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ABSTRACT

The Capital Asset Pricing Model in conjunction with the
usual market model assumptions implies that well-diversified
portfolios should be mean variance efficient and, hence, betas
computed with respect to such indices should completely explain
expected returns on individual assets. In fact, there is now
a large body of evidence indicating that the market proxies
usually employed in empirical tests are not mean variance efficient.
Moreover, there is considerable evidence suggesting that these
rejections are in part a consequence of the presence of omitted
risk factors which are associated with nonzero risk premia in the
residuals from the single index market model. Consequently, the
idiosyncratic variances from the one factor model should partially
reflect exposure to these omitted sources of systematic risk and,
hence, should help explain expected returns. There are two
plausible explanations for the inability to obtain statistically
reliable estimates of a linear residual risk effect in the
previous literature: (1) nonlinearity of the residual risk
effect and (2) the inadequacy of the statistical procedures
employed to measure it.

The results presented below indicate that the econometric
methods employed previously are the culprits. Pronounced residual
risk effects are found in the whole fifty-four year sample
and in numerous five year subperiods as well when weighted least
squares estimation is coupled with the appropriate corrections
for sampling error in the betas and residual variances of
individual security returns. In addition, the evidence suggests
that it is important to take account of the nonnormality
and heteroskedasticity of security returns when making the
appropriate measurement error corrections in cross—sectional
regressions. Finally, the results are sensitive to the
specification of the model for expected returns.
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1. Introduction

The central feature of modern asset pricing theory is the distinction

between systematic and diversifiable risk. As a consequence, it is hardly

surprising that the notion that expected returns depend on total variance and

not merely on exposure to systematic risk has proved to a ubiquitous choice as

a maintained alternative hypothesis in empirical tests.' What is surprising

is the outcome of such tests: there has been no statistically reliable

rejection of any modern asset pricing theory in favor of the hypothesis that

expected returns depend on total risk.

There is an interesting puzzle implicit in this observation. There is

now a large body of evidence indicating that both the equally weighted and

value weighted CRSP indices are not mean variance efficient and that this

finding is due to some extent to omitted risk factors.2 Yet this is

inconsistent with the generally insignificant measured residual risk effects

found in the literature——by this logic, measured residual variances should in

part reflect the squared factor loadings of omitted risk factors and, hence,

should be associated with significant risk premia in large samples.3 The

'Moreover, diversifiable risk may affect equilibrium asset prices
even when the notion of systematic risk is meaningful if all
investors face substantive transactions costs. See Levy (1978)
nd Mayshar (1978) for details.
LSee, for example, Lehmann and Modest (1985) and the papers cited
therein. Note that this finding could occur when the static
Capital Asset Pricing Model is true but the market portfolio is
unobservable and the usual CRSP indices are inadequate
substitutes. It is also consistent with the implications of
multifactor asset pricing theories along the lines of Merton
(1973), Cox, Ingersoll, and Ross (1985), and Ross (1976, 1977) in
heir equilibrium and approximate arbitrage incarnations.
'Note that this need not occur. In general, if there is a 'single
omitted risk factor and the average factor loading of individual
securities was zero while their values were symmetrically
distributed across securities, the residual risk premium would be
zero. This possibility would not appear to be empirically
relevant given the evidence presented in Lehmann and Modest
(1985) regarding own variance effects.
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notion that expected returns depend on residual risk as well as systematic

risk should be a powerful maintained alternative hypothesis in tests of asset

pricing theories. It has not proved to be one.

In fact, the total risk hypothesis has instead provided a consistent foil

for investigators interested in making points about the statistical properties

of such tests. In early work, Douglas (1968) and Linter (1965) found that

average security returns were significantly related to estimates of both

individual security betas (computed with respect to an equally weighted index)

and total or residual variances, apparently rejecting the mean variance

efficiency of the equally weighted index. The justly celebrated Miller and

Scholes (1972) investigation documented an important statistical problem with

these results: individual security returns are marked by significant positive

skewness so that firms with high average returns will typically have large

measured total or residual variances as well.

Such measurement error correlations suggest that considerable caution

should be exercised when using total or residual variance as an explanatory

variable. The need for such caution was substantiated in practice by Fama and

MacBeth (1973) who found no residual risk effect when residual variances and

betas were estimated in an earlier period to mitigate the Miller—Scholes

problem. Similar results were obtained by Roll and Ross (1980) in their tests

of the Arbitrage Pricing Theory. Total risk added to the explanatory power of

factor loadings, which measure putative exposure to systematic risk, in

accounting for mean returns when the relevant sample moments were measured

from the same returns but failed to make a significant addition when different

observations were used to estimate mean returns, factor loadings, and total
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variances.

These results have been interpreted differently in other comparisons of

the explanatory power of total and systematic risk measures. Friend,

Westerfield, and Granito (1978) and Friend and Westerfield (1981) found that

both measured betas and residual variances (computed with respect to a variety

of indices) typically proved to have insignificant effects in cross—sectional

regressions constructed to avoid the Miller—Scholes problem.4 Similarly,

Dhrymes, Friend, and Gultekin (1984) and Dhrymes, Friend, Gultekin, and

Gultekin (1984) found that both factor loadings and residual variances yielded

insignificant estimates of risk premia in an Arbitrage Pricing context. Taken

at face value, these results indicate that neither systematic nor

diversifiable risk measures adequately explain average equity returns which

perhaps suggests that no reliable risk/return tradeoff is implicit in mean

returns.

An alternative interpretation is that there is another serious

statistical problem associated with tests involving both systematic and

4Friend and Westerfield (1981) performed regressions relating
individual and grouped security returns to both contemporaneously
estimated betas and residual variances and standard deviations
and those estimated in previous periods. The regressions which
employed contemporaneous estimates often yielded significant
residual risk effects which of course can be ascribed to the
skewness effects discussed above. With one exception, no
significant measured residual risk effects were found when beta
and residual variance estimates were computed in a previous
period. The exception occurred when separate regressions were
estimated for months when the return on their market proxy
exceeded the riskiess rate and for those in which the reverse was
true. As Friend and Westerfield (1981) correctly observed, this
finding could simply reflect the correlation between estimation
error in the betas and corresponding residual variances. Such
correlations arise in small samples when security returns have
skewed distributions.
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diversifiable risk measures: multicollinearity.5 This could arise because of

the positive correlation in small samples between the measurement error in

sample betas and residual variances when security returns are skewed to the

right. Similarly, high correlation between systematic and idiosyncratic risk

measures could reflect an underlying association between the corresponding

unobservable population moments. The first possibility could account for the

inability of Friend and Westerfield (1981) and Dhrymes, Friend, Gultekin, and

Gultekin (1984) to find either significant systematic or diversifiable risk

effects in their cross—sectional regressions. The second problem could lead

to an inability to disentangle these effects even in the absence of

measurement error. There is little evidence regarding the relative importance

of these two potential causes of collinearity between systematic and

idiosyncratic risk measures.

It is of course possible that there is no true residual risk effect or

that such an effect is nonlinear. The first possibility was sharply rejected

in Lehmann and Modest (1985) who found that portfolios sorted on the basis of

previous period total variance had highly significant intercepts, rejecting

the mean variance efficiency of the usual market proxies. This finding is

consistent with a nonlinear residual risk effect which is surely plausible

since idiosyncratic variances should reflect the squared factor loadings of

omitted risk factors in the presence of a residual risk effect. There is no

direct evidence on the possibility of nonlinearity save for the similarity of

results obtained from either residual variance or standard deviation.

5Again, this possibility was first analyzed in detail by Miller
and Scholes (1972).
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What we have then is a conundrum——no linear residual risk effect has been

reliably measured in the literature despite strong theoretical reasons and

some empirical evidence for presuming its existence. There are several

plausible explanations for the missing effect. One possibility is the

inadequacy of the econometric procedures for measuring the residual risk

effect. In particular, the existing literature has used only inefficient

grouping procedures to mitigate the harmful effects of measurement error in

both the systematic and diversifiable risk variables.6 These harmful effects

include both the usual attenuation bias associated with measurement error and

the additional problems created by positive correlation between the

measurement error in systematic and nonsystematic risk variables which results

from positive skewness in individual security returns. Moreover, no study has

yet confronted the possibility of collinearity between the true idiosyncratic

risk and systematic risk exposure of individual firms. A detailed and

comprehensive reexamination of the empirical relevance of the residual risk

factor and its role as a maintained alternative hypothesis in asset pricing

theory tests seems clearly warranted.

The purpose of this investigation is to remedy these omissions and solve

the puzzle of the absence of a reliably measured residual risk effect. The

next section details the statistical procedures employed here to correct for

measurement error and mitigate the effects of potential true collinearity

between firm betas and residual variances. The third section examines the

6Friend and Westerfield (1981) did adjust individual security
betas with the Vasicek (1973) and Blume (1975) empirical Bayes
procedure for shrinking the estimates toward their common mean of
unity. They did not correct for measurement error in the sample
idiosyncratic variances.
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extent to which previous failures to find a residual risk effect can be

reasonably attributed to the use of inappropriate and inadequate estimation

procedures in the presence of measurement error and to the presence of true

collinearity between risk measures. The final section provides concluding

remarks.

2. Statistical Pthods

The basic premise underlying this study is that the inability to find a

reliably measured residual risk effect may well reflect the inadequacy of the

statistical procedures employed in the previous literature. There are three

potential weaknesses in the approaches taken in the existing literature: (1)

the potential loss in estimation efficiency associated with the use of

ordinary least squares procedures instead of weighted or generalized least

squares; (2) inadequate corrections for measurement error in the systematic

and unsystematic risk measures; and (3) the possible deleterious consequences

of collinearity between the true systematic risk exposure and idiosyncratic

risk of individual firms. This section is devoted to a discussion of these

issues.

The market model will serve as the basic model for systematic risk

throughout the paper. The single index market model is a logical choice in

this context because of the large and persuasive body of evidence which

suggests its inadequacy as a comprehensive model for the systematic risk of

equity securities. As a consequence, we should expect to find a significant

residual risk effect to the extent that multifactor equilibrium and

approximate arbitrage pricing models better characterize expected security

returns. Hence, differences in the results yielded by alternative statistical
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procedures presented below ought to reflect their comparative merits in actual

practice.

As a consequence, risk measurements are taken from:

(1) = it + it't +

where is the percentage return of security i in month t, R is the return

on a market index in month is the usual market beta of security i in

month is the market model intercept in month t, and is the

idiosyncratic disturbance term. The random disturbance has zero mean,

finite variance , and is uncorrelated with Rmt No restrictions are

imposed on the correlations among the idiosyncratic disturbances of different

firms. Naturally, it will measure systematic risk exposure and will

reflect residual risk.

The goal of the exercise is to measure the degree to which systematic and

idiosyncratic risk affect expected returns. As a consequence, the model for

expected returns is:7

(2) EERit] = — it1 + 1tit + 12t°it + Vj

7Previous studies are roughly evenly split between the use of the
residual standard deviation 0. and the residual varianceit

2 it
In order to conserve space, the residual variance will be
used to measure residual risk throughout the body of the paper.
The appendix, which is available from the author on request,
contains all of the empirical findings corresponding to those
reported in Section 3 obtained after substituting 0it for
This substitution alters none of the conclusions reached in
Section 3.
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If the market proxy is mean variance efficient, then is the expected

return on the efficient portfolio whose returns are uncorrelated with Rmt 11t

is the expected value of Rmt and both 12t and v are zero. If not, 12t

measures the residual risk effect and v1 reflects the remaining pricing error

associated with the market proxy.8

The basic problem with the model for expected returns is that none of the

variables iii equation (2) is directly observed and so our procedures must

utilize imperfect measures of the relevant parameters. Following conventional

practice, equation (1) can be used to obtain estimates of it' sit' and

given appropriate assumptions regarding the variation in these parameters.

Two assumptions will be considered below. The first is that these parameters

are constant and so can be estimated efficiently by ordinary least squares.

Under this assumption, the estimates of cit' sit' and will be obtained

from the application of ordinary least squares to equation (1) for months t—1

throughout t—60 and then related to individual security returns in month t to

mitigate the Miller—Scholes problem.9 The second assumption is that the

8Obviously, equation (2) is not a new asset pricing model. If
the chosen market proxy is not mean variance efficient, the
premium simply reflects the correlation between expected
returns and that might reasonably be expected. The variable
v is defined to be that part of expected returns not explained
y it' or it
'There is an apparent internal inconsistency in this strategy
since, under the constant parameter assumption, better estimates
can be obtained by using observations after month t as well. By
using only five years of data, we are implicitly assuming that
it' and are varying over time. Of course, the other
implicit assumption is that the intertemporal variation in these
parameters is sufficiently slow and muted that the constant
parameter assumption is a reasonable approximation. Evidence on
this hypothesis is presented below. Following Fama and MacBeth
(1973), an alternative view is that this formulation corresponds
to using the market model in a normative or predictive manner.
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relevant parameters vary over time. In this setting, we will still employ

these ordinary least squares estimates but must interpret them differently.

We will assume there is sufficient structure on the temporal variation in

and so that the ordinary least squares estimates may reasonably be

interpreted as estimates of the mean values of these parameters.'°

The estimates of at sit' obtained from these first pass time series

regressions can be used to estimate the expected return model (2). The

combination of (1) and (2) yields:

(3) R1t = bot1hlitJ + + Rmt — E[Rmt]] + 12t4t + "it + cit

Two aspects of equation (3) are noteworthy. The first is that the dependent

variable is observable and the independent variables 8it and can be

estimated from the relevant time series regressions. The second concerns the

presence of the observable variable in the coefficient on it (i.e. 1i +

Rmt — E(Rmt)).

This second observation suggests two plausible cross—sectional regression

equations for measuring the relevant risk premia. By analogy with Fama and

10The basic requirements are that there is no covariation between
these parameters and the risk premia, that the unconditional
means of and o exist, and that their correlations
with cit—k' Bit_k, and at..k diminish sufficiently rapidly as k
goes to infinity. This will occur, for example, when a, B1
and are drawn from a covariance stationary stochastic process
or when they have no autocorrelation but time varying variances
and higher order moments. There is very little serial
correlation in monthly returns which suggests that
autocorrelation in these parameters should be of little
concern. In contradistinction, considerable evidence suggests
the presence of heteroskedasticity in monthly market model
regressions.
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MacBeth (1973) and Litzenberger and Ramaswamy (1979), one possible formulation

is:

(4) Rt t + + + u

where the cross—sectional regression coefficients , and have

expected returns 1ot' lit' and 12t' respectively, and where the composite risk

premium is equal to lit — 1ot All previous investigations of residual

risk effects have used a variant of equation (4).

A second natural form follows from the null hypothesis that Rmt is the

return on a mean variance efficient portfolio. In this eventuality, the risk

premium 1i is equal to E[RmtI which simplifies matters considerably. By

analogy with Black, Jensen, and Scholes (1972) and Blume and Friend (1973), a

second plausible cross—sectional regression equation is:

(5) — it't = X0t[1 — sit' + '2tt + Vif;

where the cross—sectional regression coefficients and have expected

returns and '2t' respectively, and where ot is equal to Tot and is

zero under the null hypothesis. To the best of my knowledge, this formulation

has not been employed previously in the residual risk context.

In the more conventional formulation given by equation (4), the

additional parameter y is estimated and a further test of the mean variance

efficiency of the market proxy may be obtained by comparing 11t + with the

sample mean of R since these risk premia sume to E[RmtI under the null
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hypothesis. Unfortunately, this putative advantage must be weighed against

the cost of the potential decrease in the precision with which the risk premia

lot'
and are measured. The potential loss in estimation efficiency

might be expected to be quite severe given the high degree of collinearity

that might reasonably be expected among and Section 3 presents

results obtained from this approach.

The employment of equation (5) largely avoids the collinearity problem in

precisely the circumstances where the use of equation (4) is

disadvantageous. For example, if and were computed from the ordinary

least squares" projection of Rit — it-mt °' 1 — and their expected

returns '5ot and 2t satisfy:

(6) [ot1 = [lot + E[Rmt] liti + [1 —
R2F'kl1[llt

— E[Rmtl]
[o2J L 2t J Lk2i

where R2 is the coefficient of determination from the regression of 1 —

times the ratio of the standard deviation of to that of 1 — and

the constants k1 and k2 depend on R2 and the means and dispersions of 1 —

and across firms.

When the proxy is mean variance efficient, 2t will be zero and both 1ot

and will be measured with greater precision than the corresponding

estimates from equation (4). In addition, so long as lit is substantially

different from E[Rmt], the coefficient will be nonzero. Moreover, when

'The values of 6t and 62t depend on which method of projection
is used (i.e. on the assumed statistical properties of The
basic expression remains unchanged when generalized least squares
is employed except that the coefficients R2, k1, and k2 defined
below will depend on the weighting matrix used in the projection.
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the collinearity between 1 — 8it and is severe (i.e. when R2 is far from

zero), the residual risk premium 62t will be far from zero as well. Hence,

the excess return formulation given by equation (5) might reasonably be

expected to provide a substantially more powerful test for the presence of a

residual risk effect, especially when multicollinearity is severe. The

results in Section 3 bear this out.

The analysis thus far has largely ignored problems of estimation. The

avenue most often taken in the residual risk literature is to ignore the

distinction between the true values of it and a and their associated

estimated values and estimate equation (4) by ordinary least squares with the

time series estimates of it and cy replacing the corresponding population

moments. Of course, the application of ordinary least squares in this fashion

leads to biased and inefficient estimates of the relevant risk premia.

Matters can be improved in two ways: (1) the use of generalized least squares

instead of ordinary least squares and (2) consideration of measurement error

corrections.

Generalized least squares estimation will, in principle, lead to more

efficient estimates of the risk premia. This advantage is difficult to gauge

in practice for two reasons. The main problem is that the error terms u1 in

equation (4) and in equation (5) reflect both the true idiosyncratic

disturbance it and the pricing error as in equation (3). The

idiosyncratic disturbance covariance matrix can, in principle, be estimated

from the time series estimates of the market model disturbances but the

pricing errors have an unknown covariance matrix which depends on the relation

of the inefficient proxy to the efficient frontier. The second problem is
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that the number of firms in each cross—section greatly exceeds the number of

time series observations (60 months) and so the residual covariance matrix

cannot be estimated in fact without the imposition of further restrictions.

These two difficulties will be confronted in a conventional manner.

Under the hypothesis that the market proxy is mean variance efficient, the

pricing errors V are identically zero so the use of the idiosyncratic

disturbance covariance matrix of the market model disturbances is appropriate

for generalized least squares estimation. In addition, the covariances of the

market model disturbances will be ignored so that the generalized least

squares estimates reported below are better characterized as weighted or

diagonal generalized least squares estimates with the estimated idiosyncratic

variances used as weights.'2

The final estimation problem involves corrections for measurement error

in and The approach taken here follows the analysis in Litzenberger

and Ramaswamy (1979) with two modifications: (1) consideration of the effects

of measurement error in as well as in it and (2) extension to the excess

return regression formulation (5) to complement the analysis along the lines

of equation (4). Throughout this discussion, attention will be confined to

the diagonal generalized least squares version of the analysis to conserve

'2The alternative is to specify a structure for the residual
covariance matrix a priori. Two possibilities are zero
correlations across industries and unrestricted covariances
within industries (with industries defined by the Standard
Industrial Classification system) or a factor model. Both
strategies would greatly complicate the analysis. The present
approach was followed by Litzenberger and Ramaswamy (1979) in
their analysis of dividend effects. See Shanken (1983) for an
analysis of the statistical properties of diagonal generalized
least squares estimates.
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space. Both ordinary and generalized least squares formulations will be

employed below.

To fix matters, let the vector = [ 1 it t1 denote the time series

estimates of the population quantities = [ 1 and let denote

the covariance matrix of the estimation error of these three numbers (where

its first row and column are, of course, zero). In this more compact

notation, the model given by equation (4) is:

*_ *
(7)

= .it +

where = (X A*Y. The Litzenberger/Ramaswamy estimator follows from

the observation that the deleterious consequences of the measurement error in

can be offset with knowledge of the measurement error covariance matrix

The reason is that the usual covariances between the dependent variable

Rt and the independent variables t are not biased by measurement error:

2 T * 2
(8) E[w. R. I/a.it it t=Tlt it it

because the parameters were measured in the sixty months prior to time

The problem is that the sums of squares and crossproducts of the sample

betas and residual variances equal those of the true values plus the

associated measurement error variances and covariances. Fortunately:

'3This is not correct to the extent that there is serial
correlation in the true values of it and In this case,
equation (8) will be a reasonable approximation unless such
autocorrelation is pronounced.
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T * T * -
(9) w — 2. = E[w w j/a

=1—1t —it it it =1—it —it it

where the measurement error covariance matrix helps to disentangle the sample

estimates and the true values of the relevant moments. Hence, the

Litzenberger/Ramaswamy estimator for the model given by (7) is given by:

T
—i

T
(1O) A = [Fw — i/ j z[c R. },ta•—t =1—it —it it it =1—it it it

See Shanken (1983) for a detailed statistical analysis of this class of cross—

sectional regression estimators. 14

Similarly, let the vector = [(1 — t] denote the time series

estimates of the corresponding population moments = [ (1 — it t1 and

let it denote the covariance matrix of the estimation error of these two

parameters. The estimation of this covariance matrix will be discussed

below. Then the excess return model (5) may be conveniently written as:

(11) Rit — itRt = +

'4Shanken (1983) also suggests a modification of this estimator
for the zero beta model (omitting the resigual risk term) that
takes account of the error in estimating cz when returns are
assumed to normally distributed. This estimator would be more
complicated in the present setting since the residual variance

follows a x2 distribution. The differences between the
appropriate modification of ShankenTh estimator and this one are
likely to be minimal in these sample sizes, a conjecture which I
substantiated in limited experiments with the zero beta
formulation provided by Shanken. His finite sample analysis does
not extend to the case of nonnormal and heteroskedastic returns
considered below.
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where = [?otX2t By analogy with the results obtained above, note that:

T T

(12) E[Z[w. . - - c2. ] = Z[w. w.
—it it it =1—it—1t

it

—

where is the two element vector formed from the first column of As

a consequence, the Litzenberger/Ramaswamy estimator for the excess return

model (11) is:

T

(13) A = [E [w. w• - — c2. ]/a. I [w. [R. —8 R I — 2. R ]/ci.
—t it it it it —it it it mt —it mt it

The final consideration is the choice of the appropriate estimators for

the measurement error covariance matrices and L• Following the earlier

discussion, two assumptions about and will be considered which lead to

alternative estimates of the error covariances. The first is that a1, sit'

are constant and security returns are jointly normally distributed. In

this circumstance, the covariance matrix of the estimation error in these

parameters is:

15!it appears because of the presence of the estimated beta on
the left hand side of (11).
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it r(XX
(14) V . = tt

it it
0

it

where X = i is a vector of ones, - is the vector with the relevant

sixty months of observations on Rmt and T is sixty.

Alternatively, sit' and may be presumed to vary over time and

returns need not be normally distributed. Under mild conditions, the market

model estimates of these parameters may be interpreted as estimates of their

mean values over the sixty monthly observations. Unfortunately, it is not

generally possible to evaluate the covariance matrix of these estimates in

small samples. However, the analysis in White (1984) and Hansen (1982)

permits the computation of the asymptotic covariance matrix of these

estimates. The large sample covariance matrix approximation employed here

allows for nonnormality and heteroskedasticity in returns but does not take

account of serial correlation in it and t•16 This expression is given by:

'6Limited experimentation was conducted with the corresponding
version which allows for both serial correlation and conditional
heteroskedasticity. This involves adding the products of the
autocovariances of the idiosyncratic disturbances with the sum of
the squared sample mean market return and its autocovariances to
(15). Not surprisingly, the results agreed to several
significant digits in virtually all cases. Of course, this is to
be expected given the modest magnitude of the autocorrelations of
individual monthly security returns.

0
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(15) V = [xtxti' T1 [XXt tt
T' x [X X T2 E [e2 — 2 2

alt
it t t it it

where is the vector formed from row t of X.

3. Data and Empirical Results

All data used in this paper were taken from the Center for Research in

Security Prices (cRSP) monthly returns file. These data consist of monthly

percentage returns, inclusive of dividends and capital gains and adjusted for

stock splits and dividends, for all common stocks traded on the New York Stock

Exchange as well as equally weighted and value weighted indices of their

returns. The data employed here run from January 1926 to December 1984.

The basic inputs into the analysis are the time series estimates of

and at as well as ordinary and adjusted estimates of their standard errors.

For each month from January 1931 to December 1984, individual security returns

were taken from the cRSP monthly file for all firms that were listed for that

month and for the preceding five years (i.e. sixty months) as well. The

average number of firms meeting the criterion for inclusion ranged from 468

for 1931 to 1935 to 1240 for the final subperiod 1976—1980. The average

number of firms included in the cross—sectional regressions was just under 900

for the entire sample.

The preceding five years of data were then used to estimate the market

model (i.e. equation (1)) for all of these securities to obtain the necessary

estimates of it and at. These regressions were performed with both the

equally weighted and value weighted RSP indices employed as proxies for

Rmt•
The estimates and the time series means and variances of Rmt over

this period were inserted into equation (14) to obtain the usual OLS
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covariance matrix of and In addition, the estimated variances

and market model residuals r along with the time series of the proxy returns

Rmt were inserted into equation (15) to obtain the adjusted covariance matrix

for and which provides a large sample correction for

heteroskedasticity and nonnormality. This procedure yielded time series

estimates of 4' and for 648 months, running from January 1931

to December 1984, for numerous individual securities.

Table 1 provides some information about the estimation error in these

estimates in the form of sample averages of the error covariance matrices

and a1 averaged over the individual securities for the entire fifty—four year

sample and for ten five year subperiods as well. While the averages

themselves are not terribly informative, the differences between the ordinary

and adjusted covariance matrices are interesting. Over the whole sample, the

adjusted measurement error variancs of the sample betas were approximately 18%

larger for the equally weighted index and 20% greater for the value weighted

index with especially large differences in the first fifteen years of the

sample. The magnitude of the ratio of the adjusted and ordinary measurement

error variances of the residual variances is much more striking——more than

945% for the equally weighted index and more than 889% for the value weighted

index. Moreover, the ratio of these average variances was in excess of 2257.

in each subperiod for both indices. This is an obvious consequence of the

leptokurtosis of individual security returns. In addition, the adjusted

correlation between the measurement errors in 8it and were typically on

the order of .2 for both indices. The magnitude of these differences suggests

that the residual risk effect obtained with the ordinary measurement error
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correction might differ markedly from that yielded by the adjusted one.

The first results reported are for the raw return model (4). For each

market proxy, the cross—sectional regression:

* *
(16) R1t = + + +

was performed for each month from January 1931 to December 1984 using the

estimation methods described in Section 2 and the time series estimates

described above. Table 2 summarizes the evidence obtained using the equally

weighted index as the market proxy while Table 3 provides the corresponding

information for the value weighted index.

Each table describes the sample behavior of the time series of cross—

sectional regression coefficients , and obtained from the six

estimation methods for the entire sample. The tables summarize both the

central tendencies and correlations among these cross—sectional regression

coefficients. To this end, they report the sample mean and standard deviation

for each coefficient along with its t statistic and corresponding marginal

significance level (i.e. the probability of obtaining a t statistic at least

that large when the corresponding mean is truly zero) for each estimation

method. In addition, the sample correlations between the time estimates of

and are reported for each estimation method along with their

marginal significance levels. Finally, the sample correlation between and

and its marginal significance level provide indirect evidence on the

precision with which the market risk premium is measured.'7

The results for the equally weighted index reported in Table 2 and for
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the value weighted index provided in Table 3 generally conform to the

predictions outlined earlier. Moving from ordinary to generalized least

squares or from conventional estimation to measurement error correction

results in decreases in the mean of and increases in the mean of as

well as similar movements in the corresponding t statistics. This is not

surprising and merely provides the evidence in the residual risk context

corresponding to the results obtained by Litzenberger and Ramaswamy (1979) in

their analysis of dividend effects. What is more interesting is the behavior

of the residual risk coefficient X—--'its mean also increases in statistical

significance (though not necessarily in magnitude) with the change to more

efficient estimation methods and corrections for measurement error in and

The only unexpected result concerns the two measurement error

corrections which provide quite similar estimates of risk premia instead of

the superior performance expected from the adjusted measurement error

correction. 18

The correlations among the cross—sectional regression coefficients

and indicate the presence of substantial collinearity among the true

values of it and and a vector of ones (i.e. the intercept).19 The

'8Two additional oints are worth noting. The first is that the
GLS estimate of with no measurement error correction is an
order of magnitude larger than the other estimates. The second
point is that it is significant at conventional levels in the
value weighted regressions. Results not reported here indicate
that this is entirely attributable to the January effect
dcumented in Table 7.
1'This might be expected given the evidence provided by Warga
(1985) concerning the sample collinearity among these variables.
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correlations among these coefficient estimates are small though sometimes

significant at conventional levels for both OLS and GLS estimation with no

measurement correction. Similarly, the OLS estimates with both measurement

error corrections exhibit moderately large correlations. The striking results

concern the generalized least squares estimates with both measurement error

corrections——these yielded correlations in excess of .99 between and

for both market proxies. Moreover, these correlations remain above .94 for

all five year periods.

The good news is that the use of more efficient estimation procedures

which correct for measurement error in the cross—sectional regressions yields

a highly significant residual risk effect. The bad news is that this effect

is indistinguishable from the overall market effect as measured by the

coefficient on beta (i.e. X )! This finding suggests that the concerns

recorded in Miller and Scholes (1972) and echoed in Section 2 regarding

collinearity among one, sit' and were clearly warranted. The analysis in

Section 2 also suggested that the excess return formulation (5) can

potentially mitigate these problems.

As a consequence, Tables 4 and 5 provide the results obtained from this

alternative formulation for the equally weighted and value weighted indices,

respectively. For each market proxy, the cross—sectional regression:

(17) Rt — 8it'mt = x0t(1
— sit) + +

was performed for each month from January 1931 to December 1984 using the

various estimation methods and the time series estimates of it and Once
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again, each table describes the sample behavior of the time series of cross—

sectional regression coefficients XO and A2 obtained with the six estimation

methods for the entire sample by their sample means, standard deviations, t

statistics, and their associated marginal significance levels. In addition,

the sample correlations between the time estimates of A0 and A2t as well as

their correlations with the corresponding estimates from the raw return model

(i.e. t arid X) are reported for each estimation method along with their

marginal significance levels. The correlation between and is provided

as well to indicate the presence of any collinearity between the beta effect

reported in Tables 2 and 3 and the residual variance effects obtained from

this alternative formulation.

These results indicate that the model given by equation (17) provides

reliable estimates of the residual risk effect when more efficient estimation

methods are coupled with appropriate measurement error corrections. The

measured effect is substantially more significant when generalized least

squares estimation is employed instead of ordinary least squares. In

addition, generalized least squares estimates of the residual risk effect

exhibit modest correlations with the beta effect 4 reported above,

suggesting that this formulation did, in fact, mitigate the effects of

collinearity between the true values of 8it and . More importantly,

generalized least squares estimation coupled with the adjusted measurement

error correction yields a substantially more significant measured residual

risk effect than either the conventional measurement error correction or no

measurement error correction.20 This finding appears to justify the concerns

about heteroskedasticity discussed in Section 2 and suggests the usefulness of
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the adjusted measurement error correction in actual practice.

Tables 6 and 7 examine the degree of nonstationarity of the residual risk

effect in three dimensions for the equally weighted and value weighted

indices, respectively. First, the means and as well as the marginal

significance levels of their t statistics are reported for ten five year

subperiods. Second, these means and marginal significance levels are provided

both with and without the inclusion of the cross—sectional regression

coefficients computed in Januaries due to the well—documented seasonality in

stock returns. Finally, the tables offer two measures of serial correlation

in the measured risk effect——a serial correlation coefficient and the usual x2

statistic for the joint significance of the first twelve autocorrelations

along with their marginal significance levels. Table 6 provides the first

order autocorrelation coefficient while Table 7 gives the twelfth order one.

These quantities are provided for only the excess return model (5) estimated

by generalized least squares with the adjusted measurement error correction in

order to conserve space.

Table 6 reveals remarkably little evidence of nonstationarity in the

measured residual risk effect associated with the equally weighted index. The

subperiod sample means of differ substantially but the variances are so

large that it is likely that they are not significantly different at

conventional levels. The subperiod means differ surprisingly little when

computed with and without January returns. Finally, they exhibit remarkably

little serial correlation. The first twelve autocorrelations are jointly

significant at the 5% level for only the 1936 to 1940 subperiod while the ten

subperiod x2 statistics are jointly insignificant at conventional levels.2'
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However, the first order serial correlation coefficients are significant at 5%

level for two subperiods (1961—65 and 1976—80). It is likely that precise

measurement of any nonstationarity of the residual risk effect would require

an explicit model of time variation in the systematic and idiosyncratic risk

measures.

By contrast, Table 7 reveals considerably nonstationarity in the residual

risk effect measured with respect to the value weighted index. The most

striking evidence consists of the substantial and highly significant

differences in the mean values of X2 computed with and without January

returns. Moreover, the first twelve autocorrelations are jointly significant

in four out of ten five year subperiods at the 5% level while the ten

subperiod statistics are jointly significant below the .5% level.22 The

source of this measured autocorrelation is not in the first order serial

correlations, none of which are significant at the 10% level, but rather is in

the large measured autocorrelations at lag twelve reported in Table 7. This

is, of course, consistent with the January effect implicit in Table 7. These

results are not surprising since the value weighted index is basically an

index of returns on large firms and the January seasonal is a small firm

effect.

21The x2 statistics for each subperiod are independent under the
null hypothesis. Since sums of independent x2 statistics are
distributed x2 as well, the joint significance of the subperod
autocorrelations can be tested by examining the sum of the x
statistics reported in Table 6. Their sum is 129.25 and is
distributed as x2 with 120 degrees of freedom which has a
marginal significance level of .2659.
22Their sum is 165.29 and is distributed as x2 with 120 degrees
of freedom under the null hypothesis of no autocorrelation with a
marginal significance level of .0030.
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Finally, it is worth emphasizing that the subperiod results reported in

Tables 6 and 7 reflect a pronounced residual risk effect irrespective of any

possible nonstationarities. The ten subsample mean values of are jointly

significantly different from zero at conventional significance levels for both

indices and with and without the inclusion of January returns. In addition,

several of the subsample means have marginal significance levels below the

conventional 5% and 1% levels. The use of generalized least squares

estimation of equation (17) coupled with the adjusted measurement error

correction produced reliable estimates of a substantive residual risk effect

which had a decided effect on security returns in many subperiods.

4. Conclusion

This paper had a simple motivation. There is considerable evidence that

the residuals from the single index market model contain factors which are

asssociated with nonzero risk premia. Consequently, the idiosyncratic

variances from the one factor model should partially reflect exposure to these

omitted sources of systematic risk and, hence, should help explain expected

returns. There are two plausible explanations for the inability to obtain

statistically reliable estimates of linear residual risk effect in the

previous literature: (1) nonlinearity of the residual risk effect and (2) the

inadequacy of the statistical procedures employed to measure it. The

econometric methods employed previously are more plausible culprits since

linearity is probably a reasonable first order approximation. Hence, the

search for a residual risk effect provides a natural laboratory for the

investigation of the efficacy of alternative statistical procedures for

measuring risk premia.
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This laboratory provided an apt setting for this investigation and

yielded considerable information regarding the anatomy of the residual risk

effect. Three conclusions warrant special mention. The first is that the

absence of a reliably measured residual risk effect in the previous literature

appears to be a direct consequence of the inappropriate estimation procedures

employed there. In particular, generalized least squares estimation coupled

with correction for measurement error in the sample betas and residual

variances yields a pronounced residual risk effect. Second, there appears to

be considerable collinearity among a vector of ones and the true values of the

betas from the one factor model and the associated idiosyncratic variances.

As a consequence, it is important to utilize the excess return formulation (5)

to more efficiently estimate the residual risk effect. Finally, there appears

to be relatively little nonstationarity in the residual risk effect measured

with respect to the equally weighted index but there is a pronounced January

seasonal in that yielded by the value weighted index. Of course, this is

unsurprising since this residual risk effect is likely to reflect the small

firm effect since the value weighted index is a large firm index.

The hypothesis that expected returns depend on both systematic and

residual risk ought to provide a sharp analytical knife for testing the

validity of modern asset pricing theories in which expected returns depend

solely on systematic risk exposure. This paper has demonstrated that the

residual risk hypothesis is a tool well—suited to this purpose only when

wielded appropriately. However, when the model for expected returns is

estimated with proper econometric methods, the residual risk hypothesis can

serve as a powerful maintained alternative hypothesis.



TABLE 1

Descriptive Statistics for Subperiods (1931—1985)

Average
Average Average Average Average Average Covarianc
Number Variance

Varjane Varjance Var1ane betee 8.Period Index of Firms of 8.(0LS) of a. (OLS) of 8(adj) of a. (adj) & a. (ad5

1931—35 EW 468 .02330 .0000868 .05084 .0007415 .0013617
VW .04494 .0001100 .08797 .0009105 .0026168

1936—40 EW 615 .02211 .0000795 .05703 .0008973 .0029104
VW .05707 .0001000 .11610 .0010878 .0052991

1941—45 EW 707 .02663 .0000274 .06332 .0001956 .0015995
VW .07042 .0000402 .11725 .0003798 .0032054

1946—50 EW 779 .03264 .0000045 .03666 .0000277 .0003685
VW .06808 .0000059 .06416 .0000394 .0004639

1951—55 EW 913 .04458 .0000010 .04529 .0000024 .0000454
VW .06296 .0000011 .05692 .0000027 .0000537

1956—60 EW 947 .06258 .0000009 .06506 .0000028 .0000497
.06278 .0000011 .05944 .0000031 .0000530

1961—65 EW 944 .05056 .0000012 .04511 .0000055 .0000563
VW .06568 .0000013 .05635 .0000057 .0000652

1966—70 EW 967 .04843 .0000016 .04456 .0000040 .0000445
VW .08360 .0000018 .08013 .0000045. .0000300

1971—75 EW 1077 .03265 .0000025 .03571 .0000058 .0000533
VW .06325 .0000030 .07089 .0000076 .0000532

1976—80 EW 1240 .02958 .0000034 .03908 .0000077 .0000739
vw .06225 .0000047 .09913 .0000112 .0001571

1931—84 EW 892 .03781 .0000128 .04463 .0001121 .0004340
VW .06356 .0000166 .07641 .0001476 .0007214



TABLE 2

* * * 2
Estimation of: R. = A + A + A + uit Ot it it 2t it it

Market Proxy: Equally Weighted Time Period: 1931—1984

Estimation Method

Conventional Measurement Error Correction

Ordinary Adjusted
Coefficient Statistic OLS GLS OLS GLS OLS GLS

Mean .01009 .00739 .00903 .00645 .00894 .00616

* (Std.Dev.) .03940 .03136 .04033 .03318 .03983 .03319
A
Ot

statistic 6.52 6.00 5.70 4.95 5.71 4.72
(p—value) <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

Mean .00410 .00481 .00545 .00713 .00514 .00748

* (Std.Dev.) .05951 .06693 .07923 .07846 .08836 .08212
A
it

statistic 1.75 1.83 1.75 2.31 1.48 2.32

(p—value) .0802 .0678 .0806 .0210 .1394 .0207

Mean —.05234 .14148 —.10756 .00798 —.12896 .00828

* (Std.Dev.) 1.70867 2.35146 2.15349 .08057 2.79436 .08351
A
2t

statistic —.78 1.53 —1.27 2.52 —1.17 2.52

(p—value) .4358 .1261 .2040 .0119 .2405 .0119

* Correlation .214 .030 —.196 —.228 —.372 —.304

P(AOt ,A1 ) (p—value) <.0001 .4488 <.0001 <.0001 <.0001 <.0001

* Corre1ation —.019 —.064 .098 —.233 .096 —.313

P(Ao ,X2 ) (p—value) .6351 .1011 .0128 <.0001 .0150 <.0001

* Corre1ation .056 .091 —.276 .994 —.253 .995

p(Ai ,X2 ) (p—value) .1513 .0207 <.0001 <.0001 <.0001 <.0001

* Correlation .852 .867 .832 .906 .814 .912

p(Ai ,R) (p—value) <.0001 <.0001 <.0001 <.0001 <.0001 <.0001



TABLE 3

* * * 2
Estimation of: R. = Ao + Alt ft + + Uft

Market Proxy: Value Weighted Time Period: 1931—1984

Estimation Method

Conventional Measurement Error Correction

Ordinary Adjusted
Coefficient Statistic OLS GLS OLS GLS OLS GLS

Mean .01108 .00778 .01018 .00650 .00977 .00608

* (Std.Dev.) .03821 .03118 .04081 .03388 .04516 .03513
A
Ut

statistic 7.38 6.35 6.35 4.89 5.51 4.41

(p—value) <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

Mean .00189 .00247 .00260 .00516 .00251 .00557

* (Std.Dev.) .04551 .05081 .06613 .06471 .07472 .06794
A
it

t statistic 1.06 1.24 1.00 2.03 .86 2.09

(p—value) .2907 .2162 .3175 .0427 .3920 .0372

Mean .02704 .26658 .01209 .00621 .02301 .00656

* (Std.Dev.) 1.90711 2.73349 2.20584 .06749 2.86816 .07019

2t
statistic .36 2.48 .14 2.34 .20 2.38

(p—value) .7182 .0133 .8891 .0194 .8382 .0177

* orre1ation .218 —.055 —.339 —.353 —.562 —.436

p(Ao ,A1 ) (p—value) <.0001 .1657 <.0001 <.0001 <.0001 <.0001

* orrelation .097 .034 .171 —.347 .222 —.432

P(Ao ,A ) (p—value) .0133 .3928 <.0001 <.0001 <.0001 <.0001

* orrelation .108 .150 —.174 .992 —.219 .993

P(Ai ,A2 ) (p—value) .0058 <.0001 <.0001 <.0001 <.0001 <.0001

* Correlation .804 .839 .795 .837 .781 .838

p(A1 ,R) (p—value) <.0001 <.0001 <.0001 <.0001 <.0001 <.0001



TABLE 4

Estimation of: R. — R = A (1 — I + A a
2
+ vit it tnt Ut it 2t it it

Market Proxy: Equally Weighted Time period: 1931—1984

Estimation Method

Conventional Measurement Error Corection

Ordinary Adjusted
Coefficient Statistic OLS GLS OLS GLS OLS GLS

Mean .01036 .00714 .00958 .00643 .00461 .00607
(Std.Dev.) .04078 .03226 .04165 .03360 .53739 .03367

A
Ut

statistic 6.47 5.64 5.86 4.87 .22 4.59
(p—value) <.0001 <.0001 <.0001 <.0001 .8273 <.0001

Mean .01709 .03693 .01119 .03913 —.03264 .05996
(Std.Dev.) .65309 .41099 .68617 .41632 9.65920 .43830

A
2t

statistic .67 2.29 .42 2.39 —.09 3.48
(p—value) .5055 .0225 .6782 .0170 .9315 .0005

Correlation .058 —.052 .112 —.014 .994 .091

p(Xo,X2) (p—value) .1378 .1901 .0042 .7131 <.0001 .0202

Corre1ation .987 .994 .989 .998 .119 .997

P(Ao,Xo ) (p—value) <.0001 <.0001 <.0001 <.0001 .0023 <.0001

Correlation .851 —.255 .833 —.061 .142 .061

P(A2,A2 ) (p—value) <.0001 <.0001 <.0001 .1192 .0003 .1231

Corre1ati0n —.012 .019 —.278 —.036 —.086 .089
) (p—value) .7665 .6280 <.0001 .3602 .0294 .0238



TABLE 5

Estimation of: — R =
Xo(1

— + A2 + V•

Market Proxy: Value Weighted Time period: 1931—1984

Estimation Method

Conventional Measurement Error Correction

Ordinary Adjusted
Coefficient Statistic OLS GLS OLS GLS OLS GLS

Mean .00672 .00729 .00637 .00703 .00861 .00809
(Std.Dev.) .03423 .03090 .04024 .03437 .18872 .03840

A
Ut

statistic 5.00 6.00 4.03 5.21 1.16 5.37

(p—value) <.0001 <.0001 <.0001 <.0001 .2460 <.0001

Mean .18461 .35530 .18425 .35348 .16048 .43231

(Std.Dev.) 2.08722 2.69237 2.19197 2.83778 5.95960 3.08392
A
2t

statistic 2.25 3.36 2.14 3.17 .69 3.57

(p—value) .0247 .0008 .0327 .0016 .4933 .0004

Correlation .004 .135 .058 .180 .815 .289

p(Ao,A2) (p—value) .9097 .0006 .1407 <.0001 <.0001 <.0001

C0rre1at10n .786 .988 .842 .972 .332 .925

p(X0,X ) (p—value) <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

C0rrelation .866 .747 .823 .269 .360 .282

p(X2,A2 ) (p—value) <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

orre1ation .134 .110 —.042 .210 —.062 .219

p(A2,Xi ) (p—value) .0006 .0049 .2869 <.0001 .1169 <.0001



TABLE 6

Residual Risk Effect by Subperiods (1931—1980)

Estimation of: Rit — it Rt = Ao(1
— it + 2t it + Vft

Market Proxy: Equally Weighted
Estimation Method: Generalized Least Squares with Adjusted Measurement Error Correction

Serial
Ut 2t Correlation

Except Except A betwen 2Period Statistic All January All January 2t & 2t—1 x (12)

1931—35 Mean —.00555 —.00560 —.06547 —.07005 —.247 14.19
(p—value) .3959 .4165 .4141 .4192 .0557 .2887

1936—40 Mean .00000 —.00067 —.04652 —.05376 —.201 21.17
(p—value) 1.000 .9160 .1882 .1588 .1195 .0479

1941—45 Mean .00768 .00909 .10025 .06975 —.071 6.95
(p—value) .0554 .0335 .0020 .0109 .5823 .8609

1946—50 Mean .00603 .00681 .08400 .08774 —.164 13.41

(p—value) .0804 .0616 .0564 .0589 .2040 .3400

1951—55 Mean .00971 .00926 —.02428 —.02727 —.021 17.14
(p—value) <.0001 <.0001 .4493 .4183 .8708 .1444

1956—60 Mean .01414 .01341 —.01117 —.02468 .031 6.82
(p—value) <.0001 <.0001 .7882 .5831 .8102 .8693

1961—65 Mean .00742 .00788 .23358 .19869 .374 15.34
(p—value) .0375 .0313 <.0001 .0007 .0038 .2234

1966—70 Mean .00371 .00393 .03046 .03767 —.003 7.16
(p—value) .3890 .3960 .6785 .5986 .9815 .8469

1971—75 Mean .00537 .00489 .25573 .30730 —.136 14.85

(p—value) .2887 .3570 .0109 .0008 .2921 .2497

1976—80 Mean .00093 .00171 —.00057 —.02860 —.271 12.22

(p—value) .8314 .7138 .9876 .4241 .0358 .4282

'Box—Ljung statistic for joint significance of first twelve autocorrelations.



TABLE 7

Residual Risk Effect by Subperiods (1931—1980)

Estimation of: Ri — 0it Rt xo(1 it + X +

Market Proxy: Value Weighted
Estimation Method: Generalized Least Squares with Adjusted Measurement Error Correction

Serial
Ut 2t Correlation

Except Except bteen 2
Period Statistic All January All January 2t 2t—12 x (12)

1931—35 Mean .00168 —.00203 .92879 .62662 —.001 14.49

(p—value) .8234 .7977 .0201 .1089 .9938 .2705

1936—40 Mean —.00017 —.00333 .16512 —.00721 .144 5.24

(p—value) .9771 .5953 .4845 .9763 .2647 .9495

1941—45 Mean .01137 .00943 1.14776 .68100 .433 22.88

(p—value) .0164 .0558 .0009 .0048 .0008 .0288

1946—50 Mean .00717 .00716 .00206 —.30432 .202 15.32

(p—value) .0108 .0153 .9943 .2583 .1177 .2244

1951—55 Mean .00810 .00729 —.59196 —.92948 .058 8.86

(p—value) <.0001 .0003 .1916 .0442 .6532 .7148

1956—60 Mean .01339 .01195 —.01981 —.66188 .344 22.75

(p—value) <.0001 <.0001 .9642 .0457 .0077 .0299

1961—65 Mean .00905 .00840 .56766 .23226 .231 8.02

(p—value) .0157 .0269 .1207 .5035 .0736 .7836

1966—70 Mean .00483 .00314 .82801 .22811 .195 21.70

(p—value) .2655 .4900 .0786 .5608 .1309 .0410

1971—75 Mean .00630 .00159 .28545 —.48637 .356 39.32

(p—value) .3513 .7971 .6167 .2368 .0058 <.0001

1976—80 Mean .00701 .00401 .53540 .25434 .095 6.71

(p—value) .2985 .5552 .2006 .5371 .4618 .87b2

'Box—Ljung statistic for joint significance of first twelve autocorrelations.
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