
NBER WORKING PAPER SERIES

SMOLYAK METHOD FOR SOLVING DYNAMIC ECONOMIC MODELS:
LAGRANGE INTERPOLATION, ANISOTROPIC GRID AND ADAPTIVE DOMAIN

Kenneth L. Judd
Lilia Maliar

Serguei Maliar
Rafael Valero

Working Paper 19326
http://www.nber.org/papers/w19326

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2013

An earlier version of this paper circulated under the title "A Smolyak method with an adaptive grid".
We thank participants of the 2012 CFE-ERCIM conference and the Summer 2013 Computation in
CA Workshop at Stanford University for useful comments. Lilia Maliar and Serguei Maliar acknowledge
support from the Hoover Institution and Department of Economics at Stanford University, University
of Alicante, Ivie, MECD and FEDER funds under the projects SEJ-2007-62656 and ECO2012-36719.
Rafael Valero acknowledges support from MECD under the FPU program. The views expressed herein
are those of the authors and do not necessarily reflect the views of the National Bureau of Economic
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2013 by Kenneth L. Judd, Lilia Maliar, Serguei Maliar, and Rafael Valero. All rights reserved. Short
sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided
that full credit, including © notice, is given to the source.

Smolyak Method for Solving Dynamic Economic Models: Lagrange Interpolation, Anisotropic
Grid and Adaptive Domain
Kenneth L. Judd, Lilia Maliar, Serguei Maliar, and Rafael Valero
NBER Working Paper No. 19326
August 2013
JEL No. C63,C68

ABSTRACT

First, we propose a more efficient implementation of the Smolyak method for interpolation, namely,
we show how to avoid costly evaluations of repeated basis functions in the conventional Smolyak
formula. Second, we extend the Smolyak method to include anisotropic constructions; this allows
us to target higher quality of approximation in some dimensions than in others. Third, we show how
to effectively adapt the Smolyak hypercube to a solution domain of a given economic model. Finally,
we advocate the use of low-cost fixed-point iteration, instead of conventional time iteration. In the
context of one- and multi-agent growth models, we find that the proposed techniques lead to substantial
increases in accuracy and speed of a Smolyak-based projection method for solving dynamic economic
models.

Kenneth L. Judd
Hoover Institution
Stanford University
Stanford, CA 94305-6010
and NBER
judd@hoover.stanford.edu

Lilia Maliar
Office T-24 Hoover Institution
Stanford University
CA 94305-6010, USA
maliarl@stanford.edu

Serguei Maliar
Office T-24 Hoover Institution
Stanford University
CA 94305-6010, USA
maliars@stanford.edu

Rafael Valero
Department of Economics
University of Alicante Ap. Correos 99, 03080
Alicante, Spain
rafaelvalerofernandez@gmail.com

1 Introduction

In a seminal paper, a Russian mathematician Sergey Smolyak (1963) proposes a sparse-grid
method that allows to effi ciently represent, integrate and interpolate functions on multidimen-
sional hypercubes. The Smolyak method is not subject to the curse of dimensionality and can
be used to solve large-scale applications. A pioneering work of Krueger and Kubler (2004) in-
troduces the Smolyak method to economics in the context of a projection-style iterative method
for solving multi-period overlapping generation models. The Smolyak methods are also used
to solve portfolio-choice problems (Gavilan-Gonzalez and Rojas (2009)); to develop state-space
filters tractable in large-scale problems (Winschel and Krätzig (2010)); to solve models with in-
finitely lived heterogenous agents (Malin et al. (2011), Gordon (2011), Brumm and Scheidegger
(2013)); and to solve new Keynesian models (Fernández-Villaverde et al. (2012)).
While the Smolyak method enables us to study far larger problems than do tensor-product

methods, its computational expense still grows rapidly with the dimensionality of the problem.
In particular, Krueger and Kubler (2004) and Malin et al. (2011) document a high computa-
tional cost of their solution methods when the number of state variables exceeds twenty. In
the paper, we show a more effi cient implementation of the Smolyak method that reduces its
computational expense, and we propose extensions of the Smolyak method that enable us to
more effectively solve dynamic economic models.
First, the conventional Smolyak formula is ineffi cient. To interpolate a function in a given

point, it first causes the computer to create and evaluate a long list of repeated basis functions,
and it then constructs linear combinations of such functions to get rid off repetitions. In
high-dimensional problems, the number of repetitions is large and slows down computations
dramatically. We offer a way to avoid costly evaluations of the repeated basis functions: Instead
of conventional nested-set generators, we introduce disjoint-set generators. Nested sets include
one another, and as a result, their tensor products contain repeated elements but our disjoint
sets do not. This is why our implementation of the Smolyak formula does not have repetitions.1

An effi cient implementation of the Smolyak method is especially important in the context
of numerical methods for solving dynamic economic models which require us to interpolate
decision and value functions a very large number of times, e.g., in each grid point, integration
node or time period. We save on cost every time when we perform an evaluation of the Smolyak
interpolant.
To compute the interpolation coeffi cients, we use a universal Lagrange interpolation tech-

nique instead of the conventional closed-form expressions. Namely, we proceed in three steps:
(i) construct M Smolyak grid points; (ii) construct M corresponding Smolyak basis functions;
and (iii) interpolate the values of the true function at the grid points using the basis functions.
We then solve a system of M linear equations with M unknowns. The cost of solving this
system can be high but it is a fixed cost in the context of iterative methods for solving dynamic
economic models. Namely, we argue that an expensive inverse in the Lagrange inverse problem
can be precomputed up-front (as it does not change along iterations). Furthermore, to ensure
numerical stability of a solution to the Lagrange inverse problem, we use families of orthogonal
basis functions, such as a Chebyshev family.

1Our exposition was informed by our personal communication with Sergey Smolyak.

2

Second, the conventional Smolyak formula is symmetric in a sense that it has the same
number of grid points and basis functions for all variables. To increase the quality of approxi-
mation, one must equally increase the number of grid points and basis functions for all variables,
which may be costly or even infeasible in large-scale applications. In the paper, we present an
anisotropic version of the Smolyak method that allows for asymmetric treatments of variables,
namely, it enables us to separately choose the accuracy level for each dimension to increase
the quality of approximation. In economic applications, variables do not enter symmetrically:
decisions or value functions may have more curvature in some variables than in others; some
variables may have larger ranges of values than others; and finally, some variables may be more
important than the others. For example, in heterogeneous-agent economies, an agent’s decision
functions may depend more on her own capital stock than on the capital stocks of other agents
(e.g., Kollmann et al. (2011)); or we may need more grid points for accurate approximation of
endogenous than exogenous state variables (e.g., models based on Tauchen and Hussy’s (1991)
approximation of shocks). An anisotropic version of the Smolyak method allows us to take into
account a specific structure of decision or value functions to solve the economic models more
effi ciently.
Third, the Smolyak method constructs grid points within a normalized multidimensional

hypercube. In economic applications, we must in addition specify how the model’s state vari-
ables are mapped into the Smolyak hypercube. The way in which this mapping is constructed
can dramatically affect the effective size of a solution domain, and hence, the quality of ap-
proximation. In the paper, we show how to effectively adapt the Smolyak grid to a solution
domain of a given economic model. We specifically construct a parallelotope that encloses
a high-probability area of the state space of the given model, and we reduce the size of the
parallelotope to minimum by reorienting it with a principle-component transformation of state
variables. Judd et al. (2011) find that solution methods focusing on a relevant domain yield
a better fit inside such a domain than methods focusing on larger domains and facing a trade
off between the fit inside and outside the relevant domain. For the same reason, an adaptive
domain increase the accuracy of the Smolyak method.
Finally, the Smolyak method for interpolation is just one ingredient of a numerical method

for solving dynamic economic models. In particular, Krueger and Kubler (2004) and Malin et
al. (2011) complemented Smolyak interpolation with other computational techniques that are
tractable in large-scale problems, such as Chebyshev polynomials, monomial integration and
learning-style procedure for finding polynomial coeffi cients. Nonetheless, there is one technique
—time iteration —that is expensive in their version of their numerical procedure. Time iteration
is traditionally used in dynamic programming: given functional forms for future value function,
it solves for current value function using a numerical solver. In works similarly in the context of
the Euler equation methods: given functional forms for future decision functions, it solves for
current decision functions using a numerical solver. However, there is a simple derivative-free
alternative to time iteration - fixed point iteration - that can solve large systems of equtions
rapidly using only straightforward calculations. In the present paper, we replace time iteration
used in the existing version of the Smolyak method with fixed-point iteration, avoiding thus
the need of a numerical solver.
We assess the performance of the Smolyak-based projection method in the context of one-

3

and multi-agent neoclassical stochastic growth models with up to 20 state variables. Our
analysis shows that there are substantial accuracy gains from using anisotropic grid and adaptive
domain even in the simplest case with two state variables: the maximum residuals in the
Euler equations can be reduced by 5-10 times compared to those produced by the baseline
isotropic Smolyak method with the standard hypercube domain (holding the number of the
coeffi cients roughly the same). In multidimensional problems —the real interest of our analysis
— the accuracy gains from using an anisotropic grid and adaptive domain reach two orders
of magnitude in some examples. Our cost grows fairly slowly with the dimensionality of the
problem. In particular, our MATLAB code delivers a second-level Smolyak approximation to
a model with ten countries (twenty state variables) in about 45 minutes. For comparison,
the Fortran code of Malin et al. (2011), based on the conventional Smolyak method, solves
a similar model in about 10 hours. Moreover, we are able to produce a very accurate third-
level polynomial approximation to a ten-country model although such an approximation is
computationally demanding even for our effi cient implementation of the Smolyak method (our
running time increases to nearly 45 hours).
The rest of the paper is organized as follows: In Section 2, we illustrate the ineffi ciency of the

conventional Smolyak formula. In Section 3, we introduce an alternative implementation of the
Smolyak method based on disjoint-set unidimensional generators and Lagrange interpolation.
In Sections 4.2 and 5, we develop versions of the Smolyak method with anisotropic grid and
adaptive domain, respectively. In Section 6, we assess the performance of the Smolyak-based
projection method in the context of one- and multi-agent growth models. Finally, in Section 7,
we conclude.

2 Conventional Smolyak method for interpolation

In this section, we describe the conventional Smolyak method for interpolation. In Section 2.1,
we outline the idea of the Smolyak method and review the related literature. In Sections 2.2, 2.3
and 2.4, we show how to construct the Smolyak grid points, Smolyak polynomial and Smolyak
interpolating coeffi cients, respectively. Finally, in Section 2.5, we argue that the conventional
Smolyak method is ineffi cient.

2.1 Smolyak method at glance

The problem of representing and interpolating multidimensional functions commonly arises in
economics. In particular, when solving dynamic economic models, one needs to represent and
interpolate decision functions and value functions in terms of state variables. With few state
variables, one can use tensor-product rules but such rules become intractable when the number
of state variables increases. For example, if we have five grid points for one variables, a tensor
product grid for d variables has 5d grid points, which is a large number even for moderately large
d. Bellman (1961) referred to the exponential growth in complexity as a curse of dimensionality.
In a seminal work, Smolyak (1963) introduces a numerical technique for representing multi-

dimensional functions, which is tractable in problems with high dimensionality. The key idea of
the Smolyak’s (1963) analysis is that some elements produced by tensor-product rules are more

4

important for representing multidimensional functions than the others. The Smolyak method
orders all elements produced by a tensor-product rule by their potential importance for the
quality of approximation and selects a relatively small number of the most important elements.
A parameter, called a level of approximation, controls how many tensor-product elements are
included into the Smolyak grid. By increasing the level of approximation, one can add new
elements and improve the quality of approximation.2

Examples of Smolyak grids under approximation levels µ = 0, 1, 2, 3 are illustrated in
Figure 1 for the two-dimensional case. For comparison, we also show a tensor-product grid of
52 points.

Figure 1: Smolyak grids versus a tensor-product grid

In Table 1, we compare the number of points in the Smolyak grid and that in the tensor-
product grid with five grid points in each dimension. The number of points in a Smolyak grid

Table 1: Number of grid points: tensor-product grid with 5 points in each dimension versus
Smolyak grids

d Tensor-product grid Smolyak grid
with 5d points

µ = 1 µ = 2 µ = 3

1 5 3 5 9
2 25 5 13 29
10 9,765,625 21 221 1581
20 95,367,431,640,625 41 841 11561

grows polynomially with the dimensionality d, meaning that the Smolyak method is not subject
to the curse of dimensionality. In particular, for µ = 1 and µ = 2, the number of the Smolyak
grid points grows as 1 + 2d and 1 + 4d+ 4d (d− 1), i.e., linearly and quadratically, respectively.
A relatively small number of points in Smolyak grids contrasts sharply with a huge number of
points in tensor-product grids in a high-dimensional case. Because of this, Smolyak grids are
also called sparse grids.

2The level of approximation plays the same role in the Smolyak construction as the order of expansion in
the Taylor series, i.e., we include the terms up to a given order, and we neglect the remaining high-order terms.

5

To interpolate multidimensional functions off the Smolyak grid, two broad classes of inter-
polants are used in mathematical literature. One class includes piecewise local basis functions;
see, e.g., Griebel (1998) and Bungartz and Griebel (2004) for related mathematical results,
and see Brumm and Scheidegger (2013) for an economic application. Piecewise functions are
very flexible and make it possible to vary the quality of approximations over different areas of
the state space as needed. However, the resulting approximations are non-smooth and non-
differentiable and also, they have a high computational expense (this interpolation technique is
still subject to the curse of dimensionality).
The other class of Smolyak interpolants includes global polynomial functions; see, e.g.,

Delvos (1982), Wasilkowski and Wózniakowski (1999) and Barthelmann et al. (2000) for a
mathematical background. Global polynomial approximations are smooth and continuously
differentiable and also, they are relatively inexpensive. However, their flexibility and adaptivity
are limited. In economics, global polynomial approximation are used in Krueger and Kubler
(2004), Gavilan-Gonzalez and Rojas (2009), Winschel and Krätzig (2010), Gordon (2011),
Malin et al. (2011) and Fernández-Villaverde et al. (2012). In the present paper, we also
confine our attention to global polynomial approximations. Below, we show the conventional
Smolyak method for interpolation in line with Malin et al. (2011).

2.2 Construction of Smolyak grids using unidimensional nested sets

To construct a Smolyak grid, we generate unidimensional sets of grid points, construct tensor
products of unidimensional sets and select a subsets of grid points satisfying the Smolyak rule.

2.2.1 Unidimensional nested sets of points

The Smolyak construction begins with one dimension. To generate unidimensional grid points,
we use extrema of Chebyshev polynomials (also known as Chebyshev-Gauss-Lobatto points or
Clenshaw-Curtis points); see Appendix A. We do not use all consecutive extrema but those
that form a sequence S1, S2, ... satisfying two conditions:
Condition 1. A set Si, i = 1, 2, ..., has m (i) = 2i−1 + 1 points for i ≥ 2 and m (1) ≡ 1.
Condition 2. Each subsequent set contains all points of the previous set, Si ⊂ Si+1. Such

sets are called nested.3

Below, we show the first four nested sets composed of extrema of Chebyshev polynomials:
i = 1 : S1 = {0};
i = 2 : S2 = {−1, 0, 1};
i = 3 : S3 =

{
−1, −1√

2
, 0, 1√

2
, 1
}
;

i = 4 : S4 =

{
−1,

−
√
2+
√
2

2
, −1√

2
,
−
√
2−
√
2

2
, 0,

√
2−
√
2

2
, 1√

2
,

√
2+
√
2

2
, 1

}
.

3There are many other ways to construct sets of points that have a nested structure. For example, we can
use subsets of equidistant points; see Appendix A for a discussion. Gauss-Patterson points also lead to nested
sets, however, the number of points in such sets is different, namely, m (i) = 2i−1− 1; see Patterson (1968), etc.

6

2.2.2 Tensor products of unidimensional nested sets of points

Next, we construct tensor products of unidimensional sets of points. As an illustration, we
consider a two-dimensional case with i = 1, 2, 3 in each dimension.

Table 2: Tensor products of disjoint sets of unidimensional grid points for the two-dimensional
case

i2 = 1 i2 = 2 i2 = 3

Si1\Si2 0 −1, 0, 1 −1, −1√
2
, 0, 1√

2
, 1

i1 = 1 0 (0, 0) (0,−1) , (0, 0) , (0, 1) (0,−1) , (0, −1√
2
), (0, 0) , (0, 1√

2
), (0, 1)

i1 = 2
−1
0
1

(−1, 0)
(0, 0)
(1, 0)

(−1,−1) , (−1, 0) , (−1, 1)
(0,−1) , (0, 0) , (0, 1)
(1,−1) , (1, 0,) , (1, 1)

(−1,−1) , (−1, −1√
2
), (−1, 0) , (−1, 1√

2
), (−1, 1)

(0,−1) , (0, −1√
2
), (0, 0) , (0, 1√

2
), (0, 1)

(1,−1), (1, −1√
2
), (1, 0) ,

(
1, 1√

2

)
(1, 1)

i1 = 3

−1
−1√
2
0
1√
2
1

(−1, 0)(
−1√
2
, 0
)

(0, 0)(
1√
2
, 0
)

(1, 0)

.

(−1,−1) , (−1, 0) , (−1, 1)
(−1√

2
,−1), (−1√

2
, 0), (−1√

2
, 1)

(0,−1) , (0, 0) , (0, 1)
(1√

2
,−1), (1√

2
, 0), (1√

2
, 1)

(1,−1), (1, 0) , (1, 1)

(−1,−1) , (−1, −1√
2
), (−1, 0) , (−1, 1√

2
), (−1, 1)

(−1√
2
,−1), (−1√

2
, −1√

2
), (−1√

2
, 0), (−1√

2
, 1√

2
), (−1√

2
, 1)

(0,−1) , (0, −1√
2
), (0, 0) , (0, 1√

2
), (0, 1)

(1√
2
,−1), (1√

2
, −1√

2
), (1√

2
, 0), (1√

2
, −1√

2
), (1√

2
, 1)

(1,−1), (1, −1√
2
), (1, 0) ,

(
1, 1√

2

)
(1, 1)

In Table 2, i1 and i2 are indices that correspond to dimensions one and two respectively; a
column Si1 and a row Si2 (see Si1\Si2) show the sets of unidimensional elements that correspond
to dimensions one and two, respectively; (ζ`, ζn) denotes a two-dimensional grid point obtained
by combining a grid point ζ` in dimension 1 and a grid point ζn in dimension two.

2.2.3 Smolyak sparse grids

Smolyak (1963) offers a rule that tells us which tensor products must be selected from the table.
For the two-dimensional case, we must select tensor products (cells of Table 2) for which the
following condition is satisfied:

d ≤ i1 + i2 ≤ d+ µ, (1)

where µ ∈ {0, 1, 2, ...} is the approximation level, and d is the dimensionality (in our case,
d = 2). In other words, the sum of a column i1 and a raw i2, must be between d and d+ µ.
Let Hd,µ denote a Smolyak grid for a problem with dimensionality d and approximation

level µ. Let us construct Smolyak grids for µ = 0, 1, 2 and d = 2 using the Smolyak rule (1).

• If µ = 0, then 2 ≤ i1 + i2 ≤ 2. The only cell that satisfies this restriction is i1 = 1 and
i2 = 1, so that the Smolyak grid has just one grid point,

H2,0 = {(0, 0)} . (2)

7

• If µ = 1, then 2 ≤ i1 + i2 ≤ 3. The three cells that satisfy this restriction are (a) i1 = 1,
i2 = 1; (b) i1 = 1, i2 = 2; (c) i1 = 2, i2 = 1, and the corresponding five Smolyak grid
points are

H2,1 = {(0, 0) , (−1, 0) , (1, 0) , (0,−1) , (0, 1)} . (3)

• If µ = 2, then 2 ≤ i1 + i2 ≤ 4. There are six cells that satisfy this restriction: (a) i1 = 1,
i2 = 1; (b) i1 = 1, i2 = 2; (c) i1 = 2, i2 = 1; (d) i1 = 1, i2 = 3; (e) i1 = 2, i2 = 2; (f)
i1 = 3, i2 = 1, and there are thirteen Smolyak grid points,

H2,2 =
{

(−1, 1) , (0, 1) , (1, 1) , (−1, 0) , (0, 0) , (1, 0) , (−1,−1) , (0,−1) ,

(1,−1) , (
−1√

2
, 0), (

1√
2
, 0), (0,

−1√
2

), (0,
1√
2

)

}
. (4)

Smolyak grids H2,0, H2,1 and H2,2 are those that are shown in the first three subplots of
Figure 1.

2.3 Smolyak formula for interpolation using unidimensional nested
sets

The conventional technique for constructing a Smolyak polynomial function also builds on
unidimensional nested sets and mimics the construction of a Smolyak grid.

2.3.1 Smolyak polynomial

Let f̂d,µ denote a Smolyak polynomial function (interpolant) in dimension d, with approximation
level µ. The Smolyak interpolant is a linear combination of tensor-product operators p|i| whose
indices |i| satisfy a constraint |i| ≡ i1 + ...+ id and is given by

f̂d,µ (x1, ..., xd; b) =
∑

max(d,µ+1)≤|i|≤d+µ

(−1)d+µ−|i|
(

d− 1

d+ µ− |i|

)
p|i| (x1, ..., xd) , (5)

where (−1)d+µ−|i|
(

d−1
d+µ−|i|

)
is a counting coeffi cient. For each |i| satisfying max(d, µ+ 1) ≤ |i| ≤

d+ µ, a tensor-product operator p|i| (x1, ..., xd) is defined as

p|i| (x1, ..., xd) =
∑

i1+...+id=|i|

pi1,...,id (x1, ..., xd) , (6)

and pi1,...,idis is defined as

pi1,...,id (x1, ..., xd) =

m(i1)∑
`1=1

...

m(id)∑
`d=1

b`1...`dψ`1 (x1) · · ·ψ`d (xd) , (7)

where m (ij) is the number of basis functions in dimension j, with m (ij) ≡ 2ij−1 + 1 for
ij ≥ 2 and m (1) ≡ 1; ψ`j (xj) is a `jth unidimensional basis function in dimension j with
`j = 1, ...,m (ij); ψ`1 (x1) · · ·ψ`d (xd) is a d-dimensional basis function and b`1...`d are the corre-
sponding polynomial coeffi cients.

8

2.3.2 Example of Smolyak polynomial under d = 2 and µ = 1

We now illustrate the construction of Smolyak polynomial function (5) under d = 2 and µ = 1;
in Appendix B, we show the construction of such a function under d = 2 and µ = 2.
For the case of µ = 1, we have that 2 ≤ |i| ≤ 3. This is satisfied in three cases: (a)

i1 = i2 = 1; (b) i1 = 1, i2 = 2; (c) i1 = 2, i2 = 1. From (7), we obtain

(a) p1,1 =

m(1)∑
`1=1

m(1)∑
`2=1

b`1`2ψ`1(x)ψ`2(y) = b11, (8)

(b) p1,2 =

m(1)∑
`1=1

m(2)∑
`2=1

b`1`2ψ`1(x)ψ`2(y) = b11 + b12ψ2(y) + b13ψ3(y), (9)

(c) p2,1 =

m(2)∑
`1=1

m(1)∑
`2=1

b`1`2ψ`1(x)ψ`2(y) = b11 + b21ψ2(x) + b31ψ3(x), (10)

where we assume that ψ1(x) = ψ1(y) ≡ 1. Collecting the elements pi1,i2 with the same sum
i1 + i2 ≡ |i|, we obtain

p|2| ≡ p1,1, (11)

p|3| ≡ p2,1 + p1,2. (12)

Smolyak polynomial function (5) for the case of d = 2 and µ = 1 is given by

f̂ 2,1 (x, y; b) =
∑

max(d,µ+1)≤|i|≤d+µ

(−1)d+µ−|i|
(

d− 1

d+ µ− |i|

)
p|i|

=
∑

2≤|i|≤3

(−1)3−|i|
(

1

3− |i|

)
p|i| =

∑
2≤|i|≤3

(−1)3−|i|
1

(3− |i|)!p
|i|

= (−1) · p|2| + 1 · p|3|

= (−1) · p1,1 + 1 · (p2,1 + p1,2)

= −b11 + b11 + b21ψ2(x) + b31ψ3(x) + b11 + b12ψ2(y) + b13ψ3(y)

= b11 + b21ψ2(x) + b31ψ3(x) + b12ψ2(y) + b13ψ3(y). (13)

By construction, the number of basis functions in Smolyak polynomial f̂ 2,1 (x, y; b) is equal to
the number of points in Smolyak grid H2,1. The same is true for a Smolyak grid Hd,µ and
Smolyak polynomial f̂d,µ under any d ≥ 1 and µ ≥ 0.

2.4 Smolyak interpolation coeffi cients

Polynomial coeffi cients b`1...`d’s in (5) must be constructed so that Smolyak polynomial f̂
d,µ

matches the true function f in all points of Smolyak grid Hd,µ.

9

2.4.1 Closed-form expression for Smolyak interpolation coeffi cients

There is a closed-form formula for the polynomial coeffi cients in (5) if multidimensional Smolyak
grid points and basis functions are constructed using unidimensional Chebyshev polynomials
and their extrema, respectively; see Quarteroni et al. (2000) for a derivation of such formulas.
Consider a grid that has m (i1) , ...,m (id) grid points and basis functions in dimensions 1, ..., d,
respectively. Then, the corresponding coeffi cients are given by

b`1...`d =
2d

(m (i1)− 1) · · · (m (id)− 1)
· 1

c`1 · · · c`d

×
m(i1)∑
j1=1

· · ·
m(id)∑
jd=1

ψ`1
(
ζj1
)
· · ·ψ`d

(
ζjd
)
· f
(
ζj1 , ..., ζjd

)
cj1 · · · cjd

, (14)

where ζj1 , ..., ζjd are grid points in dimensions j1, ..., jd, respectively; cj = 2 for j = 1 and
j = m (id); cj = 1 for j = 2, ...,m (id) − 1. If along any dimension d, we have m (id) = 1, this
dimension is dropped from computation, i.e., m (id)− 1 is set to 1 and cjd = c1 is set to 1.

2.4.2 Example of the Smolyak coeffi cients under d = 2 and µ = 1

We must compute the coeffi cients {b11, b21, b31, b12, b13} so that polynomial function f̂ 2,1, given
by (13), matches true function f on Smolyak grid H2,1 given by (3). For µ = 1, the set
of Chebyshev polynomial basis are {ψ1 (x) , ψ2 (x) , ψ3 (x)} = {1, x, 2x2 − 1} (and we have the
same polynomial basis for y, namely, {1, y, 2y2 − 1}) and the extrema of Chebyshev polynomials
are {ζ1, ζ2, ζ3} = {0,−1, 1}.
For b21, formula (14) implies

b21 =
22

3− 1
· 1

c2 · c1

3∑
j1=1

ψ2
(
ζj1
)
· ψ1 (ζ1) · f

(
ζj1 , ζ1

)
cj1 · 1

=
ψ2 (ζ1) · f (ζ1, ζ1)

c1
+
ψ2 (ζ2) · f (ζ2, ζ1)

c2
+
ψ2 (ζ3) · f (ζ3, ζ1)

c3

=
−1 · f (−1, 0)

2
+

1 · f (1, 0)

2
;

and similarly, for b12, we get

b12 = −f (0,−1)

2
+
f (0, 1)

2
.

Coeffi cient b31 is given by

b31 =
2

3− 1
· 1

c3 · c1

3∑
j1=1

ψ3
(
ζj1
)
· ψ1 (ζ1) · f

(
ζj1 , ζ1

)
cj1

=
1

2

[
1 · f (−1, 0)

2
− f(0, 0) +

1 · f (1, 0)

2

]
= −f (0, 0)

2
+
f (−1, 0) + f (1, 0)

4
,

10

and b13 is obtained similarly

b13 = −f (0, 0)

2
+
f (0,−1) + f (0, 1)

4
.

Formula (14) does not apply to a constant term b11. To find b11, observe that (13) implies

f̂ 2,1 (0, 0; b) =

b11 +
f (0, 0)

2
− f (−1, 0) + f (1, 0)

4
+
f (0, 0)

2
− f (0,−1) + f (0, 1)

4
.

Since under interpolation, we must have f̂ 2,1 (0, 0; b) = f (0, 0), the last formula yields

b11 =
f (−1, 0) + f (1, 0) + f (0,−1) + f (0, 1)

4
.

Note that to compute the coeffi cients, we need to evaluate function f in five Smolyak grid
points of H2,1.

2.5 Shortcomings of the conventional Smolyak method

The conventional Smolyak method using nested sets is ineffi cient. First, it creates a list of
tensor products with many repeated elements and then, it eliminates the repetitions. In high-
dimensional applications, the number of repetitions is large and increases with both µ and d,
which leads to a considerable increase in computational expense.
Repetitions of grid points can be appreciated by looking at Table 2. For example, when

constructingH2,1, we list a grid point (0, 0) in three different cells, and hence, we must eliminate
two grid points out of seven; when constructing H2,2, we must eliminate twelve repeated points
out of twenty five points, etc. However, the repeated grid points are not a critical issue for the
computational expense. Grid points must be constructed just once, and it is not so important
if they are constructed effi ciently or not. It is a one-time fixed cost.
Unfortunately, the Smolyak formula (5) involves the same kind of repetitions, and it is not

a fixed cost. For example, f̂ 2,1, given by (13), lists seven basis functions {1}, {1, ψ2 (x) , ψ3 (x)}
and {1, ψ2 (y) , ψ3 (y)} in (8)—(10), respectively, and eliminates two repeated functions {1} by
assigning a weight (−1) to p|2|; furthermore, f̂ 2,2, derived in Appendix B, creates a list of twenty
five basis functions and removes twelve repeated basis function by assigning appropriate weights,
etc. We suffer from repetitions every time we evaluate a Smolyak polynomial function. This is
an especially important issue in the context of numerical methods for solving dynamic economic
models, since we must interpolate decision and value functions in a very large number of points,
e.g., grid points, integration nodes and time periods. Moreover, we must repeat interpolation
each time when the decision and value functions change in the iterative cycle. The overall cost
of repetitions in the Smolyak formula can be very large.

11

3 Effi cient implementation of the Smolyak method for
interpolation

We have argued that Smolyak (1963) sparse-grid structure is an effi cient choice for high-
dimensional interpolation. However, the existing implementation of the Smolyak method does
not arrive to this structure directly. Instead, it produces such a structure using a linear com-
binations of sets with repeated elements, which is ineffi cient and expensive. In this section, we
propose a more effi cient implementation of the Smolyak method that avoids costly repetitions
of elements and arrives to the Smolyak structure directly. Our key novelty is to replace the con-
ventional nested-set generators with equivalent disjoint-set generators. We use the disjoint-set
generators not only for constructing the Smolyak grids but also for constructing the Smolyak
basis functions; as a result, we do not make use of the conventional interpolation formula of
type (7). Furthermore, to identify the interpolating coeffi cients, we use a canonical Lagrange
interpolation; thus, we also do not make use of formula (14) for the coeffi cient. We find it
easiest to present our implementation of the Smolyak method starting from a description of the
Lagrange interpolation framework.

3.1 Multidimensional Lagrange interpolation

We consider the following interpolation problem. Let f : [−1, 1]d → R be a smooth function
defined on a normalized d-dimensional hypercube, and let f̂ (·; b) be a polynomial function of
the form

f̂ (x; b) =
M∑
n=1

bnΨn (x) , (15)

where Ψn : [−1, 1]d → R, n = 1, ...,M , are d-dimensional basis functions, and b ≡ (b1, ..., bM) is
a coeffi cient vector.
We construct a set of M grid points {x1, ..., xM} in [−1, 1]d, and we compute b so that the

true function, f , and its approximation, f̂ (·; b) coincide in all grid points: f (x1)
· · ·

f (xM)

 =

 f̂ (x1; b)
· · ·

f̂ (xM ; b)

 =

 Ψ1 (x1) · · · ΨM (x1)

· · · . . . · · ·
Ψ1 (xM) · · · ΨM (xM)

 ·
 b1
· · ·
bM

 . (16)

Approximation f̂ (·; b) is used to interpolate (infer, reconstruct) f in any point x ∈ [−1, 1]d.
To implement the above interpolation method, we must perform three steps:
(i) Choose M grid points {x1, ..., xM}.
(ii) Choose M basis functions for forming f̂ (x; b).
(iii) Compute b that makes f and f̂ (·; b) coincide in all grid points.
Lagrange interpolation allows for many different choices of grid points and basis functions.

We will use grid points and basis functions produced by the Smolyak method. In Section 3.2,
we construct the Smolyak grid points; in Section 3.3, we produce the Smolyak basis functions;

12

in Section 3.4, we identify the interpolation coeffi cients; in Section 3.5, we compare our imple-
mentation of the Smolyak method with the conventional implementation described in Section
2; and finally, in Section 3.6, we show an effi cient formula for Smolyak interpolation.

3.2 Construction of Smolyak grids using unidimensional disjoint sets

To construct a Smolyak grid, we proceed as in the conventional Smolyak method, namely, we
produce sets of unidimensional grid points, compute tensor products of such sets and select an
appropriate subsets of tensor-product elements for constructing a multidimensional grid. The
difference is that we operate with unidimensional disjoint sets instead of unidimensional nested
sets. This allows us to avoid repetitions of grid points.

3.2.1 Unidimensional disjoint sets of grid points

Let us define a sequence of disjoint sets A1, A2, ... using the sequence of nested sets S1, S2, ... of
Section 2.2.1 such that A1 = S1 and Ai = Si\Si−1 for i ≥ 2:
i = 1 : A1 = {0};
i = 2 : A2 = {−1, 1};
i = 3 : A3 =

{
−1√
2
, 1√

2

}
;

i = 4 : A4 =

{
−
√
2+
√
2

2
,
−
√
2−
√
2

2
,

√
2−
√
2

2
,

√
2+
√
2

2

}
.

By definition, Ai is a set of points in Si but not in Si−1. The constructed sets are disjoint,
Ai∩Aj = {∅} for any i 6= j and their unions satisfy A1∪ ...∪Ai = Si. The number of elements
in Ai is m (i)−m (i− 1) = 2i−2 points for i ≥ 3, and the number of elements in A1 and A2 is
1 and 2, respectively.

3.2.2 Tensor products of unidimensional disjoint sets of points

Next, we construct tensor products of disjoint sets of unidimensional grid points. Again, we
consider the two-dimensional case, with i = 1, 2, 3 in each dimension.
In Table 3, indices i1 and i2 are indices that correspond to dimensions one and two, respec-

tively; a column Ai1 and a row Ai2 (see Ai1\Ai2) show the sets of unidimensional elements that
correspond to dimensions one and two, respectively; (ζ`, ζn) denotes a two-dimensional grid
point obtained by combining a grid point ζ` in dimension 1 and a grid point ζn in dimension
two. Thus, the table shows incremental grid points, and we can easily see which grid points are
added when we increase the approximation level.

3.2.3 Smolyak sparse grids

We use the same Smolyak rule (1) for constructing multidimensional grid points. That is, we
select elements that belong to the cells in Table 3 for which the sum of indices of a column and
a row, i1 + i2, is between d and d + µ. This leads to the same Smolyak grids H2,0, H2,1 and
H2,2 as shown in (2), (3), and (4), respectively. However, in our case, no grid point is repeated

13

Table 3: Tensor products of disjoint sets of unidimensional grid points for the two-dimensional
case

i2 = 1 i2 = 2 i2 = 3

Ai1\Ai2 0 −1, 1 −1√
2
, 1√

2

i1 = 1 0 (0, 0) (0,−1) , (0, 1)
(
0, −1√

2

)
,
(
0, 1√

2

)

i1 = 2
−1
1

(−1, 0)
(1, 0)

(−1,−1) , (−1, 1)
(1,−1) , (1, 1)

(
−1, −1√

2

)
,
(
−1, 1√

2

)(
1, −1√

2

)
,
(
1, 1√

2

)

i1 = 3

−1√
2
1√
2

(
−1√
2
, 0
)(

1√
2
, 0
) (

−1√
2
,−1

)
,
(
−1√
2
, 1
)(

1√
2
,−1

)
,
(

1√
2
, 1
) (

−1√
2
, −1√

2

)
,
(
−1√
2
, 1√

2

)(
1√
2
, −1√

2

)
,
(

1√
2
, 1√

2

)

in Table 3. Furthermore, note that the multidimensional grids H2,0, H2,1 and H2,2 are nested
H2,0 ⊂ H2,1 ⊂ H2,2 even though their unidimensional generators are disjoint (not nested).

3.3 Construction of Smolyak polynomials using unidimensional dis-
joint sets

Our construction of Smolyak polynomials parallels our construction of Smolyak grids using uni-
dimensional disjoint sets. To be specific, we produce disjoint sets of unidimensional basis func-
tions, compute tensor products of such sets and select an appropriate subset of tensor-product
elements for constructing a multidimensional polynomial function. Again, using disjoint-set
generators instead of nested-set generators allows us to avoid repetitions of basis functions.

3.3.1 Unidimensional disjoint sets of basis functions

We first construct disjoint sets A1, ..., Ai, ... that contain unidimensional basis functions:
i = 1 : A1 = {1};
i = 2 : A2 = {ψ2 (x) , ψ3 (x)};
i = 3 : A3 = {ψ4 (x) , ψ5 (x)}.
i = 4 : A3 = {ψ6 (x) , ψ7 (x) , ψ8 (x) , ψ9 (x)}.

3.3.2 Tensor products of unidimensional disjoint sets of basis functions

We next construct the two-dimensional basis functions using tensor products of unidimensional
basis functions.
By construction, all elements in Table 4 appear just once and therefore, are non-repeated.

Note that Table 4 looks exactly like Table 3.

14

Table 4: Tensor products of disjoint sets of Chebyshev polynomial basis for the two-dimensional
case

i2 = 1 i2 = 2 i2 = 3

Ai1\Ai2 1 ψ2 (y) , ψ3 (y) ψ4 (y) , ψ5 (y)

i1 = 1 1 1 ψ2 (y) , ψ3 (y) ψ4 (y) , ψ5 (y)

i1 = 2
ψ2 (x)
ψ3 (x)

ψ2 (x)
ψ3 (x)

ψ2 (x)ψ2 (y) , ψ2 (x)ψ3 (y)
ψ3 (x)ψ2 (y) , ψ3 (x)ψ3 (y)

ψ2 (x)ψ4 (y) , ψ2 (x)ψ5 (y)
ψ3 (x)ψ4 (y) , ψ3 (x)ψ5 (y)

i1 = 3
ψ4 (x)
ψ5 (x)

ψ4 (x)
ψ5 (x)

ψ4 (x)ψ2 (y) , ψ4 (x)ψ3 (y)
ψ5 (x)ψ2 (y) , ψ5 (x)ψ3 (y)

ψ4 (x)ψ4 (y) , ψ4 (x)ψ5 (y)
ψ5 (x)ψ4 (y) , ψ5 (x)ψ5 (y)

3.3.3 Smolyak polynomial basis functions

We apply the same Smolyak rule (1) to produce a list of basis function as we used for producing
grid points. Let Pd,µ denote a Smolyak basis function with dimensionality d and approximation
level µ.

• If µ = 0, then 2 ≤ i1 + i2 ≤ 2. The only cell that satisfies this restriction is i1 = 1 and
i2 = 1, so that the set of Smolyak basis functions has just one element

P2,0 = {1} . (17)

• If µ = 1, then 2 ≤ i1 + i2 ≤ 3. The three cells that satisfy this restriction are (a) i1 = 1,
i2 = 1; (b) i1 = 1, i2 = 2; (c) i1 = 2, i2 = 1, and the corresponding five Smolyak basis
functions are

P2,1 = {1, ψ2 (x) , ψ3 (x) , ψ2 (y) , ψ3 (y)} . (18)

• If µ = 2, then 2 ≤ i1 + i2 ≤ 4. There are six cells that satisfy this restriction: (a) i1 = 1,
i2 = 1; (b) i1 = 1, i2 = 2; (c) i1 = 2, i2 = 1; (d) i1 = 1, i2 = 3; (e) i1 = 2, i2 = 2; (f)
i1 = 3, i2 = 1, and there are thirteen Smolyak basis functions

P2,2 = {1, ψ2 (x) , ψ3 (x) , ψ2 (y) , ψ3 (y) , ψ4 (x) , ψ5 (x) , ψ4 (y) , ψ5 (y)

ψ2 (x)ψ2 (y) , ψ2 (x)ψ3 (y) , ψ3 (x)ψ2 (y) , ψ3 (x)ψ3 (y)} . (19)

The sets of Smolyak basis functions P2,0, P2,1 and P2,2 defined in (17), (18), and (19)
correspond to grids H2,0, H2,1 and H2,2 defined in (2), (3), and (4), respectively. To form
a Smolyak polynomial function under our construction, one just need to use the elements
satisfying condition (1) since no element is repeated in Table 4 by construction.

15

3.4 Construction of Smolyak coeffi cients using Lagrange interpola-
tion

Recall that b`1...`d’s in (5) must be constructed so that the Smolyak polynomial f̂
d,µ matches the

true function f on the Smolyak grid Hd,µ. We construct the Smolyak interpolating coeffi cients
solving the inverse problem (16) numerically.

3.4.1 Solution to the inverse problem

Provided that the matrix of basis functions in the right side of (16) has full rank, we obtain a
system of M linear equations with M unknowns that admits a unique solution for b : b1

· · ·
bM

 =

 Ψ1 (x1) · · · ΨM (x1)

· · · . . . · · ·
Ψ1 (xM) · · · ΨM (xM)


−1  f (x1)

· · ·
f (xM)

 . (20)

By construction, the approximating polynomial f̂ coincides with the true function f in all grid
points, i.e., f̂ (xn; b) = f (xn) for all xn ∈ {x1, ..., xM}.

3.4.2 Example of interpolation coeffi cients under d = 2 and µ = 1 revisited

Let us now construct the Smolyak polynomial coeffi cients under d = 2 and µ = 1 by solving the
inverse problem as shown in (20). We again use unidimensional Chebyshev polynomials and
extrema of Chebyshev polynomials. As follows from (18), the Smolyak polynomial function is
given by

f̂ (x, y; b) ≡ b11 · 1 + b21x+ b31
(
2x2 − 1

)
+ b12y + b13

(
2y2 − 1

)
, (21)

where b ≡ (b11, b21, b31, b12, b13) is a vector of five unknown coeffi cients on five basis functions. We
identify the coeffi cients such that the approximation f̂ (x, y; b)matches the true function f (x, y)
in five Smolyak grid points distinguished in (3), namely, {(0, 0) , (−1, 0) , (1, 0) , (0,−1) , (0, 1)}.
This yields a system of linear equations Bb = w, where

B ≡


1 0 −1 0 −1
1 −1 1 0 −1
1 1 1 0 −1
1 0 −1 −1 1
1 0 −1 1 1

 ; b ≡


b11
b21
b31
b12
b13

 ; w ≡


f (0, 0)
f (−1, 0)
f (1, 0)
f (0,−1)
f (0, 1)

 . (22)

The solution to this system is given by b = B−1w,
b11
b21
b31
b12
b13

 =


0 1

4
1
4

1
4

1
4

0 −1
2

1
2

0 0
−1
2

1
4

1
4

0 0
0 0 0 −1

2
1
2

−1
2

0 0 1
4

1
4




f (0, 0)
f (−1, 0)
f (1, 0)
f (0,−1)
f (0, 1)

 =


f(−1,0)+f(1,0)+f(0,−1)+f(0,1)

4
−f(−1,0)+f(1,0)

2

−f(0,0)
2

+ f(−1,0)+f(1,0)
4

−f(0,−1)+f(0,1)
2

−f(0,0)
2

+ f(0,−1)+f(0,1)
4

 (23)

As expected, coeffi cients in (23) coincide with those produced by conventional formula (14).

16

3.5 Comparison to the conventional Smolyak method

We compare our implementation of the Smolyak method with the conventional implementation
described in Section 2. First, we quantify the reduction in cost of the Smolyak interpolant
evaluation that we achieve by avoiding the repetitions and then, we compare the Lagrange
interpolation method with explicit formulas for the interpolating coeffi cients.

3.5.1 Nested-set versus disjoint-set constructions of the Smolyak interpolant

First, consider the conventional construction of the Smolyak polynomial in (5) based on unidi-
mensional nested sets; see Section 2.3.1. By (5), the number of terms which we list to evaluate

f̂d,µ is
∑

max(d,µ+1)≤|i|≤d+µ

d∏
j=1

m (ij). Note that the counting coeffi cient (−1)d+µ−|i|
(

d−1
d+µ−|i|

)
is not

relevant for computation of the number of terms because it does not add new terms but only
counts the number of repetitions to be cancelled out.
Second, consider our alternative construction of the Smolyak polynomial function based on

unidimensional disjoint sets; see Section 3.3. The number of basis functions in Pd,µ is equal to∑
d≤|i|≤d+µ

d∏
j=1

[m (ij)−m (ij − 1)]. To assess the difference in costs between the two constructions,

we consider the ratio of the number of terms under the two constructions:

Rd,µ ≡

∑
max(d,µ+1)≤|i|≤d+µ

d∏
j=1

m (ij)

∑
d≤|i|≤d+µ

d∏
j=1

[m (ij)−m (ij − 1)]

=

∑
max(d,µ+1)≤|i|≤d+µ

d∏
j=1

m (ij)

∑
d≤|i|≤d+µ

d∏
j=1

m (ij)
d∏
j=1

(
1− m(ij−1)

m(ij)

) . (24)

In Figure 2, we represent the ratio Rd,µ for 1 ≤ d ≤ 30 and 0 ≤ µ ≤ 5.The higher is the level
of approximation, the larger are the savings due to more effi cient evaluation of the Smolyak
interpolant. In particular, under µ = 1 the conventional nested-set construction of the Smolyak
interpolant is 40 percent more expensive than our construction, while under µ = 6, it is more
than 700 percent more expensive than ours. We shall emphasize that our construction saves on
cost every time when the Smolyak interpolant is evaluated, i.e., in every grid point, integration
node or time period.
Some qualitative assessment of Rd,µ can be derived for the case when max(d, µ + 1) = d

(this is the most relevant case for high-dimensional problems in which high-order polynomial

approximations are infeasible). Consider the term
d∏
j=1

(
1− m(ij−1)

m(ij)

)
in the denominator of (24).

If ij = 1, we have 1 − m(0)
m(1)

= 1, and if ij ≥ 2, we have 1 − m(ij−1)
m(ij)

=
(

1− 2ij−2+1
2ij−1+1

)
= 2ij−2

2ij−1+1
.

Observe that 1
2
≤ 2ij−2

2ij−1+1
≤ 2

3
for ij ≥ 2, and that the limits are reached under ij → ∞ and

ij = 2, respectively. This means that for any ij ≥ 2, our disjoint-set construction reduces the
number of terms by at least a factor of 1

2
compared to the conventional nested-set construction.

17

Figure 2: The ratio of the number of basis functions under two alternative implementations of
the Smolyak method.

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

R
d,

µ

d

µ=1 µ=2 µ=3 µ=4 µ=5

3.5.2 Analytical expression for interpolation coeffi cients versus numerical Lagrange
interpolation

The Lagrange interpolation method is universal: it can be applied to any sets of grid points
and basis functions provided that the inverse problem (20) is well-defined (the matrix of basis
functions evaluated in grid points has full rank). In turn, the formula of type (14) is a special
case of Lagrange interpolation in which the solution to the inverse problem can be derived in
a closed form. The numerical implementation of Lagrange interpolation using (20) has two
potential shortcomings compared to the closed-form expression: first, it can be numerically
unstable and second, it can be expensive.
To attain numerical stability, we must use families of grid points and basis functions that

do not lead to ill-conditioned inverse problems. Chebyshev polynomials and their extrema are
one example but many other choices are possible.4

To reduce the computational expense, we use the following precomputation technique in the
context of numerical algorithm for solving dynamic economic models. We compute the inverse
of the matrix of basis functions in (20) at the initialization stage, before entering the main
iterative cycle. In this way, the expensive part of Lagrange interpolation becomes a fixed cost.
In the main iterative cycle, computing the interpolation coeffi cients requires only inexpensive
matrix multiplications, which can be easily parallelized for a further reduction in cost if needed.
This precomputation technique allows us to reconstruct the polynomial coeffi cients at a low cost
each time when decision and value functions change along iterations.5

4See Judd et al. (2011) for a discussion of numerical techniques for dealing with ill-conditioned problems.
5See Maliar et al. (2011) and Judd et al. (2011) for other precomputation techniques that reduce the

computational expense of numerical solution methods, precomputation of intertemporal choice functions and
precomputation of integrals, respectively.

18

3.6 Smolyak formula for interpolation revisited

It is relatively straightforward to write a computer code that automates the construction of the
Smolyak interpolant under our disjoint-set generators described in Section 3.3. We just have
to sum up all the basis functions that appear in the table like Table 4 since no basis function
is repeated by construction. Nonetheless, we were also able to derive a formula for Smolyak
interpolation using disjoint sets, which is parallel to the conventional formula (5) using nested
sets. We show such a formula below.

3.6.1 Smolyak polynomial: effi cient construction

The formula for constructing a Smolyak polynomial function using unidimensional disjoint sets
is as follows:

f̂d,µ (x1, ..., xd; b) =
∑

d≤|i|≤d+µ

q|i| (x1, ..., xd) ; (25)

for each |i| satisfying d ≤ |i| ≤ d+ µ, a tensor-product operator p|i| (x1, ..., xd) is defined as

q|i| (x1, ..., xd) =
∑

i1+...+id=|i|

qi1,...,id (x1, ..., xd) , (26)

and qi1,...,id (x1, ..., xd) is defined as

qi1,...,id (x1, ..., xd) =

m(i1)∑
`1=m(i1−1)+1

...

m(id)∑
`d=m(id−1)+1

b`1...`dψ`1 (x1) · · ·ψ`d (xd) , (27)

where ψ`1 (x1) , ..., ψ`d (xd) are unidimensional basis functions, in dimensions 1, ..., d, respec-
tively; ψ`1 (x1) · · ·ψ`d (xd) is a d-dimensional basis function; `d = 1, ...,m (id); b`1...`d are coeffi -
cients vectors. We use the convention that m (0) = 0 and m (1) = 1. By construction of (27),
there are no repeated terms across different qi1,...,id’s.
Formula (25) sums up all the terms in Table 4 (recall that all the sets in Table 4 are

disjoint and basis functions are never repeated by construction). The economization from our
more effi cient alternative Smolyak formula is described by (24) and is shown in Figure 2. To
compute coeffi cients b`1...`d’s, we can use either the conventional closed-form expression (14) or
a numerical solution (20) to the Lagrange interpolation problem.

3.6.2 Example of Smolyak polynomial under d = 2 and µ = 1 revisited

We now illustrate the construction of Smolyak polynomial function (25) by revisiting an example
with d = 2 and µ = 1 studied in Section 2.3.2 (in Appendix B, we also show the construction
of such a function with d = 2 and µ = 2).
For the case of µ = 1, we have i1 + i2 ≤ 3. This restriction is satisfied in three cases: (a)

19

i1 = i2 = 1; (b) i1 = 1, i2 = 2; (c) i1 = 2, i2 = 1. Thus, using (27), we obtain

(a) q1,1 =

m(1)∑
`1=m(0)+1

m(1)∑
`2=m(0)+1

b`1`2ψ`1(x)ψ`2(y) = b11, (28)

(b) q1,2 =

m(1)∑
`1=m(0)+1

m(2)∑
`2=m(1)+1

b`1`2ψ`1(x)ψ`2(y) = b12ψ2(y) + b13ψ3(y), (29)

(c) q2,1 =

m(2)∑
`1=m(1)+1

m(1)∑
`2=m(0)+1

b`1`2ψ`1(x)ψ`2(y) = b21ψ2(x) + b31ψ3(x). (30)

Collecting elements qi1,i2 with the same i1 + i2 ≡ |i|, we have

q|2| ≡ q1,1, (31)

and
q|3| ≡ q2,1 + q1,2. (32)

Smolyak polynomial function (27) for the case of µ = 1 is given by

P2,1 (x, y; b) =
∑
|i|≤d+µ

q|i| = q1,1 + q2,1 + q1,2

= b11 + b21ψ2(x) + b31ψ3(x) + b12ψ2(y) + b13ψ3(y). (33)

This formula coincides with (13). Thus, we obtain the same Smolyak polynomial function as
the one produced by the conventional Smolyak formula but we avoid forming lists of repeated
basis functions.

4 Anisotropic Smolyak method

In economic applications, variables often enter assymetically in decision functions or value
functions. For example, in a heterogeneous-agent economy studied in Kollmann et al. (2011),
the individual choices depend more on her own variables than on variables of other agents; and
the literature, based on Tauchen and Hussy’s (1991) discretizations uses many grid points for
endogenous state variables and few grid points for exogenous state variables.
However, the Smolyak method, studied in Sections 2 and 3, treats all dimensions equally in

the sense that it uses the same number of grid points and basis functions for all variables. To
increase the quality of approximation under such a method, we must equally increase the number
of grid points and basis functions in all dimensions. This may be too costly to do in large-scale
applications. An alternative is to increase the number of grid points and basis functions only
in those dimensions that are most important for the overall quality of approximation. In this
section, we show a variant of the Smolyak method that allows for a differential treatment of
variables, specifically, it enables us to separately choose accuracy levels for each dimension by
taking into account a specific structure of decision functions in a given economic model. We
refer to such a method as a Smolyak method with anisotropic grid.

20

4.1 Definition of anisotropy

The term anisotropic comes from mathematical literature and refers to functions that are
"asymmetric" in some respect, for example, have more curvature in some variables than in
others, or have a larger range in some variables than in others. Gerstner and Griebel (2003)
propose dimension-adaptive grids for numerical integration of multivariate anisotropic func-
tions; see also Bungartz and Griebel (2004) and Garcke (2011).
The above literature uses very flexible piecewise linear basis functions which allows for con-

secutive refinements of the solution in those areas in which higher accuracy is needed (though at
a high computational expense). Our method, based on a global polynomial approximation, is
less flexible, and the possibility of refinement is limited to specific dimensions. Our implemen-
tation of the anisotropic construction and the error bounds are therefore different from those
in the literature that uses piecewise basis functions.
As a starting point, consider a standard (isotropic) Smolyak grid with a degree of approxi-

mation µ as defined in Sections 2 and 3. Observe that for each dimension j = 1, ..., d, index ij
varies from 1 to µ + 1. For example, in Table 2, i1 and i2 vary from 1 to 3, and µ varies from
0 to 2, respectively (i.e., µ is equal to the maximum ij, j = 1, ..., d, minus 1).
For the anisotropic case, let us denote by µj an approximation level in dimension j. If in a

dimension j, the maximum index admitted is imaxj , i.e., ij = 1, ..., imaxj , then µj = imaxj − 1. A
Smolyak grid is called anisotropic if there is at least one dimension j such that µj 6= µk for all
k 6= j; otherwise, it is called isotropic. We denote an anisotropic Smolyak grid, Smolyak basis
functions and Smolyak interpolant as Hd,(µ1,...,µd), Pd,(µ1,...,µd) and f̂d,(µ1,...,µd), respectively.

4.2 Anisotropic Smolyak grid

Our design of an anisotropic variant of the Smolyak method parallels the design of the isotropic
Smolyak method described in Sections 3. Namely, we first produce an anisotropic Smolyak
grid, we then produce an anisotropic Smolyak polynomial function, and we finally compute
polynomial coeffi cients using Lagrange interpolation. Our anisotropic construction also builds
on disjoint-set generators, which allows us to avoid costly repetitions of elements in the Smolyak
interpolant.

4.2.1 Tensor products of unidimensional sets of points

The two-dimensional tensor products constructed from the unidimensional sets up to i = 4 and
i = 2 in the dimensions x and y, respectively are summarized in Table 5. By construction, the
table contains only non-repeated elements.

4.2.2 Smolyak sets of multidimensional elements under anisotropic construction

The Smolyak rule tells us which tensor products must be selected. For the two-dimensional
case, it is as follows: Select elements that belong to the cells in Table 5 for which the following

21

Table 5: Tensor products of unidimensional disjoint sets of grid points in the two-dimensional
case

i2 = 1 i2 = 2

Ai1\Ai2 0 −1, 1

i1 = 1 0 (0, 0) (0,−1) , (0, 1)

i1 = 2
−1
1

(−1, 0)
(1, 0)

(−1,−1) , (−1, 1)
(1,−1) , (1, 1)

i1 = 3

−1√
2
1√
2

(
−1√
2
, 0
)(

1√
2
, 0
) (

−1√
2
,−1

)
,
(
−1√
2
, 1
)(

1√
2
,−1

)
,
(

1√
2
, 1
)

i1 = 4

−
√
2+
√
2

2

−
√
2−
√
2

2√
2−
√
2

2√
2+
√
2

2

(
−
√
2+
√
2

2
, 0

)
(
−
√
2−
√
2

2
, 0

)
(√

2−
√
2

2
, 0

)
(√

2+
√
2

2
, 0

)

(
−
√
2+
√
2

2
,−1

)
,

(
−
√
2+
√
2

2
, 1

)
(
−
√
2−
√
2

2
,−1

)
,

(
−
√
2−
√
2

2
, 1

)
(√

2−
√
2

2
,−1

)
,

(√
2−
√
2

2
, 1

)
(√

2+
√
2

2
,−1

)
,

(√
2+
√
2

2
, 1

)

condition is satisfied

d ≤ i1 + i2 ≤ d+ µmax, (34)

i1 ≤ µ1 + 1, i2 ≤ µ2 + 1, (35)

where µmax ≡ max {µ1, µ2} is a maximum of the level of approximation across the two dimen-
sions, and the dimensionality is d = 2. In other words, the sum of indices of a column and a
row, i1+i2, must be between d and d+µmax subject to additional dimension-specific restrictions
i1 ≤ µ1 + 1, i2 ≤ µ2 + 1.
Let us construct examples of Smolyak anisotropic grids using the anisotropic version of the

Smolyak rule (34).

• If (µ1, µ2) = (1, 0), then µmax = 1 and the anisotropic Smolyak rule implies 2 ≤ i1+i2 ≤ 3,
i1 ≤ 2 and i2 ≤ 1. The three cells that satisfy this restriction are (a) i1 = 1, i2 = 1; (b)
i1 = 1, i2 = 2; (c) i1 = 2, i2 = 1, and the corresponding three Smolyak grid points are

H2,(1,0) = {(0, 0) , (−1, 0) , (1, 0)} . (36)

• If (µ1, µ2) = (2, 1), then µmax = 2 and 2 ≤ i1 + i2 ≤ 4, i1 ≤ 3 and i2 ≤ 2. There are five
cells that satisfy this restriction (a) i1 = 1, i2 = 1; (b) i1 = 1, i2 = 2; (c) i1 = 2, i2 = 1;
(d) i1 = 1, i2 = 3; (e) i1 = 2, i2 = 2; and there are eleven Smolyak grid points

H2,(2,1) =
{

(−1, 1) , (0, 1) , (1, 1) , (−1, 0) , (0, 0) , (1, 0) , (−1,−1) , (0,−1) ,

(1,−1) , (
−1√

2
, 0), (

1√
2
, 0)

}
. (37)

22

• If (µ1, µ2) = (3, 1), then µmax = 3 and 2 ≤ i1 + i2 ≤ 5, , i1 ≤ 4 and i2 ≤ 2. There are
seven cells in the table that satisfy this restriction, and H3,(3,1) consists of nineteen grid
points (see Table 5).

The three Smolyak anisotropic grids constructed in the above two-dimensional example are
shown in Figure 3.

Figure 3: Examples of Smolyak anisotropic grids

We do not elaborate the construction of the anisotropic Smolyak polynomial function be-
cause such a construction trivially repeats the construction of grid points. Furthermore, to find
the interpolation coeffi cients, we use the Lagrange interpolation approach described in Section
3.4, which applies to anisotropic construction without changes. Finally, we can adapt Smolyak
interpolation formula (25) to the anisotropic case by imposing restrictions on i1, ..., id.

4.3 Advantages of anisotropic Smolyak method

The anisotropic class of methods involves a trade-off: from one side, reducing a number of grid
points and basis functions, reduces the computational expense but from the other side, it also
reduces the quality of approximation. This trade-off suggests that anisotropic methods must
be used when the former effect overweighs the latter. Using anisotropic methods in practice
would require us either to have certain knowledge of function that we want to interpolate or
to do some experimentation. Namely, we can keep adding or removing grid points and basis
functions in different dimensions until the target level of accuracy is attained. Maliar et al.
(2013) provide the error bounds for the Smolyak anisotropic constructions.
Let us compare the number of elements in an isotropic Smolyak grid Hd,µ with the number

of elements in an anisotropic Smolyak grid Hd,(µ1,...,µd); we assume that µ = max {µ1, ..., µd};

23

and in both cases, we use disjoint-set construction with no elements repeated

Rd,µ =

∑
d≤|i|≤d+µ

d∏
j=1

m (ij)
(

1− m(ij−1)
m(ij)

)
∑

d≤|i|≤d+µ,{ij≤µj+1}dj=1

d∏
j=1

m (ij)
(

1− m(ij−1)
m(ij)

) .

The above ratio depends on the specific assumption about the approximation level in each
dimension (µ1, ..., µd). Let us assume that the true function is completely flat in all dimensions
except of dimension 1. To accurately approximate such a function, we can use an anisotropic
Smolyak method in which µ1 = µ in dimension 1 and µj = 0 for all other dimensions, j = 2, ..., d.
In Figure 4, we show the corresponding ratio of the number of points under isotropic and
anisotropic versions of the Smolyak method.

Figure 4: The ratio of the number of basis functions under isotropic and anisotropic versions
of the Smolyak method.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

R
d,

µ

d

µ=1 µ=2 µ=3 µ=4 µ=5

In this example, the savings are very large when d and µ are large. For example, when d = 5
and µ = 5, the number of grid points and basis functions is reduced by nearly two orders of
magnitude. This is an extreme example which shows maximum possible gains from anisotropy.
In empirically relevant examples, the gains from anisotropic constructions can vary depending
on the anisotropy of specific decision or value functions in economic models.

5 Smolyak method with adaptive domain

The Smolyak construction tells us how to represent and interpolate functions defined on a nor-
malized d-dimensional hypercube. However, the solution domain of a typical dynamic economic
model does not have the shape of a hypercube but can be a set of any shape in a d-dimensional

24

space. We now describe how to effectively adapt a multidimensional Smolyak hypercube to an
unstructured solution domain of a given economic model.

5.1 Adaptive parallelotope

The ergodic set (i.e., the support of the ergodic distribution) of a dynamic economic model
can have any shape in a d-dimensional space. It may be even an unbounded set such as Rd+.
We must first construct a d-dimensional parallelotope to enclose the relevant area of the state
space of the studied model, typically, a high-probability area of the ergodic set. We must then
match the parallelotope to a normalized hypercube [−1, 1]d used by the Smolyak method.
As an example, in Figure 5, we plot a simulation of 10,000 observations for capital and

productivity level in a representative-agent neoclassical stochastic growth model with a closed-
form solution (see Section 6.1 for a detailed description of this model).
We show two possible rectangulars in the figure that enclose a given set of simulated point:

one is a conventional rectangular in the original coordinates, and the other is a rectangular
obtained after a change of variables (both rectangulars are minimized subject to including all
simulated points).

Figure 5: Two rectangular domains enclosing a set of simulated points.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

P
ro

du
ct

iv
ity

 le
ve

l, θ
t

Capital, kt

Simulated series
Rectangular 1: original coordinates
Rectangular 2: principal components

Our example shows that the way in which the rectangular is adapted to the state space of
an economic model can matter a lot for the size of the resulting rectangular. How much the
rectangular can be reduced by changing the system of coordinates will depend on the shape of
the high-probability set. In particular, all rectangulars will have the same size when simulated
data are of a shape of a perfect sphere, however, the reduction in size can be fairly large if such
the high-probability set is inclined (as is shown in the figure). The reduction in size can be
especially large in problems with high dimensionality.

25

5.2 Smolyak grid on principal components

There are many ways to match a parallelotope into a normalized hypercube in the context
of the Smolyak method. We propose an approach that relies on a principle component (PC)
transformation and that is convenient to use in economic applications. Namely, we first use
simulation to determine the high-probability area of the model’s state space (for a suffi ciently
accurate initial guess), and we then build a parallelotope surrounding the cloud of simulated
points.
Let X ≡

(
x1, ..., xL

)
∈ RT×L be a set of simulated data, i.e., we have T observations

on L variables. Let the variables
(
x1, ..., xL

)
be normalized to zero mean and unit variance.

Consider the singular value decomposition of X, defined as X = USV >, where U ∈ RT×L and
V ∈ RL×L are orthogonal matrices, and S ∈ RL×L is a diagonal matrix with diagonal entries
s1 ≥ s2 ≥ ... ≥ sL ≥ 0, called singular values of X. Perform a linear transformation of X using
the matrix of singular vectors V as follows: Z ≡ XV , where Z =

(
z1, ..., zL

)
∈ RT×L. The

variables z1, ..., zL are called principal components of X, and are orthogonal (uncorrelated),(
z`
′)>

z` = 0 for any `′ 6= ` and
(
z`
)>
z` = s2` . The sample variance of z

` is s2`/T , and, thus, z
1

and zL have the largest and smallest sample variances, respectively.
In Figure 6, we illustrate the four steps of construction of the adaptive parallelotope using

PCs.

Figure 6: Smolyak grid on PCs

0.7 0.8 0.9 1 1.1 1.2 1.3
0.8

0.9

1

1.1

1.2

1.3

θ t

kt

Original series

­4 ­2 0 2 4
­4

­2

0

2

4

xt

PC

y t

­1 ­0.5 0 0.5 1
­1

­0.5

0

0.5

1

xt

Smolyak Grid on PC

y t

0.7 0.8 0.9 1 1.1 1.2 1.3
0.8

0.9

1

1.1

1.2

1.3

kt

Inverse PC transformation

θ t

In Panel 1, we show a set of simulated points; in Panel 2, we translate the origin in the
center of the cloud, rotate the system of coordinates, renormalize the principal components to
have a unit variance in both dimensions and surround it with a hypercube [−1, 1]2. In Panel 3,
we show 13 Smolyak points with the approximation level µ = 2 for the principal components of
the data. Finally, in Panel 4, we plot the corresponding 13 Smolyak points for the original data

26

after computing an inverse PC transformation. In Appendix D, we provide additional details
on how to construct the rectangular domains for this particular example.

5.3 Advantages of adaptive domain

The size of a parallelotope on which a function is approximated is translated into either higher
quality or lower costs of the resulting approximation. For a fixed cost of approximation (i.e., for
a given approximation level of the Smolyak method), fitting a polynomial on the relevant domain
gives us a better fit inside of such a domain than would give us an otherwise identical method
that solves a problem on a large domain and that faces a trade-off between the fit inside and
outside the relevant domain. In turn, to attain a given quality of approximation in the relevant
domain, we need a more expensive approximation characterized by a higher approximation level
if we solve the model on a larger domain than on a smaller domain. Finally, we remark that
we can combine asymmetric treatment of variables with an adaptive domain. This could be a
potentially useful extension for some applications but we do not pursue it in the present paper.

6 Smolyak method for solving dynamic economic models

The Smolyak method for interpolation is just one specific ingredient of a method for solving dy-
namic economic models. We need to complement it with other ingredients, such as a procedure
for approximation of integrals, a procedure that solves for fixed point coeffi cients, a procedure
that updates the functions along iterations, a procedure that maps the state space of a given
economic model into the Smolyak hypercube, etc. In this section, we incorporate the Smolyak
method for interpolation into a projection methods for solving dynamic economic models. We
assess the performance of the studied Smolyak-based solution method in the context of one-
and multi-agent growth models.

6.1 The representative agent model

Our first example is the standard representative agent neoclassical stochastic growth model:

max
{ct,kt+1}∞t=0

E0

∞∑
t=1

βtu(ct) (38)

s.t. ct + kt+1 = (1− δ)kt + θtf(kt), (39)

ln θt = ρ ln θt−1 + σεt, εt ∼ N (0, σ2), (40)

where ct, kt+1 ≥ 0, and k0 and θ0 are given. Here, ct and kt are consumption and capital,
respectively; β ∈ (0, 1) is the discount factor; u(ct) is the utility function, which is assumed
to be increasing and concave; δ ∈ (0, 1] is the depreciation rate of capital; f(kt, θt) is the
production function with α ∈ (0, 1) being the capital share in production; and Et is the operator
of expectation conditional on state (kt, θt). The productivity level θt in (40) follows a first-order
autoregressive process with ρ ∈ (−1, 1) and σ > 0.

27

6.2 Time iteration versus fixed-point iteration

Our implementation of the Smolyak method also differs from the one in Krueger and Kubler
(2004) and Malin et al. (2011) in the technique that we use to iterate on decision functions.
Specifically, they use time iteration that solves a system of non-linear equations using a nu-
merical solver, whereas we use derivative-free fixed-point iteration that does so using only
straightforward calculations. As an illustration, suppose we need to solve a non-linear equation
f (x) = x; then time iteration finds min

x
|f (x)− x| using a solver, while fixed-point iteration

constructs a sequence like x(i+1) = f(x(i)), i = 0, 1, ..., starting from some initial guess x(0) with
the hope that this sequence will converge to a true solution. See Wright and Willams (1984),
Miranda and Helmberger (1988), Marcet (1988) for early applications of fixed-point iteration
to economic problems. Den Haan (1990) proposed a way to implement fixed-point iteration in
models with multiple Euler equations; see also Marcet and Lorenzoni (1999) for related exam-
ples. Gaspar and Judd (1997) pointed out that fixed-point iteration is a cheap alternative to
time iteration in high-dimensional applications. Finally, Judd et al. (2010, 2011, 2012) show a
variant of fixed-point iteration, which performs particularly well in the context of the studied
models; we adopt their variant in the present paper. Below, we illustrate the difference between
time-iteration and fixed-point iteration methods using the model (38)—(40) as an example.

6.2.1 Time iteration

Time iteration solves a system of three equilibrium conditions with respect to k̂′ in each point of
the Smolyak grid. It parameterizes the capital function by Smolyak polynomial k̂′ = K (k, θ; b),
where b is the coeffi cient vector. It iterates on b by solving for current capital k̂′ given the
Smolyak interpolant for future capital K

(
k̂′, θ′; b

)
(it mimics time iteration in dynamic pro-

gramming where we solve for the current value function given the future value function):

u′ (c) = βE
[
u′
(
c′j
) (

1− δ + θ′j f
′
(
k̂′
))]

, (41)

c = (1− δ) k + θf (k)− k̂′, (42)

c′j = (1− δ) k̂′ + θ′jf
(
k̂′
)
−K

(
k̂′, θ′j; b

)
b. (43)

The system (41)-(43) must be solved with respect to k̂′ using a numerical solver. Observe

that Smolyak interpolation K
(
k̂′, θ′j; b

)
must be performed for each subiteration on k̂′ using

a numerical solver, which is expensive. Time iteration has a high cost even in a simple unidi-
mensional problem.
Time iteration becomes far more expensive in more complex settings. For example, in

the multi-agent version of the model, one needs to solve a system of N Euler equations with
respect to N unknown capital stocks. A high cost of time iteration procedure accounts for a
rapid growth of the cost of the Smolyak method of Malin et al. (2011) with the dimensionality
of the problem.

28

6.2.2 Fixed-point iteration

We also parameterize the capital function using the Smolyak polynomial k̂′ = K (k, θ; b). Before
performing any computation, we rewrite the Euler equation of the problem (38)—(40) in a way,
which is convenient for implementing a fixed-point iteration

k′ = βE

[
u′ (c′)

u′ (c)
(1− δ + θ′f ′ (k′)) k′

]
. (44)

In the true solution, k′ on both sides of (44) takes the same values and thus, cancels out. In
the fixed-point iterative process, k′ on the two sides of (44) takes different values. To proceed,
we substitute k′ = K̂ (·; b) in the right side of (44), and we get a different value in the left side
of (44); we perform iterations until the two sides coincide.6

Using parameterization (44), we represent the system of equations (41)-(43) as follows:

k′ = K (k, θ; b) and k′′j = K (k′, θ′; b) ; (45)

c = (1− δ) k + θf (k)− k′; (46)

c′ = (1− δ) k′ + θ′f (k′)− k′′; (47)

k̂′ = βE

[
u′ (c′)

u′ (c)
(1− δ + θ′f ′ (k′)) k′

]
. (48)

In each iteration, given b, we compute k′, k′′, c, c′, substitute them into (48), get k̂′ and continue
iterating until convergence is achieved.
In Appendix D, this approach is extended to a multi-agent version of the model to perform

iterations on N Euler equations. Even in the multidimensional case, our fixed-point iterative
procedure requires only trivial calculations and avoids the need of a numerical solver, unlike
the time-iteration method.
Some theoretical arguments suggest that time iteration may possess better convergence

properties than fixed-point iteration. In particular, for very simple models, it is possible to
show that time iteration has a contraction mapping property locally, which is similar to the
one observed for value function iteration; see Judd (1998, p.553) for details. However, the local
contraction mapping property is not preserved in more complicated models like the multi-agent
model studied later in the paper. It is therefore unknown which iterative scheme has better
convergence properties in general. Our simple fixed-point iteration method was reliable and
stable in all experiments if appropriate damping is used.

6.3 Algorithm

Below, we show a Smolyak-based projection algorithm for solving the model (38)—(40).

6This kind of parameterization was used by Den Haan (1990) as a technique to implement the parameterized
expectations algorithm in a model with several Euler equations.

29

Smolyak-based projection method
Initialization.
a. Choose the approximation level, µ.
b. Construct the Smolyak grid H2,µ = {(xn, yn)}n=1,...,M on [−1, 1]2.
c. Compute the Smolyak basis functions P2,µ in each grid point n.
The resulting M ×M matrix is B.

d. Fix Φ : (k, θ)→ (x, y), where (k, θ) ∈ R2+ and (x, y) ∈ [−1, 1]2.
Use Φ−1 to compute (kn, θn) that corresponds to (xn, yn) in H2,µ.

e. Choose integration nodes, εj , and weights, ωj , j = 1, ..., J .
f. Construct future productivities, θ′n,j = θρn exp (εj) for all j;
g. Choose an initial guess b(1).

Step 1. Computation of a solution for K.
a. At iteration i, for n = 1, ...,M , compute
—k′n = Bnb(i), where Bn is the nth row of B.
—
(
x′n, y

′
n,j

)
that corresponds to

(
k′n, θ

′
n,j

)
using Φ.

—Compute the Smolyak basis functions in each point
(
x′n, y

′
n,j

)
—The resulting M ×M × J matrix is B′.
—k′′n,j = B′n,jb(i), where B′n,j is the nth row of B′ in state j.
—cn = (1− δ) kn + θnf (kn)− k′n;
—c′n,j = (1− δ) k′n + θρn exp (εj) f (k′n)− k′′n,j for all j;

— k̂′n ≡ β
J∑
j=1

ωj ·
[
u′(c′n,j)
u′(cn)

[1− δ + θρn exp (εj) f
′ (k′n)] k′n

]
.

b. Find b that solves the system in Step 1a.
—Compute b̂ that solves k̂′ = Bb̂, i.e., b̂ = B−1k̂′n.
—Use damping to compute b(i+1) = (1− ξ) b(i) + ξb̂, where ξ ∈ (0, 1] .

—Check for convergence: end Step 1 if 1
Mξ

M∑
n=1

∣∣∣ (k′n)(i+1)−(k′n)(i)
(k′n)

(i)

∣∣∣ < 10−ϑ, ϑ > 0.

Iterate on Step 1 until convergence.

6.4 Relation to other solution methods in the literature

We now describe the relation between the Smolyak solution method and other numerical meth-
ods for solving dynamic economic models in the literature; see Maliar and Maliar (2013) for
a survey of numerical methods for solving large-scale dynamic economic models. First, the
baseline version of the Smolyak method is similar to conventional projection methods in that
it relies on a fixed grid, orthogonal polynomials and deterministic integration methods; see
Judd (1992), Gaspar and Judd (1997), Christiano and Fisher (2000), and Aruoba et al. (2006),
among others. The difference is that conventional projection methods build on tensor-product
rules and their cost grows rapidly with the dimensionality of the problem, whereas the Smolyak
method uses non-product rules and its cost grows far more slowly. Second, the anisotropic
variant of the Smolyak method is similar to solution methods that use different number of grid
points for different variables (e.g., few grid points for shocks and many grid points for capital

30

as in Aiyagari (1994), Huggett (1993), Rios-Rull (1997), Krusell and Smith (1998)) and other
numerical methods that rely on discretization of shocks in line with Tauchen and Hussy (1991).
Third, the variant of the Smolyak method with an adaptive domain is related to simulation-
based and learning methods; see, e.g., Marcet (1988), Marcet and Sargent (1989), Smith (1991,
1993), Rust (1997), Maliar and Maliar (2005) and Powell (2011). The advantage of simulation-
based methods is that they focus on the relevant area of the state space; the shortcoming is
that their accuracy is limited by a low rate of convergence of Monte Carlo integration. The
Smolyak method with an adaptive domain does not rely on Monte Carlo integration: it uses
simulations only for constructing the solution domain, and it uses projection techniques to
accurately solve the model on this domain; in this respect, it is similar to combinations of
projection and simulation methods studied in Judd (2010, 2011, 2012). Fourth, in contrast to
perturbation methods, the Smolyak method is a global solution method whose accuracy does
not decline rapidly away from the steady state and that can be used to accurately solve models
with strong non-linearities. Fifth, in our examples, we focus on equilibrium problems, however,
the techniques described in the paper can be also used in the context of dynamic programming
problems. Winschel and Krätzig (2010) show how to use the conventional Smolyak method in
the context of canonical value function iteration, however, the Smolyak method can be used in
the context of an endogenous grid method of Carroll (2005) and an envelope condition method of
Maliar and Maliar (2013a) both of which can significantly reduce the cost of conventional value
function iteration. Finally, Brumm and Scheidegger (2013) parallelize a sparse grid method
using piecewise local basis functions, and Valero et al. (2013) parallelize a Smolyak method
using a global polynomial function; in particular, the latter article also implements parallel
computation on a Blacklight supercomputer.
Finally, the anisotropic-grid and adaptive-domain constructions, which we propose in the

context of the Smolyak method, will also work for any projection solution method that operates
on a hypercube domain including those based on tensor-product rules, e.g., Judd (1992). Also,
these construction can be effectively used in the context of low-dimensional problems. However,
there are many ways to increase accuracy in problems with low dimensionality, in particular,
one can increase the degree of polynomial approximations. In high-dimensional applications,
increasing the polynomial degree might be too costly. Anisotropic grids or adaptive domain
or their combination may be the only feasible alternative. This is why we advocate these
techniques in the context of the Smolyak method applied to problems with high dimensionality.

6.5 Implementation details

Our algorithm builds on techniques that are used in the related literature. To approximate
expectation functions, we use a 10-node Gauss-Hermite quadrature rule. We could have used
Monte Carlo integration but this would reduce the accuracy dramatically; see Judd et al. (2011)
for a discussion.
We consider two mappings Φ : X → [−1, 1]2 that transform each possible value of state

variables (k, θ) ∈ X ⊆ R2 into a hypercube (which is a square in the two-dimensional case)
(x, y) ∈ [−1, 1]2. One is a conventional rectangular domain for capital and productivity, and
the other is a rectangular domain constructed on principal components of simulated series. The

31

rectangulars are chosen to enclose the cloud of simulated data as shown in Figure 3. (That
is, we solve the model two times: we first compute a solution starting from some initial guess
about the ergodic range, we then simulate time series, and we finally recompute solutions
more accurately using the rectangular domains that enclose the cloud of simulated data). In
Appendix C, we provide further details on the construction of the two mappings.
We use extrema of Chebyshev polynomials as unidimensional grid points, and we use a

Chebyshev polynomial family as unidimensional basis functions; in this respect, we are similar
to Krueger and Kubler(2004) and Malin et al. (2011). We use the damping parameter ξ = 0.05,
and we use the convergence criterion $ = 10−7.
Finally, as a measure of accuracy, we report the mean and maximum of unit-free Euler

equation errors on a stochastic simulation of 10,000 observations. Our computer code is written
in MATLAB 2012a, and we use a desktop computer with Intel(R) Core(TM) i7-2600 CPU (3.40
GHz) with RAM 12GB. At the initial stage of this project, we benefited from consulting with
the Fortran code of Malin et al. (2011).

6.6 Results for the representative agent model

We parameterize the model (38)—(40) by u (c) = c1−γ−1
1−γ , f (k) = kα and ln θ′ = ρ ln θ + σε,

where the parameters are fixed at ρ = 0.95, β = 0.99 and α = 1/3. We set the benchmark
values of δ = 0.025, γ = 1 and σ = 0.01, and we consider variations in γ, σ and δ one-by-one,
holding the remaining parameters at the benchmark values. Specifically, we consider

δ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} ,
γ = {1, 5, 10, 15, 20} ,
σ = {0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05} .

We use these parameterizations to test the performance of different versions of the Smolyak
method introduced in the paper.

6.6.1 Conventional isotropic Smolyak grids under different approximation levels

We first solve the model (38)—(40) using a baseline version of the Smolyak method under four
approximation levels µ = 1, 2, 3, 4. Our baseline version is isotropic, i.e., has the same number
of grid points for capital and productivity, and it operates on a rectangular domain in the
original system of coordinates. The algorithm was able to converge in a wide range of the
parameters and to produce highly accurate solutions.
In Figure 7, we report the (unit-free) maximum residuals in the Euler equation (44) (ex-

pressed in log10 units).
The residuals vary from about 1% under µ = 1 to 10−8% under µ = 4. Therefore, the

quality of approximation consistently increases with µ.

6.6.2 Anisotropic Smolyak grids

We next consider anisotropic variants of the Smolyak method that use different numbers of grid
points for different variables. We consider two possibilities (µ1, µ2) = (3, 1) and (µ1, µ2) = (1, 3).

32

Figure 7: Accuracy of the Smolyak method under different approximation levels.

With these constructions, we have 9 elements in the first dimension and 3 elements in the second
dimension, which results in 19 elements in total (i.e., 19 grid points and 19 basis functions);
these are the elements distinguished in Section 4.2.2.

Figure 8: Accuracy of the Smolyak method with anisotropic grid

In Figure 8, we compare the maximum residuals in the Euler equation with anisotropic grids
and isotropic grids. The medium line (the one with triangles) is our benchmark isotropic case
µ = 2 that contains 13 polynomial terms.
We observe that if we use more grid points in dimension of capital than in dimension

of productivity, the anisotropic Smolyak method produces more accurate solutions than the
benchmark isotropic Smolyak method, but if we have more grid points in productivity than
in capital, the opposite is true. The difference in accuracy between two anisotropic solutions
can be as large as two orders of magnitude. These results illustrate the potential usefulness of
anisotropic grids in economic applications.

6.6.3 Adaptive domain

We next assess how the performance of the Smolyak method depends on the choice of the
solution domain. We compare the accuracy of solutions of the Smolyak method that operates
on the conventional hypercube with that of Smolyak technique that operates on the adaptive

33

Figure 9: Accuracy of the Smolyak method with adaptive domain

rectangular domain. We compare the maximum residuals in the Euler equation under the
conventional and adaptive domains in Figure 9.
The maximum residuals in the Euler equation are about a half order of magnitude (i.e.,

about 5 times) lower under the adaptive Smolyak domain than under the conventional Smolyak
domain for the range of values for γ, σ and δ considered.

6.7 Results for the multicountry model

We now explore the performance of the Smolyak-based projection method in the context of
problems with high dimensionality. To this purpose, we extend the one-agent model (38)—(40)
to include multiple agents. This is a simple way to expand the size of the problem and to have
a control over its dimensionality.
There are N agents, interpreted as countries, that differ in initial capital endowment and

productivity level. The countries’productivity levels are affected by both country-specific and
worldwide shocks. We study the social planner’s problem. If agents are identical in preferences,
the planner will allocate identical consumption to all agents. However, we do not make use
of the symmetric structure of the economy, and we approximate the planner’s solution in the
form of N capital policy functions, each of which depends on 2N state variables (N capital
stocks and N productivity levels). We solve for N policy functions (k′)h = Bhbh, where Bh is a
matrix of Smolyak basis functions evaluated in the Smolyak grid points and bh is a vector of the
polynomial coeffi cients for the countries h = 1, ...N . For each country, we use essentially the
same computational procedure as the one used for the representative-agent model. The Gauss-
Hermite quadrature method builds on product rules and is not tractable in problems with high
dimensionality. We replace it with monomial rules combined with Cholesky decomposition;
see Judd et al. (2011) for a detailed description of these techniques. For a description of the
multicountry model and details of the computational procedure, see Appendix F.
In Figure 10, we compare four different solutions to the multicountry model, namely, the

conventional solutions with µ = 2 and µ = 3, the anisotropic solution with µh1 = 3 for the
capital stocks and µh2 = 2 for the productivity levels of all countries, h = 1, ...N (in the figure,
we denote this case as (µ1, µ2) = (3, 2) which means

(
µ11, ..., µ

N
1 , µ

1
2, ..., µ

N
2

)
= (3, ..., 3, 2, ..., 2)).

Finally, we report the solution with µ = 2 for the Smolyak method with an adaptive domain.

34

Figure 10: Accuracy and running time for the multicountry model

We observe the following results from the figure. First, the difference between the isotropic
solution with µ = 3 and that with µ = 2 is about two orders of magnitude. Second, by using
an anisotropic grid, we can make half of the way between µ = 2 and µ = 3 in terms of the
average residuals, and we obtain essentially identical maximum residuals. Third, the effect of
an adaptive domain is also quite sizable, namely, we can reduce the residuals up to one order
of magnitude. Finally, we should draw attention to the computational expense of our solution
method. We observe a clearly concave pattern for the running time in the logarithmic scale.
This means that the expense grows slower than an exponential function, i.e., our implementation
does not appear to be subject to the curse of dimensionality in the sense of Bellman (1961).
Malin et al. (2011) also solve models with up to 10 countries (20 state variables); in

particular, a symmetric specification of Model I in their analysis is similar to the model studied
in the present paper. For this model, their cost in seconds is 1, 59, 916, 7313, 38150 when the
number of countries is 2, 4, 6, 8, 10, which grows faster than the exponential function. They
use an approximation level µ = 2, and their program is written in Fortran. We differ in two
respects: first, we implement the Smolyak method for interpolation by avoiding the repetitions,
and second, we use a much cheaper version of fixed-point iteration than time iteration used in
Malin et al. (2011). We solve a similar model with 10 countries in about 45 minutes using
MATLAB. However, the third-level Smolyak approximation is expensive even for our effi cient
implementation: we need almost 45 hours to solve a model with 10 countries, which increases
accuracy by two orders of magnitude.
Thus, the adaptive domain allows us to make about 1/3 way in terms of accuracy between

µ = 2 and µ = 3 without a visible increase in cost. The anisotropic grid with (µ1, µ2) = (3, 2)
gives us essentially the same accuracy as µ = 3 but uses a considerably smaller number of grid
points and basis function. However, our current implementation of the anisotropic Smolyak
method does not allow us to translate a reduction in the number of Smolyak elements in a
sizable cost reduction in this particular example.

35

7 Conclusion

The Smolyak method is designed to deal with high-dimensional applications. However, the
cost of the Smolyak method still grows rapidly with dimensionality of the problem. In this
paper, we propose a more effi cient implementation of the Smolyak method that reduces its
computational expense, and we present extensions of the Smolyak method that allow us to
increase its accuracy level while maintaining a fixed computational cost. The analytical and
numerical techniques developed in the present paper are not limited to economic applications
but can be used in other fields.
First, we propose a more effi cient implementation of the Smolyak method than the conven-

tional one, namely, we avoid unnecessary repeated evaluations of basis functions when forming
the Smolyak interpolant. Effi cient implementation of interpolation is especially important in
the context of numerical methods for solving dynamic economic models in which decision func-
tions or value function need to be interpolated a very large number of times during the solution
procedure, i.e., in each grid point, integration node or time period.
Second, we propose an anisotropic version of the Smolyak grid which allows us to vary the

number of grid points and basic functions by dimension. In a typical economic application,
we know some properties of decision and value functions, and we may use this knowledge to
represent such functions more effi ciently using the proposed anisotropic constructions.
Third, we show an effective transformation of the state space of a given economic model into

a normalized hypercube used by the Smolyak method. We find that the best accuracy of ap-
proximations is attained when we use a minimum hypercube that encloses the high-probability
set of a given economic model.
The above three improvements are related to interpolation. Our last improvement is con-

cerned with an iterative procedure for solving dynamic economic models. Time iteration used
in the existing Smolyak methods rely on numerical solver while a version of fixed-point itera-
tion used in the present paper involves only straightforward computation. This improvement,
although minor in substance, allows us to achieve substantial economizing on cost, especially,
in high-dimensional applications.

References

[1] Aruoba, S. B., Fernández-Villaverde, J. and J. Rubio-Ramírez, (2006). Comparing solution
methods for dynamic equilibrium economies. Journal of Economic Dynamics and Control
30, 2477-2508.

[2] Aiyagari, R. (1994). Uninsured idiosyncratic risk and aggregate saving. Quarterly Journal
of Economics 109(3), 659-684.

[3] Barthelmann, V., E. Novak and K. Ritter, (2000). High-dimensional polynomial interpo-
lation on sparse grids. Advances in Computational Mathematics 12, 273—288.

[4] Bellman, R.E. (1961). Adaptive Control Processes. Princeton University Press, Princeton,
NJ.

36

[5] Brumm, J. and S. Scheidegger, (2013). Using adaptive sparse grids to solve high-
dimensional dynamic models. Manuscript. University of Zurich.

[6] Bungartz, H. and M. Griebel, (2004). Sparse grids. Acta Numerica 13, 147-269.

[7] Carroll, K. (2005). The method of endogenous grid points for solving dynamic stochastic
optimal problems. Economic letters 91, 312-320.

[8] Christiano, L. and D. Fisher, (2000). Algorithms for solving dynamic models with occa-
sionally binding constraints. Journal of Economic Dynamics and Control 24, 1179-1232.

[9] Delvos, F., (1982). d-variate Boolean interpolation. Journal of Approximation Theory 34,
99-114.

[10] Den Haan, W. (1990). The optimal inflation path in a Sidrauski-type model with uncer-
tainty. Journal of Monetary Economics 25, 389-409.

[11] Fernández-Villaverde, J., G. Gordon, P. Guerrón-Quintana, and J. Rubio-Ramírez, (2012).
Nonlinear adventures at the zero lower bound. NBER working paper 18058.

[12] Garcke, J. (2011). Sparse grid tutorial. Manuscript.

[13] Gaspar, J. and K. Judd, (1997). Solving large-scale rational-expectations models. Macro-
economic Dynamics 1, 45-75.

[14] Gavilan-Gonzalez, A. and J. Rojas, (2009). Solving portfolio problems with the Smolyak-
parameterized expectations algorithm. Banco de España working paper 0838.

[15] Gerstner, T. and M. Griebel, (2003). Dimension-adaptive tensor-product quadrature. Com-
putng 71, 65-87.

[16] Griebel, M., (1998). Adaptive sparse grid multilevel methods for elliptic PDEs based on
finite differences. Computing 61, 151-179.

[17] Gordon, G., (2011). Computing dynamic heterogeneous-agent economies. Penn Institute
for Economic Research working paper 11-018.

[18] Huggett, M., (1993). The risk-free rate in heterogeneous-agent incomplete-insurance
economies. Journal of Economic Dynamics and Control 17, 953-969.

[19] Judd, K., (1992). Projection methods for solving aggregate growth models. Journal of
Economic Theory 58, 410-452.

[20] Judd, K., (1998). Numerical Methods in Economics. Cambridge, MA: MIT Press.

[21] Judd, K., L. Maliar and S. Maliar, (2010). A cluster-grid projection method: solving
problems with high dimensionality. NBER working paper 15965.

37

[22] Judd, K., L. Maliar and S. Maliar, (2011). Numerically stable and accurate stochastic
simulation approaches for solving dynamic models. Quantitative Economics 2, 173-210.

[23] Judd, K., L. Maliar and S. Maliar, (2012). Merging simulation and projection approaches
to solve high-dimensional problems, NBER 18501.

[24] Kollmann, R., S. Maliar, B. Malin and P. Pichler, (2011). Comparison of solutions to the
multi-country real business cycle model. Journal of Economic Dynamics and Control 35,
186-202.

[25] Krueger, D. and F. Kubler, (2004). Computing equilibrium in OLG models with produc-
tion. Journal of Economic Dynamics and Control 28, 1411-1436.

[26] Krueger, D. and F. Kubler, (2006). Pareto-improving social security reform when financial
markets are incomplete? American Economic Review 96(3), 737-755.

[27] Krusell, P. and A. Smith (1998). Income and wealth heterogeneity in the macroeconomy.
Journal of Political Economy 106, 868-896.

[28] Maliar, L. and S. Maliar, (2005). Solving nonlinear stochastic growth models: iterating on
value function by simulations. Economics Letters 87, 135-140.

[29] Maliar, L. and S. Maliar, (2013a). Envelope condition method versus endogenous grid
method for solving dynamic programming problems. Economics Letters 120, 262—266.

[30] Maliar, L. and S. Maliar, (2013b). Numerical methods for large scale dynamic economic
models. in: Schmedders, K. and K. Judd (Eds.), Handbook of Computational Economics,
Volume 3, Amsterdam: Elsevier Science (forthcoming).

[31] Maliar, S., L. Maliar and K. Judd, (2011). Solving the multi-country real business cycle
model using ergodic set methods. Journal of Economic Dynamic and Control 35, 207—228.

[32] Maliar, L., S. Maliar and R. Valero, (2013). Error bounds for anisotropic Smolyak inter-
polation formula. Manuscript, http://www.stanford.edu/~maliarl/.

[33] Malin, B., D. Krueger and F. Kubler, (2011). Solving the multi-country real business cycle
model using a Smolyak-collocation method. Journal of Economic Dynamics and Control
35, 229-239.

[34] Marcet, A., (1988). Solving non-linear models by parameterizing expectations. Manuscript,
Carnegie Mellon University, Graduate School of Industrial Administration.

[35] Marcet, A., and G. Lorenzoni (1999). The parameterized expectation approach: some
practical issues. In: R. Marimon and A. Scott (Eds.) Computational Methods for Study
of Dynamic Economies. Oxford University Press, New York, pp. 143-171.

[36] Marcet, A. and T. Sargent, (1989). Convergence of least-squares learning in environments
with hidden state variables and private information. Journal of Political Economy 97,
1306-1322.

38

[37] Miranda, M. and P. Helmberger (1988). The effects of commodity price stabilization pro-
grams. American Economic Rewiev 78, 46-58.

[38] Patterson, T., (1968). The optimum addition of points to quadrature formulae. Math.
Comp. 22, 847-856.

[39] Powell W., (2011). Approximate Dynamic Programming. Wiley: Hoboken, New Jersey.

[40] Quarteroni, A., Sacco, R., and F. Saleri, (2000). Numerical Mathematics. Springer, New
York.

[41] Rios-Rull, J. V., (1997). Computing of equilibria in heterogeneous agent models. Federal
Reserve Bank of Minneapolis Staff Report 231.

[42] Rust, J., (1997). Using randomization to break the curse of dimensionality. Econometrica
65, 487-516.

[43] Smith, A., (1991). Solving stochastic dynamic programming problems using rules of thumb.
Queen’s University. Economics Department. Discussion Paper 816.

[44] Smith, A. (1993). Estimating nonlinear time-series models using simulated vector autore-
gressions. Journal of Applied Econometrics, 8, S63-S84.

[45] Smolyak, S., (1963). Quadrature and interpolation formulas for tensor products of certain
classes of functions, Dokl. Akad. Nauk 148, 1042-1045.

[46] Tauchen, G. and R. Hussey, (1991). Quadrature-based methods for obtaining approximate
solutions to nonlinear asset pricing models. Econometrica 59, 371-396.

[47] Valero, R., Maliar, S. and L. Maliar (2013). Smolyak method: are supercomputers useful
for solving large scale dynamic economic models? Manuscript.

[48] Wasilkowski, G. and H. Wózniakowski, (1995). Explicit cost bounds of algorithms for
multivariate tensor-product problems. Journal of Complexity 11, 1-56.

[49] Winschel, V. and M. Krätzig, (2010). Solving, estimating and selecting nonlinear dynamic
models without the curse of dimensionality. Econometrica 78(2), 803-821.

[50] Wright, B. and J. Williams (1984). The welfare effects of the introduction of storage.
Quarterly Journal of Economics 99, 169-192.

Appendices

This section contains some supplementary results. In Appendix A, we describe how to construct
unidimensional Smolyak grid points and basis functions. In Appendix B, we develop the formula
for the Smolyak interpolant in the two-dimensional example with µ = 2. In Appendix C, we
show an example of constructing adaptive domain. Finally, in Appendix D, we describe the
multicontry model and the solution algorithm.

39

Appendix A: Unidimensional Smolyak grid points and basis functions

To construct multidimensional Smolyak grid points and basis functions, we must first specify
unidimensional grid points and basis functions. Many choice are possible. For example, we can
consider a family of ordinary polynomials, {1, x, x2, ...} and grid points generated by dividing
the interval [−1, 1] into 2i−1 equal parts, i ≥ 2 (for i = 1 we assume a grid point 0). In this
manner, for i = 2, we have grid points {−1, 0, 1} and we have basis functions {1, x, x2}; for
i = 3, we have grid points

{
−1, −1

2
, 0, 1

2
, 1
}
, and we use basis functions {1, x, x2, x3, x4}, etc.

Another possibility is to use Chebyshev polynomials as basis functions and extrema of
such polynomials as grid points. Approximations based on Chebyshev polynomials have two
useful properties. First, there always exists a unique set of coeffi cients such that a Chebyshev
polynomial function matches M given values at M grid points. Second, approximations are
uniformly accurate, and error bounds are established. We stick to this choice in our analysis.
Chebyshev polynomials are defined in the interval [−1, 1] with a recursive relation: T0 (x) =

1, T1 (x) = x, and Tn (x) = 2xTn−1 (x)− Tn−2 (x) for n ≥ 2.7 Chebyshev polynomial of degree
n− 1 has n extrema. Let ζnj be a jth extremum of Chebyshev polynomial of degree n− 1 with
j = 1, ..., n,

ζnj = − cos

(
π(j − 1)

n− 1

)
.

Table 6 presents Chebyshev polynomials of degree n−1 and their n extrema (for the polynomial
of degree 0, the extremum is assumed to be 0). Note that the sequence of unidimensional

Table 6: Extrema of Chebyshev polynomials and construction of Smolyak points in the unidi-
mensional case

Chebyshev polynomial of degree n− 1 n extrema of the polynomial of degree n− 1
n Tn−1 (x) = cos

(
(n− 1) cos−1 (x)

)
ζnj = − cos(

π(j−1)
n−1), j = 1, ..., n

1 1 0

2 x −1, 1

3 2x2 − 1 −1 0 1

4 4x3 − 3x −1, − 1
2
, 1

2
, 1

5 8x4 − 8x2 + 1 −1 − 1√
2

0 1√
2

1

Chebyshev polynomials and their extrema cannot be used in Smolyak formula (5) because such
sequence does not satisfy Conditions 1 and 2 of Section 2.5, namely, the number of extrema
is equal to i, with i = 1, 2, 3, ..., and not to 2i−1 + 1 as required by Condition 1, and the

7In terms of basis function ψ that was used in the main text and that is used later in Appendix B, we have
Tn−1 (x) = ψn (x).

40

consecutive sets are not nested as required by Condition 2. However, there is a subsequence
of this sequence that satisfies both Conditions 1 and 2, and is suitable for the conventional
interpolation formula. Namely, we select a subsequence in which the number of extrema is
m (i) = 1, 3, 5, 9, 17, ... for i = 1, 2, 3, 4, 5..., respectively (the first three sets of such a sequence
are in-boxed elements in the last column of the table).
Therefore, the unidimensional Smolyak basis functions and grid points are as follows: for

i = 1, a grid point is {0} and a basis function is {1}; for i = 2, grid points are {−1, 0, 1} and
basis functions are {1, x, 2x2 − 1}; for i = 3, grid points are

{
±1,± 1√

2
, 0
}
and basis functions

are {1, x, 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1}; etc.

Appendix B: Smolyak interpolant under µ = 2

We compare two alternative formulas for Smolyak interpolation in the two-dimensional case
under the approximation level µ = 2. One is the conventional formula with repeated basis
functions and the other is an alternative formula introduced in the present paper.

Conventional Smolyak interpolation formula. We consider the conventional Smolyak
formula for interpolation in the two-dimensional case, d = 2, under the approximation level
µ = 2. Condition max (d, µ+ 1) ≤ |i| ≤ µ + d in (5) becomes 2 ≤ i1 + i2 ≤ 4. We use (7) to
form pi1,i2 . In particular, p1,1, p1,2 and p2,1 are given by (8)—(10), respectively. For the remaining
polynomials, p2,2, p3,1 and p1,3, we have

p2,2 =

m(2)∑
`1=1

m(2)∑
`2=1

b`1`2ψ`1(x)ψ`2(y) = b11 + b21ψ2(x) + b31ψ3(x)

+ b12ψ2(y) + b22ψ2(x)ψ2(y) + b32ψ3(x)ψ2(y)

+ b13ψ3(y) + b23ψ2(x)ψ3(y) + b33ψ3(x)ψ3(y),

p3,1 =

m(3)∑
`1=1

m(1)∑
`2=1

b`1`2ψ`1(x)ψ`2(y)

= b11 + b21ψ2(x) + b31ψ3(x) + b41ψ4(x) + b51ψ5(x),

p1,3 =

m(1)∑
`1=1

m(3)∑
`2=1

b`1`2ψ`1(x)ψ`2(y)

= b11 + b12ψ2(y) + b13ψ3(y) + b14ψ4(y) + b15ψ5(y).

Furthermore, p|2| and p|3| are defined before in (11) and (12), respectively. A new combina-
tion of polynomials with |i| = i1 + i2 = 4 is given by

p|4| ≡ p2,2 + p3,1 + p1,3.

41

Smolyak polynomial function (7) for the case µ = 2 is given by

f̂ 2,2 (x, y; b) =
∑

max(d,µ+1)≤|i|≤d+µ

(−1)d+µ−|i|
(

d− 1

d+ µ− |i|

)
p|i|

=
∑

3≤|i|≤4

(−1)4−|i|
(

1

4− |i|

)
p|i| =

∑
3≤|i|≤4

(−1)4−|i|
1

(4− |i|)!p
|i|

= −1 · p|3| + 1 · p|4|

= −1 · (p2,1 + p1,2) + 1 ·
(
p2,2 + p3,1 + p1,3

)
= b11 + b21ψ2(x) + b31ψ3(x) + b12ψ2(y) + b22ψ2(x)ψ2(y)

+ b32ψ3(x)ψ2(y) + b13ψ3(y) + b23ψ2(x)ψ3(y) + b33ψ3(x)ψ3(y)

+ b41ψ4(x) + b51ψ5(x) + b14ψ4(y) + b15ψ5(y).

As expected, the conventional Smolyak formula gives us the same thirteen basis functions as
distinguished in (19).

Smolyak interpolation formula without repeated basis functions Let us now illustrate
the use of interpolation formula (25) without repetitions. Here, we have d ≤ |i| ≤ µ+ d, which
means 2 ≤ i1 + i2 ≤ 4. We use formula (27) to form qi1,i2. In particular, q1,1, q1,2 and q2,1 are
given by (28)—(30), respectively. For the remaining polynomials, q2,2, q3,1 and q1,3, we obtain

q2,2 =

m(2)∑
`1=m(1)+1

m(2)∑
`2=m(1)+1

b`1`2ψ`1(x)ψ`2(y) = b22ψ2(x)ψ2(y) + b32ψ3(x)ψ2(y)

+ b13ψ3(y) + b23ψ2(x)ψ3(y) + b33ψ3(x)ψ3(y),

q3,1 =

m(3)∑
`1=m(2)+1

m(1)∑
`2=m(0)+1

b`1`2ψ`1(x)ψ`2(y) = b41ψ4(x) + b51ψ5(x),

q1,3 =

m(1)∑
`1=m(0)+1

m(3)∑
`2=m(2)+1

b`1`2ψ`1(x)ψ`2(y) = b14ψ4(y) + b15ψ5(y).

Furthermore, q|2| and q|3| are defined before in (31) and (32), respectively. A new sum with
|i| = i1 + i2 = 4 is given by

q|4| ≡ q2,2 + q3,1 + q1,3.

The Smolyak polynomial function (27) for the case of µ = 2 is given by

f̂ (x, y; b) =
∑

d≤|i|≤d+µ

q|i| = q|2| + q|3| + q|4|

= b11 + b21ψ2(x) + b31ψ3(x) + b12ψ2(y) + b22ψ2(x)ψ2(y)

+ b32ψ3(x)ψ2(y) + b13ψ3(y) + b23ψ2(x)ψ3(y) + b33ψ3(x)ψ3(y)

+ b41ψ4(x) + b51ψ5(x) + b14ψ4(y) + b15ψ5(y).

42

Again, as expected, our interpolation formula gives the same 13 basis functions as those distin-
guished in (19) for the conventional Smolyak interpolation formula.

Appendix C: Adaptive domain

We show how to adapt the Smolyak hypercube to the high-probability area of the state space in
the context of the representative agent model (38)—(40). Our objective is to define a mapping
Φ that transforms each possible value of state variables (k, θ) into (x, y) ∈ [−1, 1]2. Below, we
show two ways of constructing the mapping Φ, one uses the original coordinates and the other
uses principal components of the original coordinates.

Standard hypercube. Consider a cloud of simulated data {kt, θt}t=1,...,T shown in Figure 5.
Let us define

[
k, k
]
and

[
θ, θ
]
as intervals for the state variables that we observe in simulation

(the rectangular
[
k, k
]
×
[
θ, θ
]
is the larger rectangular shown in Figure 5. Consider the following

linear transformation of (k, θ) ∈
[
k, k
]
×
[
θ, θ
]
into (x, y) ∈ [−1, 1]2

x = 2
k − k
k − k

− 1 and y = 2
θ − θ
θ − θ

− 1. (49)

By using (49) and its inverse, we can move from
[
k, k
]
×
[
θ, θ
]
to [−1, 1]2. Malin et al. (2011)

set bounds exogenously at
[
k, k
]

= [0.8, 1.2] and
[
θ, θ
]

= [exp(−0.8σ
1−ρ), exp(0.8σ

1−ρ)], where the
steady state of both capital and productivity level is one. Our own analysis shows that the best
accuracy is attained if the intervals

[
k, k
]
and

[
θ, θ
]
are chosen to enclose the set of simulated

data as shown in Figure 5.

Adaptive parallelotope. We now describe how to construct the adaptive (inclined) rectan-
gular in Figure 5. To map the state variables into a unit square, we use a principal component
(PC) transformation of the time series as described in Section 5 and illustrated in Figure 6. We
first normalize the simulated data {kt, θt}t=1,...,T to have zero mean and unit variance by

k̃t =
kt − µk
σk

and θ̃t =
θt − µθ
σθ

, (50)

where µk and µθ are means, and σk and σθ are standard deviations of of capital and shock,

respectively. We then compute the SVD decomposition Y = USV >, where Y ≡

 k̃1 θ̃1
...

...
k̃T θ̃T

,
U ∈ RT×2 and V ∈ R2×2 are orthogonal matrices, and S ∈ R2×2 is a diagonal matrix of

singular values. We find Z ≡ Y V , where Z =

 zx1 zy1
...

...
zxT zyT

 ∈ RT×2. Let [zx, zx] and [zy, zy]

43

be the intervals for the resulting principal components {zxt , z
y
t }t=1,...,T . We map each (zx, zy) ∈

[zx, zx]× [zy, zy] into (x, y) ∈ [−1, 1]2 using

x = 2
zx − zx
zx − zx − 1 and y = 2

zy − zy
zy − zy − 1. (51)

To go back to the state space of the model, we first find (zx, zy) that correspond to a given pair

(x, y) using (51), we then apply an inverse PC transformation to get
(
k̃, θ̃
)>

= V −1 (zx, zy)>

and finally, we compute (k, θ) using the inverse of (50).
In our experiments, we typically recompute solutions two times: First, we solve the model

using the standard rectangular domain in the original system of coordinates for some guess[
k, k
]
×
[
θ, θ
]
. After the decision functions were computed, we simulate the model and use the

time series solution {kt, θt}t=1,...,T either to refine the guess on the bounds k, k, θ and θ for
constructing the conventional domain or to compute µk, µθ, σk, σθ, V , z

x, zx, zy and zy for
constructing the adaptive domain.

Appendix D: Smolyak-based projection methods for problems with
high dimensionality

We describe the multicountry model studied in Section 6.7 and provide further computational
details about the Smolyak method that was used to produce numerical solutions in that section.

Appendix D1. Multicountry model

We test the performance of the Smolyak-based projection method in the context of the multi-
agent model studied in Judd (2010, 2011, 2012). This allows us to compare the performance of
the Smolyak method with other approaches tractable in high-dimensional applications.
A world economy consists of a finite number of agents N , interpreted as countries. Each

country h ∈ {1, ..., N} is populated by a representative consumer. A social planner solves the
following maximization problem:

max
{cht ,kht+1}h=1,...,Nt=0,...,∞

E0

N∑
h=1

λh

[∞∑
t=0

βtuh
(
cht
)]

(52)

subject to the aggregate resource constraint,

N∑
h=1

cht +

N∑
h=1

kht+1 =

N∑
h=1

kht (1− δ) +

N∑
h=1

θhtAf
h
(
kht
)
, (53)

and to the process for the countries’productivity levels,

ln θht+1 = ρ ln θht + εht+1, h = 1, ..., N, (54)

44

where initial condition
{
kh0 , θ

h
0

}h=1,...,N
is exogenously given, and the productivity shocks follow

a multivariate Normal distribution
(
ε1t+1, ..., ε

N
t+1

)> ∼ N (0N ,Σ) with 0N ∈ RN being a vector
of zero means and Σ ∈ RN×N being a variance-covariance matrix. We assume that shocks of
different countries are given by εht+1 = ςht + ς t, h = 1, ..., N , where ςht ∼ N (0, σ2) is a country-
specific component, and ς t ∼ N (0, σ2) is a worldwide component. The resulting variance

covariance matrix is Σ =

 2σ2 ... σ2

...
σ2 ... 2σ2

.
In the problem (52)—(54), Et is the operator of conditional expectation; cht , k

h
t , θ

h
t and λ

h

are a country’s h consumption, capital, productivity level and welfare weight, respectively;
β ∈ (0, 1) is the discount factor; δ ∈ (0, 1] is the depreciation rate; A is a normalizing constant
in the production function; ρ ∈ (−1, 1) is the autocorrelation coeffi cient. The utility and
production functions, uh and fh, respectively, are strictly increasing, continuously differentiable
and concave. We assume that all countries have identical preferences and technology, i.e. uh = u
and fh = f for all h. Under these assumptions, the planner assigns equal weights, λh = 1, and
therefore, equal consumption to all countries, cht = ct for all h = 1, .., N .

Appendix D2. Algorithm for the multicountry model

The solution to the model (52)—(54) satisfies N Euler equations:

kht+1 = Et

{
β
u′ (ct+1)

u′ (ct)

[
1− δ + θht+1Af

′ (kht+1)] kht+1} , h = 1, ..., N, (55)

where u′ and f ′ are the first derivatives of u and f , respectively.
We approximate the planner’s solution as N capital policy functions Kh

({
kht , θ

h
t

}h=1,...,N)
.

Note that our approximating functions K̂h
({
kht , θ

h
t

}h=1,...,N
; bh
)
, h = 1, ..., N , are country-

specific. In effect, we treat countries as completely heterogeneous even if they are identical
in fundamentals and have identical optimal policy functions. This allows us to assess costs
associated with computing solutions to models with heterogeneous preferences and technology.

Steps of the Smolyak-based projection method. The Smolyak method, described for
the representative agent model in the main text, can be readily extended to the multicountry
case.

• Initialization:

(a) Choose the level of approximation, µ.

(b) Parameterize
(
kh
)′

= Kh
({
kht , θ

h
t

}h=1,...,N)
with K̂h

({
kht , θ

h
t

}h=1,...,N
; bh
)
which is

a Smolyak interpolant constructed using Chebyshev unidimensional basis functions.

(c) Construct a Smolyak grid H2N,µ =
{
xhn, y

h
n

}h=1,...,N
n=1,...,M

on the hypercube [−1, 1]2N , as
described in Section 3 and 4 for isotropic and anisotropic cases, respectively.

45

(d) Compute Smolyak basis functions P2N,µ in each grid point n as described in Section
3 for the isotropic case or in Section 4 for the anisotropic case. The resultingM×M
matrix is B.

(e) Choose the relevant ranges of values for
{
kht , θ

h
t

}h=1,...,N
on which a solution is com-

puted. The resulting hypercube is
[
k1, k

1
]
× ...×

[
θN , θ

N
]
.

(f) Construct a mapping between points
{
khn, θ

h
n

}h=1,...,N
in the original hypercube

[
k1, k

1
]
×

...×
[
θN , θ

N
]
and points

{
xhn, y

h
n

}h=1,...,N
in the normalized hypercube [−1, 1]2N using

either a linear change of variables of type (49) or principal component transformation
of type (51); see Section 5.

Φ :
[
k1, k

1
]
× ...×

[
θN , θ

N
]
→ [−1, 1]2N . (56)

(g) Choose integration nodes,
{
εhj
}h=1,...,N

, and weights, ωj, j = 1, ..., J .

(h) Construct next-period productivity,
{(
θhn,j
)′}h=1,...,N

with
(
θhn,j
)′

=
(
θhn
)ρ

exp
(
εhj
)

for all j and n.

(k) Make an initial guess on the coeffi cients vectors (b1)
(1)
, ...,

(
bN
)(1)
.

• Iterative cycle. At iteration i, given (b1)
(i)
, ...,

(
bN
)(i)
, perform the following steps.

• Step 1. Computation of the capital choice.
Compute

(
khn
)′

= Bn
(
bh
)(i)
, where Bn is the nth row of B for n = 1, ...,M .

• Step 2. Computation of the consumption choice.
Compute

{
chn
}h=1,...,N

satisfying (53) given
{
khn, θ

h
n,
(
khn
)′}h=1,...,N

for n = 1, ...,M .

• Step 3. Approximation of conditional expectation.
For n = 1, ...,M ,

(a) compute:

—
{(
xhn,j
)′
,
(
yhn,j
)′}h=1,...,N

that correspond to
{(
khn
)′
,
(
θhn,j
)′}h=1,...,N

using the in-

verse of transformation (56);

—Smolyak basis functions P2N,µ in each point
{(
xhn,j
)′
,
(
yhn,j
)′}h=1,...,N

; the resulting

M ×M × J matrix is B′n,j;

—
(
khn,j
)′′

= B′n,j
(
bh
)(i)
, where B′n,j are basis functions evaluated in

{(
khn
)′
,
(
θhn,j
)′}h=1,...,N

using the transformation (56) for all j;

—
{(
chn,j
)′}h=1,...,N

satisfying (53) given
{(
khn
)′
,
(
θhn,j
)′
,
(
khn,j
)′′}h=1,...,N

for n = 1, ...,M ;

46

(b) evaluate conditional expectation:

ehn ≡ β

J∑
j=1

ωj
uh1

((
chn,j
)′)

u1 (chn)

[
1− δ +

(
θhn,j
)′
fh1

((
khn
)′)] (

khn
)′ .

• Step 4. Computation of the coeffi cients.
Find

{
b̂h
}h=1,...,N

that solves ehn = Bnb̂h, i.e., b̂h = B−1n ehn.

• Step 5. Updating of the coeffi cients vectors.
For each h = 1, ..., N , compute the coeffi cients vector for the subsequent iteration i + 1
using fixed-point iteration, (

bh
)(i+1)

= (1− ξ)
(
bh
)(i)

+ ξb̂h. (57)

where ξ ∈ (0, 1) is a damping parameter.

Iterate on Steps 1—5 until convergence of the solution,

1

MNξ

M∑
n=1

N∑
h=1

∣∣∣∣∣∣∣
((
khn
)′)(i+1) − ((khn)′)(i)(

(khn)′
)(i)

∣∣∣∣∣∣∣ < 10−ϑ, (58)

where
((
khn
)′)(i+1)

and
((
khn
)′)(i)

are the hth country’s capital choices on the grid obtained on
iterations i+ 1 and i, respectively, and ϑ > 0.

Computational details. To solve the model, we assume u (ct) =
c1−γt −1
1−γ , f (kt) = kαt with

α = 0.36, β = 0.99, ρ = 0.95 and we vary γ, δ and σ. We start iterations from an arbitrary
initial guess on the capital decision function, kht+1 = 0.9kht + 0.1θht for all h = 1, ...N (this
guess matches the steady-state level of capital). To approximate integrals, we use a monomial
integration rule with 2N nodes combined with Cholesky decomposition; see Judd et al. (2011)
for a description of these techniques. We set the damping parameter in (57) at ξ = 0.05, and
we set the tolerance parameter in convergence criterion (58) at ϑ = 7.

47

	Introduction
	Conventional Smolyak method for interpolation
	Smolyak method at glance
	Construction of Smolyak grids using unidimensional nested sets
	Unidimensional nested sets of points
	Tensor products of unidimensional nested sets of points
	Smolyak sparse grids

	Smolyak formula for interpolation using unidimensional nested sets
	Smolyak polynomial
	Example of Smolyak polynomial under d=2 and 0=x"0116=1

	Smolyak interpolation coefficients
	Closed-form expression for Smolyak interpolation coefficients
	Example of the Smolyak coefficients under d=2 and 0=x"0116=1

	Shortcomings of the conventional Smolyak method

	Efficient implementation of the Smolyak method for interpolation
	Multidimensional Lagrange interpolation
	Construction of Smolyak grids using unidimensional disjoint sets
	Unidimensional disjoint sets of grid points
	Tensor products of unidimensional disjoint sets of points
	Smolyak sparse grids

	Construction of Smolyak polynomials using unidimensional disjoint sets
	Unidimensional disjoint sets of basis functions
	Tensor products of unidimensional disjoint sets of basis functions
	Smolyak polynomial basis functions

	Construction of Smolyak coefficients using Lagrange interpolation
	Solution to the inverse problem
	Example of interpolation coefficients under d=2 and 0=x"0116=1 revisited

	Comparison to the conventional Smolyak method
	Nested-set versus disjoint-set constructions of the Smolyak interpolant
	Analytical expression for interpolation coefficients versus numerical Lagrange interpolation

	Smolyak formula for interpolation revisited
	Smolyak polynomial: efficient construction
	Example of Smolyak polynomial under d=2 and 0=x"0116=1 revisited

	Anisotropic Smolyak method
	Definition of anisotropy
	Anisotropic Smolyak grid
	Tensor products of unidimensional sets of points
	Smolyak sets of multidimensional elements under anisotropic construction

	Advantages of anisotropic Smolyak method

	Smolyak method with adaptive domain
	Adaptive parallelotope
	Smolyak grid on principal components
	Advantages of adaptive domain

	Smolyak method for solving dynamic economic models
	The representative agent model
	Time iteration versus fixed-point iteration
	Time iteration
	Fixed-point iteration

	Algorithm
	Relation to other solution methods in the literature
	Implementation details
	Results for the representative agent model
	Conventional isotropic Smolyak grids under different approximation levels
	Anisotropic Smolyak grids
	Adaptive domain

	Results for the multicountry model

	Conclusion

