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1 Introduction

There is a substantial body of empirical literature (described in detail in the next section)

concluding that market integration is limited and risk sharing is imperfect. In particular,

a) capital tends to stay “close” to its origin, b) reward for risk reflects — at least partially

— “local” factors that one would expect to be diversifiable, and c) reductions in capital

flows and the extent of market integration tend to be associated with abrupt and substantial

increases in risk premia and drops in prices, along with sudden drops in leverage (“financial

crises”).

We propose a tractable theoretical framework that offers a unified view of asset-price de-

termination, endogenous market fragmentation, contagion across seemingly unrelated mar-

kets, diversity of observed investment strategies, and leverage and its implications for finan-

cial crashes.

The model features a continuum of investors and financial markets located on a circle.

Investors are endowed with shares of a risky firm domiciled at their location and traded at

the same location. The dividends of this security are closely correlated with dividends of

securities located in nearby locations and less correlated with securities in distant locations.

Even though securities in more distant locations offer greater benefits from the perspective

of diversification and risk allocation, participation in such markets involves costs that grow

with the distance from the current location. Such costs are reflective of the fact that infor-

mational frictions are likely to grow as investors participate in progressively more unfamiliar

markets; indeed, inside our model distance on the circle should be viewed as a broad measure

encompassing the magnitude of these frictions rather than a narrow measure of geographi-

cal distance. Alongside the risky markets, investors have access to a zero-net-supply bond

market.

Because access to financial markets is subject to frictions, the market equilibrium features

limited integration. Investors from nearby locations, who face similar cost structures, choose

to participate on arcs of the circle that feature a high degree of overlap. Even though there

may be many assets with no common investor, this overlap renders all markets (indirectly)

“entangled.”
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In such a framework, we examine four sets of issues: a) the determination of asset prices

in light of limited market integration; b) the structure of optimal investment strategies, i.e.,

arcs of participation, leverage, and risky-asset positions chosen by investors; c) the effect of

shocks to the financial technology (i.e., the magnitude of market-access costs) and their role

in market crashes; and d) the propagation of “local” shocks to the financial technology. We

summarize our findings about each of the four issues in turn.

a) Limited market integration implies that investors are over-exposed to the risks of

locations in their vicinity. Consequently, risk premia are higher than they would be in a

frictionless world. An important aspect of the analysis is that the magnitudes of risk premia

and of portfolio flows are tightly linked and reflect the extent of market integration.

b) A surprising implication of the model is that, although investors in any given location

are identical in every respect, their investment strategies may be diverse (that is, feature

different participation arcs, risky portfolios, and, importantly, leverage). Specifically, we

show that a symmetric equilibrium, i.e., an equilibrium where investors choose the same

strategies may fail to exist. Instead, a fraction of investors chooses strategies featuring high

leverage, high Sharpe ratios, and high participation fees, while another fraction of investors

chooses unleveraged, low-Sharpe ratio, and low-fee strategies. Prices are determined so that

investors are indifferent between the two types of strategies; however, the amount of capital

directed to each type of investment strategy is determinate and dictated by market clearing.

The intuition for this finding is that leverage and participation decisions are complements.

For a given level of risk premia, participating in more markets increases the maximum Sharpe

ratio attainable, which induces investors to take more leverage. Since leverage increases

the overall variance of the portfolio, it increases the marginal benefit of further market

participation and diversification. This complementarity between participation and leverage

decisions gives rise to multiple local extrema in the problem of determining the participation

arc. It is noteworthy that these multiple local extrema arise even when the participation

costs are convex.

This implication of the model is consistent with the diversity of investment strategies

offered to investors by, say, mutual funds and hedge funds. More importantly, it shows that

portfolio leverage may arise endogenously in fragmented markets, without requiring inherent
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differences between investors.

c) An interesting situation emerges when the ability to leverage is not limitless, but rather

is subject to a margin constraint.1 In such a situation marginal variations in participation

costs may cause abrupt changes in equilibrium quantities, and even a change in the type of

equilibrium, accompanied by discontinuous drops in prices, leverage, and capital flows.

The intuition is as follows. An increase in participation costs makes investors reluctant

to continue allocating funds to the strategies that rely more heavily on costly participation.

The resulting outflows from these leveraged strategies reduce aggregate market integration

and push down the prices of risky securities. The drop in prices has two effects. On the one

hand, it raises the Sharpe ratio and helps restore the attractiveness of high-leverage, broad-

participation strategies. On the other, via the margin constraint, it reduces the possibility of

leverage and broad participation because the collateral value of risky securities declines. By

constraining leverage below the optimal amount, this second effect necessitates a price drop

larger than would obtain in the absence of the margin constraint. Furthermore, when the

effect becomes sufficiently strong, further drops in prices can no longer attract enough capital

for high-leverage, broad-participation strategies to overcome the simultaneous tightening of

the leverage constraint. At this point, a marginal increase in participation costs destroys the

pre-existing asymmetric equilibrium and triggers a transition to a new type of equilibrium,

featuring no leveraged strategies. The consequence of this transition is that prices of risky

securities, investment across locations, and the amount of leverage in the economy drop

discontinuously, despite the smooth dependence of investors’ objective functions and feasible

choices on participation costs.

d) The fact that markets are only partially integrated may strengthen the interdependence

of the prices of risky securities in different locations. We present an example where the

financial technology “breaks down” (i.e., the participation costs rise to infinity) only in a

subset of locations — we refer to them as the “affected” locations. We show that such an

event pushes prices in almost all locations downward. This is true even for locations that

are not connected with the affected locations through asset trade and also have negative

dividend correlation with them.

1In Appendix D we consider alternative formulations of borrowing frictions, motivated by limited liability.
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The intuition for this finding is as follows. As a direct effect of the shock in the affected

regions, investors in affected locations stop investing in risky markets in their vicinity. Con-

sequently, prices in these locations fall so as to attract demand from neighboring unaffected

locations. The portfolio reallocation in these neighboring locations happens away from other,

farther locations, resulting in weaker demand in these farther locations, necessitating price

drops in these locations as well, so as to attract demand from locations neighboring the

neighboring locations, etc.

The extent of price drops required to compensate investors for tilting their portfolios to

absorb local risks depends on the extent of their overall participation in risky markets. If

the extent of their participation is small, so that their portfolio is heavily exposed to risks

in their vicinity, then a tilt towards a nearby location requires a higher compensation. By

contrast, if investors’ portfolios are invested across a broad range of locations, then they are

more willing to absorb risks in their vicinity. Hence, somewhat surprisingly, the higher the

degree of market integration, the lower the price drop in response to a local participation

shock (and vice-versa).2

In summary, the paper offers a unified framework to study several financial-market phe-

nomena — such as leveraging, crashes, and contagion — as a result of the interplay between

equilibrium prices and (endogenous) market segmentation. Besides the applications that

we consider, we believe that the particularly tractable nature of the framework could be

useful for studying the numerous instances in economics where frictions prevent optimal risk

diversification and capital allocation across asset classes.

This article is related to several strands of theoretical and empirical literature. We discuss

connections to the theoretical literature here and postpone a discussion of related empirical

literature for the next section.

Through its focus on incomplete participation by all agents, our paper is related to the

seminal contribution of Merton (1987) and the studies inspired by it. We endogenize the

degree of participation, and choose a specific asset-universe structure. Circular structures

have been repeatedly used in a variety of applications from location models in industrial

2Interestingly, albeit in a completely different setting, Allen and Gale (2000) also finds that contagion is
more severe when financial interconnectivity — between deposit-taking institutions, in that model — is low.
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organization (Salop (1979)) to the literature on financial networks.3 From a technical per-

spective, our paper proposes a novel and quite tractable structure to model risky payoffs

continuously distributed on a circle. The paper also differs from the financial-network litera-

ture in setup and questions addressed. Specifically, we study a relatively standard Walrasian

exchange economy with (endogenously) limited participation, while that literature typically

concentrates on banking issues, network externalities, etc. Finally, our construction of an

asymmetric equilibrium is based on Aumann (1966), whose analysis covers the case of non-

concave investor-optimization problems in markets with a continuum of agents.

Price crashes in our model are driven by the interaction of a collateral constraint and

a non-concavity in investors’ optimization problems, which leads to the adoption of diverse

strategies. There exists a vast literature analyzing the interaction between declining prices

and tightening collateral constraints — we do not attempt to summarize this literature and

simply refer to Kiyotaki and Moore (1997) for a seminal contribution. A distinguishing fea-

ture of our analysis is the following tension between two effects of price adjustments. On

the one hand, as is common in papers with margin constraints, prices affect feasible leverage

choices, thus restricting the set of possible trades. On the other hand, in an equilibrium fea-

turing diverse strategies prices need to adjust to keep investors indifferent between strategies

associated with different levels of leverage. This tension is most vividly illustrated in cases

of discontinuous equilibrium transitions (crashes), that is, in situations in which no price

adjustment can simultaneously satisfy the margin constraint and retain the attractiveness

of high-leverage, high-participation strategies.4

Modeling price crashes through changes in the type of equilibrium is common in the lit-

erature, typically featuring a combination of backward-bending demand curves and multiple

equilibria (see, e.g., Gennotte and Leland (1990), Barlevy and Veronesi (2003), Yuan (2005),

Basak et al. (2008), and Brunnermeier and Pedersen (2009)). Our economic mechanism is

3An indicative and incomplete listing of papers studying networks, and in particular circular ones, in
finance includes Allen and Gale (2000), Freixas et al. (2000), Allen et al. (2012), Caballero and Simsek
(2012), Acemoglu et al. (2013), and Zawadowski (2013). Allen and Babus (2009) offer a survey of the
literature.

4Krishnamurthy (2010) discusses two important aspects of a financial crisis: balance-sheet effects and
the disengagement of investors from markets (specifically, due to an increase in Knightian uncertainty).
Balance-sheet effects and declines in participation are also present in our framework, where the feasibility
and the attractiveness of alternative leverage-participation combinations are jointly determined.
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different from that literature. In particular, our model does not feature multiple equilibria,

noise traders, or sunspots.5 Instead, the crash obtains when prices can no longer support an

asymmetric equilibrium.

Finally, the domino effect produced by our model relates it to the vast literature on

contagion. We do not attempt to summarize this literature. Instead, we single out as a

natural counterpoint a particular mechanism proposed in many models as an explanation of

contagion. Specifically, many papers6 posit the existence of some agents, frequently of limited

risk-bearing capacity, who price all the assets and whose marginal utility therefore transmits

shocks from one asset to the price of another. In contrast, contagion in our model obtains

even though no agent participates in all markets. A shock in one area is transmitted to a

distant one by affecting first the immediately neighboring areas, which in turn affect their

neighboring areas, etc. A practical implication is that there can be positive interdependence

between the prices in locations with negatively correlated dividends and no common traders.

The paper is organized as follows. Section 2 presents in greater detail the empirical evi-

dence underlying and motivating this paper. Section 3 presents the baseline model. Section

4 presents the solution and the results. Sections 5 and 6 study crashes, respectively conta-

gion. Finally, extensions, proofs and further discussion on some of the model assumptions

are contained in the Appendix.

2 Motivating Facts

As a motivation for the assumptions of the model, we summarize some well-documented

facts concerning the allocation of capital. Table 1 summarizes the evidence on so-called

“gravity” equations in international finance. These gravity equations typically specify a log-

linear relation between bilateral flows in various forms of asset trade (equities, bonds, foreign

direct investment, etc.) and the sizes of the countries and the geographical distance between

them.

5Another possibility that does not involve multiple equilibria is evoked by Romer (1993) and Hong and
Stein (2003), who argue that small events can reveal substantial information to partially informed investors,
leading to large price changes.

6See, e.g., Kyle and Xiong (2001), Cochrane et al. (2008), or Pavlova and Rigobon (2008).
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Table 1: Gravity Equations in International Trade and Finance.
The table reports a survey of the literature on gravity equations in international trade and finance. Portes
and Rey (2005) uses bilateral equity flow data among 14 countries from 1989 to 1996. Buch (2005) uses the
stock of assets and liabilities of banks from 1983 to 1999. Head and Ries (2008) uses bilateral FDI stocks with
30 OECD reporters and 32 partners in year 2001. Talamo (2007) uses FDI flow data from 1980-2001. Aviat
and Coeurdacier (2007) uses bilateral trade data and bank asset holding data in year 2001. Ahrend and
Schwellnus (2012) uses IMF’s Consolidated Portfolio Investment Survey (CPIS) in 2005-2006, which reports
bilateral debt investment for 74 reporting countries and 231 partner countries. Typically, the regression
performed is

log(Xi,j) = α+ β1 log(GDPi) + β2 log(GDPj) + β3 log(Distancei,j) + controls+ εi,j

where Xi,j is the equity flow, portfolio holding, FDI flow, FDI stock, trade, or bank asset holdings.

Source Dependent variable Distance t-stat
Portes and Rey (2005) Equity flows -0.881 -28.419
Buch (2005) Bank asset holdings -0.650 -12.020
Talamo (2007) FDI flow -0.643 -9.319
Head and Ries (2008) FDI stock -1.250 -17.361
Aviat and Coeurdacier (2007) Trade -0.750 -10.000
Aviat and Coeurdacier (2007) Bank asset holdings -0.756 -8.043
Ahrend and Schwellnus (2012) Bond holdings -0.513 -4.886

A striking and robust finding of this literature is that bilateral capital flows and stocks

decay substantially with geographical distance. This finding is surprising, since countries

that are geographically distant would seem to offer greater diversification benefits; hence

one would expect distance to have the opposite sign from the one found in regressions.

The literature typically interprets this surprising finding as evidentiary of informational

asymmetries that increase with geographical distance — a crude proxy for familiarity and

similarity in social, political, legal, cultural, and economic structures. Supportive of this

interpretation is the literature that finds a similar relation between distance and portfolio

allocations in domestic portfolio allocations.7

7For instance, Coval and Moskowitz (1999) shows that US mutual fund managers tend to overweight
locally headquartered firms. Coval and Moskowitz (2001) shows that mutual fund managers earn higher
abnormal returns in nearby investments, suggesting an informational advantage of local investors. Using
Finnish data, Grinblatt and Keloharju (2001) shows that investors are more likely to hold and trade the
stocks of Finnish firms that are located close to the investors. Similar evidence is presented in Chan et al.
(2005): Using mutual fund data from 26 countries, and using distance as a proxy for familiarity, this paper
finds that a version of the gravity equation holds for mutual fund holdings. That is, the bias against foreign
stocks is stronger when the foreign country is more distant. In a similar vein, Huberman (2001) documents
familiarity-related biases in portfolio holdings.
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Further supportive evidence is provided by literature that documents how partial market

integration affects the pricing of securities. Bekaert and Harvey (1995) finds that local

factors affect the pricing of securities and are not driven out by global factors. An important

additional finding of Bekaert and Harvey (1995) is that the relative importance of global and

local factors is time varying, suggesting time-varying integration between markets.

Indeed, crisis periods offer an opportunity to visualize the extent of variation in market

integration. The left plot of Figure 1 reports the sum of global net purchases of foreign

assets by residents (labeled “Gross capital inflows”) and the sum of global net purchases

of domestic assets by foreigners (labeled “Gross capital outflows”). The figure also reports

cross-border bank inflows and outflows based on BIS data. The picture helps visualize that,

in the years preceding the financial crisis of 2008, there was a large increase in gross capital

flows. This expansion in capital flows came to a sudden stop in the first quarter of 2008,

as the financial crisis took hold. In line with the patterns illustrated in the left plot of

the figure, Ahrend and Schwellnus (2012) documents a significantly stronger coefficient on

distance in cross-border gravity equations during 2008-2009. This evidence suggests that

capital becomes more concentrated “locally” during times of crisis.

The right plot of Figure 1 provides a further illustration of capital concentration during

the crisis by focusing on readily available BIS data. It depicts the cumulative percentage

change in banks’ cross-border claims against the respective cumulative change in their lo-

cal claims for various countries between 2008Q1 - 2009Q4. Most points on the graph are

below the 45-degree line, suggesting that the liquidation of the foreign holdings of banks

was disproportionately larger than the respective liquidation of their local holdings. Direct

evidence of a “flight to home” effect is provided by Giannetti and Laeven (2012), which

shows that the home bias of lenders’ loan origination increases by approximately 20% if the

bank’s home country experiences a banking crisis. Giannetti and Laeven (2012) also argues

that this flight to home effect is distinct from flight to quality, since borrowers of different

quality are equally affected.

We note in passing that the increased portfolio concentration during times of crisis is not

limited to international data. For instance, the collapse of the (non-agency) securitization

market during the financial crisis implied increased limitations to the ability of local issuers

8



1980 1985 1990 1995 2000 2005 2010
−20

−15

−10

−5

0

5

10

15

20
Capital and Bank Flows as Percentage of GDP

 

 

Gross capital inflow

Gross capital outflow

BIS bank gross inflow

BIS bank gross outflow

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Cumulative percentage change in local claims

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 c

ha
ng

e 
in

 c
ro

ss
−

bo
rd

er
 c

la
im

s

BIS−reporting banks  claims by recipient country: local versus cross−border, 2008Q1Ò009Q4

Figure 1: Reversals in global capital flows. Source: Hoggarth et al. (2010). The left plot depicts
the sum of global net purchases of foreign assets by residents (labeled “Gross capital inflows”) and
the sum of global net purchases of domestic assets by foreigners (labeled “Gross capital outflows”).
The figure also reports cross-border bank inflows and outflows based on BIS data. Right plot:
Cumulative percentage in local claims held by banks against cumulative percentage change in
cross-border claims during the 2008Q1 - 2009Q4 period. Source: Hoggarth et al. (2010). based on
BIS Data on the 50 largest debtor countries by foreign liabilities. For a detailed description of the
sample of reporting countries, see Hoggarth et al. (2010).

to diversify local real-estate risk.

In summary, the empirical evidence supports the following broad conclusions: a) Capital

stays “close” to its origin, which implies a “local” concentration of risk in investors’ portfolios.

b) The extent of market integration is time-varying. Furthermore crises are times when

financial integration diminishes quite abruptly.

3 Model

3.1 Investors and firms

Time is discrete and there are two dates, t = 0 and t = 1. All trading takes place at

time t = 0, while at t = 1 all payments are made and contracts are settled. Investors are

price takers, located at different points on a circle with circumference normalized to one.

We index these locations by i ∈ [0, 1). Investors have exponential utilities and maximize
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expected utility of time-1 wealth

E [U (W1,i)] = −E
[
e−γW1,i

]
, (1)

where W1,i is the time-1 wealth of an investor in location i. The assumptions that investors

only care about terminal wealth and have exponential utility are made for tractability and

in order to expedite the presentation of the results. In Appendix A.1 we extend the model

to allow for consumption over an infinite horizon.

Besides having identical preferences, investors at any given location are also identical

in terms of their endowments and their information sets. Specifically, at time t = 0 the

investors in location i are equally endowed with the total supply of shares (normalized to

one) of a competitive, representative firm, which is domiciled at the same location i. Each

firm pays a stochastic dividend equal to Di in period 1.

We specify the joint distribution of the dividends Di for i ∈ [0, 1) so as to obtain several

properties. Specifically, we wish that 1) firms be ex-ante symmetric, that is, the marginal

distribution of Di be independent of i; 2) the total dividends paid
∫ 1

0
Didi be constant

(normalized to one);8 3) firms with indices close to each other (in terms of their shortest

distance on the circle) experience a higher dividend correlation than firms farther apart; and

4) dividends at different locations be normally distributed.

To formalize these notions, we let Zi denote a standard Brownian motion for i ∈ [0, 1] ,

and we also introduce the Brownian bridge

Bi ≡ Zi − iZ1 for i ∈ [0, 1] .

We note that — by construction — the Brownian Bridge B(i) satisfies B0 = B1 = 0. Using

these definitions, we let Di be defined as

Di ≡ 1 + σ

(
Bi −

∫ 1

0

Bjdj

)
, (2)

8This assumption is made purely for ease of exposition. It is straightforward to introduce aggregate risk
by adding a common, normally distributed disturbance to dividends in all locations, without affecting our
results.
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where σ > 0 is a constant controlling the volatility of the dividend process. Since the

specification (2) plays a central role in our analysis, we show first that Di satisfies properties

1–4 mentioned above, and then we provide a graphical illustration of these properties to

build intuition.

Lemma 1 Di satisfies the following properties.

1. (Symmetry and univariate normality) The marginal distribution of Di is the same for

all i. Specifically, Di is normally distributed with mean 1 and variance σ2

12
.

2. (No aggregate risk)
∫ 1

0
Didi = 1.

3. (Continuity on the circle) Let d (i, j) ≡ min(|i− j| , 1− |i− j|) denote a metric on the

interval [0, 1). Then Di is continuous (a.s.) on [0, 1) if the interval [0, 1) is endowed

with the metric d.

4. (Joint normality and distance-dependent covariance structure) For any vector of loca-

tions i = (i1, i2, . . . , iN) in [0, 1), the dividends (Di1 , . . . , DiN ) are joint normal, with

covariances given by

cov (Din , Dik) = σ2

(
1

12
− d (in, ik) (1− d (in, ik))

2

)
. (3)

It is easiest to understand the properties of Di by using a graphical illustration. The left

plot of Figure 2 provides an illustration of the interval [0, 1) “wrapped” around as a circle

with circumference one. The metric d (i, j) can be thought of as the length of the shortest

arc connecting i and j, as the right plot of Figure 2 illustrates. Figure 3 illustrates a path

of Zi and the associated paths of Bi and Di.

A remarkable property of the dividend structure (2) is that the covariance, and there-

fore correlation, of dividends in any locations i and j depend exclusively on the distance

d (i, j) between the two locations, but not the locations themselves. Equation (3) gives an

explicit expression for the covariance of the dividends at different locations. The associated
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Figure 2: The left plot depicts a circle with circumference 1. The bold arc on the right plot
depicts the notion of the shortest distance on the circle d(i, j) between points i and j that we use
throughout.

correlations follow immediately as

corr (Di, Dj) = 1− 6d (i, j) (1− d (i, j)) . (4)

Equation (4) implies that the correlation between Di and Dj approaches one as the

distance d (i, j) approaches zero, and is minimized when d (i, j) = 1
2
, i.e., when the two firms

are located diametrically opposite each other on the circle.

3.2 Financial markets and participation costs

Investors in location i can trade claims to the stock of firms located in every location j ∈ [0, 1)

on the circle. Motivated by the evidence presented in Section 2 — specifically the fact

that capital tends to stay close to its origin — we assume that participation in financial

markets is costly, and the more so the farther away a financial market is from an investor’s

location. Gârleanu et al. (2013) provides one potential motivation behind this assumption

by introducing informational asymmetries that grow with distance, impact expected returns,

and can be overcome by incurring a distance-dependent cost. We provide further details on

this motivation in Appendix C, and proceed with our analysis taking the participation costs

as given.

We next propose a mathematical structure for the participation costs. The participation
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Figure 3: An illustration of the construction of the dividend process Di. The two plots at the top
depict a sample Brownian path Zi, and the associated path of a Brownian bridge Bi. The two
bottom plots depict the associated sample path of Di, when the indices i ∈ [0, 1) are aligned on a
line and when the same interval is depicted as a circle with circumference one.

decision of investors consists of choosing a subset of all markets [0, 1) in which to invest.

To avoid unnecessary complications, we restrict attention to subsets of [0, 1) that can be

represented as a finite union of disjoint intervals with midpoints ai,n and lengths Δi,n. Hence,

the participation-cost function is a mapping from such subsets of [0, 1) to the set of positive

real numbers. For instance, if an investor in location i chooses to participate in Ni such

intervals with midpoints ai,n and total length Δi ≡
∑Ni

n=1Δi,n, she incurs costs equal to

Fi ({ai,1, . . . , ai,Ni
},Δi) = κ

(
bNi

Ni∑
n=1

f (d(ai,n, i)) + g (Δi)

)
, (5)

where κ > 0, and f : (0, 1
2
] → R and g : [0, 1) → R are positive, non-decreasing, differentiable,

and convex functions. We assume that f has a discontinuity at zero in the sense that

limx→0 f (x) > 0, while f(0) = 0. Also, g(0) = 0 and g′(0) = 0. Finally, bNi
is positive and
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Figure 4: Illustration of participation choices under different assumptions on the participation
costs Fi ({ai,1; ..; ai,Ni},Δi).

non-decreasing in Ni; we set b1 = b2 = 1 without loss of generality.9

We make several remarks on specification (5). First we note that Fi ({i}, 0) = 0, so that

participating only in the local market is costless. Second, the fact that f is increasing implies

that investing in markets that are farther away (in the sense that the distance d(ai,n, i) from

one’s location is larger) is more costly than participating in markets that are close by. Third,

increasing the total mass of markets in which the investor participates (Δi), while keeping

the number (and midpoints) of intervals the same, incurs incremental rather than fixed costs.

This captures the idea that expanding participation to contiguous markets is substantially

less costly than participating in a market that is not adjacent to any of the markets where the

investor has already decided to participate. Fourth, the fact that participation costs depend

on the location of the investor implies that investors in different locations on the circle face

different costs of participating in a given market j, depending on their proximity to that

market. Finally, for technical convenience and ease of exposition, the costs of expanding the

total measure of the interval are specified as independent of the structure of the midpoints

and the lengths of the subintervals. This assumption is not crucial and can be easily relaxed.10

Even though one can specify more elaborate participation-cost structures, the one given

by (5) is sufficiently flexible for our purposes. To better understand this cost structure

it is useful to consider some special cases. In the first special case, the investor can only

participate in an arc centered at her home location (depicted in the left plot of Figure 4).

9Since f(0) = 0, the first mid-point that an investor chooses is always her home location. Hence b1 can be
chosen arbitrarily, as b1f(0) = 0. Similarly, b2 = 1 is without loss of generality, since we can always re-define
f∗ = b2f and b∗N = bN

b2
without changing the total cost Fi.

10Indeed, if one were to replace g(Δi) with
∑Ni

n=1 g (Δi,n), that would introduce additional reasons for the
cost structure to be non-convex, strengthening some of the conclusions of the paper.
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This outcome follows from (5) if one sets bNf (x) = ∞ and g(y) < ∞ for any x > 0,

y > 0, and N > 1, so that the participation cost reduces to F (Δi) = κg(Δi). We note

that in this special case the participation-cost structure is convex (unlike when the investor

participates in disjoint intervals, which carries fixed costs). This convexity is quite attractive

for illustrating some of the results of the paper, and therefore this special case will play an

important role in our analysis. A second special case corresponds to situations in which an

investor only participates on discrete points (middle plot of Figure 4). This outcome obtains

from (5) if bNf (x) < ∞ and g(y) = ∞ for any y > 0. In the general case bNf (x) < ∞ and

g (y) < ∞, the participation decision involves choosing the number of points Ni, the location

of the midpoints ai,n, and the length of the intervals Δi,n at each location. This situation is

depicted in the right plot of Figure 4.

Besides the markets for risky shares, there is a market for zero-net-supply riskless bonds

that pay one unit of wealth at time 1. Participation in the bond market is costless for

everyone.

The participation costs act as deadweight costs that are paid out (i.e., reduce consump-

tion) at time 1.

We remark in passing that our results would not be affected if, instead of making the

participation decisions themselves, agents invested through frictionless and competitive in-

termediation. That is, we could introduce a competitive sector of intermediaries who incur

the participation costs, choose optimal portfolios for their clients, and then charge them

competitive fees to cover the participation costs.11

3.3 Individual maximization and equilibrium

To formalize an investor’s decision problem we let Pi denote the price of a share in a market

i, PB ≡ 1
1+r

the price of a bond, dX
(i)
j the mass of shares in market j bought by an investor

11In a previous version of the paper, we consider such a model. Specifically, in this model a) investors
don’t have direct access to markets, but rather have to hire (competitive) intermediaries in their location
to gain access to distant markets, b) the intermediaries attract clients by offering portfolios that maximize
their welfare, and c) intermediaries charge clients fees to cover the participation costs that they incur. Not
surprisingly, the lack of frictions between investors and intermediaries implies that the allocations and the
prices in the two models are equivalent.
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located in i,12 and X
(i)
B the respective number of bonds. Then, letting

W0,i ≡
∫ 1

0

PjdX
(i)
j + PBX

(i)
B

denote the total financial wealth of an investor in location i, the budget constraint of an

investor can be expressed as W0,i = Pi.

We are now in a position to formulate the investor’s maximization problem as

max
wf

i ,G
(i),Ni,

−→a i,
−→
Δi

E [U (W1,i)] , (6)

subject to the budget constraint, and

W1,i = W0,i

(
wf

i (1 + r) +
(
1− wf

i

)∫ 1

0

RjdG
(i)
j

)
− Fi, (7)

where wf
i is the fraction of W0,i invested in the risk-free security by an agent in location i,

G
(i)
j is a bounded-variation function with

∫ 1

0
dG

(i)
j = 1, which is constant in locations where

the investor does not participate (i.e., dG
(i)
j =0 in these locations), so that dG

(i)
j captures the

fraction of the risky component of the portfolio
(
1− wf

i

)
W0,i invested in the share of stock

j by a consumer located in i. Finally, Ri ≡ Di

Pi
is the realized gross return on security i at

time 1. We do not restrict G to be continuous, that is, we allow investors to invest mass

points of wealth in some locations.

The definition of equilibrium is standard. An equilibrium is a set of prices Pi, a real inter-

est rate r, and participation and portfolio decisions wf
i , G

(i), Ni, and {ai,1, . . . , ai,Ni
,Δi,1, . . . ,Δi,Ni

}
for all i ∈ [0, 1] such that: 1) wf

i , G
(i), Ni, and {ai,1...ai,Ni

,Δi,1...Δi,Ni
} solve the optimization

problem of equation (6), 2) financial markets for all stocks clear: Pj =
∫
i∈[0,1]

(
1− wf

i

)
W0,idG

(i)
j ,

and 3) the bond market clears, i.e.,
∫
i∈[0,1] W0,iw

f
i di = 0.

By Walras’ law, we need to normalize the price in one market. Since in the baseline

model we abstract from consumption at time zero for parsimony, we normalize the price of

the bond to be unity (i.e., we choose r = 0). We discuss consumption at more dates than

12The function X
(i)
j has finite variation. We adopt the natural convention that X

(i)
j is continuous from

the right and has left limits.
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time one and an endogenously determined interest rate in Appendix A.1.

4 Solution and Its Properties

We solve the model and illustrate its properties in a sequence of steps. First, we discuss

a frictionless benchmark, where participation costs are absent. Second, in order to build

intuition we discuss the special case where the investor can only participate in an arc centered

at her location, so that her participation decision amounts to choosing the length of that arc

(the special case depicted on the left panel of Figure 4). We consider the general case, which

allows for both contiguous and non-contiguous participation choices, in Appendix A.2.

4.1 A frictionless benchmark

As a benchmark, we consider first the case without participation costs: Fi = 0. In this case,

the solution to the model is trivial. Every investor i participates in every market j. The first

order condition for portfolio choice is

E [U ′(W1,i) (Rj − (1 + r))] = 0. (8)

With the above first-order condition in hand, one can verify the validity of the following

(symmetric) equilibrium: wf
i = 0, and G

(i)
j = Gj = j for all (i, j) ∈ [0, 1) × [0, 1) — i.e.,

investors in all locations i choose an equally weighted portfolio of every share j ∈ [0, 1].

Accordingly, W1,i =
∫ 1

0
Djdj = 1. Since in this equilibrium W1,i = 1, the Euler equation (8)

implies that

E(Rj) = 1 + r. (9)

Combining (9) with the definition Rj =
Dj

Pj
implies

Pj =
E (Dj)

1 + r
=

1

1 + r
= 1, (10)
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where the last equation follows from the normalization r = 0. The equilibrium in the

frictionless case is intuitive. Since there are no participation costs, investors hold an equally

weighted portfolio across all locations. Since — by assumption — there is no risk in the

aggregate, the risk of any individual security is not priced.

4.2 Symmetric equilibria with participation costs

To facilitate the presentation of some of the key results, we focus on the special case depicted

in the left plot of Figure 4, i.e., the case where the investor’s participation choice amounts

to choosing the length Δ of an arc centered at her location. The associated participation

cost is κg(Δ).

To make the investor’s problem well-defined and interesting, we assume that the costs of

participation increase sufficiently fast (and thus become infinite) as Δ approaches one:

Assumption 1 limΔ→1 g
′ (Δ) (1−Δ)4 = ∞.

Assumption 1 helps ensure that an optimal Δ less than one exists for every investor.13

Before presenting results, we introduce a convention to simplify notation.

Convention 1 For any real number x, let �x� denote the floor of x, i.e., the largest integer

weakly smaller than x. We henceforth use the term “location x” (on the circle) to refer to

the unique point in [0, 1) given by x mod 1 ≡ x− �x�.

With this convention we can map any real number to a unique location on the circle with

circumference one. For example, this convention implies that the real numbers -0.8, 0.2,

and 1.2 correspond to the same location on the circle with circumference one, namely 0.2.

An implication of this convention is that any function h defined on the circle extends to a

function ĥ on the real line that is periodic with period one, i.e., ĥ(x) = ĥ(x + 1) = h(x

13If P < 1, so that there is a risk premium, the limiting case Δ = 1 is not well defined, since both the
costs and the benefits of participation diverge to infinity as Δ → 1. Assumption 1 along with an application
of L’Hôpital’s rule ensures that the cost component dominates the benefit component as Δ → 1, resulting in
an optimal (interior) choice of Δ ∈ [0, 1). We also note that, if we introduce aggregate risk, then Assumption
1 can be replaced with the weaker limΔ→1 g (Δ) = ∞. Finally, no assumption is necessary in the presence
of a leverage constraint, as in Section 5 (except that g(Δ) > 0 for some Δ ∈ (0, 1)).
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mod 1). From now on, we adopt the convention that when we refer to a function h on the

circle, we also refer to its extension to the real line.

We next introduce two definitions.

Definition 1 The standardized portfolio associated with G
(i)
j is the function Lj defined by

Lj = G
(i)
i+j.

The notion of a standardized portfolio allows us to compare portfolios of investors at

different locations on the circle. For example, if all investors choose portfolios with weights

that only depend on the distance d between their domicile and the location of investment,

and these distance-dependent weights are the same for all investors, then these investors

hold the same standardized portfolio.

Definition 2 A symmetric equilibrium is an equilibrium in which all agents choose the same

participation interval Δ, the same leverage wf , and the same standardized portfolio.

Due to the symmetry of the problem, it is natural to start by attempting to construct a

symmetric equilibrium.

Proposition 1 For any Δ ∈ (0, 1) define

L∗
j ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if j ∈ [−1

2
,−Δ

2
)

j + 1
2

if j ∈ [−Δ
2
, Δ
2
)

1 if j ∈ [Δ
2
, 1
2
)

(11)

and

ω (Δ) ≡ V ar

(∫ 1

0

Dj dL
∗
j

)
=

σ2

12
(1−Δ)3 . (12)

Finally, let Δ∗ denote the (unique) solution to the equation

κg′ (Δ∗) = −γ

2
ω′ (Δ∗) (13)
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and also consider the set of prices

Pi = P ≡ 1− γω (Δ∗) . (14)

Then, assuming that a symmetric equilibrium exists, the choices Δ(i) = Δ∗, wf
i = 0, and

dG
(i)
j = dL∗

j−i constitute an equilibrium supported by the prices Pi = P .

Proposition 1 gives simple, explicit expressions for both the optimal portfolios and par-

ticipation intervals. To understand how these quantities are derived, we take an individual

agent’s wealth W1,i from (7) and we assume that prices for risky assets are the same in all

locations. Then, using W0,i = Pi = P , r = 0, Rj =
Dj

P
, and Fi = κg (Δ) , we express W1,i as

W1,i = P

(
wf

i +
(
1− wf

i

)∫ 1

0

RjdG
(i)
j

)
− κg (Δ)

=

(
Pwf

i +
(
1− wf

i

)∫ 1

0

DjdG
(i)
j

)
− κg (Δ) .

Because of exponential utilities and normally distributed returns, maximizing EU (W1,i) is

equivalent to solving

max
dG

(i)
j ,Δ,wf

i

Pwf
i +

(
1− wf

i

)∫ 1

0

EDjdG
(i)
j − γ

2

(
1− wf

i

)2

V ar

(∫ 1

0

DjdG
(i)
j

)
−κg (Δ) . (15)

Noting that EDj = 1, inspection of equation (15) shows that (for any wf and Δ) the opti-

mal portfolio is the one that minimizes the variance of dividends in the participation interval

Δ. Since the covariance matrix of dividends is location invariant, the standardized variance-

minimizing portfolio is the same at all locations. Solving for this variance-minimizing port-

folio Lj is an infinite-dimensional optimization problem. However, because of the symmetry

of the setup we are able to solve it explicitly, and equation (11) provides the solution. The

optimal portfolio, L∗
j , corresponds to the distribution that minimizes the sum of the vertical

distances to the uniform distribution on
[−1

2
, 1
2

)
, subject to the constraints that Lj = 0 for

j ∈ [−1
2
,−Δ

2
) and Lj = 1 if j ∈ [Δ

2
, 1
2
). The resulting optimized variance is given by ω (Δ),

where ω (Δ) is defined in (12).
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Figure 5: Illustration of the determination of Δ∗ when a symmetric equilibrium exists. The figure
illustrates that Δ∗ increases when κ2 < κ1.

Accordingly, the agent’s problem can be written more compactly as

V = max
Δ,wf

i

Pwf
i +

(
1− wf

i

)
− γ

2

(
1− wf

i

)2

ω (Δ)− κg (Δ) . (16)

The first-order conditions with respect to wf
i , respectively Δ, are

1− P = γ
(
1− wf

i

)
ω (Δ) (17)

κg′ (Δ) = −γ

2

(
1− wf

i

)2

ω′ (Δ) . (18)

Since in a symmetric equilibrium market clearing requires wf
i = 0, equation (17) becomes

identical to (14) and (18) becomes equivalent to (13).

Equation (13) makes explicit the resolution of the tradeoff between participation costs

and risk taking. Specifically, the participation interval is determined as the point where

the marginal cost of participation, κg′ (Δ), is equal to the marginal benefit of participation,

−γ
2
ω′ (Δ).

Figure 5 illustrates this tradeoff by plotting the marginal cost from increasing Δ, namely

κg′ (Δ), against the respective marginal benefit −γ
2
ω′ (Δ) . Since g(Δ) is convex, g′(Δ) is up-

ward sloping. By contrast, the marginal benefit is declining, since −ω′′(Δ) = −σ2

2
(1−Δ) <

0. Since g′ (0) = 0, limΔ→1 g
′ (Δ) = ∞, −ω′ (0) > 0, and ω′ (1) = 0, the two curves intersect

at some point Δ∗ ∈ [0, 1).

Proposition 1 helps capture the economic mechanisms that underlie our model. Consider,
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for instance, its implications for a reduction in the cost of accessing markets (i.e., a reduction

in κ). As Figure 5 illustrates, such a reduction increases the degree of participation Δ and

promotes portfolio flows across different locations. In turn, this increased participation im-

proves risk sharing across different locations, which leads to higher prices of risky securities,

P = 1− γω (Δ), and accordingly lower risk premia. By contrast, an increase in the costs of

accessing risky markets leads to a lower Δ and a higher degree of concentration of risk. The

resulting decline in the extent of risk sharing leads to a drop in the prices of risky assets and

an increase in risk premia.

These mechanisms of the model capture the stylized facts summarized in Section 2. We

highlight one aspect of our analysis: the extent of market integration and cross-location

portfolio flows, on one hand, and the magnitude of risk premia, on the other, are intimately

linked. By contrast, representative-agent approaches to the determination of risk premia are

— by their construction — limited in their ability to explain the empirically prevalent joint

movements in risk premia and portfolio movements, since the representative agent always

holds the market portfolio and prices adjust so as to keep the agent content with her holdings.

We conclude this section by noting that in Appendix A.1 we extend the results obtained

so far to an intertemporal version of the model with recurrent shocks to participation costs.

That extension strengthens the comparative statics conclusions established above by showing

that, in a dynamic setting with participation-cost shocks, the model produces a) a negative

correlation between capital flows and excess returns, b) time variation in excess returns that

is unrelated to expected dividend growth, aggregate output etc., and c) return correlation

across locations that exceeds the respective correlation of dividends. Furthermore, the addi-

tional risk caused by variation in the participation costs is priced, resulting in an increased

expected excess return.

Next we turn our attention to a central issue of our analysis, pertaining to the existence

of a symmetric equilibrium.

22



4.3 Asymmetric, location-invariant equilibria: Leverage and the

diversity of financial strategies

Proposition 1 contains the premise that a symmetric equilibrium exists. Surprisingly, despite

the symmetry of the model setup, a symmetric equilibrium may fail to exist. Instead, the

market equilibrium may involve different choices (leverage ratios, portfolios of risky assets,

wealth allocations, etc.) for agents in the same location, even though these agents have

the same preferences and endowments and are allowed to make the same participation and

portfolio choices.

These claims are explained by the observation that the necessary first-order conditions

resulting in the prices Pi = P = 1−γω (Δ∗) are not generally sufficient. We now take a closer

look at whether a symmetric equilibrium exists. Specifically, we fix the price P = 1−γω (Δ∗)

of Proposition 1 and investigate whether (and under what conditions) the choices wf = 0

and Δ = Δ∗ are indeed optimal for the investor.

To answer this question, we consider again the maximization problem (16). Taking

P = 1 − γω (Δ∗) as given, substituting into (17), and re-arranging implies that if investors

allocate their wealth over a participation interval Δ (potentially different from Δ∗), then

1− wf =
ω (Δ∗)
ω (Δ)

. (19)

Equation (19) contains an intuitive prediction. An investor allocating her wealth over a

span Δ > Δ∗ is facing the same average returns, but a lower variance ω (Δ), and hence a

higher Sharpe ratio compared to an investor allocating her wealth over an interval of size Δ∗.

Accordingly, the former investor finds it optimal to leverage her portfolio. This is reflected

in equation (19), which states that wf < 0
(
wf > 0

)
whenever Δ∗ < Δ (Δ∗ > Δ) .

An interesting implication of (18) is that the marginal benefit of an increased participation

interval becomes larger with leverage. This is intuitive since increased leverage implies a more

volatile wealth next period and hence a higher marginal benefit of reducing that variance by

increasing Δ. In short, the choices of Δ and of leverage 1− wf are complements.

This complementarity can lead to an upward sloping marginal benefit of increased par-

23



Δ* ΔΔ*2

κg ' Δ( )

−
γ
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Δ* Δ
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−
γ
2
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−
γ
2
(1−w f (Δ;Δ*))2ω '(Δ)

Δ1
*

−
γ
2
(1−w f (Δ;Δ* ))2ω '(Δ)

Figure 6: Illustration of the marginal benefit curve −γ
2

(
ω(Δ∗)
ω(Δ)

)2
ω′ (Δ) , the marginal cost curve

κg′ (Δ) and the marginal benefit curve −γ
2ω

′ (Δ) restricting wf = 0. The left plot illustrates a case
where a symmetric equilibrium exists whereas the right plot illustrates a case where a symmetric
equilibrium fails to exist.

ticipation. Indeed, with our cash-flow specification, substituting (19) into (18) gives

κg′ (Δ) = −γ

2

(
ω (Δ∗)
ω (Δ)

)2

ω′ (Δ) . (20)

Using the fact ω (Δ) = σ2

12
(1−Δ)3, the right hand side can be expressed as−γ

2

(
ω(Δ∗)
ω(Δ)

)2

ω′ (Δ) =

γσ2

8
(1−Δ∗)6 (1−Δ)−4 , which is increasing in Δ.

Figure 6 helps illustrate these notions. The figure depicts the marginal cost curve κg′ (Δ),

the marginal benefit curve −γ
2

(
1− wf (Δ;Δ∗)

)2
ω′ (Δ) = −γ

2

(
ω(Δ∗)
ω(Δ)

)2

ω′ (Δ), and also the

curve −γ
2
ω′ (Δ) , i.e., the marginal benefit of participation fixing wf = 0. The point where all

three curves intersect corresponds to the point Δ = Δ∗. The left plot of Figure 6 illustrates

a case where a symmetric equilibrium exists, whereas the right plot illustrates a case where

a symmetric equilibrium fails to exist. The difference between the two plots is the shape of

g′ (Δ). In the left plot g′ (Δ) intersects the marginal benefit curve only once, namely at Δ∗.

For values smaller than Δ∗, the marginal benefit of participation is above the marginal cost

and vice versa for values larger than Δ∗. Hence, in this case Δ∗ is indeed the optimal choice

for the investor.

This is no longer the case in the right plot. Here the marginal benefit curve intersects the

marginal cost curve three times (at Δ∗
1, Δ

∗, and Δ∗
2). Since the marginal benefit is below the
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ΔΔ**2Δ**1

κg ' Δ( )

l P2( )

l P3( )

l P1( )

Figure 7: Illustration of an asymmetric equilibrium involving mixed strategies. The price adjusts
so that area A is equal to area B. Accordingly, an investor is indifferent between Δ∗∗

1 and Δ∗∗
2 .

Here, P3 < P2 < P1 < 1.

marginal cost for values of Δ that are smaller and “close” to Δ∗, while the marginal benefit

is larger than the marginal cost for values of Δ that are larger and “close” to Δ∗, Δ∗ is a

local minimum, and hence a suboptimal choice. By contrast the points Δ∗
1 and Δ∗

2 are local

maxima. (In this particular example the point Δ∗
1 is the global maximum, since the area A

is larger than the area B.) The fact that Δ∗ is not a maximum implies that there does not

exist a symmetric equilibrium, since in a symmetric equilibrium it would have to be the case

that wf = 0.

The fact that there does not exist a symmetric market equilibrium implies that one should

look for equilibria where investors in the same location make different choices, even though

they have the same preferences, endowments, and information. Figure 7 presents a simple

graphical illustration of such an equilibrium in the context of the example depicted on the

right plot of Figure 6.

Specifically we illustrate the construction of an equilibrium that features the same price

Pi = P for all markets, but where a fraction π of investors in every location i choose (wf
1 ,Δ1),

while the remaining fraction (1 − π) of agents choose (wf
2 ,Δ2). We introduce a function l

that captures the marginal benefit of participation as a function of Δ and P :

l (Δ, P ) ≡ −γ

2

(
1− wf (Δ, P )

)2
ω′ (Δ) = −γ

2

(
1− P

γ

)2
ω′ (Δ)

ω2 (Δ)
, (21)
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where the last equation follows from (17).

Figure 7 depicts the function l (Δ, P ) for three values P1 < P2 < P3 < 1. A first

observation is that as P declines from P3 to P1, the curve l (Δ, P ) shifts up. Moreover

there exists a level P2 and associated values Δ∗∗
1 and Δ∗∗

2 for which the area “A” equals

the area “B”, so that investors are indifferent between choosing Δ∗∗
1 and Δ∗∗

2 . Fixing these

values of P,Δ∗∗
1 , and Δ∗∗

2 , we can determine the values of wf
1 and wf

2 from (17). As part

of the proof of Proposition 2 (in the appendix), we show that these values of wf
1 and wf

2

satisfy 1 − wf
1 < 1 < 1 − wf

2 . In order to clear the bond market, π has to be so that

πwf
1 + (1− π)wf

2 = 0, i.e., π =
wf

2

wf
2−wf

1

∈ (0, 1).14 We also show in the appendix that for this

value of π all markets for risky assets clear as well.

The next proposition generalizes the insights of the above illustrative example. It shows

the existence of an asymmetric equilibrium, when a symmetric equilibrium fails to exist.

Proposition 2 When the cost function g is such that a symmetric equilibrium fails to ex-

ist, there exists an asymmetric equilibrium. Specifically, there exist (at least) two tuples{
Δk, w

f
k

}
, k ≥ 2, and πk > 0 with

∑
kπk = 1 and

∑
kπk

(
1 − wf

k

)
= 1, such that in every

location i a fraction πk of agents choose the interval, leverage, and portfolio combination{
Δk, w

f
k , dL

(k)
}
, where dL(k) is the measure given in (11) for Δ = Δk.

Hence, the model predicts that the complementarity between leverage and the incentive to

increase participation in risky markets may result in a non-concave objective function for the

determination of Δ. In such situations a symmetric equilibrium can fail to exist. Instead, the

market equilibrium features a diverse set of financial strategies, with some investors pursuing

high-cost, high-Sharpe-ratio, high-leverage strategies and some investors pursuing low-cost,

low-Sharpe-ratio, no-leverage strategies. The first type of strategies is akin to the sort of

strategies offered by hedge funds, while the second type of strategies is akin to those offered

by mutual funds. It is useful to underscore that this diversity of financial strategies obtains

despite the facts that investors are identical and participation costs are convex.

When the costs of participation are non-convex (for instance, because investors may

choose non-contiguous participation locations, as in Appendix A.2), there is an additional

14π ∈ (0, 1) since wf
2 < 0 and wf

1 > 0.
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and conceptually distinct reason why the investor’s objective is non-concave, leading to the

adoption of diverse financial strategies.15

In summary, this section has established that the non-concavities in investors’ objective

functions introduce diversity in the optimal participation-leverage combinations chosen by

different investors. Importantly, the equilibrium price plays a key role in determining the

participation-leverage combinations that keep investors indifferent between different strate-

gies. In the next section we identify a tension that arises when we introduce collateral con-

straints, so that the price simultaneously affects investors’ indifference relations and their

feasible leverage-participation combinations.

5 Collateral Constraints and Price Crashes

The previous section shows that equilibrium outcomes may feature heterogeneous investment

strategies in every location despite the fact that investors are identical. An important aspect

of these heterogeneous strategies is that they require different degrees of leverage. Even

though in the model leverage can be chosen freely, in reality leverage is limited by collateral

constraints. In this section we discuss the implications of such constraints. We present

a simple example to show that even small increments in participation costs may lead to

an abrupt drop in prices, along with a sudden reversal in cross-location capital flows and

de-leveraging.

To model collateral constraints, we let χ ∈ [0, 1) denote a “haircut” parameter and require

[
(1− χ)

∫ 1

0

PjdX
(i)
j − Fi

]
+X

(i)
B ≥ 0. (22)

Equation (22) stipulates that the borrowing capacity of an investor (the first term — inside

the square brackets — of (22)) do not exceed the amount the investor actually borrows (the

second term of (22)). The investor’s borrowing capacity is computed as the market value of

15A classic example, which also features different choices by ex-ante identical investors, due to fixed (hence
non-convex) information costs, is Grossman and Stiglitz (1980). A difference between Grossman and Stiglitz
(1980) and our setup, which becomes pertinent in the next section, is that the price adjusts to keep investors
indifferent between different combinations of leverage and participation, while in Grossman and Stiglitz
(1980) investors decide on paying information acquisition costs before observing the price.
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the collateral net of the haircut and of the obligation the investor has already assumed by

committing to pay the participation costs in period 1.

The collateral constraint (22) is pervasive in reality, extensively used in the literature,

and analytically convenient for our purposes. Therefore, we focus on the implications of this

constraint in the body of the paper. In Appendix D we analyze an alternative, endogenous

version of the constraint (22) motivated by the desire to prevent default in all states of

nature. We show that the key insights of the present section remain the same.

To further streamline the exposition, in this section we use a stylized specification of

participation costs that allows analytical computations. Specifically, we postulate the cost

function depicted in the middle graph of Figure 4. In that case, the optimal participation

choice amounts to choosing the location of the points ai and the number of the discrete points

N .16 To keep computations as simple as possible, we assume furthermore that bN = ∞ for

N > 2, so that only choices involving N ≤ 2 are feasible.17 Accordingly, an investor’s

problem comes down to choosing N = 1 (and paying no participation costs) or N = 2 and

the distance d from her home location, resulting in participation costs equal to κf(d). (See

Appendix A.2 for an extension to multiple locations.) In an effort to further streamline the

analysis, we assume that f ′(d) = 0. In that case the investor faces only a fixed cost of κf (0)

when choosing N = 2, but can choose d freely (i.e., without incurring additional cost).

We start by analyzing equilibrium prices in this economy when we don’t impose the

constraint (22) on investors’ decisions.

Proposition 3 Assume that the borrowing constraint is not imposed on investors’ decisions,

and also assume that κ ∈ (κ1, κ2), where κ1 ≡ 1
128

γσ2

f0
, κ2 ≡ 1

8
γσ2

f0
. Then there exists an

asymmetric equilibrium in which a fraction π > 0 of the investors choose N = 1, while the

16Recall that in this case there is a minimum “fixed” cost that one needs to pay for every new location
that she chooses given by κbN limx→0 f(x) > 0.

17The condition bN = ∞ can be substantially weakened. Indeed all that is needed for N = 1 or N = 2
to be the only feasible choices is that κbN limx→0 f(x) > 1 for N > 2. To see this, use the normalization

PB = 1 along with the budget constraint to obtain Pi = W0,i =
∫ 1

0
PjdX

(i)
j +X

(i)
B = (1 − χ)

∫ 1

0
PjdX

(i)
j −

Fi+X
(i)
B +Fi+χ

∫ 1

0
PjdX

(i)
j ≥ Fi+χ

∫ 1

0
PjdX

(i)
j , where the inequality follows from (22). Noting that Pj ≤ 1

and f is non-decreasing, the only feasible choices are N = 1 or N = 2 if κbN limx→0 f(x) > 1 for N > 2.
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rest choose N = 2 and d = 1
2
. The equilibrium price in all locations is

P (κ) = 1− σ

√
γκf0
18

, (23)

and the choices wf
i satisfy wf

1 > 0 and wf
2 < 0. Finally,

dP

dκ
= − f0

wf
1 − wf

2

< 0. (24)

For values of κ smaller than κ1 or larger than κ2 equilibria are symmetric with everyone

choosing N = 2 and d = 1
2
or everyone choosing N = 1, respectively. Hence, without

imposing the constraint (22), the left plot of Figure 8 gives a visual depiction of P (κ),

which is a continuous function of κ. Even though investors make essentially discrete choices,

the fraction of investors choosing each type of strategy is continuous in κ, rendering the

equilibrium price continuous.

When imposing the constraint (22), however, a different situation arises, depicted in the

right plot of Figure 8. The downward-sloping dotted line graphs the price P (κ) that would

obtain in the absence of the constraint (22), i.e., it is identical to the solid line of the left

plot. The upward-sloping dotted line depicts the locus (κ, P ) for which

κf0 = P
(
1− χ(1− wf

2 )
)
, (25)

where wf
2 (P ) is given by (50). For these points the constraint (22) binds with equality.18

For values of κ and P that lie above and to the left of the upward-sloping dotted line, the

constraint (22) is not binding; hence the equilibrium price (the solid line) coincides with the

downward-sloping dotted line for values of κ smaller than the value marked as κc in Figure

8. However, for values of κ greater than κc, the downward-sloping dotted line no longer

describes the equilibrium price.

The following Lemma characterizes the behavior of P as a function of κ.

18Combining the investor’s budget constraint with (22) and repeating the same steps as in footnote 17

gives W0,i ≥ Fi + χ
∫ 1

0
PjdX

(i)
j . Evaluating this inequality with Pi = Pj = P = W0,i, PB = 1, Fi = κf0, and∫ 1

0
dXj = 1− wf gives (25).
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Figure 8: The left plot depicts the price P (κ) assuming the leverage constraint is not binding.

The downward-sloping dotted line on the right plot plots the same quantity, along with the actual

price (solid line) and the locus of points such that the leverage constraint is just binding (upward

sloping line). Hence for points above and to the left of the upward sloping line the constraint is not

binding, whereas it is binding for points below and to the right. Parameters used in this example:

γ = 5, f0 = 0.1, χ = 0.2, σ = 1.

Lemma 2 Let λ ≥ 0 denote the Lagrange multiplier associated with the constraint (22).

Then assuming that

wf
1 − wf

2 − λ
[
1− χ

(
1− wf

2

)]
> 0, (26)

we have that

dP

dκ
= − (1 + λ) f0

wf
1 − wf

2 − λ
[
1− χ

(
1− wf

2

)] < 0. (27)

Comparing (24) with (27) shows that the slope dP
dκ

in the presence of a constraint is

steeper than the respective expression in the absence of the constraint (22), since

− (1 + λ) f0

wf
1 − wf

2 − λ
[
1− χ

(
1− wf

2

)] < − f0

wf
1 − wf

2

.

An important assumption for dP
dκ

to be well-defined (in the presence of the constraint) is

contained in equation (26). This assumption is always satisfied in an asymmetric equilibrium

as long as the Lagrange multiplier λ is sufficiently close to zero, since in any asymmetric
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equilibrium we must have wf
1 > 0 and wf

2 < 0. Hence, condition (26) holds as long as κ is

sufficiently close to κc, the minimal value of κ for which the leverage constraint binds.

As κ keeps increasing above κc, the constraint becomes progressively more binding, and

possibly up to the point where (26) doesn’t hold. In that case there may be no marginal

change in P that can keep investors indifferent between the alternative financial strategies

and P (κ) can exhibit a discontinuity, accompanied by a change in the nature of equilibrium

(from asymmetric to symmetric).

Figure 9 helps illustrate such a discontinuity in the context of the numerical example

of Figure 8. For each subplot we fix a value of κ. Given that value of κ, the line denoted

“Indifference” in each subplot depicts combinations of P and possible choices of
(
1− wf

2

)
such that the indifference relation V1 = V2 holds.19 Similarly, the line denoted “Constraint”

depicts combinations of P and 1 − wf
2 such that the constraint (25) holds as an equality.

Accordingly, all the points that lie above that line are admissible combinations of P and

1− wf
2 . Finally, the line denoted “FOC” depicts the combination of points that satisfy the

(unconstrained) first-order condition for leverage

1− P = γ
(
1− wf

2

)
ω(N=2),

where ω(N=2) = σ2

48
is the minimal variance attainable for an investor choosing to participate

in N = 2 locations.

The intersection of the lines “Indifference” and “FOC” corresponds to the unconstrained

equilibrium price (and the associated leverage wf
2 ) of equation (23). The left plot depicts the

case κ = κc. In that case the constraint just becomes binding, and all three lines intersect

at the same point. For (moderately) higher values of κ, illustrated in the middle panel, the

constraint binds actively. The intersection of “Indifference” and “FOC” no longer depicts

an equilibrium. Instead, investors pursuing high leverage strategies reduce the magnitude

of their risky positions, and equilibrium prices drop to the point where the constraint is

satisfied (i.e., up to the point where the line “Indifference” intersects the line “Constraint”).

The right-most plot shows a case in which κ is large enough that there is no point of

19See equation (49) in the appendix for a formal statement of the indifference relation.
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Figure 9: For three different values of the cost parameter κ, the three plots depict combinations

of price (P ) and leverage (1 − wf
2 ) so that (i) investors are indifferent between adopting no- and

high-leverage strategies (line labeled “Indiference”); (ii) investors’ choices of leverage (1 − wf
2 )

are (unconstrained) optimal given P (line labeled “FOC”); and (iii) the leverage constraint just

binds (line labeled “Constraint”). In each plot, points to the left and above the line labeled

“Constraint” are admissible. The intersection of the lines “FOC” and “Indifference” corresponds

to the combination of P and 1 − wf
2 that would prevail in an equilibrium without the leverage

constraint. Similarly, the intersection of the lines “Indifference” and “Constraint” characterize an

asymmetric equilibrium with a binding leverage constraint (if one exists). Parameters are identical

to Figure 8.

intersection between the lines “Indifference” and “Constraint”. At that point there can be

no asymmetric equilibrium. The equilibrium becomes symmetric, i.e., the price drops to the

level that obtains when everyone chooses N = 1 and wf = 0.

This example illustrates that — when the leverage constraint binds — the price in an

asymmetric equilibrium may drop discontinuously to the level associated with a symmetric

equilibrium, even in response to incremental changes in the cost parameter κ.

To understand intuitively why prices react so abruptly, it is helpful to start from the

basic mechanism at play when κ increases and the constraint (22) isn’t binding: At existing

prices, an increase in κ induces investors to walk away from high-leverage, increased-market-

participation, high-cost strategies. The resulting loss in aggregate participation lowers prices,

which restores the relative attractiveness of high-cost, high-leverage strategies. The end

result is a marginally lower price level.

However, when the constraint binds, the decline in prices may not have the same beneficial

effect on the attractiveness of levered strategies, since it also lowers the value of collateral

that investors are endowed with. This necessitates reductions in leverage, which results in
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even smaller overall participation in risky markets, further reductions in prices, etc. These

mutually reinforcing effects can lead to a rapid drop, and eventually a discontinuous jump, in

prices, whereby investors de-leverage abruptly and cross-location investment drops to zero.

6 Reduced Participation in a Subset of Locations, En-

tanglement, and Contagion

In the previous sections we assumed the same cost structure for all investors, regardless

of location. This allowed us to focus on (potentially asymmetric but) location-invariant

equilibria, which entail the same price in all locations. In this section we relax this assumption

in order to study the effect of an adverse shock to financial participation in a subset of

locations. The challenge in analyzing the model with location-specific costs is that an entire

price function on [0, 1) has to be computed, rather than a single value. To present the key

insights of the model with location-specific costs, we restrict ourselves to a specific setup

that is sufficiently simple to analyze, yet rich enough to illustrate how a reduction in market

participation in a subset of risky markets can propagate across all markets.

Specifically, we consider the following stylized setup: for some positive k < 1 market

access in locations
[−k

2
; k
2

]
“breaks down”. Specifically, we assume that in these “affected”

locations the cost parameter κ becomes infinite, so that investors choose to participate only

in the bond market and the market for the local risky claim, but not in other markets. In the

rest of the locations investors choose to participate in a single interval of length Δ̄, centered

at their “home location” — this would be the outcome of a cost structure in these locations

involving, e.g., κ < ∞, bN = ∞ for N > 1, g′(Δ̄) = 0 for Δ < Δ̄, and g′(Δ) sufficiently large

for Δ > Δ̄.

We solve this heterogeneous-participation-costs version of the model in the appendix.

First, we calculate analytically the optimal demand of every investor given a price function

(Lemma 4), and then aggregate the demands to solve for prices. We are unable to find a

closed-form solution for the prices, but we can characterize the solution in terms of a linear

integro-differential equation with delay, which can be solved numerically as easily as a matrix
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Figure 10: Contagion effects. The price function Pj depicts the price in different locations when
k = 0 and k = 0.2. We set the length of the participation arc of “unaffected” investors to Δ =
Δ̄ = 0.2. The locations between the arrows feature both negative correlation of dividends and no
overlap between the participants in these markets and the set A =

[−k
2 ,

k
2

]
.

inversion problem.

To obtain a visual impression of the solution, Figure 10 depicts the price Pj for j ∈ [0, 1]

and compares it with the (symmetric) equilibrium price P ∗ (Δ̄) that would prevail if all

agents in all locations chose a participation interval with length equal to Δ = Δ̄. There are

several noteworthy facts about Figure 10. As one might expect, prices in the set A ≡ [−k
2
, k
2

]
are lower than P ∗ (Δ̄). The more important fact is that prices in all other markets are

affected, as well. This holds true even in markets in the interval B ≡ [
k
2
+ Δ̄, 1− k

2
− Δ̄

]
,

i.e., in locations that are at a larger distance than Δ̄ from the set A, so that agents in the

set A would not be directly trading risky assets with agents in the set B, even if they were

allowed to choose the same participation interval Δ̄ as everyone else. A third observation is

that the prices in almost all markets are lower than P ∗ (Δ̄). Indeed, this reduction in price

can happen even in markets with dividends that have a zero or negative correlation with the

dividends of any risky security in A, as the figure illustrates.

The intuition behind Figure 10 is the following. By assumption, investors in the set A

concentrate all their demand for risky assets in their home location. Hence, compared to

the case in which everyone participates in an interval of length Δ̄ centered at their location,

there is now lower demand for risky securities in locations neighboring the set A. The

lower demand for risky securities in these locations leads to lower prices, which attracts
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demand from locations adjacent to the neighborhood of A. By tilting their portfolio towards

these locations, investors remove demand for risky securities in locations even farther from

A. Accordingly, prices in these farther locations need to drop in order to attract investors

from locations adjacent to the neighbourhood of the neighbourhood of A, who also tilt their

portfolios and so on.

This chain reaction implies that all locations are affected in equilibrium. In fact, even

some prices in locations close to point 1
2
, the farthest from A, drop, as the following result

states.20

Proposition 4 Assume Δ̄ + k < 1 and that 1
2
= argmaxj∈[ 12−Δ̄, 1

2
+Δ̄] Pj. Then there exists

a positive-measure subset D ⊂ [
1
2
− Δ̄; 1

2
+ Δ̄

]
such that P (x) < P ∗ (Δ̄) for all x ∈ D.

Proposition 4 helps formalize the notion that the drop in prices caused by restricting

market access for investors in the set A can permeate even a neighborhood of radius Δ̄

around the maximal-price location.

The extent of the change in risk premia in the various locations depends on the distance

from the arc A, the length of the arc A, and most interestingly, on the length of the participa-

tion arc Δ̄. Figure 11 illustrates these statements. If Δ̄ is small, so that investors’ portfolios

are heavily exposed to risks in their vicinity, then even a small portfolio tilt towards a nearby

location requires a relatively high risk compensation. By contrast, if investors’ portfolios are

invested across a broad range of locations, then they are more willing to absorb risks in their

vicinity.

In summary, a surprising result of our analysis is that contagion occurs due to limited,

rather than excessive, integration of risky markets. Indeed, contagion may become stronger

the weaker the integration of risky markets. Finally, in model simulations not reported here

due to space limitations, we have also considered the effect of local participation shocks when

investors participate in multiple disjoint intervals, obtaining similar conclusions.21

20It is easy to show that, in the general case when a subset of investors are limited to a smaller investment
set than the original arc of length Δ̄, and therefore in the setting of this section, the average risky-asset price
in the economy declines.

21In such situations, the direct impact of a local shock to participation is felt not only in the neighboring
locations of the affected locations, but also in the other subintervals where the affected investors used to
participate. This sets off multiple “waves” of contagion across the circle (i.e., Figure 11 features more than
two local minima).
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Figure 11: Contagion effects for various choices of Δ̄ and k. In the figures j denotes a specific
market, k controls the length of the region with restricted access to markets, while Δ refers to Δ̄,
that is the length of the participation arc for investors who can participate in “distant” markets.

7 Conclusion

We introduce a novel, location-invariant, and tractable structure of shocks on a circle that

allows us to model the tradeoffs between integration and risk diversification on the one

hand and participation costs on the other. The focus of the analysis is on the private

incentives to incur costs to participate in various asset markets, and on the interdependence

(“entanglement”) of markets in the presence of limited integration.

Our main findings can be grouped in three broad categories. First, participation decisions

and leverage decisions are complements. Investors who choose to participate in a large

number of markets also choose high degrees of leverage. The interaction between leverage

decisions and participation routinely makes an investor’s optimization problem non-concave.

Such non-concavities may imply a heterogeneous market structure. Despite the fact that all

investors are identical, and even when participation costs are convex, some investors may

opt for non-levered, low-participation investment strategies with others opting for levered,

high-participation strategies.

Second, the non-concavity of an investor’s participation problem can lead to an abrupt

change in the nature of equilibrium. Even small variations in participation costs can lead to

rapid drops in leverage, prices and market integration when the ability to leverage is limited

by the availability of collateral.
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Third, asset markets exhibit increased interdependence despite — in fact, because of —

limited market integration. Limitations to market access in one subset of locations propa-

gates across markets. Surprisingly, the impact of these local shocks on other markets may

be strengthened when markets are less integrated. In an intertemporal version of the model,

the joint determination of market integration and equilibrium prices implies price and return

correlations that exceed those of the underlying dividends.
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Appendix

A Extensions

A.1 An infinite horizon version of the baseline model

In this section we develop an intertemporal version of the model. The intertemporal version allows
us to extend the intuitions of our comparative statics exercises to a framework where the shocks to
the participation technology are recurrent.

Specifically, we keep the key assumptions of the baseline model (Section 4.2), and in particular
the assumption that investors only participate in an arc surrounding their home location. However,
we assume that investors maximize expected discounted utility from consumption

−
∞∑
t=0

βtE0

[
e−γct,i

]
,

where t denotes (discrete) calendar time. We assume that dividends at location i ∈ [0, 1) are given
by

Dt,i = (1− ρ)

t∑
k=−∞

ρt−kεk,i, (28)

where ρ < 1,

εt,i ≡ 1 + σ

(
B

(t)
i −

∫ 1

0
B

(t)
j dj

)
, (29)

and B
(t)
i denotes a family of Brownian Bridges on [0, 1] drawn independently across times t ∈

{−∞, . . . , 1, 2, . . . ,∞}.
We make a few observations about this dividend structure. First, we note that equation (29)

coincides with equation (2). Accordingly,
∫ 1
0 εt,idi = 1, and therefore, equation (28) implies that∫ 1

0 Dt,i = 1 for all t, so that the aggregate dividend is always equal to one. Second, dividends at
individual locations follow AR(1) processes, since equation (28) implies

Dt,i = (1− ρ) εt,i + ρDt−1,i. (30)

Moreover, since (29) coincides with (2), the increments of two dividend processes at two locations
i and j have the covariance structure of equation (3).

In terms of participation decisions, we keep the same cost assumption as in the baseline model

and further assume that investors participate in a single interval of length Δ
(i)
t centered at their

“home” location. Participation costs are paid period by period in advance of trading. Specifically,
an investor’s intertemporal budget constraint is given by

ct,i + Ft

(
Δ

(i)
t

)
+

∫ 1

0
Pt,jdX

(i)
t,j + PB,tX

(i)
B,t =

∫ 1

0
(Pt,j +Dt,j) dX

(i)
t−1,j +X

(i)
B,t−1. (31)

We note that in equation (31) we allow the entire cost function Ft(Δ) = κtgt (Δ) to be differ-
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ent across different periods in order to capture the effect of repeated shocks to the participation
technology.

This intertemporal version of the model presents a challenge that is absent in a static framework:
If the interest rate varies over time, then the value function of an agent is not exponential in wealth.
In fact, a closed-form expression for the value function most likely does not exist. Furthermore,
once the value function is no longer exponential, portfolios are no longer independent of wealth,
and hence the entire wealth distribution matters — an infinite-dimensional state variable.

In order to maintain the simple structure of the solution, therefore, we make necessary as-
sumptions to achieve a constant interest rate in the presence of random participation costs, while
safeguarding market clearing for bond markets, risky-asset markets, and consumption markets.22

The following proposition states that it is possible to achieve this outcome by judiciously specifying
the distribution of the participation costs. The main thrust of the proposition, however, concerns
the expression for the risky-asset prices.

Proposition 5 There exist an interval [Δl,Δu], a (non-trivial) distribution function Ψ(·) on
[Δl,Δu], and a cost function F (·; Δt) : [Δl,Δu] → R

+ such that, if Δt is drawn in an i.i.d.
fashion from Ψ, then
(i) investors optimally choose Δ = Δt, thus incurring cost F (Δt; Δt);
(ii) the risk-free rate is constant over time and given as the unique positive solution to

1 = β (1 + r)E

[
e

γ2

2

(
r

1+r−ρ

)2
(1−ρ)2ω(Δ)

]
, (32)

where the expectation is taken over the distribution of Δ;
(iii) the risky-asset prices equal

Pt,j (Δt, Dt,j) = φ (Dt,j − 1) +
1

r
− Φ1ω (Δt)− Φ0 (33)

with φ ≡ ρ
1+r−ρ and

Φ1 = γ
r(1− ρ)2

(1 + r − ρ)2
(34)

Φ0 =
Φ1

r

E

[
e

γ2

2

(
r

1+r−ρ

)2
(1−ρ)2ω(Δ)

ω (Δ)

]
E

[
e

γ2

2

(
r

1+r−ρ

)2
(1−ρ)2ω(Δ)

] > 0. (35)

Furthermore, investors’ optimal portfolios of risky assets are given by (11).

Equation (33) decomposes the price of a security into three components. As in all CARAmodels,
one of these components equals the expected discounted value of future dividends, φ(Dt,j−1)+r−1.
The other two capture the risk premium. The term Φ1ω(Δt) is the risk premium associated with
the realization of time-t + 1 dividend uncertainty, to which each investor is exposed according to

22Alternatively, in the interest of simplicity, we could fix the interest exogenously to the model and let
aggregate lending adjust accordingly.

42



the breadth Δt of her time-t portfolio. Finally, Φ0 equals the sum of the expected discounted value
of risk premia due to future realizations of dividend innovations and Δt.

We emphasize that the risk premium decreases with Δt and is common for all securities. Alter-
natively phrased, increases in capital movements across locations are correlated with higher prices
for all risky securities (and hence lower expected excess returns). Importantly, these movements in
the prices of risky securities are uncorrelated with movements in aggregate output or the interest
rate, which are both constant by construction.

A further immediate implication of equation (33) is that the presence of repeated shocks to
participation costs introduces correlation in security prices that exceeds that of their dividends.
Indeed, taking two securities j and k, and noting that V ar (Dt,j) = V ar (Dt,k) , we can use equation
(33) to compute

corr (Pt,j , Pt,i) =
V ar(Φ1ω (Δt)) + φ2cov (Dt,j , Dt,k)

V ar(Φ1ω (Δt)) + φ2V ar (Dt,j)
>

cov (Dt,j , Dt,k)

V ar (Dt,j)
= corr (Dt,j , Dt,i) .

The intuition is that movements in market integration cause common movements in the pricing
of risk which make prices more correlated (and volatile) than the underlying dividends.

We collect some basic properties of the price due to the randomness in Δt in the following
proposition.

Proposition 6 (i) Pt,i increases with Δt, and therefore corr(Pt,i,Δt) > 0;
(ii) Et[Pi,t+1 − (1 + r)Pi,t] decreases with Δt;
(iii) corr(Pt,i, Pt,j) > corr(Dt,i, Dt,j);
(iv) Φ0 is higher (and hence the unconditional expected price is lower) than the one obtaining for
Δt constant and equal to E[Δ].

A.2 Multiple arcs on the circle

The baseline model assumes that investors participate in markets spanning a single arc of length Δ
around their “home” location. Extending the results to the general case where investors can choose
to participate on multiple, disconnected arcs (as illustrated on the right-most graph of Figure 4)
is straightforward and involves essentially no new insights. In this section we briefly sketch how
to extend the results of the baseline model to this case and we show that allowing for this extra
generality introduces an additional source of non-concavity into an investor’s optimization problem.

To start, we introduce the function

v(I) = min
Ni,

−→a i,
−→
Δi,G

(i)
j

V ar

(∫ 1

0
DjdG

(i)
j

)

s.t. I ≥ F

(
−→a i,

Ni∑
n=1

Δi,n

)
.

In words, the function v(I) is the minimal variance, per share purchased, of the portfolio payoff
that can be obtained by an investor who is willing to spend an amount I on participation costs.
Proceeding similarly to Section 4.2 under the assumption that Pj = P for all j, the facts that U is
exponential and all Dj are normally distributed imply that maximizing utility over the choice of
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Figure 12: Numerical example to illustrate that v(I) is non-convex. The figure depicts two (dotted)
lines and the minimum of the two lines (solid line). The first dotted line starts at I = 0 and depicts
the minimal variance that can be attained when participation costs are equal to I and the investor
chooses to participate only on a single arc centered at her home location. The second dotted
line starts at I = 0.05, i.e. at the minimum expenditure required to invest in two distinct arcs.
This second dotted line depicts the minimal variance that can be attained when participation
costs are equal to I and the investor can participate on two separate arcs with locations and
lengths chosen so as to minimize variance. The function v(I) (the minimum of the two dotted
lines) is given by the solid line. For this example we chose σ = 1, g(x) = 0.1 × (

(1− x)−6 − 1
)
,

f(y) = 0.05 + 0.005 × (
(12 − y)−2 − 1

0.25

)
. (For I > 0.1 the function v(I) would in general exhibit

further kinks at the critical values IN , N ≥ 2, where the investor is indifferent between N and
N + 1distinct arcs.)

Ni, {ai,1; ..; ai,Ni}, {Δi,1; ..; Δi,Ni}, G(i)
j , and wf

i is equivalent to solving23

max
wf

i ,I
Pwf

i +
(
1− wf

i

)∫ 1

0
E[Dj ]dG

(i)
j − γ

2

(
1− wf

i

)2
v (I)− I. (36)

23To ensure that the optimization problem (36) has a solution it is convenient either to impose a collateral
constraint such as (22) or to introduce some (potentially small but positive) aggregate risk in dividends.
Either of these assumptions coupled with the additional assumption limΔ→1 g (Δ) = ∞ suffices to ensure
the existence of a solution to (36). Alternatively, one can ensure that (36) has an interior solution by

requiring that, upon plugging in the optimal value of wf
i , the maximand in (37) tends to negative infinity

as I goes to infinity. Given the lower bound on P provided by the autarky equilibrium, it suffices that

limI→∞
(
σ2

12

)2 γ
v(I) − I = −∞. This condition may be harder to verify than Assumption 1, since it is not

readily expressed in terms of primitive parameters.
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Given that E[Dj ] = 1, equation (36) can be rewritten as

V = max
I,wf

i

Pwf
i +

(
1− wf

i

)
− γ

2

(
1− wf

i

)2
v(I)− I. (37)

In the baseline version of the model (Section 4.2), where the investor chooses to invest in a single
arc around her home location, v is a convex function of the total cost I.24 In the general case where
investors’ portfolios are invested on disconnected arcs, the function v (I) is in general non-convex
with kinks at the expenditure levels In where it becomes optimal to invest in n+ 1 rather than n
distinct arcs. Figure 12 provides an illustration. This non-convexity of v (I) , which may arise when
(and only when) investors participate in markets located on multiple distinct arcs, constitutes an
additional reason for the maximization problem (37) to be non-concave. This reason is distinct
from the non-concavity arising from the interaction between leverage and participation decisions
that we identify in Section 4.3, and strengthens the conclusion that a symmetric equilibrium may
not exist.

B Proofs

Proof of Lemma 1. Property 2 follows immediately from integrating (2). To show property 3,
note that, for any i ∈ (0, 1), limd(i,j)→0Dj = limj→iDj = Di a.s. by the continuity of the Brownian
motion. Continuity at 0 follows from the fact that B0 = B1.

We turn now to property 1. Since E(Bi) = 0 for all i ∈ [0, 1], E(Dj) = 1. To compute
cov(Di, Dj) we start by noting that cov (Bs, Bt) = E(BsBt) = s (1− t) for s ≤ t.Therefore, for any
t ∈ [0, 1],∫ 1

0
E (BtBu) du =

∫ t

0
u(1− t)du+

∫ 1

t
t(1− u)du (38)

=
1

2
(1− t)t2 +

1

2
(1− t)2t =

t (1− t)

2
.

Accordingly,

V ar

(∫ 1

0
Budu

)
= E

[(∫ 1

0
Budu

)2
]
= E

[(∫ 1

0
Budu

)(∫ 1

0
Btdt

)]
(39)

=

∫ 1

0

(∫ 1

0
E(BuBt)du

)
dt =

∫ 1

0

t (1− t)

2
dt =

1

12
,

where the second line of (39) follows from Fubini’s Theorem and (38). Combining (39) and (38)

24To see this, note that v′ (I) = ω′(Δ)
κg′(Δ) , where Δ (I) = g−1

(
I
κ

)
. Differentiating again gives v′′ (I) =

1
κ

ω′′(Δ)g′(Δ)−ω′(Δ)g′′(Δ)

(g′(Δ))2
Δ′ (I) > 0.
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gives

1

σ2
V ar (Dt) = V ar (Bt) + V ar

(∫ 1

0
Budu

)
− 2cov

(
Bt,

∫ 1

0
Budu

)
(40)

= t (1− t) +
1

12
− 2

∫ 1

0
E(BtBu)du =

1

12
.

This calculation finishes the proof of property 1. For property 4, take any s ≤ t and use (38)
and (39) to obtain

cov (Ds, Dt)

σ2
= cov

(
Bs −

∫ 1

0
Budu,Bt −

∫ 1

0
Budu

)
(41)

= E(BsBt)− E

(
Bs

∫ 1

0
Bu

)
du− E

(
Bt

∫ 1

0
Bu

)
du+

1

12

= s (1− t)− s (1− s)

2
− t (1− t)

2
+

1

12

=
(s− t)(1 + s− t)

2
+

1

12
.

This establishes property 4.
Proof of Proposition 1. We start by establishing the following lemma.

Lemma 3 The (bounded-variation) function L with L−Δ
2

− = 0 and LΔ
2

= 1 that minimizes

V ar

(∫ Δ
2

−Δ
2

− Dj dLj

)
is given by (11). Moreover, the minimal variance is equal to ω (Δ) .

Proof of Lemma 3. To simplify notation, we prove a “shifted” version of the lemma,
namely finding the minimal-variance portfolio on [0,Δ] rather than [−Δ

2 ,
Δ
2 ]. The two versions are

clearly equivalent, since covariances depend only on the distances between locations, rather than
the locations themselves.

We start by defining q (d) = 1
12 − d(1−d)

2 and therefore q′ (d) = −1
2 + d. In light of (3), q(d) =

1
σ2 cov (Di, Dj) whenever d (i, j) = d. If Lu =

∫ u
0− dLu is a variance-minimizing portfolio of risky

assets, it must be the case that the covariance between any gross return Rs =
Ds
P for s ∈ [0,Δ] and

the portfolio
∫ Δ
0− RudLu =

∫ Δ
0−

Du
P dLu is independent of s. Thus, the quantity

1

σ2
cov

(
Ds,

∫ Δ

0−
DudLu

)
=

1

σ2

[∫ s

0−
cov (Ds, Du) dLu +

∫ Δ

s
cov (Ds, Du) dLu

]
= (42)

=

∫ s

0−
q (s− u) dLu +

∫ Δ

s
q (u− s) dLu

is independent of s. Letting L̃ (s) = 1− L (s) and integrating by parts we obtain∫ s

0−
q (s− u) dLu = L (s) q (0)− L

(
0−

)
q (s) +

∫ s

0−
Luq

′ (s− u) du (43)∫ Δ

s
q (u− s) dLu = L̃ (s) q (0)− L̃ (Δ) q (Δ− s) +

∫ Δ

s
L̃uq

′ (u− s) du. (44)
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Using (43) and (44) inside (42) and recognizing that q (0) = 1
12 , L (0−) = 0, and L̃ (Δ) = 0, we

obtain that (42) equals

Q(s) ≡ 1

12
+

∫ s

0−
Luq

′ (s− u) du+

∫ Δ

s
L̃uq

′ (u− s) du. (45)

This expression is independent of s ∈ [0,Δ] if and only if Q′(s) = 0. Differentiating (45) and setting
the resulting expression to zero yields

Q′(s) =
∫ s

0−
Luq

′′ (s− u) du−
∫ Δ

s
L̃uq

′′ (u− s) du+ Lsq
′ (0)− L̃sq

′ (0)

=

∫ Δ

0−
Ludu−Δ+ s− Ls +

1

2
= 0, (46)

where we used q′ (0) = −1
2 , q

′′ = 1, and L̃ (s) = 1−L (s). Since (46) needs to hold for all s ∈ [0,Δ],
it must be the case that Ls = A+ s for an appropriate constant A. To determine A, we subsitute
Ls = A+ s into (46) and solve for A to obtain

A =
1−Δ

2
.

It is immediate that the standardized portfolio corresponding to the solution L we computed
is L∗ of (11).

Using the variance-minimizing portfolio inside (45), implies after several simplifications, that

Q = 1
12 (1−Δ)3 and hence cov

(
Ds,

∫ Δ
0− DudLu

)
= Qσ2 = ω (Δ) . Accordingly,

V ar

(∫ Δ

0−
DudLu

)
= cov

(∫ Δ

0−
DsdLs,

∫ Δ

0−
DudLu

)
=

∫ Δ

0−
cov

(
Ds,

∫ Δ

0−
DudLu

)
dLs

= ω(Δ)

∫ Δ

0−
dLs = ω (Δ) .

With Lemma 3 in hand it is possible to confirm that the allocations and prices of Proposition
1 constitute a symmetric equilibrium — assuming that one exists. We already argued that all
agents choose the same standardized portfolio (as agent Δ

2 ). Furthermore, since in a symmetric
equilibrium all agents must hold the same allocation of bonds, clearing of the bond market requires
wf
i = 0 for all i. By equation (17), wf

i = 0 is supported as an optimal choice for an investor only if
Pi = P is given by (14). Similarly, in light of (18), equation (13) is a necessary optimality condition
for the interval Δ∗. Since the values of P and Δ∗ implied by (14) and (13) are unique, they are
necessarily the equilibrium values of P and Δ∗ that characterize a symmetric equilirium.

Existence of a symmetric equilibrium implies that wf
i = 0 is optimal, and so are the choices

Δ∗ and G
(i)
i+j = L∗

j given prices Pi = P. It remains to show that markets clear. We already ad-
dressed bond-market clearing. To see that the stock markets clear, we start by noting that, since

Pi = W0,i = P for all i, the market clearing condition amounts to
∫
i∈[0,1) dG

(i)
j = 1. We have∫

i∈[0,1) dG
(i)
j =

∫
i∈[0,1) dL

∗
j−i =

∫
j∈[0,1) dL

∗
j = 1.

Proof of Proposition 2. Let w∗ (P ) denote the set of optimal wf
i solving the maximization
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problem (16) when the price in all markets is P.We first note that the assumption that no symmetric
equilibrium exists implies that there exists no P such that 0 ∈ w∗(P ). (If such a P existed, then
we could simply repeat the arguments of Proposition 1 to establish the existence of a symmetric
equilibrium with price Pi = P, and interval choice Δi = Δ∗(P )).

We next show that since there exists no P such that 0 ∈ w∗(P ), it follows that w∗(P ) cannot
be single-valued for all P. We argue by contradiction. Suppose to the contrary that w∗(P ) is
single-valued. Since the theorem of the maximum implies that w∗(P ) is a upper-hemicontinuous
correspondence, it follows that w∗(P ) is actually a continuous function. Inspection of (16) shows
that w∗(1) = 1. Moreover, as P → −∞, the optimal solution to (16) becomes negative: w∗ (−∞) <
0. Then an application of the intermediate value theorem gives the existence of P such that
w∗ (P ) = 0, a contradiction.

Combining the facts that a) there exists no P such that 0 ∈ w∗(P ), b) w∗(P ) is multi-valued for
at least one value of P , and c) w∗(P ) is upper-hemicontinuous, implies that there exists at least one
P such that {w1, w2} ∈ w∗(P ) with w1 > 0 and w2 < 0. An implication of the necessary first-order
condition for the optimality of the interval choice Δ∗ (P ) is that Δ∗ (P ) is also multi-valued with
Δ1 < Δ2. Furthermore, since prices in all locations are equal, the (standardized) optimal portfolio
of an agent choosing Δk is the variance-minimizing portfolio of Proposition 1, denoted L∗,k.

From this point onwards, an equilibrium can be constructed as follows. By definition, the
tuples

{
Δ1, w1, dL

∗,1} and
{
Δ2, w2, dL

∗,2} are optimal. Hence it only remains to confirm that asset
markets clear. Define π ≡ − w2

w1−w2
∈ (0, 1). By construction, πw1 + (1− π)w2 = 0 and, therefore,

if in every location π agents choose
{
Δ1, w1, dL

∗,1} and the remaining fraction (1− π) choose{
Δ2, w2, dL

∗,2} , then the bond market clears by construction. To see that the stock markets clear,
we start by noting that, since Pi = W0,i = P , the market clearing condition for stock i amounts to

π

∫
[0,1]

dL∗,1
j−i + (1− π)

∫
[0,1]

dL∗,2
j−i = 1,

which holds because L∗,k
j for k ∈ {1, 2} is a measure on the circle.

Remark 1 The existence proof of an asymmetric equilibrium (when a symmetric equilibrium fails
to exist) obtains also in the presence of the leverage constraint (22) that we introduce in Section 5.

Proof of Proposition 3. Conjecture first that in equilibrium Pj = P for all j and let
π ∈ [0, 1] denote the fraction of funds invested in the local market. Assuming that a given investor
chooses N = 2 (that is, chooses to invest in her own location and another location at distance d),
equation (3) allows the computation of the minimal portfolio variance:

ω̂ (d) = σ2min
π

{(
π2 + (1− π)2

) 1

12
+ 2π (1− π)

(
1

12
− d (1− d)

2

)}
(47)

= σ2

(
1

12
− 1

4
d (1− d)

)
.

The optimal distance d for an investor choosing N = 2 satisfies a first-order condition similar
to equation (18), namely

−γ

2

(
1− wf

)2 ω̂′ (d)
ω̂2 (d)

= κf ′ (d) . (48)
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Since ω̂′ (d) = 0 when and only when d = 1
2 , and f ′ (d) = 0, it follows that d = 1

2 is optimal for
an investor choosing N = 2. Hence the minimal portfolio variance of an investor choosing N = 1
is equal to ω̂ (0) = σ2

12 , while the minimal portfolio variance for an investor choosing N = 2 is

ω̂
(
1
2

)
= σ2

48 . Assuming that the equilibrium is of the asymmetric, location-invariant type, we can
use equation (16) to express the indifference between the choices N = 1, respectively N = 2 and
d = 1

2 , as

Pwf
1 +

(
1− wf

1

)
− γ

2

(
1− wf

1

)2
ω̂ (0) = Pwf

2 +
(
1− wf

2

)
− γ

2

(
1− wf

2

)2
ω̂

(
1

2

)
− κf0. (49)

Using the first-order conditions for leverage

1− P = γ
(
1− wf

2

)
ω̂

(
1

2

)
= γ

(
1− wf

1

)
ω̂ (0) (50)

inside (49) yields — after some simplifications — the equilibrium price (23).
To verify that the postulated equilibrium is indeed an equilibrium, we proceed as in the proof

of Proposition 2. For P (κ) to be an equilibrium price in all locations, it must also be case that

1 − wf
1 ≤ 1 ≤ 1 − wf

2 , so that setting π =
wf

2

wf
2−wf

1

> 0 ensures market clearing (of bond markets

and all risky asset markets). In light of (50), the requirement 1−wf
1 ≤ 1 ≤ 1−wf

2 is equivalent to
P ∈ [

1− γω̂ (0) , 1− γω̂
(
1
2

)]
. This requirement is satisfied as long as κ ∈ (κ1, κ2).

Finally, (24) follows from (49), upon applying the implicit function theorem and utilizing the
envelope theorem.

Proof of Lemma 2. In an asymmetric equilibrium the value functions of the agents who
pursue the strategy of setting N = 1 (respectively N = 2) are given by

V1 = max
wf

1

Pwf
1 +

(
1− wf

1

)
− γ

2

(
1− wf

1

)2
ω̂ (0) , (51)

V2 = max
wf

2

Pwf
2 +

(
1− wf

2

)
− γ

2

(
1− wf

2

)2
ω̂

(
1

2

)
− κf0, (52)

where the second maximization is subject to the constraint (22), and ω̂(d) is given by equation
(47). Indifference requires that V1 = V2, and hence dV1

dκ − dV2
dκ = 0.

Attaching a Lagrange multiplier λ ≥ 0 to the constraint (25), solving the resulting maximization
problem, and utilizing the envelope theorem implies

dV1

dκ
− dV2

dκ
=
(
wf
1 − wf

2 − λ
[
1− χ

(
1− wf

2

)]) dP

dκ
+ (1 + λ) f0, (53)

with λ =
1−P−γ

(
1−wf

2

)
ω̂( 1

2)
χP ≥ 0. Setting the right-hand side of (53), equal to zero and re-arranging

gives (27).

Lemma 4 Consider an investor located at i /∈ [−k
2 ;

k
2

]
, and therefore investing in markets [i −

Δ̄
2 , i +

Δ̄
2 ]. Suppose that P (x) is continuously differentiable everywhere on [i − Δ̄

2 , i +
Δ̄
2 ]. With
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dX
(i)
l the number of shares purchased on the account of an investor at i in market l and j ≡ i− Δ̄

2 ,

X
(i)

j+Δ̄
=

1

γω
(
Δ̄
) [1− 1− Δ̄

2

(
Pj + Pj+Δ̄

)− ∫ j+Δ̄

j
Pu du

]
. (54)

Furthermore, the function X is given by

X
(i)
j+l =

P ′
j+l

γσ2
+X

(i)

j+Δ̄

1−Δ+ 2l

2
+

1

1− Δ̄

Pj+Δ − Pj

γσ2
. (55)

If an investor is located at i ∈ [−k
2 ,

k
2 ] and only invests in market i then the respective demand for

risky asset i is given by

X̂
(i)
i =

1

γω (0)
(1− Pi) . (56)

Proof of Lemma 4. Notice that optimization problem of agent i is equivalent to

max
X

Pi +

∫ j+Δ̄

j−
(1− Pu) dXu − γ

2
V ar

(∫ j+Δ̄

j−
DudXu

)
(57)

Thus, the first-order condition requires that

γ cov

(
Ds,

∫ j+Δ̄

j−
DudXu

)
= 1− Ps (58)

for all s ∈ [
j, j + Δ̄

]
. Letting q (d) be defined as in Lemma 3 we can rewrite (58) as∫ s

j−
q (s− u) dXu +

∫ j+Δ

s
q (u− s) dXu =

1− Ps

γσ2
. (59)

Let X̃ (s) = X
(
j + Δ̄

)−X (s) and integrating by parts we obtain∫ s

j−
q (s− u) dXu = X (s) q (0)−X

(
j−

)
q (s) +

∫ s

j
Xuq

′ (s− u) du (60)∫ j+Δ

s
q (u− s) dXu = X̃ (s) q (0)− X̃

(
Δ̄
)
q (Δ− s) +

∫ j+Δ̄

s
X̃uq

′ (u− s) du (61)

Substituting (60) and (61) into (59), recognizing that q (0) = 1
12 , X (j−) = 0, and X̃

(
j + Δ̄

)
= 0,

we obtain

1

12
X
(
j + Δ̄

)
+

∫ s

j
Xuq

′ (s− u) du+

∫ j+Δ̄

s
X̃uq

′ (u− s) du =
1− Ps

γσ2
. (62)

Since this relation must hold for all s, we may differentiate both sides of (62) to obtain∫ s

j
Xuq

′′ (s− u) du−
∫ j+Δ̄

s
X̃uq

′′ (u− s) du+Xsq
′ (0)− X̃sq

′ (0) = − P ′
s

γσ2
. (63)

50



This equation holds for all s ∈ (j, j + Δ̄). Noting that q′′ = 1, q′ (0) = −1
2 , X̃ (s) = X

(
j + Δ̄

) −
X (s), and using (63) to solve for Xs yields

Xs =

∫ j+Δ̄

j
Xudu+

(
s− j +

1

2
− Δ̄

)
X
(
j + Δ̄

)
+

P ′
s

γσ2
. (64)

Integrating (64) from j to j + Δ̄ and solving for
∫ j+Δ̄
j Xudu leads to

∫ j+Δ̄

j
Xudu =

1

1− Δ̄

[
X
(
j + Δ̄

)
Δ̄

(
1− Δ̄

2

)
+

P
(
j + Δ̄

)− P (j)

γσ2

]
, (65)

so that

Xs =
1

1− Δ̄

[
X
(
j + Δ̄

)
Δ̄

(
1− Δ̄

2

)
+

P
(
j + Δ̄

)− P (j)

γσ2

]
+(

s− j +
1

2
− Δ̄

)
X
(
j + Δ̄

)
+

P ′
s

γσ2
. (66)

Evaluating (62) at s = j + Δ̄, and noting that q′ (s) = −1
2 + s leads to

1

12
X
(
j + Δ̄

)
+

∫ j+Δ̄

j
Xu

[
−1

2
+
(
Δ̄− u

)]
du =

1− Pj+Δ̄

γσ2
. (67)

An implication of (64) is that Xu = Xj +
P ′
u−P ′

j

γσ2 + X
(
j + Δ̄

)
u. Using this expression for

Xu inside (67), carrying out the requisite integrations and using integration by parts to express∫ j+Δ̄
j

(
P ′
u

γσ2

)
u du =

Pj+Δ̄

γσ2 (j + Δ̄)− Pj

γσ2 j −
∫ j+Δ̄
j

Pu
γσ2du, leads (after some simplifications) to

X
(
j + Δ̄

)( 1

12
+

Δ̄3

6
− Δ̄2

4

)
− Δ̄

(
1− Δ̄

)
2

(
Xj −

P ′
j

γσ2

)
− Pj+Δ̄ − Pj

2γσ2
+

∫ j+Δ̄

j−

Pu − Pj

γσ2
du

=
1− PΔ̄

γσ2
. (68)

Finally, evaluating (64) at j gives(
Xj −

P ′
j

γσ2

)
=

∫ j+Δ̄

j
Xudu+

(
1

2
− Δ̄

)
X
(
j + Δ̄

)
. (69)

Equations (65), (68), and (69) are three linear equations in three unknowns. Solving forX(j+Δ̄)
and using the definition of ω

(
Δ̄
)
leads to (54). Equation (66) simplifies to (55). Finally, (56) is a

direct consequence of (58) when Δ̄ = 0.
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Proof of Proposition 4. For any j ∈ (
k
2 ,

1
2

]
and l ∈

(
− Δ̄

2 ,
Δ̄
2

)
, we have from Lemma 4:

X
(j)

j− Δ̄
2

=
P ′
j− Δ̄

2

γσ2
+

P
j− Δ̄

2

− P
j+ Δ̄

2

γσ2(1−Δ)
+

1−Δ

2
X

(j)

j+ Δ̄
2

dX
(j)
j+l =

(
P ′′
j+l

γσ2
+X

(j)

j+ Δ̄
2

)
dl

X
(j)

j+ Δ̄
2

−X
(j)(
j+ Δ̄

2

)− = −
P ′
j+ Δ̄

2

γσ2
−

P
j− Δ̄

2

− P
j+ Δ̄

2

γσ2(1−Δ)
+

1−Δ

2
X

(j)

j+ Δ̄
2

.

Specialize the first equation to j = 1
2 + Δ

2 , the second to j = 1
2 − l for all l ∈

(
− Δ̄

2 ,
Δ̄
2

)
, and the

third to j = 1
2 − Δ

2 and aggregate to obtain the total demand for asset 1
2 :

1 =
1−Δ

2
X

( 1
2
+ Δ̄

2
)

1
2
+Δ̄

+
1−Δ

2
X

( 1
2
− Δ̄

2
)

1
2

+

∫ Δ̄
2

− Δ̄
2

X
( 1
2
−l)

1
2
−l+Δ

2

dl +
P ′′

1
2

γσ2
Δ+

P 1
2
−Δ̄ + P 1

2
+Δ̄ − 2P 1

2

2γσ2(1−Δ)
.

Suppose now that Pj ≥ 1 − γω(Δ̄) on
[
1
2 −Δ, 12 +Δ

]
, with strict inequality on a positive

measure set. It then follows from equation (54) that X
(j)

j+Δ
2

≤ 1, so that

0 <
P ′′

1
2

γσ2
Δ+

P 1
2
−Δ̄ + P 1

2
+Δ̄ − 2P 1

2

2γσ2(1−Δ)
.

This inequality contradicts the assumption that P is maximized at 1
2 .

Proof of Proposition 5. We adopt a guess-and-verify approach. We start by noting that the

beginning-of-period wealth of investor i at time t+ 1 is Wt+1,i ≡
∫ 1
0 (Pt+1,j +Dt+1,j) dX

(i)
t,j +X

(i)
B,t.

We then conjecture that, as long as

F (Δ) =
M

γ
+

γ

2

(
r

1 + r − ρ

)2

(1− ρ)2 ω (Δt) (70)

for some M > −γ2

2

(
r

1+r−ρ

)2
(1− ρ)2 ω (Δu), (ii) and (iii) obtain. We show at the end that the

function F can be chosen to ensure (i).

We also conjecture and verify that investors’ holdings of risky assets X
(i)
t,j coincide with G

(i)
t,j of

Proposition 1, and that their bond holdings equal

X
(i)
B,t = Wt,i − (1 + r)P t,i − rΦt, (71)

where P t,i ≡
∫ 1
0 Pt,jdX

(i)
t,j is the average price that investor i pays for her portfolio. Here, to simplify

notation, we defined Φt ≡ Φ1ω(Δt) + Φ0.
We first ensure that with these postulates markets clear. Clearly, all risky markets clear,

since the holdings of risky assets are the same as in Proposition 1. To show that bond markets
clear, we proceed inductively. First we note that investors are endowed with no bonds at time
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zero. Hence
∫ 1
0 X

(i)
B,−1di = 0 and therefore

∫ 1
0 W0,idi =

∫ 1
0 (P0,i +D0,i) di. Next we postulate that∫ 1

0 X
(i)
B,t−1di = 0, so that

∫ 1
0 Wt,idi =

∫ 1
0 Pt,idi +

∫ 1
0 Dt,jdj. Integrating our postulate (71) for X

(i)
B,t

across all investors, we obtain∫ 1

0
X

(i)
B,tdi =

∫ 1

0
Wt,idi− (1 + r)

∫ 1

0
P t,idi− rΦt. (72)

We next note that that (a)
∫ 1
0 Dt,jdj = 1, by construction of the dividend process; (b)

∫ 1
0 Wt,idi =∫ 1

0 Pt,idi+
∫ 1
0 Dt,jdj = r−1−Φt+1, using the induction hypothesis, (33), and (a); and (c)

∫ 1
0 P t,idi =∫ 1

0 Pt,idi = r−1 − Φt. Using these three facts, it follows immediately that the right-hand side of
(72) is zero, so that the bond market clears.

If investors set their bond holdings according to (71), then their budget constraint implies a
consumption of

ct,i = Wt,i − 1

1 + r
X

(i)
B,t − P t,i − Ft. (73)

Using the definition of Wt,i and market clearing condition for bond holdings inside (73), and inte-

grating across i implies that the market for consumption goods clears:
∫ 1
0 ct,idi = 1− Ft.

Having established market clearing given the postulated policies and prices, we next turn to
optimality. Equation (73) implies

ct+1,i − ct,i = Wt+1,i −Wt,i − 1

1 + r

(
X

(i)
B,t+1 −X

(i)
B,t

)
− (

P t+1,i − P t,i

)− (Ft+1 − Ft)

=

(
r

1 + r

)
(Wt+1,i −Wt,i) +

r

1 + r
(Φt+1 − Φt)− (Ft+1 − Ft) , (74)

where the second line follows from (71). We next use the definition of Wt,i and (71) to obtain

Wt+1,i −Wt,i =

∫ 1

0
(Pt+1,j +Dt+1,j) dX

(i)
t,j +X

(i)
B,t −Wt,i

=

∫ 1

0
(Pt+1,j +Dt+1,j) dX

(i)
t,j − (1 + r)P t,i − rΦt. (75)

Substituting (75) into (74) and using (33) and (71) leads to

ct+1,i−ct,i =

(
r

1 + r

)[
(1 + φ)

∫ 1

0
Dt+1,jdX

(i)
t,j − (1 + r)φ

∫ 1

0
Dt,jdX

(i)
t,j − 1

]
−(Ft+1 − Ft) . (76)

Next use the fact Dt+1,j = ρDt,j + (1− ρ) εt+1,j along with φ = ρ
1+r−ρ , (1 + φ) ρ = (1 + r)φ, and

(1 + φ) (1− ρ) = (1− rφ) inside (76) to arrive at

ct+1,i − ct,i =

(
r

1 + r − ρ

)
(1− ρ)

∫ 1

0
(εt+1,j − 1) dX

(i)
t,j − (Ft+1 − Ft) . (77)

Having established (77), the dynamics of agent i’s consumption under our postulate, we next
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turn attention to the Euler equations, starting with the bond Euler equation

1 = β (1 + r)Ete
−γ(ct+1,i−ct,i). (78)

Substituting (77) into (78) and noting that
∫ 1
0 (εt+1,j − 1) dX

(i)
t,j is normally distributed with mean

zero and variance ω (Δt) gives

1 = β (1 + r) e
γ2

2

(
r

1+r−ρ

)2
(1−ρ)2ω(Δt)−γFtEt

(
eγFt+1

)
. (79)

Now suppose that for any r and a given desired distribution Ψ (Δ) we set

Ft (Δt; r) =
M

γ
+

γ

2

(
r

1 + r − ρ

)2

(1− ρ)2 ω (Δt) . (80)

Then equation (79) can be written as (32). Since (1 + r)Ee
γ2

2

(
r

1+r−ρ

)2
(1−ρ)2ω(Δ)

is equal to 1 when
r = 0 and increases monotonically to infinity as r increases, it follows that there exists a unique
positive r such that equation (32) holds. For that value of r, all investors’ bond Euler equations
are satisfied.

Finally, we need to determine Φt so as to ensure that the Euler equations for risky assets hold,
i.e., that

Pt,j = βEt

[
e−γ(ct+1,i−ct,i) (Pt+1,j +Dt+1,j)

]
. (81)

To that end, we use (33) and (30) to express (81) as

1

r
−Φt+φ(Dt,j−1) = βEt

[
e−γ(ct+1,i−ct,i)

(
1

r
− Φt+1 + (1 + φ) (ρDt,j + (1− ρ) εt+1,j)− φ

)]
. (82)

We next note that

βEt

[
e−γ(ct+1,i−ct,i)

]
(1 + φ) ρDt,j =

(1 + φ) ρ

1 + r
Dt,j = φDt,j (83)

using (78). Equation (83) simplifies (82) to

1

r
− Φt − φ = βEt

[
e−γ(ct+1,i−ct,i)

(
1

r
− Φt+1 + (1 + φ) (1− ρ) εt+1,j

)]
=

1

r(1 + r)
− βEt

[
e−γ(ct+1,i−ct,i)Φt+1

]
+

1

1 + r
(−φ+ (1 + φ) (1− ρ)) (84)

+ (1 + φ) (1− ρ)βEt

[
e−γ(ct+1,i−ct,i)(εt+1,j − 1)

]
.

Using (77), Stein’s Lemma, the fact that cov
(∫ 1

0 (εt+1,j − 1) dX
(i)
t,j , εt+1,j

)
= ω (Δ) (see Proposition

1), and (78) implies

βEt

[
e−γ(ct+1,i−ct,i)εt+1,j

]
=

1− γ r
1+r−ρ (1− ρ)ω (Δt)

1 + r
. (85)
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Substituting (85) into (84) gives linear equations in Φ0 and Φ1, solved by (34), respectively (35).
To complete the proof of the claim that Δt is chosen optimally, we provide an explicit example

of a family of functions for Ft (Δ) that has the desired properties. To start, we compute the value
function of an investor adopting the policies of Proposition 5. Equation (78) along with (77) imply
that

V (Wt,i,Δt) = −1

γ

∑
t≥0

βtEt

[
e−γct,i

]
= −1

γ
e−γc0,i

∑
t≥1

βtEt

[
e−γ

∑t
m=0(ct+1,i−ct,i)

]
= −1

γ
e−γc0,i

∑
t≥0

(1 + r)−t = − 1

γr
e−γc0,i .

In turn equations (71), (73), and (80) imply that

V (Wt,Δt) = − 1

γr
e−

γr
1+r

Wt,i+z(Δt), (86)

where zt (Δt) ≡ rΦt
1+r −M + γ2

2

(
r

1+r−ρ

)2
(1− ρ)2 ω (Δt) .

Next we suppose that we no longer impose that the investor choose Δ = Δt, (where Δt is
the time-t random draw of Δ that we imposed in Proposition 5). Instead Δ is chosen optimally.
However, prices are still given by Pt,j (Δt, Dt,j) from equation (33). We will construct a function
κtgt (Δ) that renders the choice Δ = Δt optimal at the total cost specified in (80).

Throughout we let X
(i)
t (Δ;Δt) denote the optimal number of total risky assets chosen by

investor i, and assuming that that investor chooses Δ and prices are given by Pt,j (Δt, Dt,j) . For
future reference, we note that by construction of the price function Pt,j (Δt, Dt,j) it follows that

X
(i)
t (Δt; Δt) = 1. Using (86) the first order condition characterizing an optimal Δ is

F ′
t (Δ) = h (Δ;Δt) ,

where

h (Δ;Δt) = − 1

1 + r

γ

2

(
r

1 + r − ρ

)2

(1− ρ)2
(
X

(i)
t (Δ;Δt)

)2
ω′ (Δ) . (87)

Next we fix a value of Δt and we simplify notation by writing h (Δ) rather than h (Δ;Δt) . We
also let q (x) denote some continuous function with q (0) = 1 and q (x) > 1 for x > 0. Let η ∈ [0, 1],
take some positive (small) ε < Δt

2 , and consider the function

F ′
t (Δ) =

⎧⎪⎪⎨⎪⎪⎩
Δ
ε ηh (ε) for Δ ≤ ε
ηh (Δ) for Δ ∈ (ε,Δt − ε]

ηh (Δt − ε) Δt−Δ
ε + h (Δt)

Δ−Δt+ε
ε for Δ ∈ (Δt − ε,Δt]

h (Δ) q(Δ) for Δ > Δt + ε.

. (88)

By construction, F ′
t (0) = 0 and F ′

t (Δ) is continuous and increasing in Δ. More importantly,
F ′
t (Δt) = h (Δt) , and hence Δ = Δt satisfies the necessary first order condition (87). Moreover,

since F ′
t (Δ) < (>)h (Δ) for Δ < (>)Δt, it follows that Δ = Δt is optimal for any ε > 0 and

55



η ∈ [0, 1]. Finally,

lim
ε→0

∫ Δt

0
F ′
t (Δ) = η

∫ Δt

0
h (x) dx > 0. (89)

Now suppose that nature draws Δt = Δu > 0. By choosing M that is sufficiently close to

−γ
2

(
r

1+r−ρ

)2
(1− ρ)2 ω

(
Δ
)
it follows that

0 <
M

γ
+

γ

2

(
r

1 + r − ρ

)2

(1− ρ)2 ω (Δu) <

∫ Δu

0
h (x) dx. (90)

Combining equations (89) and (90) it follows that for sufficiently small ε > 0 there exists some
η ∈ [0, 1] so that∫ Δu

0
F ′
t (x) dx =

M

γ
+

γ

2

(
r

1 + r − ρ

)2

(1− ρ)2 ω (Δu) > 0. (91)

Hence, when Δt = Δu the cost function κtgt (Δ) renders Δ = Δu, while also satisfying (80).
The same argument implies that for any value of Δt that satisfies

0 <
M

γ
+

γ

2

(
r

1 + r − ρ

)2

(1− ρ)2 ω (Δt) <

∫ Δt

0
h (x) dx, (92)

there exists η ∈ [0, 1] and sufficiently small ε > 0 such that the optimal Δ coincides with Δt, and

(80) holds. Continuity of ω (Δt) and of
∫ Δt

0 h (x) dx in Δt implies that as long as Δ is sufficiently
close to Δu, there always exists η ∈ [0, 1] and ε > 0 (both depending on the random draw Δt) such
that Δ = Δt is optimal and (80) holds.

Proof of Proposition 6. Parts (i)–(iii) are proved in the main body of the text. Part (iv)
comes down to noticing that

cov (ez, z) > 0 (93)

for any random variable z — in particular, for z = ω(Δ). The second statement of (iv) follows
from the first and Jensen’s inequality applied to the convex function ω.

C An interpretation of participation costs

Throughout the paper we maintain the assumption that participation in “distant” markets in-
curs participation costs. In this appendix we discuss how these costs could arise as information-
acquisition costs that permit an investor to avoid the lower net returns earned by an investor
unfamiliar with the asset class. Indeed, we wish to re-emphasize that we do construe the notion
of distance broadly, as a stand-in for the level of familiarity of investors in one location with all
aspects of the financial environment in another.

We start by summarizing the set-up in Gârleanu et al. (2013), on which the interpretation is
based. While we could simply refer the reader to this paper, we take this route in the interest of
staying self-contained and keeping the effort required of the interested reader to a minimum.
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Just as in the present model, investors are aligned on a circle. In each location of the circle,
investors are of two types: a) “common” investors, who are endowed with local “regular” stocks that
pay an exogenous, location-specific dividend, with the same properties as in the present paper; and
b) “inside” investors, endowed with “fraudulent” firms in that location. Fraudulent firms produce
lower dividends than regular firms — for simplicity it is assumed that they produce a dividend of
zero. However, if insiders choose to, they can manipulate the earnings of their firms — for instance
by diverting their personal funds into the company to boost the firm’s dividends. This assumption
ensures that the insider always makes a trading profit by trading in her firm, irrespective of whether
she buys or sells stock in her firm.25

Similar to the present paper, investors see an incentive to invest in distant locations for di-
versification reasons. However, when investing in a location other than her own, an incompletely
informed investor does not know which stocks are regular and which are fraudulent. Investors re-
ceive a signal about the type of every firm in every location. The quality of this signal deteriorates
with the distance separating the investor from the firm. Hence, even though diversification benefits
increase with distance, so does the informational disadvantage.

Gârleanu et al. (2013) shows that there exists an equilibrium in which insiders strategically
manipulate the prices of the stocks they are endowed with, so that the prices of all risky securities
in a given location are equal. The ability of insiders to manipulate the earnings of their firms implies
that no trade with such an insider can be profitable for any other investor. This deters local short
sellers from shorting the stock of the fraudulent firms.26 Since prices are the same for fraudulent
and regular securities, investors use only their private information in weeding out potential insiders
and avoiding trading with them.

Because the ability to distinguish fraudulent from regular securities declines with distance,
investors prefer to invest close to their own location and forego diversification opportunities. Indeed,
in a special case where investors receive a (perfectly informative) signal for a subset of locations,
and an uninformative signal for the rest, they choose to invest only in locations where they are
informed, similar to the present paper.

Gârleanu et al. (2013) assumes that investors are simply endowed with their signals and doesn’t
consider the possibility of incurring costs to expand the set of informative signals (and by implication
the participation interval on which the investor chooses to invest.) By contrast, the focus of the
present paper is to study investors’ incentives to to expand, by paying appropriate costs, the set of
locations in which they can participate. Indeed, the endogeneity of the participation decision is at
the core of many results in this paper, since it is responsible for the emergence of non-convexities,
the diversity of financial strategies, the emergence of endogenous leverage, the vulnerability of the
market equilibrium to sudden reversals in participation, etc.

D An alternative formulation of the leverage constraint

In this section we elaborate further on the interaction between borrowing constraints and high price
sensitivity to participation costs. Specifically, we introduce a “limited-liability” constraint that

25Vila (1989) shows the possibility of profitable manipulation, when the payoffs of a security can be
manipulated.

26The model assumes that local investors only observe prices, and not the demands expressed by “distant”
investors for local fraudulent firms. Hence, if they sold short they would not know whether they were trading
against less informed investors or the insider.
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places an endogenous bound on borrowing, and show that it plays a similar role to constraint (22)
in the text. In particular, we recover the conclusions of Section 5.

Before formalizing and analyzing the constraint, we provide a new dividend structure. An
important novel feature of this structure is that all dividends are non-negative, so that the notion
of limited liability is economically meaningful. Specifically, let Γj be a Gamma process on [0, 1), so
that for u > s we have

Γu − Γs ∼ Γ (k (u− s) ; ν) .

Extending dΓ to the entire real line as before — that is, via dΓs = dΓsmod 1 — we define

Dj = μ+

∫ j+ 1
2

j− 1
2

ws−jdΓs (94)

for some μ ≥ 0 and weights wi ≥ 0 periodic with period 1 and symmetric around 0. In the interest
of concreteness, in our numerical illustration below we define wi = 1 if i ∈ [−1

4 ,
1
4 ] and wi = 0

otherwise. Conveniently, for this choice of w, Dj and Dj+ 1
2
are independent.

More important, specification (94) generally implies that dividends are positive and the joint
distribution of the dividends in any n locations depends exclusively on the distances on the circle
between the locations.

An agent located in location i maximizes utility over end-of-period wealth W1,i net of partici-
pation costs, that is, she maximizes

−1

γ
E0e

−γ(W1,i−Fi),

where Fi refers to the participation costs incurred by the agent, depending on her participation
choices. For the participation costs we adopt the same structure as in Section 5. Specifically we
assume that by paying a cost κ, an investor can participate not only in her location but also in
the location diametrically “opposite” hers on the circle. Otherwise the investor can only invest in
the risky asset in her own location. Proceeding as in Section 5, the indifference of agent i between
investing exclusively in location i and incurring the cost κ to participate also in location i+ 1

2 means

max
1−wf

2

−Ee
−γ

(
1
2

(
1−wf

2

)∑
j=i,i+1

2
(Dj−P )−κ

)
= max

1−wf
1

−Ee
−γ

((
1−wf

1

)
(Di−P )

)
, (95)

where we have used the definition of an agent’s objective and her budget constraint. Note that
1−wf

2 , respectively 1−wf
1 , is the leverage choice of an agent who decides to invest across the two

locations, respectively only in her own location.
In the absence of any constraint on leverage, the implicit function theorem applied to equation

(95) yields

dP

dκ
= − 1

wf
1 − wf

2

< 0, (96)

exactly as in Section 5.27

Now suppose that, due to the no-recourse nature of lending contracts, borrowing is restricted so

27It is possible to show that there exist values of κ for which only asymmetric equilibria exist.
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Figure 13: The figure illustrates the higher sensitivity of the price to the diversification cost in
the presence of the constraint. In the left panel, the price decreases continuously to the value
obtaining with no diversification. In the right panel, the price jumps to this value when κ = μ. In
either case, the slope of the solid line (the price in the presence of a leverage constraint) exhibits a
steeper decline then the dotted line (the price in the absence of a leverage constraint). The common
parameters used here are k = 20, v = 10, and γ = 10; in the left panel μ = 0.13, while in the right
one μ = 0.11.

as to ensure that there is no default in equilibrium.28 Thus, borrowing is subject to the constraint

XS
2 D

min +
(
XB

2 − κ
) ≥ 0, (97)

where Dmin is the smallest possible dividend in period 1, XS
2 is the number of shares chosen by

investor a, and −XB
2 is the amount borrowed by the investor. Using the time-zero budget constraint

and noting that Dmin = μ and XS
2 − 1 = −wf

2 , equation (97) becomes

−wf
2 (P − μ) ≤ μ− κ. (98)

Equation (98) is key to the assertion that modeling the constraint in the way we do here
induces small changes in κ to translate into larger drops in the price than would obtain absent the
constraint. Repeating the steps in Section 5 we get

dP

dκ
= − 1 + λ

wf
2 − (1 + λ)wf

1

< − 1

wf
2 − wf

1

< 0. (99)

The intuition for the increased price sensitivity, captured by (99), is quite immediate: An
increase in κ not only requires the price to decrease in order to avoid a decrease in V2 relative to
V1 (the effect behind equation (96)); it also pushes the price down to counteract the direct effect

28Richer contracts, through which the borrower and lender share some risk, can be envisaged. Note,
however, that such a contract would allow an agent (partial) diversification across locations at zero cost, and
thus run counter to the central friction of the paper.
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of tightening of the constraint (decreasing the right-hand-side of (98)).
Depending on the parameters, the price may even drop discontinuously to the value obtaining

in the no-diversification equilibrium. The point is made most starkly in the case κ = 0 and μ = 0.
At these values there is diversification, and no leverage. Any increase in κ, on the other hand,
drives the price discontinuously down to the no-diversification value. More generally, it can happen
that, as κ approaches μ, enough agents continue to diversify — even if their leverage is virtually
zero — for the price to be above the no-diversification value that obtains when κ > μ. However,
once κ exceeds μ the price drops discontinuously, as the right panel of Figure 13 illustrates.

To conclude, even if one modeled borrowing limitations as resulting from a no-default require-
ment, the price function is steeper in κ than when the constraint is absent, and can even be
discontinuous.
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