Cunha, Ken Hendricks, Tong Li, Isabelle Perrigne, Frank Schorfheide, Steven Stern, Petra Todd, Quang
Vuong and seminar/conference participants at UC Berkeley, Michigan, Northwestern, Pennsylvania,
Toronto, Virginia, Wharton, North American Econometric Society Summer Meetings (St. Louis
2011) and Society of Economic Dynamics Annual Meetings (Ghent 2011) for helpful comments
and suggestions. All remaining errors are our own. The views expressed herein are those of the authors
and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2013 by Hanming Fang and Xun Tang. All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.



Inference of Bidders’ Risk Attitudes in Ascending Auctions with Endogenous Entry
Hanming Fang and Xun Tang
NBER Working Paper No. 19435
September 2013
JEL No. C12,C14,D44

ABSTRACT

Bidders' risk attitudes have key implications for choices of revenue-maximizing auction formats. In
ascending auctions, bid distributions do not provide information about risk preference. We infer risk
attitudes using distributions of transaction prices and participation decisions in ascending auctions
with entry costs. Nonparametric tests are proposed for two distinct scenarios: first, the expected entry
cost can be consistently estimated from data; second, the data does not report entry costs but contains
exogenous variations of potential competition and auction characteristics. In the first scenario, we
exploit the fact that the risk premium required for entry – the difference between ex ante expected
profits from entry and the certainty equivalent – is strictly positive if and only if bidders are risk averse.
Our test is based on identification of bidders' ex ante profits. In the second scenario, our test builds
on the fact that risk attitudes affect how equilibrium entry probabilities vary with observed auction
characteristics and potential competition. We also show identification of risk attitudes in a more general
model of ascending auctions with selective entry, where bidders receive entry-stage signals that are
correlated with private values.

Hanming Fang
Department of Economics
University of Pennsylvania
3718 Locust Walk
Philadelphia, PA 19104
and NBER
hanming.fang@econ.upenn.edu

Xun Tang
Department of Economics
University of Pennsylvania
3718 Locust Walk
Philadelphia, PA 19104
xuntang@sas.upenn.edu



1 Introduction

We propose nonparametric tests to infer bidders� risk attitudes in ascending (or open

out-cry) auctions with endogenous entry. In these auctions, potential bidders observe some

entry costs, e.g., bid preparation/submission costs and/or information acquisition costs, that

they need to incur before learning private values, and decide whether to pay the costs to be

active in the bidding stage. In any Bayesian Nash Equilibrium (BNE), bidders make rational

entry decisions by comparing expected utility from entry with that from staying out, based

on their knowledge of entry costs or preliminary signals of private values to be realized in

the subsequent bidding stage.

Inference of bidders� risk attitudes have important implications for sellers� choices of

revenue-maximizing auction format. When participation of bidders is exogenously given

and �xed, the Revenue Equivalence Theorem states that expected revenues from �rst-price

and ascending auctions are the same if bidders are risk-neutral in symmetric independent

private values (IPV) environments. If bidders are risk-averse, however, Matthews (1987)

showed that in such environments �rst-price auctions yield higher expected revenues than

ascending auctions. Bidders�risk attitudes also a¤ect revenue rankings among symmetric

IPV auctions when participation decisions are endogenous. For risk-neutral bidders, Levin

and Smith (1994) showed that any given entry cost induces the same entry probabilities in

�rst-price auctions (with entrants observing the number of other entrants) and in ascending

auctions. Thus the Revenue Equivalence Theorem implies expected revenues must be the

same from both �rst-price and ascending formats under endogenous entry. On the other

hand, Smith and Levin (1996) established the revenue ranking of �rst-price over ascending

auctions under endogenous entry for risk-averse bidders, except for the case with decreasing

absolute risk aversions (DARA).1

While some earlier papers had studied the identi�cation and estimation of bidders�risk

attitudes in �rst-price auctions (e.g. Bajari and Hortascu (2005), Campo, Guerre, Perrigne

and Vuong (2011) and Guerre, Perrigne and Vuong (2009)), inference of risk attitudes in

ascending auctions remains an open question. Athey and Haile (2007) pointed out that

bidders� risk attitudes cannot be identi�ed from bids alone in ascending auctions where

participation is given exogenously. This is because bidding one�s true value is a weakly

dominant strategy in ascending auctions, regardless of bidders�risk attitudes. Thus, bidders

1Even in the case with DARA, �rst-price auctions yield higher expected revenues than ascending auctions

when entry costs are low enough. To see this, consider a simple case where entry costs are low enough so

that the di¤erence between entry probabilities in �rst-price and ascending auctions are su¢ ciently small. In

such a case, these two probabilities are both close to 1 and only di¤er by some small " > 0. By Matthews

(1987), conditioning on any given number of entrants, ascending auctions have smaller expected revenues

than �rst-price auctions. With di¤erence between the two entry probabilities " small enough, such a revenue

ranking result will be preserved.
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with various risk attitudes could generate the same distribution of bids in Bayesian Nash

equilibria. The distribution of bids from entrants alone is therefore not su¢ cient for inferring

bidders�risk attitudes.

In this paper, we propose tests for bidders� risk-attitudes based on transaction prices

and entry decisions under two empirically relevant data scenarios. In the �rst scenario, we

assume that the data has information that allows researchers to consistently estimate the

expectation of entry costs; and in the second scenario, we assume that the data does not

provide any information about the level of entry costs, but does contain variations in the

number of potential bidders and some auction-level heterogeneities. In both cases, we show

how to relate the distribution of transaction prices and entry decisions to the underlying risk

attitudes nonparametrically.

In the �rst scenario, considered in Section 4, we require that the data contains some noisy

measures of entry costs so that the mean of entry costs in the data-generating process can be

consistently estimated. This is motivated by the fact that entry costs are often measurable

(at least up to some noises) in applications. Examples of entry costs include bid preparation

costs (e.g., mailing costs), admission fees or other information acquisition expenses, which

are often reported in data with noises.

The main insight for our test in this scenario can be illustrated using the mixed-strategy

entry model (which is analogous to that considered in Levin and Smith (1994) for �rst-price

auctions). In the entry stage, all potential bidders observe some common entry cost and

decide whether to pay the cost and enter an ascending auction in the bidding stage. In a

Bayesian Nash equilibrium, potential bidders�participation in the auction will be in mixed

strategies with the mixing probability determined to ensure that a bidder�s expected utility

from entry equals that from staying out. Hence bidders� risk attitudes can be identi�ed

by comparing the expected pro�ts from entry and its certainty equivalent. As long as the

expectation of entry costs can be identi�ed from data, the distribution of transaction prices

and entry decisions alone can be used to make such a comparison.

We apply the analog principle to construct a non-parametric test statistic, using data

on transaction prices and entry decisions as well as estimates of the mean of entry costs.

We characterize the limiting distribution of this statistic, and propose a bootstrap test that

attains correct asymptotic level and is consistent under any �xed alternative of risk-aversion

or risk-loving. We provide evidence for its �nite sample performance through Monte Carlo

simulations.

In the second scenario, considered in Section 5, we assume that the data does not provide

information about the level of entry costs, but does contain some auction-level heterogeneities

(such as feature of the auctioned object) and variations in the numbers of potential bidders.

We propose a nonparametric test for risk-aversion for this case, under the assumption that

variations in potential competition are exogenous (in the sense that it does not alter the

2



marginal distribution of private values once conditional on the observed auction features).

Refraining from parametric restrictions on how observed auction features change the dis-

tribution of private values, we formalize how risk attitudes determine entry probabilities

under various auction features and potential competition. Our test is based on the idea

that the curvature of utility functions a¤ects how the ratios between the changes in bidders�

interim utilities compare with the ratios between the changes in expected private values,

under di¤erent pairs of observed auction features. The main �nding is that, even if entry

costs are unreported in data, we could relate these two ratios to the observed distributions

of transaction prices and entry decisions, by exploiting the variations in auction features and

potential number of entrants.

In Section 6, we discuss possible extensions of our tests by removing two of the key

assumptions. First, we show that when bidders�values are a¢ liated, it is possible to derive

testable implications for risk attitudes using existing results on sharp bounds for the surplus

of risk-neutral bidders in ascending auctions (Aradillas-Lopez, Gandhi and Quint (2012)).

Second, we show that if entry becomes selective (e.g., due to the presence of preliminary

signals correlated with private values to be drawn in the bidding stage), then the idea

of testing risk attitudes through identi�cation of risk-premium applies, provided the data

contains continuous variations in observed entry costs.

It is worth noting that by �inference of risk attitudes�we mean to make a data-supported

conclusion about whether bidders�utility functions are concave, linear or convex. We do not

deal with the recovery of the full utility functions per se, which is a question left for future

research.

The remainder of the paper is structured as follows. In Section 2 we discuss the related

literature; in Section 3 we present the model of ascending auction with endogenous entry; in

Sections 4 and 5 we describe the theoretical results for our tests under two data scenarios,

and discuss inference using proposed test statistics; in Section 6 we discuss how to extend

our test to auctions with selective entry or a¢ liated private values; and in Section 7 we

conclude. Proofs are collected in the appendices.

2 Related Literature

This paper contributes to two branches of the literature on structural analyses of auction

data. The �rst branch includes papers that analyze the equilibrium and its empirical impli-

cations in auctions with endogenous entry and risk-neutral bidders. These include Levin and

Smith (1994), Li (2005), Ye (2007) and Li and Zheng (2009). Marmer, Shneyerov and Xu

(2011) studies a model of �rst-price auctions with risk-neutral bidders and selective entry,

and discusses testable implications of various nested entry models. Roberts and Sweeting

(2010) estimates a model of ascending auctions with selective entry and risk-neutral bid-
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ders. Gentry and Li (2013) provides partial identi�cation results for ascending auctions with

risk-neutral bidders when entry is selective (as potential bidders observe preliminary signals

that are a¢ liated with their private values). They derive sharp bounds on the distribution

of private values conditional on signals, using variations in factors that a¤ect bidders�entry

behaviors (such as the number of potential bidders and entry costs). They also apply these

results to bound counterfactual seller revenues under alternative auction rules. Aradillas-

Lopez, Gandhi and Quint (2012) provides partial identi�cation results for ascending auctions

where bidders�private values are a¢ liated, exploiting exogenous variations in the number of

entrants, or active bidders.

The second branch includes papers that study the identi�cation and estimation of bid-

ders�utility functions and the distribution of private values in �rst-price auctions without

endogenous entry. Campo, Guerre, Perrigne and Vuong (2011) shows how to estimate a

semiparametric model of �rst-price auctions with risk-averse bidders when the identi�cation

of a parametric utility function is assumed. Bajari and Hortascu (2005) uses exogenous vari-

ations in the number of bidders in �rst-price auctions to semi-parametrically estimate the

utility function while leaving the distribution of bidders�private values unrestricted. Guerre,

Perrigne and Vuong (2009) uses exogenous variations in the number of potential bidders to

non-parametrically identify bidders�utility functions along with the distribution of private

values in �rst-price auctions. Lu and Perrigne (2008) considers a context where data contain

bids from both �rst-price and ascending auctions that involve bidders with the same utility

function and the same distribution of private values. They �rst use bids from ascending auc-

tions to recover the distribution of private values, and then use bids from �rst-price auctions

to recover the utility function.

Our work in this paper contributes to these two branches of empirical auction literature by

studying a model which endogenizes bidders�entry decisions and relaxes the risk-neutrality

assumption at the same time. To the best of our knowledge, our paper marks the �rst e¤ort

to non-parametrically infer bidders� risk attitudes in ascending auctions with endogenous

entry. Smith and Levin (1996) presents some results on the revenue ranking of auction

formats in terms of seller revenues when auctions are known to involve risk-averse bidders

who make endogenous entry decisions. Their focus is not on the identi�cation of bidders�

risk attitudes.

Ackerberg, Hirano and Shahriar (2011) studies a class of e-Bay auctions where a typical

online ascending auction is combined with an option of paying the buy-out price posted

by the seller in order to immediately purchase the object. They show how to identify the

bidders�utility functions and the distribution of private values using exogenous variations in

the buy-out prices and other auction characteristics. The format of auctions they consider is

qualitatively di¤erent from the one we consider in this paper, which is a standard ascending

format with endogenous entry. We do not embark on a full identi�cation of the utility
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function in this paper, and therefore require fewer sources of exogenous variations to perform

the test. (With observed and exogenous variations in entry costs, identi�cation of the utility

function may be possible in our model as well.) Our approach does not rely on variations in

entry costs, thus our test can be performed for any given level of entry costs. Moreover, we

go beyond identi�cation and propose a method of robust inference.

Our paper also �ts in a category of empirical auction literature on nonparametric tests

of the empirical implications/predictions of auction theory. Earlier works in this category

include tests of bidders�rationality in �rst-price auctions with common values in Hendricks,

Pinkse and Porter (2003), assessment of winner�s curse in �rst-price auctions with common

values in Hong and Shum (2002), tests for presence of interdependent values in Haile, Hong

and Shum (2004), and test for a¢ liations between bidders�private values in Li and Zhang

(2010) and Jun, Pinkse and Wan (2010).2 The test proposed by Li and Zhang (2010) uses

bidders�entry decisions for testing a¢ liations between bidders�private values.

Li, Lu and Zhao (2012) studies �rst-price and ascending auctions with risk-averse bidders

and selective entry (due to bidders�observation of preliminary signals that are a¢ liated with

private values in the bidding stage). They �nd the ranking between bidders�expected utility

under these two auction formats depend on the speci�c form of risk-aversion (DARA, CARA

or IARA). Consequently, the ranking of entry probabilities across these two auction formats

must also depend on the form of risk-aversions. Based on these observations, they propose

an original test for inferring the form of bidders�risk-aversions using entry behaviors, using

data from both �rst-price and ascending auctions at the same time. Our research focus in

this paper di¤ers from theirs in that we study the inference of risk attitudes (with hypotheses

being risk-neutral, risk-taking or risk-aversion). Since we do not aim at inferring the form of

risk-aversion, our test does not require observation of data from competing auction formats.

3 Ascending Auctions with Endogenous Entry

Consider an empirical context where researchers observe data from a large number of in-

dependent single-unit ascending auctions. Each of these auctions involve N potential bidders

who have symmetric independent private values and make endogenous entry decisions. The

entry model we consider here is similar to those used for �rst-price auctions with risk-neutral

bidders in Levin and Smith (1994), Li and Zheng (2009) and Marmer, Shneyerov and Xu

(2011). In the entry stage, each potential bidder decides whether to incur an entry cost K to

become active in the bidding stage. The entry cost is common knowledge among all potential

bidders. There is a binding reserve price r in the auction and it is observed by all potential

bidders in the entry stage. Following their entry, each entrant i draws a private value Vi, and

competes in ascending auctions in the bidding stage. Across auctions, private values and

2See Athey and Haile (2007) and Hendricks and Porter (2007) for recent surveys.
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entry costs are independent draws from distributions FV1;:;VN jK and FK respectively, which

are common knowledge among all potential bidders prior to entry decisions. Upon entry,

each entrant may or may not be aware of the total number of entrants (which we denote

by A). All bidders in the data share the same bounded von Neumann-Morgenstein utility

function u : R+ ! R with u0 > 0 and the sign of u00 does not change over R+. A winner who
has a private value Vi and pays a price Pi receives a utility of u(Vi � Pi� K).

With a slight abuse of notation, we use N and A to denote the number as well as the

set of potential bidders and entrants respectively. Let F�1;�2, F�2j�1 denote respectively the

joint and conditional distributions of generic random vectors (�1; �2). We use upper cases to

denote random variables and lower cases to denote their realizations. We take N as given

and �xed in this section and, to simplify exposition, we drop N in notations when there is

no ambiguity.

Assumption 1 Given K, private values Vi are i.i.d. draws from the same continuous dis-

tribution FV jK that has positive densities almost everywhere on the support [v; v]. Entry costs

across auctions are i.i.d. draws from the same distribution FK with support [k; k].

This assumption states that bidders have symmetric, independent private values in the

sense that Pr(V1 � v1; :; VN � vN jK = k) =
Q
i2N FV jk(vi) for all k and (v1; :; vN). Each

entrant i in a bidding stage follows the weakly dominant equilibrium strategy to drop out

at his true value Vi if A � 2. When A = 1 in the bidding stage, the lone entrant wins and
pays the reserve price r.

Let A�i denote the set (and the number) of entrants that i competes with if he enters.

Let the reserve price be binding (i.e. r > v). If A�i 6= ?; de�ne Pi � maxj2A�i fVj; rg as
i�s payment if he enters and wins while all competitors in A�i follow their weakly dominant

bidding strategies; if A�i = ?, de�ne Pi � r. Then i�s (random) pro�t in the weakly

dominant strategy equilibrium is (Vi�Pi)+�K, where (�)+ � maxf�; 0g. Let !(k;��i) denote
expected utility for bidder i conditional on paying entry cost k and potential competitors

entering with probabilities ��i = (�j)j2Nnfig � (�1; :; �i�1; �i+1; :; �N) : Under Assumption 1,

!(k;��i) � u(�k)FV jk(r) +
Z v

r

h(v; k;��i)dFV jk(v), (1)

where for all v > r,

h(v; k;��i) � u(v � r � k)FPi(rjk;��i) +
Z v

r

u(v � p� k)dFPi(pjk;��i)

+u(�k)[1� FPi(vjk;��i)] (2)

with FPi(�jk;��i) being the distribution of Pi when K = k, and i�s potential competitors

enter with probabilities ��i. Due to symmetry in private value distributions across bidders,
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FPi(:jk;��i) does not change with the bidder identity i, and therefore ! does not depend
on the bidder identity i. The following lemma characterizes the Bayesian Nash Equilibrium

(BNE) in the entry stage:

Lemma 1 Suppose Assumption 1 holds. For any entry cost k with !(k; (1; :; 1)) < u(0) <

!(k; (0; :; 0)), there exists a unique symmetric BNE in which all bidders enter with probability

��k, where �
�
k solves !(k; (�

�
k; :; �

�
k)) = u(0).

Whenever !(k; (0; :; 0)) � u(0) (respectively, !(k; (1; :; 1)) � u(0)), the equilibrium entry

probabilities are degenerate at 0 (respectively, 1). Thus the condition that !(k; (1; :; 1)) <

u(0) < !(k; (0; :; 0)) can be tested, as long as entry decisions are reported in data. The

equilibrium entry process is non-selective, as potential bidders�entry decisions are not based

on any information correlated with private values to be drawn in the bidding stage.

It is worth noting that we can generalize the model to incorporate auction heterogeneities

Z that are known to all potential bidders and reported in data. To do this, we need to

condition private value distributions on Z as well. The characterization of entry and bidding

strategies in equilibrium can be derived using arguments similar to Lemma 1, for any given

z. In fact, auction heterogeneities reported in data provide additional identifying power for

inferring bidders�risk attitudes when entry costs are not reported in data. (See Section 5.)

We assume researchers know the number of potential bidders in auctions. This means

either the data reports the number of potential bidders directly, or researchers can construct

a measure of N from the data based on institutional details in the speci�c environments.

Such an assumption holds in a variety of applications considered in the literature. For

example, Li and Zheng (2009) considers highway mowing auctions by Texas Department of

Transportation. In that case, the number of potential bidders for each auction is reported

as the observed number of contractors who have requested the o¢ cial bidding proposal

for the project. Similarly, in Krasnokutskaya and Seim (2011), potential bidders in highway

procurement auctions in California are de�ned as companies that have purchased the detailed

project plan from California Department of Transportation. Such purchases are recorded for

all projects in data. Athey, Levin and Seira (2011) studies US Forest Service (USFS) timber

auctions. They measure the number of loggers potentially interested in an auction by the

number of logging companies that had entered auctions in the same geographic area in the

prior year. Such a proxy is constructed by combining data from timber auctions with the

US Census data.

4 Inference of Risk Attitudes Using Entry Costs

We now introduce a test for bidders� risk attitudes when the data allows researchers

to construct a consistent estimator for the expectation of entry costs in the data-generating
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process. In some contexts, a �xed amount of entry costs, sometimes also known as admission

fees, is charged to all entrants and recorded in data. Such admission fees occur in contexts

such as: auctions of used or new cars in the U.S. and U.K.; auctions of vintage wines in the

U.S.; and auctions of art items, etc. In other applications, entry costs are not admission fees

but nevertheless are measurable, at least up to random noises through additional surveys.3

That said, it is also likely that these noisy measures may systematically underestimate true

costs, and taking the average of these noisy measures would lead to a biased estimator for

the actual mean. Thus the test based on the sign of risk-premia would be biased towards the

direction of risk-averse alternatives. We provide some simulation exercises about the impact

of such bias in Section 4.4 below.

In addition to its empirical relevance, there is also a theoretical motivation for this as-

sumption: without variations in potential competition or information about entry costs,

bidders�risk attitudes can not be inferred from entry decisions and transaction prices alone

without imposing additional parametric assumptions on the structure. To �x ideas, consider

a simpli�ed model where all auctions in data share the same �xed entry cost k that is not

reported in data. The private value distribution is identi�ed from the distributions of trans-

action prices and the number of entrants using standard arguments using order statistics;

and the equilibrium entry probability is directly recovered from entry decisions. Nonetheless,

u (�) and the unknown entry cost k cannot be jointly identi�ed in this case.
To see this, suppose bidders are risk-neutral with a continuous utility function u (�), entry

cost k, and entry probability �� 2 (0; 1). Fix a continuous private value distribution and let
it be independent from entry costs. Now consider a slightly concave utility ~u (�) 6= u (�) so
that E[~u ((Vi � Pi)+ � k) j��] > ~u(0). Because the left-hand side is continuous and strictly

monotone in k, we can increase k to ~k > k so that the indi¤erence condition is restored

for (~u (�) ; ~k) 6= (u (�) ; k). That is, the equilibrium entry probability observed, ��, can be

rationalized by more than one data-degenerating processes. Thus, without variations in

potential competition or auction heterogeneity, inference of risk attitudes from in English

auctions with endogenous entry must utilize at least some partial knowledge of entry costs.

3For example, in USFS timber auctions considered in Athey, Levin and Seira (2011), entry costs for

potential bidders (i.e., millers and loggers located in nearby geographic region) consist largely of information

acquisition costs. These costs are incurred while performing �cruises�over the auctioned tracts to learn the

distribution of diameters and heights of trees, etc. Such private cruises are standard practices institutionalized

in the industry, and their costs vary little across millers and loggers. Thus cruise costs can be treated

as practically identical for all potential bidders. Besides, it is plausible that researchers can construct a

consistent estimator of average costs for cruising tracts with given characteristics, because cruise costs are

likely to be measured up to random errors through additional �eld work of data collection (such as surveys or

industry interviews). As cruise costs are orthogonal to bidders�private values (or realized pro�tability) upon

entry, one could reasonably expect there to be no incentive to systematically under- or over-state cruise costs

in surveys. In this case, survey data, if collected, could well be expected to provide a consistent estimator

for expected entry costs.
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All in all, we acknowledge that the assumption of observable entry costs used in the

current section is strong. In addition to empirical and theoretical motivations above, we also

hope to motivate the test under such an assumption as a useful benchmark that shows how

entry behaviors can be informative about bidders�risk premia, which in turn is useful for

inferring their risk attitudes.

4.1 Identifying Bidders�Risk Attitudes

Assume that the number of potential bidders is �xed and known to researchers. Our

test for risk attitudes in this subsection builds on the simple intuition that the certainty

equivalent for risk-averse bidders is strictly less than ex ante expected pro�ts from entry.

To �x ideas, we �rst show the di¤erence between these two quantities can be recovered from

observed distributions of entry decisions and transaction prices when entry costs are �xed

and reported in data. Later in this subsection, we show how to extend this approach under a

more practical scenario where data does not report perfectly the realizations of entry costs,

but allows researchers to construct a consistent estimator for its mean.

First, we show that bidders�ex ante expected pro�ts are identi�ed. Let ��k denote entry

probabilities in the symmetric BNE when the common entry cost is k. Let �(k) denote the

ex ante pro�t for a bidder i if he enters, conditional on entry cost k and that each of his

potential competitors enters with probability ��k. That is, �(k) � E[(Vi�Pi)+�Kj K = k].

(Strictly speaking, the de�nition of �(k) is conditional on the event that ��j = ��k 8j 6= i�.

We suppress this from the notation to simplify notations.) Note �(�) is independent from
bidder identities due to the symmetry in private value distributions. For all s � m, let V (s:m)

denote the s-th smallest among m independent draws of private values from some parent

distribution FV jk. Let FV (s:m)jk denote the distribution of this order statistic given entry cost

k.

Proposition 1 Suppose Assumption 1 holds and entry costs are reported in data. For any
k with 0 < ��k < 1, �(k) is identi�ed from bidders�entry decisions and the distribution of

transaction prices.

Proof of Proposition 1 is included in Appendix A. The intuition builds on two simple

observations: First, Assumption 1 guarantees FV jk can be recovered from the distribution

of transaction prices under cost k. This is because, with the number of entrants A reported

in data, the distribution of prices is a distribution of the second-largest order statistics out

of a known number of i.i.d. draws from FV jk. Second, once FV jk is recovered, �(k) can be

calculated as a known functional of the distribution of private values. It is worth noting that

identi�cation of ex ante surplus E[(Vi � Pi)+jk] per se does not rely on assumed knowledge
of entry costs from data. Rather, it could be recovered for an unknown entry costs k, as long

as researchers are aware of which auctions in data share this particular level of entry cost k.

9



Proposition 2 Suppose Assumption 1 holds. For any k such that 0 < ��k < 1, �(k) = 0

if and only if bidders are risk-neutral, and �(k) > 0 (or < 0) if and only if bidders are

risk-averse (or risk-loving).

Proof. Lemma 1 showed that for any such k and in a symmetric BNE, bidders enter with

probability ��k, where !(k;�
�
k) � E[u((Vi�Pi)+�k)jk; ��j = ��k 8j 6= i�] = u(0). Thus, zero

is the certainty equivalent associated with u(�) and the distribution of (Vi � Pi)+ given an

entry cost k and the value distribution FV jk. It then follows that �(k) > 0 if u00 < 0 (bidders

are risk-averse). Likewise, �(k) = 0 (or �(k) < 0) if bidders are risk-neutral (or risk-loving).

�
If the exit prices by all losing bidders are reported in data, the distribution of other order

statistics V ( ~m:m) with ~m � m � 2 provides a source of over-identi�cation of �(k). This is
because the one-to-one mappings between FV jk and FV ( ~m:m)jk exists for ~m � m � 2 as well.
Such over-identi�cation should be exploited to improve e¢ ciency in the estimation.

We now turn to the more practical scenario where data provide enough information to

identify the expectation of entry costs, but do not report realized entry costs in each auction.

Such a scenario is relevant, for example, where data does not report K but provides noisy

measures of costs ~K = K + � with E(�) = 0. In such cases, �K � E(K) = E( ~K) is directly

identi�able.

Corollary 1 (of Proposition 2.) Suppose Assumptions 1 hold. (a) If 0 < ��k < 1 for all

k 2 [k; k], then E[�(K)] = 0 when bidders are risk-neutral, and E[�(K)] > 0 (or < 0) when
bidders are risk-averse (or risk-loving); (b) If K is independent from (Vi)i2N and E(K) is

known to the researcher, then E[�(K)] is identi�ed from entry decisions and the distribution

of transaction prices.

Proof of Corollary 1 is included in the appendix. The key idea underlying this result

is that, with the sign of u00(:) assumed �xed over its domain, the testable implications in

Proposition 2 are preserved after integrating out entry costs under conditions for Corollary

1. Thus, with the expectation of entry costs assumed known in Corollary 1, the test only

requires researchers to recover E[�(K)] (i.e., ex ante pro�ts after K is integrated out).

The latter is achieved by exploiting two facts. First, once conditioning on the number of

entrants, bidders�expectation of their surplus (Vi � Pi)+ is independent from entry costs.

This is because of the orthogonality condition between private values and the entry costs

assumed in Part (b) of Corollary 1. Thus the expectation of (Vi � Pi)+ given the number

of competing entrants A�i can be recovered from the data as in Proposition 2. Second, the

properties of the (binomial) distribution of the number of entrants can be used to relate

the unconditional distribution of the number of competitors for i in the bidding stage to

observed distributions.
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Our approach here can be extended to allow for observed auction-level heterogeneities in

data. To do so, we need to modify Proposition 1 and 2 and Corollary 1 by conditioning the

assumptions and results therein on observable realizations of auction-level heterogeneities.

The main limitation of the approach in this subsection is of course its reliance on the

existence of a consistent estimator for the mean of entry costs. This assumption does not

hold when the noisy measures of entry costs in data are subject to systematic omissions or

overstatement. In those cases, the average of these noisy measures yields a biased estimator

for expected entry costs.4 In Section 5 we propose an alternative test that does not require

knowledge of entry costs and thus is not subject to this limitation. This is done by exploiting

exogenous variations in potential competition and auction heterogeneities reported in data.

4.2 Test Statistic and Bootstrap Inference

We propose a statistic for testing bidders�risk attitudes under the conditions of Corollary

1. To reiterate, the entry costs K vary across auctions independently from (Vi)i2N , and for

each auction the researcher only observes a noisy measure of the entry cost ~K = K+�, where

� has zero mean and is independent from K and (Vi)i2N . To rule out uninteresting cases

with degenerate entry behavior, we maintain that 0 < ��k < 1 for all k 2 [k; k] throughout.
To simplify exposition, we �x N and suppress it from notations throughout the section and

in Appendix B. The following conditions are maintained in our derivation of the limiting

distribution of the test statistic.

Assumption R. (i) Across all auctions, the (N + 2)-vector ((Vi)i2N ; K; �) are i.i.d. draws

from the same joint distribution. (ii) All coordinates in (Vi)i2N ; K and � are mutually

independent with �nite second moments and E(�) = 0. (iii) Within each auction, the private

values Vi are independent draws from the same continuous marginal distribution FV , which

has positive densities over [v; �v), and has a probability mass at �v. (iv) The reserve price r

is �xed and binding ( r >v) throughout the data.

That Vi is independent from K is required for identifying the ex ante risk premium

E[�(K)], as shown in Corollary 1. That � has a zero mean ensures the sample mean of ~K

in data is an unbiased and consistent estimator for E(K). Finite second moments of (K; �)

are needed for applying a multivariate central limit theorem while deriving the limiting

distribution of our test statistic. That FV has a probability mass at the upper bound �v is

a technical condition that simpli�es the proof for weak convergence of our estimator for FV
below. It is not needed in our argument above for recovering bidders�risk attitudes. In what

4If the direction of bias is known to be upward then averaging these noisy measures gives a consistent

estimator for some upper bound on expected entry costs. One can still test the null that ex ante surplus

E[(Vi�Pi)+jk] does not exceed the upper bound of expected entry costs. If the null is rejected then we can
conclude bidders are risk averse. Nonetheless such a test has limited value in practice, for it is inconclusive

about risk attitudes when the null is not rejected.
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follows, we let
R �v
r
�(s)ds be a shorthand for the improper integral limv"�v

R v
r
�(s)ds, where

� is a generic integrable function, for the rest of this section and in Appendix B. While

correlation between noises � and entry costs K is allowed in Corollary 1, the orthogonality in

Assumption R-(ii) helps simplify derivations of the asymptotic property of the test statistic.

That the reserve price is binding means FV (r) > 0, which is empirically relevant in lots of

contexts.

Our goal is to infer which of the three hypotheses below is best supported by data:

H0 : � 0 = 0 (risk-neutral);

HA : � 0 > 0 (risk-averse); and HL : � 0 < 0 (risk-loving).

where � 0 � E[�(K)]. The data contain T independent auctions, each of which is indexed by t

and involves N potential bidders. Let At denote the number of entrants in auction t. LetWt

de�ne the transaction price in auction t. If the object is sold, then Wt = maxfr; V (At�1:At)g
when At � 2 and Wt = r when At = 1. If the object is not sold, then de�ne Wt < r.

Our test statistic �̂T is a multi-step estimator for the unconditional expectation of a

bidder�s pro�t E[�(K)] based on the sample analog principle. First, for m � 2, estimate the
distribution of transaction prices:

F̂W jm;T (s) � 1
T

P
t�T 1fWt � s, At = mg= 1

T

P
t�T 1fAt = mg

for any r � s < �v. Then for any m � 2, estimate the private value distribution by:

F̂V;T (s) � 1
N�1

PN
m=2 �

�1
m (F̂W jm;T (s)) for s � r, (3)

where �m(t) � tm+mtm�1(1�t). Next, de�ne 'a � E[(Vi�Pi)+jA�i = a] for 0 � a � N�1.
Estimate 'a using the sample analog principle:

5

'̂T;a �
Z �v

r

h
F̂V;T (s)

ia h
1� F̂V;T (s)

i
ds, (4)

where the integral can be calculated using mid-point approximations. Estimate the distrib-

ution of A�i by the column vector �̂T � [�̂T;0; �̂T;1; ::; �̂T;N�1]0 where:

�̂T;a � 1
T

P
t�T
�
N�a
N
1fAt = ag+ a+1

N
1fAt = a+ 1g

�
for 0 � a � N � 1. (See equation (A5) in Appendix A for details.) Finally, calculate the
test statistic by:

�̂T �
PN�1

a=0 '̂T;a�̂T;a � 1
T

P
t�T

~Kt.

We now derive the limiting distribution of
p
G (�̂T � � 0). Let � �denote weak conver-

gence of stochastic processes in a normed space. Let F ~V denote fFV (t) : t 2 [r; �v)g and
5See Appendix B for a proof that, under Assumption R, '(a) =

R �v
r
[FV (s)]

a
[1� FV (s)] ds for each a � 0.
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F̂ ~V ;T denote fF̂V;T (t) : t 2 [r; �v)g. Denote the limiting distribution of
p
T (�̂T � �)0 andp

T [ 1
T

P
t�T

~Kt � �K ] by N 0
� and N� respectively. We characterize the covariance between

N 0
� and N� in Lemma B5 in Appendix B. In Lemma B6 of Appendix B, we show under

the mild conditions in Assumption R,
p
T
�
F̂ ~V ;T � F ~V

�
 GV where GV is a zero-mean

Gaussian process, and characterize covariance kernel of GV as well as its covariance with
[N 0

�;N�].

Let S[r;�v) denote the set of positive, bounded and integrable Cadlag functions over [r; �v).6

For any F 2 S[r;�v), de�ne '(F ) � ('a(F ))
N�1
a=0 , where 'a(F ) �

R �v
r
[F (s)a � F (s)a+1] ds for

all a � 0. By de�nition, '(F̂ ~V ;T ) = ('̂T;a)
N�1
a=0 � '̂T . It follows from van der Vaart (1998)

(Lemma 20.10 on page 298) that ' is Hadamard di¤erentiable at F ~V , tangentially to S[r;�v).
The Hadamard derivative is given by :

D';F ~V
(h)(a) �

Z �v

r

�
aF ~V (s)

a�1 � (a+ 1)F ~V (s)a
�
h(s)ds for 0 � a � N � 1

for any h 2 S[r;�v).

Proposition 3 Suppose Assumption R holds with 0 < ��k < 1 for all k 2 [k; k]. Then
p
T (�̂T � � 0) N�

where N� � �0D';F ~V
(GV ) + '0N� �N� is a univariate normal distribution with zero mean.

For a given level �, let ĉ1��=2;T denote an estimator for the 100 � (1 � �=2)-percentile

of the limiting distribution of
p
T (�̂T � � 0) using bootstrap procedures. (See Appendix C

for the de�nition of ĉ1��=2;T .) The decision rule for the test is to reject H0 in favor of HA

(or HL) if
p
T �̂T > ĉ1��=2;T (or if

p
T �̂T <�ĉ1��=2;T ); and do not reject H0 if �ĉ1��=2;T �p

T �̂T � ĉ1��=2;T .

The next proposition shows the test is consistent against �xed alternatives, and attains

the correct asymptotic level. Let Pr(�̂T � � j� 0 = � �0) denote the distribution of �̂T condi-

tioning on the true value for � 0 in data-generating process being � �0.

Proposition 4 Suppose Assumption R holds with 0 < ��k < 1 for all k 2 [k; k]. Then

lim
T!+1

Pr
�p

T �̂T > ĉ1��=2;T j� 0 = � �0

�
= 1 8� �0 > 0; (5)

lim
T!+1

Pr
�p

T �̂T < �ĉ1��=2;T j� 0 = � �0

�
= 1 8� �0 < 0; (6)

lim
T!+1

Pr
�p

T �̂T > ĉ1��=2;T or
p
T �̂T < �ĉ1��=2;T j� 0 = 0

�
= �. (7)

6A Cadlag function is right-continuous with left limits.
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Two facts are used for showing these results. First, the empirical distribution of
p
T (�̂T;b � �̂T )

provides a consistent estimator for the �nite sample distribution of
p
T (�̂T � � 0) under the

stated conditions, which is veri�ed in Appendix C by using results from Beran and Ducharme

(1991). Second,
p
T� 0 is zero under the null but diverges to positive (or negative) in�nity

under the alternative.7

4.3 Monte Carlo Simulations

In this section we present Monte Carlo evidence for the performance of our test in �nite

samples. We consider the following data-generating process (DGP). Each auction involves

N potential bidders who face a common entry cost K. Upon entry, bidders draw private

values from the support [v; v] = [0; 10]. There is a probability mass of 2% at �v and the rest

of the probability mass is uniformly spread over the half-open interval [v; �v). The reserve

price is set at r = 3. The data set contains prices paid by the winners and the number of

entrants in each auction. In the rare case where the reserve price screens out all entrants

(i.e. realized privates values for all entrants are lower than r), transaction prices are de�ned

to be an arbitrary number smaller than r. The entry cost in each auction is drawn from a

multinomial distribution over the support f0:7; 0:8; 0:9g with identical probability masses.
The data reports noisy measures of entry costs ~K = K+ � but not K, where � is drawn from

a uniform distribution [�0:5; 0:5]. Bidders�von-Neumann-Morgenstern utility is speci�ed
as u(c) �

�
c+5
10

�

, so that they are risk-neutral (or respectively, risk-averse or risk-loving) if


 = 1 (or 
 < 1 or 
 > 1).We experiment with the number of potential bidders N = 4 or

N = 5, and sample sizes T = 1; 500 or T = 3; 000.

To improve the test performance in small samples, we modify our estimator for risk-

premium �̂T slightly by replacing the averaged estimators for the value distribution FV in

(3) with inverse-variance-weighted average estimators. That is, while constructing �̂T , we

replace F̂V;T (s) in (4) by ~FV;T (s) � 1
N�1

PN
m=2 �̂m(s)�

�1
m (F̂W jm;T (s)) for s � r, with �̂m(s) ��

�̂2m;T (s)
��1

=
PN

m0=2

�
�̂2m0;T (s)

��1
and �̂2m;T being the standard errors for the estimator of FV

using observations with m entrants. The test statistic then uses the weighted version ~FV;T in

subsequent steps. As the test statistic remains a smooth function of sample averages, we use

bootstrap estimates for critical values in its sampling distribution (as explained in Section

4.2) in our inference procedures below.

[Insert Figure 1 (a), (b), (c), (d) here.]

7Our bootstrap inference uses an asymptotically non-pivotal statistic
p
T (�̂T � �0). One could construct

asymptotically pivotal statistics using the pre-pivoting approach. This would help attain asymptotic re�ne-

ments in the approximation of test statistic distribution relative to �rst-order asymptotic approximation or

bootstrap using asymptotically non-pivotal statistics. This is computationally intensive due to bootstrap

iterations and therefore we do not pursue this approach here.
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Panels in Figure 1 report test performance under various DGP and sample sizes T . For

each grid point of 
 between 0:75 and 1:25 (with grid width 0:05), we calculate an integrated

measure of relative risk-aversion �(
), de�ned as integral of �cu00(c)=u0(c) over the support
of c = (Vi�Pi)+�K. (Thus positive values for �(
) correspond to risk-averse and negative
values to risk-loving bidders.) For each 
 and sample size T = 1; 500 or 3; 000, we simulate

S = 250 samples.

For each simulated sample, we calculate the statistic �̂T , and then perform the test

using critical values estimated from B = 300 bootstrap samples drawn from this simulated

sample. We reports test results for signi�cance levels � = 5%, 10% and 15%. Solid curves

in each panel show the proportions of S samples in which our test fails to reject the null

of risk-neutrality (H0 : �(
) = 0). The dashed curves (and dotted curves respectively)

plot the proportions of S samples in which the test rejects the null in favor of alternatives

HA : �(
) > 0 (and HL : �(
) < 0 respectively). Each panel of Figure 1 reports the result

for a given pair of T and N , with the integrated measure of risk-aversion �(
) plotted on the

horizontal axis.

In all panels of Figure 1, the test approximately attains targeted levels under the null.

Also, in all panels, the power of our test approaches 1 as the absolute value of the inte-

grated measure of risk-aversion �(
) increases.8 The comparison of panel (a) with (b) and

the comparison of panel (c) with (d) suggest, as sample sizes increase, errors in rejection

probabilities under the null decrease while the power under any �xed alternatives increases.

Table 1 further quanti�es these changes in test performance for 
 2 f0:8; 0:9; 1:0; 1:1;
1:2g and N 2 f4; 5g by reporting numerical results. Each row corresponds to some pair of
(N; 
) and some sample size T , while the column headings are targeted signi�cance levels.

For each cell in Table 1, we report from the left to the right, the proportions of S simulated

samples, where the test rejects H0 in favor of HL, where the test does not reject H0, and

where H0 is rejected in favor of HA respectively.

Table 1(a) shows results for auctions with four potential bidders. Even with a moderate

sample size T = 1; 500, the test attains rejection probabilities that are reasonably close to

the targeted level � under the null, and reasonably high probabilities for rejecting the null

in favor of the correct alternative when 
 6= 1. When 
 6= 1, the probability for �Type-III�
error (i.e. rejecting the null in favor of a wrong alternative) is zero across all speci�cations

and sample sizes.

8In the presence of directional alternatives (i.e. HA and HL), we de�ne the power of the test as the

probability of rejecting the null in favor of the true alternative in the DGP.
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Table 1(a): Probabilities for Accepting [HL; H0; HA]: (N = 4)
� = 5% � = 10% � = 15%

T = 1; 500


 = 0:8 [0.004, 0.264, 0.732] [0.004, 0.192, 0.804] [0.004, 0.152, 0.844]


 = 0:9 [0.008, 0.768, 0.224] [0.008, 0.676, 0.316] [0.028, 0.584, 0.388]


 = 1 [0.052, 0.932, 0.016] [0.092, 0.872, 0.036] [0.132, 0.808, 0.060]


 = 1:1 [0.272, 0.724, 0.004] [0.420, 0.572, 0.008] [0.512, 0.480, 0.008]


 = 1:2 [0.672, 0.328, 0.000] [0.800, 0.200, 0.000] [0.880, 0.120, 0.000]

T = 3; 000


 = 0:8 [0.000, 0.048, 0.952] [0.000, 0.036, 0.964] [0.000, 0.020, 0.980]


 = 0:9 [0.000, 0.540, 0.460] [0.004, 0.456, 0.540] [0.004, 0.388, 0.608]


 = 1 [0.044, 0.936, 0.020] [0.076, 0.888, 0.036] [0.132, 0.820, 0.048]


 = 1:1 [0.548, 0.452, 0.000] [0.688, 0.312, 0.000] [0.776, 0.224, 0.000]


 = 1:2 [0.972, 0.028, 0.000] [0.992, 0.008, 0.000] [1.000, 0.000, 0.000]

Table 1(b): Probabilities for Accepting [HL; H0; HA]: (N = 5)
� = 5% � = 10% � = 15%

T = 1; 500


 = 0:8 [0.004, 0.480, 0.516] [0.008, 0.384, 0.608] [0.008, 0.324, 0.668]


 = 0:9 [0.008, 0.896, 0.096] [0.016, 0.812, 0.172] [0.032, 0.732, 0.236]


 = 1 [0.064, 0.924, 0.012] [0.068, 0.916, 0.016] [0.104, 0.876, 0.020]


 = 1:1 [0.192, 0.808, 0.000] [0.300, 0.700, 0.000] [0.400, 0.600, 0.000]


 = 1:2 [0.620, 0.380, 0.000] [0.760, 0.240, 0.000] [0.840, 0.160, 0.000]

T = 3; 000


 = 0:8 [0.000, 0.096, 0.904] [0.000, 0.064, 0.936] [0.000, 0.056, 0.944]


 = 0:9 [0.008, 0.588, 0.404] [0.016, 0.468, 0.516] [0.016, 0.412, 0.572]


 = 1 [0.040, 0.952, 0.008] [0.076, 0.888, 0.036] [0.124, 0.828, 0.048]


 = 1:1 [0.456, 0.544, 0.000] [0.588, 0.412, 0.000] [0.668, 0.332, 0.000]


 = 1:2 [0.920, 0.080, 0.000] [0.992, 0.008, 0.000] [0.992, 0.008, 0.000]

With the sample size as small as T = 1; 500 or 3; 000, the power of the tests appears

low at 
 = 0:9 or 
 = 1:1. We argue that this should not be interpreted as evidence of

unsatisfactory �nite sample performance of our test. Rather it is mostly due to the fact that

the curvature of utility functions are close to being linear for 
 = 0:9 or 
 = 1:1. The power

does improve substantially either as the sample size increases, or as 
 moves further away

from 1.

Table 1(a) also quanti�es the improvement of test performance as the sample size T

increases. For a �xed level of �, increasing sample sizes from T = 1; 500 to T = 3; 000
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reduces the error in the rejection probability by a small amount under the null with 
 = 1.

On the other hand, such an increase yields more substantial improvements in the power

under each �xed alternatives. Table 1(b) reports results for auctions involving �ve potential

bidders. Overall, it registers the same pattern as in Table 1(a).

Comparisons between Table 1(a) and 1(b) suggest the impact of a larger number of

potential bidders on the errors in rejection probabilities under the null is ambiguous. On

the other hand, the impact of a large N on the power of the test under any �xed alterative

seems unambiguous: For all 
 6= 1 and given any sample size, the power appears to be higher
with N = 4 for all �. Such a di¤erence in comparison is related to the following fact: Under

any alternative, the magnitude of the risk-premium is partly determined by the shape of

the distribution of (Vi � Pi)+ given N ; on the other hand this magnitude remains �xed at

0 as the distribution of (Vi � Pi)+ changes with N under the null. Since the size of risk

premia, subject to estimation errors in data, essentially determines how likely it is to detect

non-risk-neutrality, we conjecture this di¤erence in comparative statics might explain the

above pattern.

4.4 Mismeasurement of Entry Costs

This subsection provides further simulation evidence about the test performance when

entry costs K are mismeasured. We report results in a DGP where the noisy measures of

entry costs systematically underestimates the true entry costs known to potential bidders.

The speci�cation of the DGP is the same as that used above, except that the noisy measures
~K now has a downward bias equal to ~�-percent of the true entry cost K. We experiment

with ~� = 5 or 10 in simulations. Table 2 reports results with S = B = 200 (where S is the

number of simulate data sets and B is the number of bootstrap samples used for estimating

critical values in each simulated sample).
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Table 2(a): Probabilities for Accepting [HL; H0; HA]: (~� = 5; N = 4)
� = 5% � = 10% � = 15%

T = 1; 500


 = 0:9 [0.000, 0.530, 0.470] [0.000, 0.425, 0.575] [0.000, 0.380, 0.620]


 = 1:0 [0.025, 0.830, 0.145] [0.040, 0.750, 0.210] [0.040, 0.680, 0.280]


 = 1:1 [0.145, 0.855, 0.000] [0.225, 0.775, 0.000] [0.315, 0.685, 0.000]


 = 1:2 [0.460, 0.540, 0.000] [0.600, 0.400, 0.000] [0.710, 0.290, 0.000]

T = 3; 000


 = 0:9 [0.000, 0.205, 0.795] [0.000, 0.125, 0.875] [0.000, 0.075, 0.925]


 = 1:0 [0.015, 0.915, 0.070] [0.050, 0.820, 0.130] [0.065, 0.770, 0.165]


 = 1:1 [0.180, 0.820, 0.000] [0.255, 0.745, 0.000] [0.350, 0.650, 0.000]


 = 1:2 [0.850, 0.150, 0.000] [0.945, 0.055, 0.000] [0.955, 0.045, 0.000]

Table 2(b): Probabilities for Accepting [HL; H0; HA]: (~� = 10; N = 4)
� = 5% � = 10% � = 15%

T = 1; 500


 = 0:9 [0.000, 0.285, 0.715] [0.000, 0.205, 0.795] [0.000, 0.175, 0.825]


 = 1:0 [0.005, 0.615, 0.380] [0.005, 0.530, 0.465] [0.005, 0.460, 0.535]


 = 1:1 [0.090, 0.905, 0.005] [0.145, 0.845, 0.010] [0.175, 0.790, 0.035]


 = 1:2 [0.355, 0.645, 0.000] [0.450, 0.550, 0.000] [0.525, 0.475, 0.000]

T = 3; 000


 = 0:9 [0.000, 0.040, 0.960] [0.000, 0.025, 0.975] [0.000, 0.020, 0.980]


 = 1:0 [0.015, 0.815, 0.170] [0.020, 0.700, 0.280] [0.025, 0.605, 0.370]


 = 1:1 [0.055, 0.940, 0.005] [0.085, 0.895, 0.020] [0.110, 0.860, 0.030]


 = 1:2 [0.590, 0.410, 0.000] [0.735, 0.265, 0.000] [0.835, 0.165, 0.000]

As expected, the two panels in Table 2 show that, compared with Table 1, underestimat-

ing the mean of entry costs results in larger errors in rejection probabilities under the null.

For instance, for ~� = 5 and � = 5%, the probability for rejection the null is 17% (of which

14:5% leads to conclusions in favor of the risk-averse alternative HA) when T = 1500; and

is 8:5% (of which 7% is in favor of HA) when T = 3000. Also the power against risk-loving

alternatives is lower than in Table 1 due to the underestimation of entry costs, while that

against the risk-averse alternative becomes higher than in Table 1. Similar patterns persist

for tests with higher signi�cance levels � = 10% and � = 15%.

A comparison between the two panels of Table 2 suggests that, as the magnitude of bias

increases, the performance of the test worsens both in the sense of larger errors in rejection

probabilities and lower power against the risk-loving alternatives. Besides, the probability

for Type III error could be positive for tests with higher signi�cance levels and larger bias.
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With a large bias ~� = 10 and 
 = 1:1, the power actually decreases with sample sizes. This

can be explained by the fact that the bias in estimating entry costs is large relative to the

di¤erence in risk premia under the null and the risk-loving alternative 
 = 1:1.

By construction, the errors in projection probabilities under H0 due to the underestima-

tion of expected entry costs will not diminish to zero as the sample size approaches in�nity.

Also, for a range of risk-loving alternatives that are su¢ ciently close to the null, the test

may be inconsistent (the probabilities for rejecting the null given those alternatives do not

approach 1 as the sample size increases). However, on a more positive note, for risk-loving

alternatives farther away from the null (e.g. 
 � 1:2), the test appears to be consistent, with
the power against any such alternative approaching 1 as the sample size increases. In sum,

the impact on test performance under mismeasurement of entry costs depends on the size

of the bias in the estimation of entry costs as well as the distance between the null and the

alternatives (as measured by the di¤erence between the risk premia under the null and the

alternative).

4.5 Mismeasurement of N

The number of potential bidders N could also be mismeasured in data for several distinct

reasons, each of which has a di¤erent impact on the performance of our test.

First, under-measurement of N could happen due to �nite sample limitations. For exam-

ple, consider the case where equilibrium entry probabilities are low and the set of potential

bidders is measured as the union of entrants observed in the sample. In such a case, a

potential bidder may not be counted in because it never entered as an active bidder in the

�nite sample. Our estimator for entry probabilities is thus biased upward under this mis-

measurement, because potential bidders who decide not to enter in any auction reported in

data are not counted in the denominator. On the other hand, this mismeasurement does

not impact the estimation of the private value distribution, since the number of entrants is

correctly reported in data.

To see how this a¤ects our test, recall bidders�risk premia are weighted sums of interim

pro�ts from entry. Such an under-measurement in N has no impact on the estimation of

these interim pro�ts, which only depend on the private value distribution, the number of

competing entrants A�i, and the expectation of entry costs. On the other hand, it does a¤ect

estimates for the weights, or probability masses for A�i, through its impact on estimates of

entry probabilities. Unfortunately the sign of the resultant bias in the estimator for risk-

premia is indeterminate, for it depends on the way those interim pro�ts vary with A�i,

and how the distribution of A�i changes with entry probabilities.9 Nevertheless, it is worth

9That the estimators for entry probabilities are knwon to be biased upward under this mismeasurement

is not su¢ cient for deriving the sign of bias in our risk-premium estimator. This sign is determined by
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noting that, as the real N increases in DGP, the e¤ect of under-measurement on the bias in

the estimator for entry probabilities and risk premium decreases.

The second possibility for mismeasurement is over-counting N due to problematic as-

sumptions. Again, consider the case where potential bidders are measured as the union of

entrants observed in data. An implicit assumption is that a bidder who shows up in one auc-

tion is by default also a potential bidder in other auctions in data. This risks over-countingN

when there are bidders who pay the costs to enter in some auctions but are not interested as

a potential bidder in the others, say, due to budget or time constraints. Such over-counting

leads to a downward bias in the estimator for entry probabilities but has no bearing on the

estimation of interim pro�ts. Again, the ultimate impact of such a bias on test performance

is indeterminate, but diminishes as the real N increases.

Yet a third scenario is that the number of potential bidders reported in data, denoted

by ~N , is a persistent random under-measurement of the real N in the DGP. In this case,

the conditional distribution of ~N given N , denoted by ~g( ~N jN), is an additional parameter
to be identi�ed. This di¤ers qualitatively from the �rst possibility (under-measurement due

to �nite sample limitations) in that the distribution ~g is a model primitive that does not

vary with the sample size. An, Hu and Shum (2010) studied the estimation of a related

model of �rst-price auctions where the number of actual bidders are misclassi�ed due to the

truncation by binding reserve prices. It turns out we can apply their argument to the current

context to identify the joint distribution of (N; ~N), and the distribution of transaction prices

given N . Consequently, the entry probabilities conditional on N are also identi�ed and tests

for risk attitudes can be constructed as before.

For easy exposition of how the argument in An, Hu and Shum (2010) can be applied

here, �x entry costs and let ~N = ~f(N; ~�) and N = f(Z; �), where Z are some instruments

that a¤ect bidders�potential participation but not the distributions of their private values.

Assume bidders�private values, ~� and Z are mutually independent conditional on N . This

implies that the transaction price W is independent from ~N and Z given N , and that ~N

is independent from Z given N . Provided the joint support of (Z; ~N) satisfy a mild full-

rank condition, the conditional distribution of ~N given N , the conditional distribution of

W given N , and the joint distribution of (Z;N) are jointly identi�ed using a typical matrix

diagonalization argument. (See Theorem 1 in An, Hu and Shum (2010) for a proof.) Knowl-

edge of these distributions, together with the directly identi�able distribution of W given

the number of entrants, implies that the entry probabilities are identi�ed and consistently

estimable. The proposed test for bidders�risk attitudes can then be constructed. We leave

the implementation of a test based on such an idea for future research.

primitive and endogenous model elements (i.e. the utility function, the private value distribution, and the

true equilibrium entry probabilities).
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5 Inference of Risk Attitudes with Unobserved Entry

Costs

In lots of empirical environments, auctions reported in data di¤er in observed character-

istics of the auctioned object. Besides, the number of potential bidders N may vary across

auctions. In this section, we show how to use these sources of variations to infer bidders�

risk attitudes, when entry costs known to bidders are not reported in data.

Assumption 2 Vi = h(Z) + �i for all i, where Z is a vector of auction characteristics

reported in data, and �i are i.i.d. draws from some distribution F� that is independent from

Z and N .

The function h(�) is a model primitive unknown to the econometrician. It is directly
identi�able under a location normalization E[�] = 0. To see this, let FV jZ denote the distri-
bution of Vi conditional on Z, where the subscript i is dropped due to symmetry. By the

same argument used in Proposition 1 in Section 4.1, FV jZ is identi�ed from the distribution

of transaction prices FW jZ . Assumption 2 and E[�] = 0 then imply h(z) is identi�ed as

h(z) = E[Vijz] =
R
vdFV jz(v) for all z.

Independence of � from N in Assumption 2 is analogous to the assumption of exogenous

variations in N in Haile, Hong and Shum (2004) and Guerre, Perrigne and Vuong (2009). As

shown in Guerre, Perrigne and Vuong (2009), it is possible to identify bidders�risk attitudes

even when N is endogenous, as long as the data contains valid instruments once conditioning

on some control variables. We provide detailed discussions about this in Section 5.4.1.

Under Assumption 2, a test for risk attitudes can be constructed even when entry costs

are not reported in data. The idea is to exploit the fact that bidders�risk attitudes a¤ect

how entry probabilities vary with Z and N in equilibrium. To illustrate this idea, it is

instructive to investigate the indi¤erence condition in equilibrium. Such conditions equate

bidders�utility from the certainty equivalent, u(0), with their ex ante utility from entry.

By construction ex ante utility from entry is a weighted average of �interim�utility, which

conditions on the number of competing entrants with expectations taken with respect to

private values. Entry probabilities enter ex ante utilities in the indi¤erence condition through

the weights assigned to interim utilities. These weights correspond to probability mass

functions for the number of competing entrants. As Z and N vary, the entry probabilities

(and therefore the weights) change endogenously in order to respect indi¤erence condition

in equilibrium.

The idea of our test builds on the following simple observation. If bidders are risk-

neutral, then variations in Z induce the same rate of changes in interim utilities as that in

expected private values. On the other hand, this equality fails when bidders are risk-averse

(or risk-loving) due to the decreasing (or increasing) rate of increase in utility. Under the
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orthogonality and additive separability conditions in Assumption 2, the rate of changes in

expected private values is over-identi�ed as the ratio between changes in expected transaction

prices.10 Thus, a test for bidders�risk attitudes would be feasible if the rate of changes in

interim utilities can be related to the distribution of entry decisions and transaction prices.

We construct a linear system that characterizes the indi¤erence conditions for various

Z and N . Under Assumption 2, the number of unknowns in the system (i.e. the interim

utilities) increases at the same pace as the number of equations. As long as the matrix of

coe¢ cients in the linear system (i.e. weights for interim utilities under various Z and N)

has full-rank, we can recover the rates of changes in interim utilities from the distribution

of prices and entry decisions.11 This allows us to conduct a test for risk attitudes based on

the afore-mentioned idea.

5.1 Identi�cation

Suppose the entry cost k is �xed across auctions but not reported in data.12 For easy

exposition, assume there is no binding reserve price. Let �z;n denote bidders�equilibrium

entry probabilities in auctions with Z = z and the number of potential bidders N = n. For

0 � a � n� 1, de�ne:

�a;z;n � Pr(A�i = ajZ = z;N = n) =
�
n�1
a

�
(�z;n)

a (1� �z;n)
n�a�1 : (8)

In the Bayesian Nash equilibrium of the entry stage,

u(0) = E [u((Vi � Pi)+ � k)jZ = z;N = n] =
Pn�1

a=0  a(z)�a;z;n (9)

where  a(z) � E[u((Vi � Pi)+ � k)j A�i = a; Z = z], and A�i; Vi; Pi are de�ned as in

Section 3. Under Assumptions 2, (Vi � Pi)+ does not depend on n given z and the number

of competing entrants A�i = a. For all a � 1,  a(z) is de�ned as:

 a(z) � E[u((Vi � Pi)+ � k)jZ = z; A�i = a] = E
h
u
��
�i � �(a:a)

�
+
� k
�i
,

where �(a:a) is the largest among a independent draws from F�. Also, by construction,

 0(z) = E[u(Vi � k)jZ = z] = E[u(h(z) + �i � k)]

10Alternatively, we could recover the rate of changes in E(VijZ) due to Z from the conditional distribution
FVijZ , which is over-identi�ed from the distribution of transaction prices conditional on Z and the number

of entrants.
11See Assumption 3 and discussions after Lemma 2 below for details about the su¢ cent rank condition.
12We could generalize this section by allowing entry costs to vary across auctions in the data-generating

process as well. To do this, we could let the vector of auction heterogeneities consist of two subvectors

(Z; ~Z), and let k be an unknown function of ~Z alone. Our inference method below applies as long as we

could condition on ~Z and exploit the variations in Z.
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where the second equality follows from independence between �i and z. Clearly  a(z) does

not depend on z for a � 1; thus we let  �a �  a(z) for all a � 1 and any z.

Assumption 3 There exists z; z0; z00 and n on the support of (Z;N) in the data-generating
process such that 0 < �z;s < 1 for all 2 � s � n, and �z0;n; �z00;n 2 (0; 1).

Assumption 3 requires there be enough variation in auction characteristics and in poten-

tial competition in data. The condition that entry probabilities are in the interior of (0; 1)

rules out uninteresting cases with degenerate entry behaviors. This condition can be directly

veri�ed from data in principle.

The characterization of entry probabilities for Z = z and N = s for 2 � s � n leads to a

system of (n� 1) equations:

 0(z)�0;z;s +
Ps�1

a=1  
�
a�a;z;s = u(0) for s = 2; ::; n. (10)

We also have additional equations from auctions with di¤erent observed features z0 or z00

and N = n. That is,

 0(z
0)�0;z0;n +

Pn�1
a=1  

�
a�a;z0;n = u(0); and likewise with z0 replaced by z00. (11)

Stacking the system of equations from (10)-(11) and moving the terms that involve  �1 to
the right, we have:0BBBBBBBBBBB@

�0;z00;n 0 0 �2;z00;n � � � �n�1;z00;n

0 �0;z0;n 0 �2;z0;n � � � �n�1;z0;n

0 0 �0;z;2 0 � � � 0

0 0 �0;z;3 �2;z;3 � � � 0
...

...
...

...
. . .

...

0 0 �0;z;n �2;z;n � � � �n�1;z;n

1CCCCCCCCCCCA
| {z }

(n+1)-by-(n+1)

0BBBBBBBBBBB@

 0(z
00)

 0(z
0)

 0(z)

 �2
...

 �n�1

1CCCCCCCCCCCA
| {z }
(n+1)-by-1

=

0BBBBBBBBBBBBB@

u(0)
...
...
...
...

u(0)

1CCCCCCCCCCCCCA
| {z }
(n+1)-by-1

�

0BBBBBBBBBBB@

�1;z00;n

�1;z0;n

�1;z;2
...
...

�1;z;n

1CCCCCCCCCCCA
| {z }
(n+1)-by-1

 �1. (12)

The linear system has n+ 2 unknowns (i.e.  0(z
00);  0(z

0);  0(z) and f �a : 1 � a � n� 1g)
and n+1 equations. Nonetheless, the next lemma shows how (12) can be used to relate the

ratio of changes in interim utilities  0 to entry probabilities as z varies.

Under Assumption 3, the coe¢ cient matrix in (12) has a full rank of n + 1. (See the

proof of Lemma 2 in Appendix A.) Now replace u(0) by 0 and replace  �1 by some arbitrary

constant c, and solve for the n + 1 unknowns ( 0(z
00);  0(z

0);  0(z); f �a : 2 � a � n � 1g)
in (12). Denote the unique solutions by (~ 0;z00 ; ~ 0;z0 ; ~ 0;z; f~ a : 2 � a � n� 1g).

Lemma 2 Suppose Assumptions 2-3 hold. If h(z0) 6= h(z00), then

 0(z
0)�  0(z)

 0(z
00)�  0(z

0)
=
~ 0;z0 � ~ 0;z
~ 0;z00 � ~ 0;z0

. (13)
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Assumption 3 is su¢ cient but not necessary for (13) to hold under Assumption 2. We

could relax Assumption 3 and only require the data-generating process to contain enough

variations in Z and N so that a linear system similar to (12) can be constructed for at least

three di¤erent values of Z with the coe¢ cient matrix in (12) being non-singular.13 The next

proposition states a testable implication of bidders�risk attitudes when entry costs are not

recorded in data.

Proposition 5 (a) Under Assumption 2,

h(z1)� h(z2) = E(W jZ = z1; A = a)� E(W jZ = z2; A = a)

for any (z1; z2) and a � 2. (b) Suppose Assumptions 2-3 hold for (z; z0; z00) such that h(z00) >
h(z0) > h(z). Then

~ 0;z0 � ~ 0;z
~ 0;z00 � ~ 0;z0

8><>:
>

=

<

9>=>; h(z0)� h(z)

h(z00)� h(z0)
i¤ u00

8><>:
<

=

>

9>=>; 0. (14)

To construct a test based on Proposition 5, one needs to locate a triple (z; z0; z00) such

that with h(z00) > h(z0) > h(z). Under Assumption 2, this sequence of strict inequalities

is equivalent to E[W jz00; A = a] > E[W jz0; A = a] > E[W jz; A = a] for all a � 2. (See

the proof of part (a) of Proposition 5.) Thus such a triple can be found using observed

distribution of prices conditional on Z and the number of entrants. Note this does not

require the location normalization E[�i] = 0.

In some other contexts, it is possible to locate such a triple using the shape restrictions

on h that are known a priori to researchers. For example, economic theory or common sense

sometimes may restrict the function h(:) to be monotonic in one of the coordinates in Z, or

may suggest FV jZ is stochastically ordered among a known triple (z; z0; z00). In such cases,

the choices of the triple to be used in the test are immediate. In the following subsection,

we assume a triple (z; z0; z00) with h(z00) > h(z0) > h(z) is known and �xed.14

13Speci�cally, a weaker su¢ cient condition for Lemma 2 is as follows: �There exists J � 3 values of Z,
denoted fzj : 1 � j � Jg, and J overlapping sets of integers on the support of N , each of which is denoted
�j � fnj;1; nj;2; ::; nj;Mjg with Mj � #f�jg, such that the matrix of coe¢ cients for f 0(zj) : j � Jg
and ( �2; :;  

�
�n�1) (where �n � maxf[j�Jf�jgg) has full-rank in the linear system of

P
j�JMj equations

characterizing the equilibrium entry probabilities for various Z and N .� This condition necessarily requiresP
j�JMj � �n + J � 2. Note Assumption 3 is a special case of this condition with J = 3, (z1; z2; z3) =

(z; z0; z00), �1 = f2; 3; ::; ng, and �2 = �3 = fng.
14In this case, we need a preliminary step for selecting a triple satisfying the inequalities, based on

comparing the estimates of E(W jZ; a). We leave issues such as how to account for the impact of pretesting
in inference to future research.
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5.2 Test Statistic

We now construct a test statistic based on Proposition 5 and some triple (z; z0; z00) and

some n known to satisfy Assumption 3. First, estimate the coe¢ cient matrix on the right-

hand side and the coe¢ cient vector on the left-hand side in (12) by plugging in sample analogs

of the entry probabilities into (8). Next, replace u(0) with 0 and  �1 with an arbitrary negative

constant c in (12) and solve it to get estimates for (~ 0;z00 ; ~ 0;z0 ; ~ 0;z; f~ a : 2 � a � n� 1g).15

Denote these estimates by  ̂0(z);  ̂0(z
0);  ̂0(z

00) and f ̂�a : 2 � a � n� 1g respectively. Our
test statistic is

~� �  ̂0(z
0)�  ̂0(z)

 ̂0(z
00)�  ̂0(z

0)
� R̂

where

R̂ �
Pn�1

a=2 q̂a

 
Ê(W jz0; a)� Ê(W jz; a)
Ê(W jz00; a)� Ê(W jz0; a)

!
(15)

with Ê(W jz; a) being kernel estimators for expected transaction prices given z and the

number of entrants A = a; and fq̂a : 2 � a � n � 1g are data-dependent weights. In the
simulations below, we use q̂a � �̂�2a =(

Pn�1
s=2 �̂

�2
s ), where �̂a is the standard error for the ratio

of di¤erences in the parenthesis on the right-hand side of (15).

We now brie�y discuss the asymptotic property of our test statistic ~� . It is instructive

to look at the case where the support of Z is discrete, which is also what we consider in

the simulations of Section 5.3 below. In this case, ~� is by construction a smooth function of

sample averages. (To see this, note �̂z;n are sample averages and Ê(W jz; a) are ratios whose
numerators and denominators are sample averages. It then follows that  ̂0(z);  ̂0(z

0);  ̂0(z
00)

and R̂ are smooth functions of sample averages.) Under Assumptions 2 and 3 and the

conditions on �nite second moments of transaction prices, the Delta Method can be applied

to show that ~� converges at the parametric rate to its population counterpart � �, which

is de�ned as the di¤erence between the two ratios compared in (14). Furthermore, the

asymptotic distribution of ~� is normal with a zero mean and a �nite variance.

A test for risk attitudes follows a procedure similar to that of Section 4.2, with critical

values estimated using bootstrap resampling. With ~� being a smooth function of sample

averages, the bootstrap estimator for the exact �nite sample distribution of ~� is consistent.

For the same reason, the test using bootstrap critical values is expected to perform at least

as well as one based on �rst-order asymptotic approximation both in terms of the errors in

rejection probabilities and its asymptotic power.

15To identify the ratio of di¤erences between interim utilities  0 under various z, the sign of the chosen

constant c does not matter. However, using a negative c has the additional bene�t of recovering the correct

ordering of  0 under di¤erent z. (See the proof of Lemma 2 in Appendix A for details.)
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5.3 Monte Carlo Simulations

This subsection presents some Monte Carlo evidence for the performance of the test

above in �nite samples. The DGP is as follows. The distribution of auction characteristics

Z is multinomial over a discrete support Z 2 f1; 2; 3g with equal probability masses. Upon
entry, a bidder i�s private value is �1 + �2Z + �i, where � � (�1; �2) are parameters to

be experimented with and �i are i.i.d draws from a uniform distribution over [�2; 2]. The
support of potential bidders is f2; 3; 4; 5; 6g. Conditional on Z, the distribution of N is

stochastically increasing: Pr(N = njZ = 1) = 1
3
for n = 2 and 1

6
for all n 6= 2; Pr(N =

njZ = 2) = 1
3
for n = 4 and 1

6
for all n 6= 4; and Pr(N = njZ = 3) = 1

3
for n = 6 and

1
6
for all n 6= 6. Such a speci�cation is meant to capture the possibility that the value

of the auctioned object is positively correlated with potential competition. An alternative

DGP where the distribution of N is restricted to be invariant in Z produces similar results.

Bidders�von-Neumann-Morgenstern utility is speci�ed as u(c) �
�
1+c
10

�

. The speci�cation in

this section di¤ers slightly from that used in Section 4.3. This is mostly due to the fact that

the speci�ed supports of private values are di¤erent across the two sections. We adopt these

utility speci�cations so that for any given 
 the curvature of the utility function over the

respective supports of V are comparable in Sections 4.3 and 5.3. The entry costs observed

by potential bidders is �xed at K = 1 in all auctions. As explained in Section 5.1 above, the

test does not require knowledge of the true entry cost in the DGP.

Table 3 reports equilibrium entry probabilities under this DGP for � = (2; 5) and (2; 3)

respectively. As the theoretical model suggests, for a �xed �, the entry probabilities are

monotonically decreasing in N and increasing in Z (due to the monotonicity of h(Z)). Also,

as the marginal e¤ect of Z diminishes from �2 = 5 to �2 = 3, bidders are less likely to

enter the bidding stage for any given Z and N . Under the current utility speci�cation, risk-

aversion appears to result in lower entry probabilities ceteris paribus. Most importantly, the

entry probabilities are in the interior of (0; 1). This is essential for the full-rank condition

on the coe¢ cient matrix in (12) to hold.

Table 3(a): Equilibrium Entry Probabilities: � = (2; 5)

 = 0:6 
 = 1 
 = 1:4

Z = 1 Z = 2 Z = 3 Z = 1 Z = 2 Z = 3 Z = 1 Z = 2 Z = 3

N = 2 0.7767 0.8440 0.8756 0.9000 0.9429 0.9600 0.9547 0.9789 0.9871

N = 3 0.5120 0.5881 0.6299 0.6667 0.7449 0.7851 0.7714 0.8420 0.8756

N = 4 0.3763 0.4419 0.4797 0.5145 0.5930 0.6365 0.6213 0.7034 0.7468

N = 5 0.2966 0.3524 0.3854 0.4164 0.4883 0.5297 0.5152 0.5961 0.6412

N = 6 0.2445 0.2927 0.3216 0.3491 0.4139 0.4520 0.4386 0.5147 0.5585
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Table 3(b): Equilibrium Entry Probabilities: � = (2; 3)

 = 0:6 
 = 1 
 = 1:4

Z = 1 Z = 2 Z = 3 Z = 1 Z = 2 Z = 3 Z = 1 Z = 2 Z = 3

N = 2 0.7185 0.7960 0.8349 0.8571 0.9130 0.9375 0.9267 0.9626 0.9762

N = 3 0.4556 0.5323 0.5768 0.6051 0.6882 0.7337 0.7119 0.7914 0.8323

N = 4 0.3299 0.3934 0.4319 0.4573 0.5354 0.5813 0.5590 0.6435 0.6914

N = 5 0.2580 0.3110 0.3438 0.3660 0.4352 0.4774 0.4568 0.5366 0.5840

N = 6 0.2118 0.2569 0.2852 0.3045 0.3658 0.4039 0.3852 0.4585 0.5031

We report performance of the test in simulated samples that contain T = 3; 000 or

T = 5; 000 auctions with variations in Z and N . For each pair (�; 
) and a sample size T , we

simulate S = 400 samples.16 For each simulated sample, we calculate a test statistic ~� and

record a decision under signi�cance levels � 2 f5%; 10%; 15%g respectively, based on critical
values estimated from B = 400 bootstrap samples. Table 4 summarizes the performance of

the test for 
 2 f0:6; 0:7; 0:8; 1:0; 1:2; 1:3; 1:4g.
Each row in Table 4 corresponds to a DGP with a pair (�; 
) and a sample size T . The

numbers in each cell are the proportions of S simulated samples in which HL; H0; HA are

accepted respectively.

Table 4 (a) reports the test results when the auction heterogeneity Z has a larger marginal

impact on bidders�values (�2 = 5). With a moderate sample size T = 3; 000, the probabilities

for rejecting the null is reasonably close to the targeted signi�cance levels � under the null.

Errors in rejection probabilities also decrease as the sample size increases to T = 5; 000. For

both sample sizes and all signi�cance levels , the power of the test are reasonably high for

almost all alternatives except 
 = 0:8. Besides, the power is also shown to approach 1 as

sample sizes increase. The probability for �Type-III�error (i.e. rejecting the null in favor of

a wrong alternative) is practically zero across all speci�cations and sample sizes.

16Note we use larger sample sizes T compared to those in Section 4.3. This is because we need su¢ cient

observations given each pair (z; n) in the estimation of entry probabilities. (Recall that the test in Section

4.3 conditions on the number of potential bidders )
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Table 4(a): Probabilities for Accepting [HL; H0; HA]: � = (2; 5)
� = 5% � = 10% � = 15%

T = 5; 000


 = 0:6 [0.00%, 0.75%, 99.25%] [0.00%, 0.75%, 99.25%] [0.00%, 0.75%, 99.25%]


 = 0:7 [0.00%, 16.00%, 84.00%] [0.00%, 8.00%, 92.00%] [0.00%, 4.25%, 95.75%]


 = 0:8 [0.00%, 80.75%, 19.25%] [0.00%, 53.75%, 46.25%] [0.00%, 37.00%, 63.00%]


 = 1 [4.50%, 94.00%, 1.50%] [6.25%, 89.25%, 4.50%] [10.75%, 83.50%, 5.75%]


 = 1:2 [56.25%, 43.75%, 0.00%] [62.25%,37.75%,0.00%] [64.00%, 36.00%, 0.00%]


 = 1:3 [85.75%, 14.25%, 0.00%] [89.25%,10.75%,0.00%] [91.75%, 8.25%, 0.00%]


 = 1:4 [97.25%, 2.75%, 0.00%] [97.75%, 2.25%, 0.00%] [98.25%, 1.75%, 0.00%]

T = 3; 000


 = 0:6 [0.00%, 6.75%, 93.25%] [0.00%, 4.25%, 95.75%] [0.00%, 3.00%, 97.00%]


 = 0:7 [0.00%,38.00%,62.00%] [0.00%,19.00%,81.00%] [0.00%,13.50%,86.50%]


 = 0:8 [0.00%,88.50%,11.50%] [0.00%,77.75%,22.25%] [0.00%,58.50%,41.50%]


 = 1:0 [5.00%, 92.75%, 2.25%] [7.25%, 88.50%, 4.25%] [11.50%,82.25%,6.25%]


 = 1:2 [48.50%,51.50%,0.00%] [54.50%,45.50%,0.00%] [58.00%,42.00%,0.00%]


 = 1:3 [76.75%,23.25%,0.00%] [80.00%,20.00%,0.00%] [83.00%,17.00%,0.00%]


 = 1:4 [95.25%, 4.75%, 0.00%] [97.00%, 3.00%, 0.00%] [98.25%, 1.75%, 0.00%]

Our empirical estimates for the power of the test are low against the risk-averse alternative


 = 0:8. For example, when the signi�cance level is � = 5% in Table 4(a), our empirical

estimates for the power is 11:5% with T = 3; 000 and 19:25% with T = 5; 000. However,

the power improves at a fast pace as the alternative moves farther away from the null. For

example, in the same Table 4(a), when 
 = 0:7 and � = 5%, the estimates for power under

T = 3; 000 and 5; 000 increase substantially to 62% and 84% respectively. Also, for 
�s with

the same distance from the null value 1, the power reported against risk-loving alternatives

are considerably higher than those against risk-averse alteratives. For instance, in Table 4(a),

when � = 5% and 
 = 1:2, the power is 48:5% for T = 3; 000 and 56:25% for T = 5; 000,

which are a lot greater than their counterparts under 
 = 0:8.

That the reported power can be low against the alternatives with 
 2 [0:8; 1) is due to the
combination of two factors. First, as mentioned in Section 4.3, these risk-averse alternatives

correspond to utility functions with curvatures not too far from that for a linear function.

Thus the di¤erence between the ratios compared in Proposition 5 (i.e. the probability limit

of ~� , denoted � �) is close to zero under these DGPs. On the other hand, the standard error

for estimating conditional entry probabilities are large relative to the absolute value of this

di¤erence � � because of smaller sample sizes after Z and N are controlled for. (Recall the

T observations consists of auctions with 15 possible combinations of (Z;N) in the DGP

considered.) This in turn translates into relatively large standard errors for ~� . To sum up,
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the test statistics are asymptotically normal both under 
 = 1 and 
 = 0:8, with variances

large relative to the di¤erence between the means. This could explain the observed lower

power against alternatives 
 2 [0:8; 1). Similar to the case with Section 4.3, we argue this
should not be interpreted as evidence of unsatisfactory �nite sample performance of our test.

Rather it is due to the fact that the curvature of utility functions are close to being linear

for 
 2 [0:8; 1). To reiterate, the power of the test does improve substantially either as the
sample size further increases, or as 
 moves farther away from 1.

Table 4(b): Probabilities for Accepting [HL; H0; HA]: � = (2; 3)
� = 5% � = 10% � = 15%

T = 5; 000


 = 0:6 [0.00%,10.00%,90.00%] [0.00%, 6.00%, 94.00%] [0.00%, 4.25%, 95.75%]


 = 0:7 [0.00%,47.25%,52.75%] [0.00%,30.25%,69.75%] [0.00%,23.00%,77.00%]


 = 0:8 [0.00%,88.25%,11.75%] [0.00%,79.00%,21.00%] [0.00%,66.75%,33.25%]


 = 1:0 [3.00%, 94.25%, 2.75%] [5.75%, 89.50%, 4.75%] [9.75%, 84.00%, 6.25%]


 = 1:2 [39.25%,60.75%,0.00%] [45.25%,54.75%,0.00%] [50.50%,49.50%,0.00%]


 = 1:3 [68.25%,31.75%,0.00%] [72.75%,27.25%,0.00%] [77.00%,23.00%,0.00%]


 = 1:4 [87.25%,12.75%,0.00%] [90.50%, 9.50%, 0.00%] [93.00%, 7.00%, 0.00%]

T = 3; 000


 = 0:6 [0.00%,15.25%,84.75%] [0.00%, 8.75%, 91.25%] [0.00%, 6.25%, 93.75%]


 = 0:7 [0.00%,61.25%,38.75%] [0.00%,41.25%,58.75%] [0.00%,31.00%,69.00%]


 = 0:8 [0.00%, 91.25%, 8.75%] [0.00%,84.75%,15.25%] [0.00%,77.75%,22.25%]


 = 1:0 [4.75%, 93.00%, 2.25%] [8.00%, 87.50%, 4.50%] [10.75%,83.00%,6.25%]


 = 1:2 [33.00%,67.00%,0.00%] [41.00%,59.00%,0.00%] [45.25%,54.75%,0.00%]


 = 1:3 [62.75%,37.25%,0.00%] [67.50%,32.50%,0.00%] [73.50%,26.50%,0.00%]


 = 1:4 [75.75%,24.25%,0.00%] [80.75%,19.25%,0.00%] [84.50%,15.50%,0.00%]

Table 4(b) reports the test performance when � = (2; 3). Overall, it registers the same

patterns as those discussed above for Table 4(a). More interestingly, a comparison between

Table 4(a) and 4(b) suggests that, for any T; � and a �xed alternative 
 6= 1, the power of
the test is larger in the DGP with a greater marginal e¤ect of auction heterogeneity. Such

a pattern across the two panels is aligned with the idea that underlies our test: The iden-

ti�cation of risk attitudes is driven by the di¤erence between the rate of changes in interim

utilities and the rate of changes in expected private values as the auction characteristic Z

vary exogenously. The distance between these two ratios under any alternative depends on

the di¤erence in expected private values as Z varies, which depends on the marginal e¤ect

of Z on h(:).
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5.4 Further Discussions

5.4.1 Endogeneity in the number of potential bidders

It is possible to extend the results from Sections 5.1-5.2 to the case where the number

of potential bidders N are endogenous. The main idea is to use additional auction het-

erogeneities reported in data as instrumental variables under certain exclusion restrictions.

Guerre, Perrigne and Vuong (2009) introduced an instrument-based argument to recover

bidders�utility functions in �rst-price auctions. Below we discuss how their argument can

be applied in the current context.

Let the number of potential bidders be given by a structural equation N = �(Z;X; �),

where (Z;X) are auction heterogeneities reported in data; and � is some auction-level variable

not reported in data. As before, we maintain Vi = h(Z) + �i for all i. Now assume the

idiosyncratic component �i is independent from (X;Z) conditional on �. Across potential

bidders, �i are independent draws from the same distribution F�ij� with E[�ij�] = 0.
Under these conditions, the number of potential bidders may remain endogenous even

after conditioning on (Z;X). This is because these conditions allow for dependence between

� and �i even after conditioning on (Z;X). On the other hand, these conditions imply that

�i are orthogonal to both (Z;N) conditional on �. Note X di¤ers from Z in that X only

a¤ects potential competition but not bidders�private values. The existing literature abound

in examples of such variables. In e-bay coin auctions studied by Bajari and Hortacsu (2003),

sellers�reputation a¤ects bidders�participation decisions but not their values. In U.S. Forest

Service auctions considered in Athey, Levin, and Seira (2004), road costs and density of

timber were found to a¤ect participation but not bidders�values.17

Following Guerre, Perrigne and Vuong (2009), assume � = N � E[N jZ;X]. That is, �
can be recovered from data as the residual of the nonparametric regression of N on (Z;X).

Our identi�cation arguments from Section 5.1 apply after conditioning on �. Speci�cally,

the interim utilities  a(z; �) and the entry probabilities �a;z;n(�) on the right-hand side of (9)

now all depend on �, whose realized values can be recovered through regressions under our

assumption above, and therefore can be controlled for. Identi�cation of risk attitudes then

follows from the same arguments as in Proposition 5 after conditioning on �.

5.4.2 Full identi�cation of the utility function

We conclude this section with brief discussions about the possibility to use auction het-

erogeneities observed from data to fully recover bidders�utility functions. Consider a cross-

sectional data with a large number of independent auctions, which share the same entry costs

17To be precise, the exclusion restriction in these papers are stated for entry decisions as opposed to

decisions to become a potential bidder. Nevertheless, the arguments used in those papers could also be

applies here to justify the use of these variables in W as de�ned above.
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k (unknown to econometricians) and the same number of potential bidders N , but di¤er in

their auction-level heterogeneities Z. Then in Bayesian Nash equilibrium of the entry stage,Z
u(y � k)dFY jZ;N(yjz) = u(0) (16)

where Yi � (Vi � Pi)+ and FY jZ;N denotes its distribution given (Z;N). The distribution

of Y depends on Z both directly through FVijZ and indirectly through equilibrium entry

probabilities, which a¤ect the distribution of Pi through the distribution of the number of

entrants A. Note for a given k, (16) is an integral equation in u(:), with the kernel being

the conditional density fY jZ;N which is identi�ed by arguments in Proposition 1 in Section

4.1. Besides, with assumed exogenous variation in Z and N , we can augment a system of

integral equations in u(:) by including additional equations similar to (16) that are derived

for di¤erent numbers of potential bidders and Z. We conjecture it is possible to establish

uniqueness of solution in u(:) and k in such a system of integral equations, after imposing

location and scale normalizations (such as u(0) = 0 and u0(0) = 1) and additional primitive

conditions that restricts how FY jZ;N varies with (Z;N). We leave this as a direction for

future research.18

6 Extensions

6.1 A¢ liated Private Values

The assumption of independent private values is instrumental for recovering the dis-

tribution of private values from the distribution of transaction prices, for it guarantees a

one-to-one mapping between a parent distribution and the distribution of the second-largest

order statistic it generates. However, independence between private values fails in certain

situations, e.g. if bidders�values are correlated through auction heterogeneities that bidders

observe but are not reported in data. With a¢ liated private values, the joint distribution

F(Vi)i�njk is no longer point identi�ed for a given N (see Athey and Haile (2002)). Never-

theless, Aradillas-Lopez, Gandhi and Quint (2012) constructs sharp bounds on bidders�ex

ante expected surplus, using exogenous variation in the number of active bidders (see their

Theorem 1).

18Let �(u)(z) �
R
u(t � k)dFY jZ;N (tjz). That is, � is a linear operator mapping from the space of

continuous, bounded functions over the support of Y into the space of continuous, bounded functions over

the support of Z. If the model is correctly speci�ed (i.e. FY jZ;N recovered from data is indeed generated

by our model), the null space of the linear operator is necessarily a non-singleton. This is because both the

truth u(:) in the DGP with u0(:) > 0 and a constant function ~u with ~u(s) � u(0) for all s are solutions of the

integral equation (16). Hence one would at least need to impose further restrictions on the space of solutions

in order to ensure uniqueness of the solutions in u(:).

31



In our model, exogenous variation in the number of entrants A follows from a more

primitive condition of exogenous variation in the number of potential bidders N and from

the fact that mixed-strategy entry equilibria are non-selective. As a result, we can apply

the partial identi�cation result from Aradillas-Lopez, Gandhi and Quint (2012) to construct

bounds on bidders�ex ante expected surplus from entry. Comparing these bounds with entry

costs reported in data may reveal some information about risk preference.

To see this, consider a model with no binding reserve price. Fix the number of poten-

tial bidders at n and the entry cost at k. If the joint distribution F(Vi)i�njk are a¢ liated

and exchangeable in bidders�indices, then there exists symmetric Bayesian Nash equilibria

in entry stage where bidders enter independently with probability ��k as characterized in

Lemma 1 (see Lemma A2 in Appendix A for details). In addition, we maintain the following

assumption about exogenous variation in the number of potential bidders. Let �n denote the

largest integer on the support of the number of potential bidders N in the data-generating

process.

Assumption 1�For any k, the random vector (Vi)i��n is a¢ liated and its joint distribution

is continuous and exchangeable in bidders�identities over the support [v; �v]�n. For any realized

number of potential bidders n � �n, the joint distribution F(Vi)i�njk equals the corresponding

marginal distribution derived from F(Vi)i��njk.

This assumption, together with the non-selective mixed-strategy entry equilibrium (which

means the joint distribution F(Vi)i2Ajk equals the corresponding marginal distribution derived

from F(Vi)i�njk for any a � n), suggests that the variation in the number of entrants A is

exogenous (in the sense that it is not correlated with the distribution of private values).

Thus the approach in Aradillas-Lopez, Gandhi and Quint (2012) can be applied to bound

the ex ante expected pro�ts from entry. Let 'a(k) denote the expected surplus (Vi � Pi)+

for i conditioning on competing with A�i = a entrants and entry cost k.

Proposition 6 (An Application of Theorem 1 in Aradillas-Lopez, Gandhi and Quint (2012).)
Under Assumption 1�, 'La (k) � 'a(k) � 'Ua (k) for any k and 0 � a < �n� 1, where

'La (k) � 1

a+ 1

�Z �v

v

tdF+
V (a+1:a+1)jk;a+1(t)�

Z �v

v

tdFW jk;a+1(t)

�
and

'Ua (k) � 1

a+ 1

�Z �v

v

tdF�
V (a+1:a+1)jk;a+1 �

Z �v

v

tdFW jk;a+1(t)

�
,

where FW jk;s is the distribution of transaction price given k and A = s, and

F+
V (s:s)jk;s(t) =

P�n
m=s+1

s
m(m�1)FV (m�1:m)jk(t) +

s
�n
FV (�n�1:�n)jk(t)

F�
V (s:s)jk;s(t) =

P�n
m=s+1

s
m(m�1)FV (m�1:m)jk(t) +

s
�n

�
��n(FV (�n�1:�n)jk(t))

��n
.

The intuition of this result is as follows. First, an application using the Law of Total

Probability reveals:

FV (a+1:a+1)jk =
1
a+2

FV (a+1:a+2)jk +
a+1
a+2

FV (a+2:a+2)jk.
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Then recursive substitutions show that FV (a+1:a+1)jk (which is not point-identi�ed from trans-

action price distributions due to a¢ liation) can be written as a linear combination of distri-

butions of second-largest order statistic FV (m�1:m)jk for m = a+2; ::; �n (which is directly iden-

ti�able from the data) and the distribution of the largest order statistic FV (�n:�n)jk. Second, it

can be shown that the distribution of V (�n:�n) given k is bounded between [��1�n (FV (�n�1:�n)jk(:))]
�n

and FV (�n�1:�n)jk(:). These bounds are derived by exploiting the link between the distribution

of �rst- and the second-order statistics of Vi (i.e. FV (�n;�n)jk and FV (�n�1:�n)jk) under two extreme

scenarios: full independence or perfect correlation among private values. These two results

imply that FV (a:a)jk is bounded between F
+
V (a:a)jk;a and F

�
V (a:a)jk;a for all a � �n�1. Proposition

6 then follows from the fact that the ex ante surplus 'a(k) can be expressed as the di¤erence

between 1
a+1

R �v
v
tdFV (a+1:a+1)jk(t) and

1
a+1

R �v
v
tdFV (a:a+1)jk(t).

It then follows from Proposition 6 that a bidder�s ex ante surplus prior to entry in

the presence of n potential bidders (denoted by '�(k; n)) is bounded between '�L(k; n) and

'�U(k; n) for all n < �n, where

'�h(k; n) �
Pn�1

a=0 '
h
a(k) Pr(A�i = ajk; n) for h 2 fL;Ug. (17)

Unlike in the case with independent private values where we could point identify '�(k; n),

here we can only recover a pair of bounds '�L(k; n) and '
�
U(k; n) when private values are

a¢ liated. However, provided entry costs are observed from data, one can still test the

chain of inequalities '�L(k; n) � k � '�U(k; n) against the alternatives of �k < '�L(k; n)�

and �k > '�U(k; n)�, using a test statistic based on sample analogs (whose �nite sample

distribution can be estimated using the bootstrap). If the null is rejected in favor of one of

the alternatives, we can conclude there is evidence in the data that supports hypotheses of

risk-aversion or risk-loving. Unfortunately, on the other hand, a failure to reject the null does

not necessarily allow us to conclude whether there is signi�cant evidence for risk-neutrality

or not.

The argument in the preceding paragraph can be extended where entry costs are only

measured with noises, and are orthogonal from the joint distribution of private values. In

this case, bounds on ex ante surplus '�(k; n) in (17) still hold for all k given any n, except

that the bounds on interim surplus f'hagh=L;U no longer depend on the unobserved cost
k. Thus, similar to the case with IPV in Corollary 1, we can identify E['�h(K;n)jn] asPn�1

a=0 '
h
a Pr(A�i = ajn) for h = L;U . Thus, provided the measurement errors are zero-mean

so that E[K] can be consistently estimated, we can construct a consistent test for the null

�E['�L(K;n)jn] � E[K] � E['�U(K;n)jn]�against the alternatives �E[K] < E['�L(K;n)jn]�
and �E[K] > E['�U(K;n)jn]�. As before, a rejection of the null would provide statistically
signi�cant evidence again risk-neutrality while a failure to rejection would leave the test

inconclusive.
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6.2 Selective Entry with Informative Signals

Consider a model where each potential bidder observes in the entry stage a private

signal correlated with his private values. Thus entry decisions depend on these informative

signals. We identify bidders�risk attitudes in such a model, assuming data report continuous

variations in entry costs across auctions. As before, we �x N (the number of potential

bidders) and suppress it from the notations. Auction models with endogenous and selective

entry have been studied in Ye (2007), Gentry and Li (2013) and Marmer, Shneyerov and

Xu (2013). Li, Lu and Zhao (2012) considers the same model of auctions with risk-averse

bidders, a¢ liated signals and selective entry. Their emphasis is on the inference of the form

of risk-aversions using data from both �rst-price and ascending auctions.

The model is speci�ed as follows. In an entry stage, each bidder i observes a private

signal Si and decides whether to pay costs k and enter the bidding stage. The entry cost

is commonly known and the same for all bidders. Upon entry in the bidding stage, each

entrant draws a private value Vi, and competes in an ascending auction with a reserve price

r. The joint distribution F (S1; :; SN ; V1; :; VN) and r are common knowledge among potential

bidders. Each entrant may not be aware of the number of active competitors A while bidding.

Assumption S (i) (Si; Vi) are identically and independently distributed across potential
bidders (F (S1; :; SN ; V1; :; VN) = �Ni=1F (Si; Vi)); (ii) For each i, (Si; Vi) are a¢ liated; (iii)

Marginal distributions of Si and Vi, denoted FS and FV respectively, are continuous and

increasing over bounded support [s; s] and [v; v] respectively.

Suppose the reserve price is binding with r > v. Let !i(si; k; s�i) denote ex ante utility

for bidder i with signal si if potential competitors follow monotone, pure-strategy Bayesian

Nash equilibria characterized by cuto¤s s�i � (sj)j 6=i. That is, !i(si; k; s�i) � E[u((Vi �
Pi)+ � k)jSi = si; A�i = fj 6= i : Sj � sjg; i 2 A].

Lemma 3 Under Assumption S, !i(si; k; s�i) is increasing in si and non-decreasing in s�i
for any k.

Let !(s; k) be a shorthand for !i(s; k; (s; :; s)) = E[u((Vi � Pi)+ � k)jSi = s; A�i = fj 6=
i : Sj � sg; i 2 A]. Under Assumption S, !(s; k) is the same for all i, and is increasing in s
due to Lemma 3. An arguments similar to that in Lemma 1 show that under Assumption S,

there exists the following unique pure-strategy BNE in the entry stage: A potential bidder

i enters i¤ si � s�k, where s
�
k solves !(s

�
k; k) = u(0) if !(s; k) � u(0) � !(s; k). Otherwise,

s�k = s (or s�k = s) if !(s; k) > u(0) (or !(s; k) < u(0) respectively). Entry decisions in this

model are selective in that the distribution of private values conditional on entry di¤ers from

their unconditional distribution.

To �nd bidders� risk attitudes when there is selective entry, we again exploit the fact

that concave utilities lead to positive risk premia in the entry decisions. Let ��(s; k) �
E[(Vi�Pi)+�kjSi = s; A�i = fj 6= i : Sj � sg], which is identical for all i under Assumption
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S. By the same argument as in Section 4.1, we can construct a test for bidders�risk attitudes

as long as ��(s�k; k) is identi�ed from distributions of transaction prices and entry decisions

for any k that yields non-degenerate entry probabilities in equilibrium. Speci�cally, consider

some costs k with s < s�k < s so that uninteresting cases involving degenerate entry decisions

are ruled out. (Whether a level of entry cost k leads to any non-degenerate entry probabilities

is testable using the distribution of entry decisions from data.) Then, under Assumption S,

��(s�k; k) = 0 when bidders are risk-neutral; and ��(s�k; k) > 0, or < 0, when bidders are

risk-averse, or respectively risk-loving.

The test for risk attitudes introduced in Section 4.2 is not directly applicable under

selective entry, because it leads to distorted decisions in favor of risk-aversion even when

the true DGP has risk-neutral bidders. Such distortion arises from the a¢ liation between

private values Vi and entry signals Si. To see why, recall from the preceding paragraph that,

with selective entry, bidders�risk attitudes are linked only to the sign of risk-premia for a

marginal bidder whose signal equals the cuto¤ s�k that characterizes the equilibrium entry

strategy. If we were to apply the test from Section 4.2 under the current context of selective

entry, it would amount to testing the sign of ex ante payo¤s for a generic entrant whose

signal is not restricted to be equal to the cuto¤ (that is, ~�(s�k; k) � E[(Vi�Pi)+� kjSi � s�k;

A�i � fj 6= i : Sj � s�kg]). However, the a¢ liation between Si and Vi suggests ex ante payo¤s
for other non-marginal entrants must be greater than the marginal entrant�s risk premium

��(s�k; k). That is, ~�(s
�
k; k) is bounded below by ��(s

�
k; k). Consequently, applying the test

from Section 4.2 for models with selective entry leads to over-rejection of risk-neutrality in

favor of risk-aversion.19

The next proposition shows how to recover ��(s�k; k) from entry probabilities and the

distribution of transaction prices. To do this, it su¢ ces to recover the distribution of Vi
given Si = s�k and the distribution of Pi given A�i = fj 6= i : Sj � s�kg from data.

Proposition 7 Suppose (i) Assumption S holds with (Vi; Si)i2N independent from entry

costs; (ii) for some �xed k, there exists " > 0 such that s < s�k0 < s for all k0 2 (k� "; k+ ");
and (iii) entry costs are observed in the data. Then ��(s�k; k) is identi�ed from the distribution

of transaction prices and entry probabilities.

Implementing a test based on Proposition 7 would require the researcher to observe a

continuous variation of entry costs known to potential bidders. As discussed in Section

4, such an assumption is strong and has limitations. It could fail under various empirical

environments (say due to bias in the measurement of entry costs). It remains an open

question whether additional exogenous variations could be exploited to construct a test under

a¢ liated endogenous entry without requiring such knowledge. We also leave the de�nition

of a test statistic based on Proposition 7 and its asymptotic properties to future research.

19We are grateful to a referee for this insight.
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7 Conclusion

We propose tests for bidders�risk attitudes in ascending auctions where potential bidders

make endogenous entry decisions based on their information of entry costs and ex ante

knowledge of the distribution of private values. First, we show that risk premium can be

non-parametrically recovered from the distribution of transaction prices and entry decisions,

as long as the expected entry cost is identi�ed from the data. A test is proposed and shown

to have good �nite sample performance under various data-generating processes. Second,

we show how exogenous variations in number of potential bidders and observed changes

in auction features could provide additional identifying power to infer risk attitudes even

when knowledge about entry costs is not available. Finally, we extend our results to identify

bidders�risk preference in a more general model where entries into auctions are selective.

Discussions about possible extensions to cases with a¢ liated private values are also provided.

There are several directions for future research. First, is it possible to recover the full

utility functions, not just the sign of risk attitudes? We conjecture this is possible with

additional variations in entry costs or auction heterogeneities reported in data. Some addi-

tional restrictions on how these factors a¤ect private values may be needed to complete this

task. Second, can we extend the analysis to ascending auctions with discrete increments?

Haile and Tamer (2003) show how to form sharp bounds on value distributions using price

distributions in this case. These bounds could in turn lead to bounds on expected risk pre-

mia. Thus a test could be constructed to test the null that zero is covered by these bounds

on risk premia. Similar to the case with a¢ liated private values in Section 6.1, rejection of

the null could lead to a decision on risk attitudes while failure in rejections leaves the test

inconclusive. It remains an open question how to construct more informative tests under

additional economic restrictions on the model structure.
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APPENDIX

A Proofs of Identi�cation

Proof of Lemma 1. We use the following property of expected utility from entry.

Lemma A1 Under Assumption 1, !(k;��i) is continuous and decreasing in ��i for all k.

Proof of Lemma A1. By Law of Iterated Expectations,

!(k;��i) = u(�k)FV jk(r) +
Z v

r

h(v; k;��i)dFV jk(v) (A1)

where for v > r,

h(v; k;��i) � u(v � r � k)FPi(rjk;��i) +
Z v

r

u(v � p� k)dFPi(pjk;��i)

+ u(�k)[1� FPi(vjk;��i)]

and we have used the independence between private values Vi conditional on entry costs.

Note for any t 2 [r, �v], the event "Pi � t" can be represented as

\j2Nnfigf"j stays out" or "j enters \ Vj � t"g.

Due to the independence between entry decisions and between private values, FPi(tjk;��i) =Q
j 6=i[1� �j + �jFV jk(t)]. The marginal e¤ect of �j on this conditional probability is strictly

negative for all j 6= i at �j 2 [0; 1] and t 2 [r; v]. (Recall FV jk(r) > 0 when r is binding.)

This implies h(v; k;��i) is decreasing in ��i for any k. Hence !(k;��i) is decreasing in ��i.

Continuity follows from Dominated Convergence Theorem. Q.E.D.

The rest of the proof is similar to the risk-neutral case in Levin and Smith (1994) and

omitted. �

Proof of Proposition 1. Conditional on k, entry decisions are independent across bidders,
and jointly independent from private values. Besides, private values are i.i.d. across bidders

given k. Hence, once conditional on k and the realization of A�i, (Vi; Pi) are independent

from mixed strategies adopted by potential competitors. Thus

E[(Vi � Pi)+jk] =
PN�1

a=0 E[(Vi � Pi)+jk; A�i = a] Pr(A�i = ajk). (A2)

With k and entry decisions observed from data, ��k is directly identi�ed as the probability

that a bidder enters under cost k. Consequently, Pr(A�i = ajk) can be recovered as a
binomial distribution with parameters N � 1 and ��k. Conditional on entering with cost k,
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private values are independent draws from FV jk. Let 1f:g denote the indicator function. By
Law of Iterated Expectations, E[(Vi � Pi)+jk, A�i = a] is

E[(Vi � Pi)1fVi > Pi > rgjk, A�i = a] + E[(Vi � r)1fVi > rg1fPi = rgjk, A�i = a]

=

Z �v

r

�Z �v

v

(s� v) dFV jk(s)

�
dFV jk(v)

a + FV jk(r)
a

Z �v

r

(v � r) dFV jk(v) (A3)

for all A�i = a � 1, due to independence between Vi and Pi given k. Applying integration
by parts to the �rst term on the right-hand side of (A3), we have

E[(Vi � Pi)+jA�i = a; k] =

Z �v

r

�
FV jk(v)

a � FV jk(v)
a+1
�
dv

for a � 1. Besides, E[(Vi � Pi)+j A�i = 0; k] = E[(Vi � r)+jk] =
R �v
r

�
1� FV jk(v)

�
dv.

With k observed from data, �(k) is recoverable as long as FV jk(v) is identi�ed for v � r.

Let W denote transaction prices observed in data. If no entrants bid above r, then de�ne

W < r. The symmetric IPV assumption implies for any m � 2, Pr(W < rjA = m; k) =

Pr(V (m:m) < rjk) = FV jk(r)
m and Pr(W = rjA = m; k) = mFV jk(r)

m�1[1� FV jk(r)]. Hence

for any m � 2 and t � r,

Pr(W � tjA = m; k) = Pr(W < rjm; k) + Pr(W = rjm; k) + Pr(r < W � tjm; k)
= FV jk(t)

m +mFV jk(t)
m�1[1� FV jk(t)] = FV (m�1:m)jk(t).

For any m � 2, de�ne �m(t) � tm+mtm�1(1� t) so that FV (m�1:m)jk(t) = �m(FV jk(t)). Since

�m(t) is one-to-one for any m � 2 over t 2 [0; 1], FV jk(t) is (over-)identi�ed for each t � r

from the distributions of W conditional on k and A = m. �

Proof of Corollary 1. Part (a). By Proposition 1 and the condition in part (a), �(k) = 0

for all k 2 [k; k] if bidders are risk-neutral, and �(k) > 0 (or �(k) < 0) for all k if bidders

are risk-averse (or risk-loving). Integrating out k using FK proves (a).

Part (b). Independence between K and (Vi)i2N implies that, given A�i = a, the vector of

order sorted values fV (s:a+1)ga+1s=1 is independent fromK. Thus 'a � E[(Vi�Pi)+jA�i = a; k]

does not depend on k for all a � 0 (recall Pi � r whenA�i = ?). By Law of Total Probability,
E[�(K)] is:Z k

k

�
�k +

PN�1
a=0 'a Pr(A�i = ajk)

�
dFK(k) =

PN�1
a=0 'a Pr(A�i = a)� �K . (A4)

To identify Pr(A�i = a) (or
R k
k
Pr(A�i = ajk)dFK), note that given any k and N , A�i is

binomial (N � 1; ��k) while A is binomial (N; ��k). By construction,

Pr(A�i = ajk) = N�a
N
Pr(A = ajk) + a+1

N
Pr(A = a+ 1jk) (A5)
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for all k and 0 � a � N � 1. Integrating out k on both sides of (A5) implies Pr(A�i = a) =
N�a
N
Pr(A = a) + a+1

N
Pr(A = a + 1). Since the unconditional distribution of A is directly

identi�ed, so is the distribution of A�i.20 With �K assumed known, this implies E[�(K)] is

identi�ed. �

Proof of Lemma 2. First note  �1 6= u(0) under Assumption 3. [To see this, consider the

case with z and N = 2. Then �0;z;2 0(z) + �1;z;2 
�
1 = u(0) with �0;z;2 > 0, �1;z;2 > 0 and

�0;z;2 + �1;z;2 = 1. It follows from Assumption 2 that  0(z) >  �1. This implies  
�
1 < u(0).]

By construction, the r-th row of the coe¢ cient matrix on the left-hand side of (12) and the

r-th coordinate of the coe¢ cient vector in front of  �1 on the right-hand side of (12) add up

to 1. Hence we can write (12) as

M � [( 0(z00);  0(z0);  0(z);  �2; :::;  �n�1)0 � u(0)] = ��1 � [ �1 � u(0)] . (A6)

where M denotes the (n+ 1)-by-(n+ 1) matrix of coe¢ cients on the left-hand side of (12);

and �1 denotes the (n+1)-by-1 vector of coe¢ cients in front of  
�
1 on the right-hand side of

(12).

Next, we show that the matrix of coe¢ cientsM has full-rank n+1. To do this, it su¢ ces

to show each one of the n + 1 rows cannot be a linear combination of the other n rows.

Under Assumption 3, �0;z00;n > 0 and �0;z0;n > 0, so neither of the �rst two rows is a linear

combination of the other n rows. As for the third row, it cannot be a linear combination

of the other n rows, with nonzero weights for the �rst two rows that correspond to z0 and

z00. Next, suppose it were a linear combination with nonzero weights for the last n� 2 rows
of the coe¢ cient matrix in (12) only. Then this would contradict the assumption that the

(n�1)-by-(n�1) block in the lower right corner of the coe¢ cient matrix is a lower triangular
matrix with all entries below (and including) the diagonal vector being positive.
With  �1 < u(0) and the coe¢ cient matrix M being non-singular, (A6) can be rescaled

and written as
M � (~ 0;z00 ; ~ 0;z0 ; ~ 0;z; ~ 2; ::; ~ n�1)0 = ��1 � c (A7)

where

(~ 0;z00 ;
~ 0;z0 ;

~ 0;z;
~ 2; ::;

~ n�1)
0 � c

 �1 � u(0)
[( 0(z

00);  0(z
0);  0(z);  

�
2; ::;  

�
n�1)

0 � u(0)].

The lemma then follows immediately. �

Proof of Proposition 5. Part (a). It su¢ ces to note that, under Assumption 2, E(W jZ =
z; A = a) = h(z) + E[�(a�1:a)] for all z and a � 2, and E[�(a�1:a)] is independent from z.

20In fact this provides us with a set of testable implications that can be used for testing the model

speci�cation of symmetric IPV.
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Part (b). By construction,

 0(z) � E[u(Vi � k)jz] = E[u(h(z) + �i � k)]

where the �rst expectation is taken with respect to Vi given Z = z and the second is with

respect to �i alone while z is �xed at a realized value. By Lemma 2, (~ 0;z0�~ 0;z)=(~ 0;z00�~ 0;z0)
equals [ 0(z

0)�  0(z)]=[ 0(z
00)�  0(z

0)], which in turn equals:

E[u(h(z0) + �i � k)]� E[u(h(z) + �i � k)]

E[u(h(z00) + �i � k)]� E[u(h(z0) + �i � k)]
. (A8)

By independence between Z and � in Assumption 2 and the Mean Value Theorem, (A8)

equals:
[h(z0)� h(z)]E[u0(�h(z0) + (1� �)h(z) + �i � k)]

[h(z00)� h(z0)]E[u0(�0h(z00) + (1� �0)h(z0) + �i � k)]
(A9)

for some � and �0 2 (0; 1) that depend on (z; z0) and (z0; z00) respectively. By the ordering
of h(z00), h(z0) and h(z), it must be the case that

�h(z0) + (1� �)h(z) + �i � k < �0h(z00) + (1� �0)h(z0) + �i � k

for any k, �i, � and �
0.

If bidders are risk-neutral, then

u0(�h(z0) + (1� �)h(z) + �i � k) = u0(�0h(z00) + (1� �0)h(z0) + �i � k) > 0 (A10)

for all k, �i, � and �
0, and (A9) equals [h(z0) � h(z)]=[h(z00) � h(z0)]. Otherwise if bidders

are risk-averse then the equality in (A10) is replaced by a strict inequality �>�for all k, �i,

� and �0 due to the concavity of u. It then follows from the independence between �i and

Z that
E[u0(�h(z0) + (1� �)h(z) + �i � k)]

E[u0(�0h(z00) + (1� �0)h(z0) + �i � k)]
> 1

when bidders are risk-averse. Therefore (A9) is strictly greater than [h(z0)� h(z)]=[h(z00)�
h(z0)] under risk-aversion. Symmetric arguments show the reverse strict inequality holds

when bidders are risk-loving. �

Lemma A2 Let the joint distribution of private values F(Vi)ni=1jk be a¢ liated and exchange-
able for a given number of potential bidders n and entry cost k. If !(k; (1; :; 1)) < u(0) <

!(k; (0; :; 0)) where ! is de�ned as in (1), then there exists a unique symmetric BNE in which

all bidders enter independently with probability ��k, where �
�
k solves !(k; (�

�
k; :; �

�
k)) = u(0).

Proof of Lemma A2. It su¢ ces to show FPi(tjk;��i) is decreasing in ��i given k and n. To
see this, note by the Law of Total Probability,

FPi(tjk;��i) �
Pn�1

a=0 FV (a:a)jk(t) Pr(A�i = aj��i; k),
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where FV (a:a)jk(t) denotes the distribution of the largest order statistic from a a-dimensional

random vector (Vi)i�a; and de�ne FV (0:a)jk(t) � 1 for t � 0. Under the assumptions of the

lemma, FV (a0:a0)jk �rst-order stochastically dominates FV (a:a)jk if a
0 > a. Besides, Pr(A�i =

aj��i; k) is stochastically increasing in ��i since bidders enter independently with respective
probabilities. Thus FPi(tjk;��i) is decreasing in ��i given k and n. The rest of the proof
follows from the same arguments of Lemma A1. �

Proof of Lemma 3. Let Pi � maxj2AnfigfmaxfVj; rgg. Under Assumption S, F (pijvi; si; s�i) =
F (pijs�i) and F (vijsi; s�i) = F (vijsi). Thus by the Law of Iterated Expectations,

�!i(si; k; s�i) = u(�k) Pr(Vi � rjsi) +
Z �v

r

�h(v; k; s�i)dFVijSi(vjsi)

where �h(v; k; s�i) � u(v � r � k)FPijS�i(rjs�i)+
R v
r
u(v � p � k)dFPijS�i(pjs�i)+ u(�k)[1 �

FPijS�i(vjs�i)]. By the Leibniz Rule,

@
@v
�h(v; k; s�i) = u0(v � r � k)FPijS�i(rjs�i) +

Z v

r

u0(v � p� k)dFPijS�i(pjs�i) > 0 (A11)

Thus �h is increasing in v for �xed s�i and k. By the a¢ liation of Vi and Si for all i, the

distribution F (:jsi) is stochastically increasing in si. Hence �!i(si; k; s�i) is increasing in si
given k and s�i. To show �!i(si; k; s�i) is non-decreasing in s�i given si and k, it su¢ ces to

show FPijS�i(pjs�i) is stochastically non-decreasing in s�i for all p � r, which would imply
�h(v; k; s�i) is non-decreasing in s�i for any v 2 [v; �v]. Note for any t 2 [r; �v], the event

�Pi � t�can be written as

\j 6=if"Sj < sj" [ "Sj � sj \ Vj � t"g

Under Assumption S, Pr(Pi � tjs�i) =
Q
j 6=i[FSj(sj) + Pr(Vj � t; Sj � sj)]. Also note for all

t and any s0j > sj,

FSj(sj) + Pr(Vj � t; Sj � sj) � FSj(s
0
j) + Pr(Vj � t; Sj � s0j).

Hence FPijS�i(tjs�i) is non-decreasing in s�i for all t 2 [r; �v]. �

Lemma A3 Under Assumption S, for any k such that s < s�k < s, FV (tjSi � s�k) is identi�ed

for t � r from the distribution of W conditional on any k and any number of entrants a

(with a � 2).

Proof of Lemma A3. By de�nition, for any t � r, Pr(W � tjk;A = a) is identical to the

distribution of the second-highest order statistic among a independent draws from the same

conditional distribution FV (:jSi � s�k). That is, for any t � r

Pr(W � tjk; a) =
Pa

m=a�1
�
n
m

�
FV (tjSi � s�k)

m[1� FV (tjSi � s�k)]
a�m
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Thus for all a � 2, there exists a one-to-one mapping �a so that FV (tjSj � s�k) = �a(Pr(W �
tjk; a)). (Note the mapping �a does not depend on k as (Vi; Si) is assumed to be independent
from entry costs.) That Pr(i entersjk) > 0 for k implies Pr(A � 2jk) > 0. Thus FV (tjSi � s�k)

is over-identi�ed for t � r, because the identi�cation arguments above can be applied for

any a such that Pr(A = ajk) > 0. �

Lemma A4 Under Assumption S, FV (tjSi = s�k) is identi�ed for any t � r and any k s.t.

s < s�k < s, provided Pr(W � tjk; a) and Pr(i entersjk) are observed in an open neighborhood
around k for some a � 2.

Proof of Lemma A4. Given Lemma A3, FV (tjSi � s�k) is identi�ed for any such k using

distributions of entry decisions and transaction prices. Hence

Pr(Vi � t; Si � s�k) = FV jS(tjSi � s�k) Pr(i entersjk)
= ��1a (Pr(W � tjk; a)) Pr(i entersjk) (A12)

is also identi�ed using any a such that Pr(A = ajk) > 0. We consider this joint distribution
as known for the rest of the proof. For any t � r, di¤erentiating this distribution with

respect to entry costs at k gives:

@
@K
Pr(Vi � t; Si � s�K)jK=k

= � @
@K
Pr(Vi � t; Si � s�K)jK=k = �

�
@
@S
Pr(Vi � t; Si � S)jS=s�k

� �ds�K
dK
jK=k

�
= �FV (tjS = s�k)fS(s

�
k)
�
ds�K
dK
jK=k

�
= �FV (tjSi = s�k)

�
dFS(s

�
K)

dK
jK=k

�
,

where we have used the independence between (Vi; Si) and entry costs. [Gentry and Li (2013)

used this derivative-based argument in their derivation for bounds on value distributions in

auction models with endogenous entry.] Hence

FV (tjSi = s�k) = �
@
@K
Pr(Vi � t; i entersjK)jK=k

d
dK
Pr(i does not enter jK)jK=k

because FS(s�k) = Pr(i does not enter jk) in the pure-strategy BNE and d
dK
FS(s

�
K) =

d
dK
Pr(i

does not enter jK). The denominator is non-zero under the assumption of the proposition.
Hence FV (tjSi = s�k) is identi�ed for t � r as long as Pr(W � tjk; a) and Pr(i entersjk) are
observed in an open neighborhood around k for some a � 2. �

Proof of Proposition 7. Because (Vi; Si) are independent across bidders, the joint dis-

tribution of (Vi; Pi) conditional on A�i = fj 6= i : Sj � s�kg and Si = s�k, evaluated at

(Pi; Vi) = (p; v), are factored as:

FPijA�i=fj 6=i:Sj�s�kg(p)FVijSi=s�k(v). (A13)
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To identify ��, it su¢ ces to recover the two conditional distributions in (A13) at all p and

v � r. Because (Vi; Si) are identically distributed across i, for any t � r,

Pr(Pi � tjA�i = fj 6= i : Sj � s�kg)
=

PN�1
m=0

�
FV jS�s�k (t)

�m �N�1
m

�
FS(s

�
k)
N�m�1[1� FS(s

�
k)]

m (A14)

where N is the number of potential bidders (including i). The subscript i is suppressed to

simplify notations. By construction, FS(s�k) = Pr(i enters j k) is identi�ed. Let a denote
the realized number of entrants. First, under Assumption S, FV jS�s�k (t) is over-identi�ed

for t � r from the distribution of prices W under k and any a � 2. (See Lemma A3 of

Appendix A for details.) Next, Lemma A4 in Appendix A shows that, under Assumption S,

FV (tjSi = s�k) is identi�ed for any t � r provided that for some a � 2, Pr(W � tj k; a) and
Pr(i entersj k) are observed for all k0 in an open neighborhood around k. This is because
the independence between private information and entry costs implies @

@K
Pr(Vi � t and i

entersjK)jK=k = �FV (tjS = s�k)
h
dFS

�
s�~k

�
=dKjK=k

i
. Thus the conditional distributions in

(A13), as well as ��(s�k), are identi�ed. �

B Limiting Distribution of Test Statistic

First o¤, we show E[(Vi � Pi)+jA�i = a] =
R �v
r
FV (v)

a[1 � FV (v)]dv under Assumption

R. With a slight abuse of notation, for any generic integrable function �, we use
R �v
� �(s)ds

and
R �
r
�(s)ds as shorthands for the improper integrals limv"�v

R v
� �(s)ds and limv#r

R �
v
�(s)ds

respectively. By de�nition, E[(Vi � Pi)+jA�i = a] is

E[1fPi < �vg(Vi � Pi)+jA�i = a] + E[1fPi = �vg � 0jA�i = a]

= E[1fr < Pi < �vg(Vi � Pi)1fVi > PigjA�i = a] + E[(Vi � Pi)1fVi > Pi = rgjA�i = a]

=

Z �v

r

�(p)dFPija(p) + FV jk(r)
a

�Z �v

r

(v � r) dFV (v) + (�v � r)q0

�
where q0 � 1 � limv"�v FV (v) and �(p) � (�v � p)q0 +

R �v
p
(v � p)dFV (v). Thus we can write

E[(Vi � Pi)+jA�i = a] as:Z �v

r

�
(�v � p)q0 +

Z �v

p

(v � p)dFV (v)

�
dFPija(p) + FV (r)

a

�Z �v

r

(v � r) dFV (v) + (�v � r)q0

�
= q0

�Z �v

r

(�v � p)dFPija(p)

�
+

Z �v

r

�Z �v

p

(v � p)dFV (v)

�
dFPija(p) (B15)

+FV (r)
a

�Z �v

r

(v � r) dFV (v) + (�v � r)q0

�
.

Using integration by parts, the �rst term on the R.H.S. of (B15) is

q0

�
0� (�v � r)FPija(r) +

Z �v

r

FPija(p)dp

�
. (B16)
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By an application of the Bounded Covergence Theorem and integration by parts, the second

term on the R.H.S. of (B15) is:

lim
s!r+

lim
v0!�v�

lim
v00!�v�

Z v0

s

"Z v00

p

(v � p)dFV (v)

#
dFPija(p)

= lim
v0!�v�

lim
v00!�v�

"Z v00

v0
(v � v0)dFV (v)

#
FPija(v

0)� lim
s!r+

lim
v00!�v�

"Z v00

s

(v � s)dFV (v)

#
FPija(s)

+ lim
s!r+

lim
v0!�v�

lim
v00!�v�

Z v0

s

FPija(p)[FV (v
00)� FV (p)]dp (B17)

where the second term on the R.H.S. is 0 and the derivation of the third term follows from

the Leibniz Rule and

d

dp

 Z v00

p

(v � p)dFV (v)

!
= 0� 0 +

Z v00

p

(�1)dFV (v) = �[FV (v00)� FV (p)].

The �rst term on the R.H.S. of (B17) is 0 while the second equals
hR �v
r
(v � r)dFV (v)

i
FPija(r).

By another application of the Bounded Convergence Theorem, the third term of (B17) is:

lim
s!r+

lim
v0!�v�

Z v0

s

[FV (p)]
a [FV (p)� lim

v00!�v
FV (v

00)]dp =

Z �v

r

[FV (p)]
a [1� q0 � FV (p)]dp. (B18)

Substituting (B16)-(B18) into (B15), we get:

E[(Vi � Pi)+jA�i = a] =

Z �v

r

FV (v)
a[1� FV (v)]dv.

We now introduce some notations used for deriving the limiting distribution of the test

statistic in Section 4.2. Let P0 denote the true probability measure for (W;A) in data-
generating process. Let PT denote the corresponding empirical measure. For any signed
measure Q, let Qf �

R
f dQ (e.g. P01fW � sg = Pr(W � s)). Let FW jm denote the

distribution of W given A = m, and F ~W jm denote fFW jm(t) : t 2 [r; �v)g. Let F̂ ~W jm;T denote

estimators for F ~W jm as de�ned in Section 4.2. Let �̂T;m � PT1fA = mg, �̂T � (�̂T;m)
N
m=0

and � � (�m)Nm=0 where �m � P01fA = mg. By de�nition, FW jm(s) � Pr(W � sjA = m) =

��1m P01fW � s, A = mg. Recall �̂T � (�̂T;a)
N�1
a=0 where �̂T;a � 1

T

P
t�T [

N�a
N
1fAt = ag+

a+1
N
1fAt = a+ 1g], and � � (�a)N�1a=0 where �a � Pr(A�i = a).

Recall the distribution FW;A in the data-generating process (DGP) takes the form of a

mixture distribution: FW;A =
R
FW;AjkdFK . First o¤, we characterize in Lemma B5 below the

joint asymptotic property of three building blocks of our test statistic: F̂ ~W jm;T for 2 � m �
N , �̂T and

1
T

P
t�T

~Kt. Introduction of some notations in the characterization are in order.

For 2 � m � N , let fF ~W jm : 2 � m � Ng denote N � 1 zero-mean Gaussian Processes, each
of which is indexed by [r; �v). For any m � 2, covariance between F ~W;m(s) and F ~W;m(v) is:

~�s;v;m �
"
FW jm(s)

�
1� FW jm(s)

�
FW jm(s)

�
1� FW jm(v)

�
FW jm(s)

�
1� FW jm(v)

�
FW jm(v)

�
1� FW jm(v)

� #
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for any s < v on [r; �v). Let [N 0
�;N�]

0 denote a multivariate normal random vector in RN+1,
where N� is a N -vector with variance of the a-th coordinate (denoted N�;a) being �a(1� �a)
and covariance between the a-th and b-th coordinates being b(N�b)

N2 �b � �a�b if b = a + 1

and ��a�b for b 6= a + 1. The variance of the scalar variable N� is V ar(K) + V ar(�), and

its covariance with N�;a is E[1fA�i = agK] � �a�K . Covariance between the processes

fF ~W jm : 2 � m � Ng and [N 0
�;N�]

0 satis�es: (i) Cov(F ~W jm(s);F ~W jm0(s0)) = 0 for all m 6= m0

and s; s0 � r; (ii) Cov(F ~W jm(s);N�;a) = 0 for all s and 2 � m � N , 0 � a � N � 1; (iii)
Cov(F ~W;m(s);N�) =

1p
�(m)

(E[1fW � s; A = mgK]� FW jm(s)E[1fA = mgK]); and (iv)
Cov(N�;a;N�) = E[1fA�i = agK]� �a�K .

21

Lemma B5 Suppose r is binding and FV is continuously distributed with positive densities
over [r; �v). Suppose Assumption R holds; and 0 < ��k < 1 for all k 2 [k; k]. Then

p
T

0BBBBBB@
F̂ ~W j2;T � F ~W j2

...

F̂ ~W jN;T � F ~W jN

�̂T � �
1
T

P
t�T

~Kt � �K

1CCCCCCA 
0BBBBBBB@

1p
�2
F ~W;2

...
1p
�N
F ~W;N

N�

N�

1CCCCCCCA
. (B19)

Proof of Lemma B5.. De�ne three classes of functions with domain over the support of

(W;A):

FW � f1fW � sg: s 2 [r; �v)g;
FA � f1fA = mg : 0 � m � Ng; and
F� � fN�a

N
1fAt = ag+ a+1

N
1fAt = a+ 1g: 0 � a � N � 1g.

Let FW;A � ffW ^ fA : fW 2 FW ; fA 2 FAg � f1fW � s, A = mg: s 2 [r; �v), 0 � m � Ng
denote a class formed by taking the pair-wise in�mum of FW and FA. Note FW and FA are
both Donsker Classes. By Theorem 2.10.6 in van der Vaart and Wellner (1996), both F�
and FW;A are Donsker classes, and consequently F � FW;A[ F� is Donsker. For a set S, let
B(S) denote the space of bounded, real-valued functions with domain S, equipped with the
sup-norm. By Theorem 2.1 (and the semi-metric de�ned on page 16) in Kosorok (2008), the

empirical process GT �
p
T (PT � P0) indexed by F converges weakly to a tight zero-mean

Gaussian Process G in B(F), with covariance P0ff 0 � P0fP0f 0 for any f; f 0 2 F .
Let � be a mapping from B([r; �v))
 (0; 1)N�1
 (0; 1)N to B([r; �v)
 f2; :; N�1g)
 (0; 1)N

such that �(F; �; �) evaluated at any s 2 [r; �v); m 2 f2; :; N � 1g and a 2 f0; :; N � 1g is:

�(F; �; �)(s;m; a) �
�
F (s;m)
�m

, �a
�
.

21It is worth noting that uncorrelation in (ii) holds for all a;m including m = a� 1; a; a+ 1. This is due
to the assumption that � (error in ~K) is orthogonal to (W;A).
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With a slight abuse of notation, we also write �(F; �; �)(s;m; a) as �(F (s;m); �m; �a) below.

Under the assumption of Lemma B5, �a > 0 for 0 � a � N � 1. Thus � is Hadamard-
di¤erentiable at the true (fFW;m : 2 � m � Ng; �; �) in data-generating process tangentially
to the domain of �, with the derivative at the truth being:

�0(h1; h2; h3)(s;m; a) =
�

1
�m
h1(s;m)� P01fW�s;A=mg

�2m
h2(m),h3(a)

�
for h1 2 B([r; �v)), h2 2 (0; 1)N�1 and h3 2 (0; 1)N . An application of the Functional Delta
Method (Theorem 2.8 in Kosorok (2008)) applies to characterize the weak convergence in

(B19). The covariance function is derived by applying a �nite-dimensional, multivariate

delta method to the limiting process evaluated at �nite sets of elements from the index

set [r; �v)
 f2; :; Ng 
 f0; :; N � 1g. Mutual independence between the zero-mean Gaussian
processes fF ~W;mgNm=2 and their joint independence from N� follow from an application of the

delta method to random vectors. Covariance betweenN� and Gaussian processes fF ~W;mgNm=2
and N� also follows from an application of the multivariate delta method to F̂ ~W jm;T (s); �̂T;a
and sample mean of ~Kt for any s;m; a. �

The next step is to characterize the joint limiting behavior of F̂V;T and �̂T . Let F̂V;m;T (s) �
��1m (F̂W jm;T (s)). To simplify notations, let F ~V denote fFV (t) : t 2 [r; �v)g, and similarly

let F̂ ~V ;m;T and F̂ ~V ;T denote the section of F̂V;m;T and F̂V;T over [r; �v). For each m, let

�m(t) � ��1m (t) for t 2 [0; 1). For any s; v 2 [r; �v) and m � 2, let D0;m denote a 2-by-

2 diagonal matrix with diagonal entries �0m
�
FW jm(s)

�
and �0m

�
FW jm(v)

�
. Let �s;v be a

(2N � 2)-by-(2N � 2) block-diagonal matrix such that the (m� 1)-th diagonal block is the
2-by-2 matrix

D0;m
~�s;v;mD0

0;m

�m
. De�ne:

D1
2-by-(2N�2)

�
"

1
N�1 0 1

N�1 0 � � � 1
N�1 0

0 1
N�1 0 1

N�1 � � � 0 1
N�1

#
.

For any s � r, let �s denote the variance of the limiting distribution of the random vector

GT (1fW � s; A = 2g; 1fA = 2g; :::; 1fW � s; A = Ng; 1fA = Ng; ~K) in R2N�1.De�ne a
2-by-(2N � 1) matrix D2 as:

"
1

N�1 � � � 1
N�1 0

0 � � � 0 1

#
D�

266664
1
�2

�ps2
�2

� � � 0 0 0
. . .

0 0 � � � 1
�N

�psN
�N

0

0 0 � � � 0 0 1

377775
N -by-(2N�1)

whereD� is aN -by-N diagonal matrix with diagonal matrix being [�02(FW;2(s)); :; �
0
N(FW;N(s)); 1]

and psm � P01fW � s; A = mg for s � r
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Lemma B6 Suppose F ~V is continuously distributed with positive densities over [r; �v). Under
the conditions for Lemma B5,

p
T
�
F̂ ~V ;T � F ~V

�
 GV , (B20)

where GV is a zero-mean Gaussian Process indexed by [r; �v) and is independent from N�. The

covariance kernel for GV is (GV (s),GV (v)) = D1�s;vD
0
1 for any s; v 2 [r; �v); and (GV (s),N�)

is bivariate normal with covariance D2�sD
0
2 for any s 2 [r; �v).

Proof of Lemma B6 follows from the di¤erentiability of � and an application of the

multi-variate delta method, and is omitted here for brevity. Next, we prove Proposition 3.

Recall S[r;�v) denotes the set of positive, bounded and integrable Cadlag functions over [r; �v).
Equipped with a sup-norm, S[r;�v) is normed linear spaces with a non-degenerate interior.
Proof of Proposition 3.. It follows from Lemma 20.10 in van der Vaart (1998) that the

mapping ' as de�ned in Section 4.2 is Hadamard di¤erentiable at F ~V tangentially to S[r;�v),
with the derivative D';F ~V

: S[r;�v) ! RN+ being

D';F ~V
(h)(a) �

Z �v

r

�
a[F ~V (s)]

a�1h(s)� (a+ 1)[F ~V (s)]ah(s)
	
ds

for any h 2 S[r;�v) and a � 1; and D';F ~V
(h)(0) � �

R �v
r
h(s)ds. The Jacobian of � with respect

to its components ('; �; �K) at the their true DGP values as:�
�0; :; �N�1; '0; :; 'N�1;�1

�
� [�; ';�1].

Since ' is Hadamard di¤erentiable at F ~V tangentially to S[r;�v), it follows from Lemma B6

and the Functional Delta Method (Theorem 2.8 in Kosorok (2008)) that

p
T

0B@ '̂T � '

�̂T � �
1
T

P
t
~Kt � �K

1CA 
0B@ D';F ~V

(GV )
N�

N�

1CA (B21)

where GV is a zero-mean Gaussian Process de�ned in Lemma B6 and is independent from
N�. The covariance between N� and N� is given in Lemma B5, while the covariance between

GV and N� is given in Lemma B6. An application of the multivariate delta method shows

under the assumptions of Lemma B6,
p
T (�̂T � � 0) N� � �0D';F ~V

(GV ) + '0N� �N�. To

see that the limiting distribution N� is univariate normal with zero-mean, note the Gaussian

process GV is Borel-measurable and tight (see Example 1.7.3. in van der Vaart and Wellner
(1996)) and that by construction the Hadamard derivative D';F ~V

is a linear mapping de�ned

over S[r;�v). It follows from Lemma 3.9.8. of van der Vaart and Wellner (1996) that N� is

univariate normal with zero mean. �
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C Bootstrap Inference: Consistency and Asymptotic

Validity

Let c1��=2 denote the actual 1��=2 quantile of the limiting distribution of
p
T (�̂T � � 0)

in the data generating process. We use the following steps to estimate c1��=2 using bootstrap

methods.

Step 1 : Calculate �̂T using the original estimation sample.

Step 2 : Draw a bootstrap sample with size T from the original sample with replacement.

Estimate � 0 using this bootstrap sample and denote the estimate by �̂T;1.

Step 3 : Repeat Step 2 for B times and denote the bootstrap estimates by f�̂T;bgb�B. Find
the 1�� quantile of the empirical distribution of the bootstrap estimates f

p
T j�̂T;b��̂T jgb�B.

Denote it by ĉ1��=2;T .

Let GT (:;F ) and G1(:;F ) denote respectively the �nite sample distribution and the

limiting distribution of
p
T (�̂T � � 0) when the actual joint distribution of (W;A; ~K) in data-

generating process is given by a generic permissible distribution F . Let FT and F0 denote the

empirical and the true distribution of (W;A; ~K) in the data-generating process respectively.

Lemma C7 (Bootstrap Consistency) Suppose Assumption R holds. Then

lim
T!1

Pr

�
sup
�
jGT (� ;FT )�G1(� ; F0)j

�
= 0

regardless of bidders�risk attitudes.

Proof of Lemma C7.. By Proposition 3,
p
T (�̂T � � 0) converges weakly to a zero-mean

normal distribution whose variance depends on F0. Across auctions in data, (Wt; At; ~Kt) are

i.i.d. draws from F0, and by the Uniform Law of Large Numbers, the empirical distribution

of (Wt; At; ~Kt) converges in probability to its population counterpart uniformly over the joint

support. Also by Proposition 3, for any permissible joint distribution of (W;A; ~K) in data-

generating process, the limiting distribution of
p
T (�̂T � � 0) is continuous over R. Next,

we will show that for any sequence of permissible distributions HT that converge to H0 in

sup-norm as T ! +1, the �nite sample distribution of
p
T (�̂T � � 0) under the DGP FT

(denoted by GT (:;HT )) converges to G1(:;H0) pointwise on the real line. Note for any s 2 R
and pair of permissible distributions H1; H2,

jGT (s;H1)�G1(s;H2)j � jGT (s;H1)�G1(s;H1)j+ jG1(s;H1)�G1(s;H2)j . (C22)

For any s, the �rst term on the right-hand side of (C22) converges to 0 as T ! +1
by weak convergence of the test statistic under H1. Let k:k1 denote the sup norm. It

follows from the continuity of the limiting distribution in Proposition 3 that, for any s 2 R
and " > 0, there exists � > 0 (possibly depending on s; ") such that for any H1; H2 with
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kH1 �H2k1 � �, the second term is smaller than " for T large enough. Now consider anyHT

converging toH0 in sup-norm as T ! +1. The observation above implies that for any " > 0,
jGT (s;HT )�G1(s;H0)j � " for T large enough (or equivalently for kHT �H0k1 small

enough). The lemma then follows from Beran and Ducharme (1991) (or Theorem 2.1 in

Horowitz (2000)). �

To simplify notations, we suppress dependence of N� on joint distribution of (W;A; ~K)

in DGP for the rest of the proof. Since the limiting distribution of
p
T (�̂T �� 0) is absolutely

continuous with positive densities almost surely over R, an immediate corollary of the pre-
ceding lemmas is that our bootstrap estimator ĉ1��=2;T converges in probability to the actual

1 � �=2 quantile of the limiting distribution (c1��=2). Such consistency holds regardless of

bidders�risk attitudes in DGP.

Proof of Proposition 4.. Suppose � 0 = c > 0 in DGP. By de�nition, Pr
�p

T �̂T � ĉ1��=2;T j� 0 = c
�
=

Pr
�p

T (�̂T � � 0)� ĉ1��=2;T � �
p
T� 0j� 0 = c

�
. It follows from Proposition 3 that

p
T (�̂T �

� 0) converges in distribution to a zero-mean, univariate normal N� . For any " 2 (0; 1), let
c" < +1 denote the "-quantile of N� . Since ĉ1��=2;T

p! c1��=2 and � 0 > 0 under HA, we

have limT!+1 Pr(ĉ1��=2;T < c" +
p
T� 0j� 0 = c)! 1 for any " 2 (0; 1). Hence for any c > 0,

Pr
�p

T �̂T � ĉ1��=2;T j� 0 = c
�
� Pr

�p
T �̂T � ĉ1��=2;T and ĉ1��=2;T < c" +

p
T� 0j� 0 = c

�
> Pr

�p
T (�̂T � � 0) � c" and ĉ1��=2;T < c" +

p
T� 0j� 0 = c

�
! lim

T!1
Pr
�p

T (�̂T � � 0) � c"j� 0 = c
�
= 1� "

as T ! +1. This proves the consistency of our test under �xed alternatives of risk-averse
bidders (HA : � 0 = c with c > 0). Symmetric arguments show

lim
T!+1

Pr
�p

T �̂T � �ĉ1��=2;T j� 0 = c
�
= 1

for any c < 0 (bidders are risk-loving). If bidders are risk-neutral with � 0 = 0,

Pr
�
�ĉ1��=2;T �

p
T �̂T � ĉ1��=2;T j� 0 = 0

�
= Pr

�p
T (�̂T � � 0) + ĉ1��=2;T � 0 and

p
T (�̂T � � 0)� ĉ1��=2;T � 0j� 0 = 0

�
�! Pr(�c1��=2 � N� � c1��=2) = 1� � as T ! +1,

where the second equality follows from that
p
T (�̂T � � 0)

d! N� and ĉ1��=2;T
p! c1��=2

(1��=2 quantile of the zero-mean normal variable N� ) and an application of the Continuous

Mapping Theorem. Q.E.D.
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Figure 1 (a): Test Performance (N = 4; T = 1500)

Notes: Horizontal axis: Integrated Measure of Risk Aversion. Solid line: proportion

of S = 250 simulated samples in which our test fails to reject the null (risk-neutrality).

Dashed line: proportion that the null is rejected in favor of HA (risk-aversion). Dotted line:

proportion that the null is rejected in favor of HL (risk-loving).
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Figure 1 (b): Test Performance (N = 4; T = 3000)
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Figure 1 (c): Test Performance (N = 5; T = 1500)
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Figure 1 (d): Test Performance (N = 5; T = 3000)
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