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1 Introduction

Understanding the origins of large economic downturns such as the Great Depression has been one

of the central questions in macroeconomics, dating back to the early days of the field.

Two leading explanations for the origins of such “macroeconomic tail risks” are popular. The

first maintains that sizable fluctuations in aggregate economic activity are the result of large “ex-

ogenous” shocks that impact a wide range of firms, consumers or workers within the economy. The

real business cycles literature, pioneered by Kydland and Prescott (1982), provides a prominent ex-

ample of this approach, taking the origins of all economic fluctuations to be exogenous technology

shocks.1 The more recent versions of this approach also account for large economic downturns and

slowdowns, including the Great Depression, by relying on aggregate technology shocks or other

stochastic factors that affect the efficiency of the macroeconomy (Cooley and Prescott, 1995). Sev-

eral other leading accounts of the Great Depression follow Friedman and Schwartz (1963) in empha-

sizing the role of large monetary shocks as its main underlying cause. Relatedly, the recent literature

on “rare disasters”, building on Rietz (1988) and pioneered by Barro (2006), models the occurrence

of (largely exogenous) economic disasters and studies their implications for asset prices.2

The second explanation, instead, seeks to explain large economic downturns as a result of the

amplification of small initial shocks due to the presence of capital, labor or product market imper-

fections. For example, Kiyotaki and Moore (1997) show that dynamic interactions between credit

limits and asset prices can turn small, temporary shocks into large, persistent fluctuations in ag-

gregate output.3 Relatedly, Diamond (1982), Bryant (1983) and Cooper and John (1988), inter alia,

show how labor or product market interactions can lead to macroeconomic multiplicity of equilib-

ria, creating substantial fragility in the face of small shocks.

In this paper, we provide a third, complementary explanation for the origins of large economic

downturns. We argue that large drops in aggregate economic activity may result from the propaga-

tion of microeconomic shocks through the input-output linkages across different firms or sectors

within the economy. Building on the framework developed by Acemoglu, Carvalho, Ozdaglar, and

Tahbaz-Salehi (2012), we establish that the presence of intersectoral input-output linkages can fun-

damentally reshape the distribution of aggregate output, increasing the likelihood of large down-

turns from infinitesimal to substantial.

As a benchmark, we first study the class of balanced economies, in which all sectors take roughly

symmetric roles as input suppliers to others. We show that the likelihood of a large downturn in this

class of economies decays exponentially fast in the number of sectors, regardless of the distribu-

tion of firm-level shocks. Our result thus implies that, absent any other amplification mechanisms

or aggregate shocks, the likelihood of a large drop in aggregate output in a balanced economy is

infinitesimal.
1For a survey of this literature and its evolution, see King and Rebelo (1999).
2See also Gabaix (2012) on rare disasters and Gabaix et al. (2003, 2006) on high-frequency firm-level extreme events.
3See Bernanke, Gertler, and Gilchrist (1999) for an overview.
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Our result for balanced economies is essentially an “irrelevance result”, showing that large eco-

nomic downturns are equally unlikely in this class of economies, irrespective of the distribution of

the idiosyncratic shocks. Our subsequent results, however, establish that if the input-output struc-

ture of the economy is not balanced, the likelihood of a large recession is no longer independent of

the nature of the sectoral-level disturbances and may be substantial. In particular, we show that de-

pending on the economy’s underlying network structure, the frequency of large GDP contractions

is highly sensitive to the shape of the distribution of microeconomic shocks. To characterize this

dependence, we analyze the likelihood of such contractions for different shock distributions.

First, we focus on the case that microeconomic shocks are normally distributed and show that

the probability of a large downturn is determined by the standard deviation of log GDP which we

refer to as “aggregate volatility”. In other words, economies that exhibit high levels of aggregate

volatility are also more likely to experience deeper and more frequent recessions at the face of nor-

mally distributed shocks. Even though intuitive, such an equivalence does not necessarily hold if the

shocks are not normally distributed. In particular, we show that when microeconomic shocks are

drawn from distributions with exponential tails, aggregate volatility is no longer a sufficient statistic

for the likelihood of large economic downturns. Rather, it is the relative importance of the most

dominant supplier in the economy which determines the frequency of downturns.

The significance of this observation lies in part in its contrast with a result of Acemoglu et al.

(2012), who show that under fairly general conditions, aggregate output is asymptotically normally

distributed, irrespective of the distribution of microeconomic shocks. In other words, our results es-

tablish that two economies with different shock distributions may experience large recessions with

significantly different frequencies, even when aggregate output in both economies has the same

volatility and asymptotic distribution. This observation underscores the importance of separately

studying the determinants of large economic downturns, as such macroeconomic tail risks may

vary significantly even across economies in which aggregate output converges to the same exact

asymptotic distribution at identical rates.

The rest of the paper characterizes how the underlying input-output network structure of the

economy reshapes the distribution of aggregate output. We show that an economy with non-trivial

input-output linkages that is subject to thin-tailed (e.g., exponentially distributed) productivity shocks

may exhibit deep recessions as frequently as an economy without linkages that is subject to heavy-

tailed, Pareto distributed shocks. In this sense, our results provide a novel solution to what Bernanke,

Gertler, and Gilchrist (1996) refer to as the “small shocks, large cycles puzzle” by arguing that the

interaction between the underlying network structure of the economy and the shape of the produc-

tivity shocks is of first-order importance in determining the nature of aggregate fluctuations.

Our paper belongs to the literature that studies the microeconomic origins of aggregate fluc-

tuations. Gabaix (2011), for instance, argues that firm-level idiosyncratic shocks may translate into

fluctuations at the aggregate level if the firm size distribution is sufficiently heavy-tailed (in the sense

that the largest firms contribute disproportionally to aggregate output). Nirei (2006), on the other
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hand, demonstrates that following a threshold rule (such as the (S, s) policy) by the firms may cre-

ate positive feedback loops that can amplify firm-level disturbances into aggregate effects. Other

studies in this literature include Jovanovic (1987), Durlauf (1993), Horvath (1998, 2000), and Dupor

(1999). On the empirical side, Carvalho and Gabaix (forthcoming) explore whether changes in the

microeconomic composition of the economy during the post-war period can account for the Great

Moderation, while Foerster, Sarte, and Watson (2011) study the relative importance of aggregate and

micro-level shocks in the volatility of industrial production.

As already mentioned, the current paper is most closely related to the recent work of Acemoglu

et al. (2012), who also study the role of the economy’s input-output structure in translating microe-

conomic shocks into aggregate fluctuations. In particular, they provide a comprehensive study of

how intersectoral input-output relationships affect the volatility of aggregate output. In contrast,

rather than using GDP volatility as the measure of aggregate fluctuations, the focus of the current

paper is on the likelihood of large economic downturns. Our results establish that not only aggregate

volatility may not be a particularly useful measure for the frequency and depth of large recessions,

but also that it is the interaction between the shape of the firm-level shock distributions and the

structure of the input-output network which is of first-order importance.

The rest of the paper is organized as follows. We present the model and provide a characteriza-

tion of the economy’s aggregate output in Section 2. Our main results are presented in Section 3.

Section 4 concludes. All proofs are provided in the Appendix.

2 Model

The model is a static variant of the multi-sector model of Long and Plosser (1983), analyzed by

Acemoglu et al. (2012). Consider a static economy consisting of n competitive sectors denoted by

{1, 2, . . . , n}, each of which producing a distinct product. Each product can be either consumed by a

mass of consumers or used as an input for production of other goods. Firms in each sector employ

Cobb-Douglas production technologies with constant returns to scale that transform labor and in-

termediate goods to final products. The production at each sector is subject to some idiosyncratic

Harrod-neutral productivity shock. More specifically, the output of sector i, which we denote by xi,

is equal to

xi = zβi `
β
i

n∏
j=1

x
(1−β)wij

ij , (1)

where zi is the corresponding productivity shock, `i is the amount of labor hired by the firms in

sector i, xij is the amount of good j used for production of good i, and β ∈ (0, 1) is the share of

labor in production. The exponent wij ≥ 0 in (1) captures the share of good j in the production

technology of good i. In particular, a higher wij means that good j is more important in producing

i, whereas wij = 0 implies that good j is not a required input for the production of good i. Note that

the assumption that firms employ constant returns to scale technologies implies that
∑n

j=1wij = 1
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for all i.

The productivity shocks zi are independent and identically distributed across sectors. We de-

note the common cumulative distribution function of εi = log(zi) by F , which we assume to be

symmetric around the origin and with full support over R. With some abuse of terminology, we

refer to εi as the productivity shock to sector i.

In addition to the firms, the economy is populated with a unit mass of identical consumers.

Each consumer is endowed with one unit of labor which can be hired by the firms for the purpose

of production. We assume that the representative consumer has Cobb-Douglas preferences over

the n goods produced in the economy. In particular,

u(c1, . . . , cn) = A

( n∏
j=1

ci

)1/n

,

where A is a normalization constant and ci is the amount of good i consumed.

The input-output relationships between different sectors within the economy can be summa-

rized by the matrix W = [wij ], which we refer to as the input-output matrix. Alternatively, one can

capture the intersectoral trade patterns by the means of a directed, weighted graph on n vertices.

Each vertex of this graph, which we refer to as the input-output network, corresponds to a sector

and a directed edge (j, i) with weight wij > 0 is present from vertex j to vertex i if sector i uses

good j is an input for production. Thus, the input-output matrix W corresponds to the (weighted)

adjacency matrix of the underlying input-output network. Given their equivalence, we use the two

concepts interchangeably. We define the degree of sector i as the share of i’s output in the input sup-

ply of the entire economy, normalized by 1 − β; that is, di =
∑n

j=1wji. We also define the following

related concept:

Definition 1. The influence vector of an economy with the corresponding input-output matrixW is

a vector v such that for all i,

vi = β/n+ (1− β)

n∑
j=1

vjwji. (2)

The elements of the influence vector, which is also known as the Bonacich centrality vector

(Bonacich, 1987), provide an intuitive measure of different sectors’ importance as input suppliers

in the economy. In particular, according to (2), the influence of sector i is defined, recursively, as a

linear function of the centralities of its immediate downstream customers. Hence, a sector is con-

sidered more important if it is an input supplier to other important suppliers in the economy. We

further note that the vector v is also the “sales vector” of the economy. That is, the i-th element of v

is equal to the equilibrium share of sales of sector i,

vi =
pixi∑n
j=1 pjxj

where pi is the equilibrium price of good i.4

4This is a consequence of the theorem of Hulten (1978). A derivation of this result can be found in Acemoglu et al.
(2012).
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The competitive equilibrium of the economy described above is defined in the usual way: it

consists of a collection of prices and quantities such that (i) the representative consumer maximizes

her utility; (ii) the representative firm in each sector maximizes its profits while taking the prices and

the wage as given; and (iii) all markets clear.

The following result, which is proved in Acemoglu et al. (2012), characterizes the aggregate equi-

librium output of the economy as a function of the pattern of intersectoral trades and the sectors’

idiosyncratic productivity shocks.

Proposition 1. The logarithm of real value added in the economy is equal to

y ≡ log(GDP) =

n∑
i=1

viεi,

where vi is the i-th element of the economy’s influence vector.

This result highlights that the overall output of the economy is closely related to the pattern of

input-output relationships between different sectors. In particular, it shows that the logarithm of

the real value added, which for simplicity we refer to as aggregate output, is a convex combination

of the sectors’ (log) productivity shocks, with the weights given by the corresponding centralities.

Proposition 1 thus establishes that productivity shocks to sectors that take more central positions in

the input-output network play more significant roles in determining the level of aggregate economic

activity. This is due to the fact that in the presence of interconnections between firms, a shock to

sector i propagates over the input-output network to i’s downstream customers, the customers of its

customers and so forth, leading to an aggregate effect that goes beyond its effect on i’s productivity.

Relatedly, Proposition 1 also shows that the likelihood of large economic downturns is not in-

dependent of the economy’s input-output structure. Rather, given that the shocks can propagate

over the input-output network, certain economies may exhibit more frequent and deeper reces-

sions than others. The following example clarifies such a possibility.

Example 1. Consider the input-output network structure depicted in Figure 1(a). All sectors in this

economy use the output of sector 1 as an intermediate good for production, that is wi1 = 1 for

all i. The dominant role of the firms in sector 1 as input suppliers is also reflected in the influence

vector corresponding to the economy’s input-output matrix. In particular, it is easy to verify that the

centrality of sector 1 is equal to v1 = 1−β(n−1)/n, which is greater than vi = β/n, the centralities of

sectors i 6= 1. Hence, by Proposition 1, and for large enough n, a large negative productivity shock to

sector 1 translates into an essentially one-for-one drop in the economy’s aggregate output. This is

intuitive in view of the above discussion: whereas the effect of a shock to a peripheral sector remains

confined to that sector, the shocks to sector 1 propagate to all other sectors in the economy, leading

to a large aggregate effect.

In contrast, large downturns are much less likely in the economy depicted in Figure 1(b), which

consists of n non-interacting sectors. In particular, given the absence of any dominant supplier, the
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economy exhibits large output drops only when a significant fraction of the sectors are hit with large

negative productivity shocks; an event which occurs with a much smaller probability.

2

3

n

1

(a) An economy with a star input-output structure

2 n1

(b) A collection of non-interacting sectors

Figure 1. The network representation of two economies.

In the remainder of this paper, we study how the propagation of microeconomic shocks over the

economy’s input-output network may lead to large drops in the overall economic activity.

3 Input-Output Networks and Large Downturns

As highlighted by Proposition 1, the interconnections between different sectors may function as a

propagation mechanism of idiosyncratic shocks throughout the economy. In this section, we study

whether and to what extent the presence of such intersectoral input-output relations can lead to

large aggregate fluctuations.

To answer these questions in a systematic way, we adopt the framework developed by Acemoglu

et al. (2012): we focus on an infinite sequence of economies indexed by the number of sectors and

study the distributional properties of the aggregate output as n→∞. More formally, we consider a

sequence {Wn}n∈N, in which Wn corresponds to the input-output matrix of an economy consisting

of n sectors.5 We take other features of the economy, such as the distribution of shocks, F , and the

share of labor in production, β, fixed throughout the sequence. Given a sequence of economies

{Wn}n∈N, we denote the corresponding sequences of aggregate outputs and influence vectors by

{yn}n∈N and {vn}n∈N, respectively, and use din to denote the degree of sector i in the n-th economy.

One natural measure of economic fluctuations at the aggregate level is the standard deviation of

the economy’s aggregate output, which following Acemoglu et al. (2012), we refer to as the aggregate

volatility of the economy. In view of Proposition 1, for any given sequence of economies {Wn}n∈N,

5The elements of this sequence can be interpreted as corresponding to different levels of disaggregation of the same
economy.
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aggregate volatility is equal to

(var yn)1/2 = σ‖vn‖2, 6 (3)

where σ is the standard deviation of the sector-specific idiosyncratic shocks εi. The above equality

immediately implies that aggregate volatility converges to zero at rate ‖vn‖2 as n → ∞. Therefore,

the economy exhibits higher levels of aggregate fluctuations (measured in terms aggregate volatil-

ity), the slower the Euclidean norm of the corresponding influence vector converges to zero.

Acemoglu et al. (2012) provide a comprehensive study of the behavior of aggregate volatility

in terms of the structural properties of the input-output network. They show that depending on

the economy’s input-output structure, it is possible for the aggregate volatility to decay at a rate

slower than 1/
√
n, in contrast to what is predicted by the law of large numbers. In other words,

the presence of input-output relationships between different sectors can transform idiosyncratic

firm- or sector-level shocks to fluctuations at the aggregate level. Furthermore, they show that the

extent of asymmetry in the role of different sectors as input suppliers is closely associated with the

economy’s aggregate volatility. In particular, high variability in the sectors’ roles as suppliers of

intermediate goods (measured in terms of the heterogeneity in their first-order and second-order

degrees) leads to a higher level of aggregate volatility.

Even though aggregate volatility is a highly useful notion of fluctuations at the aggregate level,

in essence, it only captures the nature of fluctuations “near the mean”. This raises the possibility

that the standard deviation or variance of the log value added may not be informative about the

likelihood and frequency of large drops in the GDP. In fact, two economies may experience large

downturns with significantly different frequencies, despite the fact that they exhibit identical limit-

ing behavior in terms of aggregate volatility (as well as asymptotic distribution). We illustrate such

a possibility in the next example.

Before doing so, however, we need to introduce a metric for measuring and quantifying the like-

lihood of large economic downturns. Even though there is no such standard metric — reflecting in

part the fact that, despite its importance, there is relatively little systematic analysis of large eco-

nomic downturns and macroeconomic tail risk — a natural measure is the likelihood that aggregate

output falls below a given threshold. More specifically, for a given sequence of economies {Wn}n∈N,

we consider the limiting behavior of P(yn < −c) for some positive constant c > 0 as n→∞.

Example 2. Consider a sequence of economies {Wn}n∈N with the corresponding input-output net-

work depicted in Figure 2. As the figure suggests, sector 1 is the sole supplier for kn many sectors,

while the rest of the sectors do not rely on sector 1’s output for production.

It is easy to verify that as long as the degree of sector 1 does not grow too fast with n, aggregate

volatility (the standard deviation of log GDP) decays to zero at rate 1/
√
n. More specifically, as long

as kn = o(
√
n), equation (3) implies that (var yn)1/2 ∼ 1/

√
n.7 Moreover, Theorem 1 of Acemoglu

6Throughout the paper, we use ‖ξ‖p to denote the p-norm of vector ξ ∈ Rn, that is, ‖ξ‖p =
(∑n

i=1 |ξi|
p
)1/p

for p ∈ [1,∞),
and ‖ξ‖∞ = maxi |ξi| for p =∞.

7Given two sequences of positive numbers {an}n∈N and {bn}n∈N, we write an = o(bn) if limn→ an/bn = 0.
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et al. (2012) guarantees that, regardless of the distribution of the shocks, aggregate output is asymp-

totically normally distributed; that is,
√
nyn converges in distribution to a normal random variable

with zero mean and variance σ2. Thus, in essence, a variant of the central limit theorem applies, no

matter what the common distribution of idiosyncratic sectoral-level shocks is.

However, the likelihood of a large drop in aggregate output is not invariant to the distribution of

microeconomic shocks. Recall that by Proposition 1, aggregate output is equals
∑n

i=1 vinεi. Thus,

as long as kn grows with n — which guarantees that v1n decays to zero at a rate slower than 1/n

— the realization of a large, negative shock to sector 1 would lead to a proportionally large drop

in aggregate output. As a consequence, the distributional properties of the microeconomic shocks

play a central role in the likelihood of large downturns. In fact, as we will show in Propositions

3 and 4, large downturns may arise with significantly different frequencies depending on whether

the shocks have normal or exponential distributions. This is despite the fact that both the aggregate

volatility and the asymptotic distribution of aggregate output — which is normal by the central limit

theorem — are invariant with respect to the distribution of the shocks.

2 3 kn n

1

Figure 2. Firm 1 is the input supplier to a fraction kn/n of the firms in the economy.

This example highlights that macroeconomic tail risks have very different network origins than

aggregate volatility measured in terms of the standard deviation of log GDP. Motivated by this ex-

ample and general discussion, in the remainder of the paper we provide a characterization of the

relationship between the likelihood of large downturns on the one hand, and the distribution of

idiosyncratic shocks and the economy’s underlying network structure on the other.

3.1 Balanced Economies: Where No Tail Risks Arise

Before turning to the impact of the economy’s network structure on the likelihood of tail risks, we

present a class of economies in which tail risks are highly unlikely. This class of economies — which

serve as a benchmark for our latter results — have balanced input-output structures in the sense

that the shares of all sectors’ output in the input supply of the entire economy are of the same order.

More formally,
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1

2

3

n

Figure 3. A balanced economy with a ring input-output structure.

Definition 2. A sequence of economies {Wn}n∈N is balanced if maxi din ∼ 1.8

Thus, in balanced structures, there is a limit to the extent of asymmetry in the roles of differ-

ent sectors as input suppliers, in the sense that the degree of no sector increases unboundedly as

n → ∞. Hence, balanced structures lie at the opposite end of the spectrum from the star network

structure depicted in Figure 1(a), in which one sector is the sole supplier of all other sectors within

the economy. Figures 1(b) and 3 depict two instances of economies with balanced structures. We

have the following result:

Proposition 2. Consider a sequence of balanced economies {Wn}n∈N and suppose that E|εi|k <∞ for

all positive integers k. Then, there exists β̄ ∈ (0, 1) such that for β ≥ β̄ and for any constant c > 0,

|logP (yn < −c)| ∼ n (4)

as n→∞, regardless of the distribution of the shocks.

Thus, as long as the economy’s input-output structure is balanced and the distribution of pro-

ductivity shocks has thin enough tails (to the extent that all moments are finite), the likelihood of

large drops in the economy’s aggregate output decays as e−λn+o(n) for some positive constant λ. In

other words, large economic downturns become exponentially unlikely as n→∞.

Note that the rate established in (4) is the same across all balanced economies. Therefore, as

long as there is little asymmetry in the sectors’ roles as input suppliers, the likelihood of sharp drops

in the GDP is equal to that of the economy consisting of non-interacting sectors, depicted in Figure

1(b). This observation thus means that intersectoral input-output linkages play no significant role

in amplifying the risk of large economic downturns as long as the underlying production network

is balanced. In this sense, Proposition 2 is in line with the results of Acemoglu et al. (2012) who

establish that balanced economies also exhibit the least amount of aggregate volatility.

8Given two sequences of positive numbers {an}n∈N and {bn}n∈N, we write an ∼ bn as n→∞ if 0 < lim infn→∞ an/bn ≤
lim supn→∞ an/bn <∞.

10



3.2 Normal Shocks

Proposition 2 is essentially an irrelevance result, suggesting that large economic downturns are

equally unlikely in all balanced economies, regardless of the distributions of the shocks. Never-

theless, as illustrated by Example 1, the presence of non-balanced input-output network structures

may have a non-trivial effect on the likelihood of large drops in the economy’s aggregate output. In

the remainder of this section, we study whether and how the interaction between the shape of the

idiosyncratic shocks’ distribution and the economy’s network structure determines the frequency

of large economic downturns. Our next result answers this question in the presence of normally

distributed productivity shocks.

Proposition 3. Consider a sequence of economies {Wn}n∈N. If the productivity shocks are normally

distributed, then, for any constant c > 0,

|logP (yn < −c)| ∼ 1/ ‖vn‖22 (5)

as n→∞.

The above result establishes that in general, and unlike the special case of balanced structures,

the intersectoral input-output structure plays a defining role in determining the likelihood of large

drops in aggregate output. In particular, as long as ‖vn‖2 vanishes at a rate slower than 1/
√
n, the

probability of large downturns decays at a subexponential rate.9 Furthermore, Proposition 3 shows

that in the presence of normally distributed shocks, the large deviation probability decays at a rate

determined by the Euclidean norm of the influence vector — the same quantity that measures ag-

gregate volatility. Hence, economies that exhibit high levels of aggregate volatility are also more

likely to experience deeper and more frequent recessions.

Proposition 3 formalizes the intuition discussed in Example 1. It is easy to verify that the Eu-

clidean norm of the aggregate output in a sequence of economies with a star network structure

(depicted in Figure 1(a)) is bounded away from zero for all n — i.e., ‖vn‖2 ∼ 1 as n → ∞. Hence, by

the previous result, the probability that aggregate output falls below the threshold −c remain pos-

itive, regardless of the size of the economy. Thus, in contrast with the predication of Proposition

2 for balanced networks, the possibility of propagation of shocks from the central sector 1 to the

rest of the sectors means that the economy can experience much deeper recessions originated from

microeconomic idiosyncratic shocks.

3.3 Exponential-Tailed Shocks

As already mentioned, Proposition 3 establishes that in the presence of normally distributed shocks,

large economic downturns are more likely in economies that have a higher level of aggregate volatil-

9On the other hand, when the sequence of economies is balanced, one can verify that ‖vn‖2 ∼ 1/
√
n, which means

that |log P(yn < −c)| scales with n, as predicted by Proposition 2.
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ity. Even though intuitive, such an equivalence does not necessarily hold if the shocks are not nor-

mally distributed. Instead, as we show next, the interplay of the shape of the distribution of the

productivity shocks on the one hand, and the input-output structure on the other, has non-trivial

implications for the likelihood of large economic downturns.

To illustrate this point, we next consider the case that the idiosyncratic productivity shocks have

a distribution with exponential tails, in the sense that the tail probabilities decay exponentially fast.

More formally:

Definition 3. A random variable with distribution function F has exponential tails if∣∣ log(1− F (t))
∣∣ ∼ t.

Thus, if the counter-cumulative probability distribution is such that 1 − F (t) = L(t)e−γt for

some constant γ > 0 and some sub-exponential function L(t) — such as a polynomial — then the

corresponding random variable has an exponential tail.10 Clearly, distributions belonging to this

class have heavier tails than the normal distribution. We have the following result:

Proposition 4. Consider a sequence of economies {Wn}n∈N and suppose that the productivity shocks

have exponential tails. Then, for any constant c > 0,

|logP (yn < −c)| ∼ 1/‖vn‖∞ (6)

as n→∞.

The significance of the above result is threefold. First, it shows that in contrast to the case that

the shocks are normally distributed, aggregate volatility is no longer a sufficient statistic for the

likelihood of large downturns. Rather, in the presence of exponentially distributed shocks, it is the

centrality of the most central sector in the economy’s input-output network that is of first-order

importance.

Second, it shows that the likelihood of large downturns can be significantly higher at the face

of exponentially distributed shocks compared to the case that the shocks are normally distributed.

This is due to the fact that by Hölder’s inequality (Steele, 2004, p. 135), ‖vn‖22 ≤ ‖vn‖∞, implying that

as n→∞, the expression on the right-hand side of (6) grows at a slower rate than the corresponding

expression in (5).

Finally, as we show in Example 3 below and discuss in greater detail in the next subsection,

Proposition 4 also implies that the economy’s input-output network can fundamentally reshape

the distribution of aggregate output, in the sense that it may translate relatively thin-tailed idiosyn-

cratic shocks into aggregate effects that could only arise due to large, heavy-tailed shocks when

the network is absent. In other words, observing large economic downturns frequently may not

be due to the effect of shocks that are drawn from some heavy-tailed distribution, but rather, be a

10The Laplace and hyperbolic distributions are examples of probability distributions with exponential tails.
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consequence of the propagation of shocks drawn from a relatively thin-tailed distributions over the

economy’s network structure.

The following example illustrates the contrast between Propositions 3 and 4.

Example 2 (continued). Recall the sequence of economies {Wn}n∈N depicted in Figure 2 and as-

sume that kn ∼ log n. It is easy to verify that ‖vn‖2 ∼ 1/
√
n, whereas ‖vn‖∞ ∼ (log n)/n. Proposition 3

thus implies that in the presence of normally distributed shocks, the likelihood of a large downturn

satisfies |logP(yn < −c)| ∼ n; an exponential rate of decay identical to that of a balanced economy.11

On the other hand, if the productivity shocks have exponential tails, Proposition 4 implies that the

likelihood of large downturns satisfies |logP(yn < −c)| ∼ n/(log n), corresponding to a much slower

(in fact, subexponential) rate of decay.

Thus, even though the economy depicted in Figure 2 behaves similar to a balanced network at

the face of normally distributed shocks, the likelihood of a large drop in aggregate output is consid-

erably higher if the shocks are exponentially distributed. Note that, as we mentioned earlier, this

is despite the facts that (i) aggregate volatility decays at rate 1/
√
n; and (ii) aggregate output scaled

by aggregate volatility,
√
nyn, is asymptotically normally distributed, regardless of the distribution of

the shocks.

This example thus highlights the intricate dependence of the extent of propagation of shocks in

non-balanced economies on the shape of their distribution. Indeed, the same input-output struc-

ture can lead to dramatically different outcomes at the aggregate level depending on the nature the

microeconomic idiosyncratic shocks. In contrast, as Proposition 2 shows, the likelihood of a large

contraction in aggregate output is the same in an economy with a balanced structure, regardless of

the distribution of the shocks.12

3.4 The Network Origins of Macroeconomic Tail Risks

In this subsection, we show that the economy’s input-output structure may translate relatively thin-

tailed idiosyncratic shocks into aggregate effects that can only arise due to heavy-tailed distur-

bances in the absence of the network. In other words, we show that increasing the extent of asym-

metry in the economy’s underlying network structure has the same exact effect on the size of macroe-

conomic tail risks as subjecting the firms to shocks with heavier tails.

To this end, we characterize the likelihood of large downturns when the firms are subjects to

shocks drawn from a stable distribution with parameter α ∈ (1, 2). Distributions in this class have

Pareto tails (Zolotarev, 1986). In particular,

1− F (t) ∼ t−α. (7)

11Notice, however, that the economy depicted in Figure 2 is not balanced as long as kn grows with n.
12Both exponential and normal distributions have finite moments and hence, satisfy the assumption of Proposition 2.
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Note that a smaller α corresponds to a distribution with heavier tails, according to which large

shocks are more likely.13 We have the following result:

Proposition 5. Consider a sequence of economies {Wn}n∈N and suppose that the productivity shocks

have a stable distribution with parameter α ∈ (1, 2). Then, for any constant c > 0,

P (yn < −c) ∼ ‖vn‖αα (8)

as n→∞.

In line with our previous results, the above proposition shows that the shape of the distribu-

tion of idiosyncratic productivity shocks plays a central role in determining the likelihood of large

downturns. Furthermore, given that ‖vn‖αα ≤ ‖vn‖α̂α̂ for α < α̂, Proposition 5 also implies that large

downturns are significantly more likely, the heavier the tail of the shock distribution is.

The following example illustrates how the underlying network of the economy can turn thin-

tailed microeconomic shocks into aggregate effects that are essentially heavy-tailed.

Example 3. Consider the sequence of economies {Wn}n∈N depicted in Figure 2 and assume that

kn ∼ n/(log n). It is easy to verify that for such an economy ‖vn‖∞ ∼ 1/ log n, and hence, by Propo-

sition 4, the likelihood of a large downturn in the presence of exponentially distributed shocks sat-

isfies

|logP(yn < −c)| ∼ log n. (9)

In other words, as n→∞, the likelihood of large drops in the economy’s aggregate output decays at

rate λ/n+ o(1/n) for some positive constant λ.

Next, consider the sequence of economies {W̃n}n∈N depicted in Figure 1(b), in which firms do

not rely on one another as input suppliers for production. In such an economy, aggregate output

is simply the unweighted average of firm-level shocks, that is ỹn = (1/n)
∑n

i=1 εi. Furthermore,

suppose that rather than being exponentially distributed, the sector-specific productivity shocks

have a heavy-tailed, stable distribution with parameter α ∈ (1, 2). By Proposition 5, we have

|logP(ỹn < −c)| ∼ log n. (10)

Comparing (10) with (9) implies that the probability of extreme events in an economy with non-

interacting sectors subject to heavy-tailed shocks decays at the same exact rate as in an economy

with a non-trivial structure that is subject to thin-tailed, exponentially distributed shocks.

The above example thus underscores a central insight of our paper: large economic downturns

may occur regularly not necessarily due to (aggregate or idiosyncratic) shocks that are drawn from

heavy-tailed distributions, but rather as a consequence of the interplay of relatively thin-tailed dis-

tributions with the economy’s network structure. In other words, the propagation of productivity

13Note that this class of distributions have a well-defined mean.
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shocks over the input-output network of the economy can lead to aggregate effects that may appear

to be due to heavy-tailed disturbances, even when the shocks themselves are drawn from distribu-

tions that are relatively thin-tailed.

The following corollary to Proposition 5 further emphasizes this insight.

Corollary 1. Suppose that the productivity shocks have a stable distribution with parameter α ∈
(1, 2). Furthermore, suppose that the firms’ centralities follow a power law with parameter θ ∈ (1/α, 1),

that is vin = rni
−θ for some normalization constant rn. Then,

P (yn < −c) ∼ n−α(1−θ), (11)

as n→∞.

A first implication of the above corollary is that increasing θ makes large downturns more likely.

Note that θmeasures the extent of asymmetry in the sectors’ roles as input suppliers in the economy:

a larger θmeans that some sectors take significantly more central positions than others in the input-

output network of the economy. On the other hand, the extreme case that of θ = 0 corresponds to

a balanced structure. Thus, large recessions are more likely, the more asymmetric or “unbalanced”

the underlying network structure is.

More importantly, increasing the extent of asymmetry in the underlying input-output structure

of the economy (measured in terms of a higher θ) has the same exact effect on the likelihood of large

downturns as making the firms subject to shocks of heavier tails (measured in terms of a smaller α).

Thus, in line with Example 3, this observation underscores how the input-output linkages between

different sectors play as significant of a role in determining the frequency of large economic down-

turns as the nature of the shocks.

4 Conclusions

This paper shows that input-output linkages between different firms or sectors within the economy

can have a significant effect on the frequency and depth of large economic downturns. By focusing

on a sequence of economies, we study the likelihood of such downturns as a function of the under-

lying network structure of the economy and the nature of idiosyncratic microeconomic shocks.

We first establish that aggregate volatility is not necessarily a sufficient statistic for the likelihood

of large recessions. Depending on the shape of the distribution of the idiosyncratic shocks, different

features of the economy’s input-output network may be of first-order importance. Furthermore, we

show that the effects of the intersectoral input-output linkages and the nature of the idiosyncratic

shocks on aggregate output are not separable. Rather, the likelihood of large economic downturns

is determined by the interplay between the two. More specifically, we show that even though some

economies exhibit the same large deviation properties as the balanced structures in the presence

of normally distributed shocks, they may experience significantly more frequent downturns (com-

pared to balanced economies) when shocks are exponentially distributed.
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Finally, our results establish that the economy’s input-output structure can fundamentally re-

shape the distribution of aggregate output, increasing the likelihood of large downturns from in-

finitesimal to substantial. In particular, we show that an economy with non-trivial intersectoral

input-output linkages that is subject to thin-tailed productivity shocks may exhibit deep recessions

as frequently as economies that are subject to shocks with significantly heavier tails. In this sense,

our results provide a novel solution to what Bernanke et al. (1996) refer to as the “small shocks,

large cycles puzzle” by arguing that the interaction between the underlying network structure of the

economy and the shape of the microeconomic shocks’ distribution may lead to sizable fluctuations

at the aggregate level.
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A Proofs

Notation Throughout the proofs, we use the following notation. Given two sequences of posi-

tive real numbers {an}n∈N and {bn}n∈N, we write an = O(bn), if they satisfy lim supn→∞ an/bn < ∞,

whereas an = Ω(bn) if lim infn→∞ an/bn > 0. On the other hand, an = o(bn) means that limn→∞ an/bn =

0. Finally, we write an ∼ bn, if an = O(bn) and an = Ω(bn) hold simultaneously.

Proof of Proposition 2

We first state and prove a simple lemma.

Lemma 1. For any sequence of balanced economies {Wn}n∈N, there exist β̄ ∈ (0, 1) and positive con-

stants q and Q such that for β ≥ β̄,

q ≤ nvin ≤ Q (12)

for all i and n.

Proof. To prove the lower bound, note that by (2), vin ≥ β/n for all i. Thus, one can simply choose

q = β. On the other hand, to prove the upper bound in (12), note that (2) also implies

vin ≤ β/n+ (1− β)(max
i
vin)(max

i

n∑
j=1

wji).

Therefore,

‖vn‖∞ ≤
β

n
+ k(1− β)‖vn‖∞,

where k is a positive constant independent of n. In deriving the above inequality we are using the

fact that in any sequence of balanced economies, din = maxi
∑n

j=1wji ∼ 1. Thus, as long as β >

(k − 1)/k, we have ‖vn‖∞ ≤ Q/n, where Q = β/(1− k(1− β)), completing the proof.

Proof of Proposition 2 We first show that lim supn→∞(1/n) |logP(yn < −c)| <∞. To this end, note

that
∑n

i=1 vin = 1, which implies that if εi < −c for all i, then yn < −c. Therefore,

[F (−c)]n ≤ P(yn < −c),

and as a result,

lim sup
n→∞

1

n
|logP(yn < −c)| <∞. (13)

Next we show that lim infn→∞(1/n) |logP(yn < −c)| > 0. Using Chernoff’s inequality, we have

P(yn < −c) ≤ e−nδcE
(
enδyn

)
= e−nδc

n∏
i=1

E
(
enδvinεi

)
,
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for any δ ≥ 0. Taking logarithms from both sides of the above inequality implies

logP(yn < −c) ≤ −nδc+

n∑
i=1

g(nδvin)

where g(t) = logE[exp(tεi)] is the cumulant-generating function corresponding to random variable

εi. Thus, by Lemma 1,

1

n
logP(yn < −c) ≤ −δc+ max

δq≤t≤δQ
g(t)

≤ −Λ(δ),

where Λ(δ) = δc − max0≤t≤δQ g(t). Note that Λ(0) = 0. Furthermore, by the envelope theorem,

Λ′(0) > 0. Consequently, it is immediate that there exists small enough δ > 0 such that Λ(δ) > 0,

and therefore,

lim inf
n→∞

1

n
|logP(yn < −c)| ≥ Λ(δ) > 0. (14)

Combining (14) with (13) completes the proof.

Proof of Proposition 3

Proposition 1 implies that aggregate output yn is a convex combination of the firms’ productivity

shocks. Given that the shocks εi are normally distributed, it is immediate that aggregate output is

normally distributed with mean zero and standard deviation σ‖vn‖2, where σ is the standard devia-

tion of the idiosyncratic shocks. In other words, yn ∼ N (0, σ2‖vn‖22). Hence,

P(yn < −c) = 1− Φ

(
c

σ‖vn‖2

)
,

where Φ(·) is the cumulative distribution function of the standard normal.

If ‖vn‖2 ∼ 1, the above equality shows that the statement of the proposition holds trivially. In

particular, if ‖vn‖2 does not decay to zero, then the event {yn < −c} occurs with some positive

probability even as n → 0. This is simply a consequence of the fact that var(yn) = ‖vn‖22. Thus, for

the rest of the proof we assume that ‖vn‖2 = o(1). On the other hand, if φ(·) denotes the density

function of the standard normal, it is well-known that

lim
t→∞

t[1− Φ(t)]

φ(t)
= 1.14

Therefore,

P (yn < −c) ∼
φ (c/σ‖vn‖2)
c/σ‖vn‖2

.

Taking logarithms from both sides establishes the result.

14See for example, Grimmett and Stirzaker (2001, p. 98).
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Proof of Proposition 4

First suppose that the sequence of economies are such that ‖vn‖∞ ∼ 1. The fact that ‖ζ‖∞ ≤ ‖ζ‖2
for any vector ζ implies that var(yn) = ‖vn‖22 does not decay to zero either. Therefore, the event

{yn < −c} occurs with some positive probability even as n → 0, establishing the result. Thus, for

the rest of the proof, we assume that ‖vn‖∞ = o(1).

We first show that when the productivity shocks εi have a common symmetric distribution F (·)
with an exponential tail, then lim supn→∞−‖vn‖∞ logP(yn < −c) < ∞. Note that if vinεi < −c
and

∑
j 6=i vjnεj < 0 hold for some i, then yn < −c. Therefore, by the independence and symmetry

assumptions, we have

P(yn < −c) ≥
1

2
P (εi‖vn‖∞ < −c) =

1

2

[
1− F (c/‖vn‖∞)

]
,

which implies

lim sup
n→∞

‖vn‖∞ · |logP(yn < −c)| ≤ lim sup
n→∞

‖vn‖∞ ·
∣∣ log

[
1− F (c/‖vn‖∞)

]∣∣.
Given the assumptions that ‖vn‖∞ = o(1) and F (·) has exponential tails, the right-hand side of the

above inequality is finite. Therefore,

lim sup
n→∞

‖vn‖∞ · |logP(yn < −c)| <∞. (15)

We next show that lim infn→∞ ‖vn‖∞ · |logP(yn < −c)| > 0. To establish this, we compute an

upper bound for the generating function of εi, and use Chernoff’s inequality to bound the tail event

probability P(yn < −c).15 However, we first remark that if F (·) has an exponential tail, then there

exists a strictly positive constant γ such that

1− F (t) < e−γt (16)

for all t > 0. This is due to the fact that the function −(1/t) log[1 − F (t)] is always positive for t > 0

and has a strictly positive limit inferior.

We now proceed with the proof. Note that by symmetry of the distributions, and for k ≥ 2 we

have
1

2
E |εi|k =

∫ ∞
0

tkdF (t) =

∫ ∞
0

ktk−1 (1− F (t)) dt

where we have used integration by parts and the fact that

0 ≤ lim
t→∞

tk (1− F (t)) = lim
t→∞

exp [k log(t) + log(1− F (t))] = 0;

a consequence of the exponential tail assumption. Thus, by (16), there exists a positive constant

r = 1/γ such that
1

2
E|εi|k ≤

∫ ∞
0

ktk−1e−t/rdt = rkk!

15For a similar argument, see, e.g., Teicher (1984).
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for all k ≥ 2. Therefore, for δ < 1/(r‖vn‖∞) and for all i, we have

E
(
eδvinεi

)
= 1 +

∞∑
k=2

(δvin)k

k!
E
(
εki

)
≤ 1 + 2

∞∑
k=2

(δrvin)k .

The above inequality implies that

E
(
eδvinεi

)
≤ 1 +

2(δrvin)2

1− δrvin
≤ exp

(
2(δrvin)2

1− δr‖vn‖∞

)
. (17)

Using (17), we can now compute an upper bound for the large deviation probability. In particular,

from Chernoff’s inequality, we have

P(yn < −c) ≤ e−δcE
(
eδyn

)
= e−δc

n∏
i=1

E
(
eδvinεi

)
,

implying that

logP(yn < −c) ≤ −δc+

n∑
i=1

2(δrvin)2

1− δr‖vn‖∞
= −δc+

2(δr‖vn‖2)2

1− δr‖vn‖∞
.

Letting δ = c/(4r2‖vn‖22 + rc‖vn‖∞) leads to16

logP(yn < −c) ≤
−c2

8r2‖vn‖22 + 2rc‖vn‖∞
≤ −c2

2r‖vn‖∞(4r + c)
,

where we have used the fact that ‖vn‖∞ ≥ ‖vn‖22. Therefore,

lim inf
n→∞

‖vn‖∞ · |logP(yn < −c)| ≥
c2

8r2 + 2rc
> 0. (18)

Combining (15) and (18) completes the proof.

Proof of Proposition 5

Recall from (2) that aggregate output of economyWn is equal to yn =
∑n

i=1 vinεi. On the other hand,

it is well-know that if if εi are independent and have the common stable distribution with parameter

α, then
n∑
i=1

vinεi =d

(
n∑
i=1

vαin

)1/α

· ε1.17

Therefore, for any given c > 0,

P(yn < −c) = P(‖vn‖α · ε1 < −c) = F (−c/‖vn‖α).

16Note that this choice of δ satisfies δr‖vn‖∞ < 1, the condition required for deriving (17).
17See for example, Zolotarev (1986).
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Note that if ‖vn‖α is bounded away from zero for infinitely many n, then the result is immediately

obtained. On the other hand, if ‖vn‖α → 0 as n→∞, then the symmetry of the probability distribu-

tion F and the tail property (7) imply

P(yn < −c) = 1− F (c/‖vn‖α) ∼ ‖vn‖αα,

completing the proof.

Proof of Corollary 1

By construction, the elements of the influence vector vn should add up to one, that is

rn

n∑
i=1

i−θ = 1.

Therefore, as n→∞,

rn ∼ nθ−1

where we are using the assumption that θ < 1. On the other hand, Proposition 5 implies that the

probability of large downturns satisfies P(yn < −c) ∼ ‖vn‖αα, and as a consequence,

P(yn < −c) =

n∑
i=1

vαin ∼ nα(θ−1)
n∑
i=1

i−αθ.

Finally, note that as long as αθ > 1, the series
∑n

i=1 i
−αθ converges to a finite number, proving the

result.
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