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1 Introduction

This paper studies how risk prices for shocks depend on their dynamic effects on the economy.

Theoretical asset pricing models have strong implications for how short- and long-term shocks

should be priced, and we empirically estimate how the power of a shock at different frequencies

determines its risk price.

Affi ne models, which model innovations to the pricing kernel as being linearly (or log-linearly)

related to innovations in economic state variables, comprise the backbone of both theoretical and

empirical asset pricing. This paper shows that many widely used affi ne frameworks can be written,

estimated, and interpreted in the frequency domain. The frequency-domain decompositions give a

clear and compact characterization of the precise manner in which the dynamics of the economy

affect risk prices and provide sharp tests of competing asset pricing models. The decomposition

is also economically intuitive in the sense that it provides a direct link between priced shocks and

their dynamic effects on the economy.

Economic dynamics are a key input to many asset pricing models. Under Epstein—Zin (1989)

preferences, the risk premium of an asset depends on the covariance of its return with current

and expected future consumption growth. For the intertemporal CAPM (Merton, 1973; Campbell,

1993), risk premia depend on covariances with shocks to both current market returns and also

expected future returns. And in affi ne term structure models, risk premia can be expressed as a

function of the covariance with innovations to current and future short-term interest rates.

In dynamic asset pricing models, then, the price of risk for a shock depends on how it affects

the state of the economy in the current period and in the future. Under the standard time-domain

representation, the dynamic response of the economy to a shock is summarized by an impulse

response function (IRF). Long-run shocks to consumption growth that have large risk prices under

Epstein—Zin preferences, for example, those studied in Bansal and Yaron (2004), have IRFs that

decay slowly.

In this paper we propose and derive a new frequency-domain representation of risk prices. First,

we map the IRF of a shock into the frequency domain. A shock that has strong long-run effects

has high power at low frequencies, whereas shocks that dissipate rapidly have more power at high

frequencies. We refer to the frequency-domain version of the IRF as the impulse transfer function

(ITF).

Our key result is that the price of risk for a shock depends on the integral of the impulse transfer

function over the set of all frequencies ω, weighted by a function Z(ω). The weighting function, Z,

determines how shocks are priced depending on how they affect the economy at different frequencies.

In other words, Z(ω) represents the price of exposure to shocks with frequency ω: it is a frequency-

specific price of risk. In this paper we derive Z(ω) in closed form for various theoretical models and
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estimate it empirically in equity markets.

The advantage of studying risk prices in the frequency domain is that Z gives a compact and

intuitive measure of how different shocks affect the pricing kernel. Importantly, we obtain a sep-

aration result: the total price of risk for a shock depends on the interaction of two objects: the

impulse transfer function of the shock, which depends on the dynamics of the economy but not

on the agent’s preferences, and the Z function, which only depends on the preferences. We can

therefore study the frequency-specific risk prices by only looking at the agents’utility functions. For

example, under power utility, the only thing that determines the price of risk for a shock is how it

affects consumption today. So Z is perfectly flat across frequencies because cycles of all frequencies

receive identical weight in the pricing kernel. Under Epstein—Zin preferences, long-run risks matter,

and Z places much more weight at low than high frequencies; in fact, the weight is focused only

at the very lowest frequencies. Conversely, for an agent with internal habit formation most of the

weight of Z is located at high frequencies.

The spectral representation we derive is useful for two main reasons. First, it gives us new

insights about the importance of the dynamics of shocks for asset prices in different models. For

example, from the spectral decomposition we learn that Epstein—Zin preferences imply that the

majority of the pricing weight lies extraordinarily close to frequency zero: under a standard cali-

bration of the model, more than half of the mass of the spectral weighting function lies on cycles

longer than 230 years. Conversely, for an agent with internal habit formation most of the weight of

Z is located at high frequencies. The decomposition also tells us which aspects of the consumption

process one needs to focus on most when calibrating models: for example, under Epstein—Zin pref-

erences, we find that the key statistics are the unconditional standard deviation and the long-run

standard deviation of consumption growth; other aspects of consumption’s dynamic behavior are

unimportant.1

The second key reason the spectral representation is useful is that it enables more general and

powerful estimation of dynamic asset pricing models. Our theoretical analysis shows that Epstein—

Zin preferences put weight on mainly the lowest-frequency effects of shocks on consumption growth.

But low frequencies are precisely where we have the least estimation power empirically. Our spectral

decomposition makes it simple to test a more general model in which agents still care about “long-

run” shocks, but where the long-run is defined as say, 10 or more years in the future, rather

than 200 years. Economically, given the range of people’s lifespans, it makes sense to test for the

importance of fluctuations that last for decades but decay before reaching one or two hundred years.

Furthermore, we obtain much more precise estimates of the weighting functions when considering

this alternative definition of “long-run”because estimation power rises substantially as we move

1See Dew-Becker (2013) for a more extensive analysis of the issues around calibrating the long-run standard
deviation.
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away from the lowest frequencies. We are thus able to retain the economic intuition from tightly

theorized models that long-term consumption dynamics may be important for asset pricing, but at

the same time estimate a model in a more reduced form that is superior statistically in the sense

that risk prices are more tightly estimated, as well as economically more plausible.

After deriving the frequency decomposition in section 2 and characterizing weighting functions

theoretically for various consumption-based models in section 3, we proceed in section 4 to estimate

them using the cross-section of equity prices. Since we are interested in distinguishing among

theoretical models that have very stark implications for the pricing of different frequencies, we

parametrize Z to be able to capture separately the price of high-frequency and low-frequency shocks,

letting the data speak on which are considered the more important frequencies by investors. We

do this in two ways: by restricting the weighting function Z to be the one literally implied by

the various models, and, second, by focusing on the pricing of economically interesting groups of

frequencies —frequencies related to the business cycle, trends lasting longer than the business cycle,

and fluctuations at frequencies shorter than business cycles.

The estimation shows strong support for long-run risk models, but only when we define the long-

run based on the frequency-domain interpretation of shocks with cycles longer than the business

cycle. When we estimate the parameters of Epstein—Zin preferences structurally, most of them are

insignificant or barely significant, which would normally be interpreted as a rejection of the model:

neither short- nor long-run consumption growth seems to price equities. But that rejection would

be a mistake. When we allow “long-run”to simply mean cycles longer than the business cycle, we

find that covariance with long-run shocks is a statistically and economically significant determinant

of average portfolio returns.

Section 5 extends the analysis to returns-based models, in which agents price equity portfolios

based on their covariance with short- and long-run shocks to equity market returns. We find

(consistent with Campbell and Vuolteenaho, 2004) that it is low-frequency shocks to equity market

returns that drive the pricing kernel. In section 6 we show that the methodology easily generalizes to

pricing kernels that depend on innovations of multiple variables. For example, stochastic volatility

models (as in Campbell et al., 2013) can imply that agents care about long-run innovations in

returns and volatility.

There is very little extant analysis of preference-based asset pricing in the frequency domain.

Otrok, Ravikumar, and Whiteman (2002) and Yu (2012) are two recent examples. While these

papers also present spectral decompositions of prices and consumption fluctuations, the object of

the decomposition is different from ours. Instead of studying how shocks at different frequencies are

priced by an agent, they ask how the price of a consumption claim depends on the spectral density

of consumption and its relation with returns. Since the price of the asset reflects a combination of
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preferences and dynamics, it is impossible to evaluate the relative importance of the two beyond very

specific cases (in other words, no separation holds in their analysis). Relatedly, unlike this paper,

they do not obtain analytic relationships between the spectrum and asset prices; their results are

all generated numerically.2

Our paper is closely related to a vast empirical literature studying the importance of dynamics

for asset pricing in the time domain. Empirically, a number of papers study the relationship between

asset returns and consumption growth at long horizons as methods of testing the implications of

Epstein—Zin or power utility preferences.3 These papers test the asset pricing implications of specific

models (power utility, Epstein—Zin) about the pricing of consumption risk at different horizons.

By working in the frequency domain, we can allow for a much more general specification where

shocks to consumption at different horizons may have different risk prices, for example a modified

interpretation of “long-run risks”in which the important shocks are those with cycles longer than

the business cycle.

Finally, our work is related to other important decompositions of the stochastic discount factor

(SDF), most notably Alvarez and Jermann (2005), Hansen and Scheinkman (2009) and Borovicka

et al. (2011). These decompositions study the dynamic effects of shocks for the evolution of

the stochastic discount factor over time. Instead, we focus on decomposing how the one-period

innovation in the stochastic discount factor depends on the way consumption responds dynamically

to the shocks. In other words, these papers analyze the impulse response function of the SDF,

while we study the impulse response function of consumption (and how it affects the one-period

innovation in the SDF). Relative to these alternative decompositions, our approach has advantages

and disadvantages. The disadvantage is that we cannot study the theoretical valuation of claims

to consumption many periods from now (the focus for example of Hansen, Heaton, and Li, 2008,

and Lettau and Wachter, 2007). The reason is that these depend on the evolution of the interest

rate, which in turn depends on how the mean of the SDF will evolve over time. Naturally, this

does not leave us unable to price assets; one-period innovations in the SDF are enough to study the

cross-section of returns. The main advantage of our approach is that by focusing on the spectral

decomposition of the one-period innovation, we are able to separately study the dynamics of the

shocks from the preferences about the dynamics, a separation result that is not possible when

studying the evolution of the whole SDF. As the next sections will show, this separation result

2Another related paper, Ortu et al. (2013), studies a different decomposition of the consumption growth process,
based on components that operate at different time scales. That paper shows by numerical calibration that the more
persistent components of the consumption growth process (as estimated from the data) could be responsible for the
high equity premium in a standard Epstein—Zin model.

3For example, Parker and Julliard, 2005 ; Malloy, Moskowitz, and Vissing-Jorgensen, 2009; Bansal, Dittmar, and
Lundblad, 2005; Yu, 2012; Daniel and Marshall, 1997; Binsbergen, Brandt and Koijen, 2012; Hansen, Heaton, and
Li (2008).
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will be crucial both for understanding the implications of different models for dynamics, and for

allowing us to extend and generalize the models in an economically important direction.

2 Spectral decomposition and the weighting function

We derive our spectral decomposition of the pricing kernel under two main assumptions. First,

the log pricing kernel, mt, depends on the current and future values of a scalar state variable,

xt (perhaps consumption growth or market returns). Second, the dynamics of the economy are

described by a vector moving average process Xt which includes xt.

Assumption 1: Structure of the SDF.
Denote the log pricing kernel (or stochastic discount factor, SDF) mt+1 = log(Mt+1).4 We

assume that mt depends on current and future values of some state variable in the economy xt:

mt+1 = F (It)−∆Et+1

∞∑
k=0

zkxt+1+k (1)

where xt is the priced variable, F (It) is some unspecified function of the time-t information set

It, ∆Et+1 ≡ Et+1 − Et denotes the innovation in expectations, and Et is the expectation opera-

tor conditional on information available on date t, It. This specification is suffi ciently flexible to

match standard empirical applications of power utility, habit formation, Epstein—Zin preferences,

the CAPM and the ICAPM (in some cases under log-linearization). Equation (1) implies that risk

prices are constant, but we relax that assumption in section 6.

Assumption 2: Dynamics of the economy.
xt is driven by an N -dimensional vector moving average process

xt = B1Xt (2)

Xt = Γ (L) εt (3)

where Xt has dimension N × 1, L is the lag operator, Γ (L) is an N ×N matrix lag polynomial,

Γ (L) =

∞∑
k=0

ΓkL
k (4)

and εt is an N × 1 vector of (potentially correlated) martingale difference sequences. We refer

to εt as the fundamental shocks to the economy. We make no assumptions about the conditional

4We do not take a position on whether mt is the pricing kernel for all markets or whether there is some sort of
market segmentation. We also do not assume at this point that there is a representative investor.
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distribution of εt except that it has a mean of zero. Throughout the paper Bj denotes a conformable

(here, 1×N) vector equal to 1 in element j and zero elsewhere. We assume without loss of generality
that xt is the first element of Xt. Furthermore, we require Γ (L) to have properties suffi cient to

ensure that xt is covariance stationary with a finite and continuous spectrum.

Putting together the assumptions about mt+1 with those about the dynamics of the economy,

we can write the innovations to the pricing kernel as function of the impulse-response functions

(IRFs) of xt to each of the fundamental shocks. In particular, for the jth fundamental shock, εj,t,

the IRF of xt is the set of gj,k for all horizons k defined as:

gj,k ≡
{
B1ΓkB

′
j for k ≥ 0

0 otherwise
(5)

We can then rewrite the innovation to the log SDF as:

∆Et+1mt+1 = −
∑
j

( ∞∑
k=0

zk gj,k

)
εj,t+1 (6)

and we refer to (
∑∞

k=0 zkgj,k) as the price of risk for shock j. In this representation, the effect of a

fundamental shock εj,t+1 on the pricing kernel is decomposed by horizon: for every horizon k, the

effect of the shock on mt+1 depends on the response of x at that horizon (captured by gj,k) and on

the horizon-specific price of risk zk.

Our main result is a spectral decomposition in which the price of risk of a shock depends on the

response of x to that shock at each frequency ω and on a frequency-specific price of risk, Z(ω).

Result 1. Under Assumptions 1 and 2, we can write the innovations to the log SDF as,

∆Et+1mt+1 = −
∑
j

(
1

2π

∫ π

−π
Z (ω)Gj (ω) dω

)
εj,t+1 (7)

where Z (ω) is a weighting function depending on the risk prices {zk} and Gj (ω) measures the

dynamic effects of εj,t on x in the frequency domain,

Z(ω) ≡ z0 + 2

∞∑
k=1

zk cos (ωk) (8)

Gj(ω) ≡
∞∑
k=0

cos (ωk) gj,k (9)
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Equivalently, the price of risk for a shock εj can be written as

∞∑
k=0

zkgj,k =
1

2π

∫ π

−π
Z (ω)Gj (ω) dω (10)

Derivation and discussion
For each shock εj,t, the set of coeffi cients {gj,k} is the impulse-response function of xt at different

horizons k. Moving into the frequency domain, the first step is to decompose the effects of each

shock εj,t on the future values of xt into cycles of different frequencies. To do this, we use the

discrete Fourier transform to define

G̃j (ω) ≡
∞∑
k=0

e−iωkgj,k (11)

If εj,t has very long-lasting effects on x, then most of the mass of G̃j (ω) will lie at low frequencies,

while if εj,t induces mainly transitory dynamics in x, then G̃j (ω) will isolate high frequencies.5

We refer to G̃j as the impulse transfer function (ITF) of shock j since it is the transfer function

associated with the filter
∑∞

k=0 gj,kL
k.

Using the inverse Fourier transform, the price of risk for shock j is

∞∑
k=0

zkgj,k =
∞∑
k=0

(
zk

1

2π

∫ π

−π
G̃j (ω) eiωkdω

)
(12)

Now note that gj,k = 0 for all k < 0. In the Appendix we show that, as a consequence, for any

5To be more rigorous about the sense in which G̃ gives weights in terms of cycles of different frequencies, we
refer to the spectral representation theorem. Specifically, denote x̄k,t the process induced in xt if the only shock
realizations were for εk. That is,

x̄k,t =
∞∑
j=0

gk,jεk,t−k

εk,t has a spectral representation

εk,t =

∫ π

−π
eitωdZ (ω)

where dZ (ω) is an orthogonal increment process with constant variance (see, e.g., Priestley, 1981, for a textbook
statement and proof of the spectral representation theorem). The spectral representation of xk,t is then

x̄k,t =

∫ π

−π
eitω

∞∑
j=0

gk,je
−ijωdZ (ω) =

∫ π

−π
eitωG̃k (ω) dZ (ω)

G̃k thus determines the magnitude of fluctuations in x̄k,t at frequency ω.
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k > 0 we can rewrite equation (12) as:

∞∑
k=0

zkgj,k =
1

2π

∫ π

−π
Gj (ω)

(
z0 + 2

∞∑
k=1

zk cos (ωk)

)
dω (13)

where Gj (ω) is the real part of G̃j (ω),

G (ω) = re
(
G̃j (ω)

)
=

∞∑
k=0

cos (ωk) gj,k (14)

In other words, the price of risk for any shock depends on the integral of its response in the

frequency domain, Gj (ω), weighted by a real-valued function Z (ω), where

Z (ω) ≡ z0 + 2
∞∑
k=1

zk cos (ωk) (15)

We thus have

∞∑
k=0

zkgj,k =
1

2π

∫ π

−π
Gj (ω)Z(ω)dω (16)

This equation maps an element-by-element product of the infinite collections {gj,k} and {zk} into
a simple integral over a finite range in the frequency domain. This result is closely related to the

convolution and Parseval’s theorems, but is not identical because we take advantage of the fact that

gj,k = 0 for k < 0 to ensure that Z (ω) is real-valued.6

The price of risk for shock εj thus depends on an integral over the function Gj(ω), with weights

Z(ω). Recall that for each frequency ω, Gj(ω) tells us the effect of εj on x at frequency ω. Z(ω)

therefore determines the price of risk for any shock to the variable x at frequency ω.

Three final points are worth making. First, in our derivation we assume that the log SDF, mt+1,

is linear in the news about future values of xt. We present the result in this form because the most

widely used models (including log-linearized version of non-affi ne models) usually specify an affi ne

form for the log SDF. The same decomposition holds if, instead of assuming that mt+1 is affi ne, we

assume that the level of the SDF Mt+1 is linear in the news terms. For the remainder of the paper,

we focus on the decomposition of the innovations in the log SDF.

Second, the result does not hinge on any particular assumption about the conditional distribution

of the shocks εt+1 (e.g., normality). Third, we are also not making any assumptions about whether

the conditional distribution of εt+1 is identical across periods or varies over time. It could be

6We thank Urban Jermann for pointing out an alternative derivation of our result based on Parseval’s theorem.
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heteroskedastic, for example.

2.1 Examples of impulse transfer functions Gj(ω)

Before proceeding further, it is helpful to see examples of what the impulse transfer function looks

like for some simple impulse response functions. For the sake of concreteness, suppose for the

moment that the priced variable xt is log consumption growth, ∆ct.

Figure 1 plots the impulse response and impulse transfer functions for four different hypothetical

shocks. Note that while we are ultimately interested in the effects of the shocks on consumption

growth, ∆ct (since this is what enters the log SDF), we plot the IRF in terms of consumption levels,

ct, as they are the more natural way to think about consumption.

The first shock is a simple one-time increase in the level of consumption. This shock has a

flat impulse transfer function on consumption growth, indicating it has power at all frequencies.

The second shock is a long-run-risk type shock, inducing persistently positive consumption growth,

with the level of consumption ultimately reaching the same level as that induced by the first shock.

In this case, there is much less power at high frequencies, but the power at frequency zero is

identical, since G (0) depends only on the long-run effect of the shock on the level of consumption

(Gj (0) =
∑∞

k=0 gj,k).

The next two shocks have purely transitory effects. The third shock raises consumption for just a

single period, and we see now zero power at frequency zero and positive power at high frequencies.

The fourth shock is more interesting. Consumption rises initially, turns negative in the second

period, and returns to its initial level in the third period. The transfer function is again equal to

zero at ω = 0, but it now actually has negative power at low and middle frequencies. This is a

result of the fact that the impulse response of consumption is actually negative in some periods.

The sign of G reflects the direction in which the shock drives consumption. If we had reversed the

signs of the impulse responses for the first three shocks, their transfer functions would all have been

negative.

3 Weighting functions in consumption-based models

This section applies the analysis above to a range of standard utility functions for which mt+1 can

be written as a linear function of innovations to consumption growth. We analyze power utility,

models of internal and external habit formation, and Epstein—Zin preferences.7 We then estimate

7While these models of preferences are often applied under the assumption of the existence of a representative
agent, note that that assumption is not strictly necessary. In particular, the pricing kernel generated by an agent’s
Euler equation will hold for any market in which he participates. We thus do not concern ourselves, for now, with
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weighting functions empirically using data on equity returns.

3.1 Weighting functions in theoretical models

3.1.1 Power utility

Under power utility, the log pricing kernel is

mt+1 = log β − α∆ct+1 (17)

where ct denotes the log of an agent’s consumption, α is the coeffi cient of relative risk aversion, and

− log β is the rate of pure time preference. (17) implies that z0 = α and zk = 0 for all k > 0, so the

weighting function under power utility is simply

Zpower (ω) = α (18)

Zpower is flat and exactly equal to the coeffi cient of relative risk aversion. Zpower is constant because

the only determinant of the innovation to the SDF is the innovation to consumption on date t+ 1.

A shock to consumption growth has the same effect on the pricing kernel regardless of how long the

innovation is expected to last.

3.1.2 Habits

Adding an internal habit to the preferences yields the lifetime utility function

Vt =
∞∑
j=0

βj
(Ct+j − bCt+j−1)1−α

1− α (19)

where Ct = exp (ct) is the level of consumption and 0 ≤ b < 1 is a parameter determining the

importance of the habit. The pricing kernel is

exp (mt+1) = β
(Ct+1 − bCt)−α − Et+1b (Ct+2 − bCt+1)−α

(Ct − bCt−1)−α − Etb (Ct+1 − bCt)−α
(20)

If we log-linearize the pricing kernel in terms of ∆ct+1 and ∆ct+2 around a zero-growth steady-state,

we obtain

∆Et+1mt+1 ≈ −α
(
b (1− b)−2 + 1

)
∆Et+1∆ct+1 + αb (1− b)−2 ∆Et+1∆ct+2 (21)

issues of market completeness or the existence of a representative agent. Of course, we will assume a representative
agent when testing the model using data on aggregate consumption.
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With internal habits the pricing kernel depends on both the innovation to current consumption

growth and also the change in consumption growth between dates t + 1 and t + 2. The spectral

weighting function under habit formation is

Zinternal (ω) = α
(
1 + b (1− b)−2

)
− αb (1− b)−2 2 cos (ω) (22)

The weighting function with habits is equal to a constant plus a negative multiple of cos (ω). As

we would expect, Zinternal (ω) = Zpower (ω) when b = 0.

The left panel of Figure 2 plots Zinternal (ω) for various values of b. Here and in all cases below

we only plot Z between 0 and π as is standard, since Z is even and periodic. The x-axis lists the

wavelength of the cycles, as opposed to the frequency ω. Given a frequency of ω, the corresponding

cycle has length 2π/ω periods (the smallest cycle we can discern lasts two periods).

As b rises, there are two effects. First, the integral over Z gets larger, and second, its mass

shifts to higher frequencies. The latter effect is consistent with the usual intuition about internal

habit formation that households prefer to smooth consumption growth and avoid high-frequency

fluctuations to a greater extent than they would under power utility.8

One lesson from the equation for Zinternal is that as long as b is the only parameter we can vary,

there is little flexibility in controlling preferences over different frequencies. cos (ω) always crosses

zero at π/2, so the pricing kernel will always place higher weight on cycles of frequency greater

than π/2 and relatively less weight on cycles with frequency less than π/2. Furthermore, Zinternal

is monotone, regardless of the value of b.9

Under external habit formation, the SDF is

exp (mt+1) = β

(
Ct+1 − bC̄t

)−α(
Ct − bC̄t−1

)−α (23)

where C̄ denotes some external measure of consumption (e.g. aggregate consumption or that of an

agent’s neighbors). In this case, the innovation to the SDF depends only on the innovation to Ct+1.

So the weighting function with an external habit will be completely flat. Otrok, Ravikumar, and

Whiteman (2002) show that the external habit has a strong effect on what weights utility places on

consumption cycles of different frequencies, but what we show here is the SDF is driven entirely by

8Otrok, Ravikumar, and Whiteman (2002) obtain a similar result, but in a different manner. Rather than
characterize the volatility of the pricing kernel, they characterize the price of a Lucas tree, which is equivalent to
simply characterizing lifetime utility as a function of the spectral density of consumption growth. While lifetime
utility is important, it is not the same as the price of risk in the economy. Our results are therefore complements
rather than substitutes.

9One potential way to enrich preferences to allow preferences to isolate smaller ranges of the spectrum may be to
allow for more lags of consumption to enter the utility function.
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one-period innovations, so all cycles receive the same weight in pricing assets. The pricing kernel

in models with external habit formation, e.g. Campbell and Cochrane (1999), places equal weight

on all frequencies. On the other hand, the internal habit models of Constantinides (1990) and Abel

(1990) are heavily weighted towards high-frequency fluctuations.

3.1.3 Epstein—Zin preferences

An alternative way of incorporating non-separabilities over time is Epstein and Zin’s (1991) for-

mulation of recursive preferences. In general, under recursive preferences, anything that affects

an agent’s welfare affects the pricing kernel. So not only shocks to current and future consump-

tion growth, but also innovations to higher moments will be priced. We begin by focusing on the

case where consumption growth is log-normal and homoskedastic. Section 5 considers models with

stochastic volatility.

Suppose an agent has lifetime utility

Vt =
{

(1− β)C1−ρt + β
(
Et
[
V 1−α
t+1

])1−ρ} 1
1−ρ

(24)

Campbell (1993) and Restoy and Weil (1998) show that if consumption growth is log-normal and

homoskedastic, the stochastic discount factor for these preferences can be log-linearized as

∆Et+1mt+1 ≈ −
(
ρ∆Et+1∆ct+1 + (α− ρ) ∆Et+1

∞∑
j=0

θj∆ct+1+j

)
(25)

where ρ is the inverse elasticity of intertemporal substitution (EIS), and α is the coeffi cient of

relative risk aversion. θ is a parameter (generally close to 1) that comes from the log-linearization

of the return on the agent’s wealth portfolio (Campbell and Shiller, 1988).10 θ is a measure of

impatience: if the agent is highly impatient, then he consumes a large fraction of his wealth in each

period and θ is small. In the case where ρ = 1, equation (25) is exact.

For the case of equation (25), the weighting function is

ZEZ (ω) ≡ α + (α− ρ)
∞∑
j=1

θj2 cos (ωj) (26)

10Specifically, θ =
(
1 +DP

)−1
, whereDP is the dividend-price ratio for the wealth portfolio (i.e. the consumption-

wealth ratio) around which we approximate. θ generalizes the rate of pure time preference somewhat because it also
depends on discounting due to uncertainty about future consumption.
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which can be further simplified using Euler’s formula as

ZEZ (ω) = ρ+ (α− ρ)

(
1− θ2

1− 2θ cos (ω) + θ2

)
(27)

Under power utility, α = ρ and ZEZ (ω) = α is flat, so all frequencies receive equal weight, as

discussed above. On the other hand, if α 6= ρ, then weights can vary across frequencies due to the

second term.

ZEZ is much richer than what we obtain in the case of power utility and it has a number of

interesting properties. First, as with power utility, its average value is exactly equal to the coeffi cient

of relative risk aversion,
1

π

∫ π

0

ZEZ (ω) dω = α (28)

Therefore, the total weight placed on the spectrum depends only on risk aversion. Another way to

see this is that α is the price of a shock that affects all frequencies equally (and therefore has impulse

transfer function Gj(ω) equal to 1, like shock 1 in Figure 1). To the extent that the volatility of

the pricing kernel depends on the EIS, it is due only to how α− ρ affects which frequencies receive
weight.

An obvious question is how rapidly ZEZ falls as ω rises above zero. That is, how much of the

mass of ZEZ is concentrated at very low frequencies? In the limit as θ → 1, i.e. the case where

households are indifferent about when consumption occurs, ZEZ (ω) approaches

ZEZ (ω) = (α− ρ)D∞ (ω) + ρ (29)

where D∞ is the limit of the Dirichlet kernel (closely related to the Dirac delta function), with the

key properties

D∞ (ω) = 0 for ω 6= 0 (30)
1

2π

∫ π

−π
D∞ (ω) dω = 1 (31)

for ω in the interval (−π, π). ZEZ (ω) can thus be thought of as roughly a point mass weighted by

(α− ρ) plus a constant ρ. For an agent who is effectively infinitely patient, then, two features of

the consumption process matter: the permanent innovations at ω = 0 (limj→∞∆Et+1ct+j), which

are weighted by α, and all transitory innovations, which have no effect on limj→∞∆Et+1ct+j, and

are weighted by ρ.

Moving away from the limiting case, the right-hand panel of figure 2 plots ZEZ for a variety

of parameterizations. The parameterizations are meant to correspond to annual data, so we take
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θ = 0.975 as our benchmark, which corresponds to a 2.5 percent annual dividend yield. For α = 5

and ρ = 0.5 (an EIS of 2), we see a large peak near frequency zero, with little weight elsewhere. In

fact, half the mass of ZEZ in this case lies on cycles with length of 230 years or more, and 75 percent

lies on cycles with length 72 years or more. In this parameterization, it is effectively only the very

longest cycles in consumption (up to permanent shocks) that carry any substantial weight in the

pricing kernel. Purely temporary shocks to the level of consumption (which is what are induced

by shocks to monetary policy in standard models, for example) are essentially unpriced. One way

to interpret these numbers is the following. Take a permanent shock to consumption (like shock 1

in Figure 1). We have seen above that it will have price of risk of α. Now suppose we eliminate

all fluctuations induced by this shock that are longer than 230 years. The price of this new shock

will be one half that of the permanent shock. Then suppose we further remove all fluctuations with

cycles longer than 72 years. The price of the remaining shock drops to one quarter of that of the

permanent shock. A very large part of the risk premium comes from the longest fluctuations (of

hundreds of years) in this model.

The line that is highly negative near ω = 0 is for α = 0.5 and ρ = 5, where households prefer

a late resolution of uncertainty. In this case, the mass of ZEZ is still effectively isolated near zero,

but because households now prefer an early resolution of uncertainty, ZEZ is negative at that point.

The integral of ZEZ is still equal to α, though, so it turns positive at higher frequencies.11

3.1.4 Ambiguity aversion interpretation

As usual, the analysis of Epstein—Zin preferences naturally also applies to the preferences of an

ambiguity averse agent (e.g. Hansen and Sargent, 2001; Barillas, Hansen, and Sargent, 2009).

When the agent has a preference for robustness, he can be viewed as having a reference distribution

(the true distribution) and a worst-case distribution, which is what he uses to actually price assets.

Under the reference distribution, the agent simply has power utility, so his weighting function would

be flat. Under the worst-case distribution, though, he places relatively more weight on certain “bad”

states of the world (based on a joint entropy condition on the two distributions). Our weighting

function shows the effect of that reweighing in the frequency domain. Agents essentially place

more weight on the possibility of the occurrence of low-frequency fluctuations, which gives them a

relatively high weight in the function ZEZ .12

Ambiguity aversion also gives a convenient way to motivate a more general spectral weighting

function than those derived above for standard models. Specifically, suppose an agent is ambiguity

11Note, though, that the case where ρ > α is not taken as a benchmark and is not widely viewed as empirically
relevant (see, e.g., Bansal and Yaron, 2004).
12Hansen and Sargent (2007) provide a similar interpretation of their multiplier preferences in the frequency domain

for a linear-quadratic control problem.
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averse in the sense that he maximizes

E∗t

[ ∞∑
j=0

zj logCt+j

]
(32)

where E∗ is an expectation taken under some subjective probability measure. The set of pa-

rameters zj determines how much weight consumption receives at various dates in the future.

The appendix shows that in a standard implementation of Hansen and Sargent’s constraint pref-

erences, i.e. where E∗ is taken under a distribution that differs from the true distribution by

some constrained entropy distance, the agent will have a spectral weighting function equal to

Z (ω) ≡ 1 + 2λ−1
∑∞

k=1 zk cos (ωk), where λ−1 is the Lagrange multiplier on the entropy constraint,

which essentially determines risk aversion. Ambiguity averse preferences thus give a way to under-

stand where an arbitrary spectral weighting function might come from, and what it would imply

for an agent’s underlying utility.

4 Estimates of weighting functions

We now estimate the weighting function Z(ω) for consumption growth using the cross-section of

equity prices. Estimating Z involves three main steps. First, we need to estimate the dynamics of the

economy and identify the fundamental shocks εt+1 and the dynamic response of consumption growth

to these shocks. Second, we parametrize the function Z(ω). Third, we estimate the parameters of

Z using the cross-section of equity returns.

4.1 Step 1: Estimation of the dynamics

We assume the process driving the priced variable, xt, follows a finite-order VAR,

X̄t = Φ̄ (L) X̄t−1 + εt (33)

where xt = B1X̄t is the first element of X̄t and X̄t has dimension N×1.13 In our benchmark results,

xt is log consumption growth, ∆ct. If the lag polynomial Φ̄ (L) has order K, then we can stack K

consecutive observations of X̄t so that Xt ≡
[
X̄ ′t, X̄

′
t−1, ...

]′
follows a VAR(1)

Xt = ΦXt−1 + εt (34)

and xt = B1Xt. We estimate this VAR using OLS, yielding estimates of Φ and εt.

13Recall that Bj represents a conformable selection vector equal to 1 in element j and 0 elsewhere.
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4.2 Step 2: Parametrization of the spectral weighting function

The weighting function that we want to estimate, Z (ω), is potentially infinite-dimensional, but

we only have a finite number of risk prices (one for each estimated shock in εt) with which to

estimate it. We therefore need to choose a functional form to approximate Z with a finite number

of parameters. We consider two specifications, a flexible function motivated by the utility functions

discussed above, and a step function.

4.2.1 The utility basis

The analysis of the utility functions in the previous sections suggests modeling Z as:

ZU (ω) = q1

∞∑
j=1

θj cos (ωj) + q2 + q3 cos (ω) (35)

where q1, q2, and q3 are unknown coeffi cients. We call (35) the utility basis because it nests the

weighting functions derived from utility-based models. If q3 = 0, (35) matches the weighting

function for Epstein—Zin preferences in (26). If q1 = 0, the long-run component that is crucial in

the Epstein—Zin case is shut off, and we obtain the weighting function for internal habit formation in

(22). Finally, if both q1 = 0 and q3 = 0, then we have the weighting function for power utility. Note

that we have an extra parameter θ here. Following the most common calibration of the Epstein—Zin

model that motivated our specification of the Z function, we choose θ = 0.9751/4 for quarterly data,

corresponding to a 2.5 percent annual consumption/wealth ratio.14

Because the utility basis is so closely related to the weighting functions we derived under various

preference specifications, the constituent functions are already plotted in Figure 2. In particular,

the lines in the right-hand panel represent the first function,
∑∞

j=1 θ
j cos (ωj), shifted upward by

a constant. This function clearly isolates very low frequencies, and the extent to which the lowest

frequencies are isolated depends on the parameter θ.

4.2.2 The bandpass basis

One advantage of working in the frequency domain is that it is straightforward to estimate risk

prices for ranges of frequencies of interest. In particular, we can model Z(ω) directly in a way

that captures the preferences of agents for economically interesting frequencies, without mapping

literally to any of the models presented above. This generalizes the various models by focusing

on the main intuitions about the preferences over dynamics. To do this, we simply break the

14In theory, we could estimate θ. However, we find that it is poorly identified in the data, so we proceed to calibrate
it to the value most commonly used in the literature.
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interval [0, π] into three economically motivated intervals, corresponding to business-cycle length

fluctuations with wavelength between 6 and 32 quarters (as is standard in the macro literature,

e.g. Christiano and Fitzgerald, 2003), and frequencies above and below that window. If agents

dislike long-run risks, we would expect most of the weight of Z to lie in the range of frequencies

below the business cycle, while habit formation-type preferences imply that the mass should lie

at higher frequencies. At the same time, what is considered “long-run risk”here is not the literal

interpretation of the Epstein—Zin calibration (230 years): we generalize that model by considering

as “long-run risks”any shocks that induce cycles longer than the business cycle.

We refer to the set of three step functions as the bandpass basis, since Z (ω) is composed of the

sum of three bandpass filters. Specifically, we define

Z(a,b) (ω) ≡
{

1 if a < |ω| ≤ b

0 otherwise
(36)

For quarterly data, our three basis functions are then Z(0,2π/32) (ω), Z(2π/32,2π/6) (ω), and Z(2π/6,π) (ω).

We therefore estimate the function

ZBP (ω) = q1Z
(0,2π/32) (ω) + q2Z

(2π/32,2π/6) (ω) + q3Z
(2π/6,π) (ω) (37)

4.3 Step 3: Estimation of the spectral weighting function

Result 1 and the estimated VAR imply that the innovations to the log SDF are:

∆Et+1mt+1 = −W (q̄)εt+1 (38)

for a 1×N vector W that depends on the parameters q̄ ≡ [q1 q2 q3]
′. We then estimate the vector

q̄ using the cross-section of asset prices.

To findW (q̄) for a given basis (either utility or bandpass), we go back to the VAR representation

and write:

∆Et+1mt+1 = −
∞∑
k=0

zkB1Φ
kεt+1 (39)

According to Result 1, the time-domain weights {zk} are transformations of the weighting function,

zk =

{
1
2π

∫ π
−π Z (ω) dω for k = 0

1
π

∫ π
−π Z (ω) cos (ωk) dω for k > 0

(40)

For both the utility and bandpass basis, Z (ω) is linear in the coeffi cients q̄, which implies that zk
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is also linear in q̄. Specifically,

zk = q̄′Hk (41)

where Hk contains the integrals of the basis functions for Z. Importantly, these Hk vectors are

completely known (they don’t need to be estimated) because they only depend on the choice of the

set of basis functions. For the utility basis,

H0 =


1
2π

∫ π
−π
∑∞

i=1 θ
i cos (ωi) dω

1
2π

∫ π
−π 1dω

1
2π

∫ π
−π cos (ω) dω

 Hk>0 =


1
π

∫ π
−π
∑∞

i=1 θ
i cos (ωi) cos (ωk) dω

1
π

∫ π
−π cos (ωk) dω

1
π

∫ π
−π cos (ω) cos (ωk) dω

 (42)

For the bandpass basis, we obtain:

H0 =


1
2π

∫ π
−π Z

(0,2π/32) (ω) dω
1
2π

∫ π
−π Z

(2π/32,2π/6) (ω) dω
1
2π

∫ π
−π Z

(2π/6,π) (ω) dω

 Hk>0 =


1
π

∫ π
−π Z

(0,2π/32) (ω) cos (ωk) dω
1
π

∫ π
−π Z

(2π/32,2π/6) (ω) cos (ωk) dω
1
π

∫ π
−π Z

(2π/6,π) (ω) cos (ωk) dω

 (43)

which can be further simplified as a function of sines (without integrals) and then computed nu-

merically.

Given that zk = q̄′Hk, (39) becomes

∆Et+1mt+1 = −q̄′
( ∞∑
j=0

HjB1Φ
j

)
εt+1 (44)

∆Et+1mt+1 is thus a function of the VAR parameters Φ, the innovations εt = Xt −ΦXt−1, and the

three parameters q1,q2 and q3.

Equation (44) suggests an alternative interpretation of the decomposition we propose, most

immediate for the case of the bandpass basis. By regrouping the right hand side of that equation,

we can write:

∆Et+1mt+1 = −q̄′ut+1

with

ut+1 =

( ∞∑
j=0

HjB1Φ
j

)
εt+1

It is then clear that the linearity of Z(ω) with respect to the basis functions gives us a linear factor

model: the factors will be the shocks ut+1, obtained by rotating the fundamental shocks εt+1 into

the three frequency-determined directions: a “long-run”direction, a “business cycle”direction, and

a “high frequency”direction. The parameters q1, q2 and q3 can then be directly interpreted as the
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prices of these three types of risk.

We can now proceed and estimate the model by specifying the moment conditions. Follow-

ing a large empirical literature (for example Campbell and Vuolteenaho, 2004; Campbell et al.,

2013; Bansal et al., 2013) we assume joint lognormality of the shocks and the returns. As we

show below, this assumption yields a linear factor model, which is easy to estimate and inter-

pret. However, similar results are obtained by directly using the nonlinear moment condition

E[exp(∆Et+1mt+1)(Rt+1 − Rf
t+1)] = 0, which does not require the assumption of lognormality.15

Under the assumption of log-normality of the shocks, the risk prices can be estimated from the

asset pricing condition16

E[Rit+1 −Rf
t+1] = −Cov(mt+1, rit+1) (45)

= E

[
q̄′

( ∞∑
j=0

HjB1Φ
j

)
εt+1rit+1

]
(46)

which, as mentioned above, is a linear factor model.

15To derive that equation, consider that for any excess return Rt+1−Rft+1, we have Et[exp(mt+1)(Rt+1−Rft+1)] = 0.
Premultiplying by exp(−Etmt+1) we obtain: Et[exp(mt+1 − Etmt+1)(Rt+1 −Rft+1)] = 0. The moment condition is
then obtained by conditioning down.
16The derivation of this equation follows Campbell and Vuolteenaho (2004). Given the assumption of lognormality

of all shocks, we can write:

Etrit+1 − rft+1 +
1

2
σ2it = −Covt(mt+1, rit+1)

where rit+1 = log(1 +Rit+1), r
f
t+1 = log(1 +Rft+1), and σ

2
it = V art(rit+1). We then note that

Covt(mt+1, rit+1) = Covt(∆Et+1mt+1, rit+1) = Et(∆Et+1mt+1rit+1) = Et(−q̄′
 ∞∑
j=0

HjB1Φ
j

 εt+1rit+1)

Therefore, we obtain:

Etrit+1 − rft+1 +
1

2
σ2it = Et(q̄

′

 ∞∑
j=0

HjB1Φ
j

 εt+1rit+1)

Since Etrit+1 − rft+1 + 1
2σ

2
it ' Et[Rit+1 −R

f
t ], and taking unconditional expectations, we obtain

E[Rit+1 −Rft ] = E

q̄′
 ∞∑
j=0

HjB1Φ
j

 εt+1rit+1


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Our full set of moment conditions identifying the parameters of the model is

Gt+1 (Φ, q̄) =

(Xt+1 − ΦXt)⊗Xt︸ ︷︷ ︸
VAR moments

, Rt+1 −

Mapping into frequency domain

Rf
t+1 −

(︷ ︸︸ ︷
q′
(∑∞

j=0
HjB1Φ

j
)

(Xt+1 − ΦXt)

)
rt+1︸ ︷︷ ︸

Asset pricing moments


(47)

where Rt is the vector of test asset returns, R
f
t is the risk-free rate and rt+1 is the vector of log test

asset returns.

While we could in principle minimize the GMM objective function for all the parameters si-

multaneously, that method has the drawbacks that the optimization is diffi cult to perform (due

to the large number of parameters) and that it allows errors in the asset pricing model to affect

the VAR estimates. We therefore construct estimates of Φ and q̄ by minimizing the two moment

conditions separately. That is, Φ is simply estimated through OLS and then q̄ is estimated taking Φ

as given, using GMM.17 Given estimates Φ̂ and ̂̄q, we construct standard errors using the full set of
moments, G

(
Φ̂, ̂̄q). The standard errors we report for the risk prices q̄ therefore always incorporate

uncertainty about the dynamics of the economy through Φ.

We perform the GMM estimation of q̄, taking Φ as given, using either one-step GMM (using

the identity matrix to weight the asset pricing moments) or two-step GMM (using the estimated

variance-covariance matrix of the moment residuals to construct the weighting matrix for the second

step), and report the results separately.18

4.4 Empirical results

4.4.1 Data

The most natural choice for the priced variable, xt, is consumption growth, but we also explore

using other variables: GDP, durable consumption, and investment growth. The rationale for using

variables other than consumption, even though we are motivated by consumption-based models, is

17The same methodology is used in Campbell and Vuolteenaho (2004) and Campbell et al. (2013). Optimizing
the full GMM objective function (or even using two-stage GMM) would be more effi cient, so our standard errors will
in general be larger than if we used a fully effi cient method.
18When computing the standard errors incorporating the full estimation uncertainty (according to eq. 47), we

take into account the weighting matrix we have used to estimate q̄. We construct the full weighting matrix in the
following way. We assign equal weight to all VAR moment conditions (i.e. we use the identity matrix for the block of
the weighting matrix that corresponds to the VAR moment conditions). For the block that corresponds to the asset
pricing moments, we use the same weighting matrix we used in the estimation of q. We set to zero the weight on the
cross-product between VAR and asset pricing moment conditions. Finally, we scale the VAR moment conditions by
a (common) constant such that on average the block of VAR moments and the block of asset pricing moments get
the same weight.
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that to the extent that the pricing kernel is driven by permanent shocks to consumption, permanent

shocks to any variable that is cointegrated with consumption should also proxy for the pricing kernel,

since the permanent shocks to consumption and any variable it is cointegrated with must be perfectly

correlated. That said, households want to smooth consumption compared to income, so we cannot

view estimates of the spectral weighting function for aggregates other than consumption as yielding

direct tests comparing utility functions. Rather, we interpret them as simply illustrating how the

dynamics of the economy are priced. Furthermore, Cochrane (1996) argues that investment growth

should price the cross-section of asset returns. Our results on investment are a generalization of his

analysis that asks whether and how future dynamics of investment growth are priced.

For the vector of state variables X̄t, we want variables that are both priced in the cross-section

and can forecast our priced variable xt. Since the number of parameters of the VAR increases

quadratically with the dimension of X̄t, we look for a parsimonious representation with few state

variables. The first element of X̄t is the priced variable, and the other elements are the first

two principal components of a set of 9 real and financial variables: the aggregate price/earnings

and price/dividend ratios; the 10 year/3 month term spread; the Aaa—Baa corporate yield spread

(default spread); the small-stock value spread; the unemployment rate minus its 8-year moving

average; RREL, the detrended version of the short-term interest rate that Campbell (1991) finds

forecasts market returns; the three-month Treasury yield rate; and Lettau and Ludvigson’s (2001)

cay. The results are robust to the choice of variables from which the principal components are

extracted. Because some of the variables used are only available after 1952, in the analysis that

follows we use the quarterly data over the period 1952—2011. Finally, in the analysis that follows

we use 3 lags of quarterly data, as suggested by the Akaike information criterion, but results are

robust to the choice of the number of lags. Table 1 reports the VAR coeffi cients of the consumption

equation (using consumption growth as a priced variable).

4.4.2 Parameter estimates

Table 2 reports the estimation results using two-step GMM to estimate the risk prices. The left-

hand side uses the set of 25 size- and book/market-sorted portfolios, while the right-hand side adds

in a set of 49 industry portfolios (both sets of portfolios are obtained from Ken French’s website; we

drop six industry portfolios that have missing data in the period considered). For both portfolio sets

we estimate both the bandpass basis and the utility basis. For the bandpass basis, q1 corresponds to

the price of lower-than-business cycle risks, q2 to business cycle risks, and q3 to higher-than-business

cycle risks. For the utility basis, q1 is price of the long-run component, q2 is the constant, and q3 is

the high-frequency component (coeffi cient on cos(ω)).

The first set of rows in table 2 reports results obtained using consumption growth as priced
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variable in the SDF. We find that long-run shocks to consumption are strongly priced both in the

25 Fama—French portfolios and in the industry portfolios, while business-cycle frequency shocks and

high frequency shocks do not seem to be priced.

The result can be seen much more clearly when using the bandpass basis. When looking at the

utility basis, we can barely reject at the 10 percent level that long-run consumption shocks are not

priced, and the coeffi cient on the long-run (Epstein—Zin) shock is not statistically different from

0 when industry portfolios are included. In other words, when estimating structural preference-

based models, we find no significant parameters, implying that neither short- nor long-run shocks

to consumption growth are priced in equity returns. On the other hand, with the bandpass basis

we find that long-run shocks are significantly priced.

We obtain similar results for the other priced variables: with the bandpass basis we find strongly

significant low-frequency risk prices in almost all of the variables (GDP growth, durable consumption

growth, and the various measures of investment growth). On the contrary, we find almost no

significance when using the utility basis.

The appendix reports two main robustness tests: it shows that we obtain similar results when

we bootstrap the p-values instead of using the asymptotic approximation, and also when we include

a set of risk-sorted portfolios (obtained sorting stocks by their loadings on the shocks in the different

frequency ranges). The appendix also reports the factor loadings of the size and book/market sorted

portfolios and the risk-sorted portfolios.19

Table 3 repeats the analysis using one-step GMM (i.e. using the identity matrix as a weighting

matrix when estimating the risk prices). Using the utility basis, we can only distinguish the price

of long-run risk from zero in a single case (residential investment, only for the cross-section of the

25 FF portfolios). Using the bandpass basis, we find several cases in which the long-run risk price

is significant: consumption growth, durables growth, fixed investment and residential investment.

In any case, the bandpass basis yields results on the price of long-run risks that are much stronger

than the ones indicated by the utility basis.

We interpret these results in two ways. First, it is possible that agents do care about long-

run shocks, but their definition of “long-run” is closer to the one captured by the bandpass basis

(cycles longer than the business cycle) rather than that captured by the utility basis (where more

than half of the pricing weight falls on cycles longer than 230 years). Second, the bandpass basis

loads on frequencies that can be economically considered “long-run”but are much easier to detect

empirically than frequencies close to 0 for which we have little empirical power.

Using the frequency-domain decomposition leads us to very different conclusions about the

19We have also looked at whether our factors can explain the average returns on short-term dividend strips
documented by van Binsbergen, Brandt, and Koijen (2012), but find inconclusive results because of the brevity of
the available sample, which only begins in 1996.
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underlying theories than standard time-domain techniques would have. The results that employ

the utility basis show essentially no support for the long-run risk model. Looking at the problem

using the bandpass filter and targeting the economically relevant set of frequencies instead yields

strong and robust support for the idea that low-frequency shocks to the economy are priced in

equity markets.

4.4.3 Impulse transfer and weighting functions

The left-hand panel of figure 3 plots the estimated impulse transfer functions, Gj, of the three

shocks εj for consumption growth. To help show the behavior of the functions near frequency zero,

we plot them from −π to π, instead of beginning at zero as elsewhere. Note that the functions are
all symmetrical across the vertical axis (since they are linear combinations of cosines). The shaded

regions in each figure are 95-percent confidence intervals.

There are two key features of the transfer functions to note. First, there are meaningful qual-

itative and quantitative differences across the functions in how power is distributed, which helps

identify the underlying risk prices. If the transfer functions were all highly similar, then we would

not expect to be able to distinguish risk prices across frequencies very well. Looking at the con-

fidence bands, though, it is clear that the transfer functions are poorly estimated near frequency

zero. ω = 0 corresponds to the the infinite-horizon response to each shock, so it is not surprising

that it is most diffi cult to estimate. Nevertheless, the fact that the uncertainty rises so much at very

low frequencies helps explain why we have trouble estimating the coeffi cient on the low-frequency

component of the utility basis.

The right-hand set of plots in each figure zooms in on frequencies corresponding to cycles longer

than 5 years. In each of those right-hand-side figures, the vertical lines demarcate the set of

frequencies that receive half the weight under our benchmark calibration of Epstein—Zin preferences

(i.e. cycles longer than 230 years). In all the cases, it is clear that the confidence bands are far

larger in the region where the mass of the Epstein—Zin weighting function is focused than elsewhere.

Figure 4 plots the estimated spectral weighting functions for consumption growth and 95-percent

confidence intervals, obtained using the 25 Fama—French portfolios, for the bandpass basis (darker

shaded area) and the utility basis (lighter shaded area). The left panel plots all frequencies, while

the right panel zooms in on the cycles longer than 5 years. The figure shows significant weight

at low frequencies. The price of long-run risks is quite precisely estimated using the bandpass

basis (and significantly different from zero), while the standard errors of the utility basis estimates

diverge quickly as we look at frequencies closer to zero, confirming the huge amount of statistical

uncertainty exactly in the frequency range most important for the Epstein—Zin model.

24



5 Weighting functions in returns-based models

5.1 Theoretical models

5.1.1 The CAPM

Under the CAPM, innovations to the SDF are proportional to innovations to the market return,

mt+1 − Etmt+1 = − E [rm,t+1 − rf,t+1]
V ar (rm,t+1 − rf,t+1)

(rm,t+1 − Erm,t+1) (48)

where rm,t+1 is the market return. The weighting function under the CAPM is thus simply

ZCAPM (ω) =
E [rm,t+1 − rf,t+1]
V ar (rm,t+1 − rf,t+1)

(49)

ZCAPM is flat, and its level depends on the price of risk in the market, just like we obtain with

power utility (though obviously with a different priced variable).

5.1.2 Epstein—Zin and power utility

In a model with a representative agent with Epstein—Zin preferences (with power utility as a special

case) and where consumption growth is log-normal and homoskedastic, Campbell (1993) shows that

innovations to the pricing kernel can be written purely in terms of returns on the representative

agent’s wealth portfolio,

mt+1 − Etmt+1 = −α∆Et+1rw,t+1 − (α− 1) ∆Et+1

∞∑
j=1

θjrw,t+1+j (50)

where rw is the log return of the wealth portfolio of the representative agent. θ is the same log-

linearization parameter as in the previous section. Campbell (1993) interprets (50) as a version of

Merton’s (1973) intertemporal CAPM because both current returns and changes in the investment

opportunity set are priced risk factors.

The weighting function for (50) is

ZEZ−returns(ω) = α + (α− 1)

∞∑
j=1

θj2cos(ωj) (51)

As θ → 1 we obtain the limit

Z(ω) = (α− 1)D∞ (ω) + 1 (52)
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with D∞ the limit of the Dirichlet kernel, which essentially corresponds to a point mass at 0. All

agents, then, regardless of ρ (i.e., regardless of whether they have power utility or more general

recursive preferences) place high weight on low-frequency fluctuations in equity returns.

5.1.3 Returns-based asset pricing when we can forecast returns but not consumption

Campbell’s (1993) analysis, and that used in Campbell and Vuolteenaho (2004), assumes that risk

premia are constant and that consumption growth is potentially forecastable. Suppose, alternatively,

that we cannot forecast consumption growth at all, and that when we forecast asset returns we are

simply forecasting risk premia. For example, return predictability might arise from stochastic

volatility (as in Bansal and Yaron, 2004 and Campbell, Giglio, Polk and Turley, 2012) or time-

varying risk aversion (Campbell and Cochrane, 1999; Dew-Becker, 2012). The Campbell—Shiller

approximation when consumption is unpredictable reduces to

∆Et+1rw,t+1 = ∆Et+1∆ct+1 −∆Et+1

∞∑
j=1

θjrw,t+j+1 (53)

and the pricing kernel is

∆Et+1mt+1 = −α∆Et+1rw,t+1 − ρ
1− α
1− ρ∆Et+1

∞∑
j=1

θjrw,t+j+1 (54)

This result is notably different from that of Campbell (1993) and equation (50) above, which are

derived assuming risk premia are constant. Specifically, if the EIS is greater than 1 (ρ < 1), then

the coeffi cient on expected future returns becomes proportional to − (1− α): it has the opposite

sign from the one found in Campbell (1993) and equation (50). The intuition for this result is as

follows. In Campbell (1993), news about high future returns corresponds to an improvement in

future expected consumption growth (or, in the language of ICAPM, the investment opportunity

set), which is unambiguously good. If, however, high expected returns are due to high future

risk aversion or volatility, then there is only a discounting effect: high future expected returns are

associated with low lifetime utility. An increase in risk aversion or volatility is purely bad news.

5.2 Estimation of the weighting function

5.2.1 Methods

Given that the weighting function presented above can be decomposed in two of the three constituent

functions that we saw for the case of consumption (and that are plotted in Figure 2), the utility
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basis representation in the case of returns will simply be:

ZU(ω) = q1

∞∑
j=1

θjcos(ωj) + q2 (55)

Since we are mostly interested in estimating the pricing of long-run discount rate news, we

parametrize the bandpass basis to only include a constant and a generalized long-run component,

ZBP (ω) = q1Z
(0,2π/32) (ω) + q2 (56)

again capturing frequencies lower than the business cycle.

As in Campbell and Vuolteenaho (2004), we use a VAR(1) with state vector composed of log

excess returns, the price/earnings ratio, term spread and default spread. We use quarterly data

from 1926q3 to 2011q2. We estimate the VAR using OLS, and set θ = 0.95 per year as in Campbell

and Vuolteenaho (2004).

We then use GMM as above to estimate the two parameters q1 and q2 using the cross-section

of 25 Fama-French portfolios or the combination of those assets and the 49 industry portfolios.

As before, we estimate Φ and q̄ ≡ [q1, q2] separately. Again, we report results using both one-

step and the two-step GMM to estimate q, and compute standard errors for q taking into account

the uncertainty related to the estimation of the VAR parameters as explained in Section 4. For

robustness, we also compute the results using the three-parameters bandpass and utility basis we

presented in Section 4.

5.2.2 Results

Table 4 shows the results using only the 25 Fama—French portfolios (left columns) or adding the 49

industry portfolios (right columns). The top panel reports the version with two parameters (where

the first one captures the long-run risks) discussed in the previous section. For both the bandpass

basis and the utility basis, we find evidence that the long-run component of return news is priced, at

least when using only two parameters and using the effi cient matrix to estimate q. Consistent with

equation (51), when we use the utility basis we find that both the constant and the discount-rate

news (long-run shock to expected returns) are priced, and that q1 is approximately equal to q2− 1.

Similarly, for the bandpass basis, the price for frequencies below the business cycle is positive and

significant. The bottom panel of Table 4 reports estimates of the three-parameter version described

in Section 4. Here we find weaker evidence that long-run innovations in returns are priced. Overall,

though, looking at returns we find some evidence that news about the long-term expected returns

carry a positive risk price, though the results seem to be more sensitive to the specification used
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than in the previous section. Furthermore, the results are more consistent with a model in which the

main source of news is about future expected consumption rather than future expected volatility

or risk aversion.

6 Multiple priced variables and stochastic volatility

So far the analysis has focused only on the case where there is a single priced variable. In some

models, though, the dynamics of multiple variables matter for asset pricing. For example, in many

applications with Epstein—Zin preferences, both consumption growth and variation in volatility

or disaster risk are priced (e.g. Bansal and Yaron, 2004; Campbell et al., 2013; Gourio, 2012;

Constantinides and Ghosh, 2013, study a model with time-varying cross-sectional skewness with

similar results). It turns out that the results above map easily into a multivariate setting.

Assumption 1a: Structure of the SDF
Instead of there being a single priced variable xt, suppose there is an M × 1 vector of priced

variables, ~xt, with

mt+1 = F (It)−∆Et+1

∞∑
k=0

Zk~xt+1+k (57)

where Zk is a 1×M vector of weights and F (It) is a scalar valued function.

Assumption 2a: Dynamics of the economy
We assume that ~xt is driven by a vector moving average process as before,

~xt = JXt (58)

Xt = Γ (L) εt (59)

for some matrix J of dimension M ×N .
The appendix derives the following extension to Result 1,

Result 2. Under Assumptions 1a and 2a, we can write the innovations to the SDF as,

∆Et+1Mt+1 = −
∑
j

(
1

2π

∫ π

−π
~Z(ω)G (ω) dω

)
εj,t+1 (60)

where ~Z (ω) is a (1×M) vector-valued weighting function and G (ω) is an (M ×N) transfer
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function that measures the dynamic effects of εt on ~x in the frequency domain,

~Z (ω) ≡ Z0 + 2
∞∑
k=1

Zk cos (ωk) (61)

G(ω) ≡
∞∑
k=0

cos (ωk) ḡk (62)

and ḡk is the vector of impulse response functions,

ḡk ≡ JΓk

In this case, then, we have multiple variables whose impulse responses we track in G, and each

of the priced variables has its own weighting function, represented as one of the elements of ~Z(ω).

6.1 Epstein—Zin with stochastic volatility

Using Result 2, we now extend the results on Epstein—Zin preferences to also allow for stochastic

volatility, similar to Campbell et al. (2013) and Bansal and Yaron (2004). We use the same log-

normal and log-linear framework as above. The log stochastic discount factor under Epstein—Zin

preferences is,

mt+1 = −ρ1− α
1− ρ∆ct+1 +

ρ− α
1− ρ rw,t+1 (63)

where rw,t+1 is the return on a consumption claim on date t+1. Whereas we previously assumed that

consumption growth was log-normal and homoskedastic, we now allow for time-varying volatility

driven by a variable σ2t . We assume that σ
2
t follows a linear, homoskedastic, and stationary process.

We assume that log consumption growth is driven by a VMA process as in assumption 1, but that

now the shocks εt have variances that scale linearly with σ2t .

It is then straightforward to show that expected returns on a consumption claim will follow

Etrw,t+1 = k0 + ρEt∆ct+1 + k1σ
2
t (64)

where k0 and k1 are constants that depend on the underlying process driving consumption growth.

Using the Campbell—Shiller approximation, we can then write the innovation to the SDF as

∆Et+1mt+1 = −α∆ct+1 − (α− ρ) ∆Et+1

∞∑
j=1

θj∆ct+1+j (65)

−ρ− α
1− ρ∆Et+1θk1σ

2
t+1 −

ρ− α
1− ρ∆Et+1

∞∑
j=1

θjθk1σ
2
t+j+1 (66)
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The weighting functions for consumption growth and volatility are now

ZEZ−SV
C (ω) = α + (α− ρ)

∞∑
j=1

θj2 cos (ωj) (67)

ZEZ−SV
σ2 (ω) = θk1

ρ− α
1− ρ

(
1 +

∞∑
j=1

θj2 cos (ωj)

)
(68)

So the price of risk for a shock depends on its ITFs for both consumption growth and volatility.

In the case where ρ = 0, ZEZ−SV
C is exactly proportional to ZEZ−SV

σ2 . In any case, even for ρ > 1

they are highly similar. ZEZ−SV
C is in fact the same we obtained in the homoskedastic case. Both

weighting functions have a constant and also allow for a point mass near zero. ZEZ−SV
σ2 always has

the same basic shape regardless of the value of ρ: unless we are in the particular case ρ = α in

which ZEZ−SV
σ2 (ω) = 0, agents always place high weight on the low-frequency features of volatility.

Alternatively, the weighting functions can be written in terms of returns and their volatility,

ZEZ−SV−R
R (ω) = α− (1− α)

∞∑
j=1

θj2 cos (ωj) (69)

ZEZ−SV−R
σ2 (ω) = θk1

1− α
1− ρ

(
1 +

∞∑
j=1

θj2 cos (ωj)

)
(70)

which yields conceptually similar results.

7 Conclusion

This paper studies risk prices in the frequency domain. The impulse response of consumption

growth to a given shock to the economy can be decomposed into components of varying frequen-

cies. In a model where innovations to current and expected future consumption growth drive the

pricing kernel, the price of risk for a given shock then depends on a weighted integral over the

frequency-domain representation of the impulse response function. The weights assigned to each

frequency represent frequency-specific prices of risk. They can be characterized in closed form and

only depend on the agents’preferences. We study this weighting function both theoretically and

empirically. Theoretically, we find that the weighting function helps us gain a deeper understanding

of the behavior of asset pricing models. Empirically, our estimates of the weighting function are

consistent with the idea of long-run risk models. Estimating a standard version of Epstein—Zin

preferences yields statistically weak results, but using our spectral decomposition to target eco-

nomically meaningful “long-run” frequencies (specifically, below-business-cycle frequencies) yields
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strong support for the importance of long-run risks for asset prices.
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A Derivation of equation (13)

For any gj,k, we have

gj,k =
1

2π

∫ π

−π
G̃j (ω) (cos (ωk) + i sin (ωk)) dω (71)

Now since gj,k = 0 for k < 0, for any k > 0 we have

gj,k = gj,k + gj,−k =
1

2π

∫ π

−π
G̃j (ω)

(
cos (ωk) + i sin (ωk)

cos (−ωk) + i sin (−ωk)

)
dω

=
1

2π

∫ π

−π
G̃j (ω) 2 cos (ωk) dω

Furthermore, note that the complex part of G̃ (ω) multiplied by any cos (ωk) for integer k integrates

to zero, which is why we can just study G ≡ re
(
G̃
)
. We thus have

∞∑
k=0

zkgj,k =
1

2π

∫ π

−π
Gj (ω)

(
z0 + 2

∞∑
k=1

zk cos (ωk)

)
dω (72)

B Ambiguity aversion and generalized time discounting

Suppose the utility an agent gets from a realization of her consumption stream is

U0 = c0 +
∞∑
j=1

zjcj (73)

U0 represents the total utility that the agent gets from consumption between dates 0 and ∞,
discounted from the perspective of date 0 in the absence of any uncertainty. We assume that

consumption follows an MA(∞) process,

ct = b (L) εt (74)

We do not make any assumptions about the distribution of εt other than that it is not serially

correlated. It may be non-normal and heteroskedastic. We assume that εj = 0 for j ≤ 0.

Now suppose the agent solves the minimax problem,

V0 = c0 + min
G(ε∞1 )

E

[
G (ε∞1 )

∞∑
j=1

zjb (L) εj+1

]
(75)

+λεE [G (ε∞1 ) logG (ε∞1 )−K]− φE [G (ε∞1 )− 1] (76)
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where ε∞1 denotes a particular history of εj for j = 1 to ∞. G (ε∞1 ) is the extra weight placed on

a given history under the agent’s subjective measure. λ multiplies the constraint on the entropy

of the shift in the distribution (with K being the bound), and φ multiplies the constraint that the

subjective distribution must integrate to 1.

The first-order condition for G yields

0 =

∞∑
j=1

zjb (L) εj + λ (1 + logG)− φ (77)

G = exp

(
−
∑∞

j=1 zjb (L) εj + φ− λ
λ

)
(78)

=
exp

(
−
∑∞

j=1 zjb (L) εj/λ
)

E0−∞

[
exp

(
−
∑∞

j=1 zjb (L) εj/λ
)] (79)

The pricing kernel between dates 0 and 1 is then proportional to

1

exp (c1)
G (ε∞1 ) ∝ exp

(
−
(

1 + λ−1
∞∑
j=1

zjb (L)

)
ε1

)
(80)

So the price of risk for a shock ε1 is then
(

1 + λ−1
∑∞

j=1 zjb (L)
)
, and thus the spectral weighting

function is Z (ω) = 1 + 2λ−1
∑∞

j=1 cos (ωj) zj, as in the text.

C Derivation of weighting function with multiple priced

variables

The impulse response function is denoted

ḡk ≡ JΓk (81)

where ḡk is an M × N matrix whose {m,n} element determines the effect of a shock to the nth
element of εt on the mth element of X̄t+k. The innovation to the SDF is then

∆Et+1mt+1 = −
( ∞∑
k=0

Zkḡk

)
εt+1 (82)

The price of risk for the jth element of ε is simply the jth element of
∑∞

k=0 Zkḡk.
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As before, we take the discrete Fourier transform of {ḡk}, defining

G̃ (ω) ≡
∞∑
k=0

e−iωkḡk (83)

Following the same steps as in section 2 and defining G (ω) ≡ re
(
G̃ (ω)

)
, we arrive at

∞∑
k=0

ZkḡkBj =
1

2π

∫ π

−π
~Z(ω)G (ω)Bjdω (84)

=
1

2π

∫ π

−π

∑
m

~Zm(ω)Gm,j (ω) dω (85)

where

~Z (ω) ≡ Z0 + 2
∞∑
k=1

Zk cos (ωk) (86)

and where ~Zm (ω) denotes the mth element of ~Z (ω) and Gm,j (ω) denotes the m, jth element of

G (ω). We thus have M different weighting functions, one for each of the priced variables. The

M weighting functions each multiply N different impulse transfer functions, Gm,j (ω). The price of

risk for shock j depends on how it affects the various priced variables at all horizons.

D Robustness tests for the empirical analysis and factor

loadings

This section discusses three issues related to the robustness of the main results. First, we bootstrap

the t-statistics to account for the possibility that the GMM asymptotics provide a poor small-sample

approximation. Second, we augment our set of test assets with nine risk-sorted portfolios and find

similar results to what is in the main text. Finally, we report the factor loadings of the individual

portfolios to emphasize the fact that there large and statistically significant difference in the factor

loadings across portfolios.

D.1 Bootstrapped t-statistics

We compute bootstrapped t-statistics following suggestions in Efron and Tibshirani (1994). Specif-

ically, in every bootstrap sample we calculate the t-statistic for each coeffi cient and then use the

simulated distribution of the t-statistics to construct p-values for the test of whether the coeffi cients

are different from zero.
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The estimation has two separate parts: the VAR and the asset pricing equations. For the VAR,

we bootstrap the residuals, and then use the simulated innovations to construct a new time series

of the state variables (based on the estimated feedback matrix). For the test assets, we draw the

returns for the same dates for which we drew the VAR residuals. More concretely, given a sample

size of N , we take (discrete) uniformly distributed draws from the interval [1, N ] with replacement.

The jth draw in bootstrap simulation i is denoted bij (that is, each b
i
j is a random draw from the

discrete uniform distribution on [1, N ]). The ith simulated dataset is then the set of VAR residuals

and test asset returns for observations
{
bij
}N
j=1
. To construct the set of state variables, we draw an

initial value of the state variables randomly from the set of observations and then use the drawn

innovations to construct the full sample.

The estimation then proceeds on the simulated dataset exactly as it does on the true dataset.

For each simulated sample we form t-statistics for the difference between the bootstrapped estimate

of the coeffi cient and the original point estimate. Suppose the empirically observed t-statistic in the

main estimate for some coeffi cient k is equal to t̂k > 0. Then the bootstrapped p-value is twice the

fraction of the simulated t-statistics at least as high as t̂k (for a full description of the procedure,

see Efron and Tibshirani, 1994)

Table A1 replicates table 2 but using bootstrapped p-values instead of the asymptotic values

reported in table 2. We now obtain far more significant coeffi cients. The reason is that according to

the bootstrap, many of the estimators are substantially biased (which should not be too surprising,

since it is well known that GMM can be poorly behaved in small samples). For example, when we

simulate the model using consumption growth as the priced risk factor, the coeffi cient estimates

are in general substantially smaller than we observe in the empirical sample, which implies that

the estimator is biased downwards. By bootstrapping the t-statistics, we are implicitly taking this

bias into account when forming p-values (though note that to be conservative we do not adjust the

point estimate to account for the bias as this would generally increase the variance of the estimate).

The basic result in table A1 is that the results we obtain are if anything stronger when we use

bootstrapped confidence intervals rather than those obtained from the asymptotic distribution.

D.2 Risk-sorted portfolios

The 25 Fama—French portfolios were originally constructed because their returns spanned a number

of observed anomalies in the cross-section of excess returns. We would not necessarily expect them

to have large spreads in their loadings on shocks to consumption growth at different horizons. In

this section we therefore construct portfolios that are specifically designed to have a large spread

in factor loadings.

In every quarter, we estimate factor loadings with respect to the low- and business-cycle fre-
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quency shocks (we refrain from also sorting on the high-frequency shocks to keep the portfolios

relatively large and well diversified). The loadings are estimated on quarterly data over the previ-

ous 10 years. The loadings on each factor are split into terciles and we construct 3 × 3 portfolios.

The low- and business-cycle frequency shocks are constructed using the bandpass basis and equation

(44). Specifically, we have

∆Et+1Mt+1 = −q̄′
( ∞∑
j=0

HjB1Φ
j

)
εt+1 (87)

The rotated shocks are thus,

ut+1 =

( ∞∑
j=0

HjB1Φ
j

)
εt+1 (88)

And the low- and business-cycle frequency components are the first two elements of this vector.

Table A1 reports results using the risk-sorted portfolios in addition to the size- and book/market-

sorted portfolios. The results correspond to those in table 2 in that we use the effi cient GMM

weighting matrix. The left-hand set of columns combines the 9 risk-sorted portfolios with the

25 Fama—French portfolios used in the main text, while the right-hand side uses only 6 size- and

book/market-sorted portfolios (two size categories and three book/market categories) to put rela-

tively more weight on the risk-sorted portfolios.

In both sets of columns we replicate our main results that low-frequency components of con-

sumption growth and other real variables are significantly priced under the bandpass basis, and

that few if any coeffi cients are significant with the utility basis. The coeffi cients are also of a similar

magnitude to those in table 2.

D.3 Factor loadings

Table A3 reports the factor loadings and standard errors for the 25 Fama—French portfolios and

our nine risk-sorted portfolios. For the Fama—French portfolios, the differences in loadings on both

the low- and business-cycle-frequency shocks are large and statistically significant for all the small

versus large comparisons. Small firms appear to be robustly more exposed to long-run and business-

cycle shocks than large firms, and this wide spread in factor loadings is what helps us identify the

risk prices in tables 2 and 3. On the value-growth dimension we find a much smaller spread, most of

the time statistically insignificant. In fact, we find no significant spread between value and growth

stocks if one excludes the extreme growth portfolios (especially the small growth portfolio, typically

diffi cult to price), which display a modestly higher exposure to long-run and business-cycle shocks.

We conclude that most of the identification within the 25 Fama-French portfolio comes from the

heterogeneity in loadings between small and large firms, though we note that it is not the main
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purpose of this paper to explain the small-large or value-growth puzzle.

We see similarly large variation in the factor loadings for the risk-sorted portfolios. Interestingly,

it seems that the Fama—French portfolios actually have a slightly wider degree of variation in their

loadings. This is due to two factors. First, there are simply more of the Fama—French portfolios,

so we are more likely to find large differences. Second, factor loadings for individual firms are not

particularly persistent (especially since we estimate them using quarterly data, so the loadings used

for portfolio formation may be somewhat imprecise). The resulting risk-sorted portfolios thus have

a much smaller spread in post-formation loadings than they do in their pre-formation loadings.

39



Figure 1. Impulse response functions and impulse transfer functions

Notes: The left panel plots responses of the level of consumption to four hypothetical shocks. The right-hand panel plots the fourier transforms of 

the shocks to consumption growth , which we refer to as the impulse transfer functions
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Figure 2. Theoretical spectral weighting functions

Notes: Plots of the spectral weighting function Z for various utility functions.  The x-axis is the cycle length. In the left-hand panel, the parameter b determines the 

importance of the internal habit in the agent's utility function. In the right-hand panel, α is the coefficient of relative risk aversion; ρ is the inverse elasticity of 

intertemporal substitution; and θ is the discount factor.
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Notes: Impulse transfer functions estimated from a VAR in consumption growth and the two principal 

components. Shaded regions represent 95-percent confidence intervals. The left-hand plots are for all 

frequencies, while the right-hand plots zoom in on cycles longer than 5 years. The range between the lines 

on the right-hand side contains 50 percent of the mass of the weighting function for Epstein–Zin 

preferences with RRA=5 and EIS=2 (cycles longer than 230 years). The x-axis gives frequencies in terms of 

quarters. Shocks are not orthogonalized.

Figure 3. Estimated impulse transfer functions for consumption VAR
All frequencies Cycles longer than 5 years
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Figure 4. Estimated spectral weighting functions for equities
All frequencies Cycles longer than 5 years

Notes: Estimated weighting functions for consumption growth as the priced variable. Risk prices are estimated using the 25 Fama–French portfolios 

with the efficient weighting matrix for GMM. Shaded areas denote 95-percent confidence regions. The utility basis uses a discount factor of 0.975 at 

the annual horizon. The x-axis gives frequencies in quarters.

Bandpass basis

Bandpass basis

Utility basis
Utility basis



Table 1. Regression coefficients from VARs

Cons. Price Cycle Cons. Price Cycle Cons. Price Cycle

Cons. 0.322 *** 0.629 *** 0.4935 ** 0.1459 ** -0.485 * -0.516 ** 0.1658 ** -0.207 0.129

se (0.08) (0.23) (0.14) (0.07) (0.29) (0.21) (0.07) (0.15) (0.17)

Lag 1 Lag 2 Lag 3

Notes: VAR results for consumption growth and the two principal components. The table reports the regression of consumption 

growth on its own lags and those of the two pricipal components. The sample is 1952:1–2011:2, quarterly. Standard errors are 

reported in brackets. * indicates significance at the 10-percent level, ** the 5-percent level, and *** the 1-percent level.



Table 2. Parameter estimates for the spectral weighting function (efficient matrix for GMM)

Portfolios:

Basis: Bandpass t-stat Utility t-stat Bandpass t-stat Utility t-stat

q1 269 2.47 ** 555.47 1.66 * 112 1.95 * 197.52 1.35

q2 -431 -1.17 -442.65 -0.44 -116 -0.87 -279.30 -0.65

q3 138 0.33 616.12 0.32 -134 -0.70 504.32 0.63

q1 124 1.85 * 231.42 0.69 91 1.64 * 186.58 0.69

q2 -106 -1.29 119.67 0.87 -72 -1.13 26.70 0.24

q3 127 1.33 -217.42 -1.04 22 0.40 -77.25 -0.49

q1 49 2.66 *** 75.62 1.69 * 15 2.30 ** 19.96 1.58

q2 -38 -1.26 44.87 2.29 ** -2 -0.30 10.79 2.37 **

q3 33 1.70 * -86.66 -0.63 -5 -0.83 19.62 0.55

q1 12 2.03 ** 29.25 1.03 14 2.26 ** 31.87 1.07

q2 -7 -1.18 -0.22 -0.03 -7 -1.22 4.93 0.88

q3 -7 -1.12 5.17 0.36 -3 -0.66 2.11 0.15

q1 27 2.16 ** 39.33 0.81 15 1.54 26.42 0.82

q2 -25 -1.11 67.18 2.59 *** -20 -1.26 -5.05 -0.41

q3 61 3.10 *** -90.96 -1.66 * -4 -0.45 -20.23 -0.63

q1 16 3.52 *** 27.00 2.44 ** 3 1.96 ** 5.38 1.40

q2 -3 -0.45 -4.74 -0.12 2 1.36 -11.73 -1.19

q3 4 0.24 55.19 0.85 -14 -2.26 ** 33.03 1.97 **

FF25 FF25+IND

Notes: Risk price estimates for the period 1952:1–2011:2 using quarterly data. The priced variable is listed in the left-hand column.

The left-hand set of columns uses the Fama–French portfolios as the test assets; the right-hand columns add 49 industry portfolios

from Ken French's website. For the bandpass basis, q1 is the price of low-frequency risk, q2 business-cycle frequency, and q3 high

frequency. For the utility basis, q1 is the low-frequency component, q2 the constant, and q3 the coefficient on cos(w). The asset

pricing moments are estimated using two-step GMM. The "t-stat" column gives the t statistics for the risk prices. * indicates

significance at the 10-percent level, ** the 5-percent level, and *** the 1-percent level. t-stats take into account VAR estimation

uncertainty, using GMM. The weighting matrix is constructed using the variance-covariance matrix of the asset pricing moment

residuals.
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Table 3. Parameter estimates for the spectral weighting function (identity matrix for GMM)

Portfolios:

Basis: Bandpass t-stat Utility t-stat Bandpass t-stat Utility t-stat

q1 336 1.73 * 703.66 1.62 112 1.22 198.11 1.02

q2 -541 -1.14 -340.19 -0.24 -116 -0.54 -277.49 -0.58

q3 401 0.72 558.13 0.21 -131 -0.52 502.47 0.60

q1 138 1.55 258.39 0.62 91 1.38 186.71 0.62

q2 -117 -1.11 133.31 0.80 -71 -0.85 25.95 0.22

q3 139 1.10 -237.80 -0.95 21 0.18 -75.69 -0.37

q1 54 1.79 * 82.87 1.43 15 0.95 19.96 0.72

q2 -40 -0.98 52.91 1.82 * -2 -0.14 10.77 0.84

q3 37 1.31 -91.29 -0.48 -5 -0.37 19.62 0.40

q1 13 1.44 30.07 0.86 14 1.55 31.64 0.94

q2 -7 -0.80 0.04 0.00 -7 -0.86 4.74 0.63

q3 -7 -0.73 4.15 0.24 -3 -0.40 2.20 0.13

q1 37 1.70 * 54.66 0.77 15 0.92 26.06 0.68

q2 -36 -1.03 84.97 2.03 * -19 -0.82 -5.58 -0.29

q3 77 2.15 ** -118.72 -1.35 -4 -0.25 -19.59 -0.34

q1 18 2.49 ** 30.60 1.98 ** 3 0.75 5.44 0.66

q2 -3 -0.36 2.03 0.03 2 0.84 -11.63 -0.70

q3 11 0.37 57.95 0.59 -13 -1.14 33.05 1.25

Fixed 

Investment

Residential 

Investment

Notes: See table 2. These estimates differ only in that they use the identity matrix for the GMM weighting matrix.
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Table 4. Parameter estimates with returns as priced variable

coeff t-stat coeff t-stat coeff t-stat coeff t-stat

q1 Long-run 8.36 2.19 ** 7.99 1.65 * 7.01 3.06 *** 7.07 1.57

q2 Constant 9.99 3.34 *** 9.56 1.81 * 8.60 6.25 *** 8.63 2.09 **

q1 Long-run 13.10 2.36 ** 13.65 1.53 9.65 2.62 *** 9.65 1.39

q2 Constant -2.36 -0.65 -2.76 -0.72 -1.31 -0.41 -1.36 -0.48

coeff t-stat coeff t-stat coeff t-stat coeff t-stat

q1 Long-run 1.98 0.29 2.61 0.26 6.36 1.33 6.59 0.83

q2 Constant 10.40 0.95 10.57 0.90 8.69 4.79 *** 8.75 2.09 **

q3 High Freq 114.20 1.05 108.64 1.01 12.58 0.17 10.07 0.07

q1 Long-run 9.22 0.95 9.26 0.44 15.53 2.53 ** 15.60 1.45

q2 Business cycle 46.38 0.28 52.58 0.20 -76.23 -0.82 -77.02 -0.43

q3 Short-run -45.62 -0.30 -51.75 -0.22 70.11 0.81 70.80 0.42

FF25 FF25 + Industry

Weighting: S Weighting: I

Utility basis

Bandpass basis

Weighting: S

Notes: Risk price estimates for the period 1926:3 - 2011:2, using quarterly data. The top panel uses two parameters for the weighting function (a long-

run component and a constant), the bottom panel uses three parameters corresponding to the decomposition of Table 2. t-statistics take into account 

VAR estimation uncertainty using GMM. The weighting matrix used is either the inverse of the variance-covariance matrix of the moment residuals 

(Weighting: S) or the identity matrix (Weighting: I).

FF25 FF25 + Industry

Weighting: I

Bandpass basis

Weighting: S Weighting: I Weighting: S Weighting: I

Utility basis



Table A1. Bootstrapped p-values for table 2

Portfolios:

Basis: Bandpass p-value Utility p-value Bandpass p-value Utility p-value

q1 269 0.00 *** 555.47 0.00 *** 112 0.00 *** 197.52 0.01 **

q2 -431 0.00 *** -442.65 0.10 * -116 0.04 ** -279.30 0.05 *

q3 138 0.88 616.12 0.29 -134 0.62 504.32 0.15

q1 124 0.00 *** 231.42 0.01 ** 91 0.00 *** 186.58 0.00 ***

q2 -106 0.04 ** 119.67 0.31 -72 0.01 ** 26.70 0.60

q3 127 0.12 -217.42 0.17 22 0.32 -77.25 0.31

q1 49 0.00 *** 75.62 0.00 *** 15 0.04 ** 19.96 0.05 *

q2 -38 0.01 *** 44.87 0.01 *** -2 0.38 10.79 0.09 *

q3 33 0.01 ** -86.66 0.10 * -5 1.05 19.62 1.12

q1 12 0.03 ** 29.25 0.02 ** 14 0.00 *** 31.87 0.00 ***

q2 -7 0.41 -0.22 1.00 -7 0.08 * 4.93 0.45

q3 -7 0.77 5.17 0.74 -3 1.10 2.11 1.07

q1 27 0.00 *** 39.33 0.03 ** 15 0.01 ** 26.42 0.02 **

q2 -25 0.17 67.18 0.00 *** -20 0.03 ** -5.05 1.05

q3 61 0.00 *** -90.96 0.01 ** -4 1.33 -20.23 0.19

q1 16 0.00 *** 27.00 0.00 *** 3 0.30 5.38 0.25

q2 -3 0.25 -4.74 0.43 2 0.79 -11.73 0.26

q3 4 1.12 55.19 0.07 * -14 0.21 33.03 0.02 **

Notes: See table 2. These results use the efficient weighting matrix for the GMM estimation, but compute the standard errors using 

bootstrap (2500 draws). 
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Table A2. Results using risk-sorted portfolios

Portfolios:

Basis: Bandpass t-stat Utility t-stat Bandpass t-stat Utility t-stat

q1 275 1.97 ** 382.08 1.29 276 2.04 ** 328.92 1.13

q2 -531 -1.20 -798.65 -0.75 -565 -1.14 -813.39 -0.86

q3 -167 -0.29 1370.61 0.62 -271 -0.47 1300.84 0.66

q1 194 1.64 414.23 0.37 148 1.59 285.22 0.36

q2 -248 -1.64 87.77 0.18 -203 -1.73 * 48.45 0.13

q3 191 1.20 -369.39 -0.75 146 1.28 -187.73 -0.53

q1 39 3.15 *** 35.72 1.95 * 18 2.03 *** -1.94 -0.12

q2 -33 -1.14 30.17 2.11 ** -6 -0.32 25.59 3.71 ***

q3 24 1.39 -42.52 -0.55 12 1.17 34.60 0.87

q1 12 2.16 ** 13.91 0.86 14 1.50 10.87 0.72

q2 -15 -2.48 ** -26.27 -5.33 *** -11 -1.18 -12.77 -2.06 **

q3 -16 -3.35 *** 10.27 1.41 -9 -1.57 13.08 1.10

q1 36 2.23 ** 66.46 0.91 26 1.94 * 49.26 0.86

q2 -52 -1.63 76.73 1.21 -36 -1.39 30.96 0.62

q3 95 2.42 ** -170.89 -2.35 ** 48 1.35 -101.63 -2.14 **

q1 7 3.24 *** 17.83 2.40 ** 0 0.07 14.01 1.86 *

q2 1 0.46 -4.32 -0.14 6 2.24 ** -1.12 -0.04

q3 2 0.21 40.91 0.81 4 0.49 35.89 0.71

Notes: See table 2. These results use the efficient weighting matrix for GMM. The FF6 portfolios are based on sorts into 

two bins by size and three by book/market. The 9 risk-sorted portfolios are based on three bins each for loadings on the 

low- and business-cycle frequency shocks. The loadings are measured using the previous 20 quarters of data. 
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Table A3. Factor loadings for test portfolios

Low-frequency loadings:

Small 72.4 (12.3) 68.0 (10.1) 53.0 (9.0) 49.9 (8.6) 53.9 (9.8) -18.5 (6.7)

2 64.6 (10.9) 55.2 (9.0) 48.5 (8.1) 48.1 (8.0) 51.7 (9.0) -12.9 (6.7)

3 62.5 (9.7) 46.9 (8.1) 41.6 (7.5) 41.8 (7.5) 43.5 (8.3) -18.9 (6.7)

4 54.0 (8.8) 45.2 (7.6) 41.3 (7.4) 41.4 (7.3) 48.7 (8.4) -5.3 (6.5)

Large 41.6 (7.1) 32.6 (6.5) 29.3 (6.1) 31.3 (6.5) 38.2 (7.4) -3.4 (5.9)

Difference -30.8 (8.9) -35.4 (7.0) -23.7 (6.4) -18.6 (5.9) -15.7 (6.8)

Business-cycle frequency loadings:

Small 39.1 (5.6) 35.6 (4.6) 26.9 (4.1) 25.1 (4.0) 28.5 (4.5) -10.6 (3.1)

2 33.7 (5.0) 28.0 (4.1) 24.4 (3.7) 23.3 (3.7) 26.1 (4.1) -7.6 (3.1)

3 32.3 (4.4) 23.9 (3.7) 21.0 (3.5) 21.1 (3.5) 21.9 (3.8) -10.5 (3.1)

4 27.3 (4.0) 23.1 (3.5) 21.4 (3.4) 20.3 (3.4) 24.8 (3.9) -2.4 (3.0)

Large 22.5 (3.2) 17.3 (3.0) 16.4 (2.8) 17.2 (3.0) 20.5 (3.4) -2.0 (2.7)

Difference -16.6 (4.1) -18.3 (3.2) -10.6 (3.0) -7.8 (2.8) -8.0 (3.2)

Low-frequency loadings:

LF beta low 23.5 (6.0) 23.8 (5.7) 26.7 (6.4) 3.2 (3.8)

2 26.3 (6.0) 27.9 (6.4) 35.8 (7.3) 9.5 (3.7)

LF beta high 35.6 (7.8) 46.7 (8.8) 57.8 (11.1) 22.2 (5.5)

Difference 12.1 (4.9) 22.9 (5.8) 31.2 (7.6)

Business-cycle frequency loadings:

LF beta low 16.6 (3.6) 17.0 (3.5) 19.7 (3.9) 3.1 (2.3)

2 18.5 (3.7) 20.7 (3.9) 27.1 (4.4) 8.5 (2.3)

LF beta high 26.4 (4.7) 33.8 (5.3) 42.0 (6.7) 15.6 (3.4)

Difference 9.7 (3.0) 16.8 (3.5) 22.2 (4.6)

Notes: Each cell of each table is a factor loading for one of the portfolio returns with respect to either the 

low- or business-cycle frequency shock. The top two panels report results for the 25 Fama–French portfolios, 

while the bottom two panels are for the risk-sorted portfolios used in table A2. The numbers in parentheses 

are standard errors for the estimated factor loadings. 
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