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“Our credibility will ultimately be judged by how we do on both of these mandates, not just the price

mandate,”Mr. (Charles) Evans said Tuesday night. “I think we will be judged very badly”if offi cials do

not act forcefully to reduce unemployment and instead, he said, “worry obsessively”about inflation.

“There’s little more that we can do,”Mr. (Jeffrey) Lacker said of monetary policy. “There’s little

more that we can contribute to growth.”

- The New York Times, April 2, 2013

Congressman Goldsborough: You mean you cannot push a string.

Governor Eccles: That is a good way to put it, one cannot push on a string. We are in the depths

of a depression and ... beyond creating an easy money situation through reduction of discount rates

and through the creation of excess reserves, there is very little if anything that the reserve organization

[Federal Reserve Board] can do toward bringing about recovery. I believe that in a condition of great

business activity that is developing to a point of credit inflation, monetary action can very effectively

curb undue expansion.

- Testimony before the House Committee on Banking and Currency, March 18, 1935.

1 Introduction

The string metaphor is an enduring feature of the debate over monetary policy: increasing borrowing

costs may reliably slow an expansion, but cheap capital need not stimulate investment in a downturn.

What does the historical record say regarding the possibly different macroeconomic effects of monetary

contraction and expansion? As many have recognized, this question is easy to ask but hard to answer.

The identification challenge in this context arises from the fact that policy changes are rarely isolated

from other economically important developments, including, perhaps, anticipated changes in economic

conditions. If these changes are related to the outcome variables of interest, one subset of time series

observations likely provides a poor control for another.

Many contemporary investigations of macro policy rely on structural models of economic behavior

to solve this fundamental identification problem (see, for example, the survey by Christiano, Trabandt

and Walentin, 2011). This approach, typically cast in a dynamic structural general equilibrium (DSGE)

framework, begins with a model of the macroeconomy that is meant to mimic the time series behavior

of key macro variables. In addition to theoretical predictions, DSGE models generate a system of linear

(or linearized) difference equations that provide the basis for empirical work. These equations can

be interpreted as vector autoregressions (VARs) with an associated set of coeffi cient or error-covariance

restrictions (as in Bagliano and Favero, 1998; Christiano, Eichenbaum and Evans, 1999; and many others).

The heart of the DSGE approach uses a model of the entire economy to isolate shocks that identify causal

policy effects. The validity of the resulting causal inferences therefore turns in part on how accurately

economic models describe the macroeconomy.
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An alternative strategy, inspired by the landmark Friedman and Schwartz (1963) volume, tries to

identify policy shocks through a close reading of the Federal Reserve’s Open Market Committee (FOMC)

meeting minutes. Romer and Romer (1989) is the first in a series of influential contemporary studies in

this mold. A drawback of the narrative approach is the subjective manner in which shocks are identified.

Moreover, some of the putatively random policy shifts identified in Romer and Romer (1989) may be

correlated with economic variables (an argument fleshed out in Hoover and Pérez, 1994; see Romer and

Romer, 1994 for a rebuttal).

This paper outlines a new route to causal inference for monetary policy effects, sidestepping some

of the diffi culties encountered in structural and narrative-based efforts. The defining feature of our

approach is a laser-like focus on the policy-making process. In contrast with the narrative approach,

which also focuses on Fed decision-making, our analysis of Fed behavior is more formal and data-driven.

Our solution to the policy evaluation problem starts with the presumption that, conditional on market-

derived statistics that embed optimal forecasts of future outcomes and anticipated policy moves, along

with a small set of institutional and economic variables, policy variation can be used to identify causal

effects. This assumption allows us to quantify the causal effect of policy changes in an environment of

stable expectations and goals. At the same time, our empirical strategy easily accommodates nonlinear

effects, while distinguishing the effects of monetary easing from those of tightening.

The selection-on-observables framework outlined here is founded on strong identifying assumptions,

but also provides a natural starting point for time series causal inference. In the absence of purposefully

designed experiments or naturally occurring quasi-experimental shifts, it’s hard to see how one can do

better than to use the policy variation at hand. Our focused approach limits the task of model specification

and robustness checking to the formulation and testing of a model of the policy determination process.

The selection-on-observables assumption also buys us strong testable restrictions that can be used to assess

the plausibility of causal claims. The principal econometric question that arises in our context is how to

exploit selection-on-observables identification in a manner that imposes minimal auxiliary assumptions

and facilitates specification testing.

Our econometric policy model describes the probability of federal funds rate target changes conditional

on market statistics, past policy choices, lagged outcomes, and a few other controls. The resulting set

of conditional distributions defines a function we call the policy propensity score. Monetary policy rules

have long been studied in macroeconomics; see, for example, Clarida, Galí and Gertler (2000), Woodford

(2001) and Galí and Gertler (2007) for recent contributions. Propensity score methods, introduced by

Rosenbaum and Rubin (1983), have proven useful for cross-sectional causal inference (see, e.g., Dehejia

and Wahba (1999) and Heckman, Ichimura and Todd(1998)). In a pair of papers closely related to

this one, Angrist and Kuersteiner (2004, 2011), adapt the propensity score framework to the problem of

time series causality testing of the sort discussed by Granger (1969) and Sims (1972). We extend this

framework here, deriving flexible, easy-to-compute propensity score estimators of the causal effects of a

dynamic multinomial treatment. These semiparametric estimators are then used to assess the impact of
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monetary policy before and since the Great Recession. The main payoff to our approach is the ability to

go directly from the policy process to causal effects on outcomes. The resulting causal estimates are valid

for all processes generating outcomes, nonlinear and complex as they might be, while allowing distinct

assessments of the impact of tight and easy money.

The first task on our empirical agenda is the construction of a credible model for the policy propensity

score. To that end, we follow Kuttner (2001), Faust, Swanson and Wright (2004), and Piazzesi and

Swanson (2008) in using market-based measures of anticipated policy. Specifically, we rely on Piazzesi’s

(2005) model linking Federal Reserve policy actions with asset prices. This link is used to justify a model

for target rate changes as a function of the price of federal funds rate futures contracts. Market-based

predictions of policy actions provide a low-dimension aggregator of publicly available information. This

in turn leads to parsimonious policy models well suited to a data-poor time series setting.

Our investigation of monetary policy effects replicates findings from earlier work while uncovering some

that are new. Echoing the findings of Christiano, Eichenbaum and Evans (1996, 1999)), among others,

our results suggest contractionary monetary policy slows real economic activity, reducing employment

as well as inflation. At the same time, in contrast with a number of earlier studies (such as those

reviewed in Christiano, Eichenbaum and Evans, 1999), the semiparametric estimation strategy developed

here suggests Fed efforts to support the real economy have been disappointing. The ease with which this

asymmetric response is revealed is an attractive feature of our approach. Finally, motivated by interest in

the Fed’s attempts to stimulate the economy during the Great Recession, we compare responses calculated

using a sample that ends in mid-2005 with results from a sample running through 2008, when the federal

funds target rate hit zero. We also compute estimates for the latter period only. Our conclusions

regarding the Fed’s limited ability to boost real economic activity stand under both variations.

2 Potential Outcomes and Macro Causal Effects

2.1 Conceptual Framework

The economy is described by the vector, χt = (x′t, y
′
t, D

′
t)
′ , where yt is a ky-vector of outcome variables,

Dt is a vector of policy variables that takes on values d0, ..., dJ , and xt is a vector of contemporaneous

covariates.

Policy is determined by lagged economic conditions, lagged policy choices, and covariates, combined

in the vector zt = f [xt, χt−1]. The policy regime is indexed by a parameter, ψ, which takes values in a

parameter space Ψ. In addition, policymakers are assumed to react to idiosyncratic information or taste

variables, represented by the scalar εt, that we don’t get to see. The realized policy Dt is determined

by both observed and unobserved variables according to Dt = D(zt, ψ, εt). For identification purposes,

we assume that εt is independent of potential outcomes. This is reminiscent of the recursive ordering

proposed by Christiano, Eichenbaum and Evans (1996, 1999), but our approach requires no description
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of the structural process connecting yt with policy choices or expected future values of χt.

Our framework for causal inference builds on the notion of potential outcomes. Potential outcomes

describe realizations of yt that arise in response to a hypothetical change in monetary policy. The

potential outcomes concept originated in experimental studies where the investigator has control over the

assignment of treatments, but is now widely used in observational studies. Although potential outcomes

most commonly appear in studies looking at the causal effects of a binary treatment or policy intervention,

the idea is easily extended to ordered discrete or continuous interventions (see, e.g., Angrist and Imbens,

1995).

The definition of potential outcomes used here comes from Angrist and Kuersteiner (2011):

Definition 1 For fixed t,l, and ψ, potential outcomes {yψt,l (d) ; d ∈ D} are defined as the set of values
the observed outcome variable yt+l would take on if Dt = D(zt, ψ, εt) = d, for all possible policy choices

d, d ∈ {d0, ..., dj , ..., dJ}.

The vector of potential outcomes includes the observed outcome, yt+l = yψt,l (Dt), as well as counterfactual

outcomes describing the consequences of policy choices not taken. The causal effect of a policy change is

defined as the difference yψt,l (dj)−y
ψ
t,l (d0), where dj indicates an intervention and d0 indicates a benchmark

policy. This notation makes a conceptual distinction between changes to the policy regime (indicated by

changes in ψ) and policy changes within the same regime, though only the latter are identified in our

framework. Although the notation introduced here is nonstandard in a macro setting, the notion of

macroeconomic causal effects determined by counterfactual states has a long history. Cochrane (1994),

for example, quotes Kareken and Solow (1963):"... One cannot deduce conclusions about the effects of

monetary policy or about their timing without making some hypothesis, explicit or implicit, about what

the course of events would have been had the monetary authorities acted differently." (emphasis added)

In a macroeconomic context, potential outcomes can be generated by a DSGE structure. Suppose,

as in Cochrane (1994), that output is determined by

yt = ayεεt + ayDDt + ayηηt, (1)

where the a· are parameters and ηt is an i.i.d. shock (The mapping between a and ψ may be obtained

by linearizing a non-linear DSGE model.). Cochrane’s monetary policy rule is given by

Dt = aDyyt−1 + εt (2)

The resulting moving average representation for yt can be written

yt =
∞∑
j=0

cyε,jεt−j +
∞∑
j=0

cyη,jηt−j .
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Here, cyε,j is the impulse response function for output in response to policy shocks. Suppose, that instead

of the realized policy, Dt is set to dj . The potential outcome induced by this manipulation is:

yt,l (dj) = cyε,j(dj − aDyyt−1) +

∞∑
j=0,j 6=l

cyε,jεt+l−j + cyη (L) ηt. (3)

This tell us what we can expect to see in response to such a change, in a world where the path of

shocks is otherwise unchanged. The associated causal effect of this policy change is yψt,l (dj)− y
ψ
t,l (d0) =

cyε,j (dj − d0). Thus, causal effects in our framework match those determined by a VAR in a linear,

constant-effects world.

Individual causal effects can never be observed since the real world gives us on only one realization. We

therefore focus on average causal effects. Let Yt,L =
(
y′t+1, ..., y

′
t+L

)′ and define the vector of potential
outcomes up to horizon L by Y ψ

t,L (d) =
(
yψt,1 (d) , ..., yψt,L (d)

)
. Potential outcomes determine observed

outcomes as follows:

Yt,L =
∑
d∈D

Y ψ
t,L (d) 1 {Dt = d} . (4)

Average policy effects are given by

E
[
Y ψ
t,L(dj)− Y ψ

t,L(d0)
]
≡ θj , (5)

where θj =
(
θ′1,j , ..., θ

′
L,j

)′ describes the response of yt to policy dj at horizons 1 to L. The effects of all

possible policy changes are summarized by θ =
(
θ′1, ..., θ

′
J

)′, a vector of dimension k = ky • L • J , with
ky the number of outcome variables, L the horizon of interest, and J + 1 the number of policy options.

θ describes an average generalized impulse response function for all possible policy choices. In contrast

with traditional impulse response analyses in empirical macro, however, the impulse response function

estimated here can be both asymmetric and nonlinear.

Potential outcomes for counterfactual policy choices are unobserved, so the expectation in (5) cannot

be estimated directly. The variation that identifies causal relationships in our framework is characterized

by a conditional independence assumption, also known as selection on observables:

Condition 1 Selection on observables:

yψt,l (dj)⊥Dt|zt for all l ≥ 0 and for all dj, with ψ fixed; ψ ∈ Ψ.

In Cochrane’s example, the policy function, indexed by ψ, affects the impulse response parameters,

cyε, through the parameter aDy. Cochrane (1994) shows that cyε may change as fed behavior changes.

Our conditional independence assumption focuses on variation in policy interventions while holding the

policy regime fixed, after conditioning on observables, zt. Leeper and Zha’s (2003) notion of modest

policy interventions captures the same idea. In the simple model described by (1) and (2), selection on
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observables requires serially independent εt, independent of ηt.

Using Equation (4) and Condition 1, we can write the average policy effect conditional on zt in terms

of observable distributions as:

E
[
Y ψ
t,L(dj)− Y ψ

t,L(d0)|zt
]

= E [Yt,L|Dt = dj , zt]− E [Yt,L|Dt = d0, zt] . (6)

Although cast in terms of in-principle observable conditional means, in applications with a high-dimensional

conditioning set involving continuous random variables, estimation of these conditional expectations is

empirically demanding. The estimation problem is simplified by use of a parametric model for the policy

function. Angrist and Kuersteiner (2011) call this model the policy propensity score.

The policy propensity score is P (Dt = dj |zt) = pj (zt, ψ) , where pj (zt, ψ) is a flexible parametric

model with parameters determined by the policy regime. Average causal effects can then be estimated

using the fact that Condition 1 implies

E [Yt,L1 {Dt = dj} |zt] = E
[
Y ψ
t,L (dj) |zt

]
pj (zt, ψ) . (7)

Solving (7) for E
[
Y ψ
t,L (dj) |zt

]
and integrating over zt allows us to write

θj = E
[
Y ψ
t,L(dj)− Y ψ

t,L(d0)
]

= E

[
Yt,L

(
1 {Dt = dj}
pj (zt, ψ)

− 1 {Dt = d0}
p0 (zt, ψ)

)]
. (8)

This weighting scheme was first used to estimate population means in non-random samples by Horvitz

and Thompson (1952) and adapted for the estimation of causal effects of cross-sectional Bernoulli treat-

ments by Hirano, Imbens, and Ridder (2003). In cross-sectional studies of causal effects of Bernoulli

interventions, (8) is known as an average treatment effect. Our setup allows for multinomial or ordered

treatments.1

The estimand described by (8) is similar to that approximated using local linear projections in Jordà

(2005), though here no approximation is required. The estimand can also be related to the nonlinear

impulse response function introduced by Gallant, Rossi and Tauchen (1993). The latter is based on

estimation of E [yt+l|xt] where xt = (yt, ..., yt−p) and yt is assumed to be a Markov process. An impulse

response function can then be defined as a marginalized version of E
[
yt+l|x+t

]
− E [yt+l|xt] where x+t

perturbs yt by a constant. Although E [yt+l|xt] is in principal nonparametrically identified, extrapolation
to counterfactual E

[
yt+l|x+t

]
in the Gallant, Rossi and Tauchen (1993) framework is likely to require a

model for the conditional expectation of outcomes.

Our approach leans on parametric policy models but requires no functional form assumptions for the

1With Bernoulli treatments, the formulation in (8) reflects Rosenbaum and Rubin’s (1983) propensity score theorem,
which says that if potential outcomes are independent of treatment conditional on covariates, they’re also independent of
treatment conditional on the propensity score. Imbens (2000) notes briefly that Horvitz-Thompson weighting applies to
multinomial treatments as well.
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outcome process, yt. We use institutional knowledge and economic reasoning to guide the choice of zt,

and specification testing to assess our model for pj (zt, ψ) . We need not define or estimate structural

innovations for the policy process, nor develop, solve, or simulate a model for the joint process governing

outcomes yt, policy variables Dt, and covariates zt. The estimator based on (8) is an easily constructed

weighted average, for which inference is straightforward.

2.2 Estimation

Inverse probability weighting estimators can be written as simple weighted averages of the vector of future

outcomes Yt,L =
(
y′t+1, .., y

′
t+L

)′, with weights formed from:
δt,j (ψ) =

1 {Dt = dj}
pj (zt, ψ)

− 1 {Dt = d0}
p0 (zt, ψ)

.

In a correctly specified model, these weights have mean zero and are uncorrelated with zt. To ensure this is

true in finite samples and under possible misspecification, we weight with the residuals from a regression

of δt,j
(
ψ̂
)
on zt and a constant. This produces the weighting function, ĥt = Yt,L

(
δt,j

(
ψ̂
)
− δ̂t,j

)
,

where δ̂t,j is the relevant fitted value. The average causal response vector is then estimated as the sample

average

θ̂ = T−1
∑T

t=1
ĥt. (9)

The estimator θ̂ solves

θ̂ = arg min
θ

(
T−1

∑T
t=1 ĥt − θ

)′
Ω−1

(
T−1

∑T
t=1 ĥt − θ

)
, (10)

a minimum distance objective function. Given this problem has an equal number of parameters and

moment conditions, the choice of Ω leaves the solution to (10) unaffected. Sometimes, however, it’s

interesting to restrict θ. For example, to facilitate comparisons with VAR’s, symmetric responses can be

estimated by assuming that the effect of dj and −dj are of the same magnitude but opposite in sign.
More generally, we estimate under restrictions θ = θ (α), where α is a reduced set of free parameters, by

solving:

α̂ = arg min
α

(
T−1

∑T
t=1 ĥt − θ (α)

)′
Ω−1

(
T−1

∑T
t=1 ĥt − θ (α)

)
. (11)

The optimal Ω for this over-identified scenario is the spectral density matrix of ĥt at zero frequency, which

can be estimated as detailed in Newey and West (1994). Asymptotic approximations to the sampling

distribution of θ̂ or α̂ account for the fact that ψ is estimated in a first stage. The relevant limiting

distributions for estimators and test statistics are derived in the appendix.
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3 A Propensity Score for Monetary Policy Interventions

The federal funds market is an interbank loan market intended for the management of reserve require-

ments; the rate for overnight loans in this market, known as the federal funds rate, provides a benchmark

for securities across the risk and maturity spectrum. Monetary policy targeted the level of the federal

funds rate until mid-December, 2008, when the fed funds rate was set to trade between 0 and 0.25%.

With no room to lower rates further, the Fed turned to other tools, such as large scale asset purchases.

We focus here on the pre-2009 policy era, going back to July 1989. Because FOMC meetings are very

nearly a monthly occurrence, we work with monthly data.

3.1 The Federal Funds Rate Targeting Regime

Since February 1994, fed funds targets have been announced after each FOMC meeting, eight times a

year.2 Changes in the target usually come in 25 basis-point increments in a [-0.50%, 0.50%] interval,

though the target was twice changed by 75 basis points in our sample period. Of the 78 target rate

changes in our sample, 23 were outside of an FOMC meeting. Most of these happened before February

1994. On three occasions there was more than one change in a given month, in which case we sum them.3

The space of possible policy choices is defined here to be {-0.50%, -0.25%, 0%, 0.25%, 0.50% }, where

the ±0.50% events include the larger changes.

Our sample is determined in part by the availability of policy predictors derived from financial deriv-

atives based on the federal funds rate. One such derivative, federal funds rate futures (FFF) started

trading in earnest in 1989 (the market was established earlier, in 1988). We consider two sample end-

points. July 2005 marks the last in a series of increases in the fed funds target. From then on, the

target rate remained at 5.25% until September 2007 before the Great Recession began. We use July

2005 as a first sample end-point for estimation of the propensity score and evaluate policy responses up

to 24 months ahead on data running to July 2007. The target fell gradually thereafter, until December

2008 when it hovered between zero and 0.25%, marking the end of conventional monetary policy. The

second sample end-point for propensity score estimation therefore extends through the end of 2008 with

an additional 24 months ending in December 2010 used to estimate policy responses. Finally, we also

experiment separately with data from the Great Recession period only. This is a small sample and it

imposes some limits to the experiments we can conduct that we will discuss below.

3.2 Policy Predictors for the Propensity Score

Effi cient markets price futures contracts using all available information. This motivates students of mon-

etary policy to define policy shocks as deviations from the optimal predictions implicit in asset prices.

2The FOMC comprises the Fed Chairman and six other Board Governors, the president of the Federal Reserve Bank of
New York and a rotating pool of four presidents from the remaining eleven regional Federal Reserve Banks.

3The relevant months are December 1990, December 1991, and January 2001.
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Cochrane and Piazzesi (2002), for example, use changes in the Eurodollar rate around meeting dates to

define target rate surprises, while Thapar (2008) uses T-Bill futures in a similar manner. Kuttner (2001),

Faust, Swanson and Wright (2004), Gürkaynak, Sack and Swanson (2005, 2007), Bernanke and Kuttner

(2005) and Wingender (2011) construct monetary policy shocks from financial derivatives that price the

federal funds rate directly.4

Federal funds rate derivatives include a futures contract on the effective federal funds rate and an

options contract on these futures (though the latter started only in 2003). Futures contracts refer to

calendar-month averages of the effective federal funds rate published by the New York Fed, with spot,

and one- through five-month contracts. We use these derivatives to predict target changes, implicitly

defining policy surprises as deviations from market-based forecasts of Federal Reserve behavior.

The intuitive notion that futures prices provide an optimal policy forecast can be made rigorous using

Piazzesi’s (2005) term structure model. Denote the information available to policy makers at time t by

ζt. Piazzesi shows that bond yields and related derivatives likewise depend on ζt. Under the additional

assumption that pricing functions are invertible, we can replace ζt, which may be only partially observable,

with a vector of observed asset prices zt. This theoretical argument is fleshed out in the appendix.

As a practical matter, our analysis distinguishes between months with scheduled FOMC meetings

("meeting months") and months without. In meeting months, we construct s1t , the difference between

the price of the futures contract expiring during the same month as the meeting and the current target

rate, both observed at market close on the day before the meeting. In non-meeting months, we construct

s0t , the difference between the price of a one-month-ahead contract in that month and the target rate in

effect on the last day of the previous month.

With a few exceptions, our predictor for meeting months is s1t , while in non-meeting months, s
0
t is

used. In constructing s1t for months in the pre-1994 era, before target rate changes were announced, our

coded announcement date is delayed by one day relative to the later period. Before 1994, the market

became aware of a target change only through a reading of the open market operations implemented by

the New York Fed’s Trading Desk. These operations take place at the beginning of the trading day and

hence are observed the day after a meeting, which generally concludes after the close of the market. This

nuance affects the construction of s1t only.

In a few instances, target rate changes in meeting months preceded meetings, with an additional

change or no change at the meeting, as in February, March, and August 1991. In such situations, the

predictor is taken to be s0t rather than s
1
t and enters as its own covariate. The active futures variable for

any given month is denoted FFFt, equal to either s0t or s
1
t , as described above.

Because target changes are naturally ordered in 0.25% increments over the range ±0.50%, we model

the policy propensity score with an ordered probit specification. Hamilton and Jordà (2002) and Scotti

(2011) likewise use ordered probit to model federal funds rate target changes. The dependent variable

4Krueger and Kuttner (1996), Kuttner (2001), Piazzesi and Swanson (2008), Gürkaynak et al. (2005, 2007) and Hamilton
(2009) discuss the effi ciency of the market for federal funds futures.
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is the change in the target rate during month m + 1, irrespective of whether an FOMC meeting was

announced or whether the target was changed. For the few occasions where more than one target change

occurred in the same month, recall that we use the accumulated monthly change.

We allow the coeffi cients of the propensity score to vary after August 2006 to capture a window that

includes the financial crisis with about a one year lead time.5 Since there were no instances of changes

prior to meetings after 2001, the predictor for that scenario only enters in the pre-crisis data.

In addition to controlling for market expectations through fed funds futures prices, we include and the

unemployment rate, such as might appear in a conventional monetary policy rule. The unemployment

rate is available at a monthly frequency and is a natural substitute for output gap measures commonly

used with quarterly data. Moreover, our "Taylor Rule" specification can be motivated by results of

Blanchard and Galí (2010) and Galí (2011) who show that the optimal monetary policy rule in a New

Keynesian model with real-wage rigidities depends both on inflation and unemployment. Finally, the

specification of the propensity score includes a number of terms designed to capture a variety of calendar

effects. These include a dummy variable FOMCt indicating months with a scheduled FOMC meeting,

the target change in the previous month, the target rate change in the previous month interacted with

FOMC, a scale factor that accounts for when within the month the FOMC meeting is scheduled, and a

set of monthly seasonal dummies. We also include the variable CRISISt, a dummy that takes the value

of 1 starting August 2006 to capture a window that includes the financial crisis with about a one year

lead time. Finally, the model includes dummies for the Y2K event and the September 11, 2001 attacks.6

Table 1 reports average marginal effects of the effects of predictors on the likelihood of a 0.25%

increase in the target. These estimates use the sample through July 2005 for the pre-crisis sample (July

1989 to July 2005) and through December 2008 for the full sample (July 1989 to December 2008). Since

responses are calculated by shifting the outcome variable up to two years forward, we note that the end

dates for the outcome samples are July 2007 and December 2010, respectively.

Estimates of a benchmark Taylor-type specification that predicts target rate changes with inflation

and unemployment alone are reported in columns (1) and (2). These are labeled OPT1 and OPT2 and use

the pre-crisis sample. Columns (5) and (6), report estimates for OPT1 and OPT2 using the full sample.

Broadly speaking, the estimates show that both variables affect policy largely as expected, though the

negative unemployment effect is stronger than the very small positive inflation effect. The latter is not

statistically significant. The Taylor model estimates shown in columns (1) and (5) (labeled OPT1) use

same-month measures only, while the estimates reported in columns (2) and (6) (labeled OPT2) are from

models that add inflation and unemployment lags, the size of the last target change, and seasonal and

scheduling dummies.7

5The last target increase is dated June 2006. August 2007 marks the first in a sequence of target reductions that extend
to the end of the sample.

6The scale factor is defined as κ/ (κ− t) where κ is the number of days in a given month and t is the day of the month
when the FOMC meeting is scheduled.

7Detailed variable definitions and sources appear in Appendix B.
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Columns (3) and (4) for the short sample and columns (7) and (8) for the long sample, labeled OPF1

and OPF2 report estimates from specifications that include FFFt terms that differ in meeting and non-

meeting months, and in the pre-crisis and full samples. The results indicate that market-based factors

are better predictors of target rate changes than the combination of inflation and unemployment and

their lags in a Taylor specification. The pseudo-R2s in columns (3) and (7) (OPF1), based on estimates

of the policy propensity score using these factors but excluding inflation and unemployment terms are

virtually identical to the pseudo-R2s from the specifications augmented with these Taylor model terms

and reported in columns (4) and (8) (OPF2). Neither inflation nor unemployment marginal effects are

significantly different from zero when estimated in the more elaborate models.

Fitted values from the full policy score model (8) seem to track realized shifts well over the course of

the business cycle. This can be seen in Figure 1, which plots actual and predicted target changes (i.e.,

the expected target change conditional on regressors in the policy propensity score). Predictions were

computed using the OPF2C estimates from column (8) of Table 1. The figure also shows the time series

of Industrial Production (IP) growth to mark cyclical fluctuations.

An important diagnostic for our purposes looks at whether lagged macro aggregates are independent

of policy changes conditional on the policy propensity score. In other words we would like to show

that the policy shocks implicitly defined by our score model look to be "as good as randomly assigned".

Angrist and Kuersteiner (2011) develop semiparametric tests that can be used for this purpose. Panel

A of Table 2 reports test results for the null hypothesis of orthogonality between the policy innovation,

{Dt = dj}− pj (zt, ψ), and conditioning variables in the model. Panel B looks at the correlation between

innovations and lagged outcomes. Both panels show p-values for joint (3 df) tests of the null hypothesis

that the score model indicated in the column headings is an adequate specification of the conditional

probability that the target rate is unchanged, rises by a quarter point, or falls by a quarter point (these

are the shocks analyzed below). The table also shows p-values for joint orthogonality of an aggregate

market based factor FFFt. We consider linear and quadratic terms of FFFt (2× 3 = 6 df).

Test results for the simple Taylor model (reported in columns labelled OPT1) show substantial cor-

relation with economic variables, including the lagged federal funds rate. The addition of controls for

inflation and unemployment lags, the size of the last target change, and seasonal and scheduling dummies

generates better results, although these p-values (reported in columns labelled OPT2) still show some ev-

idence of correlation between FFFt and the average federal funds rate with policy innovations, especially

in the longer sample. Test results for the model with FFFt alone (reported in columns labelled OPF1) all

pass, contrary to those for the expanded Taylor model, OPT2. Similarly, test results for the model that

includes both FFFt and inflation and unemployment terms (reported in columns labeled OPF2) offer no

evidence against the hypothesis of random policy innovations. In what follows, we proceed using the

p-score model based on OPF2.
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4 Dynamic Policy Effects

The yield curve is the proximate channel through which target rate changes affect inflation and the real

economy. We therefore begin with an analysis of policy effects on the yield curve, specifically, the federal

funds, 3-month T-Bill, and 2- and 10-year T-Bond rates. In addition to the yield curve, we look at

effects on inflation measured by the change in 100 times the log of the Consumer Price Index (CPI), the

response in the change of 100 times the log of the Industrial Production (IP) index, and the response

in the change of the unemployment rate. Policy responses refer to the percentage point change in the

outcome variable measured from the month of the policy intervention out to the relevant horizon.

Our analysis shows the impact of 25 basis point changes, up and down, out to a horizon of 24 months.

Figures 2, 3 and 4 plot these estimated responses, constructed using propensity score model OPF2/C in

columns (4) and (8) of Table 1. The figures also show 90% confidence bands.

The federal funds rate responds more sharply to increases in the target rate than to decreases, as

can be seen in Figure 2 A 25 basis point (bps) increase in the target appears to spark a sequence of

further changes that induces a peak increase in the federal funds rate close to 1 percentage point (pp)

after about a year, then falling to half a percentage point after two years. This pattern is similar to that

found in VAR-type estimates (e.g., Figure 3 in Christiano et al. 1999, when cumulated). By contrast, a

25 bps reduction lowers the federal funds rate by -0.50 pp one year out, a decline that’s sustained after

two years.

Estimated causal effects of a change in target yields are shown in Figure 3. As we might expect,

rate increases move through the yield curve with diminished intensity as maturities lengthen. A similar

pattern appears in estimates reported by Cochrane and Piazzesi (2002). The estimated yield curve

response to a rate decrease goes the other way and is somewhat more muted, as can be seen in the

right-hand column of the figure. This relatively flat response is consistent with the flatter response of

the federal funds rate in the bottom of Figure 2. The relative insensitivity of the yield curve to target

rate decreases provides a possible explanation for weak transmission of accommodative monetary policy

changes to macro aggregates.

Responses of macroeconomic aggregates to monetary policy changes appear in Figure 4. The top row

displays the responses of the change in 100 times the log of the price level; the second row reports effects

on 100 times the change in the log of IP; the third row shows effects on the change in the unemployment

rate. Target rate increases begin to reduce inflation after about 18 months. After two years, a quarter

point increase in the target is estimated to have reduced prices by about a quarter point, equivalent to a

reduction of just over a tenth of a point in the annual inflation rate. Interestingly, these results show no

evidence of a "price puzzle," that is, a short-run increase in inflation when rates rise. The price puzzle

is a common finding in VAR-based estimates of the effects of monetary shocks (see, e.g., Sims, 1992)

Industrial Production is largely invariant to a rate increase in the first post-change year, but then falls

to a net decline of about 1.5 pps after two years. This is roughly a 0.75 pp decrease in annual growth
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rates. The unemployment rate response essentially mirrors this, with a total increase of about a quarter

point after two years. Estimated responses of IP and the unemployment rate to target rate reductions

emerge only slowly and are modest when they do. This difference, documented in the right-hand column

of Figure 3, seems likely to reflect the relatively muted response of the federal funds rate and the yield

curve to reductions in the target rate. Although the effect of target rate changes is about equal, up or

down, when looking two years out, the fed funds rate and yield curve are markedly more sensitive to rate

increases than to rate decreases at intermediate horizons. Differences in the responses to up and down

changes therefore seem likely to reflect a weaker "first stage" for the policy intervention, though we can’t

rule out differences in policy sensitivity on the upside and downside as well. This strong asymmetry in

yield curve and macro aggregate responses to US monetary policy shifts echoes findings in Hamilton and

Jordà (2002) and Angrist and Kuersteiner (2011), but does not feature in most VAR-based estimates.

Other Comparisons and Context

In an influential study of the effects of monetary policy shocks on the yield curve and macro variables,

Cochrane and Piazzesi (2002) report estimates of policy effects on the yield curve similar to ours. On

the other had, their results show little effect of policy changes on prices, while suggesting employment

increases after a rate increase. The yield curve effects reported here are stronger than the VAR-based

responses reported in Christiano, Eichenbaum and Evans (1996, 1999).

Faust, Swanson andWright (2004) use policy-induced changes in federal funds futures price to quantify

policy shocks. Their VAR-based estimates of the effect of a positive 25 basis point surprise show price

decreases similar to those reported here. The corresponding estimated effects on output line up less well,

however, with a mixture of positive and negative effects.

As a theoretical matter, monetary models with nominal rigidities, information asymmetries, menu

costs, or lending constraints typically imply asymmetric responses to monetary policy interventions. For

example, Cover (1992) and DeLong and Summers (1988) argue that contractionary monetary policy

affects real variables more than expansionary policy does. Using international data, Karras (1996) finds

strong evidence of asymmetry in the effects of monetary policy on output using European data. These

papers are consistent with Keynes’ (1936) observations on the role of sticky wages in business cycles

(see Ravn and Sola, 2004 for a review of the relevant history of thought in this context). More recently

Tenreyro and Thwaites (2013), using Romer and Romer (2004) monetary policy shocks, report that

monetary policy effectiveness declines in recessions.

5 Crisis Intervention

Did the Great Recession change the effects of monetary policy? This section addresses this question by

first extending the sample to cover target rate changes through the end of 2008, with outcomes measured

through the end of 2010 and then by analyzing policy changes for the early crisis period only (October
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2006 to December 2008), with outcomes measured through December 2009 (one year earlier than the

full-sample analysis as we limit the horizon to 12 months for the crisis sample).

Figure 5 shows the estimated response of the federal funds rate in the longer sample (the first of our

two experiments). These estimates are similar to those shown in Figure 2, with the response to a target

increase peaking slightly above 1 pp after 18 months, falling to a little over half a point two years out.

The estimated response to a target decrease is slightly less persistent than in the shorter sample, ending

the two-year horizon with a decline of only a quarter point rather than a half.

Estimated term rate responses are plotted in Figure 6. These show a slightly sharper yield curve

response to rate increases, while the response to target rate reductions is, if anything, even more muted

than that for the pre-crisis sample. The estimated effects in panels on the right hand side of Figure 6 are

remarkably flat, consistent with the flatter response of the fed funds rate to target rate declines plotted

in Figure 5.

Macro aggregate responses in the longer sample, reported in Figure 7, show little effect of a target

rate change on inflation. Estimated effects of rate increases on IP suggest less of a decline in response

to rate increases than that estimated for the short sample, with a decline of just over 1 pp after two

years (versus 1.5 pps in the shorter sample). The unemployment rate response to a rate increase is also

somewhat smaller than that found in the shorter sample, while target rate declines are again estimated

to have little effect on any macro aggregate.

Our short "crisis sample" saw no target rate increases, so the analysis of this sample models policy

changes as any rate decrease of 25 bps or more. The policy propensity score used for this is a probit

function of the combined futures variable, along with inflation and unemployment (the Taylor variables

used for the policy model estimated in the longer sample). The resulting marginal effects, reported in

Table 3, are normalized to show the impact on the probability the target rate is left unchanged, so

the signs align with the ordered estimates reported earlier. As with the ordered score model, column

(3) in Table 3 shows FFF to be a strong predictor of target rate changes. Though the coeffi cient on

inflation is marginally significant (and wrong-signed) in column (3), overall, inflation and unemployment

add little to policy prediction conditional on FFF, a finding that emerges by comparing the log likelihood

in columns (2) and (3). The F -statistic is 1.98 with a p-value of 0.14. Finally, a model with inflation

and unemployment alone does not predict target rate decreases as well as a model with only FFF, as

can be seen in a comparison of likelihoods across columns (1) and (2). In fact, in the short crisis sample,

traditional Taylor Rule variables are essentially unrelated to target rate declines. The F -statistic between

columns (1) and (3) is 14.52 with a p-value of nearly 0, suggesting that the term FFF is doing the heavy

lifting.

Figure 8 shows the estimated response of the federal funds rate to target rate changes using only

the crisis period. The results show large but highly imprecisely estimated declines in the federal funds

rate. Part of the increase in magnitude here may be due to the fact that the policy dummy in this case

indicates a combination of quarter-point and half-point declines.
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Figure 9 plots term rate responses to policy interventions in the crisis sample. The estimates offer

some evidence that federal funds rate declines are passed down the yield curve in the form of a pattern

reasonably consistent with that found when estimated using more data. Finally, Figure 10 reports the

responses of the macro variables. Here too the estimates are imprecise. Although inconclusive, they offer

little support for the view that monetary stimulus was effective in the crisis period.

6 Summary and Conclusions

We start with the assumption that policy changes are independent of potential outcomes, conditional on

observed market-based forecasts of these changes plus a small set of economic predictors. Selection-on-

observables is a strong assumption, but a natural starting point. We then consider how best to make use

of the selection-on-observables identification condition in a potential outcomes framework. The resulting

propensity score weighting estimator captures possibly nonlinear and asymmetric causal responses to an

ordered dynamic treatment through a simple reweighting procedure. Our framework focuses modeling

effort and specification testing on the process that determines policy decision; the model for outcomes is

left unspecified.

Our propensity score weighting estimator for ordered time series treatments is applied to evaluate

the effect of monetary policy interventions on macroeconomic outcomes before and during the Great

Recession. Results for the pre-recession period suggest an asymmetric response to changes in the fed

funds rate target, much as implied by the string metaphor. Our findings suggest that target rate increases

reduce inflation, employment and output. At the same time, target decreases appear to have little effect

on output or inflation. Perhaps surprisingly, an extension of our analysis to cover the "zero lower bound

years" since 2008 leaves these findings essentially unchanged.

What explains the asymmetric response of macro aggregates to monetary policy interventions? An

important finding emerging from the analysis reported here is the weak effect of target rate declines on

medium and long term bond rates. Because changes in these rates provide a plausible causal channel

for policy, the relative unresponsiveness of these bond rates to policy may account for much of the

weak impact of target rate reductions on macro aggregates. At the same time, the limited precision

of many of our estimates means we can’t rule out differential sensitivity of macro aggregates to bond

yield declines and hikes. In view of this constellation of findings, suggesting though not establishing a

"weak channels" hypothesis for asymmetric policy effects, in future work, we plan to use the econometric

methods developed here to analyze the effects of the Fed’s recent large scale asset purchases. These

interventions were designed to reduce the long end of the yield curve in the face of exceptionally low

short-term rates.
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A Asset Price Based Policy Predictions

Our formulation of the propensity score is based on Piazzesi’s (2005) term structure model. Piazzesi

(2005) provides an explicit parametric framework that links Fed-policy actions to the yield curve. Her

model consists of a monetary policy rule pjζ (ζt, ψ) , the probability of choosing Dt = dj , conditional on

information ζt. Monetary policy then affects the state price density Mt and consequently, through no-

arbitrage arguments, the yield curve. The key insight of Piazzesi’s model that is relevant here is the fact

that asset prices, in particular bond yields and related derivatives, depend on the same state vector ζt as

the policy function pjζ (ζt, ψ). Under the additional assumption that the pricing functions are invertible,

we can recover ζt with a vector of asset prices. This is particularly appealing because some of the elements

in ζt may not be directly observable.

We rely on a no-arbitrage pricing relationship between the price of zero coupon bonds as well as a

federal funds futures contract and the state vector ζt. Let the state price densityMt be such that the price

at time t of a random payoff V at time T is E [MTV |ζt] /Mt = EQT [V ] where EQT [V ] is the expectation

operator with respect to the risk neural measure. Harrison and Kreps (1979) show that the existence of

a state price density is essentially equivalent to the existence of an equilibrium price system, something

we impose as an assumption. Using the risk neutral measure, random payoffs at various maturities are

priced as

PVT (t, T |ζt) = EQT [V |ζt] . (12)

We assume that the relationship between the state vector ζt and (12) is invertible, an assumption that is

satisfied for example in affi ne models. Let zt =
(
PV1 (t, T1|ζt) , ..., PVq (t, Tq|ζt)

)
be a vector of observed

price data with maturities T1, .., Tq and assume that the pricing function has an inverse g such that

ζt = g (zt, t, T1, ..., Tq) . (13)

The technique of inverting the yield curve to elicit unobservable state variables is well established in the

financial econometrics literature —see Söderlind and Svensson (1997), Singleton (2001) or Piazzesi (2005)

for examples. Our empirical model for the propensity score is related to the policy function by

pj (zt, ψ) := pjζ (g (zt, t, T1, ..., Tq) , ψ) . (14)

Federal funds futures maturing shortly after FOMC announcements are probably good candidates for zt.

The reason is that there is a direct link between their expected future cash flow and changes in the federal

funds target rate. We focus on the case where no FOMC meeting is announced. Because macroeconomic

data is released at different days throughout the month and because we are interested in good predictors

of expected Fed policy for the entire month m+ 1, we concentrate our attention on the futures price on

the last day of the prior month m, that is, tm. Let f1tm,m denote the price of a one-month ahead contract
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traded at the last day of month m and let κm be the total number of days in month m. On any given

day tj in month m+ 1, let rtj be the effective federal funds rate at the close of the market.
8 The payoff

for a buyer of a fed funds futures contract is the difference between the futures rate f1t,m and the average

fed funds rate over month m+ 1,

ratm+1
=

1

κm+1

κm+1∑
j=1

rtj (15)

with the payoff cash settled the day after expiration of the futures contract (see Piazzesi and Swanson,

2008, p. 679). Pricing equation (12) and (15) imply that the spread between a funds future f1
tm,m

and

the prevailing target rate r̄tm at the last day tm of month m is

f1tm,m − r̄tm =
EQ

[
ram+1 − r̄tm |ζtm

]
P1
(
tm, tm+1|ζtm

) (16)

where tm+1 denotes the end of month m+ 1 and P1
(
tm, tm+1|ζtm

)
is the tm price of a zero coupon bond

maturing at tm+1. Note that f1tm,m reflects both uncertainty about whether and when a target rate change

will occur in monthm+1 and more general uncertainty about the economy captured by the pricing kernel

Mt. Equation (16) shows that the futures-target rate spread is the best risk adjusted predictor of a target

rate change during the coming month.9 Whether (16) can be inverted to recover ζtm as in (13) depends

on the dimension of ζt as well as the exact functional form of the conditional expectations. In the absence

of an explicit pricing model, which would require a more parametric framework than we are willing to

entertain, it is ultimately an empirical question whether controlling for f1
tm,m

− r̄tm in the propensity

score is suffi cient.

B Implementation

B.1 Data

a) Federal Funds Futures: CBOT prices of current month and next month Federal Funds Futures

contract at market close, cry out market Monday - Friday. Source: Bloomberg.

b) Treasury Bond yields: Daily data from the Federal Reserve Board of Governors. Federal Reserve

Statistical Release H.15. Daily observations for Market yields on U.S. Treasury securities at 1-

month constant maturity, quoted on investment basis at 3 month and 2, and 10 year maturities.

Respective data-codes are ‘RIFLGFCM03’, ‘RIFLGFCY02’, ‘RIFLGFCY10’. Federal funds rate:

Daily data based on weighted average of brokered trades. Data-code ‘RIFSPFF_N.B’

8The rate rtj is published by the Federal Reserve Bank of New York. It is the volume weighted daily average of trades
arranged by major brokers (source: http://www.newyorkfed.org/markets/omo/dmm/fedfundsdata.cfm). Using the model
implied rate at the end of the day thus is a slight simplification.

9 In other words, it minimizes the squared prediction error amongst all predictors based on ζ t̄m of ratm+1
and under the

risk neutral discounted measure.
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c) Macro Data, all monthly frequency. Source: Federal Reserve Bank of St. Louis, Fred. (i) Consumer

Price Index of all urban consumers: all items (PCU) seasonally adjusted, Source: Bureau of Labor

Statistics; (ii) Industrial Production Index seasonally adjusted (IP), Source: Board of Governors

of the Federal Reserve System; (iii) Federal Funds effective Rate in percent per annum (FFED),

monthly average, Source: Federal Reserve Statistical Release H.15; (iv) Civilian Unemployment

Rate, seasonally adjusted (UNRATE), Source: Bureau of Labor Statistics.

B.2 Standard Errors

The estimator α̂ defined in (11) is computed in two steps. First, the unconstrained estimate θ̂ =

T−1
∑T

t=1 ĥt is obtained. Let Ωθ be the asymptotic covariance matrix of θ̂. Assume that Ω̂θ is a consistent

estimator of Ωθ. Now, the estimator α̂ is given as

α̂ = arg min
α

(
T−1

∑T
t=1 ĥt − θ (α)

)′
Ω̂−1θ

(
T−1

∑T
t=1 ĥt − θ (α)

)
.

Replacing Ωθ with Ω̂θ has no effect on the first order asymptotic distribution of α̂ under our assumptions.

On the other hand, the limiting distributions of θ̂, θ (α̂) and α̂, derived in Theorems 1 and 2 in Appendix

B.5, depend on a preliminary estimate of the the propensity score with parameters ψ. Assume ψ̂ is the

maximum likelihood estimator with representation

τ1/2
(
ψ̂ − ψ

)
= Ω−1ψ T−1/2

T∑
t=1

l(Dt, zt, ψ0) + op (1) (17)

where Ωψ = E [l(Dt, zt, ψ0)l(Dt, zt, ψ0)
′] and the function

l(Dt, zt, ψ) =

J∑
j=0

1 {Dt = dj}
pjt (zt, ψ)

∂p
dj
t (zt, ψ)

∂ψ

is the score of the maximum likelihood estimator. The representation in (17) is used to expand ĥt

around ψ0 leading to ĥt = vt (ψ0) + Op
(
T−1

)
where vt (ψ0) = ht (ψ0) − θ0 + ḣ(ψ0)Ω

−1
ψ l(Dt, zt, ψ0) and

ḣ(ψ0) = E
[
∂ht (ψ0) /∂ψ

′] . The covariance matrix Ωθ is the typical spectrum at frequency zero matrix

of vt (ψ0) found in the HAC-standard error literature (see Newey and West (1994)) and is given by

Ωθ =
∞∑

i=−∞
E
[
vt (ψ0) vt−i (ψ0)

′] (18)

The formula for Ωθ takes into account that the ‘observations’ĥt used to compute the sample averages are

based on estimated, rather than observed data. Confidence intervals for θ can be constructed from Ωθ.
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We estimate Ωθ from the sample averages

̂̇
h(ψ0) = T−1

T∑
t=1

∂ht

(
ψ̂
)
/∂ψ′, Ω̂ψ = T−1

T∑
t=1

l(Dt, zt, ψ̂)l(Dt, zt, ψ̂)′

and by letting vt
(
ψ̂
)

= ht

(
ψ̂
)
−θ̂+

̂̇
h(ψ)Ω̂−1ψ l(Dt, zt, ψ̂). As in Newey andWest (1994), we use the Bartlett

kernel with prewhitening and a data-dependent plug in estimator to obtain the necessary bandwidth

parameter.

The Newey and West procedure is implemented as follows. Prewhitening is achieved by fitting a

VAR(1) model to vt
(
ψ̂
)
. For this purpose define the autoregressive parameter estimate

Â =
T∑
t=2

vt

(
ψ̂
)
vt−1

(
ψ̂
)′( T∑

t=2

vt−1
(
ψ̂
)
vt−1

(
ψ̂
)′)′

and let r̂t
(
ψ̂
)

= vt

(
ψ̂
)
− Âvt−1

(
ψ̂
)
. Then define Ω̂θ,j = T−1

∑T
t=j+1 r̂t

(
ψ̂
)
r̂t−j

(
ψ̂
)′
for j = 0 and

Ω̂θ,j = Ω̂′θ,−j for j < 0. Let 1 = [1, ..., 1]′ be an r-dimensional vector where r is the dimension of θ. Define

σ̂j = 1′Ω̂θ,j1, ŝ(q) =
∑n

j=−n |j|
q σ̂j and γ̂ = cγ

(
ŝ(1)/ŝ(0)

)2/3
where10 cγ = 1.1447 and n =

⌊
3 (T/100)2/9

⌋
where b.c denotes the integer part of a real number. Set the bandwidth parameter to B̂ =

⌊
γ̂T 1/3

⌋
.

The estimator for Ωθ is now defined as

Ω̂θ =
(
Ir − Â

)−1(
Ω̂θ,0 +

∑B̂
j=1

(
1− j

B̂ + 1

)(
Ω̂θ,j + Ω̂′θ,j

))(
Ir − Â

)−1
.

B.3 Specification Tests

The specification tests are based on the following fact. If wt is a vector of elements of zt or χt−1, then

correct specification of the propensity score implies that

E
[
1 {Dt = j} − pj(zt, ψ0)|wt

]
= 0 for all j = 1, ..., J.

All J conditional moment restrictions, or a subset of them, can be summarized into a vector. Let Dj,t =

1 {Dt = dj} , Dt = (Dj1,t, ..., Djk,t) and p (zt, ψ) =
(
pj1 (zt, ψ) , ..., pjk (zt, ψ)

)
. Set k ≤ J and 1 ≤ j1 <

... < jk ≤ J. In our case, we use this setup to focus on dj = {−.25, 0, .25} . Then, E [Dt − p(zt, ψ0)|wt] = 0

must hold. To test this condition, consider the statistic m (Dt, zt, wt, ψ) = (Dt − p(zt, ψ))⊗ wt for which
the unconditional moment restriction E [m (Dt, zt, wt, ψ0)] = 0 holds. A test of this restriction is based on

the limiting distribution of T−1/2
∑T

t=1m (Dt, zt, wt, ψ0) under the null-hypothesis of correct specification
of p (zt, ψ0) .

The testing problem is complicated by the fact that ψ0 is unknown and needs to be estimated. This

10See Newey and West (1994, Tables I and II).
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affects the limiting distribution of the test statistic. Define ̂̇p (ψ) = T−1
∑T

t=1 ∂p(zt, ψ̂)/∂ψ′ ⊗ wt and

ϑ̂t = m̂t − ̂̇p (ψ) Ω̂−1ψ l(Dt, zt, ψ̂)

where the second term in ϑ̂t corrects m̂t for the effects of parameter estimation. A key insight is that

under the null-hypothesis, ϑ̂t is approximately a martingale difference sequence. This feature significantly

simplifies estimation of the asymptotic variance normalizing the test. Then, letting m̄ = T−1
∑T

t=1 m̂t

and V̂ = T−1
∑T

t=1 ϑ̂tϑ̂
′
t leads to the test statistic

Tm̄′V̂ −1m̄→d χ
2
(J) (19)

under the null hypothesis that E [1 {Dt = j} |zt] = pj(zt, ψ0). The limiting distribution in (19) is estab-

lished in Appendix B.5.

B.4 Regularity Conditions

Let χt = [y′t, x
′
t, Dt]

′ be the vector of observations. Assume that {χt}∞t=1 is strictly stationary with values
in the measurable space (Rr,Br) where Br is the Borel σ-field on Rr and r is fixed with 2 ≤ r <∞. Let
Al1 = σ (χ1, ..., χl) be the sigma field generated by χ1, ..., χl. The sequence χt is β-mixing or absolutely

regular if

βm = sup
l≥1

E

[
sup

A∈A∞l+m

∣∣∣Pr
(
A|Al1

)
− P (A)

∣∣∣]→ 0 as m→∞.

Condition 2 Let χt be a stationary, absolutely regular sequence such that for some 2 < p < ∞ the

β-mixing coeffi cient of χt satisfies βm ≤ cm
− 1+p
p−2/p for some bounded constant c > 0.

Condition 2 implies that
∑∞

m=1 β
1−1/p
m < ∞ as required for Corollary 3.9 of McLeish (1975a). In

addition, βm satisfies (2.6) of McLeish (1975b) required for a strong law of large numbers. Using Corollary

A.2 of Hall and Heyde (1980), it also follows that
∑∞

i=m |m|
p
∥∥E [vt (ψ0) vt−m (ψ0)

′]∥∥ < ∞ as required

by Assumption 2 of Newey and West (1994). Also note that p > 2 is suffi cient to satisfy Assumption 3

of Newey and West (1994) when the Bartlett kernel is used as suggested here.

The next condition states that the propensity score p(zt, θ) is the correct parametric model for the

conditional expectation of Dt and lists a number of additional regularity conditions.

Condition 3 Let ψ0 ∈ Ψ where Ψ ⊂ Rkψ is a compact set and kψ <∞. Assume that E [1 {Dt = dj} |zt] =

pjt (zt, ψ0) and for all ψ 6= ψ0 it follows E [1 {Dt = dj} |zt] 6= pj(zt|ψ). Assume that pj(zt|ψ) is differen-

tiable a.s. for ψ ∈ {ψ ∈ Θ| ‖ψ − ψ0‖ ≤ δ} := Nδ(ψ0) for some δ > 0. Let N(ψ0) be a compact subset of

the union of all neighborhoods Nδ (ψ0) where ∂p
j(zt|ψ)/∂ψ, ∂2pj(zt|ψ)/∂ψi∂ψj exists and assume that

N(ψ0) is not empty. Assume that for all j ∈ {0, ..., J} and some δ0 > 0 and any δ > 0 ψ,ψ′ with
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∥∥ψ − ψ′∥∥ < δ ≤ δ0 there exists a random variable Bt which is a measurable function of Dt, zt and Yt,L

and a constant α > 0 such that for all i

∥∥ht,j (ψ)− ht,j
(
ψ′
)∥∥ ≤ Bt ∥∥ψ − ψ′∥∥α ,

and

∥∥∂ht,j (ψ) /∂ψ − ∂ht,j
(
ψ′
)
/∂ψ

∥∥ ≤ Bt
∥∥ψ − ψ′∥∥α (20)∥∥zt (δt,j (ψ)− δt,j

(
ψ′
))∥∥ ≤ Bt

∥∥ψ − ψ′∥∥α (21)

and ψ,ψ′ ∈ intN (ψ0). Let ht,j,i (ψ) be the i-th element of ht,j (ψ) . E [|Bt|p] <∞, for all i E [|ht,j,i (ψ0)|p] <
∞, E [|∂ht,j,i (ψ0) /∂ψ|p] <∞.

Condition 4 Assume that ψ̂−ψ0 = op (1) , T 1/2
(
ψ̂ − ψ0

)
= Ω−1ψ T−1/2

∑T
t=1 l(Dt, zt, ψ0) + op (1) . Let p

be given as in Condition 2 and assume that E [‖l(Dt, zt, ψ0)‖p] <∞.

Condition 5 Assume that Ωψ is positive definite for all ψ in some neighborhood N ⊂ Ψ such that

ψ0 ∈ intN and 0 < ‖Ωψ‖ <∞ for all ψ ∈ N. Assume that Ωθ defined in (18)is positive definite.

Conditions 2, 3 and 4 imply that Assumption 2 of Newey and West is satisfied. The results of their

paper thus apply to the estimates of Ωθ proposed here.

Regularity conditions for the specification tests are given below.

Condition 6 Let N(ψ0) be the set defined in Condition 3. For some random variable Bt which is a

measurable function of Dt, zt and wt and for which E [Bp
t ] < ∞, it holds that for some ε > 0 and ψ,ψ′

with
∥∥ψ − ψ′∥∥ < δ ≤ δ0 and ψ,ψ′ ∈ intN (ψ0) that

i) E
[
‖ϑt‖p+ε

]
<∞, E

[∥∥∂p(zt, ψ0)/∂ψ′ ⊗ wt∥∥p+ε] <∞, E [‖l(Dt, zt, ψ0)‖p+ε
]
<∞

ii)
∥∥l(Dt, zt, ψ)− l(Dt, zt, ψ

′)
∥∥ ≤ Bt ∥∥ψ − ψ′∥∥α ,

iii)
∥∥(∂p(zt, ψ)/∂ψ′ − ∂p(zt, ψ′)/∂ψ′

)
⊗ wt

∥∥ ≤ Bt ∥∥ψ − ψ′∥∥α .
B.5 Proofs

Theorem 1 Let θ̂ be defined in (9) and assume that Conditions 1, 2, 3, 4, and 5 hold. Then,

T 1/2
(
θ̂ − θ

)
d→ N (0,Ωθ)

where Ωθ is defined in (18).

Proof. Let Z = (z1, ..., zT )′ , YL = (Y1,L, ..., YT,L)′ and δj
(
ψ̂
)

=
(
δ1,j

(
ψ̂
)
, ..., δT,j

(
ψ̂
))′

. Define the

population projection πy as πy = arg minbE
[
‖Yt,L − bzt‖2

]
and sample analog π̂y = Y ′LZ (Z ′Z)−1 . Recall

that ĥt = Yt,L

(
δt,j

(
ψ̂
)
− δ̂t,j

)
where δ̂t,j = z′t(Z

′Z)−1Z ′δj
(
ψ̂
)
and let ht (ψ0) = (Yt,L − πyzt) δt,j (ψ0) .
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By the Mean Value Theorem we obtain

T 1/2
(
θ̂ − θ0

)
= T−1/2

∑T

t=1
ĥt − θ0 (22)

= T−1/2
∑T

t=1
(Yt,L − πyzt) δt,j

(
ψ̂
)
− θ0 + (πy − π̂y)T−1/2

∑T

t=1
ztδt,j

(
ψ̂
)

= T−1/2
∑T

t=1
ht (ψ0)− θ0 + T−1

∑T

t=1
∂ht (ψ0) /∂ψ

′ (T/τ)1/2 T 1/2
(
ψ̂ − ψ0

)
+T−1

∑T

t=1

(
∂ht

(
ψ̌
)
/∂ψ′ − ∂ht (ψ0) /∂ψ

′)T 1/2 (ψ̂ − ψ0)
+ (πy − π̂y)T−1/2

∑T

t=1
ztδt,j

(
ψ̂
)

where
∥∥ψ̌ − ψ0∥∥ ≤ ∥∥∥ψ̂ − ψ0∥∥∥ and ∂ht (ψ) /∂ψ′ = [∂ht,1 (ψ0) /∂ψ

′, ..., ∂ht,J (ψ0) /∂ψ
′] with

∂ht,j (ψ) /∂ψ = Yt,L

(
− Dt,j

pj (zt, ψ)2
∂pj (zt, ψ)

∂ψ
+

Dt,0

p0 (zt, ψ)2
∂p0 (zt, ψ)

∂ψ

)
. (23)

By (20) it follows that for δ0 given in Condition 3 and any δ such that δ0 > δ > 0,

P

(∥∥∥∥T−1∑T

t=1

(
∂ht,j

(
ψ̌
)
/∂ψ′ − ∂ht,j (ψ0) /∂ψ

′)∥∥∥∥ > η

)
(24)

≤ P

(
sup

‖ψ−ψ0‖≤δ

∥∥∥∥T−1∑T

t=1

(
∂ht,j (ψ) /∂ψ′ − ∂ht,j (ψ0) /∂ψ

′)∥∥∥∥ > η,
∥∥ψ̌ − ψ0∥∥ < δ

)
+ P

(∥∥ψ̌ − ψ0∥∥ ≥ δ)
=

E [|Bt|p] δpα

ηp
+ P

(∥∥ψ̌ − ψ0∥∥ ≥ δ)
where both terms can be made arbitrarily small by choosing η =

√
δ and δ > 0 for T large enough by

using Conditions 4 and 3. By McLeish (1975b, Theorem 2.10) T−1
∑T

t=1 ∂ht,j (ψ0) /∂ψ
′ p→ ḣ(ψ0) where

we defined E
[
∂ht,j (ψ0) /∂ψ

′] = ḣj(ψ0). This implies that the third term in (22) is op (1) .

For the last term in (22) note that (πy − π̂y) = Op
(
T−1/2

)
by McLeish (1975b, Theorem 2.10),

Corollary 3.9 of McLeish (1975a) and standard arguments for linear regressions. Now consider

(πy − π̂y)T−1/2
∑T

t=1
ztδt,j

(
ψ̂
)

(25)

= T 1/2 (πy − π̂y)T−1
∑T

t=1
ztδt,j (ψ0)

+T 1/2 (πy − π̂y)T−1
∑T

t=1
zt

(
δt,j

(
ψ̂
)
− δt,j (ψ0)

)
.

The first term in (25) is op (1) because from E [ztδt,j (ψ0)] = 0 it follows that

T−1
T∑
t=1

ztδt,j (ψ0) = op (1) . (26)
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For the second term in (25) use Condition 3 to show that

T−1
∑T

t=1
zt

(
δt,j (ψ0)− δt,j

(
ψ̂
))

= op (1) (27)

by arguments similar to those in (24). Then, (26) and (27) establish that (25) is op (1)

It then follows from (25) and (27) that (22) is

T−1/2
∑T

t=1
ht,j (ψ0)− θ0

+T−1
∑T

t=1
∂ht,j (ψ0) /∂ψ

′T 1/2
(
ψ̂ − ψ0

)
+ op (1)

= T−1/2
∑T

t=1

[
ht,j (ψ0)− θ0 + ḣj(ψ0)Ω

−1
ψ l(Dt, zt, ψ0)

]
+ op (1) .

Let

vt (ψ0) = ht (ψ0)− θ + ḣj(ψ0)Ω
−1
ψ l(Dt, zt, ψ0)

and vt,j (ψ0) is the j-th element of vt (ψ0) . Note that vt,j (ψ0) is β-mixing with E [vt,j (ψ0)] = 0. Then it

follows that

T−1E
[∑τ

t=1

∑τ
t=s vt (ψ0) vs (ψ0)

′] (28)

=

T−1∑
j=−T+1

(
1− |j|

T

)
E
[
v1 (ψ0) v1−j (ψ0)

′]→ Ωθ (29)

by stationarity of vt (ψ0) and the Toeplitz lemma. Fix λ ∈ Rk with ‖λ‖ = 1 and let ST = T−1/2
∑T

t=1 λ
′vt.

Then, E
[
S2T
]
→ λ′Ωθλ > 0 by (28) and Condition 5. In addition

E
[∣∣λ′vt∣∣p] ≤ E [(∑k

l=1 |λl| |ṽt,l|
)p]
≤
(∑k

l=1 |λl|
p
p−1

)p−1
E
[∑k

l=1 |ṽt,l|
p
]

by Hölder’s inequality (Magnus and Neudecker, 1988, p.220) and where ṽt,l is the l-th element of vt. Since

p/p − 1 ≤ 2 and ‖λ‖ = 1 it follows that
∑k

l=1 |λl|
p
p−1 < 1. Denote by ht,j (ψ0) and θ(j) the j-th element

of ht (ψ0) and θ respectively and by ḣj(ψ0) the j-th row of ḣ(ψ0). Then,

E [|ṽt,j |p] ≤ E
[(
|ht,j (ψ0)|+

∣∣θ(j)∣∣+
∥∥∥ḣj(ψ0)∥∥∥∥∥∥Ω−1ψ

∥∥∥ ‖l(Dt, zt, ψ0)‖
)p]

≤ 3p−1
(
E [|ht,j (ψ0)|p] + |θj |p +

∣∣∣ḣj(ψ0)∣∣∣p ∥∥∥Ω−1ψ

∥∥∥p ‖l(Dt, zt, ψ0)‖p
)

again by Hölder’s inequality. It follows that
∣∣θ(j)∣∣p ≤ E [|ht,j (ψ0)|p] by Jensen’s inequality and

∥∥∥Ω−1ψ

∥∥∥p <
∞ by Condition 5. Similarly, E [‖l(Dt, zt, ψ0)‖p] <∞ by Condition 4 and

∣∣∣ḣj(ψ0)∣∣∣p ≤ E [|∂ht,j (ψ0) /∂ψ|p] <
∞ by Condition 3. By Condition 3 E [|ht,j (ψ0)|p] < ∞ such that E [|ṽt,j |p] < ∞. These arguments to-
gether with Condition 2 show that all the conditions of Corollary 3.9 of McLeish (1975a) are satisfied.
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Thus, ST →d N
(
0, λ′Ωθλ

)
. The result now follows from the Cramer-Wold theorem.

Theorem 2 Let α̂ be defined in (11) and assume that Conditions 1, 2, 3, 4, and 5 hold. Let θ̇ (α) =

∂θ (α) /∂α′ and assume that θ̇ (α0) ≡ A has full column rank. In addition, assume that θ0 − θ (α) = 0 if

and only if α = α0 where α0 ∈ A ⊂Rd and A is compact. Then,

T 1/2 (α̂− α0)
d→ N

(
0,
(
A′Ω−1θ A

)−1)
where Ωθ is defined in (18). For any λ ∈ Rd such that A′λ 6= 0 it follows that

T 1/2λ′ (θ (α̂)− θ (α))
d→ N

(
0, λ′A

(
A′Ω−1θ A

)−1
A′λ

)
.

Proof. Let

QT (α) =
(
T−1

∑T
t=1 ĥt − θ (α)

)′
Ω̂−1θ

(
T−1

∑T
t=1 ĥt − θ (α)

)
.

By the arguments in the proof of Theorem 1 it follows that T−1
∑T

t=1 ĥt →p θ. Thus, uniformly in α ∈ A,

QT (α)→p Q (α) = (θ − θ (α))′Ω−1θ (θ − θ (α)) .

Because Ω−1θ is positive definite by Condition 5 and θ − θ (α) = 0 if and only if α = α0 it follows that

Q (α) ≥ 0 and Q (α) = 0 if and only if α = α0. By standard arguments it follows that α̂ →p α0. We use

a mean value expansion of the first order condition(
∂θ (α̂)

∂α′

)′
Ω̂−1θ

(
T−1

∑T
t=1 ĥt − θ (α̂)

)
= 0

such that

0 =

(
∂θ (α̂)

∂α′

)′
Ω̂−1θ
√
T
(
T−1

∑T
t=1 ĥt − θ (α0)

)
+

(
∂θ (α̂)

∂α′

)′
Ω̂−1θ

(
∂θ (α̃)

∂α′

)√
T (α̂− α0) (30)

where ‖α̃− α0‖ ≤ ‖α̂− α0‖ →p 0. Then, by the continuous mapping theorem, it follows that ∂θ (α̂) /∂α′ →p

θ̇ (α0) and ∂θ (α̃) /∂α′ →p θ̇ (α0) . By the same arguments as in the proof of Theorem 1 it follows that

T−1/2
∑T

t=1

(
ĥt − θ (α0)

)
→d N (0,Ωθ) . The result then follows directly from rearranging (30) and ap-

plying the continuous mapping theorem.

To prove the second part of the theorem use a mean value expansion around α0

T 1/2λ′ (θ (α̂)− θ (α)) = λ′∂θ (α̃) /∂α′T 1/2 (α̂− α0)→d λ
′θ̇ (α0) ξ

where ξ ∼ N
(

0,
(
A′Ω−1θ A

)−1)
. The result then follows from the continuous mapping theorem, noting

that λ′A
(
A′Ω−1θ A

)−1
A′λ is non-singular.

The following theorem establishes the limiting distribution of the test statistic in (19).

25



Theorem 3 Assume that Conditions 2, 3, 4, 5 and 6 hold. Let Vt = ϑtϑ
′
t − V where ϑt is defined in

(31). Assume that for any element Vt,ij of Vt, E [|Vt,ij |p] <∞. Then,

Tm̄′V̂ −1m̄→d χ
2
(J)

Proof. Let P (zt, ψ) = diag (p(zt, ψ)) , h(zt, ψ) =
(
diag (p(zt, ψ))− p(zt, ψ)p (zt, ψ)′

)
. Simple algebra

then shows that

(Dt − p(zt, ψ))′ h (zt, ψ)−1 ∂p (Dt|zt, ψ) /∂ψ′ = ∂` (Dt, zt, ψ) /∂ψ′ = l(Dt, zt, ψ0)
′

where ` (Dt, zt, ψ) =
∑J

j=0Dj,t log pj (zt, ψ) is the log likelihood of the multinomial distribution and

Dj,t = 1 {Dt = dj} .
Recall m̂t =

(
Dt − p(zt, ψ̂)

)
⊗ wt such that for mt,0 = m (Dt, zt, wt, ψ0) ,

m̂t = mt,0 −
(
∂p(zt, ψ̌)/∂ψ′ ⊗ wt

) (
ψ̂ − ψ0

)
with

∥∥ψ̌ − ψ0∥∥ ≤ ∥∥∥ψ̂ − ψ0∥∥∥ .Using (17) as well as Condition 4 and setting ̂̇p (ψ) = T−1
∑T

t=1 ∂p(zt, ψ)/∂ψ′⊗
wt we obtain

T−1/2
T∑
t=1

m̂t = T−1/2
T∑
t=1

mt,0 − ̂̇p(ψ̂)Ω−1ψ T−1/2
T∑
t=1

l(Dt, zt, ψ0) + op (1) .

= T−1/2
T∑
t=1

mt,0 − ṗ (ψ0) Ω−1ψ ∂p (Dt|zt, ψ0)′ /∂ψh (zt, ψ0)
−1 (Dt − p(zt, ψ0)) + op (1)

where the last line follows from E
[
∂p(zt, ψ0)/∂ψ

′ ⊗ wt
]

= ṗ (ψ0) and ̂̇p(ψ̂)− ṗ (ψ0) = op (1) . Since

ϑt = mt,0 − ṗ (ψ0) Ω−1ψ ∂p (Dt|zt, ψ)′ /∂ψh (zt, ψ)−1 (Dt − p(zt, ψ0)) (31)

is a martingale difference sequence we consider

E
[
mt,0m

′
t,0

]
= E

[(
P (zt, ψ0)− p (zt, ψ0) p (zt, ψ0)

′)⊗ wtw′t] = Γ,

Ωψ = E
[
∂p (Dt|zt, ψ0)′ /∂ψh (zt, ψ0)

−1 ∂p (Dt|zt, ψ0) /∂ψ′
]

and

E
[
mt,0 (Dt − p(zt, ψ0))′ h (zt, ψ0)

−1 ∂p (Dt|zt, ψ0) /∂ψ′
]

= E
[
∂p(zt, ψ0)/∂ψ

′ ⊗ wt
]

= ṗ (ψ0) .
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By Corollary 3.9 of McLeish (1975a) it follows that

T−1/2
T∑
t=1

m̂t = T−1/2
T∑
t=1

ϑt + op (1)→d N (0, V ) (32)

where V = Γ− ṗ (ψ0) Ω−1ψ ṗ (ψ0)
′ . A detailed verification of the conditions is omitted but follows the same

line of argument as given in the proof of Theorem 1 above. To estimate V, define

ϑ̂t = m̂t − ̂̇p(ψ̂) Ω̂−1ψ l(Dt, zt, ψ̂)

with

Ω̂ψ = T−1
T∑
t=1

l(Dt, zt, ψ̂)l(Dt, zt, ψ̂)′.

Let

V̂ = T−1
∑T

t=1 ϑ̂tϑ̂
′
t.

By arguments similar to the proof of Theorem 1 it follows that

Ω̂ψ →p Ωψ (33)

and ̂̇p(ψ̂)→p ṗ (ψ0) . (34)

Next, expand

ϑ̂t = mt,0 −
(
∂p(zt, ψ̌)/∂ψ′ ⊗ wt

) (
ψ̂ − ψ0

)
−
(̂̇p(ψ̂) Ω̂−1ψ − ṗ (ψ0) Ω−1ψ

)
l(Dt, zt, ψ̂)

−ṗ (ψ0) Ω−1ψ

(
l(Dt, zt, ψ̂)− l(Dt, zt, ψ0)

)
−ṗ (ψ0) Ω−1ψ l(Dt, zt, ψ0)

and recalling ϑt = mt,0 − ṗ (ψ0) Ω−1ψ l(Dt, zt, ψ0). Then,∥∥∥T−1∑T
t=1 ϑ̂tϑ̂

′
t − V

∥∥∥ ≤ ∥∥∥T−1∑T
t=1

(
ϑ̂tϑ̂t − ϑtϑ′t

)∥∥∥+
∥∥∥T−1∑T

t=1 ϑtϑ
′
t − V

∥∥∥ (35)

where the second term on the RHS of (35) is op (1) by Theorem 2.10 of McLeish (1995b). Next, consider

T−1
∑T

t=1

(
ϑ̂tϑ̂
′
t − ϑtϑ′t

)
= T−1

∑T
t=1

(
ϑ̂t − ϑt

)(
ϑ̂t − ϑt

)′
+ ϑt

(
ϑ̂t − ϑt

)′
−
(
ϑ̂t − ϑt

)
ϑ′t (36)
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where

ϑ̂t − ϑt = −
(
∂p(zt, ψ̌)/∂ψ′ ⊗ wt

) (
ψ̂ − ψ0

)
−
(̂̇p(ψ̂) Ω̂−1ψ − ṗ (ψ0) Ω−1ψ

)
l(Dt, zt, ψ̂) (37)

−ṗ (ψ0) Ω−1ψ

(
l(Dt, zt, ψ̂)− l(Dt, zt, ψ0)

)
.

Thus,

T−1
∑T

t=1 ϑt

(
ϑ̂t − ϑt

)′
= −T−1

∑T
t=1 ϑt

((
∂p(zt, ψ̌)/∂ψ′ ⊗ wt

) (
ψ̂ − ψ0

))′
(38)

−T−1
∑T

t=1 ϑt

((̂̇p(ψ̂) Ω̂−1ψ − ṗ (ψ0) Ω−1ψ

)
l(Dt, zt, ψ̂)

)′
−T−1

∑T
t=1 ϑt

(
ṗ (ψ0) Ω−1ψ

(
l(Dt, zt, ψ̂)− l(Dt, zt, ψ0)

))′
≡ R1 +R2 +R3.

For R1 note that

‖R1‖ ≤
∥∥∥T−1∑T

t=1 ϑt∂p(zt, ψ0)/∂ψ
′ ⊗ wt

∥∥∥∥∥∥ψ̂ − ψ0∥∥∥ (39)

+T−1
∑T

t=1 ‖ϑt‖ ‖wt‖
∥∥∂p(zt, ψ0)/∂ψ′ − ∂p(zt, ψ̌)/∂ψ′

∥∥∥∥∥ψ̂ − ψ0∥∥∥
where

∥∥∥ψ̂ − ψ0∥∥∥ = Op
(
T−1/2

)
and

T−1
∑T

t=1 ϑt
(
∂p(zt, ψ0)/∂ψ

′ ⊗ wt
)

= Op (1) (40)

because

E
[∥∥ϑt∂p(zt, ψ0)/∂ψ′ ⊗ wt∥∥(p+ε)/2] ≤ (E [‖ϑt‖p+ε]E [∥∥∂p(zt, ψ0)/∂ψ′ ⊗ wt∥∥p+ε])1/2 <∞

by Condition 6 and by Theorem 2.10 of McLeish (1975b).11 The second term in (39) can be bounded

with probability approaching 1 as T →∞, using Condition 6(iii), and noting that

∥∥(∂p(zt, ψ)/∂ψ′ − ∂p(zt, ψ′)/∂ψ′
)
⊗ wt

∥∥ =
∥∥(∂p(zt, ψ)/∂ψ′ − ∂p(zt, ψ′)/∂ψ′

)∥∥ ‖wt‖ ,
by

T−1
∑T

t=1 ‖ϑt‖ ‖wt‖
∥∥∂p(zt, ψ0)/∂ψ′ − ∂p(zt, ψ̌)/∂ψ′

∥∥∥∥∥ψ̂ − ψ0∥∥∥ (41)

≤
∥∥∥ψ̂ − ψ0∥∥∥1+α T−1∑T

t=1 ‖ϑt‖ |Bt|

11We use McLeish (1975), Equation (2.12) and stationarity to establish Condition (2.11) of Theorem (2.10).
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where E
[
‖ϑt‖(p+ε)/2 |Bt|(p+ε)/2

]
≤
(
E
[
‖ϑt‖p+ε

]
E
[
|Bt|p+ε

])1/2
<∞ by Condition 6. This again implies

that

T−1
∑T

t=1 ‖ϑt‖ |Bt| = Op (1) (42)

by McLeish (1975b). Now (40) and (41) imply that R1 = op (1) .

For R2 note that using Condition 6(ii), w.p.a.1 as T →∞,

‖R2‖ ≤
∥∥∥̂̇p(ψ̂) Ω̂−1ψ − ṗ (ψ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖ϑt‖ ‖l (Dt, zt, ψ0)‖

+
∥∥∥̂̇p(ψ̂) Ω̂−1ψ − ṗ (ψ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖ϑt‖

∥∥∥l (Dt, zt, ψ0)− l
(
Dt, zt, ψ̂

)∥∥∥
≤

∥∥∥̂̇p(ψ̂) Ω̂−1ψ − ṗ (ψ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖ϑt‖ ‖l(Dt, zt, ψ0‖

+
∥∥∥̂̇p(ψ̂) Ω̂−1ψ − ṗ (ψ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖ϑt‖ |Bt|

∥∥∥ψ̂ − ψ0∥∥∥α
where E

[
(‖ϑt‖ ‖l (Dt, zt, ψ0)‖)(p+ε)/2

]
<∞ as before. Then, T−1

∑T
t=1 ‖ϑt‖ ‖l (Dt, zt, ψ0)‖ = Op (1) and

(33), (34) and (42) imply that R2 = op (1) .

For R3 note that ∥∥∥∥T−1∑T
t=1 ϑt

(
ṗ (ψ0) Ω−1ψ

(
l(Dt, zt, ψ̂)− l(Dt, zt, ψ0)

))′∥∥∥∥
≤

∥∥∥ṗ (ψ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖ϑt‖

∥∥∥l(Dt, zt, ψ̂)− l(Dt, zt, ψ0)
∥∥∥∥∥∥ṗ (ψ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖ϑt‖ |Bt|

∥∥∥ψ̂ − ψ0∥∥∥
where

∥∥∥ψ̂ − ψ0∥∥∥ = op (1) by Condition 4. Then, R3 = op (1) follows from (42). The term T−1
∑T

t=1

(
ϑ̂t − ϑt

)
×(

ϑ̂t − ϑt
)′
in (36) can be analyzed in the same way as T−1

∑T
t=1 ϑt

(
ϑ̂t − ϑt

)′
but the details are omitted.

It follows that T−1
∑T

t=1

(
ϑ̂tϑ̂
′
t − ϑtϑ′t

)
= op (1) which in turn implies that

V̂ − V = op (1) . (43)

Then, for m̄ = T−1
∑T

t=1 m̂t, the statistic Tm̄′V̂ −1m̄ is asymptotically χ2J because of (32), (43) and the

continuous mapping theorem.
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July 1989 to July 2005 July 1989 to Dec 2008
OPT1 OPT2 OPF1 OPF2 OPT1 OPT2 OPF1 OPF2
(1) (2) (3) (4) (5) (6) (7) (8)

Meeting Months (s1t )
Pre-Crisis 1.08*** 1.05*** 1.18*** 1.16***

(0.25) (0.23) (0.23) (0.24)
Post-Crisis 0.86*** 0.90***

(0.28) (0.28)
Non-Meeting Months (s0t )
Pre-Crisis 0.39 0.38 0.42 0.39

(0.28) (0.29) (0.30) (0.30)
Post-Crisis -0.00 -0.10

(0.44) (0.47)
Meeting months with pre-meeting changes (s0t )
Pre-Crisis -0.11 -0.10 -0.12 -0.10

(0.22) (0.23) (0.23) (0.24)

Inflation, Lag 1 0.00 0.02 0.02 0.02 0.01 0.01
(0.06) (0.06) (0.04) (0.04) (0.04) (0.03)

Inflation, Lag 2 0.09 0.04 0.12** 0.02
(0.06) (0.05) (0.05) (0.03)

Unem. Rate, Lag 1 -0.31*** -0.19** -0.08 -0.30*** -0.17** -0.08
(0.10) (0.09) (0.07) (0.09) (0.09) (0.06)

Unem. Rate, Lag 2 -0.25*** -0.05 -0.29*** -0.04
(0.09) (0.06) (0.09) (0.06)

Target Rate -0.01*** -0.01*** -0.02*** -0.02*** -0.01*** -0.02***
(0.01) (0.00) (0.00) (0.01) (0.00) (0.00)

Last Target Change 0.11 0.13** 0.11* 0.11 0.15** 0.13**
(0.08) (0.06) (0.06) (0.09) (0.06) (0.06)

LTC×FOMC 0.21** 0.06 0.08 0.29*** 0.09 0.11
(0.10) (0.07) (0.07) (0.11) (0.07) (0.07)

FOMC -0.02 -0.05* -0.04* -0.03 -0.05* -0.04*
(0.03) (0.03) (0.03) (0.03) (0.02) (0.02)

CRISIS -0.07* -0.06* 0.03 0.03
(0.04) (0.03) (0.03) (0.03)

Log Likelihood -187.65 -150.11 -102.92 -101.38 -232.55 -185.80 -119.25 -118.18
Pseudo R2 0.01 0.15 0.37 0.38 0.00 0.15 0.43 0.43
Observations 192 233

Table 1. Ordered Probit Specifications for the expected change of the Target Rate. This table reports selected marginal
effects on the probability of a 25 bps increase in the fed funds target rate. Standard errors are shown in parenthe-
ses. ***/**/* indicates significance at the 99/95/90% confidence level. LTC=Last Target Change. For other variable
definitions see text.
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July 1989 to July 2005 July 1989 to Dec 2008
OPT1 OPT2 OPF1 OPF2 OPT1 OPT2 OPF1 OPF2
(1) (2) (3) (4) (5) (6) (7) (8)

A. Propensity Score Covariates

FFFt Combined 0.000*** 0.004*** 0.434 0.465 0.000*** 0.000*** 0.299 0.288
FFFt 0.017** 0.061* 0.461 0.479 0.005*** 0.108 0.195 0.188
FFFt squared 0.001*** 0.001*** 0.130 0.155 0.000*** 0.000*** 0.116 0.112
Effective Funds Rate 0.031** 0.114 0.256 0.262 0.019** 0.058* 0.127 0.130
Target Rate 0.014** 0.107 0.248 0.265 0.008*** 0.058* 0.145 0.149
Last Target Change 0.000*** 0.386 0.739 0.769 0.000*** 0.087* 0.620 0.631
Inflation, Lag 1 0.913 0.952 0.966 0.998 0.461 0.430 0.753 0.764
Unem. Rate Lag 1 0.220 0.673 0.790 0.697 0.661 0.974 0.957 0.808
Inflation, Lag 2 0.896 0.490 0.714 0.732 0.881 0.694 0.712 0.771
Unem. Rate Lag 2 0.003*** 0.720 0.252 0.394 0.007*** 0.930 0.647 0.845

B. Lagged Outcome Variables

Federal Funds Rate 0.000*** 0.133 0.545 0.631 0.000*** 0.031** 0.602 0.648
IP 0.193 0.439 0.848 0.896 0.175 0.398 0.817 0.819
3 Month T-Bill 0.255 0.844 0.876 0.907 0.048** 0.456 0.646 0.705
2 Year T-Bond 0.168 0.871 0.977 0.940 0.142 0.776 0.982 0.958
10 Year T-Bond 0.423 0.985 0.890 0.864 0.674 0.908 0.815 0.773

Table 2. Specification Tests. This table shows p-values for joint tests of the null hypothesis that the ordered probit
model correctly specifies the conditional probability of Dt = {−.25, 0, .25}. Moment conditions are formed for each
candidate predictor variable individually. Test statistics labeled FFF (Combined) are joint for FFF and FFF 2.
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PT PF1 PF2
(1) (2) (3)

FFFt 1.39∗∗∗ 1.93∗∗∗

(0.41) (0.60)
Inflation 0.07 -0.37∗

(0.16) (0.20)
Unemployment Rate 0.25 -0.42

(0.58) (0.54)
Log Likelihood -15.99 -10.71 -8.73
Pseudo R2 0.06 0.45 0.58
Sample Size 28 28 28

Table 3. Probit Models for Target Rate Reductions dur-
ing the 2006-2008 period. The table shows marginal ef-
fects. ***/**/* indicates significance at the 99/95/90%
confidence level
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Figure 1. Actual Changes (circles) and Predicted Changes (dots) in the Target Rate. Pre-
dictions are from the propensity score model labeled OPF2 in Table 1. The figure also shows
IP growth over the same period.
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Figure 2. Estimated Effects of Target Rate Changes on the Federal Funds Rate. These estimates
use data from August 1989 through July 2007, and the propensity score mode labeled OPF2 in
Table 1. Dashed lines indicate 90% confidence bands.

38



3 6 9 12 15 18 21 24

−1.5

−1

−0.5

0

0.5

1

1.5

0.25 Effect on 3 Month
P

er
ce

nt

3 6 9 12 15 18 21 24

−1.5

−1

−0.5

0

0.5

1

1.5

−0.25 Effect on 3 Month

P
er

ce
nt

3 6 9 12 15 18 21 24

−1.5

−1

−0.5

0

0.5

1

1.5

0.25 Effect on 2 Year

P
er

ce
nt

3 6 9 12 15 18 21 24

−1.5

−1

−0.5

0

0.5

1

1.5

−0.25 Effect on 2 Year

P
er

ce
nt

3 6 9 12 15 18 21 24

−1.5

−1

−0.5

0

0.5

1

1.5

0.25 Effect on 10 Year

P
er

ce
nt

3 6 9 12 15 18 21 24

−1.5

−1

−0.5

0

0.5

1

1.5

−0.25 Effect on 10 Year

P
er

ce
nt

Figure 3. Estimated Effects of Target Rate Changes on Bond Yields. These estimates use data
from August 1989 through July 2007, and the propensity score mode labeled OPF2 in Table 1.
Dashed lines indicate 90% confidence bands.
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Figure 4. Estimated Effects of Target Rate Changes on Macro Variables. These estimates use
data from August 1989 through July 2007, and the propensity score mode labeled OPF2 in Table
1. Dashed lines indicate 90% confidence bands.
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Figure 5. Estimated Effects of Target Rate Changes on the Federal Funds Rate Through 2010.
These estimates use data from August 1989 through December 2010, and the propensity score
model (8) labeled OPF2 in Table 1. Dashed lines indicate 90% confidence bands.
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Figure 6. Estimated Effects of Target Rate Changes on Bond Yields Through 2010. These
estimates use data from August 1989 through December 2010, and the propensity score model
(8) labeled OPF2 in Table 1. Dashed lines indicate 90% confidence bands.
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Figure 7. Estimated Effects of Target Rate Changes on Macro Variables Through 2010. These
estimates use data from August 1989 through December 2010, and the propensity score model
(8) labeled OPF2 in Table 1. Dashed lines indicate 90% confidence bands.

43



2 4 6 8 10 12

−4

−3

−2

−1

0

1

Effect on Federal Funds Rate

P
er

ce
nt

Figure 8. Estimated Effects of Target Rate Drops on the Federal Funds Rate. These estimates
use data from October 2006 through December 2009, and the propensity score model labeled
PF2 in Table 3. Dashed lines indicate 90% confidence bands.
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Figure 9. Estimated Effects of Target Rate Drops on Bond Yields in the Crisis Period.
These estimates use data from October 2006 through December 2009, and the propensity
score model labeled PF2 in Table 3. Dashed lines indicate 90% confidence bands.
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Figure 10. Estimated Effects of Target Rate Drops on Macro Variables in the Crisis Period.
These estimates use data from October 2006 through December 2009, and the propensity
score model labeled PF2 in Table 3. Dashed lines indicate 90% confidence bands.
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