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1. Introduction 

 A central task in microeconomics is to predict households’ choices in situations that have 

not yet been observed (e.g., after some proposed policy intervention). The dominant tradition is to 

draw inferences from actual choices within some related domain. Unfortunately, that approach 

often proves problematic due to various practical limitations of choice data.   

 If economic conditions vary (exogenously) in ways that closely resemble the intervention 

of interest within the set of decision problems for which choices are observed, and if it is possible 

to code those conditions quantitatively, one can infer the effects of the intervention using standard 

reduced-form methods.  As an example, consider the canonical problem of estimating a demand 

curve based on price-quantity observations (assuming price variation is exogenous or an 

instrumental variable is available).  In effect, one can predict demand at as-yet-unobserved prices 

through curve fitting and interpolation.   When the aforementioned conditions are not met, one 

can sometimes use structural methods, in effect drawing inferences about likely effects from 

some form of variation in conditions that the structure implicitly deems “similar” to the 

intervention.  As an example, consider the problem of predicting choices from non-linear budget 

sets when choices have only been observed for linear budget sets.  A structural model of utility 

maximization tells us how the two are linked.    

Of course, as the observed variation in economic conditions becomes further removed 

from the intervention of interest, the structural approach requires one to make ever-more-heroic 

assumptions concerning the relationships between the two.2  In addition, the intervention of 

interest may have qualitative elements that are not easily incorporated into standard reduced-form 

or structural models.  The latter concern arises regularly in behavioral economics, as studies have 

found that choices can depend critically on qualitative aspects of the decision frame both in the 

laboratory and in the field (see, e.g., Camerer et al., 2004, Bertrand et al., 2005, Saez, 2009).  

When we wish to predict choices in a novel decision frame, the reduced-form  approach is 

inapplicable, while the structural approach requires a deeper structural understanding of the 

psychological processes that generate framing effects than, in most cases, we currently possess. 

How can one proceed in contexts where standard reduced-form and structural methods 

prove problematic?  We explore a novel strategy that employs data on subjective reactions to 

elements of contemplated opportunity sets when an individual is not engaged in making 

																																																								
2 As an example, consider the problem of estimating the price elasticity of demand for health insurance among the 
uninsured, who are generally poor and not eligible for insurance through employers.  After noting the difficulties 
associated with standard approaches (such as extrapolating from the choices of potentially non-comparable population 
groups), Krueger and Kuziemko (2013) turn to hypothetical choice data.	
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consequential choices. These non-choice evaluations include various types of subjective ratings 

(for example, measures of expected enjoyment, degree of temptation, and anticipated impact on 

specific objectives such as social image), as well as subjective "aggregators" such as stated 

preferences.3   Our strategy presupposes that actual choices are observed in a number of distinct 

settings, but not the ones of interest.  We predict choices for the latter in three steps.  First, we 

elicit non-choice evaluations for all of the choice settings.  Second, for the observed settings, we 

uncover the statistical relationships between these non-choice evaluations and actual choices.  We 

study these relationships at the level of the choice problem, aggregating over decision makers.  

Using standard techniques, we select the relationships that prove most stable within the set of 

observed choice settings.  Finally, we use those relationships to predict behavior for the settings 

of interest (which are out of sample).  We discuss the conceptual reasons for thinking that such a 

strategy might be successful, and clarify its relation to existing methods, in subsequent sections.  

Because choice patterns (and hence preferences) are inferred from non-choice responses, we refer 

to this general class of procedures as non-choice revealed preference (NCRP).   

We report the results of a laboratory experiment designed to gauge the potential 

usefulness of this approach.  We offer subjects the opportunity to purchase a specified snack at a 

given price, such as $0.75, to be consumed during a waiting period.  We then set the following 

task: supposing one only observes purchase frequencies at this price for all items (so that there is 

no observed price variation either for a single item or across items), can one accurately predict 

purchase frequencies for all items at a different price (such as $0.25)?   Here, the price is intended 

to stand in for any economic condition (e.g., a policy) for which there is no usable historical 

variation (either because the policy has no close precedent, or because past policy variation is 

endogenous and there are no useful instruments).  

Plainly, one cannot attack this task with standard reduced-form techniques, which require 

one to either interpolate or extrapolate from observed price variation (either within or across 

items).  A conventional economic analysis might proceed by building a structural model (for 

example, in the spirit of Berry, Levinsohn, and Pakes, 1995), possibly one that infers the effect of 

price variation from the variation in serving size across items (which determines the price per 

gram), controlling for other differences.  Alternatively, one might use stated preference 

techniques: simply ask people what they would choose at the alternative price, and take those 

																																																								
3	 See Shogren (2005, 2006), Carson and Hanemann (2005), and Carson (2012) for surveys of stated preference 
techniques.  We discuss them at greater length in Section 7.	
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responses as indicating the actual purchase frequency.  We show that those approaches work so 

poorly in this setting that they underperform a myopic benchmark (zero change in demand). 

 To implement our alternative approach, we use data on choices at the price that is 

assumed to have prevailed (e.g., $0.75) to estimate statistical relationships between real purchase 

frequencies and variables derived from non-choice evaluations (taking a choice problem as the 

unit of observation), and choose the best specifications based on within-sample selection criteria.  

We then use those relationships along with additional data on non-choice evaluations to predict 

real purchase frequencies at the alternative price (e.g., $0.25).  The design of our experiment 

allows us to actually measure demand at both prices, and thus to gauge the accuracy of these 

predictions.  We find that the specifications favored by within-estimation-sample model selection 

criteria predict purchase frequencies out of sample at the alternative price with a high degree of 

accuracy, both overall and across items.  For example, starting from a price of $0.75, the average 

change in purchase frequency resulting from a change in price to $0.25 is +7.50 percentage 

points; the preferred bivariate specification predicts an average change of +7.66 percentage 

points, an error of just over 2%, without using any real purchase data at $0.25.  More generally, 

the accuracy of our approach is well within the tolerances to which economists are accustomed, 

and its performance is roughly comparable to that of standard methods that require the analyst to 

observe within-item price variation for other items when projecting the demand for any given 

item at the alternative price.  Accordingly, we conclude that NCRP methods have considerable 

potential. 

 The paper is organized as follows.  Section 2 discusses the conceptual underpinnings for 

our approach.  Section 3 provides details concerning the experiment.  Section 4 sets forth the 

prediction task and the evaluation criteria.  Section 5 identifies the benchmarks that we use to 

gauge predictive accuracy.  Section 6 presents out main results.  Section 7 clarifies the 

relationships between our methods and other existing approaches.  Section 8 provides some 

concluding remarks, including a discussion of strategies for using this approach in practical 

applications.  An online appendix contains extensive supplementary analyses. 

 

2. Conceptual Framework 

 Suppose our object is to predict choices in some decision problem, ܦ, that has not yet 

been observed.  Ordinarily, an economist would seek data on choices made in a collection of 

related decision problems, ሼܦଵ, … , ேሽܦ ≡ ۲, estimate models relating those choices to the 

objective characteristics of the problems, and then use those models to predict the choices people 
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would make in ܦ.  As noted in the previous section, this standard approach requires that the 

differences between the objective characteristics of ܦ and the elements of ۲ are similar to the 

differences that exist within ۲.  In many contexts, that condition is not satisfied. 

 As an alternative, we propose the following approach.  First, gather new non-choice data 

pertaining to the decision problems ܦ and ܦଵ,… ,  ே (specifically, subjective evaluationsܦ

pertaining to the available options, including various types of ratings and hypothetical decisions). 

Second, estimate models relating actual choices to variables derived from these non-choice 

evaluations using data for decision problems in ۲.  Finally, use those models to predict choices in 

 .  This alternative is similar to standard approaches, except that subjective characteristics of theܦ

decision problems (measured as non-choice evaluations) take the place of objective ones. 

 In some respects, the motivation for the proposed approach is simple.  Although non-

choice evaluations are known to suffer from significant biases, they are nevertheless strongly 

correlated with actual choices (see Sections 6 and 7).  Presumably, they contain information 

pertaining to preferences, albeit in possibly biased, noisy, or otherwise distorted forms.  Despite 

these distortions, such variables remain potentially useful as regressors in the types of models 

referenced above, provided the object is prediction rather than causal inference (see, e.g., White, 

1980).  For example, even though hypothetical choices often diverge systematically from actual 

choices, their high correlation with actual choices suggests that they may be good predictors, 

particularly when used in combination with other subjective evaluations that proxy for the 

sources of variation in hypothetical bias across decision problems.   

 The central advantage of the proposed approach is that the differences between the 

subjective characteristics of ܦ and the elements of ۲ may be similar to the differences that exist 

within D even when the same statement does not hold for objective characteristics.  For example, 

suppose that choices are motivated in part by perceptions of social approbation.  The options 

available in ܦ may elicit roughly the same levels of approbation as some of the options available 

in ܦଵ,… ,  ே even if their objective characteristics are dissimilar.  Consequently, our method mayܦ

be applicable even when standard methods are not. 

 As with all standard methods for making out-of-sample predictions, the proposed 

approach requires stability of the predictive relationship over a domain that encompasses both the 

observed and not-yet-observed environments.  The question of stability is best resolved through 

data analysis of the type we conduct in subsequent sections.  However, as we explain next, there 

are good reasons to be optimistic about the prospects for finding adequately stable relationships. 
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 Ultimately, choice depends on an individual’s internal subjective representation of the 

available alternatives, rather than their objective characteristics (which are only relevant insofar 

as they influence the former).  For any given decision problem, the individual perceives each 

alternative as addressing a collection of basic motivations to varying degrees, and these subjective 

perceptions map to choice (much as goods are valued for their “characteristics” in the seminal 

theory of Lancaster, 1966).  Thus, the brain likely distills a (relatively) low-dimensional choice-

relevant representation of each available option in terms of fundamental subjective attributes.  If 

one could observe the subjective attributes associated with the available alternatives for a 

reasonably large collection of choice problems, one could recover the choice mapping. 

 As an illustration, consider decision problems involving large bundles of groceries.  One 

can describe these bundles in a high-dimensional space of objective characteristics (e.g., by 

listing quantities of various products or ingredients), but for the purpose of predicting choices that 

representation is probably unhelpful.  Alternatively, it might also be possible to describe these 

bundles in a low-dimensional subjective attribute space based on the degree to which each bundle 

is viewed as addressing basic motivations such as hunger, the desire for tasty food, health 

objectives, and image concerns. Critically, bundles with dissimilar objective characteristics may 

have similar fundamental subjective attributes.  Accordingly, upon observing choices among a 

given set of bundles along with the pertinent subjective attributes, one may be able to predict 

choices among objectively dissimilar (but subjectively similar) bundles. 

 While the fundamental subjective attributes of choice options are not directly observable,  

it is relatively easy to elicit non-choice evaluations that pertain to those attributes.  To illustrate, 

for our grocery example, one might conduct a survey in which respondents are asked to express 

the degree to which various bundles would address hunger, the desire for tasty food, health 

objectives, and image concerns, and then use those responses as regressors in prediction models. 

 Admittedly, responses to such questions are imperfect measures of the subjective 

attributes that actually determine choice.  In some settings, people may be hesitant to say what 

they are actually thinking, and they may perceive or report motivations somewhat differently 

depending on whether they are actually making choices.  But neither of those observations is 

necessarily fatal for the approach. Assuming the chosen alternative, ݔ, is a function of ܽ, the 

subjective attributes of available alternatives during choice (i.e., ݔ ൌ  ሺܽሻ), and ignoringܥ

stochastic considerations for expositional simplicity, then as long as there is a stable relationship 

between ܽ and non-choice evaluations ݊, i.e., ܽ ൌ ݂ሺ݊ሻ, one can write choice as a function of 

those reactions: ݔ ൌ ሚሺ݊ሻܥ ≡  ሺ݂ሺ݊ሻሻ.  (This notation obviously subsumes the case in whichܥ



	 6	 	 	

	

ܽ ൌ ݊, but that assumption is not required.) Because our object is to make accurate choice 

predictions rather than to measure the causal effects of the subjective attributes accurately, 

nothing is lost by estimating ܥሚ rather than ܥ.   

 The plausibility of assuming a stable relationship between ܽ	and ݊ depends on context, 

but can be enhanced through a judicious selection of non-choice evaluations. For example, if one 

is concerned that complexity biases the assessment of subjective motivation, one can include 

subjective measures of complexity.  Generally, to address potential divergences between actual 

and reported motivations, one can (a) include measures of the degree to which people say they 

believe others will understate or overstate an inclination in the context of a particular choice 

problem, (b) ask about the degree to which an alternative is likely to address motivations for 

peers, rather than for the respondent (thereby reducing incentives to misreport), and/or (c) employ 

non-choice reactions based on biometric responses, which are not subject to reporting bias. 

 More formally, it is natural to assume that non-choice reports of subjective attributes, ܽ, 

depend on actual subjective attributes, and possibly on other context-specific considerations (ݖ) 

that influence divergences between the two.4  If we make the reasonable assumption that the 

tendencies to misreport ݖ and ܽ depend on the same set of motivational factors, we have 

ሺܽ, ሻݖ ൌ ൫݃ሺܽ, ,ሻݖ ݃௭ሺܽ, ሻ൯ݖ ≡ ݃ሺܽ,   .( stands for reported context-specific factorsݖ where) ሻݖ

As long as ݃ is invertible, we can then write ܽ ൌ ݂ሺ݊ሻ where ݊ ≡ ሺܽ,  ሻ, and proceed byݖ

estimating ܥሚሺ݊ሻ, as above. 

 The approach outlined above presupposes stability of the functions ܥ and ݃ (and hence 

 .  A key part of that assumption – stability with ۲ܦ ሚ)  over a domain encompassing both ۲ andܥ

– is testable.  (Stability over a domain that includes ܦ is not testable until choices for that 

decision problem are observed, but that is always true for out-of-sample predictions.) Indeed, 

when deciding whether to include particular non-choice reactions in ݊, one can take guidance not 

only from intuition and psychological research concerning motivational factors, but also from 

analysis of stability and cross-validated predictive accuracy within the estimation sample.  For 

example, if observed conditions fall into several distinct regimes, one can test the stability of ܥሚ 

across regimes, and check the accuracy of predictions for each regime based on estimates of ܥሚ 

that employ data only from the other regimes. 

																																																								
4	Actual subjective attributes may themselves influence these divergences.  For example, if choosing a given alternative 
is viewed as likely to promote social esteem, then saying that it effectively addresses other motivations may also 
promote social esteem.  Our approach allows for such possibilities.  	
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 A variety of factors likely determine the breadth of the domain over which ܥሚ is stable.  

One of these is the degree to which the implications for preferences of a given non-choice 

response is “portable” from one context to another.  Depending on whether one is concerned with 

foods or paperback novels, knowing whether someone likes the taste of a given alternative has 

sharply different implications. Accordingly, this information is portable only with a limited 

domain, and its use would likely render a prediction model unstable outside that domain.  In 

contrast, knowing whether social contacts would approve of a given alternative has similar 

implications irrespective of context.  This information is highly portable, and a prediction model 

that only employs similarly portable variables is potentially stable over a broader domain. 

 A potential advantage of our approach is that the implications for preferences of 

appropriately chosen non-choice evaluations are much more portable than those of objective 

characteristics, and consequently predictive models are potentially stable over broader domains if 

they relate choices to the former and omit the latter.  To illustrate, imagine estimating two 

competing models of the demand for potato chips, one employing physical characteristics such as 

crunchiness and salt content as regressors, the other employing non-choice evaluations such as 

ratings of tastiness.  If these models are used to predict the demand for ice cream, the second will 

presumably perform far better than the first. 

 A “shortcut” strategy is to employ non-choice responses that aggregate over subjective 

attributes.  One can think of a hypothetical choice as a non-choice reaction that putatively 

aggregates these dimensions comprehensively.  However, it is well-established that hypothetical 

choices diverge systematically from actual choices.5  As with other non-choice responses, we can 

plausibly assume that hypothetical choices (ݔሻ depend on motivational factors affecting real 

choices and reporting, ݔ ൌ ݃௫ሺܽ,  ሻ, but there is good evidence that the mapping ݃௫ differs fromݖ

the real choice mapping ܥ.  Still, the use of hypothetical choice data potentially offers several 

advantages: it may economize on data collection (in the sense that one can use one aggregate in 

place of multiple components); it may encompass otherwise overlooked motivations; it is highly 

portable (in the sense that its meaning is identical in all contexts); and it is elicited through 

questions that respondents may find more familiar and easier to answer than inquiries about 

motivations.   

 The use of hypothetical choice data is plainly justified when posing a decision problem 

hypothetically only changes the scale of the measured behavioral response.  Specifically, if we 

																																																								
5 See, for example, Cummings et al. (1995), Johannesson et al. (1998), List and Gallet (2001), Little and Berrens 
(2004), Murphy et al. (2005), Blumenschein et al. (2007).  When surveys are consequential, incentive problems also 
come into play; see Carson and Groves (2007) and Carson, Groves, and List (2011). 
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assume ݃௫ሺܽሻ ൌ ݔ , thenݔ ሺܽሻሻ for some monotonic functionܥሺݔ ൌ  ሻ, which we canݔିଵሺݔ

estimate and use to predict choices.  We can extend this reasoning to encompass the possibility 

that hypothetical choice is also distorted by a collection of context-specific factors, ݖ.  If we 

assume that ݃௫ሺܽ, ሻݖ ൌ ,ሺܽሻܥሺݔ ,that ݃௭ሺܽ ,(ݖ  is monotonic for eachݔ where) ሻݖ ሻݖ ൌ ,ሺܽሻܥሺݖ̃  ,ሻݖ

and that ሺݔ, ሻݖ ൌ ሺݔሺݔ, ,ሻݖ ,ݔሺݖ̃ ݔ ሻሻ is invertible, we then haveݖ ൌ ,ݔሚሺܥ  ሻ for some functionݖ

 .ሚ, which we can estimate and use to predict choices after the interventionܥ
 In principle, one could apply this approach either at the individual level (to predict the 

decisions of a particular person), or at the aggregate level (to predict choice distributions).  

Because most economic applications are concerned with predicting the effects of interventions on 

the distribution of choices, we apply it here at the aggregate level.  Doing so offers several other 

practical advantages.  First, for an individual-level application, one would need to elicit both real 

choices and non-choice reactions regarding the same decision problems from the same individual, 

and it is likely that one type of response would contaminate the other (see Section 7, below).  In 

contrast, for an aggregate-level application, one can gather data on real choices and non-choice 

responses from different samples of individuals without cross-contamination.  Second, because 

this approach treats the decision problem as the unit of observation, precise estimation of ܥሚ 

requires data concerning both choices and non-choice reactions for a reasonably large collection 

of decision problems.  One rarely has data pertaining to many distinct choice problems for a 

single individual, but distributions of choices for decisions made under differing conditions (and 

by different individuals) are readily available.  Finally, individuals’ idiosyncrasies likely average 

out in larger populations, facilitating more accurate prediction.   

  

3. Experimental procedures and data 

 We tested this approach in a setting of intrinsic interest to economists: one in which the 

objective is to estimate demand curves for a collection of goods, but where no (usable) variation 

in price is observed.  Because it is important for us to know the true price response for each good, 

we generated the data for this exercise through a laboratory experiment, which is free from the 

potentially spurious and confounding factors that often render the accurate measurement of such 

responses problematic in the field.  In the interests of confronting our subjects with simple 

choices and evaluation tasks involving a reasonably large collection of familiar products, we 

settled on food items. 

 To gather data on the range of decisions and evaluations required for our analysis, we 

assigned each subject to one of multiple treatments, described below.  At the outset of each 
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treatment session, subjects were told that the experiment would proceed in two stages.  The first 

involved a computer-based choice or rating task lasting roughly 30 minutes.  The second was a 

30-minute waiting period.  Subjects were not allowed to eat anything during the waiting period 

unless a snack was provided (according to the rules of the experiment).  Sessions took place in 

mid-afternoon, when subjects are typically hungry. 

In the first stage of each session, subjects either provided non-choice evaluations or made 

real decisions.  The non-choice evaluations consisted of subjective ratings for some subjects and 

hypothetical choices for others.  Real and hypothetical decisions pertained to snack food items 

offered at either $0.25 or $0.75.  Subjective ratings pertained to the same collection of items, with 

price a factor in some but not all questions. For the reasons discussed in Section 2, we chose the 

subjective rating questions with the object of obtaining responses that contain information about 

the perceived effectiveness with which each alternative addresses underlying motivations, and/or 

about factors that may create divergences between real and hypothetical choices. 

Each subject completed decision or non-choice evaluation task(s) for 189 snack food 

items (at both prices, where applicable), with the stimuli (food items or item-price pairs)  

presented in random order. 6  Subjects were divided into multiple task-specific treatment groups, 

with each subject participating in a single treatment to avoid cross-contamination of responses 

across tasks.  Most treatment groups consisted of roughly 30 subjects.  Altogether, 365 subjects 

participated (181 males, 184 females).7  For a complete catalog of the treatment groups along 

with sample sizes and a screenshot for a representative question, see the Appendix A, section 1 

and Figure A.1; the instructions used for each group appear in Appendix B.  The following is a 

brief summary of key design features. 

Some of the treatment groups provided subjective ratings.  Depending on the group, 

subjects were asked to report their anticipated degree of happiness with each potential purchase, 

the anticipated degree of social approval or disapproval for each potential purchase, how much 

they liked each item, evaluations of regret, measures of temptation, expected enjoyment (ignoring 

considerations of diet or health), perceptions of health benefits, impact of consumption on social 

image, and the perceived inclination to overstate or understate the likelihood of a purchase. 

																																																								
6	The items belong to the following eight broad categories: candy (48 items), cookies and pastries (40 items), chips and 
crackers (24 items), produce and nuts (18 items), cereal (14 items), drinks (11 items), soups and noodles (11 items), and 
other (25 items).	
7 We conducted the experiment at the Stanford Economic Research Laboratory (SERL).  The protocol was reviewed 
and approved by Stanford University’s IRB.  Each subject was paid a participation fee between $20 and $30.We 
adjusted the fee upward when the response rate to our subject solicitation was low, and downward when it was high. 
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Several groups made hypothetical choices.  The literature on stated preferences explores 

a variety of protocols for eliciting such choices, and attempts to determine which is most 

accurate.  However, it is not clear that any single approach dominates the others.  Indeed, it seems 

likely that different protocols elicit somewhat different (and potentially complementary) 

information.  Accordingly, we employed multiple protocols, each with a separate treatment 

group.  One protocol mimicked the real choice treatment (described below), except that no choice 

was implemented; we call this the "standard" protocol.  A second protocol employed a "cheap 

talk" script (as in Cummings and Taylor, 1999) that encouraged subjects to take the hypothetical 

choices seriously,8  a third elicited likelihoods rather than Yes/No responses (analogously to 

Champ et al., 1997), a fourth asked about the likely choices of same-gender peers (to eliminate 

image concerns and thereby potentially obtain more honest answers, analogously to Rothschild 

and Wolfers, 2011), and a fifth elicited willingness-to-pay (WTP) rather than Yes/No responses.    

Finally, one group made real choices: one decision was selected at random and 

implemented during the 30-minute waiting period.  A possible concern is that the low chance of 

implementing any given choice (one in 378 item-price pairs) renders it effectively hypothetical.  

Results presented in subsequent sections strongly refute this concern.  Average purchase 

frequencies are significantly higher for hypothetical choices than for these real choices (consistent 

with the general finding in the literature concerning hypothetical bias); the cross-choice-task 

variance of the purchase frequency is considerably higher for hypothetical choices than for  these 

real choices; and the average price sensitivity implied by the purchase frequencies is much larger 

for hypothetical choices than for these real choices.  Plainly, despite the low implementation 

probabilities, subjects treated the real and hypothetical questions much differently.   

It does not follow, however, that subjects viewed their "real" choices as entirely real, as 

opposed to partly real and partly hypothetical.  To evaluate that possibility, we added a "mixed" 

treatment, in which subjects were told that five of their choices would be real (that is, one of the 

five would be chosen at random and implemented), and the rest would be hypothetical.  The real 

choices were clearly identified and interspersed among the hypothetical ones.  In that group, the 

implementation probability for each real choice was 1 in 5 rather than 1 in 378.  We elicited 175 

real choices through this "mixed" treatment, pertaining to 15 distinct items (at a price of $0.75).  

We then pooled that data with 450 choices involving the same 15 items from the "real choice" 

treatment, and estimated a probit regression relating the purchase decision to a set of 15 product 

dummies as well as a "mixed choice treatment" dummy.  If the "real choice treatment" subjects 
																																																								
8 We would like to thank Laura Taylor for generously reviewing and suggesting changes to the script, so that it would 
conform in both substance and spirit with the procedure developed in Cummings and Taylor (1999). 
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viewed their choices as real, the coefficient for the "mixed choice treatment" dummy should be 

zero; if they viewed those choices as partially hypothetical, then the "mixed choice treatment" 

coefficient should be negative given the documented direction of hypothetical bias.  In fact, it was 

positive 0.0157 (probability scaled), with a standard deviation of 0.0364.9   The difference is both 

statistically insignificant and of an economically small magnitude (1.57 percentage points). The 

coefficient indicates that the purchase frequencies were, if anything, slightly higher for real 

choices in the "mixed choice" treatment than in the "real choice" treatment, which is inconsistent 

with the hypothesis that participants in the "real choice" treatment were more inclined to view 

their choices as hypothetical than were participants in the "mixed choice" treatment.   

 We are not surprised by the finding that participants in the "real choice" treatment viewed 

their choices as real.  After all, they had as much at stake as someone making a single purchase 

decision (because they knew one choice would definitely be implemented), and their task was no 

more tedious when taken seriously.   Notably, similar conclusions were reached by Carson, 

Groves, and List (2011) based on theoretical principles and experimental evidence, and by Kang 

et al. (2011) based on fMRI data.  Consistent with these findings, a survey paper by Brandts and 

Charness (2009) found no support for the hypothesis that differences between the strategy method 

and the direct response method increase with the number of contingent choices.10   

 

4. Prediction task and evaluation criteria 

We use the data gathered in our experiment to simulate the following empirical exercise.  

Suppose a large group of items (our 189 snack items) have all been sold only at a single price, P1 

(either $0.25 or $0.75), at which actual purchases have been observed.  There is a proposal to 

change these prices to some new level, P2 ($0.25 if P1 = $0.75, and $0.75 is P1 = $0.25).  To help 

evaluate the proposal, an economist is asked to estimate the amount by which the demand for 

each of the items would increase or decrease.  There is no opportunity to observe actual demand 

at any price other than P1, but additional non-choice information is available.   

As mentioned previously, this exercise is intended to stand in for any setting in which one 

wishes to estimate a behavioral response to a change in some economic condition, but either there 

is no observed variation in the condition, or the observed variation is not usable, perhaps because 

																																																								
9 For the "mixed choice" treatment, purchase frequencies were significantly higher for hypothetical-choice items than 
for real-choice items (even though the choice frequencies for the two groups of items were very similar within the "real 
choice" treatment).  Thus, the presence of real choices in the "mixed choice" treatment did not induce subjects to treat 
their hypothetical choices as real; they still suffered from hypothetical bias. 
10 It is important to acknowledge, however, that the pertinent studies involved far fewer contingent choices than in our 
"real choice" treatment. 
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it is endogenous and no valid instrument is available, or perhaps because it is qualitative and not 

easily reduced to a low-dimensional quantitative representation.  For instance, the objective may 

be to gauge responses to a proposed policy change that has no close precedent.  We have, of 

course, designed our experiment so that we observe actual choices in the setting of interest, and 

hence can evaluate predictive performance. 

This prediction task fits within our conceptual framework as follows: ܦ is a decision 

problem that offers item ݊ at price ଵܲ, while ܦ offers one of those items at price ଶܲ.11 

Accordingly, our object is to predict the response of demand to a change in price based on the 

differences in demand across products sold at a single price.   

A.  Patterns of actual purchases 

Before describing the criteria by which we evaluate the quality of predictions, it is 

important to verify first that our data on real choices manifests patterns that are worth predicting.   

Consequently, we begin by describing how the “real purchase frequency” (henceforth abbreviated 

RPF) varies across item-price pairs, of which there are 378 in total. 

RPF varies from a low of 0 to a high of 60 percentage points, with a mean of 24.01%.  

Demand responds to price: the RPFs average 27.76% for a price of $0.25 and 20.26% for a price 

of $0.75 (p ≤ 0.001).12  As one would expect, the demand for these products is relatively price 

inelastic, but there is nevertheless a sizable average response (7.50 percentage points).   

Conditional on price, the RPFs also vary considerably across items: the sample variance 

is 120.7 with a price of $0.25 and 83.2 with a price of $0.75.  While these variances suggest that 

the attractiveness of the items varies considerably, it is important to bear in mind that, given the 

size of the "real choice" treatment group (30 subjects), some of that variation reflects sampling 

error.  However, as we show in Appendix A, section 2, sampling error can only account for a 

fraction of the variation in RPFs across items; most of that variation is likely attributable to 

differences in underlying population frequencies. 

There is also considerable variation across items in the responsiveness of the RPF to price 

changes; the variance of the percentage change in the RPF is 37.3.   An increase in price from 

$0.25 to $0.75 reduces demand for 85.2% of our items, increases it for 2.6% of items, and has no 

effect for the remaining 12.2% of items.  Much of the variation in the measured price response is 

presumably attributable to sampling error, which differencing may either amplify or reduce, 

depending on the magnitude of the correlation between choices by the same subject involving the 

																																																								
11 Because we implement only one purchase decision, the demands for the products are independent by construction, 
and we can treat each such choice as a separate decision problem. 
12 Throughout, when comparing two means, we use paired t-tests. 
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same item but different prices.  Without an estimate of that correlation, we cannot compute a 

useful bound on the fraction of the variance that is attributable to measurement error.  However, 

in light of our ultimate success in generating predictions of price sensitivities that are reasonably 

well-calibrated (see Section 6), it is safe to conclude that some significant fraction of the variation 

in the measured responsiveness to price reflects population variation rather than sample variation.   

B. Criteria for evaluating predictions 

For each method of predicting demand at the new price (P2) considered in subsequent 

sections, we evaluate the quality of predictions according to three criteria: overall bias, mean-

squared prediction error (MSPE), and calibration.13   

To be more specific, let ܴଶ denote the predicted RPF for item i at price P2 .  Overall bias 

is absent, both for the predicted level of demand, ܴଶ, and for the predicted change in demand, 

ܴଶ െ ܴଵ, when 
ଵ

ே
∑ ܴଶ
ே
ୀଵ ൌ

ଵ

ே
∑ ܴଶ
ே
ୀଵ .  The most common measure of overall bias, mean 

prediction error (MPE ൌ
ଵ

ே
∑ ൫ ܴଶ െ ܴଶ൯
ே
ୀଵ ), has the limitation that magnitudes are not instantly 

interpretable.  Instead, we calculate what we call the normalized average effect (NAE): 

ଵ

ே
∑ ൫ ܴଶ െ ܴଵ൯/
ே
ୀଵ

ଵ

ே
∑ ሺܴଶ െ ܴଵሻ
ே
ୀଵ .  A value of unity indicates no overall bias, a value such as 

0.9 indicates that the predictions understate the actual effect of the price change by 10%, and a 

value such as 1.2 indicates a 20% overstatement. 

We compute the MSPE for the level of predicted demand according to the standard 

formula MSPE ൌ
ଵ

ே
∑ ൫ ܴଶ െ ܴଶ൯

ଶே
ୀଵ .  Notice that this is mathematically identical to the MSPE 

for the predicted change in demand, 
ଵ

ே
∑ ൫ሺ ܴଶ െ ܴଵሻ െ ሺܴଶ െ ܴଵሻ൯

ଶே
ୀଵ .  Consequently, in what 

follows we will simply refer to the MSPE without specifying levels or changes.   

Even a prediction that exhibits no bias on average may nevertheless be biased conditional 

on any given value of the prediction.  As an extreme example, suppose the prediction is equal to 

the mean RPF across items, plus noise.  In that case, the prediction would be unbiased on 

average, but biased conditional on it being any value other than its mean.  We employ measures 

of calibration to address this issue.  Specifically, if the predicted values of a variable are ܺ and 

the actual values are ܺ, we estimate a simple OLS regression of the following form: 

  ܺ ൌ ߙ  ߚ ܺ         (1)ߝ

																																																								
13 As discussed below, we consider a model well-calibrated if, on average, realizations vary unit one-to-one with the 
model’s forecasts.  The term “calibration” is defined analogously in the statistical literature on probability models; see, 
e.g., Brier (1950) or Yates (1982).  As noted in Section 7, “calibration” has an entirely different meaning in the 
literature on SP techniques. 
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If the prediction is perfectly calibrated (in the sense that ܺ is an unbiased prediction of ܺ 

conditional upon whatever value ܺ  takes for a given observation), then ߙ ൌ ߚ ,0 ൌ 1, and the 

conditional mean of ߝ is zero; thus, a simple OLS regression should yield these values.  The 

parameter β is of particular interest because it governs the manner in which bias varies with the 

value of the prediction.  In contrast, α pertains only to the average bias (which NAE also 

measures).  Therefore, we report β as our measure of calibration for the predictions ܺ. 

 Our calibration parameter is not mathematically equivalent for predicted levels of 

demand, ܺ ൌ ܴଶ, and predicted changes in demand, ܺ ൌ ܴଶ െ ܴଵ.  Therefore, we report both.  

As we will see, the task of achieving good calibration is typically more challenging for predicted 

changes in demand than for predicted levels. 

 It is also important to provide a gauge of precision, so that one can assess whether the 

extent of any departure from an ideal standard, or any apparent improvement of one prediction 

method over another, is greater than one would expect to observe based on chance alone.  

Accordingly, we derive a joint bootstrap distribution for all prediction methods and evaluation 

metrics by drawing 1000 resamples at random from the set of items.  The literature raises 

questions about the use of bootstrap procedures in contexts involving the types of variable 

selection methods we employ (see, e.g., Leeb and Pötscher, 2005, and Kyung et al., 2010), but 

there appear to be no workable alternatives as of this writing.14  The reader should bear this 

qualification in mind when interpreting statements about the bootstrap distribution pertaining to 

the predictive performance of those methods. 

 

5. Benchmarks 

 When evaluating the quality of a prediction, it is important to have in mind benchmarks 

that help one gauge “good” performance.  We employ two classes of benchmarks.  The first 

involves prediction methods that employ no more data on actual choices than the methods we 

wish to evaluate.  Given the ground rules of our exercise, these methods are feasible alternatives 

to our approach; one could also use them in the applications we envision.  The second class 

involves methods that require additional data on actual choices.  These methods are infeasible 

under our ground rules; one could not actually deploy them in the same applications.  We 

consider them because they establish demanding benchmarks.      

 A. Benchmarks that use limited choice data 

																																																								
14	See West (2006) for a survey of forecast evaluation methods.   
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 If, as our prediction task assumes, choice data are limited to RPFs for all of our items at a 

single price, P1, the options for predicting RPFs at the alternative price, P2, without using non-

choice data are limited.  The first line of Table 1 provides performance statistics for the simplest 

alternative, a myopic prediction (no price response, ܴଶ ൌ ܴଵ).  We do not report a calibration 

statistic for the predicted change in demand because it is zero for all items.  We view the myopic 

benchmark as a minimal standard: any approach that underperforms it is not worth considering. 

 We cannot use reduced-form methods to generate a benchmark using limited choice data 

because those data are assumed to exhibit no variation in price either within or across items.  

Structural methods require one to observe variation in some condition that is “similar” to price 

variation according to an assumed structural model.  Here, the natural candidate is variation in 

serving size (quantity) across items (controlling for the items’ characteristics), because a 

difference in quantity implies a difference in price per unit.  

 To construct a structural model, we assume that subject s derives value ܸ   ௦ fromߝ

good ݅, where ܸ is a component of item i’s value common to all subjects, and ߝ௦ is an iid random 

variable with standard error σ such that 
ఌೞ
ఙ
≡  ௦ ~ Logistic(0,1).  Because we use the strategyߟ

method, the purchase decisions for all goods are independent, so subject ݏ buys item ݅ iff  

ܸ  ௦ߝ  ଵܲ	(where ଵܲ is the single price charged for all items).  We also assume that ܸ ൌ

ሺ ܺߚሻݍ, where ܺ is a vector of characteristics, ߚ is a vector of parameters, ܺߚ is the value of 

the item per gram, and ݍ is the number of grams.15  The latter assumption imposes two 

restrictions on the common value component: first, it is zero when quantity is zero; second, it is 

linear in quantity.  The first restriction is reasonable; the second is defensible given the small 

quantities involved.  We note that this assumption is critical for the identification of price effects, 

since otherwise a doubling of price would not be equivalent to a halving of quantity.  Details 

concerning the estimation of this model, as well as its use for forecasting, appear in Appendix A, 

section 3. 

As shown in the second line of Table 1, even the most accurate structural model we 

examined performs terribly out of sample.  The model implies average price responses nearly 

three times as large as the actual responses, so the overall bias is nearly twice the actual price 

response.  It also performs worse than the myopic benchmark in terms of MSPE.  Calibration for 

levels is acceptable when predicting from $0.75 choices to $0.25 choices, but not when predicting 

																																																								
15 Alternatively, we could use another variable (such as calories) rather than grams as the scaling factor for utility.  If 
we defined ݍ to be the number of calories, ܺߚ would be the value of the item per calorie.  The characteristics ܺ might 
then include grams per calorie.  In practice, using grams rather than calories as the scaling factor yielded the best-
performing predictive model. 
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from $0.25 choices to $0.75 choices, and calibration for changes is quite poor (particularly when 

predicting from $0.75 choices to $0.25 choices). 

To be clear, we do not interpret this finding as a general indictment of structural methods.  

Rather, it shows that the prediction task we have set ourselves is a challenging one.  That is why 

the success of our method, documented below, is notable. 

 Another feasible alternative under our ground rules is to employ stated preference 

techniques, treating hypothetical purchase frequencies (henceforth abbreviated HPF) as 

predictions rather than as predictors.  We use two methods to predict the RPFs at the price ଶܲ.  

The first is simply to set ܴଶ ൌ  we call this ;(݆  denotes the HPF for item ݅ at priceܪ where) ଶܪ

the “levels method.”  The second is to set ܴଶ ൌ ܴଵ  ሺܪଶ െ  ଵሻ; we call this the “differenceܪ

method.”  One would expect the difference method to outperform the levels method when the 

forecast errors for the latter are highly correlated within item across prices (e.g., if the degree of 

hypothetical bias is an item-specific fixed effect).   

Not surprisingly, the data exhibit substantial hypothetical bias: the average standard-

protocol HPF (30.88%) overstates the average RPF (24.01%) by nearly 7 percentage points 

(equivalently, by 28.6%), and we reject the absence of bias (p < 0.001).  Moreover, the HPF 

exceeds the RPF for 73% of item-price pairs.  Nevertheless, there is a strong correlation across 

items between the RPF and the HPF (ρ = 0.697), which suggests that the HPF may be a useful 

predictor of the RPF, even if it is not a good prediction.   

The variance of the HPF is more than twice that of the RPF, a phenomenon we call 

hypothetical noise.16  One might conjecture that this pattern emerges because hypothetical choices 

are more random than real choices, possibly as a result of subjects taking them less seriously.  

However, that explanation is incorrect.  As we show in Appendix A, section 4, hypothetical noise 

is attributable in significant part to greater systematic variability of population HPFs than of 

population RPFs across choice problems.  A possible explanation is that, when answering 

hypothetical questions, people naturally exaggerate the sensitivity of their choices to pertinent 

conditions; for example, as noted below, our data exhibit this pattern with respect to price 

variation.  This result is encouraging: if we can identify the characteristics of choice problems 

that account for the sizable difference in variation between population HPFs and RPFs, we will be 

in a position to construct vastly improved forecasts of RPFs for unobserved choice problems.   

																																																								
16 Similarly, Carson, Groves, and List (2011) found that the variance of valuations rises when choices become less 
consequential. 
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Together, hypothetical bias and hypothetical noise render the standard-protocol HPF a 

remarkably poor prediction of the RPF, regardless of whether one uses the differences method or 

the levels method; see the third and fourth lines of Table 1.  For the difference method,17 the 

predicted price response is nearly twice the actual response, so the overall biases of the difference 

method and the myopic benchmark are roughly equal.  The MSPE is substantially larger than for 

the myopic benchmark, and calibration in levels is noticeably poorer.  The calibration parameter 

for changes, for which the myopic benchmark provides no counterpart, is extremely low (0.248).  

The levels method generally underperforms the difference method, the exceptions being NAE and 

MSPE when predicting from $0.25 to $0.75. 

In evaluating calibration results based on OLS regressions, it is important to bear in mind 

that we measure HPFs and RPFs for groups of modest sizes, rather than for the population.  Even 

if the relationship between the RPF and an HPF reflects perfect calibration for the population, it 

will not do so in a finite sample, because the sample HPF measures its population counterpart 

with error.18  In particular, the distribution of ܪ conditional on ܪ
 (the population HPF) is 

binomial with mean ܪ
.	 	Whether one should worry about the implications of that observation 

depends on one’s objective.  If the objective is to assess calibration conditional on measuring the 

HPF and the RPF with groups of a particular size, the OLS regression provides the pertinent 

information.  But if the objective is to assess the calibration one could achieve by using 

sufficiently large groups, the OLS estimates are contaminated by errors-in-variables (EIV) bias. 

 To gauge large-group calibration, we consider two alternative measures of calibration for 

changes using the differences approach, and of calibration for levels using the levels approach.19  

For the first, we reduce sampling error by doubling the size of the sample used to compute the 

HPFs.  For the second, we re-estimate equation (1) using our original sample, but instrument for 

HPF using the HPF measured with the duplicate sample.  Because the HPFs  for the original and 

duplicate samples reflect the same population tendencies, they are necessarily correlated, and 

because they reflect independent random draws from the population, their sampling errors are 

																																																								
17	For the difference method, the absolute value of the average bias is the same when predicting from $0.75 choices or 
from $0.25 choices; only the sign changes.  Likewise, the MSPE and calibration for differences are exactly the same in 
either case.  However, calibration for levels differs according to whether we are predicting $0.75 or $0.25 choices,	
18 Sampling error in the measurement of the RPF should not affect calibration for levels using the levels approach or 
calibration for changes using the differences approach because, in those cases, an RPF appears only on the left-hand 
side of the regression equation.  However, such sampling error will affect calibration for changes using the levels 
approach and calibration for levels using the differences approach, because in those cases an RPF also appears on the 
right-hand side of the regression equation. 
19 Even though we can estimate the variance of the measurement error using the properties of the binomial distribution, 
we cannot compute the magnitude of the EIV bias by applying the standard formula, because (a) the variance of the 
measurement error, and hence the noise-to-signal ratio, varies according to the true value of the HPF, and (b) given our 
procedures, the measurement error is likely correlated across item-price pairs. 
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necessarily uncorrelated either with population HPFs or with each other.  Consequently, the IV 

approach should yield a consistent estimate of the calibration parameter for the population. 

With the difference method, our measure of calibration for changes rises from 0.248 to 

0.312 when we double the sample, and to 0.519 when we instrument.  With the levels method, 

predicting $0.25 choices, our measure of calibration for levels rises from 0.474 to 0.528 when we 

double the sample, and to 0.688 when we instrument; predicting $0.75 choices, our measure of 

calibration for levels rises from 0.466 to 0.516 when we double the sample, and to 0.671 when we 

instrument.  Thus, increases in group size can improve calibration, but only to a limited degree. 

As we mentioned in Section 3, studies in the literature on stated preferences gather 

hypothetical choice data using a variety of protocols, some of which are intended to “fix” the 

standard hypothetical choice question.  While we find that some of the alternative protocols 

reduce the overall degree of hypothetical bias compared with the standard protocol, it appears that 

they generally do so in our experiment by introducing offsetting biases, rather than by addressing 

the underlying cause of the bias.  Strikingly, the overall correlation between the RPF and the 

standard-protocol HPF is higher than for any alternative HPF, which casts doubt on the 

hypothesis that the alternative protocols improve the informational content of the hypothetical 

choice measures.  With one exception, “3rd party” hypothetical choices by same-gender peers, 

none of the alternatives yields a clear improvement over the standard hypothetical choice 

protocol, and even that approach performs quite poorly compared to the benchmarks that use 

additional choice data, discussed in the next subsection.  See the Appendix A, section 5, for 

details. 

As shown in the table, in most cases the 0.5th-to-99.5th percentile intervals of the 

bootstrap distribution exclude the value of unity (the ideal) for NAE and the various calibration 

metrics we use to evaluate the methods discussed in this subsection. 

B. Benchmarks that also use additional choice data 

 For our second set of benchmarks, we assume that purchase decisions are observed for 

the item of interest at the price ଵܲ, and for other items at both prices, ଵܲ and ଶܲ .  Thus, one can 

use the behavioral response to price for other items to predict the response for the item of interest.  

In practice, we randomly divide the items into five “folds” of (approximately) equal sizes, and 

forecast the RPFs at the price ଶܲ for items in each fold (the “hold-out sample”) assuming that the 
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available choice data encompass price variation for all items in the other four folds (the “training 

sample,” consisting of 80% of the items).20 

 We examine four benchmarks of this type.  First, we simply compute the mean change in 

the RPF (i.e., ܴଶ െ ܴଵ) for the items in the training sample, and predict ܴଶ for each item in the 

holdout sample by adding that average response to ܴଵ.   Even with no adjustment for differences 

across products, this benchmark provides a reasonably demanding standard, as it presupposes that 

one can observe a wealth of data describing behavioral responses to price variation for closely 

related items, contrary to the ground rules governing our main prediction task.   

 For the remaining three benchmarks, we use the training samples to estimate models of 

the form 

  ܴଶ ൌ ߙ  ଵܴߚ  ܺߛ    ,      (1)ߝ

and employ these models to predict  ܴଶ for items in the hold-out sample.  One version omits ܺ; 

for the others, ܺ includes variables that identify food categories and measure nutritional context.  

We use OLS because it has desirable forecasting properties (see, e.g., White, 1980).  However, 

we also recognize that OLS is susceptible to the overfitting problem in contexts where the 

number of potential predictors is large relative to the number of observations.  Because 

overfitting can compromise the accuracy of out-of-sample predictions, we also employ LASSO 

(the Least Absolute Shrinkage and Selection Operator, due to Tibshirani, 1996), a widely used 

technique from machine learning.  As the name implies, LASSO is a shrinkage estimator, which 

means it compensates for overfitting by shrinking the overall size of the coefficient vector.  

Shrinkage can attenuate the sensitivity of predictions to changes in predictors, and hence reduce 

variance, thereby improving the accuracy of out-of-sample predictions according to measures 

such as mean-squared prediction error.21 

 Measures of predictive performance appear in the bottom portion of Table 1.  All of these 

approaches yield substantial improvements over the myopic benchmark.  Much of the gain is 

																																																								
20 When measuring calibration for these benchmarks, we introduce fold fixed effects into the pertinent regressions, so 
that the performance metric is determined by correlations between predictions and realizations within folds.  
Correlations between predictions and realizations across folds are potentially spurious: mechanically, when the average 
of the outcome variable is higher in the holdout sample, it is lower in the estimation sample. 
21 Formally, LASSO optimizes a standard criterion for within-sample fit (here, it minimizes the sum of squared 
residuals) subject to a penalty that is proportional to the size of the normalized coefficient vector, measured in the ܮଵ-
norm (i.e., the sum of the absolute normalized coefficients).  The form of the penalty ensures that LASSO assigns 
coefficients of zero to many potential regressors, thereby performing variable selection as well as shrinkage.  Because 
of the variable selection feature, we allow LASSO to draw on a larger set of product characteristic variables than we 
employ for any particular structural model.  A list of the included variables for the LASSO-selected specifications in 
Table 1 appears in section 7 of the Appendix. 
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achieved simply by assuming that the price response for each item would be the same as the 

average response for other items.22  Allowing the prediction to be conditioned more flexibly on 

the value of the RPF at the price ଵܲ yields some improvement when predicting from $0.25 

choices, but not when predicting from $0.75 choices.  Predictive performance actually 

deteriorates when the model is augmented to include the items’ characteristics.  This finding 

reflects the general principle that parsimonious models often predict better than ones with large 

numbers of apparently relevant variables.  However, the LASSO procedure, which pares down 

the list of predictors and shrinks the coefficient vector to combat overfitting, yields a meaningful 

improvement over the other approaches.  Specifically, it achieves the lowest values of MSPE, and 

near-ideal values for NAE and all but one calibration parameter.     

 The benchmarks described in this subsection provide demanding standards for evaluating 

methods of forecasting price responses in settings where no price variation is observed for any 

item.  Because they involve standard and widely used methods, any approach that achieves 

comparable results using markedly inferior data ought to merit serious consideration. 

 

6. Results 

Next we evaluate the accuracy of predictions based on statistical models relating RPFs to 

non-choice responses, including subjective ratings and HPFs (elicited with various protocols).  As 

in Section 5C, one can construct these predictions using either the levels method or the difference 

method.  For the levels method, we simply set ܴଶ ൌ ܴଶ
ி  (where ܴଶ

ி  denotes the fitted value of 

ܴଶ based on the model); for the difference method, we set ܴଶ ൌ ܴଶ  ൫ܴଶ
ி െ ܴଵ

ி ൯.  For the sake 

of brevity, we report results based only on the difference method, which almost always 

outperformed the levels method in practice. 

 A key step in building good predictive models is model selection.  In the current context, 

the set of possible models is enormous because we can potentially draw on an extremely large set 

of predictors.  Specifically, we have assessed a variety of non-choice reactions, and in the case of 

hypothetical choices have used a number of protocols.  For questions that can elicit more than 

two distinct responses, we have a separate variable measuring the frequency of each response 

(leaving one out because the frequencies sum to one).  Non-linear terms (such as squares of 

average responses) and interactions may also prove predictively useful.  

The criteria used for model selection must pertain to performance within the training 

sample; it would not be valid to evaluate our approach by selecting models that yield the best out-

																																																								
22 For this benchmark, we do not report calibration for changes, because the prediction does not vary within each fold.   
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of-sample predictions.  As mentioned in Section 5.B, the LASSO procedure was devised (in part) 

to assist with model selection in settings where the objective is accurate out-of-sample prediction, 

and where the number of potential predictors is large relative to the number of observations.  

Consequently, our first step is to select and estimate a model using LASSO, allowing it to draw 

on the entire set of variables constructed from non-choice responses.23 

The second row of Table 2 reports our metrics of out-of-sample predictive accuracy for 

the resulting LASSO models.  The NAE and calibration parameters are all reasonably close to 

unity, and in five of six cases the 10th-to-90th percentile intervals of the bootstrap distribution do 

not exclude unity (the ideal value).  Remarkably, even though our approach employs no data on 

actual choices at the new prices, it exhibits modest overall bias: it understates the average effect 

of a price change by 15% when predicting from $0.75 to $0.25, and overstates it by about 8% 

when predicting from $0.25 to $0.75.  Improvements over the myopic benchmark with respect to 

NAE and MSPE are dramatic.24    

In the first row of the table, we also reproduce results for the best-performing benchmark 

(which employs choice data encompassing price variation, and is therefore infeasible according to 

our ground rules).  Overall, the LASSO specifications perform well compared with that 

benchmark: they achieve lower MSPE when predicting from $0.75 to $0.25 and overall 

(averaging across the two directions), as well as better overall calibration in changes.  Calibration 

in levels is only slightly worse than the benchmark when predicting from $0.75 to $0.25 (0.948 

versus 1.023 for the benchmark); though it is noticeably worse when predicting in the opposite 

direction,25 the calibration coefficient remains reasonably high (0.759).   

We can potentially achieve further improvements by fine-tuning our model selection 

criteria.  One technique is to seek specifications that perform well in cross-validation exercises.  

For cross-validation, one simulates out-of-sample predictive performance by dividing the training 

sample into folds, and treating each fold (one at a time) as the hold-out sample.  Instead of 

assigning observations randomly to multiple folds, we divide the observations into two folds 

according to whether the value of the HPF in the “duplicate” sample (discussed in Section 5.C) is 

above or below the median.26  To understand why, recall that our out-of-sample predictions either 

																																																								
23 Lists of the included variables for all of the LASSO-selected specifications in Table 2 appear in section 7 of the 
Appendix. 
24 In each case, the 0.5th-to-99.5th percentile interval of the bootstrap distribution for the difference in performance 
excludes zero.   
25 In this case, the 5th-to-95th percentile interval of the bootstrap distribution for the difference in performance excludes 
zero. 
26 Results based on random of assignment of observations into multiple folds are qualitative similar, though out-of-
sample predictions are typically a bit less accurate. 
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employ data for a relatively attractive group of alternatives (snacks priced at $0.25) to forecast 

choices for a relatively unattractive group of alternatives (snacks priced at $0.75), or the other 

way around.  Because the duplicate HPF captures aspects of an option’s attractiveness (aside 

from price), dividing the training sample into folds according to the value of the HPF allows us to 

simulate the predictions of interest more closely than random assignment to multiple folds. 

We fine-tune model selection by using a hill-climbing algorithm to identify the OLS 

model that optimizes specified measures of cross-validated predictive performance within the 

training sample.  We initialize each search with a model that employs the same variables as the 

LASSO specification.  We conduct one search to find the model that optimizes cross-validated 

performance according to each of our evaluation criteria -- overall bias, MSPE, and calibration.27 

Metrics of out-of-sample predictive accuracy for the resulting models also appear in the 

top section of Table 2.28  We begin with specifications that maximize the quality of cross-

validated calibration, because that aspect of predictive performance appears to pose the greatest 

challenge.  All performance metrics improve compared with the LASSO specification when 

predicting from $0.25 choices, but three of four deteriorate when predicting from $0.75 choices 

(the exception being NAE).  Averaging across both directions, MSPE improves slightly.  The 

specifications that minimize the cross-validated magnitude of overall bias produce a qualitatively 

similar pattern of improvement and deterioration, but underperform the specifications that 

maximize cross-validated calibration quality in 7 of 8 cases.  The specifications that minimizes 

cross-validated MSPE generally underperform the others, but nevertheless yield almost no overall 

bias when predicting from $0.75 choices. 

It is natural to wonder whether the accuracy of our approach hinges on employing data on 

large numbers of subjective response variables capturing both hypothetical choices and other 

types of subjective ratings.  As alternatives, we examined the predictive power of simple models 

relating the RPF to the HPF elicited with a single protocol, as well as to two HPFs elicited with 

different protocols.  Details appear in Appendix A, section 6; here we highlight some key 

findings. 

We selected among the various univariate and bivariate models based on two standard 

(within-estimation-sample) criteria.  One is the AIC (Akaike Information Criterion), a measure of 

																																																								
27 For calibration, we focus on levels rather than differences.  For both NAE and calibration, we search for the 
specification that minimizes the distance from unity. 
28 Lists of the included variables for all specifications in Table 2 that are optimized through cross-validation appear in 
section 7 of the Appendix. 
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goodness-of-fit that includes a penalty based on the number of parameters in the model,29 which 

is commonly used for model selection when accurate out-of-sample prediction is the objective.30  

The second criterion is cross-validated MSPE.  Among univariate models, these criteria generally 

favor a specification that relates the RPF to the standard-protocol HPF.  Apparently, the 

alternative elicitation methods emphasized in the literature do not improve the informational 

content of hypothetical choices, at least in this setting.  Among bivariate models, the same criteria 

often favors a specification that relates the RPF to HPFs based on the standard and “3rd party” 

protocols. 

Metrics of out-of-sample predictive accuracy for the preferred univariate and bivariate 

models appear in the middle section of Table 2.  Overall, these models perform surprisingly well.  

The average biases implied by the NAEs are quite small.  The univariate model understate the 

average effect of a price change by 7.3% when predicting from $0.75 choices, and by 5.8% when 

predicting from $0.25 choices.  The bivariate model is even more accurate on average: it 

overstates the average effect of a price change by 2.2% when predicting from $0.75 choices, and 

understates it by 2.5% when predicting from $0.25 choices.  In terms of MSPE, both 

specifications outperform the myopic benchmark by a wide margin and achieve a substantial 

fraction of the improvement associated with the multivariate specifications.31  Calibration for the 

simple models is respectable in levels, but considerably weaker in differences; the multivariate 

specifications achieve the greatest gains with respect to the latter metric.32   

The preferred univariate model yields accurate predictions because the statistical 

relationship between the RPF and the standard HPF does not depend to any significant extent on 

price.  Based on a Chow test, one cannot reject the hypothesis that the regression coefficients are 

the same for observations involving items sold at a price of $0.25, and for those involving items 

sold at a price of $0.75 (p = 0.593).  Figure 1 shows why.  We have used orange dots for item-

price pairs with prices of $0.25, and blue dots for pairs with prices of $0.75.  Visually, lowering 

the price appears to shift the cloud to the northeast without disturbing the relationship between 

the variables.  To drive this point home, we have plotted separate regression lines for the $0.25 

																																																								
29 When comparing specifications with the same number of predictors, rankings of specifications by the AIC coincide 
with rankings by R2, but that is not the case when comparing specifications with different numbers of a predictors. 
30 Results based on another well-known alternative, the BIC (Bayesian Information Criterion) are similar.   
31 For both the bivariate and univariate models, the 0.5th-to-95.5th percentile intervals of the bootstrap distributions for 
the improvements in NAE and MSPE over myopic predictions excludes zero. 
32 Focusing first on the improvement in this calibration parameter when moving from the univariate to the LASSO 
specifications, the 2.5th-to-97.5th percentile interval of the bootstrap distributions excludes zero when predicting from 
$0.75 choices, and the 10th-to-90th percentile interval excludes zero when predicting from $0.25 choices.  Focusing next 
on the improvement in this calibration parameter when moving from the bivariate to the LASSO specifications, the 5th-
to-95th percentile interval of the bootstrap distributions excludes zero when predicting from $0.75 choices. 
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choices and the $0.75 choices on the figure, along with error bands.  For all practical purposes, 

they are indistinguishable.33  Similarly, a Chow test reveals no significant differences between the 

$0.25 and $0.75 versions of the bivariate model (p = 0.937). 

We also estimated LASSO specifications that draw on all of the hypothetical choice 

variables, but none of the other subjective ratings.  Results also appear in the middle portion of 

Table 2.  Curiously, the LASSO procedure selects models that perform considerably worse than 

the best univariate and bivariate models in terms of overall bias and MSPE, even though it could 

in principle replicate those models. This finding underscores the difficulty of identifying within-

sample model selection criteria that assure good out-of-sample predictive performance.  A 

specification that draws only on the ratings variables and none of the hypothetical choice 

variables performs even less well.   

Next we ask whether one can achieve further improvements in predictive accuracy by 

adding the physical characteristics of the items to the list of potential predictors.34  It is important 

to emphasize that any such improvements potentially come at a cost.  Ideally, the research agenda 

set forth in this paper would eventually identify predictive statistical relationships that are stable 

over reasonably broad domains, so that one can extrapolate likely behavior from hypothetical 

choices and non-choice ratings without gathering sufficient data to estimate highly context-

specific predictive models.  For that purpose, it is important to use predictors for which 

implications concerning preferences do not vary over the intended domain.  For the most part, we 

have focused on non-choice reactions for which these implications are largely independent of the 

domain – e.g., how much a subject likes an outcome, how happy they would be with it, the extent 

to which others would approve, which they would choose, and so forth.  In contrast, the 

implications of physical characteristics can vary dramatically across domains.  For example, 

greater sugar content may be a desirable characteristic for chocolate, but not for mustard.  

Consequently, by employing objective characteristics, we may improve predictive power within 

some narrow domain, but impair the model’s applicability outside that domain. 

Results for LASSO specifications that draws on all variables measuring hypothetical 

choices, non-choice ratings, and physical characteristics appear in the bottom section of Table 2.  

There are modest improvements compared with the original LASSO model.  The NAEs are 

																																																								
33	To determine whether our finding is driven by the use of linear functional forms, we reestimated the relationships 
nonparametrically using kernel regression.  Though there is a bit of weaving back and forth, the two curves remain 
virtually on top of each other (see Figure A.2 in Appendix A).	
34 The characteristics are as follows: calories, calories from fat, fat (g), sodium (mg), carbohydrates (g), sugar (g), and 
protein (g), all per serving, as well as category dummies for drinks, candy, produce & nuts, cookies & pastries, chips & 
crackers, cereal, soup & noodles, and uncategorized.  
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indicative of slightly smaller overall bias: with this approach, we understate the average effect of 

a price change by 11.3% when predicting from $0.75 choices, and overstate it by 3.0% when 

predicting from $0.25 choices.  The overall MSPE, averaged over the two directions, is slightly 

lower, and three of the four calibration parameters are closer to unity, but the differences are 

modest.  Notably, with respect to the most challenging performance metric (calibration in 

differences), this approach uniformly outperforms the most demanding benchmark. 

These findings admit at least two interpretations.  One is that a context-specific prediction 

model can potentially perform somewhat better than a fully portable one.  The other is that any 

sacrifice in predictive accuracy resulting from eschewing context-specific variables to enhance 

the model’s  portability across domains is relatively small.   

We have seen that the accuracy with which one can predict the price response of an item 

is roughly the same when “good” choice data are available (i.e., we observe choices at different 

prices for closely related items), so that one can estimate specifications in the form of equation 

(1), and when no price variation is observed but non-choice response variables are available.  We 

close this portion of our analysis by asking whether the addition of non-choice response variables 

improves predictive accuracy even when one has access to good choice data.  The final line of 

Table 2 contains results for LASSO estimates of a specification in the form of equation (1), where 

the vector ܺ is augmented to include not only product characteristics, but also a full set of 

variables measuring hypothetical choices and non-choice ratings.  Relative to a specification that 

omits the latter variables (results for which appear in the first row of the table), performance 

noticeably improves with respect to both MSPE and calibration for changes, and there is no 

significant sacrifice in other dimensions.35  Thus, the use of non-choice response variables 

significantly enhances predictive performance even when good choice data are available. 

 

7. Related Literature 

Our approach is related to stated preference (SP) techniques and the contingent valuation 

method (CVM), which make extensive use of hypothetical choice data (for reviews, see Shogren, 

2005, 2006, Carson and Hanemann, 2005, and Carson, 2012).  This literature seeks to predict 

choices for non-market goods when choice data pertaining to closely related decisions are entirely 

unavailable (e.g., in the environmental context, to value non-market goods such as pristine 

																																																								
35 Notably, this is the only model for which the ideal value (unity) lies within the 10th-to-90th intervals of the bootstrap 
distributions of both NAEs and all four calibration parameters.   
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coastlines);36 in contrast, we explore the use of non-choice data as an alternative or supplement to 

choice data even when the latter are available (but are not ideal).37   

It is well-established that answers to standard hypothetical questions are systematically 

biased.38  Two classes of solutions have been examined.  One attempts to “fix” the hypothetical 

question.39  Our approach is more closely related to a second class of solutions involving ex post 

statistical calibration.40 These techniques exploit statistical relationships between real and 

hypothetical choices and, like our approach, treat the latter as a predictor rather than a prediction.   

The ex post calibration techniques used in the SP/CVM literature differ from ours in 

several ways.  The main distinguishing feature of our approach is that it treats the decision 

problem as the unit of observation and relates choice distributions to the problem's (subjective) 

characteristics.  In contrast, ex post calibration techniques treat the individual as the unit of 

observation and relate hypothetical bias to his or her socioeconomic and demographic 

characteristics.  While those techniques account for differences in hypothetical bias across 

individuals (for a given decision problem), they cannot account for differences across decision 

problems.  Consequently, they are not useful for predicting choice distributions in decision 

problems that have not yet been observed.41  On the contrary, List and Shogren (1998, 2002) 

emphasize that hypothetical bias is context-specific, so that individual-level calibration does not 

reliably transfer from one setting to another.42  Yet psychological studies also suggest that 

																																																								
36 In some cases, the object is to shed light on dimensions of preferences for which real choice data are unavailable by 
using real and hypothetical choice data in combination; see, e.g., Brownstone et al. (2000) and Small, Winston, and 
Yan (2005). 
37	Studies that use non-choice data as an alternative and/or supplement to choice data even when the latter are available 
(but are not ideal) are relatively rare.  As an example, consider the problem of estimating the price elasticity of demand 
for health insurance among the uninsured, who are generally poor and not eligible for insurance through employers.  
One possibility is to extrapolate from the choices of potentially non-comparable population groups, which also requires 
one to grapple with the endogeneity of insurance prices, as in Gruber and Washington (2005).  Alternatively, Krueger 
and Kuziemko (2011) recently attacked the same issue using hypothetical choice data, and reached strikingly different 
conclusions (i.e., a much larger elasticity).  	
38  The bias typically favors overstatement of willingness-to-pay and alternatives that are viewed as more “virtuous.” 

See, for example, Cummings et al. (1995), Johannesson et al. (1998), List and Gallet (2001), Little and Berrens (2004), 
Murphy et al. (2005), Blumenschein et al. (2007).  When surveys are consequential, incentive problems also come into 
play; see Carson and Groves (2007) and Carson, Groves, and List (2011).  Biases do not appear to be substantial in all 
settings, however; see, for example, Abdellaoui, Barrios, and Wakker (2007) for a within-subject comparison of 
choices over lotteries and stated (cardinal) preferences over monetary payments. 
39	Methods include the use of (1) certainty scales (as in Champ et al., 1997), (2) entreaties to behave as if the decisions 
were real (as in the “cheap-talk” protocol of Cummings and Taylor, 1999, or more recently the “solemn oath” protocol 
of Jacquemet et al., 2010), and (3) “dissonance-minimizing” protocols (as in Blamey et al., 1999, and Loomis et al., 
1999, which allow respondents to express support for a public good while also indicating a low WTP).  	
40	 See Kurz (1974) Shogren (1993), Blackburn, Harrison, and Rutstrom (1994), National Oceanographic and 
Atmospheric Association (1994), Fox et al. (1998), List and Shogren (1998, 2002), and Mansfield (1998).	
41	Indeed,	unlike our analysis, existing ex post calibration studies do not generally focus on out-of-sample predictive 
performance.  Nor do they run the types of “horse races” between choice-based and non-choice-based prediction 
methods that reveal whether these methods have merit in settings where (imperfect) choice data are also available. 
42 Blackburn et al. (1994) provide somewhat mixed evidence on portability, but their analysis is limited to two goods.   



	 27	 	 	

	

hypothetical bias is systematically related to measurable factors that vary across decision 

problems (e.g., Ajzen et al., 2004, and Johansson-Stenman and Svedsäter, 2003).  Our approach 

allows us to adjust for factors affecting the degree of hypothetical bias that vary across decision 

problems by including other appropriate non-choice responses, such as questions that elicit norms 

or image concerns.   

An additional advantage of conducting our analysis at the level of the decision problem is 

that we can assess non-choice responses using different groups of subjects.  In contrast, in ex post 

calibration studies, subjects make real choices after making hypothetical ones, which introduces 

the possibility of cross-contamination.43 Our ability to obtain independent non-choice responses 

with distinct groups also allows us to employ, in a single specification, combinations of predictors 

that include multiple versions of hypothetical choices (e.g., standard, certainty scaled, and cheap-

talk variants) along with other subjective ratings, and to determine whether those measures have 

independent and complementary predictive power.  In contrast, the aforementioned studies 

calibrate hypothetical choices one version at a time. 

A separate pertinent strand of research within the SP/CVM literature involves meta-

analyses (Carson et al., 1996, List and Gallet, 2001, Little and Berrens, 1994, and Murphy et al., 

2005).  Unlike the ex post calibration literature, those studies attempt to find variables that 

account for the considerable variation in hypothetical bias across contexts and goods.  However, 

they are primarily concerned with evaluating the effects of diverse experimental methods on 

hypothetical bias,44 rather than with assessing out-of-sample predictive accuracy, as we do.   

Stepping away from SP data, portions of the neuroeconomics literature seek to predict 

choices from neural and/or physiological responses. Smith, Bernheim, Camerer, and Rangel 

(2014) focus specifically on passive non-choice neural reactions, and provide proof-of-concept 

that those types of reactions predict choices.45  Separately, in the literature on subjective well-

being, two recent papers explore the relationships between forward-looking statements 

concerning happiness and/or satisfaction and hypothetical choices (Benjamin et al., 2010, 2012), 

which motivates our use of such variables to predict real choices. 

Turning to other disciplines, the marketing literature has examined stated intentions as 

predictors of purchases (see, e.g., Juster, 1966, Morrison, 1979, Infosino, 1986, Jamieson and 

																																																								
43 While Blackburn et al. (1994) do not reject the hypothesis of no contamination, their test is limited to a single setting 
and its power is unclear.  Moreover, marketing studies have found, on the contrary, that stated intentions influence 
subsequent choices (see, e.g., Chandon et al., 2004, 2005).  Similarly, voter surveys have been shown to affect turnout 
(see, e.g., Kraut and McConohay, 1973). 
44  One exception is that they point to a systematic difference in hypothetical bias for public and private goods. 
45  See also Tusche et al. (2010) and Levy et al. (2011). 
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Bass, 1989).  Its relationship to our work is similar to that of the SP/CVM literature on ex post 

calibration techniques in that the object, once again, is to derive individual-specific predictions 

for a given good, with cross-good differences addressed through meta-analysis (e.g., Morwitz et 

al., 2007).  Marketing scholars also routinely use SP data (derived from “choice experiments” 

involving hypothetical choices over multiple alternatives) to estimate preference parameters in 

the context of a single choice problem (see Louviere, 1993, Polak and Jones ,1993, Ben-Akiva et 

al., 1994, or Alpizar et al., 2003, for a useful review).  Our analysis provides methods for 

potentially improving those data inputs.  There are also parallels to our work in the political 

science literature, particularly concerning the prediction of voter turnout and election results, e.g., 

from surveys and polls (as in Jackman, 1999, and Katz and Katz, 2010).  As in our approach, the 

object is to predict aggregate outcomes rather than individuals’ choices, and a range of potential 

predictors (in addition to hypothetical choices or intentions) are sometimes considered.  For 

example, Rothschild and Wolfers (2011) find that questions concerning likely electoral outcomes 

(i.e., how others will vote) are better predictors than stated intentions.46  The problem is 

substantively different, however, in that surveys and polls ask voters about real decisions that 

many have made, plan to make, or are in the process of making, instead of measuring non-choice 

reactions to choice problems that respondents view as hypothetical. 

 

8. Concluding remarks 

We have reported the results of a laboratory experiment designed to evaluate the potential 

usefulness of methods involving non-choice revealed preference, and to compare their accuracy 

with conventional approaches.  Hypothetical choice frequencies are poor predictions of real 

choice frequencies, but are nevertheless good predictors, particularly when used in combination 

and with other non-choice ratings.  Consequently, using NCRP methods, it is possible to forecast 

the effect on demand of a change in price, even if no usable price variation is observed.   

This paper is properly construed as only the start of a research agenda.  Much work 

remains.  As we have seen, issues involving model selection can be especially thorny, and merit 

further examination.  Significantly, in other contexts, blind adherence to mechanical within-

sample selection criteria may be inappropriate.  It is possible, for example, that such criteria 

would discard a variable measuring the most important dimension of motivation differentiating 

the environments of interest from the observed environments, simply because other motivational 

																																																								
46 Some studies also use prediction markets (e.g., Rothschild, 2009), which (in effect) elicit investors’ incentivized 
forecasts of electoral outcomes.   



	 29	 	 	

	

factors vary more, and consequently play more important predictive roles, within the latter.  In 

such cases, variable selection must be guided in part by a conceptual understanding of the ways in 

which the environments differ.  One possible solution would be to perform model selection 

subject to a constraint that certain presumptively relevant variables must be included.   

Other unexplored issues concern the breadth of the domain over which predictive 

relationships are usefully portable, and the related issue of how much context-specific accuracy 

must be sacrificed to achieve greater portability.  We are also far from exhausting the range of 

subjective questions that might yield valuable predictors. 

If the methods explored in this paper are to be of practical value, it will be necessary to 

resolve various pragmatic and conceptual issues concerning their use in actual applications.  One 

potential strategy for applying these methods would operate as follows.  Imagine that the object is 

to estimate the effect on choice of various policy options, and to predict the effects of a untried 

policy with novel elements.  Using naturally occurring data, one could estimate a regression 

relating behavior to coarse features of the existing policies, but this would not permit one to 

extrapolate the effects of the untried policy. (Moreover, if the observed policies are qualitatively 

differentiated, it might be difficult to represent them in a regression format.)  Instead, one could 

recruit a fixed subject pool and elicit subjective reactions concerning the extent to which the 

observed and untried policy regimes would impact motivations to behave in particular ways.  

These responses would then be aggregated across subjects and used as measures of the policies' 

“subjective attributes.” Using these measures in combination with the naturally occurring data, 

one could then estimate a regression relating behavioral outcomes to the subjective attributes of 

the policy environments (in effect replacing measures of the policies' objective attributes with 

subjective ones).  The predictive validity of such models could be assessed through cross-

validation, possibly holding out sub-classes of policies one at a time.  If validated, the model 

could then be used to predict behavior in the untried policy environment based on its measured 

subjective characteristics.  We are currently exploring several applications along these lines. 

In some real-world contexts, nominally hypothetical questions are either consequential or 

perceived as such, and consequences do not incentivize truthful revelation.  For example, when 

asked about the frequency with which they would likely fly a new route, airline customers who 

expect to use that service have incentives to exaggerate.  Though we have focused here on 

prediction from inconsequential responses, our methods are also potentially applicable to 

improperly incentivized responses (though the predictive relationships would likely be different). 
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At this stage in our research, we have not sought a structural understanding of the 

processes governing the relationships between real choices and non-choice responses.  Through 

structural modeling, one could potentially obtain predictive models that are stable across domains 

of even greater breadth.  Whether one takes a non-structural approach (as in this paper) or a 

structural one, a potential advantage of this strategy over conventional methods of predicting 

choices in as-yet unobserved situations is that it may ultimately require an understanding of only 

a single process (one determining how choices are related to the fundamental subjective attributes 

of the available alternatives), rather than a distinct model for every decision context.	  
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Table	1:	Predictive	accuracy	for	benchmark	methods		

Benchmark	method	 	 Predicting	from	$0.75	to	$0.25	 	 Predicting	from	$0.25	to	$0.75	

	 	 Normalized	
Avg	Effect	

MSPE Calibration	
(level)	

Calibration	
(change)	

	 Normalized	
Avg	Effect	

MSPE Calibration	
(level)	

Calibration	
(Δ)	

Methods	using	limited	choice	
data	 	 	 	 	 	 	 	 	 	 	

			Myopic	 0.000a	 93.3	 1.001	 NA	 	 0.000a	 93.3	 0.690a	 NA	

			Structural	 2.544a	 239.6	 0.844c	 0.033a	 	 2.909a	 281.7	 2.638b	 0.322a	

			HPF,	Difference	method	 1.987a	 137.4	 0.610a	 0.248a	 	 1.987a	 137.4	 0.500a	 0.248a	

			HPF,	Levels	method	 2.409a	 243.1	 0.474a	 0.207a	 	 0.577a	 103.4	 0.466a	 0.240a	

Methods	using	additional	
choice	data	 	 	 	 	 	 	 	 	 	

			Average	Δ	 1.000	 37.4	 1.003	 NA	 	 1.000	 37.4	 0.688a	 NA	

			RPF	predictor	 0.998	 37.9	 0.996	 ‐3.984a	 	 0.998	 26.2	 0.992	 0.993	

			Augmented	predictors,		
							OLS	 1.008	 39.4	 0.971	 0.315a	 	 1.027	 35.9	 0.805	 0.529b	

			Augmented	predictors,		
							LASSO	 0.999	 36.9	 1.023	 0.558d	 	 0.998	 25.5	 1.042	 0.903	

Shaded rows use real purchase frequencies not only at the starting price for all items, but also at the alternative price for 80% of items (not 
including the item of interest).  Superscripts indicate that the ideal value (unity) lies outside a given percentile interval for the bootstrap 
distribution, as follows: for a, 0.5th-to-99.5th; for b, 2.5th-to-97.5th; for c, 5th-to-95th; for d, 10th-to-90th.    
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Table	2:	Predictive	accuracy	of	optimized	specifications			

Model	

	 Predicting	from	$0.75	to	$0.25	 Predicting	from	$0.25	to	$0.75	

	 Normalized	
Avg	Effect	

MSPE Calibration	
(level)	

Calibration	
(change)	

Normalized	
Avg	Effect	

MSPE Calibration	
(level)	

Calibration	
(Δ)	

	
Best‐performing	benchmark:	
Augmented	predictors,	Lasso	
	

	 0.999	 36.9	 1.023	 0.558d	 0.998	 25.5	 1.042	 0.903	

All	hyp.	&	ratings		 	 	 	 	 	 	 	 	 	

					LASSO	 	 0.850	 30.6	 0.948	 0.932	 1.083	 29.2	 0.759b	 0.847	

					OLS	–	CV‐Calib	optimized	 	 1.141	 31.5	 0.908	 0.738d	 0.922	 27.7	 0.772b	 0.993	

					OLS	–	CV‐MSPE	optimized	 	 1.014	 30.6	 0.892	 0.694b	 1.125	 31.6	 0.754b	 0.678c	

					OLS	–	CV‐AMPE	optimized	 	 1.148	 33.5	 0.902	 0.669c	 0.943	 27.9	 0.771a	 0.950	

Hyp.	only	 	 	 	 	 	 	 	 	 	

			Univariate	 	 0.927	 36.2	 0.919b	 0.531a	 0.942	 36.4	 0.692a	 0.523a	 	

			Bivariate	 	 1.022	 32.3	 0.924c	 0.645a	 0.975	 31.8	 0.728a	 0.674a	 	

			All	hyp.,	LASSO	 	 1.276d	 34.1	 0.938	 0.773d	 1.547c	 47.4	 0.752b	 0.681c	

All	hyp.,	ratings,	&	phys.	 	 	 	 	 	 	 	 	 	

				LASSO	 	 0.887	 31.4	 0.973	 0.868	 1.030	 27.5	 0.773a	 0.924	

				LASSO,	with	RPF	 	 1.018	 29.6	 1.052	 0.963	 1.005	 22.5	 1.050	 0.897	

Shaded rows use real purchase frequencies not only at the starting price for all items, but also at the alternative price for 80% of items (not 
including the item of interest). Superscripts indicate that the ideal value (unity) lies outside a given percentile interval for the bootstrap 
distribution, as follows: for a, 0.5th-to-99.5th; for b, 2.5th-to-97.5th; for c, 5th-to-95th; for d, 10th-to-90th.	 	
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Figure	1:		The	relationship	between	real	and	hypothetical	purchase	frequencies.	

	

 


