
NBER WORKING PAPER SERIES

THE RESPONSE OF DRUG EXPENDITURES TO NON-LINEAR CONTRACT DESIGN:
EVIDENCE FROM MEDICARE PART D

Liran Einav
Amy Finkelstein
Paul Schrimpf

Working Paper 19393
http://www.nber.org/papers/w19393

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2013

We thank Jason Abaluck, Raj Chetty, John Friedman, Nathan Hendren, Maria Polyakova, and many
seminar participants for helpful discussions. Ray Kluender provided extraordinary research assistance.
We gratefully acknowledge support from the NIA (R01 AG032449). The views expressed herein are
those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

At least one co-author has disclosed a financial relationship of potential relevance for this research.
Further information is available online at http://www.nber.org/papers/w19393.ack

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2013 by Liran Einav, Amy Finkelstein, and Paul Schrimpf. All rights reserved. Short sections of
text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.



The Response of Drug Expenditures to Non-Linear Contract Design: Evidence from Medicare
Part D
Liran Einav, Amy Finkelstein, and Paul Schrimpf
NBER Working Paper No. 19393
August 2013
JEL No. D12,G22

ABSTRACT

We study the demand response to non-linear price schedules using data on insurance contracts and
prescription drug purchases in Medicare Part D. Consistent with a static response of drug use to price,
we document bunching of annual drug spending as individuals enter the famous "donut hole," where
insurance becomes discontinuously much less generous on the margin. Consistent with a dynamic
response to price, we document a response of drug use to the future out-of-pocket price by using variation
in beneficiary birth month which generates variation in contract duration during the first year of eligibility.
Motivated by these two facts, we develop and estimate a dynamic model of drug use during the coverage
year that allows us to quantify and explore the effects of alternative contract designs on drug expenditures.
For example, our estimates suggest that "filling" the donut hole, as required under the Affordable Care
Act, will increase annual drug spending by $180 per beneficiary, or about 10%. Moreover, almost
half of this increase is "anticipatory," coming from beneficiaries whose spending prior to the policy
change would leave them short of reaching the donut hole. We also describe the nature of the utilization
response and its heterogeneity across individuals and types of drugs.

Liran Einav
Stanford University
Department of Economics
579 Serra Mall
Stanford, CA  94305-6072
and NBER
leinav@stanford.edu

Amy Finkelstein
Department of Economics, E17-228
MIT
77 Massachusetts Avenue
Cambridge, MA 02139
and NBER
afink@mit.edu

Paul Schrimpf
Vancouver School of Economics
University of British Columbia
997 - 1873 East Mall
Vancouver, BC V6T1Z1
schrimpf@mail.ubc.ca



1 Introduction

A classic empirical exercise is to study how demand responds to price. Many settings, from cell

phones to electricity to health insurance, give rise to non-linear pricing schedules. These o¤er both

challenges and opportunities for empirical estimation, while at the same time raising interesting

conceptual questions regarding the nature of the demand response. In this paper, we study the

demand response to non-linear contracts, and its implications for the impact of counterfactual

contract design, in a particular context: the Medicare Part D prescription drug bene�t.

The 2006 introduction of Medicare Part D was by far the most important bene�t expansion in

Medicare�s nearly half-century of existence. As of November 2012, 32 million people (about 60%

of Medicare bene�ciaries) were enrolled in Part D, with expenditures projected to be $60 billion

in 2013, or about 11% of total Medicare spending (Kaiser Family Foundation 2012a, 2012b). As

rising drug spending places growing pressure on the federal budget, a natural question concerns

the expenditure implications of alternative contract designs for Part D plans. For example, under

the 2010 A¤ordable Care Act, drug bene�ts are slated to be further expanded by the requirement

that the standard (i.e. minimal) bene�t plan provide coverage in the famed �donut hole�by 2020

(Kaiser Family Foundation 2010). The expenditure implications of this change, and of alternative

potential contract designs, are therefore, not surprisingly, the subject of considerable interest and

attention.

We analyze the response of drug expenditures to insurance contract design. We use detailed

micro data on insurance contracts and prescription drug purchases from a 20% random sample

of Medicare Part D bene�ciaries from 2007 to 2009. Our approach is motivated by the highly

non-linear nature of the Part D contracts.

The nature of the contracts is illustrated by the government-de�ned standard bene�t design,

shown in Figure 1 for 2008. In this contract, the individual initially pays for all expenses out of

pocket, until she has spent $275, at which point she pays only 25% of subsequent drug expenditures

until her total drug spending reaches $2,510. At this point the individual enters the famed �donut

hole,� or the �gap,� within which she must once again pay for all expenses out of pocket, until

total drug expenditures reach $5,726, the amount at which catastrophic coverage sets in and the

marginal out-of-pocket price of additional spending drops substantially, to about 7%. Individuals

may buy plans that are actuarially equivalent to, or have more coverage than, the standard plan,

so that the exact contract design varies across individuals. Nonetheless, a common feature of these

plans is the existence of substantial non-linearities that are similar to the standard coverage we have

just described. For example, in our baseline sample, a bene�ciary faces an average price increase

of almost 60 cents for every dollar of total spending as she enters the coverage gap.

Motivated by these contract features, we begin in Section 2 by presenting a simple, dynamic

model of an optimizing agent�s prescription drug utilization decisions given a speci�c, non-linear

contract design. The model illustrates the key economic objects that determine the expenditure

response to the contract. The �rst is the distribution of health-related events, which determine the

set of potential prescription drug expenditures. The second is the �primitive�price elasticity that
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captures the individual�s willingness to trade o¤ health and income. The third object is the extent

to which individuals respond to the dynamic incentives associated with the non-linear contract.

After describing the institutional setting and the data in more detail in Section 3, we continue

in Section 4 by presenting two pieces of descriptive evidence, which point to the presence and

qualitative importance of the last two objects of the model. First, we document signi�cant �ex-

cess mass,� or �bunching�of annual spending levels around the kink in the budget set, at which

bene�ciaries enter the gap and the price increases substantially. This basic behavioral response

is visually apparent in even the basic distribution of annual drug spending in any given year, as

shown in Figure 2 for 2008. The exact amount at which the kink occurs changes from year to year

as the government adjusts the parameters associated with the standard Part D bene�t design. We

show that the location of the bunching moves in lock steps with these changes. This illustrates the

presence of a non-zero price response, or willingness to trade o¤ health and income.

Second, we show that individuals respond to the dynamic incentives provided by the non-linear

Part D contract, which is the other key economic element of the model. To do so, we take advantage

of the fact that individuals newly eligible for Medicare can enroll in a Part D plan beginning the

month that they turn 65. Since their initial coverage period will be the remaining length of the

calendar year, the initial contract length among 65 year old bene�ciaries will vary depending on

their birth month. These institutional rules thus provide a setting in which individuals who enroll

in the same plan but in di¤erent months face the same initial price for drugs but di¤erent future

prices for a reason that is plausibly unrelated to prescription drug use. Using this design, we �nd

that current prescription drug use responds to the future price arising from the non-linear contract.

In Section 5 we parameterize the model and estimate it using method of moments. The foregoing

descriptive patterns are used, along with more standard moments of the spending distribution, in

estimation. The estimated model �ts the data quite well.

Section 6 presents the main results. We focus primarily on a variety of counterfactual policy

simulations that examine the e¤ect of alternative contract designs on spending. For example,

we consider the requirement in the 2010 A¤ordable Care Act (ACA) that, e¤ective in 2020, the

standard (i.e. minimal) bene�t plan eliminates the donut hole, providing the same 25% consumer

cost-sharing from the deductible to the catastrophic limit (compared to the 100% consumer cost

sharing in the gap in the original design). We estimate that this ACA policy of ��lling the gap�will

increase total drug spending by $180 per bene�ciary (or about 10%), and will increase Medicare

drug spending by substantially more (by $275 per bene�ciary, or about 30%). By comparison,

holding behavior constant, we estimate the �mechanical� consequence of �lling the gap would be

to increase average Medicare drug spending by only about $150, or just over half of our estimated

e¤ect.

Our results illustrate some of the subtle e¤ects that non-linear contracts can produce, including

changes in spending behavior for individuals that are far away from the gap, and how �lling the gap

can, somewhat counter-intuitively, provide less coverage on the margin to some individuals, causing

them to decrease their spending. We illustrate some of these e¤ects by exploring how counterfactual

contract changes a¤ect spending of individuals with di¤erent expected prescription drug spending.
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For example, we estimate that almost half of our estimated $180 per-bene�ciary increase in annual

total drug spending from �lling the gap comes from �anticipatory�responses by individuals whose

annual spending prior to the policy change would have been below the gap.

In the last section of the paper, we explore in some more detail the source and nature of the

spending response to the insurance contract. We do so by returning to the descriptive analysis of

�bunching�in response to the kink. We show that at least some of this bunching is associated with

a slowdown in the propensity to purchase drugs toward the end of the coverage year by individuals

near the kink. This slowdown occurs across a variety of classes of drugs; it is somewhat more

pronounced for chronic than acute drugs and substantially more pronounced for branded than

generic drugs. We also show that some, but not all of this decline in purchasing at the end of

the year likely re�ects inter-temporal substitution whereby individuals around the gap defer �lling

some of their prescription drugs until January of the subsequent year, when coverage resets and the

out-of-pocket price declines. Finally, we explore heterogeneity in the response to the kink across

individuals, �nding, for example, that healthier individuals are associated with greater bunching

at the kink, and thus with presumably greater sensitivity to price.

Our paper is related to several distinct literatures. First, not surprisingly, there is a growing

literature on the new Part D program. Much of this literature focuses on consumer�s choices of

plans (Heiss et al. 2010, 2012; Abaluck and Gruber 2011; Kling et al. 2012; Ketchem et al. 2012)

although there are papers exploring other topics, such as the impact of the introduction of Part D

on drug use (Yin et al. 2008; Duggan and Scott Morton 2010), and the impact of public subsidies

on �rm pricing behavior (Decarolis 2012).

Second, outside of the Part D context, there is an empirical literature examining how prescrip-

tion drug spending responds to cost-sharing features of drug insurance. Chandra, Gruber, and

McKnight (2010) provide one recent estimate, as well as a review of a handful of prior papers.

In general, this literature has tended to provide �reduced form� estimates of the drug spending

impact of plausibly exogenous variation in insurance contracts. In addition, the contracts studied

usually di¤er in both the prescription drug cost-sharing and medical cost-sharing, complicating the

isolation of the own-price e¤ect of prescription drugs.1

Third, there is, of course, a vast and venerable empirical literature on the �moral hazard�

(that is, spending) e¤ects of medical insurance contracts that cover outpatient and inpatient care.

We make no attempt to summarize this large literature here. We note, however, that most of it

has aimed to characterize the spending e¤ect of a health insurance contract with respect to �the

price� consumers face under the contract, despite the highly non-linear nature of many observed

contracts, and hence the di¢ culty in de�ning a single price induced by the non-linear budget set

(Aron-Dine et al. 2013). In this respect, our attention to non-linear contract design for prescription

drug insurance mirrors the recent �urry of interest in how non-drug medical spending responds to

1Notable exceptions are Tur-Prats et al. (2012), who examine the drug expenditure response to a discrete change

in prescription drug cost-sharing only when individuals retire in Spain, and recent papers examining the impact of

the Medicare Part D contract on drug use (e.g. Abaluck, Gruber, and Swanson 2013; Joyce et al. 2013).
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non-linear medical insurance contracts (Vera-Hernandez 2003; Bajari et al. 2011; Kowalski 2011;

Marsh 2011; Aron-Dine et al. 2012).

Finally, our analysis of �bunching�or �excess mass�in response to the price increase at the kink

is related to a recent set of studies analyzing bunching of annual earnings in response to the non-

linear budget set created by progressive income taxation, such as the Earned Income Tax Credit

(Saez 2010; Chetty et al. forthcoming) and the Danish income tax schedule (Chetty et al. 2011).

This literature has emphasized that since the amount of excess mass at a kink depends not only

on the underlying behavioral elasticity but also on frictions, excess mass estimates alone cannot

directly translate into an underlying behavioral elasticity (Chetty et al. 2011; Chetty 2012; Kleven

and Waseen 2013). The frictions that are often pointed to in the labor supply context �such as

supply side constraints on the number of hours that can be chosen to work and limited awareness

of the budget set �are likely to be substantially less important in our setting. Individuals make

an essentially continuous choice about drug spending (up to the lumpiness induced by the cost

of a prescription) and get �real time� feedback on the current price they face for a drug at the

point of purchase.2 On the other hand, the translation of our bunching estimate into an underlying

behavioral elasticity is not as direct as in the static framework developed by Saez (2010), since we

must account for the fact that decisions are made sequentially throughout the year and information

is obtained gradually as health shocks arrive. In this regard, our dynamic model is similar in spirit

to the approach taken by Manoli and Weber (2011) in analyzing the response of retirement behavior

to kinks in employer pension bene�ts as a function of job tenure.

2 A model of prescription drug use

Figure 1 showed that Medicare Part D plans provide highly non-linear coverage, with the out-of-

pocket price changing sharply, and non-monotonically, during the year as the individual�s prescrip-

tion drug use accrues. In order to analyze the impact of di¤erent contract designs on prescription

drug spending, we model the prescription drug use decisions of an individual with a speci�c con-

tract. The model, which is similar to the one we developed previously in Aron-Dine et al. (2012),

is designed to illustrate the key economic objects that determine the expenditure response to a

contract. Our subsequent descriptive analysis will provide evidence on the presence and qualitative

importance of these key economic objects, using minimal modeling assumptions. We will then

parameterize and estimate the full model.

We consider a risk-neutral, forward looking individual who faces stochastic health shocks within

the coverage period.3 These health shocks can be treated by �lling a prescription. The individual

2This real-time price salience may contribute to the di¤erence between our �nding of bunching and the absence

of evidence of bunching by consumers at the convex kinks in the residential electricity pricing schedule, despite the

ability to make an essentially continuous choice in that context as well (Ito 2012).
3Risk neutrality simpli�es the inutition and estimation of the model. In the robustness section we describe and

estimate a speci�cation that uses a recursive utility model and allows for risk aversion and �nd that this has little
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is covered by a non-linear prescription drug insurance contract j over a coverage period of T weeks.

In our setting, as in virtually all health insurance contracts, the coverage period is annual (so that,

typically T = 52).4 Contract j is given by a function cj(�; x), which speci�es the out-of-pocket

amount c the individual would be charged for a prescription drug that costs � dollars, given total

(insurer plus out-of-pocket) spending of x dollars up until that point in the coverage period.

The individual�s utility is linear and additive in health and residual income. Health events are

given by a pair (�; !), where � > 0 denotes the dollar cost of the prescription and ! > 0 denotes the

(monetized) health consequences of not �lling the prescription. We assume that individuals make a

binary choice whether to �ll the prescription, and a prescription that is not �lled has a cumulative,

additively separable e¤ect on health. Thus, conditional on a health event (�; !), the individual�s

�ow utility is given by

u(�; !;x) =

(
�cj(�; x) if prescription �lled

�! if prescription not �lled
: (1)

Health events arrive with a weekly probability �, and when they arrive they are drawn independently

from a distribution G(�; !). It is also convenient to de�ne G(�; !) � G2(!j�)G1(�).
Given this setting, the only choice individuals make is whether to �ll each prescription or not.

Optimal behavior can be characterized by a simple �nite horizon dynamic problem. The two state

variables are the number of weeks left until the end of the coverage period, which we denote by t,

and the total amount spent so far, denoted by x. The value function v(x; t) represents the present

discounted value of expected utility along the optimal path. Speci�cally, the value function is given

by the solution to the following Bellman equation:

v(x; t) = (1� �)�v(x; t� 1) + �
Z
max

(
�cj(�; x) + �v(x+ �; t� 1);
�! + �v(x; t� 1)

)
dG(�; !); (2)

with terminal conditions of v(x; 0) = 0 for all x. If a prescription arrives, the individual �lls it if

the value from doing so, �cj(�; x)+ �v(x+ �; t� 1), exceeds the value obtained from not �lling the

prescription, �! + �v(x; t� 1).
The model thus boils down to a statistical description of the individual�s health shocks, and two

key economic objects which will be the focus of the rest of the paper. The individual�s health shocks

are captured by the arrival rate of prescriptions �, and their associated (marginal) distribution of

cost G1(�).

The �rst key economic object, summarized byG2(!j�), can be thought of as the �primitive�price
elasticity that captures substitution between health and income. Speci�cally, G2(!j�) represents
the distribution of the (monetized) utility loss ! from not �lling a prescription of total cost �. Of

interest is the distribution of ! relative to �, or simply the distribution of the ratio !=�. As !=�

a¤ect on our main counterfactual estimates.
4Aggregating to the weekly level reduces the computational cost of estimating the model. This seems to be a

not unreasonable approximation given that many prescriptions may arrive as a �bundle�that needs to be consumed

together.
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is higher (lower), the utility loss of not �lling a prescription is greater (smaller) relative to the cost

of �lling the prescription, so (conditional on the cost) the prescription is more (less) likely to be

�lled. In particular, when ! � �, the individual will �ll the prescription even if she has to pay the
full cost out of pocket, so the contract features will not a¤ect the utilization decision. However,

once ! < � the individual will �ll the prescription only if some portion of the cost is (e¤ectively)

paid by the insurance. Thus, G2(!j�) can be thought of as capturing the price elasticity that would
completely determine behavior in a constant price (linear) contract. In Section 4 we will provide

descriptive evidence of a utilization response to the large jump in price as individuals enter the gap;

this illustrates the presence of a non-zero price elasticity of demand for drugs, rejecting a model in

which ! is always at least as large as �.

The second key economic object in the model, summarized by the parameter � 2 [0; 1], cap-
tures the extent to which individuals understand and respond to the dynamic incentives associated

with the non-linear contract. At one extreme, a �fully myopic� individual (� = 0) will not �ll a

prescription of cost � if the negative health consequence of not �lling the prescription, !, is less

than the immediate out-of-pocket expenditure required to �ll the prescription, �cj(�; x). However,
individuals with � > 0 take into account the dynamic incentives and will therefore make their

decision based not only on the immediate out-of-pocket cost of �lling the prescription, but also on

the expected arrival of future health shocks and the associated sequence of prices associated with

the non-linear contract. A greater value of � increases the importance for the current utilization

decision of subsequent out-of-pocket prices relative to the immediate out-of-pocket price.5 Since

price is non-monotone in total spending (for example, rising at the kink and then falling again at

the catastrophic limit, as seen in Figure 1), whether an individual with � > 0 is more or less likely

to �ll a current prescription, relative to an individual with � = 0, will depend on their spending to

date and their expectation regarding future health shocks. In Section 4 we will present descriptive

evidence of a utilization response to the future budget set, thereby rejecting � = 0.

3 Setting and Data

Medicare provides medical insurance to the elderly and disabled. Medicare Parts A and B provide

in-patient hospital and physician coverage respectively; Part D, which was introduced in 2006, pro-

vides prescription drug coverage. Our data are comprised of a 20% random sample of all Medicare

Part D bene�ciaries in 2007 through 2009. We observe the cost-sharing characteristics of each ben-

e�ciaries�plan as well as detailed, claim-level information on any prescription drugs purchased. We

also observe basic demographic information (including age, gender, eligibility for various programs

tailored to low income individuals). In addition, we have information on each bene�ciary�s Part

5For convenience we often refer to � = 0 as �myopia� and � > 0 as �forward looking�. In practice, � is a¤ected

not only by the �pure� discount rate, but also by the extent to which individuals understand and are aware of the

budget set created by the non-linear contract, and by liquidity constraints. We thus think of � as a parameter speci�c

to our context.
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A and B claims, which we feed into CMS-provided software to construct a summary proxy of the

individual�s predicted annual drug spending, which we refer to as the individual�s �risk score.�6

Unlike Medicare Parts A and B, which provide a uniform public insurance package for all

enrollees (except those who select into the managed care option Medicare Advantage), in Medicare

Part D enrollees can choose among di¤erent prescription drug plans o¤ered by private insurers.

The di¤erent plans have di¤erent plan features and premiums. All plans provide annual coverage

by the calendar year, re-setting in January of each year, so that the individual is back on the �rst

cost-sharing arm on January 1, regardless of how much was spent in the prior year.7 Individuals

newly eligible for Medicare can enroll in a Part D plan with coverage beginning the month that

they turn 65 (CMS, 2011). Since their initial coverage period will be the remaining length of the

calendar year, this generates variation in initial contract length among 65 year old bene�ciaries

depending on their birth month; we will exploit this variation in some of the descriptive analyses

below, as well as in our estimation of the model.

Sample de�nitions and characteristics We make a number of sample restrictions to our

initial sample of approximately 16 million bene�ciary-year observations. We �rst limit our sample

to those 65 and older who originally qualify for Medicare through the Old Age and Survivor�s

Insurance. This brings our sample down to about 11.6 million bene�ciary-year observations. We

further eliminate individuals who are dually eligible for Medicaid or other low-income subsidies, or

are in special plans such as State Pharmaceutical Assistance Programs; such individuals face a very

di¤erent budget set with zero, or extremely low consumer cost-sharing, for whom the contract design

features that are the focus of the paper are essentially irrelevant. This further reduces our sample

to about 7.4 million. Finally, we limit our attention to individuals in stand-alone prescription drug

plans (PDPs), thereby excluding individuals in Medicare Advantage or other managed care plans

which bundle healthcare coverage with prescription drug coverage. This brings our sample down

to about 4.4 million. Several other more minor restrictions result in a baseline sample of about 3.9

million bene�ciary-years, comprised of about 1.7 million unique bene�ciaries.8

6Speci�cally we use CMS�2012 RxHCC risk adjustment model which is designed to predict a bene�ciary�s pre-

scription drug spending in year t as a function of their inpatient and outpatient diagnoses from year t � 1 and

demographic information (including age and sex and original route of eligibility onto Medicare). The risk scores are

designed (by CMS) to be normalized to the average Part D bene�ciary drug spending. They are used to adjust

Medicare�s per-bene�ciary payments to insurance companies. More information on the risk scores can be found here:

http://www.cms.gov/Medicare/Health-Plans/MedicareAdvtgSpecRateStats/Risk_adjustment.html
7During the open enrollment period in November and December, individuals can change their plan for the following

calendar year. Otherwise, unless a speci�c qualifying event occurs, individuals cannot switch plans during the year.
8We exclude people who have missing plan details in any month of the year in which they are enrolled or who

switch plans during the year. This excludes, among others, about 4% of the sample who die during the year. We also

eliminate the small fraction of people in plans where the kink begins at a non-standard level; we use some of these

individuals with non-standard kink levels for additional analyses in Appendix A.
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We use the baseline sample for the �rst set of descriptive analyses in Section 4 and for the

subsequent model estimation. For the second set of descriptive analyses, we restrict attention to

the small subset of the baseline sample who is 65 years old and satisfy certain other requirements

which we discuss later. Panel A of Table 1 presents some basic demographic characteristics of the

original full sample, our baseline sample, and our 65 year old sub-sample. Our baseline sample has

an average age of 76. It is about two-thirds female. The average risk score in our baseline sample

is 0.88, implying that our baseline sample has, on average, 12% lower expected spending than the

full Part D population.9

Prescription drug spending We have detailed, claim-level information on prescription drug

spending. We use this to construct information on annual spending, as well as on the timing of

drug purchases during the year. In some of the later analyses we will also use the National Drug

Code (NDCs) to construct measures of the types of drugs consumed, in part relying on classi�cations

provided by First Databank, a drug classi�cation company.

Panel B of Table 1 presents summary statistics for annual total prescription drug spending. In

our baseline sample, average annual drug spending is about $1,900 per bene�ciary. As is typical,

spending is right skewed; median spending is less than three-quarters of the mean. About 5% of

the observations have zero spending, while the 90th percentile of annual spending is almost $4,000.

Panel C reports the distribution of annual out-of-pocket spending, which ranges from zero to several

thousand dollars annually.

Insurance contracts Since our analysis focuses on the impact of contract design, it is important

to describe the contract features in some detail. Although there is substantial heterogeneity in plan

features and premiums, the basic dimensions of the contract are determined by the government-

de�ned �standard bene�t.�Insurance companies are required to o¤er a basic plan, which is either

the �standard bene�t�or a plan with �actuarially equivalent�value, de�ned as the same average

share of total spending covered by the plan. Insurance companies may also o¤er more comprehensive

plans, referred to as �enhanced plans.�

Figure 1 shows the main features of the standard bene�t plan in 2008. The total dollar amount

of annual drug expenditures is summarized on the horizontal axis: this is the sum of both insurer

payments and out-of-pocket payments by the bene�ciary. The vertical axis indicates how this

particular insurance contract translates total spending into out-of-pocket spending.

The �gure illustrates the existence of several cost-sharing �arms�with di¤erent out-of-pocket

prices. There is a $275 deductible, within which individuals pay for all drug expenditures out of

pocket. That is, the individual faces a price of 1: she pays a full dollar out of pocket for every

dollar spent at the pharmacy. After the individual has reached the deductible amount, the price

9We set the average risk score to missing for 65 year olds since risk scores for new Medicare Part D enrollees

are, by necessity, a function of only a few demographics (primarily gender), so not fully comparable to risk scores of

continuing enrollees.
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drops sharply to 0.25. That is, for every additional dollar spent at the pharmacy, the individuals

pays 25 cents out of pocket and the insurance company pays the remaining 75 cents. This 25%

co-insurance applies until the individual�s total expenditures (within the coverage period) reach

the �initial coverage limit�(ICL), which we refer to as the kink. The kink location was $2,510 in

the 2008 standard bene�t plan. Once the kink is reached, the individual enters the famed �donut

hole,�or �gap,� in which she once again pays all her drug expenditures out of pocket (price of 1)

until her out-of-pocket spending reaches the �catastrophic coverage limit�(CCL). This limit, which

is de�ned in terms of out-of-pocket spending (in contrast to the kink amount, which is de�ned in

terms of total spending), was $4,050 in the 2008 standard bene�t plan; this is equivalent to about

$5,700 in total expenditure (see Figure 1). Only a small fraction of the bene�ciaries (about 3% in

our baseline sample) reach the catastrophic limit in a given year. Those who do face the larger

of a price of 0.05 (i.e. a 5% co-insurance), or co-pays of $2.25 for a generic or preferred drug and

$5.35 for other drugs. Empirically we estimate that this translates into a 7% co-insurance rate on

average (in our baseline sample), which is the rate used in Figure 1.10

In analyzing the main cost-sharing features of the plans in our sample, we make two simplifying

abstractions. First, we summarize cost-sharing in each plan-arm in terms of the percent of total

claims that must be paid out of pocket by the bene�ciary (co-insurance). Although this is how cost-

sharing is de�ned in the standard bene�t design, in practice, more than three-quarters of enrollees

are in plans that specify a �xed dollar amount that must be paid by the bene�ciary per claim

(co-pays). To analyze the data in a single framework, we convert these co-pays to co-insurance

rates for each plan-arm in the data by calculating the average ratio of out-of-pocket spending to

total spending across all bene�ciaries from our baseline sample in that plan-arm.11 Second, we

assume cost-sharing is uniform within a plan-arm, but actual plans often set cost-sharing within

an arm di¤erently by (up to six) drug �tiers�; drug tiers are de�ned by each plan�s formulary and

drugs are assigned to tiers based on whether the drug is branded or generic, among other factors.

Table 2, which summarizes our calculations of some of the main cost-sharing features of the plans

in our sample, shows that our assumptions drive a (small) wedge between the stylized description

of the plans and our empirical cost sharing calculations. For example, in our baseline sample we

estimate average cost sharing in the gap for plans with �no gap coverage�of 0.98, and cost-sharing

in the deductible for plans with a deductible of 0.88. In principle, both of these numbers �should

be�1, but in practice they are slightly less, re�ecting some drug-speci�c exceptions.

There are several thousand di¤erent plans in our sample, although the di¤erences among them

10The standard bene�t has the same basic structure in all years, altough the level of the deductible,

the kink, the catastrophic limit, and co-pays above it move around somewhat from year to year (see

http://www.q1medicare.com/PartD-The-2009-Medicare-Part-D-Outlook.php).
11Since very few individuals reach the catastrophic limit, computing plan-speci�c cost sharing above this limit is

di¢ cult. We therefore caculate the average cost-sharing for all bene�ciaries in our baseline sample in this arm across

all plans. We note that almost all spending above the catastrophic limit is covered by the government directly, and

therefore cost-sharing should be relatively uniform across plans.
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are sometimes minimal. Table 2 attempts to summarize some of the main distinguishing features

of the plans our sample is enrolled in. Many individuals in our baseline sample enroll in plans

that o¤er di¤erent coverage than the standard plan. In particular, about three-quarters choose

a plan with no deductible and almost one-�fth of those choose a plan with some gap coverage.

Average cost-sharing below the kink is 0.34, often re�ecting the fact that insurance companies �nd

it attractive to o¤er an �actuarially equivalent�plan that, relative to the standard bene�t design,

has no deductible but charges higher co-insurance rate prior to hitting the kink Above the kink,

the average cost sharing in the gap is close to 1, about 0.93. However, it varies substantially based

on whether Medicare classi�es the plan as one with no or �some�gap coverage.

4 Descriptive Analysis

4.1 Static price response: bunching at the kink

We focus �rst on behavior around the sharp price increase when individuals reach the kink. About

25% of bene�ciaries in our baseline sample have spending at the kink or higher in a given year.

Table 2 indicates that, at the kink, the price the individual faces increases on average by almost 60

cents for every dollar spent in the pharmacy. Standard economic theory suggests that, as long as

preferences are convex and smoothly distributed in the population, we should observe individuals

bunching at this convex kink point of their budget set. Saez (2010) provides a recent, formal

discussion of this.

To see the intuition, consider a counterfactual linear budget set, i.e. the continuation of the

co-insurance arm�s cost sharing into the gap. In this case, individual spending would be distributed

smoothly through the kink. For example, as illustrated in Appendix Figure A1, the solid and

dashed indi¤erence curves represent two individuals with di¤erent healthcare needs who would

have di¤erent total drug spending under this linear contract. With the introduction of the kink,

however, the spending of the sicker (dashed) individual will decrease and locate at the kink, as

would all individuals whose spending under the linear contract was in between the solid and dashed

individuals, thus generating �bunching.� In a frictionless world, these individuals would pile up

exactly at the kink. In practice, with real-world frictions such as the lumpiness of drug purchases

and some uncertainty about future health shocks, individuals are instead expected to cluster in a

narrow area around the kink.

An empirical illustration of this theoretical response to a non-linear budget set is evident in

Figure 2, which reports a histogram of total annual prescription drug spending in 2008. The

response to the kink is apparent: there appears to be a noticeable spike in the distribution of

annual spending around the kink location.

The government changes the kink location each year. Figure 3 shows how the location of the

bunching moves in virtual lock step as the location of the kink moves from $2,400 in 2007 to $2,510

in 2008, and to $2,700 in 2009. The fact that the location of the bunching moves with the location

of the kink constitutes strong evidence that the bunching represents a behavioral response to the
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sharp increase in out-of-pocket price as individuals enter the gap.12

Figure 4 pools the analyses across the three years and reports the frequency of spending relative

to the (year-speci�c) kink location, which we normalize to zero. Focusing on the distribution of

spending within $2,000 of the kink, Figure 4 presents our core, summary evidence of a behavioral

response to the out-of-pocket price. It shows substantial �excess mass�of individuals around the

convex kink in the budget set.

To quantify the amount of this excess mass, we follow the approach taken by Chetty et al. (2011)

and approximate the counterfactual distribution of spending that would exist near the kink if there

was no kink. Speci�cally, we �t a cubic approximation to the CDF, using only individuals whose

spending is below the kink (between $2,000 and $200 from the kink), and subject to an integration

constraint. The dashed line of Figure 4 presents this counterfactual distribution of spending. We

estimate an excess mass of 29.1% (standard error = 0.003) in the -$200 to +$200 range of the kink,

relative to the area under the counterfactual density in that range. That is, we estimate that the

increase in price at the kink increases the number of individuals whose annual spending is within

$200 of the kink by 29.1%; this increase is statistically signi�cant. The presence of statistically

signi�cant excess mass around the kink indicates a behavioral response to price; with no behavioral

response, there should have been no excess mass, a null that we reject.

One would expect that the magnitude of this excess mass would increase in how sharp the kink

is. While, on average, bene�ciaries experience about a 60 cents (per dollar spent) increase in price,

this average masks considerable heterogeneity across plans, re�ecting di¤erences in cost-sharing

both before and in the gap. Figure 5 therefore plots a plan-speci�c estimate of the plan-speci�c

excess mass (constructed in the same way as before) against the size of the price change at the

kink that is associated with each plan. We then �t a (weighted) regression line. It is reassuring to

observe that the excess mass is increasing in the size of the price change, as economic theory would

predict.

4.2 Dynamic price response: initial drug use by new enrollees

We now focus on the second object of the model of Section 2, by examining whether in fact

individuals respond to dynamic incentives that arise from the non-linear pricing in their Part D

contract (i.e. whether � > 0). Speci�cally, we consider whether, at the start of the contract period,

individuals take into account the �future price� of drugs, or base their purchase decisions solely

on the current �spot�price. The standard bene�t design presented in Figure 1 shows how these

12 In Appendix A we present additional corroborating evidence that the bunching at the kink represents a behavioral

response to the gap. Speci�cally, Appendix Figure A2 shows that for the small subsample of individuals outside our

baseline sample who are in contracts where the kink begins at a non-standard level of spending, there is no excess mass

around the standard kink, but there is evidence of excess mass around the (non-standard) kink level. Interestingly, we

also show in Appendix A that there is no evidence of missing mass at the concave kink created by the price decrease

when individuals hit the deductible (see Appendix Figure A3); in the Appendix we speculate about a potential

explanation.
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spot and future prices may di¤er markedly. For example, an individual in a plan with the standard

bene�t design who has predictably high annual drug spending (for example, due to a chronic

condition) faces an initial spot price of one (since he is in the deductible phase), but dynamic

incentives could make her face an expected end-of-year price of 0.07 if she anticipates that, say,

chronic medications will make her reach the catastrophic coverage threshold amount. Economic

theory would predict that if the individual understands her dynamic incentives, this latter price is

the more relevant price, which should enter her utilization decision.

The key empirical di¢ culty arises because, as Figure 1 also makes clear, the future price is a

function of expected health spending, creating a mechanical endogeneity problem in an analysis

of how the future price a¤ects health spending. For individuals with the same expected spending,

di¤erences in their insurance contracts can create di¤erences in future prices. However, di¤erent

insurance contracts also create di¤erences in spot prices. Testing for dynamic price response requires

a setting in which individuals with the same spot price face di¤erent future prices for reasons

unrelated to their health.

To address this challenge, we identify a setting in which we can compare initial drug use for

individuals who face the same spot price but di¤erent future prices for a reason that is plausibly

unrelated to prescription drug use. Speci�cally, individuals who newly enroll in a given Part D

plan when they turn 65 face the same initial spot price for drugs. However, because the insurance

contract resets at the end of each calendar year, di¤erent individuals in the same Part D plan face

di¤erent future prices depending on which month of the year they turn 65 and enrolled in Part D.

Furthermore, the sign and magnitude of the relationship between the month in which the individual

joins the plan and the future price will vary depending on the type of plan.

This setting thus provides a natural set of contrasts. We examine how initial drug use varies

across individuals within a plan by the individual�s enrollment month, and how this within-plan

pattern of initial-utilization-by-enrollment-month varies across plans with di¤erent relationships

between enrollment month and future price. This empirical strategy is quite close in spirit to the

approach we used previously to test for forward looking behavior in prime-age employees�medical

utilization response to the non-linear pricing in their medical insurance (Aron-Dine et al. 2012).

In that earlier work, variation in enrollment month came primarily from when within the year the

employees joined the �rm, while in the current setting it is primarily driven by the individual birth

date.

Given the identi�cation strategy, our analysis is limited to 65 year olds. With a few further

restrictions for tractability, including limiting to individuals who enroll between February and

October (this and other restrictions are described in Appendix B), we arrive at our �65 year old

sub-sample�of about 137,000 bene�ciary-years (see Table 1 and Table 2 for summary statistics).13

13Table 1 shows substantially lower annual spending for the 65 year old sub-sample than the baseline sample. This

re�ects two factors: �rst the 65 year olds are the youngest individuals in the baseline sample, therefore with the

lowest expected spending. Second, we observe �annual spending� for a 65 year old for, on average, about 6 months,

re�ecting the fact that they do not enroll until their birth month.
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Appendix B presents the analysis in detail. It includes formal regression analysis as well as a

discussion of the key identifying assumption that any underlying seasonal patterns in initial drug

use do not vary based on which plan the individual enrolled in except for dynamic incentives. For

the sake of brevity, here we simply summarize the main empirical results graphically in Figure 6.

For this illustrative purpose, we show the pattern of expected end-of-year price and initial

drug use by enrollment month separately for bene�ciaries in two groups of plans: deductible and

no-deductible plans. The expected end of year price depends on the cost-sharing features of the

bene�ciary�s plan, the number of months of the contract, and the individual�s expected spending.

We proxy for expected end-of-year price with a �simulated future price� measure, in the spirit

of Currie and Gruber�s (1996) �simulated eligibility� instrument. Speci�cally, we calculate the

simulated future price separately for each bene�ciary based on his plan and his birth month, using

the speci�c plan�s cost-sharing features, the number of months in the contract if the individual

enrolled in his birth month, and a common (across plan and birth month) distribution of monthly

drug spending. On average, the simulated future price (shown on the right vertical axis) is increasing

for deductible plans with enrollment month (since there is less time to spend past the deductible

and into a lower priced arm) and decreasing for no-deductible plans (since there is less time to

accumulate enough spending to enter the gap). We measure initial drug use as the number of days

until the �rst claim, censored at 92 days. A longer number of days to �rst claim indicates less

initial use.

The patterns of initial use by enrollment month present evidence against the null of no response

to the dynamic incentives. In deductible plans, where the simulated future price is increasing

with enrollment month, initial utilization is decreasing with enrollment month (i.e. time to �rst

claim is increasing with enrollment month). By contrast, in the no-deductible plan, where the

simulated future price is decreasing with enrollment month, days to �rst claim do not appear to

vary systematically with the enrollment month. A �di¤erence-in-di¤erence� comparison of the

pattern of initial drug use by enrollment month for people in plans in which the simulated future

price increases with enrollment month relative to people in plans in which the simulated future

price decreases with enrollment month thus suggests that initial use is decreasing in the expected

end of year price.

5 Econometric model

Motivated by the foregoing evidence, we now turn to specify a more complete econometric model,

based on the economic model of an individual�s prescription drug use described in Section 2. As

mentioned there, the model has three key primitives. The �rst is associated with how sick the

individual is, which is summarized by the weekly arrival rate of prescriptions �, and their associated

(marginal) distribution of cost G1(�). The second is the �primitive� substitution between health

and income, which can be summarized by G2(!j�). When ! � � the individual will consume the
prescription even if she has to pay the full cost out of pocket. However, once ! < � the individual
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will consume the prescription only if some portion of the cost is (e¤ectively) paid by the insurance.

Finally, the third object in the model is the extent to which individuals respond to the dynamic

incentives associated with the non-linear contract, as summarized by the parameter �.

Parameterization To estimate the model, we need to make two types of assumptions. One is

about the parametric nature of the distributions that enter the individual�s decisions, G1(�) and

G2(!j�). We assume that G1(�) is a lognormal distribution with parameters � and �2; that is,

log � � N(�; �2): (3)

We also assume that ! is equal to � with probability 1�p, and is drawn from a uniform distribution
over [0; �] with probability p. That is, G2(!j�) is given by

!j� �
(
U [0; �] with probability p

� with probability 1� p
: (4)

Recall that if ! � � it is always optimal for the individual to consume the prescription, so the

assumption of a mass point at � (rather than a smooth distribution with support over values greater

than �) is inconsequential. With probability 1 � p the individual will consume the prescription
regardless of the cost sharing features of the contract. A larger value of p implies that a larger

fraction of shocks have ! < � and are therefore ones where drug purchasing may be responsive to

the cost-sharing features of the contract.

With this parameterization, the extent of substitution between health and income is increasing

in p, the probability that ! is lower than �. To give a concrete interpretation, consider a person

who faces a constant coinsurance rate of c 2 [0; 1]. That person will �ll prescriptions whenever
! � c�. This occurs with probability 1� pc. A low value of p means that the person will �ll most
prescriptions regardless of the coinsurance rate. A high value of p indicates that the probability of

�lling prescriptions is more responsive to the coinsurance rate c.

The second type of assumption is about parameterization of heterogeneity across individuals

in a given year. Since individuals� health is likely serially correlated, we introduce permanent

unobserved heterogeneity in the form of discrete types, m 2 f1; 2; :::;Mg. An individual i is of type
m with (logit) probability

�m =
exp(z0i�m)PM
k=1 exp(z

0
i�k)

; (5)

where zi is a vector of individual characteristics �our primary speci�cation uses a constant, the risk

score, and a 65 year-old indicator �and f�mgMm=1 are type-speci�c vectors of coe¢ cients (with one
of the elements in each vector normalized to zero). All the parameters of the model �the weekly

probability of a prescription �m, the parameters �m, �m, and pm �are all allowed to vary across

types, except the discount factor �, which is more di¢ cult to identify and is thus assumed to be the

same for all types. As in Einav et al. (2013), our parameterization thus allows for heterogeneity in

both individual health (�, �, �), and in the responsiveness of individual spending to cost-sharing

(p). Thus, the model has 4M parameters that de�ne the M quadruplets (�m; �m; �m; pm), the
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single parameter �, and 3 (M � 1) parameters that de�ne the �m�s that shift the type probabilities.
In our primary speci�cation we use 5 types (M = 5), and thus have 33 parameters to estimate.

Our choice of parameterization imposes a number of limitations that deserve further discussion.

First, the only source of correlation over time in health are the permanent unobserved types. This

allows some people to be permanently sicker than others within a year, but does not allow people

to become systematically healthier or sicker over time within the calendar year. Moreover, while we

observe individuals for up to three years, we do not take explicit advantage of the panel structure of

the data, and only use the persistence in risk scores from year to year to generate serial correlation

in individuals�types over time.14

Second, our assumption that ! has a mass point at � is completely innocuous. This is because

our model implies that any individual (even one with no insurance) will �ll every prescription

when ! > �. This means that we can never identify G2(!j�) above ! = �, but also that the

distribution of of ! above � does not a¤ect the model�s predictions, and therefore has no e¤ect on

our counterfactual exercises.

Finally, our assumption that the ratio !=� is independent of � implies that substitutability

between health and income does not depend on the cost of a given prescription. Taken literally,

this is not realistic: more expensive prescriptions are more likely associated with vital drugs with

few close substitutes. We partially capture the idea that some drugs may be less substitutable by

allowing both the distribution of � and the distribution of !=� to depend on type. More generally,

however, our goal is not to realistically model each individual�s prescription choice but instead to

capture the responsiveness of aggregate prescription spending to insurance coverage. We thus view

our model as a reasonable approximation for this task.

Identi�cation Loosely speaking, identi�cation relies on three important features of our model

and data. First, the non-linearity of Part D coverage generates variation in incentives that we use to

recover the distribution of !j�, or the primitive substitution between health and income that would
govern behavior in a linear contract. In particular, the bunching at the kink (shown in Section 4)

allows us to identify the spending response to price where the spot and future price are the same

(as in a linear contract). Second, the variation in initial spending by enrollment month (also shown

in Section 4) helps in identifying �, since variation in enrollment month generates variation in the

future price among individuals who face the same spot price.15 Finally, observing weekly claims

made by the same individual over the entire year, along with our assumption that the (unobserved)

14Due to the dynamic nature of the model, adding unobserved persistence in individual types from year to year

would require appropriate week-to-week type transitions. This would add at least one more state variable to the

dynamic problem, and would make solving it and estimating the model considerably slower.
15To assess the importance of these moments for the actual identi�cation, we follow the procedure recently proposed

by Gentzkow and Shapiro (2013). We �nd that the estimation moments (described below) that are associated with

the timing of Medicare enrollment account for approximately 40% of the contribution of all the moments to the

estimation of �. Analogously, we �nd that the estimation moments (again described below) that are associated with

the bunching around the kink account for approximately 55% of the contribution of all the moments to the estimation
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type is constant throughout the year, allows us to recover the distribution of health status for each

type from the observed selected distribution of �lled prescriptions.

More formally, we will consider identi�cation conditional on plan characteristics and other

covariates. To streamline the notation and discussion, we will leave the conditioning on covariates

and plan characteristics implicit for the remainder of this section. We want to show that the

observed distribution of prescription drug claims can uniquely identify the distribution of types, �m,

the distribution of health status given type, �m and G1(�jm), the substitutability between income
and health, G2(!j�;m), and the parameter �. The results of Kasahara and Shimotsu (2009) and
Sasaki (2012) show the nonparametric identi�cation of the distribution of types, �m, the conditional

(on type) distribution of �, G1(�jm), and the conditional claim probabilities, P (claimjm; �; x; t).
Given the distribution of health status and conditional claim probabilities, the non-linearity of

Medicare Part D coverage generates variation in incentives that trace out the distribution of !.

To see this, note that an immediate consequence of equation (2) is that

P (claimjm; �; x; t) = P (�cj(�; x) + �v(x+ �; t� 1) � �! + �v(x; t� 1)jm; �; x; t) = (6)

= P (!=� � 1

�
(cj(�; x) + �v(x; t� 1)� �v(x+ �; t� 1)) jm; �; x; t) =

= 1�G2
�
1

�
(cj(�; x) + �v(x; t� 1)� �v(x+ �; t� 1)) jm; �

�
where G2 (�jm; �) is the conditional CDF of the ratio !=�. With linear insurance coverage, cj(�; x) =
c� , the value function does not depend on x, and equation (6) simpli�es to

P (claimjm; �; x; t) = 1�G2 (cjm; �) . (7)

In this case, without exogenous variation in insurance contracts, we would only be able to identify

G2 (�) at a single point. Fortunately, our data features nonlinear contracts, so we can identify
G2 (�jm; �) on a much larger range.

To eliminate the value function, consider the �nal week of the year. Then,

P (claimjm; �; x; 1) = 1�G2
�
cj(�; x)

�
jm; �

�
; (8)

so we can identify G2 (�jm; �) on the support of cj(�; x)=�. The range of this support is an empirical
question. Beyond the catastrophic limit, our contracts are linear with a coinsurance rate of around

7%. Below the deductible or in the coverage gap, the ratio cj(�; x)=� is as high as one. Thus, we can

identify G2 (�jm; �) on approximately [0:07; 1]. This is only approximate because there is variation
in the coinsurance rates across plans, and we are showing identi�cation conditional on plan.

Given G2 (�jm; �), variation in claim probabilities with x and t allows us to identify � from

equation (6). If � is near zero, then t will have little e¤ect on the claim probabilities, given x. The

larger is �, the more important t will be. Although not strictly necessary, variation in enrollment

month ensures that we observe a wide range of variation in t conditional on x from observing claim

of p, on average.
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propensities just after enrollment for individuals that enrolled in di¤erent months, as well as wide

range of variation in x conditional on t from observing claim propensities during the same month

for individuals who have just enrolled and others who have been enrolled earlier and accumulated

previous claims.

Estimation We estimate the model on our baseline sample using simulated minimum distance.16

Let mn denote a vector of sample statistics of the observed data. Let ms(') denote a vector of the

same sample statistics of data simulated using our model with parameters '. Our estimator is

b' 2 argmin
'2	

(mn �ms('))
0Wn(mn �ms(')): (9)

The e¢ cient choice of weighting matrix, Wn, is the inverse of the asymptotic variance of the sample

statistics. We use this e¢ cient weighting matrix, except that we overweight the sample statistics

related to initial spending conditional on enrollment month. These statistics depend only on the

portion of the sample that is 65 years old. As a result, their e¢ cient weight is relatively low.

However, these statistics are important for the identi�cation of �, so we increase their weight.17

Appendix C describes in detail how we solve for the value function and simulate our model.

As moment conditions, we use the di¤erence between observed and simulated moments that

capture the key identifying variation in the data. In particular, we use moments that (i) summarize

total �annual� spending; (ii) summarize the bunching around the kink; and (iii) summarize the

variation in initial claims with enrollment month (for our 65 year old sub-sample). To summarize

total annual spending, we use the probability of zero spending; the average of censored (at $15,000)

spending; the standard deviation of censored spending; the probability of annual spending being

less than $100, $250, $500, $1000, $1500, $2000, $3000, $4000, and $6000; and the covariance of

annual spending with each of the covariates. To capture the persistence of individual spending

over time, we use the covariance between spending in the �rst half and second half of the year.

To capture the bunching around the kink, we use the histogram of total spending around the kink

location, using twenty bins (each of width of $50) within $500 of the kink. That is, we divide

the range of -$500 to $500 (relative to the kink location) into twenty equally sized bins and use

frequency of each bin as a moment we try to match. Finally, to summarize the variation in initial

claims with enrollment month, we use the average censored (at 12) weeks to �rst claim conditional

16 In practice, to reduce computational cost, we make two inconsequential restrictions to our baseline sample when

estimating the model. First, we limit the baseline sample to the 500 most common plans; this represents about 10

percent of plans but about 90% of bene�ciary-years. Second, from this modi�ed baseline sample we retain the entire

65 year-old sub-sample and a 10% random sample of older individuals. We weight the moments and the observations

so that the results could be applied for the entire (modi�ed) baseline sample.
17These moments are reweighted as though there are as many observations of the initial spending moments as

the other moments. That is, if there are N total observations and nj observations for the jth initial spending

moments, then the (j; k) entry in the weight matrix is multiplied by N=
p
njnk. These ratios range from 120-160 for

the no-deductible plans and 700-750 for the deductible plans.
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on the enrollment quarter and on having a deductible or not; this last set of moments is limited to

the 65-year old sub-sample only and since we only include people who enrolled between February

and October, we de�ne the �rst quarter as February-April, the second as May-July, and the third

as August-October.

It may be useful to highlight some computation challenges that we faced in our attempt to

obtain estimates. Naive simulation of the model causes ms(') to be discontinuous due to the

discrete claim decisions in our model. Due to the long sequence of discrete choices, conventional

approaches for restoring continuity to ms(') fail. Each period an individual can �ll a prescription

or not, so there are 2T possible sequences of claims. We cannot introduce logit errors to smooth over

each period separately because the claims a¤ect the state variable of total spending; calculating all

2T possible sequences of claims and smoothing them is infeasible. While using importance sampling

is possible in theory, in practice it is di¢ cult to choose an initial sampling distribution that is close

to the true distribution, resulting in inaccurate simulations. Instead, we use the naive simulation

method to compute ms(') and utilize a minimization algorithm that is robust to discontinuity.

Speci�cally, we use the covariance matrix adaptation evolution strategy (CMA-ES) of Hansen

and Kern (2004) and Hansen (2006). Like simulated annealing and various genetic algorithms,

CMA-ES incorporates randomization, which makes it e¤ective for global minimization. Like quasi-

Newton methods, CMA-ES also builds a second order approximation to the objective function,

which makes CMA-ES much more e¢ cient than purely random or pattern based minimization al-

gorithms. In comparisons of optimization algorithms, CMA-ES is among the most e¤ective existing

algorithms, especially for non-convex non-smooth objective functions (Hansen et al. 2010; Rios and

Sahinidis 2012).

Our estimator has the typical asymptotic normal distribution for simulated GMM estimators.

Although ms(') is not smooth for �xed n or number of simulations, it is smooth in the limit as

n!1 or S !1. As a result,
p
n ('̂� '0)

d! N
�
0; (MWM)�1MW (1 + 1=S)
WM(MWM)�1

�
; (10)

whereW = p limWn,M = rp limms('0), 
 is the asymptotic variance of mn, and S is the number

of simulations per observation used to calculate ms.

6 Results

6.1 Parameter estimates and model �t

Table 3 presents the parameter estimates. We �nd � to be relatively close to one, at 0.93. Recall

that our preferred interpretation of � is not a (weekly) discount factor, which we would expect to be

even closer to one, but simply a behavioral parameter that also re�ects individuals�understanding

of the insurance coverage contract, in particular the salience to them of the (future) non-linearities

of the contract.
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The rest of the parameters are allowed to vary by type, and our baseline speci�cation allows

for �ve discrete types. The types are ordered in terms of their expected annual spending (bottom

rows of Table 3). The �rst, fourth, and �fth types are the most common and together account for

about 85% of the individuals. As would be expected, increases in risk score are associated with

increased probability of the highest spending type (type 5) and decreased probability of the lower

spending types. Likewise, the 65 year olds are disproportionately lower spending types (i.e. type 3

relative to type 4).

A type�s health is characterized by the rate of arrival of prescription drug events (�) and the

distribution of their size (�). The �rst type is fairly healthy, with relatively low event probability

(�) and small claim amounts when there is a (potential) claim (i.e. low E(�)). The fourth type

has a similarly low event probability as the �rst type, but more than double the (potential) claim

amount (E(�)), while the �fth type�s (potential) claim amounts are similar to the �rst type, but the

�fth type experiences drug events on average every other week, almost six times more frequently

than the �rst type.

Annual spending depends not only on health but also on the propensity to purchase (i.e. �ll

a prescription in response to a drug event), which depends on the parameter p. The parameter p

likewise determines how responsive drug purchasing may potentially be to the cost-sharing features

of the contract. The fourth and �rst types are relatively responsive in their drug purchase decisions

to cost sharing features compared to the �fth type. For the �fth type, most of the prescription

drug events will be purchased regardless of the insurance coverage (i.e. p = 0:44), whereas virtually

all drug events of the �rst and fourth types will be sensitive to the cost sharing features of the

insurance (p is very close to 1).

Overall, the model �ts the data well. To assess the goodness of �t, we generated the model

predictions by simulating optimal spending as a function of the estimated parameters and the

observable characteristics for each bene�ciary-year of our baseline sample. The top panel of Table

4 presents the observed and predicted summary statistics for the annual spending distribution; the

model seems to �t well. The �t is also very good for two key patterns in the data that are important

in identifying the model. Figure 7 presents the distribution of spending, for both the observed and

the predicted data; we show both the �t of the overall spending distribution and the �zoomed in��t

without $1,000 of the kink. The two bottom panels of Table 4 present the observed and predicted

number of weeks until the �rst claim, by deductible and no deductible plans, for individuals in the

65-year-old-subsample who enrolled in Part D at di¤erent times of the year. In both cases, the

model tracks the observed patterns very well. Although it may not be surprising that we �t well

these moments, given that these are some of the moments we try to match in estimation, it is still

encouraging to observe that the model is �exible enough to be able to �t all of these rich patterns

very well.
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6.2 Spending response to counterfactual contract designs

Our primary objective of the paper is to explore how counterfactual contract designs a¤ect prescrip-

tion drug spending. We are interested in both mean spending e¤ects (which are arguably the most

policy-relevant) and also heterogeneity in the spending e¤ects. In particular, we wish to examine

how changes in non-linear contracts a¤ect individuals at di¤erent points in the expected spending

distribution.

The model and its estimated parameters allow us to accomplish precisely this. We will discuss

some of the results in Tables 5 through 7 and in Figures 8 and 9. These are generated in the same way

we assessed goodness of �t, except that we now simulate optimal spending under counterfactual (in

addition to observed) contracts, again as a function of the estimated parameters and the observable

variables in our sample. When we do this, we use the same set of simulation draws to generate

individual-speci�c predictions, so simulation noise is essentially di¤erenced out.

Initial illustration: �lling the gap in the 2008 standard bene�t design We begin by ex-

amining the spending implications of counterfactual changes to the 2008 standard contract shown

in Figure 1. This focus on a single contract is useful for illustrating particular aspects of the spend-

ing response to alternative contract designs. In the next section we will consider counterfactuals

involving a wider array of initial contract designs.

For illustrative purposes, we focus initially on perhaps our most policy-relevant exercise of

��lling� the gap. As part of the A¤ordable Care Act (ACA), by 2020 the standard contract will

no longer have a gap: the pre-gap coinsurance rate (of 25%) will instead be maintained from the

deductible amount until catastrophic coverage (of about 7% coinsurance rate) kicks in at the current

out-of-pocket catastrophic limit. We refer to this policy colloquially by the short-hand of ��lling

the gap.�

Row 1 of Table 5 shows spending under the 2008 standard contract, and row 2 shows the results

of �lling the gap. On average, total spending increases by $245, or about 14%, from $1,710 to

$1,955. This increase in total spending re�ects the combined e¤ect of about $140 decline in average

out-of-pocket spending and about $385 increase in insurer spending (right most columns). By way

of comparison, we estimate that if utilization behavior were held constant, �lling the gap would

decrease out of pocket spending on average by about $200 (and naturally increase average insurer

spending by the same amount).

The spending e¤ects of �lling the gap are quite heterogeneous. For example, comparing rows

1 and 2 of Table 5, we see that the median increase in total spending is only about $30, while the

90th percentile change is about $1,000. Figure 8 provides a look at which individuals are a¤ected

by the change. The �gure plots the distribution of the change in spending from �lling the gap

as a function of the individual�s predicted spending under the 2008 standard contract. It shows,

not surprisingly, that most of the change in spending from �lling the gap is driven by changes in

spending by individuals whose predicted spending under the standard contract would be in the

gap.
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However, the �gure also highlights two somewhat subtle implications of non-linear contracts.

First, recall that due to dynamic considerations, there is the possibility of an �anticipatory�positive

spending e¤ect from �lling the gap for people who do not eventually hit the gap. Figure 8 shows

that, indeed, there is an increase in spending from �lling the gap for people whose predicted spending

under the standard contract is quite far below the gap. This highlights the potential importance of

considering the entire non-linear budget set in analyzing the response of health care use to health

insurance contract. Quantitatively, we estimate that the increase in spending among people more

than $200 below the kink location under the standard plan accounts for almost 20% of the average

$245 per person increase in annual drug spending.

A second, somewhat counter-intuitive result is that the ACA policy of �lling the gap causes

some individuals to actually decrease their spending. Because the catastrophic limit is held constant

with respect to out-of-pocket rather than total spending when the gap is ��lled,�it takes a greater

amount of total spending to hit the catastrophic limit. Thus, holding behavior constant, some

high-spending individuals who under the old standard contract had out-of-pocket spending that

put them in the catastrophic coverage range where the marginal price is only 7 cents on the dollar

would, under the ��lled gap� contract, have out-of-pocket spending that leaves them still within

the (��lled�) gap, where the marginal price would be 25 cents on the dollar. We see this in Figure

8 where, among individuals whose total spending put them above the catastrophic limit under the

2008 standard contract, some reduce their spending in response to �lling of the gap. This illustrates

a more general point that, with non-linear contracts, a given change in contract design can provide

more coverage (less cost sharing) on the margin to some individuals but less coverage to others.

To gain more insight into the response to ��lling the gap,�we provide a comparison analysis

of the e¤ects of ��lling the deductible.� We ��ll� the $275 deductible from the 2008 standard

bene�t in an analogous manner to our �lling of the gap. That is, we make the deductible zero,

and individuals pay 25 cents of the dollar until they hit the kink. Holding behavior constant, this

change is of roughly the same order of magnitude as �lling the gap; the deductible is $275 and

a¤ects all individuals, while the gap covers a range of spending that is about ten times greater, but

only about a quarter of the individuals reach the gap and only few reach its end (the catastrophic

limit).

Our �ndings indicate that �lling the deductible increases spending by less than �lling the gap.

Row 3 in Table 5 shows that �lling the deductible raises total spending, on average, by about $170

(about 10%) compared to the baseline in row 1. As would be expected, the set of people a¤ected

by �lling the deductible is very di¤erent than those a¤ected by �lling the gap. This can be seen in

Figure 9 which, analogous to Figure 8, plots the distribution of the change in spending from �lling

the deductible as a function of predicted spending under the 2008 standard coverage contract. Here,

we see that the increase in spending comes predominantly from lower spending individuals.

Spending e¤ects of other counterfactual contracts Thus far we have considered the spend-

ing e¤ect of changes to only the 2008 standard contract. However, in practice, as seen in Table 2,

many people have coverage that exceeds the standard contract, including some gap coverage. To
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more accurately forecast the expected spending e¤ects from a given policy change, we therefore

examine the implications of changes in contract design for the existing distribution of contracts,

rather than only for the standard contract. In all these counterfactuals, we assume that �rms do

not respond by making other changes to contracts, and that the distribution of bene�ciaries across

contracts remains �xed; specifying and estimating the demand and supply of contracts is beyond

the scope of the paper, although in the robustness analysis below we do explore sensitivity to one

relatively crude way of accounting for bene�ciary selection of contracts.

In rows 4-6 of Table 5 we examine the impact of �lling the gap or �lling the deductible on

the observed distribution of contracts in our data. The existence of more comprehensive coverage

than the standard plan is re�ected in the higher mean baseline spending (compare row 4 to row

1), and the smaller spending increase from �lling the gap (row 5) or �lling the deductible (row 6).

Given the observed distribution of plans in the data, we estimate that �lling the gap will raise total

annual drug spending by about $180 per bene�ciary, or about 10%, from $1,744 to $1,925. Almost

half of this increase in total average annual spending ($81 out of $181) comes from increases in

spending by individuals who are predicted to spend more than $200 below the kink location under

their original plan, suggesting a quantitatively important role for �anticipatory� behavior. The

$180 average increase in total annual spending re�ects the combined e¤ect of about a $95 decline in

average out of pocket spending and about a $275 increase in average Medicare spending (right most

columns).18 By contrast, ignoring the behavioral response to the contract, we calculate that ��lling

the gap�would increase average Medicare spending by only $150, just over half of our estimated

increase in average Medicare spending.
Finally, the last three rows of Table 5 report the results from counterfactual contracts that are

further out of sample, so should be interpreted with more caution. We provide them here as a

way of quantifying the overall spending e¤ect of insurance and the overall �money at stake.� In

rows 7 and 8 we analyze spending under the extremes of full prescription drug insurance (i.e. 0%

consumer co-insurance everywhere) and no prescription drug insurance (i.e. 100% consumer co-

insurance everywhere). These estimates imply that going from full to no insurance would decrease

spending by about $2,000, or about 80%. A less extreme exercise is reported in row 9, where we

eliminate insurance, but retain the catastrophic coverage. This exercise does not expose individuals

to extreme risk, yet spending still declines, relative to full insurance, by 62%, an enormous e¤ect.

Comparison to other estimates As one way to compare our results to prior estimates, we

note that our estimates imply that relative to no insurance (Table 5, row 8), spending under the

observed set of contracts (Table 5, row 4) increases spending on average by about $1,145, or about

300%. At a broad level, this exercise is similar to various �reduced form�estimates of the impact

of the introduction of Part D on drug spending. Using various di¤erence-in-di¤erences empirical

18We estimate the increase in insurer spending and assume this higher spending is completely passed through to

Medicare in the form of higher Medicare reimbursement of insurers. See Duggan et al. (2008) for more information

on how Medicare reimburses insurers.
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strategies and data sources, estimates of the impact of the introduction of Part D on increased drug

use range from about 6% to about 70% (Duggan and Scott Morton, 2010, Yin et al. 2008, Ketcham

and Simon, 2008). To compare these estimates to our estimate of the increase in spending due to

typical Part D coverage, one must take into account that, on average, the introduction of Part D

increased the fraction of the elderly with prescription drug coverage by only 10 percentage points

(Englehardt and Gruber 2010); the implied increase in drug use coming from Part D coverage is

therefore 10 times higher than these �reduced form�estimates of impact of the introduction of Part

D, which makes our (highly out-of-sample) prediction �t within this (wide) range of the existing

estimates.

To try to move beyond policy-speci�c counterfactuals to a more general economic object that

applying to other budget sets or comparing to other estimates, we also calculate the implied elastic-

ity of drug spending for a given percent reduction in cost-sharing on every arm of the 2008 standard

bene�t budget set.19 Table 6 shows the results. Perhaps not surprisingly, the elasticity decreases (in

absolute value) as the price change is greater; at some point the probability of claiming in response

to a shock becomes su¢ ciently high that further price reductions have a smaller e¤ect. The implied

elasticity of drug spending with respect to the price ranges from about -0.75 (for a 1.5% reduction

in cost-sharing throughout the budget set) to -0.5 (for a 75% reduction in cost-sharing throughout

the budget set). Outside of the Part D context, �reduced form�estimates of a price elasticity of

demand for drug spending range from around -0.1 to -0.4 (see Chandra, Gruber, and McKnight

2007 for a summary of the literature).

We can also compare the implied elasticity estimates from our dynamic model to what we would

obtain by adapting the Saez (2010) approach of translating excess mass (or �bunching�) estimates

into an elasticity to our setting. In a static, frictionless environment, Saez (2010) presents a stylized

model that allows conversion of the excess mass of income tax �lers at convex kinks created by the

progressive income tax schedule into a (local) estimate of the compensated elasticity of income with

respect to the net of tax rate. In Appendix D we adapt Saez�s approach to our setting, replacing

his model of a constant elasticity of income with respect to the net of tax rate with a model of

constant elasticity of medical spending with respect to a function of the co-insurance rate. We use

this to translate our plan-speci�c excess mass estimate (see Figure 5) into (local) elasticities of drug

spending with respect to the coinsurance rate, evaluated at each plan�s pre-kink cost sharing rate.

Averaging across plans (weighted by enrollment), we estimate an elasticity of -0.024, or about an

order of magnitude lower than the implied elasticities from our dynamic model.

Despite the appeal of taking the static Saez (2010) framework �o¤ the shelf�and translating it to

our setting, this framework makes many assumptions that are poorly suited to our problem. Most

importantly, annual spending in our setting is the result of individuals making many sequential

prescription drug purchase decisions throughout the year as health shocks arrive (and information

19 In Table 6 we report elasticity estimates by computing the ratio of the percent change in spending to the percent

change in price. When price changes are large, this calculation is not the same, of course, as a �pure�elasticity which

is de�ned locally (i.e. for a marginal change in price).
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is revealed) and the price of treating each shock changes as individuals move along their non-linear

budget set. This is in sharp contrast to the assumption of the static framework in which all the

uncertainty is realized prior to a (single) annual spending decision. Relatedly, if (as our descriptive

analysis and model estimates indicate) individuals respond to the dynamic incentives provided by

the non-linear contract, then not only does information arrives gradually, but also early purchase

decisions re�ect individuals�expectations about future health shocks and their associated out-of-

pocket price, adding yet another important dynamic e¤ect. For example, the static analysis by

construction limits the behavioral response to the kink to those near the kink. Yet the set of people

�near� the kink and therefore �at risk�of bunching may in fact by endogenously a¤ected by the

presence of the kink if forward looking individuals, anticipating the increase in price if a series of

negative health shocks puts their spending near the kink, make purchase decisions when they are

far away from the kink that decrease their chance of ending up near it.20 Indeed, our estimates

from the dynamic model pointed to a non-trivial role for such �anticipatory�behavioral responses

by people who expect to end up far below the kink, which would not be captured by the static

model. This is one reason why the static model produces estimates that are so much lower than

the dynamic one.21

6.3 Robustness

In our model and parameterization, we have made many assumptions. In this section we brie�y

assess the sensitivity of our main �ndings to some of these assumptions. Table 7 summarizes the

results, by reporting, for each robustness check, the implied e¤ect on ��lling the gap�on total and

insurer spending. Overall, the results appear quite stable across speci�cations. Speci�cally, across

the speci�cations (discussed below), the estimated increase in total annual drug expenditures from

�lling the gap ranges from 7.5% to 12%, which is qualitatively similar to our baseline estimate

(of 10.4%). Similarly, the estimated increase in insurer expenditure ranges between 25% and 30%,

while our baseline estimate was 28.4%. Results from other counterfactual exercises discussed above

also appear quite stable (not reported in the table).

The �rst row of Table 7 reports the estimates from the baseline speci�cation. Rows 2 and

3 assess the sensitivity of the results to changing the number of discrete types. In our baseline

speci�cation we assumed, somewhat arbitrarily, that heterogeneity is captured by a mixture of �ve

discrete types (M = 5). In row 2 we estimate the model using three types (M = 3), and in row 3

we use six types (M = 6). Since the share of one of the �ve types in our baseline speci�cation was

20Manoli and Weber (2011) note a related set of dynamic forces at play when estimating the response of retirement

behavior to kinks in employer pension bene�ts as a function of job tenure.
21Another potential contributor to the smaller static estimates may be that the �bunching�estimator estimates a

behavioral response that is local to people around the kink. In practice, we estimate that these people are dispro-

portionately of the type that exhibits a lower behavioral response to price (i..e, the �fth type in Table 3 is found

disproportionately around the kink and has a relatively low sensitivity of drug purchasing to cost sharing features,

as captured by the paramter p).
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only about 2% (see Table 3), it may not be surprising that adding a sixth type does not a¤ect the

results much. Indeed, the six-type speci�cation gives rise to results that are quite similar to the

baseline ones, and the share of the sixth type is close to zero, suggesting that adding additional

types (beyond six) �an exercise that we have not done and is computationally intensive due to the

increase in the number of parameters �is also unlikely to a¤ect much the results.

Row 4 and 5 of Table 7 assess the sensitivity of the results to the choice of covariates zi. In

our baseline speci�cation we use the bene�ciary�s risk score and an indicator for whether he is

65 years old as the two covariates (see Table 3). In row 4 we use only a constant and no other

covariates, while in row 5 we add an indicator that is equal to one if the bene�ciary selected a plan

that provides no gap coverage (in addition to the included covariates of risk score and a 65 year old

indicator). The latter speci�cation is a rough, �reduced form�attempt to capture potential plan

selection on unobservables, for example, that healthier bene�ciaries may be more likely to select

plans with no gap coverage.

While modeling plan selection is outside the scope of our current exercise, one potential concern

with using our baseline model to assess the counterfactual e¤ects of changes in contract design is that

it does not allow for any e¤ect that such contract changes may have on inducing some bene�ciaries

to select di¤erent plans. A related concern is the possibility that the e¤ect of a contract change like

"�lling the gap" is heterogeneous across individuals and that the selection of plans is correlated with

this heterogeneity (i.e. �selection on moral hazard�as in Einav et al., 2013), so that the size of the

treatment varies across individuals with di¤erent treatment e¤ects (e.g. individuals with a larger

�treatment e¤ect�due to higher p select plans that o¤er gap coverage and therefore experience less

of a �treatment�from the counterfactual of ��lling the gap�). However, the fact that our estimates

do not change much once we include a �no gap�indicator as a covariate suggest that plan selection

is unlikely to have a �rst-order e¤ect on our primary estimates of interest.

Finally, in rows 6 and 7 of Table 7 we examine the sensitivity of our results to our modeling

assumption of individuals as risk neutral. While the assumption of risk neutrality appears odd

in the context of insurance, risk neutrality may not be a bad approximation for a week-to-week

decision making, even when the utility function over annual quantities (of income and/or health)

is concave. To assess this conjecture, we extend the model of Section 2 and specify a utility model

that allows for a concave utility function. Speci�cally, we introduce risk aversion while maintaining

perfect intertemporal substitution by specifying recursive preferences as in Kreps and Porteus

(1978) or Epstein and Zin (1989). As in our baseline model, an individual�s �ow utility is linear

and additive in health and residual income. Since we do not observe residual income, we assume

constant absolute risk aversion so that residual income does not a¤ect claiming decisions. Thus,

individual preferences over a stochastic sequence of �ow utilities, futg, are de�ned recursively as

Vt = ut + �

�
�1
�

�
logEt[e

��Vt+1 ] (11)

where � is the coe¢ cient of absolute risk aversion.22 The limit, as � approaches zero, is equivalent

22These preferences are equivalent to V0 = E0
h
�e��
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t=0 �

tut
i
.
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to our baseline speci�cation. For the results reported in Table 7 we set the values of � to span the

range of (absolute) risk aversion estimates that are obtained in a similar health-related context by

Handel (2013). The main results remain qualitatively similar.

7 Nature of spending response

Thus far we have analyzed the overall drug expenditure response to contract design. In this �nal

section we try to shed some (qualitative) light on the source and nature of the response. We do so

by returning to the graphical analysis of bunching around the kink as in Section 4.

7.1 Timing of purchases

The �nding of bunching in response to the kink (e.g., Figure 4) presumably re�ects individuals

foregoing (or postponing, as we discuss next) prescriptions that they would otherwise have �lled.23

An attractive feature of our setting is that, unlike in the classic labor supply setting for studying

bunching (Saez 2010), we observe within-year behavior rather than just annual behavior. We use

the information on the date of purchase (i.e. date of claim) to explore the nature of the utilization

response to price as it shows up in the end-of-year purchasing behavior.

Figure 10 shows the propensity to purchase at least one drug during the month of December as

a function of the total annual spending.24 As in the earlier graphical analysis, the horizontal axis

re�ects the annual total spending of each individual, normalized relative to the year-speci�c kink

location. The vertical axis now presents, for each $20 bin of total spending, the share of individuals

with at least one December prescription drug purchase. Absent a price response, it seems plausible

to assume that the seasonal pattern of purchases would be similar across individuals with di¤erent

levels of spending, and thus the share of individuals with a December purchase would monotonically

increase with the level of spending (that is, with the overall frequency of purchases) and would

approach one for su¢ ciently sick individuals who visit the pharmacy every month.

Indeed, this is the pattern that is shown in Figure 10 for individuals whose spending is far

enough from the kink. Yet, the �gure shows a sharp slowdown in the probability of end-of-year

purchases as individuals get close to the kink. Once they enter the gap the pattern reverts to

23 It is highly unlikely that the bunching pattern re�ects purchases that are being made but simply not being

claimed (due to the reduced incentives to claim in the gap). First, most prescription drug purchases are automatically

registered with Medicare directly via the pharmacy (there is no need for the individual to separately �le a claim).

Moreover, given that most contracts have some gap coverage (see Table 2) and all have catastrophic coverage if

individuals spend su¢ ciently far past the kink, individuals have an incentive to report ("claim") any drug spending

in the gap.
24The choice of the last calendar month is somewhat arbitrary. Analyses of claiming behavior during shorter or

longer end-of-year periods (e.g. last two weeks of December or November and December) yield similar qualitative

patterns.
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the original monotone pattern, albeit at a lower frequency of December purchases, presumably

re�ecting the higher cost-sharing in the gap. The �tted line in the graph illustrates the di¤erence

between actual purchase probabilities and what would be predicted in the absence of the kink.25

Overall, the �gure illustrates that an important way by which individuals respond to the kink is

by purchasing less in the end of the year.

7.2 Heterogeneity in spending response

Another dimension along which one can better understand the overall drug expenditure response

to cost sharing is to see how the response varies across di¤erent types of drugs or people (as in e.g.

Goldman et al. 1994, and Chandra et al. 2010). Table 8 examines how the decline in end-of-year

purchases around the kink varies across types of drugs. The �rst row reports our estimates for the

entire sample, which mirrors the graphical analysis presented in Figure 10. On average, individuals

who reach the gap appear to reduce their propensity to purchase in December by just over 8%.

This reduction appears to be about two percentage point larger for chronic or �maintenance�drugs

relative to acute and �non maintenance� drugs, respectively; this may re�ect greater �exibility

regarding the timing of drug purchases for chronic conditions.26 The purchase of branded drugs

slows down much more sharply around the kink than generic drugs �a 20% decline in the probability

of purchasing a branded drug in December, compared to 8.5% decline for generics. This presumably

occurs because branded drugs tend to be much more expensive (on average in our sample about

$130 per drug compared to about $20 for generics), so the per-prescription (rather than per-dollar)

price e¤ect of entering the gap is signi�cantly greater for branded drugs. 27 Our �nding of a

larger reduction in branded drug purchases than generics in response to the donut hole is similar

to previous �ndings for diabetics that their use of branded drugs decreases much more than use of

generics when they enter the donut hole (Joyce et al. 2013). Finally, the bottom row of Table 8

shows a greater (12%) decline in purchasing of �inappropriate�drugs compared to the average 8%

25To �t the line, we run a simple regression of the logarithm of the share of individuals with no December claim

in each $20 spending bin on the mid-point of the spending amount of the bin, weighting each bin by the number

of bene�ciaries in that bin. We �t this regression using all bins between -$2,000 and -$500. This speci�cation is

designed to make the share of December claims (purchases) monotone in the spending bin and asymptote to one as

the bin amount approaches in�nity. As can be seen in Figure 10, the �t appears quite well (prior to getting close to

the donut hole, where the price e¤ects kick in).
26Following the spirit of Alpert (2012), we classify a drug as chronic if, empirically, conditional on consuming

the drug, the median bene�ciary consumes the drug more than two times within the year. We classify a drug as

�maintenance� vs. �non maintenance� using the classi�cation from First Databank, a drug classi�cation company.

This classi�cation is roughly analagous to being a drug for a chronic condition or not.
27The size of the kink is roughly the same for branded and generic drugs. In the 2008 standard bene�t plan, the

price goes from 0.25 to 1 at the kink for both branded and generic drugs. Looking across the observed contracts in

our baseline sample, on average the consumer price rises at the kink by about 60 cents for branded drugs and about

55 cents for generic drugs.
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decline in drug purchasing, providing some evidence that higher prices may lead to a somewhat

more careful selection of drugs.28

We also explored heterogeneity in the response to cost-sharing across di¤erent types of individ-

uals by returning to the excess mass analysis (as shown in Figure 4) and computing it separately

for di¤erent types of individuals. Table 9 shows the results. We �nd statistically signi�cant excess

mass in all sub-groups. The size of the excess mass increases with year of the Part D program,

from 9% in the �rst year (2006) to 30% in the last year we observe in the data (2009). This may

re�ect a �learning� e¤ect (by individuals or pharmacists) about the presence of the gap.29 The

behavioral response to the contract, as measured by the excess mass, is slightly higher for men

than for women, and tends to be larger for healthier individuals, as measured by age, the number

of hierarchical conditions the individual has, or by the individual�s risk score.30

7.3 Inter-temporal substitution

The evidence in Figure 10 that individuals stop purchasing drugs late in the year once they are near

the kink raises the question of whether they never purchase these prescriptions or simply shift the

purchase to the beginning of the next calendar year, when the coverage schedule �resets�and the

spot price and the expected end-of-year price are lower. To examine this, we explore whether there

is a relationship between �excess� January spending in year t + 1 and total annual expenditures

relative to the kink in year t.

We de�ne an individual�s �excess�spending in January t+1 as the ratio of her January spending

in year t + 1 to her average monthly spending in February to December of t + 1. The top panel

of Figure 11 graphs this measure of �excess�January spending in year t + 1 against total annual

expenditures in year t. If the slowdown in purchasing propensity toward the end of the calendar year

as individuals approach the gap that we saw in Figure 10 simply re�ects a decline in drug purchases,

there should be no systematic relationship between excess January spending in the subsequent year

and prior year�s spending. However, if some of the slowdown in purchasing re�ects intertemporal

substitution toward �lling the same prescriptions in the subsequent year, we should expect to see

excess January spending in year t+ 1 for individuals who approach (or enter) the gap in year t.

The results in the top panel of Figure 11 strongly suggest that such intertemporal substitution

28Following Zhang et al. (2010), we proxy for innappropriate drug use using an indicator from the Healthcare

E¤ectiveness Data and Information Set (HEDIS) on whether the drug is considered high-risk for the elderly (HEDIS

2010).
29For the analysis by year we add in the 2006 data on the �rst year of the program, which we have otherwise

excluded from the sample; we limit the �by year�analysis to the approximately two-�fths of individuals who joined

in January of 2006 and who remained in the data through 2009.
30For the analysis by age we exclude 65 year olds since they join throughout the year and therefore the set of 65

year olds near the kink likely di¤er than at other ages. The Hierarchical Conditions are inputs into the CMS risk

score; they are meant to capture conditions that are predictive of higher drug spending in the next year, such as

diabetes and hypertension.
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occurs. For individuals whose spending is far below the gap, spending in the subsequent January

appears representative of any other month later that year. Yet, as individuals come close to the gap

(or end up in it), their subsequent January spending jumps up to be 30-40% higher than a �regular�

month, presumably due to accumulated prescription drugs whose purchase could be deferred from

the previous year, when the out-of-pocket price was higher.

This raises the question of whether inter-temporal substitution can largely or entirely explain

the annual spending reduction that we estimated. Empirical analyses of the spending e¤ects of

health insurance contracts have typically focused on annual spending e¤ects, and our paper follows

that tradition. However, if the annual spending response is largely or entirely undone over a longer

period, one might want to assess the budgetary implications of cost-sharing in insurance contracts

beyond a one-year horizon as well as consider the wisdom of designing incentives around annual

contracts.

Assessing the quantitative magnitude of intertemporal substitution is not easy. It would require

a complete, in�nite-horizon model in which an individual decides about the timing of purchases as a

function of her expectation about the expected price of next year�s purchases, which in turn would

have to take into account the price expectation in the subsequent year, and so on. (By contrast,

our crude exercise shown in the top panel of Figure 11 above only looks at the e¤ects of the kink

for spending in the �rst month of the new year). This type of exercise is beyond the scope of the

current paper.

However, the bottom panel of Figure 11 provides qualitative evidence suggesting that the annual

spending response to the kink we documented in the paper is unlikely to be fully explained by

intertemporal substitution to January of the subsequent year. We follow a strategy used by Chetty

et al. (2011) and present a density of the sum of year t�s spending and the average dollar di¤erence,

for each spending bin in year t, between the average January spending in year t+1 and the average

monthly spending in February to December of year t+1. As the �gure shows, the bunching around

the kink (seen previously in Figure 4 when the spending density was plotted as a function of year t

spending relative to the kink) remains when the density is plotted as a function of this �adjusted�

year t spending: it would have been eliminated if the entire response would have been driven by

shifting claims to January. We should note that these results get weaker as we shrink the size of the

bin used in the adjustment. This is to be expected; in the extreme, when adjusting using spending

at the individual-level (rather than at the bin-average), we see no evidence of bunching relative to

�adjusted� annual spending, presumably re�ecting the addition of a large amount of individual-

speci�c realization noise.31 Yet, under the null that the entire response is driven by intertemporal

substitution, the (adjusted) bunching would be eliminated for any bin size. Therefore, the fact that

it appears large and signi�cant for the bin size plotted in the bottom panel of Figure 11 ($50 bin)

is su¢ cient to reject the null that the entire response is driven by intertemporal substitution.

31Consistent with the addition of individual-speci�c realization noise in this exercise, an alternative, �placebo�

exercise, which adjusts for the di¤erence between the individual�s year t+ 1 July spending and the average monthly

spending in August - December of year t+ 1, also make most of the bunching disappear.
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8 Conclusions

This paper has explored the spending response to changes in non-linear health insurance contracts.

Non-linear contracts are the norm in health insurance, yet most of the prior, voluminous literature

on the spending e¤ects of health insurance contracts has tried to summarize the spending response

with respect to a single price. In this paper, we instead specify and estimate a dynamic model of

drug use decisions made by an optimizing individual facing a speci�c non-linear budget set.

We do so in the particular context of Medicare Part D prescription drug contracts, which are

highly non-linear contracts whose spending impacts are arguably of considerable interest in their

own right. We present a simple dynamic model of prescription drug use and descriptive evidence

of the two key economic objects of the model. First, we document the presence of a static price

response by �nding signi�cant bunching of annual spending around the convex kink in the budget

set created by the famous Part D �donut hole.�Second, we document a dynamic price response by

showing that initial drug use is lower for individuals in the same contract who face the same initial

�spot�price of drugs but higher expected end-of-year prices.

Estimation of the model allows us to analyze the response to the entire non-linear budget set.

As one example, we analyze the impact on spending of ��lling of the donut hole�in Medicare Part

D, which the 2010 A¤ordable Care Act legislates will go fully into e¤ect by 2020. We estimate

that this policy will increase total drug spending by $180 per bene�ciary (or about 10%), and

Medicare drug spending by much more ($275 per bene�ciary, or about 30%). Beyond the average

spending e¤ect, our analysis also allows us to examine some of the subtleties in the behavioral

response to a non-linear contract. For example, we �nd that even individuals whose predicted

spending does not reach the gap would still increase their drug use in response to �lling the gap,

consistent with a dynamic price response. This illustrates that the set of bene�ciaries a¤ected

by this policy is not limited to those near or in the gap. It also illustrates the importance of

estimating a dynamic utilization model, since a static analysis of the utilization response would

not capture this e¤ect, which we estimate accounts for almost half of the increase in annual drug

spending from �lling the gap. We note that while our analyses focuses on what is likely to be

the most direct e¤ect of a change in contract design, secondary margins could adjust as well; one

potentially important direction for further work would be to extend the analysis of the impact

of contract design to incorporate potential supply side responses by insurance �rms and potential

plan-selection responses by bene�ciaries.

The analysis in this paper has been entirely positive. Another important and interesting set of

issues for further study concern the normative implications of our �ndings. In the last section of the

paper, we presented additional descriptive results on the nature of the spending response to the kink,

examining heterogeneity in the response across groups of individuals and types of drugs, as well as

analyzing the response of drug purchase timing and re-timing. Some of the �ndings there may be

useful in beginning to informally assess the normative implications of the drug utilization response.

For example, we found evidence that the kink induces a larger reduction in chronic relative to acute

drugs, a larger reduction in drug use by healthier individuals, and that some (but not all) of the
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reduction in drug use at the kink represents purchases postponed to the following year rather than

foregone entirely. Additional evidence on whether there are spillover e¤ects from prescription drug

cost-sharing onto non-drug healthcare spending (such as doctor visits and hospitalization) and to

health might also be informative on the normative dimension. More formal welfare analysis would

also need to take into account the optimality of drug consumption in the absence of insurance. For

example, since the policy of granting monopolies through the patent system produces drug prices

above social marginal cost, an insurance-induced increase in drug expenditures need not be socially

ine¢ cient (Lakdawalla and Sood 2009). Likewise, if one is concerned that incomplete information

or potential failures of rationality may lead individuals to under-consume drugs in the absence of

insurance, insurance-induced increases in drug consumption may be e¢ ciency enhancing (Baicker,

Mullainathan, and Schwartzstein 2012).
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Figure 1: Standard bene�t design (in 2008)

The �gure shows the standard bene�t design in 2008. �Pre-Kink coverage� refers to coverage prior to the Initial

Coverage Limit (ICL) which is where there is a kink in the budget set and the gap, or donut hole, begins. As

described in the text, the actual level at which the catastrophic coverage kicks in is de�ned in terms of out-of-pocket

spending (of $4,050), which we convert to the total expenditure amount provided in the �gure. Once catastrophic

coverage kicks in, the actual standard coverage speci�es a set of co-pays (dollar amounts) for particular types of

drugs, while in the �gure we use instead a 7% co-insurance rate, which is the empirical average of these co-pays in

our data.
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Figure 2: Annual spending distribution (in 2008)

The �gure displays the distribution of total annual prescription drug spending in 2008 for our baseline sample. Each

bar represents the set of people that spent up to $100 above the value that is on the x-axis, so that the �rst bar

represents individuals who spent less than $100 during the year, the second bar represents $100-200 spending, and

so on. For visual clarity, we omit from the graph the 3% of the sample whose spending exceeds $6,500. The kink

location (in 2008) is at $2,510. N =1,251,969.
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Figure 3: Distribution of spending around the kink, by year

The �gure displays the distribution of total annual prescription drug spending, separately by year, for individuals in

our baseline sample whose annual spending in a given year was between $1,500 and $3,500 (N=1,332,733 overall; by

year it is 447,006 (2007), 442,317 (2008), and 442,410 (2009)). Each point in the graph represents the set of people

that spent up to $20 above the value that is on the x-axis, so that the �rst point represents individuals who spent

between $1,500 and $1,520, the second bar represents $1,520-1,540 spending, and so on. We normalize the frequencies

so that they add up to one for each series (year) shown.
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Figure 4: Magnitude of Excess Mass

Total annual prescription drug spending on the x-axis is reported relative to the (year-speci�c) location of the kink,

which is normalized to zero. Sample uses bene�ciary-years in our 2007-2009 baseline sample whose annual spending is

within $2,000 of the (year-speci�c) kink location. The points in the �gure display the distribution of annual spending;

each point represents the set of people that spent up to $20 above the value that is on the x-axis, so that the �rst point

represents individuals who spent between -$2,000 and -$1,980 from the kink, the second point represents individuals

between -$1,980 and -$1,960, and so on. We normalize the frequencies so that they add up to one for the range of

annual spending shown. The dashed line presents the counterfactual distribution of spending in the absence of a kink.

This is calculated by �tting a cubic CDF function �that is, for each $20 bin of spending (x; y) we �t F (y)� F (x),
where F (z) = a+ bz + cz2+dz3 � using only individuals with annual spending (relative to the kink location)

between -$2,000 and -$200, and subject to the integration constraints that F (�2000) = 0 and F (+2000) = 1. N
= 2,589,420.
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Figure 5: Excess mass by plan

Figure graphs the excess mass in di¤erent plans against the size of the kink (i.e. the size of the price increase faced

by the consumer as she moves into the gap). The size of the circles is proportional to the number of bene�ciaries

in the plan. Analysis is limited to the approximately 80% of our baseline sample who are in plans with at least

1,000 bene�ciaries within $2,000 of the kink. Excess mass is calculated separately for each plan using the exact same

procedure described above for Figure 4. The dashed line in the �gure represents the enrollee-weighted regression line

of the relationship between excess mass and kink size. N =1,985,676.
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Figure 6: Days to �rst claim and expected end-of-year-price by enrollment month

Figure graphs the pattern of expected end-of-year price and of initial drug use by enrollment month for individuals in

our 65 year old sub-sample. We graph results separately for individuals in deductible plans and no deductible plans.

We calculate the expected end-of-year price separately for each individual based on his plan and birth month, and

the same (common) distribution of monthly drug use of all individuals in the 65 year old sub-sample; we refer to this

in the text as the �simulated future price.�Days to �rst claim is censored for all bene�ciaries at 92 days (about 19%

of the sample is censored). See Appendix B for more details on the construction of variables used in this �gure. We

note that more days to �rst claim implies lower initial drug use. N =137,536 (N=108,577 for no deductible plans,

and N=28,959 for deductible plans).
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Figure 7: Model �t

Figure shows the distribution of observed and predicted total annual drug spending. The top panel shows the results

for the whole distribution, where each bar represents a $100 spending bin above the value on the x-axis (except for

the last bar, which includes all spending above $5,900). The bottom panel �zooms in� on spending within $1,000

of the (year-speci�c) kink (which is normalized to 0) and shows observed and predicted spending in $20 bins, where

each point represents individuals who spend within $20 above the value on the x-axis. Frequencies in the bottom

panel are normalized to sum to 1 across the displayed range.
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Figure 8: Change in spending from ��lling the gap,�by pre-change spending level

Figure shows the change in spending from ��lling the gap� (i.e. providing 25% cost-sharing in the gap) for the

2008 standard bene�t (which provides no coverage in the gap) The x-axis shows predicted spending under the 2008

standard bene�t. The solid black line shows the mean change in spending for individuals whose predicted spending

under the 2008 standard contract is on the x-axis. The dashed lines show the 10th, 25th, 50th, 75th, and 90th

percentile changes in spending.
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Figure 9: Change in spending from ��lling the deductible,�by pre-change spending level

Figure shows the change in spending from ��lling the deductible� (i.e. providing 25% cost-sharing in the

deductible) for the 2008 standard bene�t (which provides no coverage in the deductible) The x-axis shows

predicted spending under the 2008 standard bene�t. The solid black line shows the mean change in spending

for individuals whose predicted spending under the 2008 standard contract is on the x-axis. The dashed

lines show the 10th, 25th, 50th, 75th, and 90th percentile changes in spending.
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Figure 10: Timing of drug purchases

The �gure shows the fraction of individuals who have at least one drug purchase in December as a function

of their total annual spending. The x-axis reports total annual spending relative to the (year-speci�c) kink

location, which is normalized to zero. Each point in the graph represents individuals who spend within $20

above the value on the x-axis. N =2,589,420. The dashed line is generated by regressing the logarithm of

the share of individuals with no December purchase in each $20 spending bin, using only individuals with

annual spending (relative to the kink location) between -$2,000 and -$500, on the mid-point of the spending

amount in the bin, weighting each bin by the number of bene�ciaries in that bin. Data are our baseline

sample in 2007-2009 whose annual spending is within $2,000 of the kink location (N=2,589,420).
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Figure 11: Inter-temporal substitution

The top panel shows the individual�s �excess� January spending in year t+ 1 as a function of her total annual

spending (relative to the kink location, which is normalized to 0) in the prior year (year t). �Excess� January

spending in year t+ 1 is de�ned as the ratio of January spending in year t+ 1 to average monthly spending in all

other months (of year t+ 1). Each bar on the graph represents individuals within $50 above the value on the x-axis.

The y-axis reports the average, for each year t spending bin, of the �excess January spending�measure. This analysis

is limited to individuals in our baseline sample in 2007 and 2008 whom we observe in the subsequent year; we exclude

individuals in our baseline sample in 2009 since we do not observe their year t+ 1 spending. N=1,525,678.

The bottom panel shows the bunching analysis (from Figure 4), but now as a function of �adjusted�annual spending.

�Adjusted�annual spending is computed by taking total annual spending (in year t) and, for each $50 bin of annual

spending in year t, adding the the average dollar di¤erence between January spending in year t+ 1 and the average

monthly spending in February to December of year t+ 1. �Adjusted� annual spending is reported relative to the

kink location in year t (which is normalized to 0). The sample shown is once again limited to our baseline sample in

2007 and 2008 whom we observe in the subsequent year (N=1,511,353).
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Table 1: Summary statistics

Sample Full Sample Baseline Sample 65 y.o. Sub­Sample

Panel A: Demographics

Obs. (beneficiary years) 16,036,236 3,898,247 137,538
Unique beneficiaries 6,208,076 1,689,308 137,538
Age 70.9 (13.3) 75.6 (7.7) 65 (0)
Female 0.60 0.65 0.60
Risk scorea n/a 0.88 (0.34) n/a

Panel B: Annual  Total Spending
Mean 2,433 1,888 933
Std. Deviation 4,065 2,675 1,618
Pct with no spending 7.35 5.65 12.18
25th pctile 378 487 114
Median 1,360 1,373 513
75th pctile 2,942 2,566 1,240
90th pctile 5,571 3,901 2,355

Panel C: Annual Out of Pocket Spending
Mean 418 778 325
Std. Deviation 744 968 544
Pct with no spending 14.64 7.11 14.19
25th pctile 29 183 41
Median 144 464 175
75th pctile 476 900 395
90th pctile 1,040 1,971 703

Table shows summary statistics for the full 20% random sample of Medicare Part D bene�ciaries (column 1), our

baseline sample (column 2), and our 65 year-old sub-sample of the baseline sample (column 3). We show standard

deviations (in parentheses). The major restrictions from the full sample to the baseline sample are the exclusion of

individuals under 65, dually eligible for Medicaid or other low-income subsidies, or not in stand-alone prescription

drug plans. The 65 year-old sub-sample restricts our baseline sample to individuals who are 65 and who joined

Medicare Part D between February and October. See text for more details on sample restrictions.
a Risk scores are predictions of Part D annual spending using CMS�2012 RxHCC risk adjustment model (see

text for details). They are designed to be 1 on average for Part D bene�ciaries. Risk scores in our baseline sample

are reported exclusive of 65 year olds, since risk scores for newly enrolling 65 year olds are only a function of a few

crude demographics like gender.
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Table 2: Cost-sharing features

Sample
Deductible plans No Ded. plans Deductible plans No Ded. plans

Obs. (beneficiary years) 1,036,824 2,861,423 28,960 108,578

Avg. Deductible Amount 265.9 0 257.1 0
Avg. Deductible Coins. Rate 0.88 ­­ 0.85 ­­

Avg kink locationa 2,523.0 2,541.7 2,516.4 2,534.6
Avg. pre­kink Coins. Rate 0.26 0.37 0.27 0.37

Pct w/ Some Gap Coverage 0.01 0.17 0.00 0.12
Avg. Gap Coins. Rate (no gap Coverage) 0.88 0.98 0.88 0.98
Avg Gap Coins. Rate (some gap coverage) 0.71 0.77 ­­ 0.76

Avg catastrophic limit (out of pocket)a 4,060.0 4,091.8 4,048.3 4,080.4
Catastrophic Coins. Rate 0.07 0.07 0.07 0.07

Baseline Sample 65 y.o. Sub­Sample

aThe kink location is de�ned based on total expenditures; the catastrophic coverage limit is de�ned based

on out-of-pocket expenditures.
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Table 3: Parameter estimates

j=1 j=2 j=3 j=4 j=5

Parameter estimates:
Beta_0 2.98 ­0.51 0.00 2.47 ­3.45

(0.060) (0.244) ­­ (0.082) (0.154)

Beta_Risk ­2.61 ­1.81 0.00 ­1.35 4.98
(0.117) (0.807) ­­ (0.163) (0.106)

Beta_65 ­3.29 ­2.21 0.00 ­3.99 3.34
(0.424) (1.055) ­­ (0.437) (0.384)

δ
μ 3.87 3.93 2.90 5.62 3.97

(0.021) (0.020) (0.009) (0.011) (0.020)

σ 1.45 1.41 1.32 0.70 1.49
(0.094) (0.110) (0.046) (0.020) (0.017)

p 0.99 0.38 0.89 0.99 0.44
(0.021) (0.268) (0.062) (0.055) (0.006)

λ 0.10 0.18 0.85 0.12 0.58
(0.002) (0.023) (0.025) (0.006) (0.012)

Implied shares:
Overall 0.25 0.02 0.15 0.28 0.31

For age=65 0.25 0.02 0.34 0.07 0.31
For age>65 0.24 0.01 0.08 0.35 0.31

Other implied quantities:
d(Share)/d(Risk) ­0.56 ­0.03 ­0.07 ­0.29 0.94

E(θ) 137 137 44 353 160

Implied annual expected spending:
Full insurance 714 1,270 1,933 2,144 4,801

0.25 coins. Rate 538 1,151 1,491 1,612 4,272

­­­­­­­­­­­­­­­­­­­ 0.929 (0.030) ­­­­­­­­­­­­­­­­­­­

Top panel reports parameter estimates, with standard errors in parentheses. Standard errors are calculated using the

asymptotic variance of the estimates (see equation (10)), with M estimated by the numeric derivative of the objective

function. Bottom panels report implied quantities based on these parameters. Note that �health�depends on both

the arrival rate of drug events (�) and the distribution of event size (�): Spending depends on these parameters as

well as on the decision to claim, which is a¤ected by the features of the contract and the parameter p.
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Table 4: Model �t

Observed Predicted

Annual Total Spending (All individual­year observations)
Mean 1,757 1,723
Median 1,300 1,299
Std. Dev 2,335 1,887
Percent Spend 0 5.9 5.9

Average weeks to first claim, No deductible
Feb­April joiners, No deductible plans 4.74 4.73
May­July joiners, No deductible plans 4.84 4.81
August­Oct. joiners, No deductible plans 4.65 4.72

Average weeks to first claim, Deductible
Feb­April joiners, Deductible plans 5.97 6.01
May­July joiners, Deductible plans 6.10 6.08
August­Oct. joiners, Deductible plans 6.49 6.49

Table reports observed and predicted summary statistics based on model estimation. Model is estimated on the

modi�ed baseline sample (described in footnote 16), which limits the baseline sample to the 90 percent of individuals

in the 500 most common plans and then retains the entire 65-year-old sub-sample plus a 10 percent random draw of

the remaining baseline sample; each observation in the 10 percent random draw is weighted by 10. Top panel shows

results for this modi�ed baseline sample (N=482,448). In the bottom two panels, sample is limited to the 65-year-old

sub-sample of the modi�ed baseline sample (N=125,463).
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Table 5: Spending e¤ect of alternative insurance contract design

Mean Std. Dev. 25th pctile Median 75th pctile 90th pctile Mean OOP Mean Insurer

1 Baseline (Standard 2008 contract) 1,710 1,928 243 1,356 2,503 3,607 785 925

2    "Filling" the gapa 1,955 2,190 270 1,388 2,890 4,617 646 1,309

3    "Filling" the Deductibleb 1,882 1,836 695 1,549 2,531 3,625 678 1,204

4 Baseline (Actual contracts) 1,744 1,895 495 1,320 2,435 3,632 777 967

5    "Filling" the gapa 1,925 2,079 501 1,345 2,729 4,406 682 1,242

6    "Filling" the Deductibleb 1,783 1,874 560 1,366 2,444 3,636 754 1,029

7 Full insurancec 2,571 2,251 1,018 2,077 3,520 5,246 0 2,571

8 No Insuranced 599 1,291 0 0 812 1,896 599 0

9 Only catastrophic coveragee 965 1,975 0 0 1,407 3,047 805 159

Table reports the predicted annual drug spending under various observed and counterfactual contracts. All columns

report total annual drug spending except the right-most two which separately report out of pocket and insurer

spending. Rows 1-3 report predicted spending under the standard contract in 2008, which was illustrated in Figure

1, and counter-factual changes to it. Rows 4-6 report predicted spending for the observed contracts in our sample,

and counterfactual changes to them. Rows 7-9 report predicted spending under additional counterfactual contracts.

For all of the simulations, we assume individuals are in the contract for a full 12 months. (Predicted mean spending

for observed contracts - row 4 - is slightly higher than the estimate reported in Table 4 because of the assumption

here that everyone is in the contract for 12 months).
a �Filling the gap�means that, above the deductible, the plan now has a constant co-insurance rate, without a kink,

until out-of-pocket expenditure hits the catastrophic limit. For each plan, we use the observed (pre-kink) co-insurance

rate (which is 25% in the 2008 standard bene�t plan.). For the less than 1% of plans where our calculated pre-kink

co-insurance rate is higher than our calculated co-insurance rate in the gap, we do not adjust cost-sharing in the

counterfactual.
b �Filling the deductible�means reducing the deductible amount to zero, so that the observed (pre-kink) co-insurance

rate (which is 25% in the 2008 standard bene�t plan) kicks in with the �rst dollar of spending.
c �Full Insurance�means 0% consumer co-insurance everywhere.
d �No Insurance�means 100% consumer co-insurance everywhere.
e �Only catastrophic coverage�means 100% consumer co-insurance up to the catastrophic coverage limit.
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Table 6: Implied price elasticities

(Uniform) Price Reductiona Average Annual Spending Implied "Elasticity"b

0% (Baseline) 1,710 —
1.0% 1,722 ­0.73
2.5% 1,736 ­0.60
3.0% 1,740 ­0.59
3.5% 1,745 ­0.58
5.0% 1,757 ­0.56
7.5% 1,779 ­0.54

10.0% 1,800 ­0.53
15.0% 1,841 ­0.51
25.0% 1,921 ­0.49
50.0% 2,123 ­0.48
75.0% 2,338 ­0.49

Table shows the model�s estimate of the impact of various changes to the 2008 standard bene�t budget set (shown

in Figure 1). The �rst row shows predicted average annual spending under the existing budget set. Other rows show

predicted average annual spending (and the implied �elasticity�) of various uniform price reductions to this budget

set.
a �Uniform price reduction� is achieved by reducing the price (i.e. consumer coinsurance) in every arm of the 2008

standard bene�t by the percent shown in the table.
b The implied �elasticity� is calculated by computing the ratio of the percent change in spending (relative to the

baseline) to the percent change in price (relative to the baseline).
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Table 7: Robustness

Basline "Filled" Gap Change Basline "Filled" Gap Change

1 Baseline model 1,744 1,925 10.4% 967 1,242 28.4%

Number of types:
2 Three types 1,743 1,872 7.4% 966 1,208 25.1%
3 Six types 1,738 1,902 9.4% 961 1,226 27.6%

Different sets of covariates:
4 Remove all covariates 1,762 1,901 7.9% 979 1,230 25.6%
5 Add "no gap" covariate 1,737 1,942 11.8% 965 1,254 29.9%

Concave (risk averse) utility function:
6 CARA = exp(­6.5) 1,718 1,893 10.2% 941 1,214 29.0%
7 CARA = exp(­9.5) 1,723 1,872 8.6% 948 1,202 26.8%

Total Spending Insurer Spending

Table shows how the predictions of the model are a¤ected by di¤erent speci�cations of the economic or econo-

metric model. The �rst row presents the results from the baseline model (as reported in rows 4 and 5 of Table 5).

Row 2 and 3 report results in which we explore the sensitivity of the results to the number of discrete types (M): the

baseline model assumes M = 5, while row 2 assumes M = 3, and row 3 assumes M = 6. Row 4 reports results

in which we do not use any covariate zi to estimate the propensity of each individual to be of each type, while row

5 uses the baseline covariates (a risk score, and an indicator for a 65 year old) and also adds an additional covariate,

an indicator for a bene�ciary who selected a plan with no gap coverage. Rows 6 and 7 report results that are based

on estimating a recursive utility model that allows for risk aversion as described in the main text (relative to the risk

neutrality assumption of the baseline model). The two values of the (absolute) risk aversion parameter are imposed,

such that they span the range of risk aversion estimates reported in Handel (2013).
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Table 8: Heterogeneity in response across drug types

Actual Predicted
P(Dec. Purchase) P(Dec. Purchase)

All 100.0 100.0 0.846 0.922 0.083  (0.001)

Chronic 69.6 77.1 0.762 0.867 0.121  (0.001)
Acute 30.4 22.9 0.532 0.590 0.099  (0.002)

Maintenance 85.1 90.1 0.807 0.899 0.103  (0.001)
Non­Maintenance 14.9 9.9 0.303 0.330 0.080  (0.004)

Brand 33.4 74.8 0.624 0.780 0.199  (0.001)
Generic 66.6 25.2 0.731 0.798 0.085  (0.001)

"Inappropriate" a 2.7 1.3 0.075 0.085 0.119  (0.008)

Percent of
purchases

Percent of
spending ($)

Drug Type
Percent decrease in
purchase probability

Table shows overall, and then separately by drug type, the change in the probability of a purchase in December

around the kink location. The analysis is done on the same sample analyzed in Figure 10 (N=2,589,420). The

�actual�probability of a December purchase is the probability someone whose annual spending is within $200 of the

kink location �lls at least one prescription in December. The �predicted�probability of a December purchase within

$200 of the kink location is designed to re�ect what the probability of a December purchase would have been in the

absence of the kink. It is estimated (as in Figure 10) by regressing the logarithm of the share of individuals with no

December purchase in each $20 spending bin (between -$2,000 and -$500) on the mid-point of the spending amount

in the bin, weighting each bin by the number of bene�ciaries in that bin. When looking separately by drug type, the

�actual�and �predicted�probabilities are calculated based on the probability of a purchase for a speci�c drug type.

The right-most column shows the percent decrease in purchase probability, i.e. the predicted minus actual December

purchase probability as a percent of the predicted. Bootstrapped standard errors (in parentheses) are calculated

by estimating the actual and predicted probability of a December purchase of a given type based on 500 bootstrap

replications.
a Following Zhang et al. (2010), we proxy for inappropriate drug use using an indicator from the Healthcare

E¤ectiveness Data and Information Set (HEDIS) on whether the drug is considered high-risk for the elderly (HEDIS,

2010).
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Table 9: Heterogeneity in response across individuals

Population Share of Sample Share of Spending

All 100.0 100.0 0.291 (0.003)

Yeara

   2006 n/a n/a 0.088 (0.008)
   2007 n/a n/a 0.150 (0.008)
   2008 n/a n/a 0.213 (0.009)
   2009 n/a n/a 0.293 (0.010)

Gender
   Male 35.0 34.3 0.348 (0.005)
   Female 65.0 65.7 0.262 (0.004)

Age group
   66 5.4 4.6 0.519 (0.016)
   67 5.7 4.9 0.426 (0.015)
   68­69 11.0 9.8 0.383 (0.009)
   70­74 24.0 23.0 0.334 (0.006)
   75­79 19.2 20.2 0.255 (0.006)
   80­84 15.4 17.6 0.194 (0.006)
   85+ 14.8 17.8 0.136 (0.007)

Number of Hierarchical Condition Categoriesb

   0 15.5 6.6 0.837 (0.020)
   1 8.9 5.0 0.494 (0.018)
   2 14.9 10.7 0.191 (0.008)
   3 17.6 16.2 0.197 (0.006)
   4 15.0 16.9 0.236 (0.007)
   5+ 28.1 44.6 0.316 (0.005)

Risk Score Quartile
   1 (healthiest) 25.1 11.9 0.448 (0.011)
   2 25.1 19.3 0.155 (0.005)
   3 24.9 26.7 0.250 (0.005)
   4 (least healthy) 25.0 42.2 0.346 (0.005)

Excess Mass

Table investigates the excess mass at the kink separately for di¤erent populations. Excess mass is calculated, sepa-

rately for each group. For a given group of individuals, we compute the number of people within $200 of the kink and

estimate (counterfactually, using the approached described in Figure 4) how many people (in that group) would have

been in that range in the absence of the kink. Our �excess�mass estimate is the percentage increase in the people

observed at the kink relative to the number we estimate would be there in the absence of the kink. Bootstrapped

standard errors (in parentheses) are calculated based on 500 replications of the bootstrap. Row 1 shows the results

for the baseline sample (from Figure 4; N =2,589,420). Subsequent rows show results for the indicated sub-samples.
a For the analysis by year we add in the �rst year of the Part D program (2006); the results �by year�are shown for

the sub-sample of approximately two-�fths of individuals who joined in January 2006 and remain in the sample for

complete years through 2009.
b The hierarchical condition categories are inputs in the CMS risk score; they are meant to capture conditions that

are predictive of higher drug spending in the next year.
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Appendix A: Additional bunching analysis

Plans without a standard kink location Our baseline sample consists of individuals with a

standard kink location. A small sample of individuals excluded from the baseline sample have a

kink at an amount that is di¤erent from the standard level. The modal non-standard kink amount

is $2,100; most of these plans are in 2007 or 2008. Figure A2 shows, as expected, that for individuals

in plans with the $2,100 kink location, there is evidence of excess mass around $2,100 but not at

the standard kink locations. Naturally, the �gure is somewhat noisier than the baseline analyses

that use the considerably larger baseline sample.

Distribution of spending around the deductible The same standard economic theory that

generates bunching at the (convex) kink as individuals enter the gap, should also generate �missing

mass�at the concave kink created by the sharp price decreases when individuals hit the deductible

amount or hit the catastrophic coverage limit (see Figure 1). It is di¢ cult to analyze the distribution

of spending around the catastrophic limit.32 Figure A3, however, shows no evidence of such missing

mass around the deductible level for individuals in plans with the standard deductibles.33

This �nding of excess mass (bunching), but not missing mass, is mirrored in the labor supply

context where previous research has similarly found excess mass in annual earnings in convex kinks

but not missing mass at concave kinks (Saez 2010). One potential rationale for the bunching at

the gap but the lack of �missing mass� at the deductible amount might be that it is easier to

stop (or delay) utilization in response to an increase in price at the gap than it is to increase (or

speed up) utilization because of an anticipated decrease in price if one were to hit the deductible

level. It would be interesting to see if this lack of missing mass at non-convex kinks is a broader

phenomenon, and if so to understand why. In the context of health insurance, typical contracts

specify a price that is decrease in total spending, so that most of the generated kinks are non-

convex. Some health insurance contracts, however, have convex kinks, such as high-deductible

Health Reimbursement Accounts, where the price the consumer faces increases discontinuously

when the employer contribution to help cover the deductible is exhausted (Lo Sasso et al. 2010).

Appendix B: Testing for dynamic response

As described in Section 4, we utilize variation in the birth month of bene�ciaries, which creates

variation in coverage duration during the �rst year of eligibility, to examine whether individuals

32Analysis of the spending distribution around the catastrophic limit is made noisy for two reasons. First, few
people spend enough to put them in the range of the catastrophic limit, so sample sizes are small. Second, the
catastrophic limit is a function of out-of-pocket spending, not total spending. However, the distribution of out-of-
pocket spending changes mechanically when cost-sharing changes. We therefore would need to analyze the distribution
of total spending around the catastrophic limit, but the mapping (from out-of-pocket spending to its associated total
spending) introduces additional noise. Therefore, although we �nd no evidence of missing mass at the catastrophic
limit, given these data issues we do not consider the result particularly informative.
33We exclude from the analysis the roughly 10% of people in plans with a (non-zero) deductible that is not the

standard deductible level. As with the location of the kink. the level of the deductible is set di¤erently each year in
the standard bene�t. It is $265 in 2007, $275 in 2008, and $295 in 2009.
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respond to the non-linearity of the contract. Speci�cally, we test for a dynamic response by com-

paring the pattern of initial prescription drug use within a plan across newly-enrolled 65 year old

bene�ciaries who turn 65 at di¤erent points in the year. This creates variation in the expected

end-of-year price (or future price) across individuals who face the same initial, spot price for drugs.

This allows us to empirically test the null that individuals do not respond to the future price. This

appendix presents the analysis and its results in more detail.

Analytical framework

The 65 year old sub-sample Given the identi�cation strategy, we limit the baseline sample to

65 year olds, thus generating variation in join month based on birth month. (Almost all existing

enrollees over 65 can change plans only during the fall open enrollment period for coverage starting

January 1). For analytical tractability, we remove the small number (<0.25%) of individuals who

choose a deductible that is less than $100 or who choose a deductible plan with gap coverage. As

in Aron-Dine et al. (2012), we further limit our analysis to individuals who join between February

and October.34

These restrictions produce the �65 year old sub-sample�described in Tables 1 and 2. It consists

of about 137,000 bene�ciary-years, a substantial restriction relative to our baseline sample of 3.9

million bene�ciary-years. Not surprisingly, Table 1 shows average annual prescription drug spending

substantially lower in the 65 year old sub-sample. This re�ects both that the 65 year olds are the

youngest individuals in the baseline sample (and therefore on average the healthiest) and also that,

because we restrict to February-October enrollees, we observe �annual�spending in this sample for

only about six months on average. Our analysis below will condition on the plan, which we will

index by j. We observe 3,575 di¤erent plans covering our 65 year old sub-sample.

An assumption of our empirical strategy is that individuals face di¤erent contract durations

depending on which month of the year they were born. Table B1 corroborates this, showing the

relationship between birth month and enrollment month for our 65 year old sub-sample. The vast

majority (over 70%) of our sample enrolls in their birth month. Virtually no one (less than 2%)

enrolls prior to their birth month (this 2% presumably re�ects measurement error in our data

or some idiosyncratic circumstances). About one-quarter enrolls after their birth month (usually

shortly thereafter), presumably re�ecting some delay in signing up. In the empirical work below

we will often instrument for enrollment month with birth month.

Measuring future price For purposes of our descriptive work, we de�ne the future price to be

the expected end-of-the year price.35 The expected end-of-year price depends on three elements:

34We exclude November and December enrollees because we want to observe our initial utilization measure over a
reasonable time horizon. We exclude January enrollees because empirically they turn out to con�ate both individuals
whose birth month is in January with a reasonable number of people who join in January for other idiosyncratic
reasons.
35 If individuals are risk neutral, this is the only moment of the future price that should matter for their utilization

decisions. In practice, individuals may not be risk neutral and other moments of the end-of-year price may a¤ect
initial utilization. Limiting our analysis to the impact of the expected end-of-year price can therefore bias us against
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the cost-sharing features of the bene�ciary�s plan, the duration (number of months) of the contract,

and the expected spending of individuals.

For illustrative purposes, Table B2 shows how the fraction of individuals ending up in di¤erent

cost-sharing arms varies by enrollment month. We show this pattern separately for deductible

and no-deductible plans. We see, for example, in the deductible plan that the fraction still in the

deductible (high cost sharing) arm at the end of the calendar year is increasing in enrollment month;

this is what drives the pattern of increasing future price with enrollment month in the deductible

plans. In the no-deductible plans, the fraction in the (high cost sharing) gap at the end of the

calendar year is decreasing in enrollment month, which is what drives the pattern of decreasing

future price with enrollment month in the no-deductible plan.

In practice, we calculate the future price fpj;m separately for each plan j and enrollment month

m in the sample. Let Pr(j;m; a) denote the probability an individual who enrolls in plan j in

month m ends up in the cost sharing arm a at the end of the year, and let cj;a denote the consumer

cost-sharing rate for plan j in arm a: We calculate the empirical analog of Pr(j;m; a) using the

data on the fraction of individuals who enrolled in plan j in month m and ended up at the end of

the calendar year on each arm a. We calculate cj;a using the data for the baseline sample on the

ratio of out-of-pocket spending to total spending for each plan-cost sharing arm (as described in

the main text). Thus, we have:

fpj;m =
X
a2A

Pr(j;m; a) � cj;a; (12)

where A = fded; pre� kink; gap; catastrophicg. Thus, the future price is the mean of the realized
end-of-year cost sharing for each plan j and enrollment month m:We describe below a related

variable ("simulated future price") that we use to instrument for the future price in some of our

analyses.

Measuring initial drug use The key to our empirical strategy is that the spot price is initially

constant within a plan across enrollment months while the future price varies. Therefore, we need

a measure of initial drug use for which the spot price is the same. The most natural measure is

therefore a measure of time to �rst claim, since the spot price should be the same for everyone

within a plan at the time of their �rst claim.36

We analyze the distribution of log days to �rst claim through the �rst 91 days (the maximum

time we observe everyone regardless of enrollment month). Over 80% of our sample has a claim

within the �rst 92 days (not surprisingly, this fraction is lower for those in deductible plans (71%)

than those in no deductible plans (84%)). Conditional on having a claim, the average days to �rst

claim is about 23 days. We assign individuals without a claim in the �rst 91 days a time to a �rst

claim of 92 days.

rejecting the null of no response to the future price, which is the exercise here.
36The only exception to this would arise due to the lumpiness of initial claims (e.g. if a plan has a $100 deductible

and the drug costs $150).
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Estimating equations Our main estimating equations analyze the relationship between a mea-

sure of initial drug use and enrollment month, or initial drug use and the future price (with variation

in the future price being driven by the plan and enrollment month).

The simplest way by which we can implement our strategy is to look within a given plan type

(such as deductible plans) and regress log days to �rst claim (yi) on join month (m), which runs

from 2 (February) to 10 (October), and plan �xed e¤ects (�j).37 We estimate:

yi = �mi + aj + ui: (13)

Equation (13) analyzes how initial drug use varies with enrollment month, conditional on plan

�xed e¤ects.38 The plan �xed e¤ects control for any �xed di¤erence in initial drug use across

plans; plans di¤er in, among other things, their cost sharing in the pre-kink arm and in the gap,

and standard selection e¤ects (or e¤ects of the spot price for no deductible plans) could therefore

generate di¤erences in initial drug use across plans. Our analysis focuses on whether, within plans,

initial drug use varies by enrollment month.

Recall that future price is increasing in enrollment month for the deductible plan (see e.g. Table

B2). Therefore, absent any confounding in�uences of join month on yi, we would expect an estimate

of � = 0 for deductible plans if individuals are fully myopic and � > 0 if individuals are not. If

individuals exhibit a dynamic response, then initial drug use should be decreasing in enrollment

month and therefore time to �rst claim should be increasing.

If individuals�health varies by birth month or if seasonality in drug use is an important factor,

it could confound the interpretation of � in the above equation. We address this concern by

contrasting the pattern of initial drug use by enrollment month in deductible plans with that in

no-deductible plans, where the future price is decreasing (rather than increasing) with enrollment

month (again, see e.g. Table B2). Formalizing this in a di¤erence-in-di¤erence analysis we examine:

yi = �
0miDj + �j + �m + �i; (14)

where �m are enrollment-month �xed e¤ects, and Dj is a dummy variable that is equal to one when

plan j is a deductible plan. The enrollment month �xed e¤ects control �exibly for any pattern of

initial drug use by enrollment month that is common across plans, and the approximately 3,500

plan �xed e¤ects control for �xed di¤erences in initial drug use across plans, regardless of enrollment

month. Again, our coe¢ cient of interest is �0, where �0 = 0 would be consistent with the lack of

response to dynamic incentives (i.e., full myopia) while �0 > 0 implies that the evidence is consistent

with dynamic response.

One limitation to the analysis in equation (14) is that it uses variation by enrollment month,

which is in principle a choice. We can purge the choice element of this variation by estimating an

37Van der Berg (2001) discusses the trade-o¤s involved in analyzing a duration model using a linear model with
the logarithm of the duration as the dependent variable, as we do here, relative to a proportional hazard model. As
he explains, neither model strictly dominates the other.
38Because the features of a plan can change slightly from year to year, we de�ne a �plan�at the yearly level. Thus,

we have separate �xed e¤ects for each plan in each year.
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instrumental variable version of equation (14) in which we instrument for enrollment month with

birth month. Speci�cally, we use as instrumental variables a series of birth month dummies and an

interaction of (linear) birth month with a deductible dummy. Not surprisingly, given the patterns

seen in Table B1, the relationship between birth month and enrollment month is quite strong.39

Another limitation to the analysis in equation (14) is that it constrains the relationship be-

tween enrollment month and initial drug use to be linear in enrollment month and to be constant

across di¤erent deductible plans or across di¤erent no-deductible plans. In practice, however, the

relationship between enrollment month and future price will vary within these broad plan types

depending on the speci�c plan details, nor is the relationship necessarily linear (or in some cases

even monotonic). To account for these features, as well as to provide an estimate with more of an

economic interpretation, we will estimate regressions with the future price on the right hand side

rather than enrollment month. Speci�cally, we will estimate

yi = e�fpj;m + �j + �m + eui; (15)

where (as before) yi is log days to �rst claim, aj are plan �xed e¤ects, and �m are enrollment-

month �xed e¤ects. Equation (15) thus compares initial drug use across individuals within the

same plan, controlling for a �exible relationship between initial utilization and enrollment month

that is common across all plans. Variation in the key right-hand-side variable, the future price,

comes from variation across individuals in the plans they enrolled in, the month in which they

enrolled, and the spending of the group of people who enrolled in that plan during that month.

Simulated future price There are two sets of potential concerns with the analysis in equation

(15). One class of concerns is that, as previously discussed, individuals choose when to enroll in

a plan. We would prefer to use variation in the future price that comes from birth month rather

than enrollment month.

A second class of concerns is that we calculate the future price as a function of the spending

of individuals in a given plan and enrollment month, and our dependent variable is a function of

that spending for an individual in that plan and enrollment month. This second class of concerns

in turn raises three issues. The �rst issue is the potential endogeneity of the future price (our key

right-hand-side variable) to initial drug use (the dependent variable). The future price is calculated

based on the drug spending of individuals who enroll in a given plan in a given month. If this

spending responds to the future price, this will bias our estimate of the impact of the future price

on drug spending away from zero.40 A second issue is re�ection bias. The future price is calculated

based on the total spending of the set of people who enroll in a given plan in a given month and

39For example, a regression of (linear) enrollment month on (linear) birth month (controlling for plan �xed e¤ects)
has a coe¢ cient of 0.858 (standard error = 0.002). In the regression results below we report the F-statistics for the
excluded instruments in each IV speci�cation.
40Note, however, that in our context this is not a concern. This potential endogeneity is not a problem if the only

goal is to test the null of complete myopia (i.e., testing whether the coe¢ cient on the future price is zero) because
under the null of complete myopia drug spending is not a function of the future price. Our focus in this appendix is
only on testing that null, not on quantifying the response to the future price.

60



the dependent variable is the initial spending of a given person who enrolled in the plan in that

month. This problem is more acute the smaller is the sample size of people enrolling in a given

plan in a given month (and thus the larger the contribution of the individual to the plan-month

mean total spending). A �nal issue is the potential for common shocks. If there is a shock to

health or spending that is speci�c to individuals enrolling in a speci�c plan in a speci�c month (e.g.

the �u hits particularly virulently those who enroll in a particular plan in a di¤erent month), this

introduces an omitted variable that is driving both the future price and initial drug use.

We address both classes of concerns with an instrumental variable strategy in which we instru-

ment for the future price with a simulated future price. Like the future price, the simulated future

price is computed based on the characteristics of the plan chosen. However, unlike the future price,

it uses data on monthly spending for a common sample of individuals for all calculations, thus

�purging� any variation in monthly spending that is correlated with plan or enrollment month,

while at the same time addressing re�ection bias and common shocks concerns. It addition, for the

simulated future price we calculate contract duration (i.e. number of months of spending to draw)

based on birth month, not join month; this is designed to address the concern that enrollment

month may be endogenous.41 Our simulated future price variable is very much in the spirit of

Currie and Gruber�s (1996) simulated Medicaid eligibility instrument.

Identifying assumption Our key identifying assumption is that conditional on any �xed spend-

ing di¤erences by plan and any (�exible) spending pattern by enrollment month, the within year

pattern of initial drug use by enrollment month does not vary based on which plan the individual

enrolled in, except for the dynamic incentives. This strategy allows initial drug use levels to vary

across people in di¤erent plans due to selection di¤erences (not surprisingly, we see in Figure 6

higher initial drug use � i.e. shorter days to �rst claim � for individuals in no-deductible plans,

as would be expected from plan selection). It also allows for seasonal patterns in initial drug use

either because of demographic di¤erences in the population by birth month or because of sea-

sonal di¤erences in drug use based on which three-month window is being used to de�ne �initial

utilization.�

One reason the identifying assumption could be violated is if the same dynamic response that

may lead to di¤erential initial drug use among people in the same plan with di¤erent contract

length also leads to di¤erential selection into plans on the basis of enrollment month. A priori, it

is not clear if individuals would engage in di¤erential selection into a deductible vs. no-deductible

plan based on the month they are enrolling in the plan. In practice, we �nd that the probability of

enrolling in the no-deductible plan is increasing in enrollment month in a statistically signi�cant but

41Speci�cally, for every individual in our sample regardless of plan and enrollment month, we compute their monthly
spending for all months that we observe them during the year that they enroll in the plan, creating a common monthly
spending pool. We then simulate the future price faced by an indivdiual who enrolls in a particular plan in his birth
month by drawing (with replacement) 10,000 draws of monthly spending from this common pool, for every month
we need a monthly spending measure. For the �rst month we draw from the pool of �rst month spending (since
people may join the plan in the middle of the month, the �rst month�s spending has a di¤erent distribution from
other months) whereas for all other months in the plan that year we draw from the pool (across plans and months) of
non �rst month spending. For each simulation we then compute the expected end-of-year price based on the draws.
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economically trivial manner (one extra month is associated with a 0.4 percentage point increase

in the probability of choosing a deductible plan, relative to a mean probability of choosing the

no-deductible of about 75 percent).

Results

Graphical results: deductible vs. no-deductible plans Figure 6, which is presented in the

main text, illustrates our main �nding graphically. For the deductible plans, the simulated future

price is increasing with enrollment month and initial drug use is decreasing with enrollment month

(i.e. average time to �rst claim is increasing with enrollment month). For the no-deductible plan

the simulated future price is decreasing with enrollment month, and initial drug use does not appear

to vary systematically with enrollment month.

Regression results Although for purposes of graphical presentation we grouped plans into de-

ductible and no-deductible plans, in the regression analysis we exploit the �ner variation across

plans in the patterns of future price and initial drug use by enrollment month. For example, some

no-deductible plans have gap coverage and others do not, which creates di¤erent patterns of future

price by enrollment month. Table B3 reports the analysis of patterns of initial drug use by en-

rollment month. Throughout, the dependent variable is log days to �rst claim. Columns (1) and

(2) report the results from estimating equation (13) for deductible plans and no-deductible plans,

respectively. Column (1) shows that initial drug use declines (i.e. time to �rst claim increases)

in enrollment month for the deductible plans. The e¤ect is statistically signi�cant, and the point

estimate indicates that a one-month increase in enrollment month is associated with a 2.3 percent

increase in days to �rst claim (corresponding to a decrease in initial drug use). Column (2) shows

no economically or statistically signi�cant pattern in the relationship between initial drug use and

enrollment month in the no-deductible plans. As a result, the di¤erence-in-di¤erences analysis in

column (3) shows an e¤ect of enrollment month for deductible plans that is virtually identical to

the deductible plan analysis in column (1). When we instrument for enrollment month with birth

month in column (4), the e¤ect remains statistically signi�cant although the magnitude attenuates.

The point estimates indicates that a one month increase in enrollment month is associated with a

1.4 percent increase in time to �rst claim (i.e. decrease in initial drug use) for individuals in the

deductible plan, relative to the no-deductible plan.

The rest of Table B3 reports the relationship between initial drug use and future price. Column

(5) shows the OLS estimates of equation (15). It indicates that a 10 cent increase in the future price

is associated with a 4.6 percent increase in time to �rst claim (i.e. decrease in initial drug use). The

IV analysis in column (6), which uses the simulated future price and birth month �xed e¤ects as

instruments for the future price and enrollment month �xed e¤ects, indicates that a 10 cent increase

in the future price is associated with a 6.7 percent increase in time to �rst claim (i.e. a decrease in

initial drug use). Both estimates are statistically signi�cant. We reject the null of no response of

initial drug use to the future price, and thus reject the null of completely myopic behavior. These

results are robust to estimating the regressions in levels instead of logs (not shown).
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Appendix C: Estimation details

Simulation We estimate our model using simulated minimum distance. As described in Section

5, b' 2 argmin
'2	

(mn �ms('))
0Wn(mn �ms(')): (16)

To calculate ms(') we simulate data given a vector of parameters. To do so, we �rst calculate the

value function for each latent type and plan combination as described below. For each observation

we then simulate S claim histories. Given a person�s chosen plan, age, and other characteristics we

simulate a sequence of claims. We �rst draw the person�s type mis from a multinomial distribution

with probabilities ezi�m=
�PM

l=1 e
zi�l

�
. Then, starting from the �rst week of the year (t = 51) and

going until the �nal week of the year (t = 0), we simulate a claim history.42 Cumulative spending

begins with xis0 = 0. Each week there is an event with probability �mis . When there is an event,

the log potential claim is log �ist � N(�mis
; �2mis

). The utility cost of not �lling the claim is !ist,

which is equal to �ist with probability 1� pmis and uniform on (0; �ist) with probability pmis . The

claim is �lled if

�cj(�ist; xist) + �vjm(xist + �ist; t� 1) � �!ist + �vjm(xist; t� 1): (17)

In this case, xist�1 = xist + �ist. Otherwise, xist�1 = xist. We repeat this simulation until t = 0.

We then use the simulated data to calculate the statistics described in Section 5. Since the number

of observations is large, we use one simulation per observation (S = 1).

Minimization Throughout the minimization of the objective function, the underlying random

draws are kept constant and only shifted and/or rescaled as the parameters change. Nonetheless,

the simulated objective is not continuous with respect to ' due to discrete changes in whether some

simulated potential claims are �lled or not. The large number of potential sequences of claims makes

smoothing the objective function di¢ cult. Instead, we use a minimization algorithm that is robust

to poorly behaved objectives, the covariance matrix adaptation evolution strategy (CMA-ES) of

Hansen. Like simulated annealing and various genetic algorithms, CMA-ES incorporates random-

ization, which makes it e¤ective for global minimization. Like quasi-Newton methods, CMA-ES

also builds a second order approximation to the objective function, which makes CMA-ES much

more e¢ cient than purely random or pattern based minimization algorithms. In comparisons of

optimization algorithms, CMA-ES is among the most e¤ective existing algorithms, especially for

non-convex non-smooth objective functions (Hansen et al. 2010; Rios and Sahinidis 2012). Andrea-

son (2010) shows that CMA-ES performs well for maximum likelihood estimation of DSGE models.

As discussed by Hansen and Kern (2004), an important parameter for the global convergence of

CMA-ES is the population size. We initially set the population size to the default value of 15

(which is proportional to the logarithm of the dimension of the parameters), and then increased it

42For 65 year old we start from the week they enrolled in Medicare Part D. Since our data only contains the month,
but not week, of enrollment, we draw the enrollment week from a uniform distribution within the enrollment month.
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to 100. The computation is primarily CPU bound. The estimation takes roughly four days to run

on a server with two Intel Xeon E5-2670 eight-core processors.

Calculation of value function

Each individual�s value function depends on her chosen plan, j,and her unobserved type, m. As in

equation (2), the Bellman equation is

vjm(x; t) = (1� �m)�vjm(x; t� 1) + �mEm

"
max

(
�cj(�; x) + �vjm(x+ �; t� 1);

�! + �vjm(x; t� 1)

)#
; (18)

where the subscripts denote plan j and type m. The expectation is subscripted by m to emphasize

that it depends on the type-speci�c distribution of � and !. Given that vjm(x; 0) = 0, we can

compute an approximation to vjm sequentially. First, we approximate vjm(x; 1). Then, we use that

approximation to compute vjm(x; 2), and so on. To be more speci�c, let fxk;jgKk=1 be a large set
of values of x that cover the support of x. Then, given some approximation to vjm(x; t � 1), say
~vjm(x; t� 1), we compute

vk;jm = (1� �m)�~vjm(xk;j ; t� 1) + �mEm

"
max

(
�cj(�; xk;j) + �~vjm(xk;j + �; t� 1);

�! + �~vjm(xk;j ; t� 1)

)#
: (19)

We then calculate ~vjm(x; t) using linear interpolation between the f(xk;j ; vk;jm)g values.43 We allow
xk;j to di¤er for each plan. For each plan, xk;j is set to 20 evenly spaced points between 0 and the

deductible amount, 20 evenly spaced points between the deductible amount and the kink location,

20 evenly spaced points in the gap, and only 2 points above the catastrophic limit. Thus, plans

with a deductible use K = 62 interpolation points and plans without a deductible use K = 42

interpolation points. Above the catastrophic limit, c(�; x) = C� for some constant C, so the value

function is constant and two interpolation points su¢ ce.

To calculate vk;jm, we must integrate over � and ! to compute

Em [max f�cj(�; xk) + �~v(xk + �; t� 1) ; �! + �~vjm(xk; t� 1)g] : (20)

We approximate the expectation over � using Gauss-Hermite quadrature with 30 integration points.

Given the assume distribution of !=�, the remaining conditional expectation over ! given � has a

closed form. In particular,

Em

"
max

(
�cj(�; xk;j) + �~vjm(xk;j + �; t� 1);

�! + �~vjm(xk;j ; t� 1)

)#
= (21)

=Em

26664
P
�
cj(�;xk;j)��~vjm(xk;j+�;t�1)+�~vjm(xk;j ;t�1)

� � !
�

��� �� (�cj(�; xk;j) + �~vjm(xk;j + �; t� 1))+
+

0@ P
�
cj(�;xk;j)��~vjm(xk;j+�;t�1)+�~vjm(xk;j ;t�1)

� > !
�

��� �� �
�
�
E
h
�! j cj(�;xk;j)��~vjm(xk;j+�;t�1)+�~vjm(xk;j ;t�1)� > !

�

i
� �~vjm(xk;j ; t� 1)

� 1A
37775 ;

43We also experimented with shape preserving cubic interpolation. The resulting value function approximation is
very similar. We use linear interpolation in the estimation because it is less computationally intensive.
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where

P
�
C � !

�

��� �� =
8>>><>>>:
0 if C <= 0

pmC if C 2 (0; 1)

1 if C � 1

(22)

and

E
h
!j!
�
< C

i
=

8<:
Cpm
2 if C 2 [0; 1)

1� pm + pm
2 if C � 1

: (23)

Code

The estimation code is written in C++. It is available at https://bitbucket.org/paulschrimpf/medicared/

overview. It uses the covariance matrix adaptation evolution strategy (CMA-ES) of Hansen and

Kern (2004) and Hansen (2006) to minimize the objective function. ALGLIB (www.alglib.net) is

used for random number generation, interpolation, and integration.

Appendix D: Using Saez (2010) to map the excess mass to a price
elasticity

In this appendix we explain how we can adapt Saez�s (2010) model of the response of the income

distribution to a progressive income tax schedule to our context in order to translate our bunching

estimate into a price elasticity. Unlike the full dynamic model we develop and estimate in the

paper, the model in this appendix (as in Saez 2010) is static and assumes complete information

(i.e. no uncertainty about health shocks at the time of decision making).

Individual i obtains utility

ui(m; y) = gi(m) + y (24)

from (total) drug spending m and residual income y, as in Einav et al. (2013). As in Einav et

al. (2013) and Saez (2010), we assume that utility is quasi-linear. We make further parametric

assumptions, so that

ui(m; y) =

"
2m� �i

1 + 1
�

�
m

�i

�1+ 1
�

#
| {z }+ [Ii � cj(m)]| {z }

gi(m) y

: (25)

That is, residual income y is given by the individual�s income Ii minus his (annual) out-of-pocket

cost cj(m), where cj(�) de�nes the function that, given the individual�s insurance coverage j, maps
total spending m to the fraction of it that is paid out of pocket as illustrated, for example, in Figure

1.

The choice of gi(m) in equation (25) is less standard, and is motivated by our attempt to obtain

a tractable, constant elasticity form of the spending function that would be similar to Saez (2010)

despite the di¤erent context. As will be clear soon, in our speci�cation of gi(m) above one can
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think of �i as representing an individual�s health needs, which vary across individuals, and � as

a parameter, common across individuals, that a¤ects individuals�elasticity of drug spending with

respect to the out-of-pocket price.

To see the motivation for this particular parameterization, consider its implication in the context

of a linear coverage. Suppose coverage is linear and is given by cj(m) = cj �m with cj 2 [0; 1], so
that cj = 0 represents full coverage and cj = 1 represents no coverage. In such a case, an individual

solves

max
m

"
2m� �i

1 + 1
�

�
m

�i

�1+ 1
�

+ Ii � cj �m
#
; (26)

and the optimal choice of healthcare utilization is given by

m = �i(2� cj)�: (27)

That is, with no insurance (cj = 1) the individual spends m = �i, while with full insurance he

spends m = 2��i. Thus our speci�cation implies a constant elasticity � of spending with respect

to (2� cj).
This constant elasticity form of the spending function is now very similar to Saez�s choice of labor

supply function, and for the rest of this appendix we can follow closely his strategy. We assume

that �i is distributed in the population with cdf F (�) and pdf f(�), analogously to individual�s

ability n in Saez. m is analogous to z in Saez, and (2� cj)� is analogous to (1� t)e in Saez (where
t is the marginal tax rate on income). Applying these analogies, we can start with, say, equation

(2) in Saez (page 186), which is identical (after applying the analogies) to equation (27) above.

Consider now H0(m) to be the cdf of spending when the marginal price (before the gap) is cj0.

Denote by h0(m) = H 0
0(m) the corresponding pdf. Because m = �i(2 � cj0)� we have H0(m) =

Pr(�i(2 � cj0)� � m) = F (m=(2 � cj0)�). So h0(m) = f(m=(2 � cj0)�)=(2 � cj0)�. Consider now
the gap, where there is a kink and the marginal price cj1 >> c01 becomes much higher, so above

the kink we have m = �i(2� cj1)�. H is then the distribution of spending under the kink scenario.

If the kink is at m�, then distribution of spending up to m� is given by H0(m). That is, spending

is such that:

m(�i) =

8><>:
�i(2� cj0)� if �i < m

�=(2� cj0)�

m� if �i 2 [m�=(2� cj0)�;m�=(2� cj1)�]
�i(2� cj1)� if �i > m

�=(2� cj1)�
: (28)

Thus, for spending above the kink (m > m�) we have H(m) = F (m=(2� cj1)�).
The rest continues as in Saez and the above analogies. For example, Saez�s equation (3) becomes:

�m�

m� = (2� c0)� � 1 (29)

and his equation (5) becomes

B = m�
��
2� cj0
2� cj1

��
� 1
� h(m�)� + h(m�)+=

�
2�cj0
2�cj1

��
2

: (30)
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Equation (30) can then be used to express � as a function of estimable objects, allowing us to

convert our bunching estimate of B to an elasticity estimate �. We should note that, unlike in Saez

(2010), our speci�cation implies a constant elasticity � of spending with respect to (2� cj) rather
than (1 � t). The elasticity of spending with respect to cj is therefore not constant, and would
depend on the level of cj . In our calculations below we compute a plan-speci�c �j , and then report

the elasticity estimate evaluated at the pre-kink cost sharing rate cj0, and then taking (weighted)

average across all plans.

Table D1 shows our estimate of the elasticity � under alternative speci�cations for estimating B.

We estimate B by estimating the counterfactual distribution of spending that would exist around

the kink in the absence of the kink; B is the number of people who are empirically in the area

around the kink over and above the number of people whom we (counterfactually) estimate would

be in this area if the kink did not exist (B is thus the numerator for the �excess mass�estimate we

report in Section 4.1).

Because calculation of � requires estimates of B separately by plans (so that B can be translated

into an elasticity separately for plans with di¤erent cost-sharing features), we limit this analysis (as

in Figure 5) to the approximately 80% of our baseline sample that are in plans with at least 1,000

bene�ciaries with spending within $2,000 of the kink. We report the bene�ciary-weighted average

elasticity across plans.

The �rst row of Table D1 shows our baseline speci�cation, which approximates the counter-

factual distribution of spending that would exist near the kink if there was no kink by �tting a

cubic approximation to the CDF, using only individuals whose spending is below the kink (be-

tween $2,000 and $200 from the kink), and subject to an integration constraint (see Figure 4 for

more details). We then use a $200 window around the kink to produce our bunching estimate B,

which we then translate to an elasticity �. The next two rows show the sensitivity of our elasticity

estimate to �tting the cubic approximation using individuals whose spending is below the kink

between $2,000 and $100 from the kink (and using a $100 window around the kink to produce our

bunching estimate) or to �tting the cubic approximation using individuals whose spending is below

the kink between $2,000 and $300 from the kink (and using a $300 window around the kink for

the bunching estimate). In the bottom two rows we return to the $200 exclusion range, but, unlike

the baseline speci�cation, we approximate the counterfactual distribution with a locally uniform

distribution (see table notes for details), or with a quadratic approximation �t using individuals

whose spending is below the kink between $2,000 and $200 from the kink. These exercises produce

alternative estimates of the elasticity of spending with respect to the pre-kink cost-sharing rate,

which range from -0.015 to -0.029.
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Figure A1: Rationale for bunching

The solid line illustrates the budget set of the same standard bene�t design as in Figure 1. The dashed line considers

an alternative budget set with a linear budget (above the deductible) at the co-insurance arm�s cost sharing rate. By

contrast, the standard budget set has a kink (price increase) at $2,510 in total spending. The individual denoted by

the solid indi¤erence curve is not a¤ected by the introduction of this kink; his indi¤erence curve remains tangent to

the lower part of the budget set. The individual with the dashed indi¤erence curves consumed above the kink under

the linear budget set; with the introduction of the kink her indi¤erence curve is now exactly tangent to the upper

part of the budget set at the kink. With the introduction of the kink, this latter individual would therefore decrease

total spending to the level of the kink location. By extension, any individual whose indi¤erence curve was tangent

to the linear budget set at a spending level between that of the two individuals shown would likewise decrease total

spending to the level of the kink location, thereby creating �bunching�at the kink.
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Figure A2: Distribution of spending for those individuals with non-standard kink location

The �gure displays the histogram of total annual prescription drug spending (in $20 bins) for individuals with the

modal ($2,100) non-standard kink location in 2007 or 2008. Such individuals are not in our baseline sample, which

is limited to those with the standard kink location. The x-axis reports total spending relative to the $2,100 kink

location. The dashed vertical lines indicate the level of the standard kink locations in 2007 ($2,400) and 2008 ($2,510).

Frequencies are normalized to sum to 1 across the displayed range. N =12,188.
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Figure A3: Distribution of spending around the deductible amount

The �gure displays the histogram of total annual prescription drug spending (in $10 bins) for individuals in

our baseline sample in plans with the (year-speci�c) standard deductible amount (which was $265 in 2007,

$275 in 2008 and $295 in 2009). The x-axis reports total spending relative to the (year-speci�c) deductible

amount. Frequencies are normalized to sum to 1 across the displayed range. N =186,535.
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Table B1: Relationship between birth month and enrollment month

2 3 4 5 6 7 8 9 10

1 37.7 17.9 19.2 9.6 3.5 4.3 2.6 2.6 2.8 4,947
2 68.5 11.9 7.0 5.1 3.4 1.4 1.0 1.0 0.8 14,861
3 1.8 67.1 13.7 6.0 4.8 3.7 1.1 1.0 0.8 15,878
4 0.0 1.9 69.8 11.9 6.1 5.0 3.2 1.2 1.0 14,640
5 0.0 0.0 1.8 70.2 12.3 6.7 4.6 3.4 1.0 14,674
6 0.0 0.0 0.0 2.1 70.4 12.4 6.5 5.0 3.6 14,754
7 0.0 0.0 0.0 0.0 1.9 72.3 13.2 7.2 5.5 16,247
8 0.0 0.0 0.0 0.0 0.0 2.2 76.6 14.4 6.8 15,359
9 0.0 0.0 0.0 0.0 0.0 0.0 2.2 83.5 14.3 14,058

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 97.3 11,823
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 297

Total (%) 8.9 9.9 10.7 10.6 10.8 12.1 12.2 12.6 12.3 137,538

Join Month Total NBirth Month

Table shows the relationship between birth month and enrollment month for our 65-year old sub-sample (N=137,536).

Speci�cally, it indicates the percent of each birth month who enrolled in each month. The last column shows the

sample size for each birth month.
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Table B2: Relationship between enrollment month and �nal cost sharing phase

Enrollment Month Deductible Pre­kink Gap Catastrophic N

2 34.0 50.0 14.1 1.9 2,840
3 35.3 51.5 11.7 1.5 3,035
4 39.3 48.7 10.5 1.5 3,235
5 42.2 48.6 8.3 1.0 3,147
6 45.8 46.7 6.8 0.7 3,185
7 49.2 45.9 4.4 0.6 3,518
8 54.7 42.6 2.6 0.2 3,314
9 60.9 37.6 1.4 0.2 3,352

10 70.3 28.6 1.1 0.0 3,334
Total 48.4 44.2 6.5 0.8 28,960

2 0.0 81.2 17.1 1.8 9,496
3 0.0 83.8 14.9 1.4 10,543
4 0.0 86.7 12.2 1.2 11,411
5 0.0 88.9 10.4 0.7 11,387
6 0.0 91.9 7.6 0.5 11,646
7 0.0 94.5 5.0 0.6 13,106
8 0.0 96.0 3.8 0.2 13,449
9 0.0 97.9 1.9 0.2 13,931

10 0.0 98.9 1.0 0.1 13,609
Total 0.0 91.8 7.6 0.7 108,578

Deductible Plans

No­Deductible Plans

Table shows the relationship between enrollment month and the �nal (end of year) cost sharing phase the employee

ends up in. Speci�cally, it shows the percent of bene�ciaries, for each enrollment month, who end up in each cost-

sharing arm. We show results separately for deductible and no-deductible plans for our 65-year-old sub sample

(N=137,536).
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Table B3: Relationship between initial drug use and enrollment month and future price

Sample Deductible plans No­deduct. plans All All All All

(1) (2) (3) (4) (5) (6)
OLS OLS OLS (DD) IV (DD) OLS IV

0.023*** 0.002
(0.003) (0.002)

0.021*** 0.014***
(0.003) (0.004)

0.463*** 0.671***
(0.055) (0.127)

N 28,626 108,234 136,860 136,860 136,860 136,860

Dependent Variable: Log (days to first claim)

Future price

Enrollment month

Deductible*Enrollment month

Columns (1)-(4) show the relationship between initial drug use and enrollment month. Throughout our measure of

initial drug use (the dependent variable) is log days to �rst claim. Column (1) shows the coe¢ cient on join month

from estimating the relationship between log days to �rst claim and enrollment month, controlling for plan �xed

e¤ects (equation (13)) for deductible plans (for which the future price on average increases with enrollment month).

Column (2) shows the coe¢ cient on enrollment month from estimating the same equation (13) for no-deductible

plans (for which the future price on average decreases with enrollment month). Column (3) shows the coe¢ cient on

the interaction of enrollment month and a deductible dummy from estimating the �di¤erence in di¤erence�equation

(14), which controls for plan �xed e¤ects and enrollment month �xed e¤ects, on the combined sample of individuals

in all plans. Column (4) shows the instrumental variables estimation of the di¤erence in di¤erence equation (14)

shown in column (3), where we instrument for enrollment month �xed e¤ects and the enrollment month variable

interacted with a deductible dummy using birth month �xed e¤ects and a birth month variable interacted with a

deductible dummy; Angrist-Pischke (2009) F-statistics for the �rst stage models are all above 2,000. Standard errors

are clustered at the plan level in all speci�cations. Columns (5) and (6) show the relationship between initial drug

use and future price. Column (5) shows the coe¢ cient on future price from estimating the relationship between

initial drug use and future price, controlling for plan �xed e¤ects and enrollment month �xed e¤ects (equation (15)).

Column (6) shows the instrumental variables estimation of equation (15), where we instrument for the future price

and enrollment month �xed e¤ects with the simulated future price and birth month �xed e¤ects; Angrist-Pischke

(2009) F-statistics for the �rst stage models are all above 200. Standard errors are clustered at the plan level in all

speci�cations.
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Table D1: Excess mass and Saez (2010) elasticity calculations

Counterfacutal
distribution

"Exclusion"
windowa Elasticityb

Cubic 200 ­0.024
Cubic 100 ­0.015
Cubic 300 ­0.029

Uniform n/ac ­0.020
Quadratic 200 ­0.022

Table reports estimates of the implied elasticities under alternative assumptions. We limit the analysis to the approx-

imately 80% of our baseline sample who in plans with at least 1,000 bene�ciaries whose end the year is within $2,000

of the kink. We analyze the behavior of bene�ciaries who are themselves within $2,000 of the kink. For each plan

we use equation (30) plus the plan�s cost sharing rules to translate it into an estimate of the spending elasticity with

respect to the coinsurance rate c, evaluated at the plan�s pre-kink cost sharing rate c. The right-most column reports

the average estimates across the plans, weighted by their enrollment. The di¤erent rows report results from di¤erent

approaches to calculating the counterfactual distribution of spending that would exist in the absence of the kink.

The �rst row shows the baseline approach (used in Figure 4 and Table 9), in which the counterfactual distribution

was calculated by �tting a CDF di¤erence function, constrained to integrate to the sample size included in the graph,

using only the points to the left of -$200 (see notes to Figure 4 for details) and using the �exclusion window�of $200

around the kink to estimate the response to the kink. In the next two rows we repeat the estimation but instead use

omit observations where spending is greater than -$100 and -$300 (relative to the kink) in �tting the counterfactual

distribution and use the �exclusion window�of $100 or $300 around the kink respectively to estimate the response

to the kink. In the �nal rows, we return to the -$200 � exclusion window�but approximate the counterfactual distri-

bution using a locally uniform approximation (following Saez 2010) and a quadratic CDF di¤erence approximation.

N=1,985,676.
a Exclusion window refers to the distance from the kink location within which we calculate the response to the kink.

The counterfactual density is �t using points only to the left of the exclusion window.
b Elasticity of spending is calculated with respect to the cost-sharing rate c; and is evaluated at each plan�s pre-kink

cost sharing rate.
c For the locally uniform counterfactual distribution we use the observed distribution of spending that is -$400 to

-$200 from the kink to approximate the counterfactual spending distribution within -$200 to $0 of the kink; likewise

we use the observed distribution that is $200 to $400 from the kink to approximate the counterfactual distribution

within $0 to $200 of the kink.
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