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1. Introduction 

Recent theoretical work on the behavior of aggregate stock market prices has tried 

to account for several empirical regularities. These include the excess volatility puzzle of 

LeRoy and Porter (1981) and Shiller (1981), the equity premium puzzle of Mehra and 

Prescott (1985), the low correlation of stock returns and consumption growth noted by 

Hansen and Singleton (1982, 1983), and, most importantly, the evidence on predictability 

of stock market returns using the aggregate dividend-price ratio (Campbell and Shiller 

1988, Fama and French 1988). Both traditional and behavioral models have tried to 

account for this evidence. 

Yet this research has largely neglected another set of relevant data, namely those 

on actual investor expectations of stock market returns. As recently summarized by 

Greenwood and Shleifer (2013) using data from multiple investor surveys, many 

investors hold extrapolative expectations, believing that stock prices will continue rising 

after they have previously risen, and falling after they have previous fallen.1 This 

evidence is inconsistent with the predictions of many of the models used to account for 

the other facts about aggregate stock market prices. Indeed, in most traditional models, 

expected returns are low when stock prices are high: in these models, stock prices are 

high when investors are less risk averse or perceive less risk. Cochrane (2011) finds the 

survey evidence uncomfortable, and recommends discarding it. 

In this paper, we present a new model of aggregate stock market prices which 

attempts to both incorporate extrapolative expectations held by a significant subset of 

investors, and address the evidence that other models have sought to explain. The model 

includes both rational investors and price extrapolators, and examines security prices 

when both types are active in the market. Moreover, it is a consumption-based asset 

pricing model with infinitely lived consumers optimizing their decisions in light of their 

beliefs and market prices. As such, it can be directly compared to some of the existing 

                                                 
1 Greenwood and Shleifer (2013) analyze data from six different surveys; some are of individual investors, 
while others cover institutions. Most of the surveys ask about expectations for the next year’s stock market 
performance, but some also include questions about the longer term. The average investor expectations 
computed from each of the six surveys are highly correlated with one another and are all extrapolative. 
Earlier studies of stock market investor expectations include Vissing-Jorgensen (2004), Amromin and 
Sharpe (2008), and Bacchetta, Mertens, and Wincoop (2009). 
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research.  We suggest that our model can reconcile the evidence on expectations with the 

evidence on volatility and predictability that has animated recent work in this area.   

Why is a new model needed? As Table 1 indicates, traditional models of financial 

markets have been able to address pieces of the existing evidence, but not the data on 

expectations. The same holds true for preference-based behavioral finance models, as 

well as for the first generation belief-based behavioral models that focused on random 

noise traders without imposing a specific structure on beliefs. Several papers listed in 

Table 1 have studied extrapolation of fundamentals. However, these models also struggle 

to match the survey evidence: after good stock market returns, the investors they describe 

expect higher cash flows, but not higher returns. Finally, a small literature, starting with 

Cutler, Poterba, and Summers (1990) and DeLong et al. (1990b), focuses on models in 

which some investors extrapolate prices. Our goal is to write down a more “modern” 

model that includes infinite horizon investors, some of whom are fully rational, who 

make optimal consumption decisions given their beliefs, so that the predictions can be 

directly compared to those of the more traditional models. 

Our infinite horizon continuous-time economy contains two assets: a risk-free 

asset with a fixed return; and a risky asset, the stock market, which is a claim to a stream 

of dividends and whose price is determined in equilibrium. There are two types of 

traders. Both types maximize expected lifetime consumption utility. They differ only in 

their expectations about the future. Traders of the first type, “extrapolators,” believe that 

the expected price change of the stock market is a weighted average of past price 

changes, where more recent price changes are weighted more heavily. Traders of the 

second type, “rational traders,” are fully rational: they know how the extrapolators form 

their beliefs and trade accordingly. The model is simple enough to allow for a closed-

form solution. 

We first use the model to understand how extrapolators and rational traders 

interact. Suppose that, at time t, there is a positive shock to dividends. The stock market 

goes up in response to this good cash-flow news. However, the extrapolators cause the 

price jump to be amplified: since their expectations are based on past price changes, the 

stock price increase generated by the good cash-flow news leads them to forecast a higher 
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future price change on the stock market; this, in turn, causes them to push the time t stock 

price even higher. 

More interesting is rational traders’ response to this development. We find that 

the rational traders do not aggressively counteract the overvaluation caused by the 

extrapolators. This is because they reason as follows. The rise in the stock market caused 

by the good cash-flow news -- and by extrapolators’ reaction to it -- means that, in the 

near future, extrapolators will continue to have bullish expectations for the stock market: 

after all, their expectations are based on past price changes, which, in our example, are 

high. As a consequence, they will continue to exhibit strong demand for the stock market 

in the near term. This means that, even though the stock market is overvalued at time t, its 

returns in the near future will not be particularly low – they will be bolstered by the 

ongoing demand from extrapolators. Recognizing this, the rational traders do not sharply 

decrease their demand at time t; they only mildly reduce their demand. Put differently, 

they only partially counteract the overpricing caused by the extrapolators. 

Using a combination of formal propositions and numerical simulations, we then 

examine our model’s predictions about prices and returns. We find that these predictions 

are consistent with several of the key facts about the aggregate market and, in particular, 

with the basic fact that when prices are high (low) relative to dividends, the stock market 

subsequently performs poorly (well). When good cash-flow news is released, the stock 

price in our model jumps up more than it would in an economy made up of rational 

investors alone: as described above, the price jump caused by the good cash-flow news 

feeds into extrapolators’ expectations, which, in turn, generates an additional price 

increase. At this point, the stock market is overvalued and prices are high relative to 

dividends. Since, subsequent to the overvaluation, the stock market performs poorly on 

average, the level of prices relative to dividends predicts subsequent price changes in our 

model, just as it does in actual data. The same mechanism also generates excess volatility 

-- stock market prices are more volatile than can be explained by rational forecasts of 

future cash flows – as well as negative autocorrelations in price changes at all horizons, 

capturing the negative autocorrelations we see at longer horizons in actual data. 

The model also matches some empirical facts that, thus far, have been taken as 

evidence for other models. For example, in actual data, surplus consumption, a measure 
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of consumption relative to past consumption, is correlated with the value of the stock 

market; moreover, it predicts the market’s subsequent performance. These facts have 

been taken as support for habit-based models. However, they also emerge naturally in our 

framework. 

Our numerical analysis allows us to quantify the effects described above. 

Specifically, we use the survey data studied by Greenwood and Shleifer (2013) and 

others to parameterize the functional form of extrapolation in our model. For this 

parameterization, we find, for example, that if 50% of investors are extrapolators while 

50% are rational traders, the standard deviation of annual price changes is 30% higher 

than in an economy consisting of rational traders alone. 

There are aspects of the data that our model does not address. For example, even 

though some of the investors in the economy are price extrapolators, the model does not 

predict momentum in price changes: the presence of fully rational traders means that 

price changes are negatively autocorrelated at all lags. Also, there is no mechanism in our 

model, other than high risk aversion, that can generate a large equity premium. And while 

the presence of extrapolators reduces the correlation of consumption changes and price 

changes, this correlation is still much higher in our model than in actual data. 

In summary, our analysis suggests that, simply by introducing some extrapolative 

investors into an otherwise traditional consumption-based model of asset prices, we can 

make sense not only of some important facts about prices and returns, but also, by 

construction, of the available evidence on the expectations of real-world investors. This 

suggests that we do not need to think of the survey evidence as a nuisance, or as an 

impediment to understanding the facts about prices and returns. On the contrary, the 

extrapolation that is present in the survey data is perfectly consistent with the facts about 

prices and returns, and may be the key to understanding them. 

 In Section 2, we present our model and its solution, and discuss some of the basic 

insights that emerge from it. In Section 3, we assign values to the model parameters. In 

Section 4, we show analytically that the model reproduces several key features of stock 

prices. Our focus here is on quantities defined in terms of differences – price changes, for 

example; given the structure of the model, these are the natural objects of study. In 

Section 5, we use simulations to document the model’s predictions for ratio-based 
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quantities, such as the price-dividend ratio, that are commonly studied by empiricists. 

Section 6 concludes. All proofs, as well as some discussion of technical issues, are in the 

Appendix. 

 

2.  The Model 

In this section, we propose a heterogeneous-agent, consumption-based model in 

which some investors extrapolate past price changes when making forecasts about future 

price changes. Constructing such a model presents significant challenges, both because of 

the heterogeneity across agents, but also because it is the change in price, an endogenous 

quantity, that is being extrapolated. By contrast, constructing a model based on 

extrapolation of exogenous fundamentals is somewhat simpler. To prevent our model 

from becoming too complex to interpret, we make some simplifying assumptions – about 

the dividend process (a random walk in levels), about investor preferences (exponential 

utility), and about the risk-free rate (an exogenous constant). We expect the intuitions of 

the model to carry over to more complex formulations. 

We consider an economy with two assets: a risk-free asset in perfectly elastic 

supply with a constant interest rate r; and a risky asset, which we think of as the 

aggregate stock market, and which has a fixed per-capita supply of Q.2 The risky asset is 

a claim to a continuous dividend stream whose level per unit time evolves as an 

arithmetic Brownian motion 

,t D DdD g dt d        (1) 

where Dg and D are the expected value and standard deviation of dividend changes, 

respectively, and where  is a standard one-dimensional Wiener process. Both Dg and D

are constant in our model. We denote the value of the stock market at time t by Pt. 

There are two types of infinitely-lived traders in the economy: “extrapolators” and 

“rational traders.” Both types maximize expected lifetime consumption utility. The only 

difference between them is that one type has correct beliefs about the expected return of 

the risky asset, while the other type does not. 

                                                 
2 We discuss the constant interest rate assumption at the end of Section 2. 
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The modeling of extrapolators is motivated by the survey evidence analyzed by 

Vissing-Jorgensen (2004), Amromin and Sharpe (2008), Bacchetta, Mertens, and 

Wincoop (2009), and Greenwood and Shleifer (2013). These investors form beliefs about 

the future price change of the stock market by extrapolating the market’s past price 

changes. To formalize this, we introduce a measure of “sentiment,” defined as: 

( ) 0 ,,
t t s

t s dteS dP 





         (2) 

where s is the running variable for the integral. St is simply a weighted average of past 

price changes on the stock market where the weights decrease exponentially the further 

back we go into the past. The definition of St includes even the most recent price change, 

dPtdt  Pt  Ptdt. The parameter  plays an important role in our model. When it is high, 

sentiment is determined primarily by the most recent price changes; when it is low, even 

price changes in the distant past have a significant effect on current sentiment. In Section 

3, we use survey data to estimate . 

We assume that extrapolators’ expected price change, per unit time, in the value 

of the stock market, is 

, 0 1[ ] / ,e e
P t t t tg dP dt S         (3) 

where the superscript “e” is an abbreviation for “extrapolator,” and where, for now, the 

only requirement we impose on the constant parameters 0 and 1 is that 1  0. Taken 

together, equations (2) and (3) capture the essence of the survey results in Greenwood 

and Shleifer (2013): after good stock market returns, extrapolators expect the stock 

market to continue to perform well; and after poor stock market returns, they expect 

continued weak performance. While we leave 0 and 1 unspecified for now, natural 

values are 0  0 and 1  1, and these are indeed the values that we use later. 

 We do not take a strong stand on the underlying source of the extrapolative 

expectations in (3). However, one possible source is the representativeness heuristic, or 

the closely-related belief in the law of small numbers (Barberis, Shleifer, and Vishny 

1998; Rabin 2002). For example, under the law of small numbers, people think that even 

short samples will resemble the parent population from which they are drawn. As a result, 
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when they see good recent returns in the stock market, they infer that the stock market 

must currently have a high average return and that it will therefore continue to do well.3 

The second type of investor, the rational trader, has correct beliefs about the 

evolution of future stock prices. By correctly conjecturing the equilibrium price process, 

the rational investors take full account of extrapolators’ endogenous responses to price 

movements at all future times. 

There is a continuum of both rational traders and extrapolators in the economy. 

Each investor, whether a rational trader or an extrapolator, takes the risky asset price as 

given when making his trading decision, and has CARA preferences with absolute risk 

aversion  and time discount factor .4 At time 0, each extrapolator maximizes 

0
0

e
tt C

e e
dt

   
 

 


        (4) 

subject to his budget constraint 

( )(1 )

,

e e e
t t dt t t t t t t t t t dt t

e e e e e
t t t t t

e e e e

t t

e

t

edW W W C dt N P rdt N D dt N P W

rW dt C dt rN Pdt N dP N D

W

dt

        

    


 (5) 

where e
tN is the per-capita number of shares he invests in the risky asset at time t. 

Similarly, at time 0, each rational trader maximizes 

0
0

r
tt C

r e
dt

   
 

 


        (6) 

subject to his budget constraint 

( )(1 )

,

r r r r r r
t t dt t t t t t t t t t dt t

t t t t t t

r r r

t
r r r r

t
r

dW W W C dt N P rdt N D dt N P W

rW dt C dt rN Pdt N dP N D

W

dt

        

    


 (7) 

where r
tN is the per-capita number of shares he invests in the risky asset at time t, and 

where the superscript “r” is an abbreviation for “rational trader.” Since rational traders 

correctly conjecture the price process Pt, their expectation is consistent with that of an 

outside econometrician. 

                                                 
3 We think of the effect that we are modeling as distinct from the experience effect reported by Malmendier 
and Nagel (2011). Some evidence that these are indeed distinct effects is that, as we show later, the investor 
expectations documented in surveys depend only on recent past returns, not the distant past returns that 
play a role in Malmendier and Nagel’s (2011) results. 
4 The model remains analytically tractable even if the two types of investors have different values of  or . 
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We assume that rational traders make up a fraction , and extrapolators 1  , of 

the total investor population. The market clearing condition that must hold at each time 

is: 

(1 ) ,r e
t t QN N           (8) 

where Q is the per-capita supply of the risky asset. 

We assume that both extrapolators and rational traders observe Dt and Pt on a 

continuous basis. Moreover, they know the values of μ and Q; and traders of one type 

understand how traders of the other type form beliefs about the future.5  

 Using the stochastic dynamic programming approach developed in Merton 

(1971), we obtain the following proposition. 

 

Proposition 1 (Model solution). In the heterogeneous-agent model described above, the 

equilibrium price of the risky asset is 

.t
t t

D
A BS

r
P          (9) 

The price of the risky asset Pt and the sentiment variable St evolve according to 

,
1 (1 ) (1 )t t

D DgB
dP S dt d

B B r B r

  
        

   (10) 

.
1 (1 )

D D
t t

g
dS S dt d

B r B r
  

    
  

 
    (11) 

At time t, the value functions for the extrapolators and the rational traders are 

,

,

2

{ }

2

{ }

max( , , )

( , , )

exp ,

max exp .

s
e

e e
s s t

s s

s

r
s

r r
s t

N t

r r r r r r r

N

s C
e e e e e e e

t t t t t t
C

s C

t t t t t t
C t

e
J ds t r W

e
J ds

W S t a S b S c

W S t a S b S ct r W









  

  

 
             

  

  
 

            








      (12) 

The optimal per-capita share demands for the risky asset from the extrapolators and from 

the rational traders are 

                                                 
5 As in any framework with less than fully rational traders, the extrapolators could, in principle, come to 
learn that their beliefs about the future are inaccurate. We do not study this learning process; rather, we 
study the behavior of asset prices when extrapolators are unaware of the bias in their beliefs. 
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0 1

1
, ,e e e r e

t t t t

Q
S NN N


  

 


       (13) 

and the optimal consumption flows of the two types are 

 

 

2

2

1 log(

1 log

)
,

,
( )

e e e e e
t t t t

t t
r r

t t
r r r

r
C rW a S b S c

r
C rW a S b S c


   

 


  
 


    (14) 

where the optimal wealth levels, e
tW and ,r

tW evolve as in (5) and (7), respectively. The 

coefficients A, B, ,ea ,eb ,ec ,ra ,rb ,rc 0
e  and 1

e are determined through a system of 

simultaneous equations.                  

  

 To understand the role that extrapolators play in our model, we compare the 

model’s predictions to those of a benchmark “rational” economy, in other words, an 

economy where all traders are of the fully rational type, so that   1.6 

 

Corollary 1 (Rational benchmark). If all traders in the economy are rational (  1), the 

equilibrium price of the risky asset satisfies 

2

2 2
.tD D

tP Q
Dg

r r r





       (15) 

It therefore evolves according to 

.D D
t dt

g
dP

r
d

r



        (16) 

 The value function for the rational traders is 

2 2 21 1
exp .

1
( , )

2
r r

t t
r

DJ t rW t
r

W Q
r

r
             




  
  (17) 

The optimal consumption flow is 

2 2

2
,r D

t t

Qr
rW

r
C

r








      (18) 

                                                 
6 Another way of reducing our model to a fully rational economy is to set 0 and 1, the parameters in (3), 
to gD /r and 0, respectively. In this case, both the rational traders and the extrapolators have the same, 
correct beliefs about the expected per unit time price change of the risky asset. 
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where the optimal wealth level, ,r
tW evolves as   

2 2

2
.r D D

tdW dt
Q Q

r r
d

r

r

  
   


     (19) 

 

 

2.1. Discussion 

In Sections 4 and 5, we discuss the model’s implications in detail. However, the 

closed-form solution in Proposition 1 already makes apparent the basic properties of our 

framework. 

From equation (11), we see that the sentiment level St follows a mean-reverting 

process with long-run mean gD /r. Equation (9) shows that, when sentiment is high, stock 

market prices are pushed up -- the coefficient B is positive for all values of the basic 

parameters that we have considered. Intuitively, if the sentiment level is high, indicating 

that past price changes have been high, extrapolators expect the stock market to perform 

well in the future and therefore push its current price higher. While extrapolators’ beliefs 

are, by definition, extrapolative, rational traders’ beliefs are contrarian: their beliefs are 

based on the true price process (10) whose drift depends negatively on St. 

Comparing equations (10) and (16), we also see that, as noted in the Introduction, 

the presence of extrapolators amplifies the volatility of price changes – specifically, by a 

factor of 1/(1  B) > 1. And while in an economy made up of rational investors alone, 

price changes are not predictable -- see equation (16) -- equation (10) shows that they are 

predictable in the presence of extrapolators. Specifically, if the stock market has recently 

experienced good returns, so that the sentiment variable St has a high value, the 

subsequent stock market return is low on average: the coefficient on St in equation (10) is 

negative. In short, high valuations in the stock market are followed by low returns, and 

low valuations are followed by high returns. This anticipates some of our results on stock 

market predictability in Sections 4 and 5. 

In the analysis we conduct later, we find that, for reasonable values of the basic 

model parameters, the derived parameter 1
e in equation (13) is positive. In other words, 

after a period of good stock market performance, one that generates a high level of 
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sentiment St, extrapolators increase the number of shares of the stock market that they 

hold. With a fixed supply of these shares, this automatically means that the share demand 

of rational traders varies negatively with the sentiment variable St: rational traders absorb 

the shocks in extrapolators’ demand.7 

We also find that, for reasonable values of the basic model parameters, the 

derived parameters ,ea ,ra ,eb and rb in equation (14) typically satisfy 0,ea  0,ra  and 

.e rb b The fact that e rb b indicates that extrapolators increase their consumption more 

than rational traders do after strong stock market returns. After strong returns, 

extrapolators expect the stock market to continue to rise; an income effect therefore leads 

them to consume more. Rational traders, recognizing that extrapolators’ ebullience has 

caused the stock market to become overvalued, correctly perceive low future returns; 

they therefore do not raise their consumption as much. 

Equations (9) and (11) indicate that the mispricing created by extrapolators is 

eventually corrected, and more quickly so for high values of β. To understand this – in 

other words, to understand why, in our framework, bubbles eventually burst – recall that 

an overpricing occurs when good cash-flow news generates a price increase that then 

feeds into extrapolators’ beliefs, leading them to push prices still higher. The form of 

extrapolation in equation (2), however, means that as time passes, the price increase 

caused by the good cash-flow news plays a smaller and smaller role in determining 

extrapolators’ beliefs. As a result, these investors become less bullish over time, and the 

bubble deflates. This happens more rapidly when β is high because, in this case, 

extrapolators quickly “forget” all but the most recent price changes. 

Since extrapolators have incorrect beliefs about future price changes, it is likely 

that, in the long run, their wealth will decline relative to that of rational traders. However, 

the price process in (10) is unaffected by the relative wealth of the two trader types: under 

exponential utility, the share demand of each type, and hence also prices, are independent 

                                                 
7 Since the supply of the risky asset is fixed and there are only two groups of traders, the share demand of 
rational traders must vary negatively with the sentiment level. In a stripped-down version of our 
framework, we have also analyzed what happens when there are three types of traders: the two types we 
examine here, but also a group of partially-rational investors who buy (sell) the risky asset when its price is 
low (high) relative to fundamentals. We find that, in this economy, the share demand of the fully rational 
traders is positively related to the sentiment level. In other words, consistent with the findings of 
Brunnermeier and Nagel (2004), these traders “ride the bubble” generated by extrapolators. 
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of wealth. In other words, the exponential utility assumption allows us to abstract from 

the effect of “survival” on prices, and to focus on what happens when both types of trader 

play a role in setting prices. 

At the heart of our model is an amplification mechanism: if good cash-flow news 

pushes the stock market up, this price increase feeds into extrapolators’ expectations 

about future price changes, which then leads them to push current prices up even higher. 

However, this then further increases extrapolators’ expectations about future price 

changes, leading them to push the current price still higher, and so on. Given this infinite 

feedback loop, it is important to ask whether the heterogeneous agent equilibrium we 

described above exists. The following corollary provides a condition for existence of 

equilibrium. 

 

Corollary 2 (Existence of equilibrium). The equilibrium described in Proposition 1 

exists if and only if 1  |B|  0. When   0 (all investors are extrapolators), the 

equilibrium described in Proposition 1 exists if and only if 

1 ,r         (20) 

assuming that 1  2.                   

 

Corollary 2 shows that, when all investors in the economy are extrapolators, there 

may be no equilibrium even for reasonable parameter values; loosely put, the feedback 

loop described above may fail to converge. For example, if 1 = 1 and  = 0.5, there is no 

equilibrium in the case of   0 if the interest rate is less than 50%. However, if even a 

small fraction of investors are rational traders, the equilibrium is very likely to exist. 

Indeed, for   0.05, we have found an equilibrium for all the parameter values we have 

tried. 

One of the assumptions of our model is that the risk-free rate is constant. To 

evaluate this assumption, we compute the aggregate demand for the risk-free asset across 

the two types of trader. We find that this aggregate demand is very stable over time and, 

in particular, that it is uncorrelated with the sentiment level St. This is because the 

demand for the risk-free asset from one type of trader is largely offset by the demand 
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from the other type: when sentiment St is high, rational traders increase their demand for 

the risk-free asset (and move out of the stock market), while extrapolators reduce their 

demand for the risk-free asset (and move into the stock market). When sentiment is low, 

the reverse occurs. This suggests that, even if the risk-free rate were endogenously 

determined, it would not fluctuate wildly, nor would its fluctuations significantly 

attenuate the effects we describe here. 

 

3.  Parameter Values 

In this section, we assign benchmark values to the basic model parameters. We 

use these values in the numerical simulations of Section 5. However, we also use them in 

Section 4. While the core of that section consists of analytical propositions, we can get 

more out of the propositions by evaluating the expressions they contain for reasonable 

parameter values. 

For easy reference, we list the model parameters in Table 2. The asset-level 

parameters are the risk-free rate r; the initial level of the dividend 0;D the mean Dg and 

standard deviation D of dividend changes; and the risky asset supply Q. The investor-

level parameters are the initial wealth levels for the two types of agents, 0
eW and 0 ;rW

absolute risk aversion  and the time discount rate ; the proportion μ of rational traders 

in the economy; , which governs the relative weighting of recent and distant past price 

changes in the definition of the sentiment variable; and, finally, 0 and 1, which govern 

the relationship between the sentiment variable and extrapolators’ beliefs.8 

We set r = 2.5%, consistent with the low historical risk-free rate. We set the initial 

dividend level 0D  to 10, and given this, we choose 0.25;D   in other words, we choose 

a volatility of dividend changes small enough to ensure that we only rarely encounter 

negative dividends and prices in the simulations we conduct later. We set 0.05Dg  to 

match, approximately, the empirical ratio of /D Dg  in the data. Finally, we set the risky 

asset supply to Q  5. 

                                                 
8 The variables , , and  are listed at the bottom of Table 2 because, for much of the analysis, we do 
not need to specify their values; their values are needed only for the simulations in Section 5. 
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We now turn to the investor-level parameters. We set the initial wealth levels to 

0 0
e rW W  5000. Given this, we set risk aversion  equal to 0.1 so that relative risk 

aversion, computed from the value function as ,WW

W

WJ
RRA

J
r W   is 12.5 at the initial 

wealth levels. We choose a low time discount rate of  = 1.5%, consistent with most 

other asset pricing frameworks; and, as noted earlier, we set 0 and 1 in equation (3) to 

0  0 and 1  1. These values imply that, while extrapolators overestimate the 

subsequent price change of the stock market after good past price changes and 

underestimate it after poor past price changes, the errors in their forecasts of future price 

changes over any finite horizon will, in the long run, average out to zero. 

This leaves just two parameters: μ, the fraction of rational investors in the 

economy; and , the weighting parameter in equation (2). Because these two parameters 

play an important role in our framework, we consider a range of values for each one in 

the numerical analysis that follows. Specifically, we consider four different values of μ: 1 

(an economy where all investors are fully rational), 0.75, 0.5, and 0.25. We do not 

consider the case of   0 because Corollary 2 indicates that, when all investors are 

extrapolators, the equilibrium does not exist for reasonable values of  and 1. For , we 

consider three possible values: 0.05, 0.5, and 0.75. Recall that, for higher values of , 

extrapolators weigh recent returns more heavily when forecasting future returns. For 

example, when   0.05, the realized annual price change on the stock market starting 

four years ago is weighted 86% as much as the most recent annual price change; when  

 0.5, it is weighted 22% as much; and when   0.75, it is weighted only 11% as much. 

While we consider four different values of μ, we focus on the lowest of the four 

values, namely 0.25. The fact that the average investor in the surveys studied by 

Greenwood and Shleifer (2013) – surveys that include both sophisticated and less 

sophisticated respondents – exhibits extrapolative expectations suggests that many if not 

most investors in actual financial markets may be extrapolators. 

We can also use the survey evidence to get a better sense of a reasonable value of 

. The idea is simple: if investors’ expectations of future stock market returns depend 

primarily on very recent market returns – on returns over the past year, or past two years 
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– then  is high. Conversely, if investors’ expectations of future returns depend to a 

significant extent on returns in the distant past, then this points to a lower value for . In 

the Appendix, we describe in detail how we use the survey data to estimate . The 

estimation makes use of Proposition 2 below, and specifically, equation (22), which 

describes the change in the value of the stock market expected by extrapolators over any 

future horizon. 

 

Proposition 2 (Price change expectations of rational traders and extrapolators). 

Conditional on an initial sentiment level S0  s, rational traders’ expectation of the price 

change in the stock market over the finite time horizon (0, t1) is: 

 1

1

1
0 0 0 1 e ,ktr D D

t

g g t
B sP s

r r
SP           

      (21) 

while extrapolators’ expectation of the same quantity is: 

   
1

1

1 1
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( )
,

1mt
e

t S t
mt e

P P s s ms
m

 
    

          (22) 

where 
1

k
B





and m  (1  1). When 0  0 and 1  1, (22) reduces to 

10 0 0 1 .t
e P P S ss t          (23) 

   

Equations (21) and (22) confirm that the expectations of extrapolators load positively on 

the sentiment level, while the expectations of rational traders load negatively. 

 

When we use the procedure described in the Appendix to estimate  from the 

survey data, we obtain a value of approximately 0.5. Consequently, while we present 

results for three different values of , we pay most attention to the case of   0.5.9 

For a given set of values of the basic parameters in Table 2, we use the procedure 

outlined in the Appendix to compute the “derived” parameters: 0
e and 1 ,e which 

                                                 
9 When we estimate  from the survey data, we assume, for simplicity, that all the surveyed investors are 
extrapolators. If we instead allowed some of them to fall into the category of rational investors – in other 
words, if we instead tried to estimate both  and μ from the survey data -- we might obtain a different value 
of . However, we would not expect the estimate of  to change very much. 
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determine extrapolators’, and hence rational traders’, optimal share demand (see equation 

(13)); ,ea ,eb ,ec ,ra rb and ,rc which determine investors’ optimal consumption policies 

(see equation (14)); A and B, which specify how the price level P depends on the level of 

the sentiment S and the level of the dividend D (see equation (9)); and finally ,P the 

volatility of price changes in the stock market (see equation (10)). For example, if   

0.25,   0.5, and the other basic parameters have the values shown in Table 2, the values 

of the derived parameters are: 

0 1

3 3 3

1.54, 0.51, 19.75, 117.04, 0.99,

1.22 , 1.28 , 7.31 , 0.042,

1.63, 3.47.

10 10 10

e e
P

e r e r

e r

A B

a a b b

c c

  

     

     

  

   

  

   (24) 

 

4. Empirical Implications 

In this section, we present a detailed analysis of the empirical predictions of the 

model. Under the assumptions that the dividend level follows an arithmetic Brownian 

motion and that investors have exponential utility, it is more natural, in our analysis, to 

work with quantities defined in terms of differences rather than ratios – for example, to 

work with price changes Pt  P0 rather than returns; and with the “price-dividend 

difference” P  D/r rather than the price-dividend ratio. For example, Corollary 1 shows 

that, in the benchmark rational economy, it is P  D/r that is constant over time, not P/D. 

In this section, then, we study the predictions of price extrapolation for these difference-

based quantities. In Section 5, we also consider the ratio-based quantities. 

We study the implications of the model for the difference-based quantities with 

the help of formal propositions. For example, if we are interested in the autocorrelation of 

price changes, we first compute this autocorrelation analytically, and then report its value 

for the parameter values in Table 2. For two crucial parameters, μ and β, we consider a 

range of possible values. Recall that μ is the fraction of rational traders in the overall 

investor population, while β controls the relative weighting of near-past and distant-past 

price changes in extrapolators’ forecast of future price changes. 

 We are interested in how the presence of extrapolators in the economy affects the 

behavior of the stock market. To understand this more clearly, in the results that we 
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present below, we always include, as a benchmark, the case of   1, in other words, the 

case where the economy consists entirely of rational traders. 

 

4.1. Predictive power of D/r  P for future price changes 

A basic fact about the stock market is that the dividend-price ratio of the stock 

market predicts subsequent returns, but not subsequent cash flows. It is helpful to express 

this fact in the more structured way suggested by Cochrane (2011), among others. If we 

run three univariate regressions – a regression of future returns on the current dividend-

price ratio; a regression of future dividend growth on the current dividend-price ratio; and 

a regression of the future dividend-price ratio on the current dividend-price ratio – then, 

as a matter of accounting, the three regression coefficients must (approximately) sum to 

one. Empirically – and this is the basic fact that needs to be explained – the three 

regression coefficients are roughly 1, 0, and 0, respectively, at long horizons. In other 

words, at long horizons, the dividend-price ratio forecasts future returns – not future cash 

flows, and not its own future value. 

We can express this point in a way that fits more naturally with our model, using 

quantities defined as differences, rather than ratios. Given the accounting identity 

 0
0 0

0 ,t
t t

tD D D D
P P

r r
P P

r r
           
   

    (25) 

it is immediate that if we run three regressions – of the future price change, the (negative) 

future dividend change, and the future dividend-price difference, on the current dividend-

price difference – the three coefficients we obtain must sum to one, at any horizon. To 

match the empirical facts, our model needs to predict a regression coefficient in the first 

regression that is close to one, particularly at long horizons. The next proposition shows 

that this is exactly the case. 

 

Proposition 3 (The predictive power of D/r  P). Consider a regression of the price 

change in the stock market over some time horizon (0, t1) on the level of D/r  P at the 
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start of the horizon. In population, the coefficient on the independent variable in the 

regression is10 

 
 

1 1
0 0 0

1
0 0
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) 1

,
( ,
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where .
1

k
B





                  

 

Table 3 reports the value of the regression coefficient in Proposition 3 for various 

values of μ and β, and for five different time horizons: a quarter, a year, two years, three 

years, and four years. The table shows that, consistent with the empirical facts, D/r  P 

does indeed predict future price changes with a positive sign. Moreover, the regression 

coefficient, 1),(DP t is increasing in the length of the time horizon t1. For long time 

horizons t1, the regression coefficient converges to 1, as it does empirically in a 

regression of long-horizon returns on the dividend yield. In the benchmark rational 

economy, the quantity D/r  P is constant; the regression coefficient we compute in 

Proposition 3 is therefore undefined. 

The intuition for why D/r  P predicts subsequent price changes is 

straightforward. A sequence of good cash flow news pushes up stock prices, which then 

raises extrapolators’ expectations about the future price change of the stock market and 

causes them to push stock prices even higher. At this point, the stock market is 

overvalued; the value of D/r  P is therefore low. Precisely because the stock market is 

overvalued, the subsequent price change is low, on average. The quantity D/r  P 

therefore forecasts price changes with a positive sign. 

The table shows that, for a fixed horizon, the predictive power of D/r  P is 

stronger for low : since the predictability of price changes is driven by the presence of 

extrapolators, it is natural that this predictability is stronger when there are more 

extrapolators in the economy. The predictive power of D/r  P is also weaker for low : 

when  is low, extrapolators’ beliefs are more persistent; as a result, it takes longer for an 

                                                 
10 The expectations that we compute in the propositions in Section 4 are taken over the steady-state 
distribution of the sentiment level S. Ergodicity of the stochastic process St guarantees that time-series 
averages will converge to our analytical results in the long run. 



20 
 

overvaluation to correct, reducing the predictive power of D/r  P for price changes at 

any fixed horizon. 

 

4.2. Autocorrelations of P  D/r 

In the data, price-dividend ratios are highly autocorrelated at short lags, and we 

would like to know if our model can capture this. The natural analog of the price-

dividend ratio in our model is the difference-based quantity P  D/r. We therefore 

examine the autocorrelation structure of this quantity. 

In our discussion of the accounting identity in equation (25), we noted that, if we 

run regressions of the future change in the stock price, the future change in dividends, 

and the future dividend-price difference on the current dividend-price difference, then the 

three regression coefficients we obtain must sum to one. Since dividends follow a random 

walk in our model, we know that the coefficient in the second regression is zero. We also 

know, from Proposition 3, that the coefficient in the first regression is 11 .kte The 

coefficient in the third regression, which is also the autocorrelation of the dividend-price 

difference D/r  P, must therefore equal 1 .kte The next proposition confirms this. 

 

Proposition 4 (Autocorrelations of P  D/r). In population, the autocorrelation of P  

D/r at a time lag of t1 is 
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and .
1
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B



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                          

In Table 4, we compute the autocorrelations in Proposition 4 for several pairs of 

values of  and , and for lags of one quarter, one year, two years, three years, and four 

years. The table shows that, in our model, and consistent with the empirical facts, the 

price-dividend difference is highly persistent at short horizons, while at long horizons, the 

autocorrelation drops to zero: at long horizons, the price-dividend difference forecasts 

price changes, not its own future value. The table shows that the autocorrelations are 
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higher for low values of : when  is low, extrapolators’ beliefs are very persistent, 

which, in turn, imparts persistence to the price-dividend difference. 

 

4.3. Volatility of price changes and of P  D/r 

Empirically observed stock market returns and price-dividend ratios are thought 

to exhibit “excess volatility,” in other words, to be more volatile than can be explained 

purely by fluctuations in rational expectations about future cash flows. We now show 

that, in our model, price changes and the price-dividend difference – the natural analogs 

of returns and of the price-dividend ratio in our framework – also exhibit such excess 

volatility. In particular, they are more volatile than in the benchmark rational economy 

described in Corollary 1, an economy where prices are set only by rational forecasts of 

future cash flows. 

  

Proposition 5 (Excess volatility). In the economy of Section 2, the volatility of price 

changes over a finite time horizon (0, t1) is 
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while the volatility of P  D/r over (0, t1) is 
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 Table 5 reports the standard deviation of annual price changes and of the annual 

price-dividend difference P  D/r for several (, ) pairs. Panel A shows that, in the fully 

rational economy (  1), the standard deviation of annual price changes is 10, in other 

words, D /r. When extrapolators are present, however, the standard deviation is 

considerably higher: 30% higher when there are an equal number of extrapolators and 

rational traders in the economy, a figure that, as we explain below, depends little on the 

parameter . Similarly, while in the fully rational economy the price-dividend difference 

is constant, in the presence of extrapolators, it varies significantly. 
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The results in Proposition 5 and in Table 5 confirm the intuition we described in 

the Introduction, namely that the presence of extrapolators amplifies the volatility of 

stock prices. A good cash flow shock pushes stock prices up. However, this increase in 

stock prices immediately leads extrapolators to expect higher future price changes in the 

stock market, which, in turn, leads them to push the value of the stock market up even 

further. Rational investors counteract this overvaluation, but only mildly so: since they 

understand how extrapolators form beliefs, they know that extrapolators will continue to 

have optimistic beliefs about the stock market in the near future, which, in turn, means 

that subsequent price changes, while lower than average, will not be very low. As a 

consequence, rational investors do not push back strongly against the overvaluation 

caused by the extrapolators. Put differently, even if the fraction of extrapolators in the 

overall population is low, this can be enough to significantly amplify the volatility of the 

stock market. 

The table shows that, as expected, the greater the fraction of extrapolators in the 

economy, the more “excess volatility” there is in price changes and in the price-dividend 

difference. More interesting, it also shows that the amount of excess volatility is largely 

insensitive to the parameter . This may seem surprising at first: since extrapolators’ 

beliefs are more variable when  is high, one might have thought that a higher  would 

correspond to higher price volatility. However, there is another force that pushes in the 

opposite direction: rational traders know that, precisely because extrapolators change 

their beliefs more quickly when  is high, any mispricing caused by the extrapolators will 

correct more quickly in this case. As a result, when  is high, rational traders trade more 

aggressively against the extrapolators, dampening volatility. Overall, then,  has little 

effect on volatility. 

Does the higher price volatility generated by extrapolators leave the rational 

traders worse off? It does not. Specifically, we find that, if we start with an economy 

consisting of only rational traders and then gradually add more extrapolators while 

keeping the per-capita supply of the risky asset constant, the value function of the rational 

trader increases in value. In other words, while the higher price volatility lowers rational 

traders’ utility, this is more than compensated for by the higher profits they make by 

exploiting the extrapolators. 



23 
 

4.4. Autocorrelations of price changes 

Empirically, returns on the stock market are positively autocorrelated at short 

lags; at longer lags, they are negatively autocorrelated. We now examine what our model 

predicts about the autocorrelation structure of the analogous quantity to returns in our 

framework, namely price changes. 

 

Proposition 6 (Autocorrelations of price changes). In population, the autocorrelation of 

price changes between (0, t1) and (t2, t3), where t2  t1, is 
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In Table 6, we use Proposition 6 to compute the autocorrelation of price changes 

for several pairs of values of  and , and at lags of one, two, three, four, eight, and 

twelve quarters. The table shows that price changes are negatively autocorrelated at all 

lags, with the autocorrelation tending to zero at long lags. To see why, suppose that there 

is good cash flow news at time t. The stock market goes up in response to this news; but 

since this price rise causes extrapolators to expect higher future price changes, the stock 

market is pushed even further up. Now that the stock market is overvalued, the price 

change is lower, on average, going forward. In other words, past price changes have 

negative predictive power for future price changes. 

Negative autocorrelations are also observed in the data, at several lags; to some 

extent, then, our model matches the data. However, there is also a way in which our 
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model does not match the data: actual returns are positively autocorrelated at the first 

quarterly lag, while the price changes generated by our model are not. 

Some earlier models of return extrapolation – for example, Cutler, Poterba, and 

Summers (1990), De Long et al. (1990b), Hong and Stein (1999), and Barberis and 

Shleifer (2003) – do generate positive short-term autocorrelation, or “momentum,” for 

short. Barberis and Shleifer (2003), for example, consider an economy with two groups 

of investors. The first group’s demand for the risky asset at time t depends on the asset’s 

past price changes up to time t  1; the second group buys (sells) the risky asset when its 

price is low (high) relative to fundamentals, but does not know the exact structure of 

extrapolator demand. This model generates positive short-term autocorrelation and 

negative long-term autocorrelation in price changes. In De Long et al. (1990b) and Hong 

and Stein (1999), the time t risky asset demand of some investors depends positively on 

the price change between time t  2 and time t  1; these frameworks also generate 

positive short-term autocorrelation in price changes, and negative long-term 

autocorrelation. 

Given that these earlier extrapolation-based models generate momentum, why 

does our model not do so? There are two differences between the earlier models and the 

current one, each of which, taken alone, suffices to remove any momentum. First, in 

contrast to the earlier models, our economy contains fully rational investors who 

understand how extrapolators form beliefs. Second, in the current model, extrapolators’ 

demand for the risky asset depends on even the most recent price change ,t t dtP P  while 

in the earlier models, it depends only on price changes up to, but not including, the most 

recent price change. This last assumption is important for generating momentum: if 

extrapolators’ demand at time t depends on the price change between time t  2 and time 

t  1, a positive price change between t  2 and t  1 is likely to generate a positive price 

change between t  1 and t.11 

 

                                                 
11 Our claim that either the presence of rational investors or an extrapolator demand function that depends 
on the most recent price change is enough to remove momentum is based on a re-examination of the 
Barberis and Shleifer (2003) model. We find that, if we either replace the partially rational investors in that 
model with fully rational investors, or make extrapolator demand a function of the most recent price 
change, the model no longer generates momentum. 
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4.5. Correlation of consumption changes and price changes 

Another quantity of interest is the correlation of consumption growth and returns. 

In the data, this correlation is low. We now look at what our model predicts about the 

analogous quantity: the correlation of consumption changes and price changes. 

 

Proposition 7 (Correlation between consumption changes and price changes). In 

population, the correlation between the change in consumption and the change in price 

over a finite time horizon 1(0, )t is 
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and  
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 Panels A and B of Table 7 use Proposition 7 to compute the correlation of 

consumption changes and price changes at a quarterly and annual frequency, 

respectively, and for several (, ) pairs. The two panels show that, while the presence of 

extrapolators slightly reduces this correlation relative to its value in the fully rational 

economy, the correlation is nonetheless high. As is the case for virtually all consumption-

based pricing models, then, our model fails to match the low correlation of consumption 

growth and returns in the data. 

 

4.6. Predictive power of the surplus consumption ratio 

Prior empirical research has shown that a variable called the “surplus 

consumption ratio” – a measure of consumption relative to past consumption levels, is 

contemporaneously correlated with the price-dividend ratio on the overall stock market; 

and furthermore, that it predicts subsequent returns with a negative sign. These findings 

have been taken as support for habit-based models of the aggregate stock market. We 

show, however, that these patterns also emerge from our model. 
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As we have done throughout this section, we look at a surplus consumption 

difference rather than a surplus consumption ratio; moreover, we focus on the simplest 

possible surplus consumption difference, namely the current level of aggregate 

consumption minus the level of aggregate consumption at some point in the past. 

Proposition 8 computes the correlation between this variable and the contemporaneous 

price-dividend difference P  D/r. 

 

Proposition 8: (Correlation between consumption change and P  D/r). In population, 

the correlation between the change in consumption over a finite time horizon 1(0, )t and P 

 D/r is 
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Proposition 9 examines whether the surplus consumption difference can predict 

future price changes. 

 

Proposition 9 (The predictive power of changes in consumption). Consider a 

regression of the price change in the stock market from t1 to t2 on the change in 

consumption over the finite time horizon (0, t1). In population, the coefficient on the 

independent variable is 
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 Panel C of Table 7 uses Proposition 8 to compute, for several (, ) pairs, the 

correlation between the surplus consumption difference and the price-dividend 

difference. Here, the surplus consumption difference is computed as the current level of 

aggregate consumption minus the level of aggregate consumption a quarter ago. The 

panel shows that the two quantities are significantly correlated. Table 8 uses Proposition 

9 to compute the coefficient on the independent variable in a regression of the price 

change in the stock market over some horizon – one quarter, one year, two years, three 

years, or four years – on the surplus consumption difference. It shows that the surplus 

consumption difference has significant negative predictive power for price changes, and 

that the predictive power is particularly strong for low μ and high β. Taken together, then, 

Panel C of Table 7 and Table 8 show that the surplus consumption difference can be 

correlated with the valuation level of the stock market and with the subsequent stock 

price change even in a framework that does not involve habit-type preferences in any 

way. 

 The intuition for these results is straightforward. After a sequence of good cash 

flow news, extrapolators cause the stock market to become overvalued and hence the 

price-dividend difference to be high. However, at the same time, extrapolators’ optimistic 

beliefs about the future lead them to raise their consumption; while the rational traders do 

not raise their consumption as much, aggregate consumption nonetheless increases 

overall, pushing the surplus consumption difference up. This generates a positive 
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correlation between the price-dividend difference and the surplus consumption 

difference. Since the stock market is overvalued at this point, the subsequent price change 

in the stock market is low, on average. As a consequence, the surplus consumption 

difference predicts future price changes with a negative sign. 

 

4.7. Equity premia and Sharpe ratios 

Proposition 10 below computes the equity premium and Sharpe ratio of the stock 

market. 

 

Proposition 10 (Equity Premium and Sharpe Ratio). In the economy of Section 2, the 

equity premium, defined as the per unit time expectation of the excess price change and 

dividend, can be written as 
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                              

 

Panel A of Table 9 uses the proposition to compute the average excess price 

change and dividend at an annual horizon for several (, ) pairs. The panel shows that 

the equity premium rises as the fraction of extrapolators in the economy goes up: the 

more extrapolators there are, the more volatile the stock market is; the equity premium 

therefore needs to be higher to compensate for the higher risk. Panel B of the table shows 

that it is not just the equity premium that goes up as  falls, but also the Sharpe ratio. 
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5. Further Analysis: Ratio-based Quantities 

In Section 4, we focused on quantities defined in terms of differences: on price 

changes, and on the price-dividend difference P  D/r. Given the additive structure of our 

model, these are the natural quantities to study. However, most empirical research works 

with ratio-based quantities such as returns and price-dividend ratios. While these are not 

the most natural quantities to look at in the context of our model, we can nonetheless 

examine what our model predicts about them. This is what we do in this section. 

Since analytical results are not available for ratio-based quantities, we use 

numerical simulations to study their properties. In Section 5.1, we explain the 

methodology behind these simulations. In Section 5.2, we present our results. In brief, the 

results for the ratio-based quantities are broadly consistent with those for the difference-

based quantities in Section 4. However, we also interpret these results cautiously: 

precisely because they are not the natural objects of study in our model, the ratio-based 

quantities are not as well-behaved as the difference-based quantities we examined in 

Section 4. 

 

5.1. Simulation Methodology 

To conduct the simulations, we first discretize the model. In this discretized 

version, we use a time-step of t  ¼, in other words, of one quarter. As indicated in 

Section 3, the initial level of the dividend is 0 10D   and the initial wealth levels are 

0 0 5000.e rW W   We further set the initial sentiment level, 0 ,S to the steady-state mean of 

.Dg
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The proposition also tells us that, from time nt to (n+1)t, we have:  
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with i {e, r}, and where ( 1){ , 1}n t n   are i.i.d. standard normal random variables with 

mean 0 and a standard deviation of 1. We make the conventional assumptions that the 

level of the consumption stream for the period between (nt, (n+1)t) is determined at 

the beginning of the period; and that the level of the dividend paid over this period is 

determined at the end of the period. 

For a given set of values of the basic model parameters in Table 2, we use the 

procedure described in the proof of Proposition 1 to compute the parameters that 

determine the optimal portfolio holdings and consumption choice – variables such as 1 ,e

for example.12 We then use the above equations to simulate a sample path for our 

economy that is 200 periods long, in other words, 50 years long. We compute quantities 

of interest from this 200-period time series – the autocorrelation of stock market returns, 

say. We then repeat this process 10,000 times. In the next section, we report the average 

return autocorrelation that we obtain across these 10,000 simulated paths. 

 

 

 

                                                 
12 Here, we are assuming that the values of the derived parameters, such as , that determine investors’ 
optimal policies in the continuous-time framework are a good approximation to the values of these 
parameters in the discrete-time analog of our model. One indication that this is a reasonable assumption is 
that our numerical results are robust to changing t from 1/4 to 1/48, say. 
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5.2. Results 

Table 10 presents the model’s predictions for ratio-based quantities for   

0.25 and for three different values of . For each (, ) pair, we simulate 10,000 

paths, each of which is 200 periods long. For each of the 10,000 paths, we compute 

various quantities of interest – specifically, the quantities listed in the left column of 

Table 10. The table reports the average value of each quantity across the 10,000 

paths. The last column of the table reports the empirical value of each quantity over 

the post-war period from 1947 to 2011.13  

We now discuss each of these quantities in turn. Most of them are simply the 

ratio-based analogs of the quantities we studied in Section 4: for example, instead of 

computing the standard deviation of price changes, we compute the standard 

deviation of returns. However, we are also able to address some questions that we 

did not discuss in any form in Section 4, such as whether the consumption-wealth 

ratio or more complex formulations of the surplus consumption ratio have any 

predictive power for returns. 

Row 1: We report the coefficient on the independent variable in a regression 

of total log excess returns measured over a one-year horizon on the log dividend-

price ratio at the start of the year. To be clear, as described above, we run this 

regression in each of the 10,000 paths we simulate; the table reports the average 

coefficient across all paths, as well as the average R-squared, in parentheses. 

Consistent with the findings of Section 4.1, the table shows that the dividend-price 

ratio predicts subsequent returns with a positive sign. 

Row 2: We report the autocorrelation of the price-dividend ratio at a one-

year lag. Consistent with the results of Section 4.2, the ratio is highly persistent.  

Row 3: We compute the excess volatility of returns -- specifically, the 

standard deviation of stock returns in the heterogeneous-agent economy relative to 

the standard deviation of returns in the rational benchmark economy. Consistent 

with the findings of Section 4.3, we see that stock returns exhibit excess volatility. 

                                                 
13 For the nondurable consumption data, the sample period starts in 1952. Returns are based on the CRSP 
value-weighted index. For the consumption-wealth ratio, wealth is computed in two different ways: the first 
way uses the market capitalization of the CRSP stock market, and the second uses aggregate household 
wealth from the Flow of Funds accounts, following Lettau and Ludvigson (2001). 
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Row 4: We compute the excess volatility of price-dividend ratios: the 

standard deviation of the price-dividend ratio in the heterogeneous-agent economy 

relative to its standard deviation in the rational benchmark economy. Consistent with 

Section 4.3, the standard deviation of the price-dividend ratio goes up in the 

presence of extrapolators. 

Row 5: We compute the autocorrelation of quarterly log excess stock returns 

at lags of one quarter and two years. As in Section 4.4, returns are negatively 

autocorrelated. 

Row 6: We compute the correlation of annual log excess stock returns with 

annual changes in quarterly log consumption. As in Section 4.5, this correlation is 

higher than the correlation observed in the data. 

Row 7: We compute the correlation between the surplus consumption ratio and 

the price-dividend ratio, where both quantities are measured at a quarterly frequency. 

Given the greater flexibility afforded by numerical simulations, we use a more 

sophisticated definition of surplus consumption than in Section 4.6, one that is still 

simpler than in Campbell and Cochrane (1999) but that nonetheless preserves the spirit of 

their calculation. Specifically, we define the surplus consumption ratio as: 
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where the superscript “a” stands for “aggregate,” and where the habit level Xt adjusts 
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In simple terms, Xt is a weighted sum of past consumption levels, where recent 

consumption levels are weighted more heavily. For a given , we choose n so that 

1
( )

1

1

90%;
j t t n t

t

n

j

j

j t

e e e

ee

  





   

  
 




that is, we choose  so that even consumption 
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changes in the distant past receive at least some weight in the computation of the 

habit level. In our calculations, we set   0.95 and n  12.14 

 Row 7 of Table 10 shows that, as in Section 4.6, the surplus consumption 

ratio and price-dividend ratio are positively correlated, consistent with the actual 

data. 

Row 8: We report the coefficient on the independent variable in a regression 

of total log excess returns over a year on the surplus consumption ratio at the start of 

the year. Consistent with our results in Section 4.6 using a simpler measure of 

surplus consumption, the surplus consumption ratio predicts subsequent returns with 

a negative sign, as it does in actual data. 

Row 9: Empirically, the consumption-wealth ratio has predictive power for 

subsequent returns. Here, we examine whether our model can generate this pattern. 

We compute the coefficient on the independent variable in a regression of total log 

excess returns over a year on the log consumption-wealth ratio at the start of the 

year. The table shows that the ratio does indeed have some predictive power. 

What is the intuition for this predictive power? After a sequence of good cash 

flow news, extrapolators cause the stock market to become overvalued. This, in turn, 

increases aggregate wealth in the economy; it also increases aggregate consumption, but 

not to the same extent: rational traders, in particular, do not increase their consumption 

very much because they realize that future returns on the stock market are likely to be 

low. Overall, the consumption-wealth ratio falls. Since the stock market is overvalued, its 

subsequent return is lower than average. The consumption-wealth ratio therefore predicts 

subsequent returns with a positive sign. 

Row 10: We compute the equity premium and Sharpe ratio in our economy. 

 

In summary, while it is natural, in our framework, to study difference-based 

quantities rather than ratio-based quantities, Table 10 shows that the ratio-based 

quantities exhibit patterns that are broadly similar to those that we obtained in 

Section 4 for the difference-based quantities. 

                                                 
14 When  = 0.95, quarterly consumption one year ago is weighted about 40% as much as current 
consumption. 
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6. Conclusion 

Survey evidence suggests that many investors form beliefs about future stock 

market returns by extrapolating past returns: they expect the stock market to perform well 

(poorly) in the near future if it has recently performed well (poorly). Such beliefs are hard 

to reconcile with existing models of the aggregate stock market. We study a 

heterogeneous-agent model in which some investors form beliefs about future stock 

market price changes by extrapolating past price changes, while other investors have 

fully rational beliefs. We find that the model captures many features of actual returns and 

prices. Importantly, however, it is also consistent with the survey evidence on investor 

expectations. This suggests that the survey evidence does not need to be seen as a 

nuisance; on the contrary, it is consistent with the facts about prices and returns and may 

be the key to understanding them. 
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Appendices 
 

A. Proof of Proposition 1  

 In order to solve the stochastic dynamic programming problem, we need the 
differential forms for the evolution of the state variables. From the definition of the 

sentiment variable, ( ) ,
t t s

t s dtdPS e  


  its differential form is 

 .t t tdS dS dt P     (A1) 

The term Stdt captures the fact that, when we move from time t to time t  dt, 
all the earlier price changes that contribute to St  need to be associated with smaller 
weights since they are further away from time t  dt than they were from time t; the term 
dPt captures the fact that the latest price change pushes St  in the same direction; and the 
parameter  captures the stickiness of this belief updating rule. Also, the wealth of each 
type of trader evolves as 
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 (A2) 

consistent with the budget constraints in (5) and (7).  
As noted in the main text, the derived value functions for the extrapolators and the 

rational traders are 
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The assumptions that traders have CARA preferences, that Dt follows an 
arithmetic Brownian motion, that St evolves in a Markovian fashion as in (A1), and that 
extrapolators’ biased beliefs in (3) are linearly related to St jointly guarantee that the 
derived value functions are only functions of time, of the level of wealth, and of the level 
of sentiment, but of nothing else (such as Dt or Pt). We verify this and discuss it further 
after solving the model. 

If we define 
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then, from the theory of stochastic control, we have that15 
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By Ito’s lemma, (A5) leads to the stochastic Bellman equations which state that, along 
the optimal path of consumption and asset allocation, 
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15 See Kushner (1967) for a detailed discussion of this topic. 
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where e
Pg and r

Pg are the per unit time price change of the stock market expected by 

extrapolators and rational traders, respectively, and where P is the per unit time 

volatility of the stock price. Note that, as stated in (3), 0 1
e
Pg S   , and that r

Pg comes 

from rational traders’ conjecture about the stock price process, which is yet to be 
determined. Note also that, in continuous time, the volatility P is essentially observable 

by computing the quadratic variation; as a result, the two types of traders agree on its 
value. We assume, and later verify, that P is an endogenously determined constant that 

does not depend on S or t. Finally, from the evolution of S in (A1), we know that idW and 
S are locally perfectly correlated for both types of trader. 

Since the infinite-horizon model is perpetual, and since, as verified later, the 
evolutions of eW and rW do not depend explicitly on the level of the dividend or the stock 
price, we know that the passage of time only affects the value functions through time 
discounting. We can therefore write, for i  {e, r},  

( )
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Substituting (A7) into (A6) gives the reduced Bellman equations 
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The first-order conditions of (A8) with respect to iC and iW are 
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The first term on the right-hand side of (A10) is the share demand due to mean-variance 
considerations; the second term is the hedging demand due to sentiment-related risk. 

We now conjecture, and later verify, that the true equilibrium stock price satisfies 

 .t
t t

D
P A BS

r
    (A11) 

The coefficients A and B are yet to be determined. Assuming that the rational traders 
know this price equation and the true process for Dt, they can obtain the true evolution of 
the stock price as 
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by combining (1), (A1), and (A11). Substituting (A12) into (A1) yields 
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From (A12) and (A13) it is clear that when B  1, the sentiment variable St follows an 
Ornstein-Uhlenbeck process with a steady-state distribution that is Normal with mean 

Dg

r
 and variance 

2

22 (1
,
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D

Br 
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
 and that the expected per unit time price change, 

]
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r
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 In addition 
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That is, rational traders’ future expected price change is negatively and linearly related to 
the sentiment level, and P is a constant if the conjecture in (A11) is valid. 

Given the imposed belief structure that 0 1 ,e
Pg S    the extrapolators 

subjectively believe that the stock price evolves as 
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where ed is extrapolators’ perceived innovation term from the dividend process, which 
itself follows 

 ,e e
t D Dg dt ddD    (A16) 

where e
Dg is extrapolators’ perceived expected per unit time dividend change.16  

 Differentiating (A12) and substituting in (A1) and (A16), extrapolators obtain 
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in contrast with the price process (A12) obtained by the rational traders. Comparing 
(A15) and (A17) suggests that 

  0 1( (1 (1 .) ) )e
D t tS r rg B B r B S        (A18) 

That is, extrapolators’ perceived expected dividend change per unit time depends 
explicitly on St. (We note that this is quite different from directly extrapolating past 
dividend changes.) 

Price-agreement across the two types of traders, in other words, 

 r e e
P P P PdP dt d dt dg g      (A19) 

prevents extrapolators from seeing, through retrospection, that their belief structure is 
biased, and provides a direct relation between d and de. Equations (A12), (A17), and 
(A19) jointly confirm dividend-agreement across traders: 

 .D D
e

D D
edD dt d dg tg d      (A20) 

                                                 
16 If instead, the extrapolators know the true process of Dt, they will believe that dPt  (0  1St)dt + Pd, 
a price process that, given that B/(1  B)  0  1, clearly deviates from the true process in (A12). In 
other words, even after a time interval of length dt, extrapolators will, in principle, be able to learn that their 
beliefs are wrong.  
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 We guess that the solutions of ( , )e eI W S and ( , )r rI W S are 

 2( , ) ex , { , }.pi i i i i iI W S r a S b rS ecW i          (A21) 

Substituting (A21) into the optimal consumption rule in (A9) and the optimal share 
demand of the stock in (A10) yields 
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For the extrapolators, substituting 0 1
e
Pg S   and the price equation (A11) into 

(A23) gives 
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Substituting the price equation (A11), the form of eI in (A21), the optimal consumption 
eC in (A22), and the optimal share demand eN in (A24) into the reduced Bellman 

equation (A8) for the extrapolators, we obtain the following quadratic equation in S: 
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which is equivalent to three simultaneous equations: 
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These three equations determine the coefficients ,ea ,eb ,ec 0
e , and 1

e as functions 

of the coefficients A and B. If, as we assume, extrapolators know the belief structure of 
the rational traders as well as the parameters  and Q, it follows that they can go through 
the intertemporal maximization problem for the rational investors (specified below) and 
figure out the price equation (A11). As a result, extrapolators know the coefficients A and 
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B, and through equations (A26), (A27), and (A28), they can solve for their optimal share 
demand ,eN as well as for their value function .iJ  

We now turn to the rational traders. Using r
Pg and P from (A14), the form of rI

in (A21), rN from (A23), the optimal share demand of the stock from extrapolators in 
(A24), and the market clearing condition (1 ) ,r eN QN    we obtain ra and rb as 
functions of A and B, 
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Substituting the price equation (A11), r
Pg from (A14), the form of eI in (A21), the optimal 

consumption rC in (A22), and the optimal share demand 1
0 1( )r Q e eN S

     into the 

reduced Bellman equation (A8) for the rational traders, we obtain another quadratic 
equation in S  
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which is equivalent to three simultaneous equations: 
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These three equations determine the coefficients A, B, and .rc  Equations (A26)-(A28) 
and (A31)-(A33) are the mathematical characterization of the endogenous interaction 
between rational traders and the extrapolators. The procedure for solving these 
simultaneous equations is left to the next section of the Appendix. 
 The fact that the conjectured forms of Pt, ,eI and rI in (A11) and (A21) satisfy the 
Bellman equations in (A8) for all Wt and St verifies these conjectures, conditional on the 
validity of the assumption that Wt and St are the only two stochastic state variables. To 
verify the latter, note that the price equation in (A11), the optimal consumption rules in 
(A22), and the fact that the solutions of e

tN and r
tN are linearly related to St  jointly 

guarantee that the evolutions of e
tW and r

tW in (A2) depend explicitly only on St. Lastly, 

the derived evolution of the stock price in (A12) verifies the assumption that P is an 

endogenously determined parameter. This completes the verification procedure.  
Equations (A11), (A12) and (A13), (A24), and (A22) confirm equations (9), (10), 

(11), (13), and (14) in the main text, respectively, and equations (A7) and (A21) together 
confirm (12). This completes the proof of Proposition 1.                         

 
 
B. Solving the Simultaneous Equations 

 To solve equations (A26), (A27), (A28), (A31), (A32), and (A33), we group them 
into three pairs of equations and solve each pair in sequence. First, we use (A26) and 
(A31) to determine ea and B, where, in turn, we use (A14), (A24), and (A29) to express

,P 1
e , and ra as functions of ea and B. Second, we use (A27) and (A32) to determine 

eb and A, where, in turn, we use (A24) and (A29) to express 0
e  and rb as functions of 

,eb A, and B. Lastly, we solve each of (A28) and (A33) to obtain ec and ,rc respectively. 

The fact that the value function ( , , )iJ W S t is multiplicatively separable in W, S, and t 
simplifies the model and ensures tractability. For instance, our model has the feature that 
the discount factor  only affects optimal consumption and optimal wealth, but not the 
equilibrium price: for both types of investor, optimal share demand is unrelated to .  
 
 
C. Proof of Corollary 1 

 When all the traders in the economy are fully rational, (A21) reduces to 

 ( ) ,
rr r WrI W e K   (A34) 

where K is a constant to be determined. Substituting (A34) into (A10) and using ,rN Q
we know that the equilibrium stock price is  
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2
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.tD D

tP Q
Dg

r r r





   (A35) 

This third term on the right-hand side of this equation shows that Pt is pegged to the 
current level of the dividend; the other two terms capture dividend growth and 
compensation for risk. Substituting (A34) and (A35) into the Bellman equation (A8) 
determines the coefficient K as 
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1 DQr

r r
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 

 (A36) 

From (A9), optimal consumption is 
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

 (A37) 

From (A2), (A35), and (A37), optimal wealth evolves according to 
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  
   


  (A38) 

This completes the proof of Corollary 1.               

 
 
D: Proof of Corollary 2 
 Differentiating both sides of (A11) gives 

 ( .) D D
t t

g
dP B

dt d

r
Sdt dP

 



    (A39) 

If there is positive cash-flow news that increases the stock price by , then, from (A39), 
the presence of sentiment in the equilibrium price will push the price up by a further 
amount B, and then by a further amount 2B2, and so on. The total price increase due 
to a shock of size  is therefore 

 2 2 2 2(1 )
1

.
1

B B B
B

B         


 


   (A40) 

This geometric series converges if and only if 1  |B|  0. That is, the price equation 
(A11) is an “equilibrium” price equation if and only if 1  |B|  0. 
 When all investors are extrapolators (  0), the market clearing condition implies 
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Substituting (A42) into (A26), we obtain 

 2 2
1 10 [ 2 1 ]( ) 2 ) (2[ (1 )].e e e

Pa Ba r a r               (A43) 

Under the condition that 1  2, (A43) implies 0.ea   Given this, (A42) then implies that  
 1 / .B r  (A44) 
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Since the necessary and sufficient condition for existence of the conjectured equilibrium 
is 1  |B|  0, (A44) now means that a necessary condition for existence is 

 1 .r   (A45) 

We have not yet shown the sufficiency of this condition; to do so, we need to check 
(A27) and (A28) to see whether we can determine A, ,eb and .ec  Substituting 0ea  and 
(A44) into (A27), we obtain 

 1unless0 ( 1) .eb r     (A46) 

With 0,eb  we then obtain, from (A41), that 
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Now substituting 0, 0,e ea b  (A41), (A44), and 
(1 )

D
P B r








into (A28) gives 
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Quite generally, then, we can solve for A, ,eb and ec if condition (A45) holds. Therefore, 
we can claim that (A45) is both a necessary and sufficient condition. 
 We note that this proof does not rule out any nonlinear equilibria.           

 
 
E: Proofs of Propositions 2 to 10 
 The statistical properties of the sentiment process St can be derived by studying a 
related process, ,k

t
t

teZ S which evolves according to 

 .
kt

ktD
t SdZ d

ke
de

g

r
t     (A49) 

Unlike the sentiment process, the Zt process has a non-stochastic drift term, and is 
therefore easier to analyze. We use this process repeatedly in our proofs of Propositions 2 
to 6. 
 
E.1. Proof of Proposition 2 
 It is straightforward to calculate the price change expectations of rational traders. 
Combining extrapolators’ belief about the instantaneous price change, (A15), and the 
differential definition of the sentiment variable, (A1), we find that extrapolators’ 
subjective belief about the evolution of St is 

 0 1( 1)[ .] e
t t SS ddS dt        (A50) 

Extrapolators believe that e is a standard Wiener process. This means that, from the 
perspective of extrapolators, the evolution of ,me

t
t

teZ S where m  (1  1), is 

 0 .mt me e
t S

te d dZ ed t     (A51) 

Using the statistical properties of the e
tZ process, as perceived by extrapolators, we obtain 

(22). When m  0, applying L'Hôpital's rule to (22) gives (23).            
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E.2. Proof of Proposition 3 
 From (A11), we know that 

      
1 1 1

2 1
0 0 0 0 0 0 0/ , coc v ,o cov ,v .t t tD r P P P S S S SB Dr DB        (A52) 

It is obvious that  
10 0v ., 0co tS D D  Using the properties of the Z process, we can 

show 
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We also obtain 

    
2 2

2
0 0 0var / var

2
.S B

D r P S
k

B


   (A54) 

 
Equations (A52), (A53), and (A54) then jointly give (26).              

 
E.3. Proof of Proposition 4 

For the autocorrelation structure of P  D/r, we know from (A11) that  

  
11 0) co ,( .rrPD tS St   (A55) 

We can show that 
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 (A56) 

It is straightforward to show that 
1

2
0var( ) va /( 2 .r )t SS S k   Putting these results 

together, we obtain equation (27) in the main text.               

 
E.4. Proof of Proposition 5 
 From the price equation (A11), we know that the variance of price changes is 
given by 

       
1 1 1 1 1

2 1 2
0 0 0 0 0var cov v ,ar 2 .vart t t t tP P S S S S DB Br rD D D        (A57) 

The quantity  
1 0var tS S can be expressed as 

      1 1 1 1

2
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     (A58) 

where the subscript s means that we are conditioning on S0  s. We can show 
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Using the properties of the Z process, we also find that 
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and   
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Substituting (A59) and (A60) into (A58) gives 
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Substituting (A61), (A62), and 
1

2
0 1var( )t DD D t  into (A57) gives equation (28) in the 

main text. Combining the price equation (A11) with (A62) leads to (29).           

 
E.5. Proof of Proposition 6 
 From (A11), we know that 

     
   

1 3 2 1 3 2 1 3 2

1 3 2 3 2 1

2 2
0 0 0

1 1
0 0

, cov ,cov

.

cov ,

cov , cov ,

t t t t t t t t t

t t t t t t

P P P P S S S S D D DB r

Br Br

D

S S D D S S D D



 

     





  
 (A63) 

Using the properties of the Z process, we obtain 
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and  
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In addition, since the increments in future dividends are independent of any random 
variable that is measurable with respect to the information set at the current time, 

    
1 3 2 1 3 20 0cov , cov , 0 .t t t t t tD D D D S S D D     (A66) 

Substituting (A64), (A65), and (A66) into (A63) yields the first equation in (31). The 
second equation in (31) is derived in Proposition 5, and the third equation can be derived 
in a similar way.                   

 
E.6. Proof of Propositions 7 to 9 
 From the budget constraints (A2), the price equation (A11), and the optimal 
consumptions (A22), we know that aggregate wealth evolves as 

 2 .)( W t W t W WS b S c dt ddW a     (A67) 

Substituting this into (A22) yields  
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To compute 
1 10 0cov ,( )t tC C P P   and

1 0var( ),tC C  we first need to compute the 

covariance of every combination of two terms in the last line of (A68). For example, one 
of these covariances is17 
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 (A69) 

The other covariance terms can be computed in a similar way. Rearranging and 
simplifying terms, we obtain (33), (35), (37), and (39). Equation (34) has been derived in 
Proposition 5.                              

 
E.7. Proof of Propositions 10 
 Substituting the equilibrium price equation (A11) and its evolution (A12) into our 

definition of the equity premium,  1
t t tdP D dt rPdt

dt
  , gives (40) in the main text. For 

the Sharpe ratio, by the law of total variance, 
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Combining (40) with (A70) gives (41).               

 
 
F: Estimating  
 
Estimating Equations 

Our objective is to estimate the model parameters , 0, and 1 using the survey 
data.  

Suppose we have a time-series of aggregate stock market prices with sample 
frequency t (we use t  ¼ for quarterly data). Then, at time t, the proper discretization 
of (A1) is  
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 Here the weighting functions are parameterized by  and 

by n, which measures how far back investors look when forming their beliefs. These 
weights must sum to 1. 

                                                 
17 The derivation of (A69) makes use of Fubini’s theorem. We have checked that the conditions that allow 
the use of Fubini’s theorem hold in our context. For more on these conditions, see Theorem 1.9 in Liptser 
and Shiryaev (2001). 
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The key assumption of our model is that extrapolators’ expected price change (not 
expected return) is 

 0 1[ ] / ).(e
t t tdP dt S    (A72) 

 
The expectation in (A72) is computed over the next instant of time, from t to t  dt, not 
over a finite time horizon. In the surveys, however, investors are typically asked to state 
their beliefs about stock market performance over the next year. It is therefore not fully 
correct to estimate (, 0, 1) using (A72). We must instead compute what the model 
implies for the price change extrapolators expect over a finite horizon. We do this in 
Proposition 2 of the paper, and find: 
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where 1).(1m    

The first term on the right-hand side of (A73) is extrapolators’ expected price 
change at time t, 0 1 ,s   multiplied by the time horizon, 1 .t t (For example, t1  t  0.5 

for a six-month horizon). The second term captures extrapolators’ subjective beliefs 
about how the sentiment level will evolve over the time horizon, 1 ,t t The parameters (, 

0, 1) enter here in a non-linear fashion. 
To determine (, 0, 1), we therefore estimate both 
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and 
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with 1 1( ) )ˆ ˆ ˆ ˆ, (1m     and ˆ)(tS  constructed as described above. We also estimate 

equation (A75) for the special case where 1 is fixed at 1. In this case, equation (A75) 
becomes: 
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Survey Data 

We estimate equations (A74), (A75), and (A76) using the Gallup survey data 
studied by Greenwood and Shleifer (2013) and others. We start with the “rescaled” 
version of the series described in that paper. After the rescaling, the reported expectations 
are in units of percentage expected returns on the aggregate stock market over the 
following 12 months. We then convert this series into expected price changes by 
multiplying by the level of the S&P 500 price index at the end of the month in which 
participants have been surveyed. That is, 
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The resulting Gallup series comprises 135 datapoints between October 1996 and 
November 2011. The data are monthly but there are also some gaps. 

We estimate equations (A74), (A75), and (A76) using nonlinear least squares 
regression. We use 60 quarters of lagged price changes in the S&P 500 price index when 
constructing S above. We report coefficients and Newey West standard errors using a lag 
length of 6 months. 

 
Coefficient Equation (A74) Equation (A75) Equation (A76) 

β 0.49 0.44 0.68 
[t-stat] [6.50] [5.77] [10.73] 
λ0 0.09 0.07 0.07 

[t-stat] [30.24] [35.41] [36.18] 
λ1 1.35 1.32  

[t-stat] [8.70] [9.48]  
    

R-squared 0.77 0.74 0.75 
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Table 1: Selected Models of the Aggregate Stock Market 
 

    

Model 
allows for 
intermediate 
consumption 

D/P 
predicts 
returns 

Accounts 
for 
volatility 

Accounts 
for 
equity 
premium 

Accounts 
for 
survey 
evidence 

TRADITIONAL   

Habit Campbell and Cochrane (1999) Yes Yes Yes Yes No 

  

Long-run risk 
Bansal and Yaron (2004) Yes No Yes Yes No 

Bansal, Kiku, and Yaron (2012) Yes Yes Yes Yes No 

  

Rare disasters 
Rietz (1988), Barro (2006) Yes No No Yes No 

Gabaix (2012), Wachter (2013) Yes Yes Yes Yes No 

  

LEARNING Timmerman (1993) Yes Yes Yes No No 

  

BEHAVIORAL   

Preference-based   

Prospect theory Barberis, Huang, and Santos (2001) Yes Yes Yes Yes No 

  
Ambiguity 
aversion Ju and Miao (2012) 

Yes Yes Yes Yes No 

  

Belief-based   

Noise trader risk De Long et al. (1990a) Yes Yes Yes No No 

  

Extrapolation of 
fundamentals 

Barberis, Shleifer, Vishny (1998) No Yes Yes No No 

Choi (2006) Yes Yes Yes No No 

Fuster, Herbert, Laibson (2011) Yes Yes Yes No No 

Alti and Tetlock (2013) No Yes Yes No No 

Hirshleifer and Yu (2013) Yes Yes Yes No No 

  

Extrapolation of 
returns 

Cutler, Poterba, Summers (1989) No Yes Yes No Yes 

De Long et al. (1990b) No Yes Yes No Yes  

Hong and Stein (1999) No Yes Yes No Yes  

Barberis and Shleifer (2003) No Yes Yes No Yes 
Barberis, Greenwood, Jin, and Shleifer 
(2013) 

Yes Yes Yes No Yes 
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Table 2: Parameter Values 

The table reports the values we assign to the risk-free rate r; the per unit time mean gD and standard deviation D of 
dividend changes; the risky asset per-capita supply Q; absolute risk aversion ; the discount rate ; the proportion  
of rational traders in the economy; the parameters , 0 and 1 which govern the beliefs of extrapolators; the initial 
level of the dividend D0; and the initial wealth levels, ଴ܹ

௘ and ଴ܹ
௥, of extrapolators and rational traders, respectively. 

 

 

 

   

 Parameter Value  

r 2.50% 

gD 0.05 

σD 0.25 

Q 5 

 0.1 

δ 1.50% 

 {0.25, 0.5, 0.75, 1} 

β {0.05, 0.5, 0.75} 

λ0 0 

λ1 1 

D0 10 

଴ܹ
௘ 5000 

଴ܹ
௥ 5000 
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Table 3: Predictive Power of D/r  P for Future Stock Price Changes 
 
The table reports the population estimate of the regression coefficient when regressing the price change from time t 
to time t  k (in quarters) on the time t level of D/r  P for k =1, 4, 8, 12, and 16, and for various pairs of values of 
the parameters μ and β:  

( )/ εt k t t t t ka b DP P r P     . 

The calculations make use of Proposition 3 in the main text. 
 

 



β k 1 0.75 0.5 0.25 

0.05 

1 - 0.014 0.016 0.022 

4 - 0.055 0.064 0.085 

8 - 0.106 0.124 0.162 

12 - 0.155 0.180 0.233 

16 - 0.201 0.233 0.298 

0.5 

1 - 0.134 0.161 0.219 

4 - 0.438 0.504 0.628 

8 - 0.684 0.754 0.861 

12 - 0.822 0.878 0.948 

16 - 0.900 0.940 0.981 

0.75 

1 - 0.194 0.232 0.311 

4 - 0.579 0.652 0.774 

8 - 0.822 0.879 0.949 

12 - 0.925 0.958 0.988 

16 - 0.968 0.985 0.997 
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Table 4: Autocorrelations of P  D/r 
 
The table reports the autocorrelation of P  D/r at various lags k (in quarters) and for various pairs of values of the 
parameters  and . The calculations make use of Proposition 4 in the main text. 

 

    

β k 1 0.75 0.5 0.25 

0.05 

1 - 0.986 0.984 0.978 

4 - 0.945 0.936 0.915 

8 - 0.894 0.876 0.838 

12 - 0.845 0.820 0.767 

16 - 0.799 0.767 0.702 

0.5 

1 - 0.866 0.839 0.781 

4 - 0.562 0.496 0.372 

8 - 0.316 0.246 0.139 

12 - 0.178 0.122 0.052 

16 - 0.100 0.060 0.019 

0.75 

1 - 0.806 0.768 0.689 

4 - 0.421 0.348 0.226 

8 - 0.178 0.121 0.051 

12 - 0.075 0.042 0.012 

16 - 0.032 0.015 0.003 
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Table 5: Volatility of Price Changes and Volatility of P  D/r 

Panel A reports the volatility of annual price changes for various pairs of values of the parameters μ and β; Panel B 
reports the volatility of P  D/r, measured at an annual frequency, for various pairs of μ and β. The calculations 
make use of Proposition 5 in the main text. 
 
 

Panel A: Volatility of Annual Price Changes 
 



 1 0.75 0.5 0.25 

0.05 10 11.20 13.15 17.43 

0.5 10 11.17 13.03 16.86 

0.75 10 11.04 12.67 15.90 

 
Panel B: Volatility of Annual P  D/r 

 



 1 0.75 0.5 0.25 

0.05 0 1.21 3.19 7.53 

0.5 0 1.32 3.42 7.77 

0.75 0 1.25 3.20 7.09 
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Table 6: Autocorrelations of Price Changes 
 
The table reports the autocorrelations of quarterly and cumulative stock price changes at various lags k (in quarters) and for various pairs of values of the 
parameters μ and β. The calculations make use of Proposition 6 in the main text. 
 

 

Autocorrelations at Horizon k Cumulative Autocorrelations to Horizon k 

 

 k 1 0.75 0.5 0.25 1 0.75 0.5 0.25 

0.05 

1 0 -0.001 -0.003 -0.007 0 -0.001 -0.003 -0.007 

2 0 -0.001 -0.003 -0.007 0 -0.002 -0.005 -0.010 

3 0 -0.001 -0.003 -0.007 0 -0.002 -0.006 -0.013 

4 0 -0.001 -0.003 -0.007 0 -0.003 -0.007 -0.015 

8 0 -0.001 -0.003 -0.006 0 -0.004 -0.010 -0.020 

12 0 -0.001 -0.003 -0.006 0 -0.005 -0.011 -0.024 

0.5 

1 0 -0.016 -0.038 -0.079 0 -0.016 -0.038 -0.079 

2 0 -0.013 -0.032 -0.062 0 -0.021 -0.050 -0.103 

3 0 -0.012 -0.027 -0.048 0 -0.024 -0.058 -0.118 

4 0 -0.010 -0.022 -0.038 0 -0.026 -0.063 -0.127 

8 0 -0.006 -0.011 -0.014 0 -0.029 -0.070 -0.138 

12 0 -0.003 -0.006 -0.005 0 -0.029 -0.069 -0.134 

0.75 

1 0 -0.022 -0.054 -0.110 0 -0.022 -0.054 -0.110 

2 0 -0.018 -0.041 -0.076 0 -0.029 -0.069 -0.140 

3 0 -0.014 -0.032 -0.053 0 -0.032 -0.077 -0.154 

4 0 -0.012 -0.024 -0.036 0 -0.034 -0.081 -0.161 

8 0 -0.005 -0.008 -0.008 0 -0.035 -0.083 -0.159 

12 0 -0.002 -0.003 -0.002 0 -0.033 -0.077 -0.147 
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Table 7: Consumption, P  D/r, and Price Changes 
 
Panel A shows the correlation between quarterly changes in consumption and quarterly changes in price; Panel B 
shows the correlation between annual changes in consumption and annual changes in price; Panel C shows the 
correlation between the annual change in consumption and P  D/r. The calculations make use of Propositions 7 and 
8 in the main text. 
 

Panel A: Correlation between quarterly consumption changes and quarterly price changes 

  

 1 0.75 0.5 0.25 

0.05 1 0.994 0.985 0.984 

0.5 1 0.929 0.842 0.840 

0.75 1 0.903 0.794 0.792 

 
Panel B: Correlation between annual consumption changes and annual price changes 

  

 1 0.75 0.5 0.25 

0.05 1 0.994 0.985 0.984 

0.5 1 0.947 0.878 0.876 

0.75 1 0.935 0.853 0.849 

 
Panel C: Correlation between quarterly consumption changes and P  D/r 

  

 1 0.75 0.5 0.25 

0.05 - 0.152 0.148 0.148 

0.5 - 0.436 0.398 0.409 

0.75 - 0.504 0.446 0.456 

  



 

59 
 

Table 8: Predictive Power of Changes in Consumption for Future Price Changes 
 
The table reports the population estimate of the regression coefficient when regressing the price change from time t 
to time t  k (in quarters) on the most recent quarterly consumption change for k  1, 4, 8, 12, 16, and for various 
pairs of values of the parameters  and : 

1 ) ε(t k t t t t kP P a b C C       .

 The calculations make use of Proposition 9 in the main text. 
 
 

    

 k 1 0.75 0.5 0.25 

0.05 

1 0 -0.011 -0.026 -0.053 

4 0 -0.043 -0.101 -0.205 

8 0 -0.084 -0.195 -0.393 

12 0 -0.123 -0.284 -0.565 

16 0 -0.159 -0.366 -0.722 

0.5 

1 0 -0.107 -0.214 -0.442 

4 0 -0.350 -0.671 -1.266 

8 0 -0.547 -1.003 -1.738 

12 0 -0.658 -1.168 -1.914 

16 0 -0.720 -1.250 -1.979 

0.75 

1 0 -0.144 -0.270 -0.552 

4 0 -0.429 -0.759 -1.375 

8 0 -0.609 -1.023 -1.686 

12 0 -0.686 -1.115 -1.756 

16 0 -0.718 -1.147 -1.772 
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Table 9: Equity Premia and Sharpe Ratios 
 
Panel A reports equity premia for various pairs of values of the parameters  and ; Panel B reports Sharpe ratios 
for various pairs of  and . The calculations make use of Proposition 10 in the main text. 
 

Panel A: Equity Premia  
 

  

 1 0.75 0.5 0.25 

0.05 1.25 1.58 2.19 3.91 

0.5 1.25 1.65 2.46 4.88 

0.75 1.25 1.66 2.48 4.92 

 

Panel B: Sharpe Ratios 

  

 1 0.75 0.5 0.25 

0.05 0.125 0.140 0.165 0.220 

0.5 0.125 0.143 0.173 0.233 

0.75 0.125 0.143 0.172 0.227 
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Table 10: Model Predictions for Ratio-based Quantities 
 
The table summarizes the model’s predictions for ratio-based quantities. A full description of these quantities can be 
found in Section 5.2 of the main text. The values of the basic model parameters are given in Table 2, and  (the 
fraction of rational traders) is 0.25. For   0.05, 0.5, and 0.75, we report estimates of each quantity averaged over 
10,000 simulated paths. In rows (1), (8), and (9), we report both a regression coefficient and, in parentheses, an R-
squared. The right column shows the empirical estimates for the post-war period from 1947-2011 (1952-2011 for 
consumption-related quantities because nondurable consumption data are available only from 1952). 
 
 

quantity of interest 
 post-war U.S. stock 

market data 0.05 0.5 0.75 

(1) predictive power of  
log(D/P) 

0.29 
(0.20) 

0.46 
(0.22) 

0.45 
(0.21) 

0.11 
(0.08) 

(2) autocorrelation of P/D 0.93 0.84 0.85 0.94 

(3) excess volatility of returns 2.32 2.91 2.97 - 

(4) excess volatility of P/D 7.21 4.85 4.55 - 

(5) autocorrelation of log excess return (k = 1) -0.01 -0.09 -0.14 0.11 

autocorrelation of log excess return (k = 8) -0.01 -0.01 -0.01 -0.02 

(6) correlation between Δ4c and	ݎ௧௫ 0.72 0.54 0.47 0.32 
(7) correlation between surplus consumption and 

P/D 
0.26 0.33 0.27 0.10 

(8) predictive power of  
the surplus consumption ratio 

-0.27 
(0.15) 

-0.89 
(0.18) 

-0.77 
(0.17) 

-0.77 
(0.09) 

(9) predictive power of  
log(C/W) 

0.51 
(0.15) 

0.12 
(0.15) 

0.01 
(0.15) 

0.02 
(0.03) 

0.33 
(0.05) 

(10) equity premium 1.16% 1.62% 1.64% 7.97% 

Sharpe ratio 0.12 0.14 0.13 0.44 
 


