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1 Introduction

For decades, R&D and innovation have been recognized by scholars and policy makers as major
drivers of country, industry and firm economic performance. Many of the early studies, following
the lead of Griliches (1979), used an augmented production function with R&D capital to estimate
the returns to R&D at the firm level. More recently, many studies relied on innovation survey
indicators and on the CDM framework to analyze simultaneously a knowledge production function
relating innovation output to R&D, and an augmented production function linking productivity to
innovation output (Crépon et al., 1998; Mairesse et al., 2005; Griffith et al., 2006). Both the effects
of R&D on innovation output and of innovation output on productivity are usually found to be
positive and significant in these studies. Most of them, however, are based on cross-sectional data
and cannot take into account the dynamic linkages between innovation and economic performance
nor unobserved firm heterogeneity. This is where the present study comes into play.! More
specifically, using data from three waves of the Community Innovation Survey (CIS) for France
and the Netherlands, we examine whether there is evidence of persistence in firm innovation and
productivity and of bidirectional causality between them.?

There are several reasons why one should introduce dynamics in the interrelationships between
R&D, innovation and productivity. Firstly, the time lag between a firm’s decision to invest in R&D,
the associated R&D outlays and the resulting innovation success may be substantial because of
‘time to build’, opportunity cost and uncertainty inherent to the innovation process (Majd and
Pindyck, 1987). For example, the studies of knowledge production function using firm panel data,
where patents proxy for knowledge, specify a relation of patents to distributed lags of R&D (Pakes
and Griliches, 1980; Hall et al., 1986). Secondly, scholars argue that a successfully innovative firm
is more likely than a non-innovating firm to experience innovation success in the future, in other
words, that ‘success breeds success’. Several papers have investigated the persistence of innovation
success, measured by the number of granted patents (Geroski et al., 1997), the introduction of
new or significantly improved products (Peters, 2009) or production methods (Flaig and Stadler,
1994), or the share in total sales accounted for by sales of these products (henceforth the share of
innovative sales) (Raymond et al., 2010). Thirdly, it is also argued that the economic performance
of a firm, especially of a repeatedly innovating firm, is likely to exhibit persistence. For instance,

Bailey et al. (1992), Bartelsman and Dhrymes (1998), and Farinias and Ruano (2005) find strong

1See also Parisi et al. (2006) and Huergo and Moreno (2011) for two different attempts to go in this direction.

2There are important differences between France and the Netherlands, in particular the size of the two countries,
the industrial composition, the extent of external trade and institutional and regulatory changes in our study period.
It is not clear a priori how these differences impact directly the firm innovation and productivity relationships between
the two countries. We consider it interesting and important to compare them for the sake of scientific replication
(see Hamermesh, 2007).



evidence of persistence of firm level productivity differentials using transition probabilities on the
quintiles or deciles of the distribution of these differentials over time, or using kernel techniques
to estimate the conditional distribution of firm level productivity at period ¢ given productivity
at period ¢t — 1. Finally, because of information asymmetry, firms may be more willing to rely on
retained earnings rather than to seek external funding for their future innovations (Bhattacharya
and Ritter, 1983), implying a feedback effect from productivity to innovation.

To investigate these dynamic aspects, we study four nonlinear dynamic simultaneous equations
models that differ in the way that innovation enters the conditional mean of labor productivity:
through an observed binary indicator, an observed intensity variable or through the continuous
latent variables that correspond to the observed occurrence or intensity. We describe these models
in detail in Section 2.

We show in Section 3 how to derive the full information maximum likelihood estimator assum-
ing random effects that are correlated with sufficiently time-varying explanatory variables. More
specifically, we take care of the initial conditions problem due to the autoregressive structure of
the models and the presence of firm effects using Wooldridge’s (2005) ‘simple solutions’ approach,
and we handle multiple integration due to the correlations of firm effects and idiosyncratic errors
across equations using Gauss-Hermite quadrature sequentially along the lines of Raymond (2007,
chapter 6).

In Section 4, we explain the data on which we base our estimations and provide some descrip-
tive statistics. These data come from three waves of the Dutch and the French Manufacturing
Community Innovation Surveys (CIS) for 1994-1996, 1998-2000 and 2002-2004, supplemented by
a few firm accounting variables. We work with an unbalanced panel to have a larger sample and
thus to weaken possible survivorship biases and to obtain more accurate estimates.

In Section 5 we present our results. For both countries they reveal strong persistence in produc-
tivity but weaker persistence in innovation, and they indicate a unidirectional causality running
from innovation to labor productivity. Whereas past innovation matters to productivity, the most
productive enterprises are not more successful in introducing new or significantly improved prod-

ucts and do not attain larger shares of innovative sales than the least productive ones.

2 Model specifications

Our models consist of a knowledge production function and an augmented production function
relating respectively innovation output to R&D and other relevant innovation factors, and pro-

ductivity to innovation output and other relevant production factors. Four measures of innovation



output are considered in the analysis. The first is an observed binary variable taking the value
one if an enterprise is a product innovator, and zero otherwise. In the innovation survey, a prod-
uct innovator is a firm that has introduced a new or improved product in the last three years.
The second variable is a continuous observed variable, namely the observed innovation intensity,
measured by the share of total sales in year ¢ due to products introduced in the last three years,
ie. t, t —1 or t —2. Although the latter is more informative than the former it is likely to be
more affected by important measurement errors. We also consider the two latent innovation output
variables that underly respectively the propensity to introduce new or improved products on the
market and the potential share of innovative sales. Both latent variables are continuous measures
that substitute in one case for a binary variable and in the other case for a continuous variable
with corner solution. The latent variable specification assumes there is an underlying true variable
which is not necessarily zero when it is not observed (e.g. in case of a small incremental innovation)
while the observed specification assumes that innovation is well known and possibly equal to zero.
As innovation output later enters as an argument in the production function, it is also not clear
whether it is the observed ex-post or the expected ex-ante innovation that should determine labor
productivity. There are thus both economic and statistical reasons for preferring one specification

over the other. We shall compare all four of them.

2.1 Knowledge production function (KPF)

Let y;;, denote a latent variable underlying firm i’s (¢ = 1,..., N) propensity to achieve product
innovations at period ¢ (¢ = 0;, ..., T;) given past observed occurrence of product innovations y1;1—1,
past labor productivity ys; :—1, past R&D and other firm- and market-specific characteristics x1;¢,

and unobserved firm heterogeneity a1;.> Formally

Vi = V11Y1i0—1 + Y13Y3it—1 + B1X1it + i + 14t (2.1)

where 91, and 3 capture the effect of past product innovation occurrence and past productivity
on the propensity to innovate, 3] captures the effects of past R&D and other explanatory variables
and €1;; denotes idiosyncratic errors encompassing other time-varying unobserved variables that

affect yj;,. The observed dependent variable, 1, corresponding to yj;; is defined as

Y1t = 1y1; > 0], (2.2)

3By letting t vary from 0; to T}, we allow firms to enter and exit the sample at different periods. 0; denotes the
first observation of firm 4 in the unbalanced panel data sample and T; its last observation.




where 1[ | denotes the indicator function taking the value one if the condition between squared
brackets is satisfied, and zero otherwise.

Let y3,, denote the firm’s latent share of innovative sales, or potential innovation intensity,
given past observed innovation intensity y2;+—1, past labor productivity ys;+—1, past R&D and

other firm- and market-specific characteristics x2;;, and firm-specific effects ag;. Formally

Ysir = U20Y2it—1 + V23y3i -1 + BoX2it + i + 24, (2.3)

where the coefficients 22 and ¥93 capture the effect of past observed share of innovative sales and
past labor productivity on the potential innovation intensity, 35 captures the effect of past R&D
and other explanatory variables and e9;; denotes idiosyncratic errors. The observed counterpart

to y3,, is defined as

Yait = L[y7; > Olys- (2.4)

In other words, the share of innovative sales of firm i is observed to be positive in period t if its
innovation propensity is sufficiently large in that period. If not, the share of innovative sales is set
equal to zero.

The product innovation indicator and the share of innovative sales variables are taken from
the innovation survey of the two countries. Since the share of innovative sales lies within the unit
interval, we use a logit transformation in the estimation in order to normalize it over the entire set
of real numbers.*

The set of other explanatory variables includes the log R&D per employee, the log market share,
and size, industry and time dummy variables.” Due to the lengthy nature of research and innovation
activities, we use lagged R&D to explain innovation occurrence and innovation intensity. We also
thought it better to only consider R&D expenditure for firms that declare investing continuously
in R&D.% We include a lagged dummy variable for non-continuous R&D performers to compensate
for the fact that for those firms we put the R&D expenditure equal to zero. Market share is used at
the three digit industry level as a measure of relative size that can reflect market power. It is lagged
in order to avoid possible endogeneity concerns (due in particular to measurement errors in firm

sales which would affect both our market share and productivity variables).” We take employment

4Zero values of the share of innovative sales are replaced by a positive value 71 smaller than the minimum positive
observed value of that variable, and values one are replaced by a positive value 7o higher than the second largest
observed value. These choices have a negligible effect on our estimates.

5In some specifications, we have also three indicators of the distance to the productivity frontier. We find,
however, that they are not statistically significant (see Appendix D).

SR&D expenditure is likely to be a reasonable proxy of R&D capital for these firms. If we could construct
a measure of R&D capital stock, it would be a better measure to use. We cannot, however, for lack of enough
observations over time.

"The market share of a firm is defined as the ratio of its sales over the total sales of the three digit industry it



as our measure of firm absolute size, and since the relation between innovation and size may be
nonlinear, we use four size class indicators: small enterprises (# employees < 50), medium-sized
enterprises (50 < # employees < 250), large enterprises (250 < # employees < 500) and very large
enterprises (500 < # employees), the fourth class being considered as the reference. We control
for industry effects, according to the OECD (2007) technology-based classification of high-tech,
medium-high-tech, medium-low-tech, and low-tech industries, using three dummy variables for
the first three industry categories and taking low-tech industries as the reference. Such industry-
specific effects capture differences in technological opportunities (it is easier to innovate in certain
industries than in others) and in intensity of competition (which is expected to be higher in high-
tech than in low-tech industries). Since our panel consists only of three periods and we need one
for the lagged variables, we need only include a time dummy variable for the period 1998-2000,
with 2002-2004 being the reference. This time dummy controls for macroeconomic shocks and for

inflation.

2.2 Augmented production function (APF)

As in the great majority of studies, we assume a Cobb-Douglas APF that we write in terms of a log
linear productivity equation relating labor productivity to labor (i.e., we do not assume a constant
scale elasticity), physical capital per employee (proxied here by physical investment due to the
unavailability of a stock measure), and innovation output. We consider four specifications where
we explain productivity by latent innovation (i.e. the propensity to achieve product innovations or
potential innovation intensity) or by observed innovation (i.e. innovation occurrence or observed
innovation intensity). In all cases we also condition current labor productivity on its past values

and control for unobserved heterogeneity through firm effects. Thus, we can write

Ysit = Vs3Ysii—1 + B3X3it + YiYjie + Q3i + €3it, (2.5a)

Y3it = U33Y3i,1—1 + B5xzit + YjYjit T 3i + €3it, (2.5b)

with j = 1 or 2 where innovation propensity (yj;;) or potential innovation intensity (v3;;) explains
labor productivity in equation (2.5a), and innovation occurrence (yi;+) or observed innovation
intensity (y2i:) explains labor productivity in equation (2.5b). The coefficient ¥33 captures the

effect of past labor productivity on current labor productivity, 35 captures the effect of standard

belongs to. The latter is obtained by adding up the sales of all firms in our sample that belong to that industry after
multiplying them by an appropriate raising factor in order to have the total sales of the industry in the population.
As we shall see, a combination of a census and a stratified random sampling is used to collect the data. In the latter
case, the raising factor is calculated for each stratum as the ratio of the number of firms in the population of that
stratum over the number of firms in the corresponding stratum sample.



input variables, i.e. employment and physical investment per employee, «; captures the effect of
innovation output on labor productivity, and ag; and €3;; denote time-invariant firm effects and

idiosyncratic errors. We also control for industry and time effects as in the KPF equations.

3 Full information maximum likelihood estimation (FIML)

We shall now explain how to derive the FIML estimator, that is how to take care of the initial
conditions problem due to the autoregressive structure of the models and the presence of firm
effects, how to write the likelihood function, and how to handle the multiple integration due to the

correlations of firm effects and idiosyncratic errors across equations.

3.1 Initial conditions

The initial conditions problem stems from the fact that the first observed value of the lagged
dependent variables is correlated with the individual effects. Ignoring or inadequately accounting
for this correlation results in a bias of the effect of the lagged dependent variables. Several solutions
have been proposed in the econometric literature. We follow the one suggested by Wooldridge
(2005).

Wooldridge’s ‘simple solutions’ have been originally applied to autoregressive nonlinear single-
equation models with individual effects. We adapt the approach to a model with multiple equations.
In other words, we project in each equation the individual effects on the first observation of
the corresponding dependent variables and on the observed history of the explanatory variables.

Formally

aii = bio + b1y Y50, + bioXui + ars, (3.1)
ag; = bao + b/21y2i07; + byoXa; + agi, (3:2)
iz = bao + bz Ysi0, + bhoXsi + asi, (3:3)

where y,0. (k= 1,2,3) represents the initial values of the dependent variables, Xg; = (Xgi0; 41, -+
Xki1;) represents the history of (in principle all) the observations of the time-varying explanatory
variables, and a; = (a1, az2;,as3;) denotes the vector of projection errors assumed orthogonal to
Yrio,» Xki and €5 = (€1i¢, €2it, €3i¢)’. The ancillary parameters bro, br1 and by are to be estimated
alongside the parameters of interest.

Three important remarks are in order regarding equations (3.1)-(3.3). Firstly, if the coefficient

vectors 3, contain intercepts, only the sums of those intercepts and byo are identified. Secondly,



if the explanatory variables are time-invariant or do not show sufficient within variation, then
the coefficients byy and B3, cannot be separately identified. As a result, only the sufficiently
time-varying explanatory variables enter equations (3.1)-(3.3). Thirdly, in order to discriminate
between the effect of the lagged dependent variables and that of the initial values, given the
unbalancedness of the panel, we actually have to include in equations (3.1)-(3.3) two types of
initial values with different coefficients for firms present in all three waves and for those present
only in two waves. Following Wooldridge (2005) we make the following distributional assumptions:

jid jid .
Eitly, ,,1,Xit,ail’z‘ Normal(0,X.); ai\yio.,XiZ’L Normal(0,X,) where 3¢ and X, are given by

2
1 Ca,
e PeieyTea Oc, ; Ya Paraz0a10as Oa, (34)
o Oc, O o oo lo o o2
PeieyOes  Peyey Te20es £ Pai1az0a10a3 PazazPazT0as as

and are also to be estimated.

3.2 Likelihood

We now derive the likelihood functions. For simplicity, we provide the expressions explicitly only
for the specifications where yi;, or yi;+ (respectively the latent propensity to achieve product
innovations and the observed indicator of innovation occurrence) enters the augmented production

function. Those with y3,, or y2;; are presented in Appendix B.
Model with latent innovation propensity

The model with latent innovation propensity as a predictor of labor productivity consists of
equations (2.1)-(2.4) and (2.5a) with j = 1 in equation (2.5a). These equations constitute the
structural form of the model. Since y7;, is unobserved, we cannot, unlike in simultaneous equa-
tions models with observed explanatory variables, derive the likelihood function directly where the
dependent variable is included as a regressor. As a result, FIML estimates can be obtained only
through the likelihood function of the reduced form of the model. The reduced-form equations are

given by equations (2.1)-(2.4) and

Ysit = Us3y3i,e—1+B5%3ie+71 [P11916,0-1 + P13Ysii—1 + B1X1ie| +y1015 + asi + y114e + €33, (3.5)

a3q €3it



where y7;, has been replaced by its right-hand side expression of equation (2.1).® The individual
effects and the idiosyncratic errors of the reduced form are given by o; = (i, i, a3;)’ and

€it = (€1it, €2it, €3it)’, where agz; and €34 are defined in equation (3.5). After replacing as,, ao;

and as; by their expressions (3.1) to (3.3) into equations (2.1), (2.3) and (3.5), we obtain the
projection errors of the reduced form as a; = (a1, a2i,as;)" with as; = yi1a1; + as;. Since the
structural form idiosyncratic errors and projection errors are both normally distributed, their
reduced-form counterparts are also normally distributed with means zero and covariance matrices

X, and X, given by

2
1 Oa,
— 2 - 2
DI PeyeyOco oz, , Ya ParazTarTay Tas ) (3.6)
g, Oc:,0, O'2 Oq. 0, Tq,0, 0'2
PeiesTes PeyeyTe20es ey ParasTa1%a3  PazasTaz%as  Tag

where the underlined components of X, and ¥, are nonlinear functions of their structural form

counterparts and are given by

02, =7+ 02, +2np.,.,0c, 02 = 4202, + 02, + 291 ParasTar Oas (3.72)
Y1+ P Oc Y10, + PaiasCa
P = Puay = oo (3)
(ryl Tog + 271%)5153 053) (’yl 04 t 0o, + 2Y1Para50a,s O'as)
Pepey = T1Pe; e, + Peyes Tes T Pasas = Y1Para20a; T PazaszTas . (37C)

=

(712 + 0-33 + 271p5153 083) (’Y%Ugl + 033 + 271pa1a30-a1 Uag)

The individual likelihood function of the reduced form conditional on a;, denoted by lLija,s 18

given by
T —(Arittar;) poo 1=y
hia, = ] / / hs(eit, €2it, Ysit)derideit (3.8)
t=0;+1 [V —° -
0o Yiit
/ ha(e1it, Y2its Y3it)derit | »
—(Avit+aiq)

where h3 denotes the density function of the trivariate normal distribution and A;;; is defined as

Avit = 91191001 + Y13Ysie—1 + B1X1ie + b1o + b1 Y150, + blox1i. (3.9)

81n the econometric literature on simultaneous equations models, equation (3.5) is referred to as restricted reduced
form when written with all the parameters of the structural form and unrestricted reduced form when written with
the underlined parameters. In the latter case, y1911 would constitute a new coefficient, say 9¥11. The restricted
reduced form is of interest in our analysis.



The first product in equation (3.8) represents the contribution of a non-product innovator to the
—(Arit+ais)

likelihood function and can be rewritten as hl(ygit)/ hi(e1it|yzit)derie.’ The second
—o0

product represents the contribution of a product innovator and is equal to hi (Y2t | ysit ) h1(ysit )

oo

/ hi1(e1it|yait, ysit)de1+. These single integrals are univariate cumulative distribution
—(Arit+ai;)

functions (CDFs) of the normal distribution, and are shown to be respectively (see Kotz et al.,

2000)
—Avie — ar; — Peycq 0231 (yzit — Asit — V1414 — ﬂ)
o, ——— , (3.10a)
L=rZ.,
Avit + a1i + p1,,02," (Y2it — Azt — a2:) + pray 05, (Ysie — Asie — 11 A1 — asi)
d, —— . (3.10b)
A/ 1- R1.23
where Aj;; is given in equation (3.9), As;; and As;; are given by
Aoit = V22Yi,t-1 + V23ysi—1 + B9Xai + bao + by Yoo, + bhoXai, (3.11a)
Aszit = U33Y3i,t—1 + BsXait + bso + b Ysi0, + baoXs, (3.11b)
and p,, 4, Pr4., a0d Rf_zg are given by
Peies —Peres Peses Peres " Peres Peges 2 pgleQ"_pzlsg - 2p8162 Peres Peses
P12.3 = y P13.2 = ) = .
17[%263 17p3263 — 17'03‘253
(3.12)

The final expression of ly;)q, is given by

) _ 1—y14t
1 ysit—Azit —y1 A1t —asi —Avit—an—p,,., 02y (Ysie — Agie =7 Ari — asi)
hiae 1T o1 2 )lg, =
- € O¢ 1 — p2
t=0;+1-°3 =3 Pees
Avit + avi + plz,ga;; (y2it — A2it — a2i) + Pys.0 05731 (y3it — Asit — V1 A1t — asi)
®, (3.13)
1- R%.zs
Peoen Tc Y1it
1 Y2ir — Aoit — agi — 2(,:3 2 (y3ee — Azit — Y1 A1it — @)
o1

— 2 — 2
Ocyy /1 Peyeq Ocry/1—p

Model with observed innovation incidence

The model with the observed innovation indicator as a predictor of labor productivity consists

of equations (2.1)-(2.4) and (2.5b) with 7 = 1 in equation (2.5b). Unlike in the previous model, we

o0
9/ hs(€1it, €2it, y3it)de2ir = ha(€1it, Y3it) where ho denotes the density of the bivariate normal distribution,
— 00

and ha(€14t,Y3it) = h1(y3it)h1(€1it|ysic) where h1 denotes the density of the univariate normal distribution.

10



insert directly the observed innovation indicator in the likelihood function.'°

The individual likelihood function of the structural form of this model, conditional on a; and

denoted by l3;|q,, has a similar expression to ly;)q,. It is given by

1-y14t
T _
1 Ysit—Asit — Y115t — a3 —Avit—ari—p., ., 05, (ysie — Azt —Y1Y150 — a3:)
l3i]a; = H — ¢ P,
K Oc. Oc. 2
t=0;+1 °3 3 4/1 T PC ey
@ Avit + ari + p12A3O;L,1 (y2it — A2it — a2i) + pis.0 0231 (ysit — Aszit — V1y1it — a34) (3.14)
1 .
V 1- R%.23
eqeg 7€ Y1i
1 Yoit — A2t — az; — ng%g?(mit — Azit — MY1it — a3i) "

1 )
Oegq /1 —p2

where p,, 4, p,,,. and R? = are derived straightforwardly from equation (3.12) by replacing the

underlined correlations by their structural form counterparts, that is

2 2
_ p5152+p5153 - 2p6162 Peres Peses
= 5 .
]‘_pEzEg

_ Peies—Peres Peaes _ Peres —Peres Peses R2
P12.3 = 1—,2 y P13.2 = 1_ 2 y A1 8
_p€263 _p6263

(3.15)

4 Data and descriptive statistics

The data used in the analysis stem from three waves of the Dutch and the French CIS pertaining
to the manufacturing sector, with the exception of the food industry, for the periods 1994-1996
(CIS 2), 1998-2000 (CIS 3) and 2002-2004 (CIS 4). The Dutch and French CIS data are merged
respectively with data from the Production Survey (PS) and the ‘Enquéte Annuelle d’Entreprise’
(EAE) that provide information regarding employment, sales and investment.!! For each CIS,
the merged PS and EAE variables pertain to the last year of the three-year period. We consider
enterprises with at least ten employees and positive sales at the end of each period covered by
the innovation survey.'? Note that one of the particularities of the innovation survey is that, for
each period, product innovation occurrence relates to the introduction of a new product over a
three-year period, while the actual share of innovative sales pertains to the last year of the period.

As aresult, a one-period lag corresponds actually to four years, a period sufficiently long to capture

10As a matter of fact, adopting this approach is recommended in this case. Indeed, the indicator function that
relates the observed dependent variable, y14:, to the regressors, which would be used in the likelihood function of
the reduced form, is discontinuous and the maximization of the likelihood function of the reduced form is unfeasible.

1 Both Dutch surveys were carried out by the ‘Centraal Bureau voor de Statistiek’ (CBS) for the whole manu-
facturing sector and the two French surveys by the ‘Service des Statistiques Industrielles’ (SESSI) of the French
Ministry of Industry for the manufacturing sector excluding the food industry.

12WWe delete enterprises with a share of total R&D expenditures (intramural + extramural) in total sales greater
than 50% since they are likely to specialize in doing and trading R&D, hence should be classified in R&D services
not in manufacturing.

11



medium- to long-term effects.’® In this paper we consider as innovators only those firms that have
introduced a product new to the firm, but not necessarily new to the market.

In the following Tables 1, 2 and 3, we show some simple descriptive statistics, mostly means,
to present our samples and main variables. Table 1 shows, for both countries, the patterns of
enterprises’ presence in the unbalanced panel after data cleaning. Because of the dynamic structure
of the model, an enterprise must be present in at least two consecutive waves of the merged data in
order to be included in the analysis. There are 1920 such enterprises in our sample for France and
1228 for The Netherlands. In both countries about one third of the total number of enterprises are
present in the three waves.

For each pattern, we report the mean and median employment head counts in the sample and in
the population where the head counts in the population are obtained by weighting head counts in
the sample using a raising factor obtained after correcting for non-response. Because of the lower
cut-off points in The Netherlands and possibly differences in the rates of non-responses in the two
countries, the differences in average firm size between the sample and the population are larger for
France than for The Netherlands. These differences are, however, smaller in the balanced panel,
which is to be expected since firms larger than the cut-off points are all included in the samples
and are also more likely to survive during the whole period 1994-2004. Using the unbalanced panel
allows us to obtain more precise estimates as more observations for broader types of enterprises
are used and also to control partly for survivorship biases as enterprises are allowed to enter and
exit the sample at any period. Overall French enterprises are significantly larger than the Dutch

ones both in the sample and in the population, in the balanced as well as in the unbalanced panel.

Table 1: Employment in the sample and in the population for each pattern of the unbalanced panel data
samples of Dutch and French manufacturing enterprises: CIS 2, CIS 3, and CIS 4

Variable]. France The Netherlands
Pattern— 110 111 011 Total 110 111 011 Total
# enterprises 504 586 829 1920 506 411 311 1228
% in total 26 31 43 100 41 34 25 100
Employment, sample
Mean 558 1044 398 691 158 217 335 222
Median 160 663 197 336 75 112 108 96
Employment, population
Mean 215 726 200 334 111 172 197 155
Median 73 405 74 97 56 93 57 68

Pattern refers to the presence/absence of firms in the three successive waves.

13The CIS, PS and EAE data are collected at the enterprise level. A combination of a census and a stratified
random sampling is used for each wave of the CIS and the PS. A census is used for the population of Dutch
enterprises with at least 50 employees, and a stratified random sampling is used for enterprises with less than 50
employees, where the stratum variables are the enterprise economic activity and employment in head counts. The
same cut-off point of 50 employees is applied to each wave of the Dutch CIS and the PS. A similar scheme is used
for the French CIS but a cut-off point of 500 employees is used in CIS 2 and 3, and one of 250 employees in CIS 4.
The use of different cut-off points in the census/sampling scheme may result in differences across countries in the
average size of enterprises in our samples and may affect our estimates. If we had aligned the Dutch sampling with
the French sampling we would have lost too many observations for the Netherlands. In the EAE, all enterprises
with at least 20 employees are surveyed.
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Table 2 gives the means of the non-transformed dependent and explanatory variables for the
unbalanced samples and for the subsamples of product innovators. Comparing first all enterprises
with product innovators, it appears that in both countries product innovators do not seem to
be more productive on average. This is due to the existence among non-product innovators of
a few firms with very high values of sales per employee. When we take the logarithms of sales
per employee, as we do in our estimating equations, we downweigh outlier values and obtain
significantly higher productivities for product innovators in both countries. We also observe that
on average in both countries product innovators are larger in terms of employment and have a
larger market share.

Comparing now the two countries, we see that Dutch enterprises, either overall or for product
innovators only, have on average much higher physical investments per employee, larger market
shares but smaller sales per employee than their French counterparts. We also see that the Dutch
innovators have on average a significantly higher share of innovative sales but a significantly lower
mean R&D per employee than French innovators. It is finally interesting to note that in France the
majority of product innovators and non-innovators are very large in contrast to The Netherlands

where they are mostly medium-sized enterprises.

Table 2: Means of dependent and explanatory variables: Unbalanced panel data samples from Dutch and
French CIS 2, CIS 3 and CIS 4*

Variable France The Netherlands
All enterprises Product. innov. All enterprises Product. innov.

Product innovator 0.59 - 0.58 -
Share of innov. sales - 0.22 - 0.30
Sales/employee’ 220.53 215.04 184.85 180.70
R&D /employee* - 8.09 - 4.68
Investment/employee’ 7.29 7.36 9.10 9.62
Employment

# emp. 691.36 935.72 222.13 258.78
Size class

# emp.<50 0.13 0.06 0.20 0.14

50<#emp.<250 0.29 0.21 0.63 0.65

250<#emp.<500 0.20 0.22 0.08 0.11

500<#emp. 0.39 0.51 0.09 0.10
Market share (%) 1.52 1.86 1.66 2.01
# observations 4427 2618 2867 1670

*Product innovators are firms that introduce product innovations at least once over the sample period. They do
not necessarily do so in all three waves. The figures represent shares for the dummy variables, i.e., the size class

and the product innovator variables. 'In 1000s of euros. *For continuous R&D performers, in 1000s of euros.

Table 3 gives the same statistics as Table 2 but separately for each period of our unbalanced
panel.'* For both countries, we observe a significant decrease in the proportion of product innova-

tors and in the mean share of innovative sales between 1994 and 2004. The marked increase of the

14For each country, the figures of the various columns of Table 3 are not straightforwardly comparable as there may
be a “wave” effect due to cyclical effects or changes in the wording or in the sampling scheme of the questionnaire.
It is therefore important to control for this effect by including wave-specific dummies, which we achieve in the
estimation of the various models.
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share of innovative sales between the last two periods for France is not large enough to offset the
large decrease that occurs between the first two periods. We also see, for both countries, a strong
increase in the mean nominal sales per employee and in the mean market share between 1994 and
2004, while on average employment decreases for France and increases for The Netherlands. The
growth that we observe in the mean R&D and physical investment per employee between 1994
and 2004 is relatively modest (and only statistically significant for The Netherlands). Although
the differences between the means of the main variables across countries are informative, it is
important to keep in mind that our estimates are not based on the differences of most of such
means but on differences within the two countries, four industry categories as well as within wave
survey patterns, since we estimate our models separately for France and The Netherlands and we
control for firm effects and also include industry and time dummies in all the model equations, as
explained in Section 2.

Table 3: Means of dependent and explanatory variables for each CIS of the unbalanced panel data samples
for France and The Netherlands*

Variable France The Netherlands
1994-1996  1998-2000  2002-2004 1994-1996  1998-2000 2002-2004

Product innovator 0.65 0.56 0.58 0.66 0.60 0.45
Share of innov. sales, 0.30 0.15 0.23 0.33 0.32 0.21
for product innovator
Sales/employee’ 158.51 230.52 254.75 149.43 170.11 254.91
R&D /employee* 7.59 7.28 8.64 3.96 4.76 5.14
Investment/employee’ 6.44 8.12 6.83 8.58 8.01 11.61
Employment

# emp. 806.37 673.99 626.33 175.36 236.04 257.87
Size class

# emp.<50 0.12 0.14 0.12 0.18 0.21 0.20

50<#emp.<250 0.26 0.31 0.28 0.68 0.61 0.60

250<#emp.<500 0.15 0.19 0.25 0.08 0.08 0.09

500<#emp. 0.47 0.36 0.35 0.06 0.10 0.11
Market share (%) 1.38 1.45 1.73 1.30 1.75 1.97
# enterprises 1091 1920 1416 917 1228 722

*Product innovators are firms that introduce product innovations at least once over the sample period. They do
not necessarily do so in all three waves. The figures represent shares for the dummy variables, i.e., the size class

and the product innovator variables. TIn 1000s of euros. *For continuous R&D performers, in 1000s of euros.

5 Estimation results

We now turn to the results of the estimation of the models. We shall first briefly comment on the
general results before discussing the core results of interest, namely the estimated effects of innova-
tion output on productivity and the dynamic interrelations between innovation and productivity.
Tables 4 and 5 present the estimation results for the model with latent innovation as a predictor of

labor productivity, and Tables 6 and 7 present the results for the model with observed innovation
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Table 4: FIML estimates of the model with latent innovation propensity to explain productivity:
Unbalanced panel data samples from Dutch and French CIS 2, CIS 8 and CIS 4*

Variable Slope (Std. Err.) Slope (Std. Err.)
France The Netherlands
Innovation occurrence
Innovation occurrence;_ 1 0.0707 (0.042) 0.020 (0.068)
Innovation occurrenceq,, 3 waves 0.066 (0.045) 0.276** (0.075)
Innovation occurrence,, 2 waves 0.133** (0.026) 0.286** (0.045)
(Sales/employee);_1, in log 0.000 (0.006) 0.004 (0.010)
(R&D/employee);_1, in log 0.010 (0.011) 0.069** (0.018)
(Dnon-continuous R&D)t—1 -0.208"* (0.027) -0.233™* (0.037)
Size class
D employees<50 -0.184** (0.051) -0.108 (0.067)
D50<# employees<250 -0.131** (0.036) -0.019 (0.057)
D250<# employees<500 -0.037 (0.030) 0-121T (0.072)
Market share;_1, in log 0.029** (0.009) 0.031** (0.011)
Share of innovative sales, in logit
Share of innov. sales;_1, in logit ~ 0.110* (0.050) 0.043 (0.044)
Share of innov. salesq,, 3 waves 0.064 (0.046) 0.132** (0.040)
Share of innov. salesg,, 2 waves 0.185** (0.027) 0.174** (0.030)
(Sales/employee)¢_1, in log 0.002 (0.034) 0.009 (0.029)
(R&D /employee); 1, in log 0.069" (0.035) 0.125** (0.034)
(Dnon-continuous R&D)t—1 -0.326™" (0.010) -0.252™* (0.041)
Size class
Dy employees<50 0.329 (0.247) 0.303 (0.231)
D50<# employees<250 0.122 (0.164) 0.116 (0.189)
D250<# employees<500 0.255 (0.250) 0.160 (0.233)
Market share;_1, in log 0.058™* (0.001) 0.046™ (0.021)
Labor productivity: sales/employee, in log
(Sales/employee); 1, in log 0.531%* (0.056) 0.319%* (0.066)
(Sales/employee)q, , 3 waves 0.336** (0.056) 0.282** (0.066)
(Sales/employee)q, , 2 waves 0.856** (0.012) 0.584** (0.024)
Latent innovation propensity 0.074** (0.020) 0.121** (0.029)
(Investment /employee)y, in log 0.065** (0.006) 0.119** (0.012)
Employmenty, in log -0.027** (0.008) -0.082** (0.018)

Covariance matrix

Individual effects

Oay 0.259" (0.148) 0.470™* (0.138)
Oay 0.745™* (0.179) 0.680™* (0.193)
Oas 0.096** (0.025) 0.160** (0.060)
Pasas 0.514** (0.152) 0.540** (0.145)
Paras -0.090 (0.408) -0.221 (0.336)
Pasas 0.158 (0.279) 0.064 (0.331)
Idiosyncratic errors
Oc, 2.469™* (0.076) 1.780** (0.096)
Ocq 0.313** (0.009) 0.587** (0.019)
Peicy 0.99, fixed after grid search 0.95, fixed after grid search
Peyes -0.206™* (0.071) -0.237"* (0.067)
p.... -0.208"* (0.070) -0.229"* (0.061)
# observations 2505 1639
Log-likelihood -5048.917 -3920.898

I Three dummies of category of industry, a time dummy and an intercept are included in each equation.
Significance levels :  {: 10%  *: 5%  *x: 1%

as a predictor of labor productivity.'?

15In Tables 4-7, for each wave, the time subscript ¢ pertains to the last year of the wave period for quantitative
variables (e.g. share of innovative sales, R&D intensity, number of employees) and to the whole wave period for
binary variables (e.g. innovation occurrence). Yearly observations are unfortunately not available.
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Table 5: FIML estimates of the model with latent innovation intensity to explain productivity: Unbalanced
panel data samples from Dutch and French CIS 2, CIS 8 and CIS 4*

Variable Slope (Std. Err.) Slope (Std. Err.)
France The Netherlands
Innovation occurrence;
Innovation occurrence;_1 0.059 (0.038) 0.011 (0.070)
Innovation occurrenceq,, 3 waves 0.067" (0.040) 0.293** (0.077)
Innovation occurrencep,, 2 waves  0.134™* (0.025) 0.285** (0.046)
(Sales/employee);_1, in log 0.001 (0.007) 0.003 (0.010)
(R&D /employee);_1, in log 0.009 (0.011) 0.069** (0.018)
(Dnon-continuous R&D)t—1 -0.213** (0.027) -0.241™* (0.038)
Size class
D employees<50 -0.198™* (0.049) -0.1291 (0.069)
Dso<# employees<250 -0.138** (0.035) -0.040 (0.059)
D250<# employees<500 -0.043 (0.030) 0.089 (0.074)
Market share;_1, in log 0.027** (0.009) 0.028* (0.012)
Share of innovative salest, in logit
Share of innov. sales;_1, in logit ~ 0.138** (0.048) 0.055 (0.043)
Share of innov. salesg,, 3 waves 0.044 (0.043) 0.113** (0.040)
Share of innov. salesg,, 2 waves 0.191** (0.026) 0.169** (0.030)
(Sales/employee);_1, in log 0.002 (0.038) -0.001 (0.039)
(R&D /employee);_1, in log 0.067" (0.035) 0.129** (0.032)
(Dnon-continuous R&D)t—1 -0.230"* (0.009) -0.249"* (0.042)
Size class
D employees<50 0.546 (0.520) 0.436 (0.333)
D50<# employees<250 0.142 (0.149) 0.275 (0.192)
D250<# employees<500 0.263 (0.255) 0.088 (0.232)
Market share; 1, in log 0.079** (0.005) 0.048* (0.023)
Labor productivity: sales/employee, in log
(Sales/employee); 1, in log 0.527** (0.056) 0.320** (0.066)
(Sales/employee)p, , 3 waves 0.337%* (0.056) 0.282** (0.066)
(Sales/employee)g, , 2 waves 0.852** (0.012) 0.583** (0.024)
Latent share of innovative sales 0.049™* (0.011) 0.099** (0.026)
(Investment/employee)¢, in log 0.065™* (0.006) 0.120™* (0.012)
Employmenty, in log -0.025™* (0.008) -0.070** (0.017)
Covariance matrix
Individual effects
Oay 0.322"* (0.092) 0.492™* (0.134)
Oas 0.673** (0.190) 0.642** (0.213)
Oasy 0.095** (0.026) 0.158** (0.060)
Payas 0.546** (0.128) 0.544** (0.146)
Paras -0.094 (0.315) -0.121 (0.350)
Pasas -0.108 (0.302) -0.151 (0.362)
Idiosyncratic errors
Ocy 2.481** (0.075) 1.791%* (0.098)
Ocy 0.320** (0.011) 0.596** (0.021)
Peiey 0.99, fixed after grid search 0.95, fixed after grid search
Peyes -0.298* (0.077) -0.266™* (0.074)
Peyes -0.301"* (0.075) -0.288"* (0.073)
# observations 2505 1639
Log-likelihood -5045.613 -3922.326

I Three dummies of category of industry, a time dummy and an intercept are included in each equation.
Significance levels :  : 10%  *: 5%  #x: 1%
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Table 6: FIML estimates of the model with observed innovation indicator to explain productivity:
Unbalanced panel data samples from Dutch and French CIS 2, CIS 8 and CIS 4*

Variable Slope (Std. Err.) Slope (Std. Err.)
France The Netherlands
Innovation occurrence;
Innovation occurrence;_1 0.057 (0.041) 0.004 (0.072)
Innovation occurrenceq,, 3 waves 0.073 (0.046) 0.304** (0.079)
Innovation occurrenceq,, 2 waves 0.134** (0.026) 0.292** (0.046)
(Sales/employee)¢_1, in log 0.001 (0.007) 0.004 (0.010)
(R&D/employee);—1, in log 0.011 (0.012) 0.070** (0.019)
(Dnon-continuous R&D)t—1 -0.222%* (0.027) -0.246** (0.038)
Size class
D employees<50 -0.227** (0.050) -0.128" (0.069)
D5o<# employees<250 -0.142** (0.038) -0.045 (0.059)
D250<# employees<500 -0.041 (0.031) 0.079 (0.075)
Market share;—1, in log 0.021* (0.010) 0.027* (0.012)
Share of innovative salest, in logit
Share of innov. sales;_1, in logit ~ 0.110* (0.049) 0.036 (0.044)
Share of innov. salesg,, 3 waves 0.060 (0.045) 0.141** (0.040)
Share of innov. salesg,, 2 waves 0.181%* (0.027) 0.173** (0.030)
(Sales/employee);_1, in log 0.002 (0.037) 0.001 (0.029)
(R&D/employee);_1, in log 0.068" (0.035) 0.126** (0.031)
(Dnon-continuous R&D)t—1 -0.314* (0.011) -0.254™* (0.043)
Size class
D employees<50 0.319 (0.227) 0.309 (0.235)
D50<# employees<250 0.157 (0.161) 0.123 (0.192)
D250<# employees<500 0.259 (0.224) -0.139 (0.233)
Market share; 1, in log 0.056™ (0.022) 0.040f (0.021)
Labor productivity: sales/employee, in log
(Sales/employee); 1, in log 0.532** (0.056) 0.330** (0.066)
(Sales/employee)p, , 3 waves 0.341%* (0.056) 0.282** (0.066)
(Sales/employee)g, , 2 waves 0.861** (0.012) 0.594** (0.023)
Observed innovation indicator 0.056 (0.042) 0.197** (0.059)
(Investment/employee)¢, in log 0.065™* (0.006) 0.121** (0.012)
Employmenty, in log -0.012 (0.007) -0.064** (0.016)
Covariance matrix
Individual effects
Oay 0.284 (0.177) 0.492™* (0.143)
Oas 0.757** (0.150) 0.710** (0.185)
Oasy 0.094** (0.025) 0.154** (0.058)
Pasas 0.535™* (0.170) 0.527** (0.148)
Paras 0.242 (0.362) 0.055 (0.365)
Pasas 0.271 (0.314) 0.224 (0.329)
Idiosyncratic errors
o 2.463** (0.083) 1.758** (0.096)
Ocy 0.308™* (0.008) 0.580** (0.018)
Peiey 0.99, fixed after grid search 0.95, fixed after grid search
Peyes -0.071 (0.114) -0.223** (0.072)
Peyes -0.024 (0.043) -0.128* (0.052)
# observations 2505 1639
Log-likelihood -5054.238 -3925.706

I Three dummies of category of industry, a time dummy and an intercept are included in each equation.
Significance levels :  : 10%  *: 5%  #x: 1%
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Table 7: FIML estimates of the model with observed innovation intensity to explain productivity:
Unbalanced panel data samples from Dutch and French CIS 2, CIS 8 and CIS 4*

Variable Slope (Std. Err.) Slope (Std. Err.)
France The Netherlands
Innovation occurrencey
Innovation occurrence;_1 0.095** (0.034) 0.006 (0.070)
Innovation occurrenceq,, 3 waves 0.044 (0.035) 0.302** (0.077)
Innovation occurrenceq,, 2 waves 0.133** (0.024) 0.292** (0.046)
(Sales/employee)¢_1, in log 0.000 (0.006) 0.003 (0.010)
(R&D/employee);—1, in log 0.008 (0.010) 0.070** (0.019)
(Dnon—continuous R&D)t—l -0.169™* (0-025) -0.241** (0-038)
Size class
D employees<50 -0.200** (0.045) -0.127" (0.069)
D50<# employees<250 -0.138** (0.032) -0.041 (0.059)
D250<# employees<500 '0~050T (0.069) 0.087 (0.074)
Market share;_1, in log 0.027** (0.021) 0.028* (0.011)
Share of innovative sales, in logit
Share of innov. sales;_1, in logit 0.139™* (0.041) 0.044 (0.044)
Share of innov. salesg,, 3 waves 0.030 (0.036) 0.130** (0.040)
Share of innov. salesg,, 2 waves 0.177** (0.026) 0.172** (0.030)
(Sales/employee);_1, in log 0.003 (0.034) -0.009 (0.039)
(R&D/employee);_1, in log 0.049" (0.025) 0.130** (0.032)
(Dnon-continuous R&D)t—1 -0.199™* (0.009) -0.250"* (0.041)
Size class
Dyt employees<50 0.492 (0.405) 0.363 (0.234)
D50<# employees<250 0.095 (0.135) 0.177 (0.191)
D250<# employees<500 0.177 (0.112) -0.052 (0.233)
Market share; 1, in log 0.096** (0.036) 0.047* (0.023)
Labor productivity;: sales/employee, in log
(Sales/employee); 1, in log 0.420** (0.054) 0.324** (0.067)
(Sales/employee)p, , 3 waves 0.427** (0.053) 0.285** (0.067)
(Sales/employee)g, , 2 waves 0.836** (0.012) 0.590** (0.023)
Observed share of innovative salesg 0.122** (0.010) 0.054** (0.014)
(Investment /employee)¢, in log 0.066™* (0.006) 0.120** (0.012)
Employmenty, in log -0.037** (0.007) -0.071** (0.017)

Covariance matrix

Individual effects

Oa, 0.154 (0.106) 0.494** (0.132)
Oas 0.511** (0.140) 0.649** (0.207)
Oasy 0.133** (0.019) 0.157** (0.060)
Pasas 0.557** (0.124) 0.550** (0.139)
Paras 0.011 (0.230) -0.002 (0.361)
Pasas 0.117 (0.195) 0.120 (0.382)
Idiosyncratic errors
o 2.459** (0.065) 1.795** (0.098)
Ocy 0.357** (0.012) 0.586™* (0.019)
Peiey 0.99, fixed after grid search 0.95, fixed after grid search
Peyes -0.570** (0.042) -0.274** (0.076)
Peyes -0.691** (0.038) -0.259** (0.069)
# observations 2505 1639
Log-likelihood -5021.290 -3923.897

I Three dummies of category of industry, a time dummy and an intercept are included in each equation.
Significance levels :  : 10%  *: 5%  #x: 1%
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5.1 Determinants of innovation and productivity

It is first of all remarkable and comforting to notice that the results are quite consistent and robust
across specifications. We shall return to this finding in the next subsection. For now, let us take
advantage of it by commenting jointly on the results from the four specifications.

Tables 4 to 7 show that large firms are more likely to be product innovators in France while no
such evidence is found for Dutch manufacturing.'® Size does not significantly affect the innovation
intensities among innovators, a typical result mentioned in Mairesse and Mohnen (2010). A dou-
bling of the very low average market share from 1.5% to 3% is associated to a 3 percentage point
higher propensity to innovate in products and a 4 to 10 percent higher share in total sales due to
new products.”

Overall we find evidence of a lagged impact of R&D on innovation. Both in France and in The
Netherlands, enterprises that declare undertaking R&D continuously during the previous two to
four years are more likely to be product innovators and attain a larger share of innovative sales.
The effect of a higher intensity of R&D on present innovation is stronger and more significant in
The Netherlands than in France. The estimates show that Dutch firms with a 1% higher R&D
intensity four years earlier show a 7% higher probability of being a product innovator today, and a
0.13% higher share of innovative sales. The estimates are lower for France where a 1% increase in
R&D intensity four years earlier does not significantly affect the probability to innovate, although
it corresponds to an increase in the share of innovative sales of about 0.7% (and significant at the
10% level).!8

The estimated output elasticities of labor and physical capital are all statistically significant and
their orders of magnitude are not unreasonable. The coefficient of the log of employment reveals
that the scale elasticity is around 0.97 in France and around 0.93 in The Netherlands, pointing to
slightly decreasing returns to scale. If we subtract the estimated capital elasticity (0.065 for France
and 0.120 for The Netherlands) and assume an output elasticity of materials of 0.5, we obtain

an output elasticity of labor of around 0.40 in France and 0.31 in The Netherlands.?°

16Since the reference size category consists of firms with more than 500 employees, the negative signs for the other
categories indicate a positive size effect.

17The marginal effects on the probability of the average firm to become a product innovator, reported in Tables
4-7, are obtained in the usual way, (see Greene, 2011, page 689). Similarly, the marginal effects in the equation of
the share of innovative sales are given by derivating F(y2it|y1st = 1). The expression of this conditional expectation
is given in Greene (2011, page 873).

18To have a better appreciation of the time span between R&D investment and innovation success, we would of
course need a longer and yearly panel allowing us to estimate a distributed lag model, along the lines for example
of Pakes and Griliches (1980) and Hall et al. (1986) as regards R&D and patents.

19 Assuming that materials account for half of the value of output growth and are priced at their marginal
productivity, we approximate the output elasticity of materials at 0.5. Unfortunately, we do not have data on
materials to estimate their output elasticity.

201f the capital stock follows the perpetual inventory formula and its growth rate (g9) is constant over time, then
it can be shown that log(I;) = log[l — (1 —6)/(1+ g)] + log(K¢). The estimated investment elasticity would then
not be very different from the estimated capital stock elasticity.
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5.2 The effects of innovation output on labor productivity

Table 8 compares the four sets of elasticities and semi-elasticities of labor productivity with respect
to innovation from Tables 4 to 7, testing on the one hand their equality in the two countries for each
specification, and on the other hand the equivalence of the latent and observed model specifications.
To be more precise we test whether the models with latent and observed innovation output in the
labor productivity equation are equally close to the ‘true’ unknown model. All these elasticities are
positive and highly statistically significant except in the case of the observed innovation indicator
for France.

To be more precise we can make the following remarks. Firstly, these estimates are statisti-
cally different in the two countries only in the specification with observed innovation. A product
innovator has on average a 20% higher labor productivity than a non-innovator in Dutch man-
ufacturing and a 6% higher labor productivity in French manufacturing. By contrast, in French
manufacturing a 1% increase in the share of innovative sales raises labor productivity on average
by 0.12%, compared to 0.05% in Dutch manufacturing. Labor productivity is more responsive to
increases in product innovation in French than in Dutch manufacturing enterprises.

Secondly, using Vuong’s (1989) LR test for non-nested hypotheses, we conclude that the models,
with respectively latent and observed innovation output in the labor productivity equation, are
equally close to the ‘true’ unknown model. This result contrasts with that for France by Duguet
(2006) who used a similar test by Davidson and MacKinnon (1981) to conclude that observed
innovation is a better predictor of TFP growth than latent innovation. A likely reason for the
difference may be that the two-step estimation procedure used by Duguet (2006) ignores the
correlation between the errors in the innovation and productivity equations. In our case, there may
be little difference between the latent and observed innovation output specification because the
modeling of the endogeneity of innovation on the basis of a latent variable is in any case contained
in the combined likelihood function, whether we use latent or observed innovation indicators in
the productivity equation. As for the similarity in the results when using a dichotomous or a
continuous measure of innovation, the explanation could reside in the fact that, with the exception
of the lagged dependent variables and the initial values, we use the same explanatory variables
in both equations. However, in the absence of a full-fledged theoretical model, there is no reason
why these explanatory variables should be different as identification of the parameters is already
guaranteed by the inclusion of the lagged dependent variables and the initial conditions that are

different in both equations.?!

21Ls6f (2005) proposes a set of variables that can potentially be used to explain differently the occurrence of
product innovation and the innovation intensity. These variables, however, are not available in all three waves of the
data for both countries (e.g. human capital, location of main customers) or are only available for innovative firms
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We corroborate the finding of Mairesse et al. (2005) that the estimates of innovation output
in the productivity equation are significant only when the endogeneity of innovation is properly
taken into account. For instance, when innovation is treated as exogenous in the productivity
equation, the semi-elasticity of labor productivity with respect to innovation occurrence drops
from 20% to 4% and becomes statistically insignificant in Dutch manufacturing, and the elasticity
of labor productivity with respect to the observed share of innovative sales decreases from 0.12% to
0.01% in French manufacturing (results not tabulated but available upon request). In our analysis,
the endogeneity of innovation output in the labor productivity equation operates in both types
of models largely through the covariance matrices of the individual effects and the idiosyncratic
being in

errors. The correlations between innovation output and labor productivity, p and p

£1€3 egeg’?
general statistically significant, the null hypothesis of exogeneity of the innovation output regressor
in the labor productivity equation is clearly rejected at any conventional significance level using a
Wald or an LR test.

Table 8: Labor productivity elasticities and semi-elasticities of innovation outputt

I) Measures of innovation output France The Netherlands Test of equality

Slope (Std. Err.) Slope (Std. Err.) || p-value

Latent innovation to explain labor productivity
1) Latent innovation propensity 0.074** (0.020) 0.121** (0.029) 1.316 0.188
2) Latent share of innov. sales 0.049** (0.011) 0.099** (0.026) 1.800 0.072
Observed innovation to explain labor productivity
1) Observed innovation indicator  0.056 (0.042) 0.197** (0.059) 1.956* 0.050
2) Observed share of innov. sales  0.122** (0.010) 0.054** (0.014) 3.993** 0.000
IT) Vuong’s LR test France The Netherlands
|z p-value 12| p-value

Latent 1) vs observed 1) 1.252 0.211 1.391 0.164
Latent 2) vs observed 2) 0.838 0.402 0.323 0.746

I) The z-statistic is computed as the ratio of the difference of the elasticities across countries, assuming inde-
pendence between them, over the standard error of that difference. IT) The non-nested null hypothesis of the
test is Ho: both models are as close to the ‘true’ model. The resulting z-statistic is computed as z=[Inl; —Inl>
—In obs(k1—kg)/2]/[obs><var(lnllf;—lnlgf;)]%, where obs is the number of observations, k; (j=1,2) the number of

parameters and var() is the sample variance of the difference in the pointwise log-likelihoods of both models.

Significance levels : «: 5% w0 1%.

5.3 Covariance matrix of residuals

In order to capture enterprises’ unobserved ability to be innovative and productive we account for
individual effects in each equation of the model. Likelihood ratio (LR) tests reject the absence of
individual effects at the 1% level of significance.?? The standard error for the individual effects

explains at least one quarter of the total standard error in each equation. The correlation between

(e.g. partnership in innovation activities).
220 save space, the results of the LR tests are not reported but can be obtained upon request.
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the unobserved individual effects in the innovation propensity and the innovation intensity equa-
tions is positive and rather high (around 0.5) as expected. Similar omitted variables explain the
occurrence and the intensity of product innovation. The correlations between the idiosyncratic
effects in the two equations after accounting for dynamics, common determinants and individual
effects are so high that we have difficulties to estimate them precisely and are forced to fix their
values at 0.99 for France and 0.95 for the Netherlands to avoid convergence problems in the iter-
ative search for a maximum likelihood. There is no significant correlation between the individual
effects in the productivity and the innovation equations. Instead, we observe a negative and statis-
tically significant correlation, in both countries and in all specifications, between the idiosyncratic
error terms in the innovation and the labor productivity equations. This phenomenon could be
explained by a missing adjustment cost term: in order to innovate, enterprises may need to increase
their personnel, which in the short run may lead to a decrease in labor productivity because of

adjustment costs and time to learn.

5.4 The dynamics of innovation and productivity

Let us now turn to the central issues of the paper, namely the persistence of innovation and labor

productivity and the direction of causality between innovation and productivity.
Persistence in innovation

In order to assess whether there is true persistence in innovation, as defined in the econometric
literature on panel data, it is important to control for individual effects and initial conditions (Hsiao,
2003). In our case, given that our panels are unbalanced with two or three consecutive observations
by firm, we have an additional difficulty of disentangling the effect of the lagged dependent variable
and of the initial conditions. Indeed, the initial values of the dependent variable on which we must
project the individual effects correspond to a two-period lag for enterprises that are present in
all three periods but to a one period lag for those that are present in only two adjacent periods.
For the latter, the lagged dependent variable is the same as the initial value and therefore the
associated coefficient picks up the sum of the two effects. Without imposing this constraint, we
notice that, as expected, the slope of the initial value for the 2-wave unbalanced panel is practically
equal to the sum of the initial value for the 3-wave balanced panel and the one period lagged effect.

As can be seen in Tables 4 to 7, our results show no evidence of true persistence in product
innovation in Dutch manufacturing neither for the occurrence nor for the intensity of innovation.
In other words, once individual effects and the occurrence and the intensity of innovation in the

initial period are controlled for, achieving successful innovations and generating innovative sales
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are no longer time dependent in Dutch manufacturing. In contrast, in French manufacturing there
is some evidence in support of the ‘success breeds success’ hypothesis. Nevertheless, the evidence
remains weak as the one-period lagged innovation has less of an effect than innovation in the initial
period. By way of comparison, Raymond et al. (2010) found evidence of true innovation persistence
in Dutch manufacturing but over a different time span and only for enterprises operating in high-
technology sectors. True persistence in the occurrence of product or process innovation was found
by Peters (2009) for German manufacturing and service firms and by Huergo and Moreno (2011)
for Spanish manufacturing firms. The last two studies, however, only use binary variables on
innovation. The major difference between these specifications and the present one is that none of
the previous specifications estimates the innovation and the productivity equations simultaneously

with a contemporaneous correlation between the corresponding error terms.

Persistence in productivity

For both countries we find very strong evidence of true persistence in labor productivity in
all specifications. Even after controlling for individual effects and initial productivity, one period
lagged productivity conditions current productivity. The fact that highly productive firms tend to
remain productive and less productive firms remain less productive is normally taken up by the
initial condition characterizing the individual effect. The lagged productivity term could reflect
the influence of a slowly decreasing stock of knowledge, which is not explicitly modeled but shows
up in the persistence of productivity (see Klette, 1996; Klette and Johansen, 1998; Lokshin et al.,
2008). Part of the persistence of productivity could also reflect persistence in firm market power
given that we have to rely on a revenue measure of productivity in the absence of firm level price
information to deflate gross output. The differences of persistence in innovation and productivity
could also be due to errors of specification in our models, such as large random errors in the
innovation measures or important missing factors in the productivity equation, for example skills,

management practices and organizational characteristics.

Causality

In both countries, there is clear evidence of a unidirectional causality running from innova-
tion to labor productivity during the period that we examine. In other words, four-year lagged
R&D has a positive and significant effect on current innovation output which is positively and
significantly affected by past innovation output and has a positive and significant effect on labor
productivity. We also estimate variants of the CDM model where labor productivity (egs. (2.5a)-

(2.5b)) is explained by innovation output in period ¢ and R&D intensity in period ¢t — 1. While
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innovation output is significant in all specifications, the direct effect of R&D on labor productivity
is insignificant.?® In contrast, the lagged feedback effect of labor productivity on innovation is not
economically nor statistically significant. This result suggests that the most productive enterprises
at period t — 1 do not necessarily invest more in R&D at period .24 This finding of unidirectional
causality seems to be new in the empirical literature. It is robust across the four specifications and
for the two countries.

Furthermore, as can be seen from the estimates documented in Appendix D, enterprises that
were four years earlier closer to the technological frontier, defined in terms of labor productivity,
are not more successful in achieving innovations nor in attaining a larger share of innovative sales.
This result confirms the absence of a feedback effect of labor productivity, more precisely efficiency,

on innovation.
Robustness analysis

Table 9 presents the estimation results for the model with latent innovation propensity as a
predictor of labor productivity and radical innovation (i.e. product new the market) as a measure
of innovation output. Our results on the persistence of innovation and labor productivity and the

direction of causality between innovation and productivity are confirmed in this specification.?

6 Conclusion

We have in this study examined whether French and Dutch manufacturing firms display persistence
in innovation and productivity, whether innovation Granger causes productivity or whether the
reverse holds, whether the dynamics in the R&D-innovation-productivity relationship differs be-
tween French and Dutch manufacturing firms, and finally whether models with observed or latent,
qualitative or quantitative, innovation indicators yield different estimation results. To do so, we
have used unbalanced panels of French and Dutch manufacturing firms resulting from three waves
of the respective Community Innovation Surveys. With few exceptions, the results we obtain are
not very different for the two countries and are robust to various specifications of the innovation-

productivity relationship. As in many related studies based on cross-sectional firm data, we find

23The estimation results of these variants are not reported but can be obtained upon request. We thank an
anonymous referee for pointing this out.

24Estimation results from regressions explaining R&D at period t by productivity at period ¢t — 1 are not reported
but can be obtained upon request.

25To save space, we do not report the estimation results for the model with radical innovation as a measure of
innovation output and latent innovation intensity and observed innovation (indicator and intensity) as predictors of
labor productivity. The results are similar to those of Table 9 and available upon request.

Some studies consider process innovation, product innovation or a combination to explain labor productivities.
They usually face identification problems as product and process innovation are highly correlated (see for instance
Hall et al., 2013).
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Table 9: FIML estimates of the model with radical product innovation and latent innovation propensity to
explain productivity: Unbalanced panel data samples from Dutch and French CIS 2, CIS 8 and CIS 4*

Variable Slope (Std. Err.) Slope (Std. Err.)
France The Netherlands
Radical innovation occurrencet
Radical innovation occurrences—1 0.048 (0.033) 0.026 (0.058)
Radical innovation occurrenceg,, 3 waves ~ 0.101"* (0.033) 0.180** (0.055)
Radical innovation occurrencep,, 2 waves ~ 0.105™* (0.029) 0.216** (0.037)
(Sales/employee);_1, in log 0.002 (0.006) 0.003 (0.007)
(R&D/employee);_1, in log 0.031** (0.010) 0.070** (0.014)
(Dnon-continuous R&D)t—1 -0.179™* (0.025) -0.141%* (0.027)
Size class
D employees<50 -0.155** (0.050) 0.030 (0.057)
D50<# employees<250 -0.113** (0.034) 0.040 (0.048)
D250<# employees<500 -0.043 (0.029) 0.153** (0.058)
Market share;_1, in log 0.037** (0.009) 0.041** (0.010)
Share of innovative salesg(radical innovation), in logit
Share of innov. sales;_1, in logit 0.069 (0.045) 0.028 (0.058)
Share of innov. salesg,, 3 waves 0.176** (0.048) 0.164** (0.051)
Share of innov. salesq,, 2 waves 0.246™* (0.043) 0.199** (0.037)
(Sales/employee);_1, in log 0.022 (0.046) -0.456 (0.057)
(R&D/employee);—1, in log 0.044" (0.023) 0.060* (0.030)
(Dnon-continuous R&D)tfl -0.141% (0-049) -0.080™ (0'039)
Size class
D employees<50 0.430 (0.248) 0.315 (0.258)
D50<# employees<250 0.057 (0.138) 0.233 (0.209)
D250<# employees<500 0.160 (0.111) -0.377 (0.252)
Market share;_1, in log 0.246™* (0.044) 0.199** (0.037)
Labor productivity;: sales/employee, in log
(Sales/employee); 1, in log 0.606™* (0.041) 0.312%* (0.067)
(Sales/employee)g, , 3 waves 0.261** (0.042) 0.280** (0.067)
(Sales/employee)q,, 2 waves 0.858™* (0.012) 0.573%* (0.024)
Latent innovation propensity 0.064** (0.020) 0.180** (0.038)
(Investment/employee);, in log 0.064** (0.006) 0.118"* (0.012)
Employmenty, in log -0.023** (0.008) -0.088** (0.018)

Covariance matrix

Individual effects

Oay 0.176 (0.151) 0.387" (0.193)
Oay 0.764** (0.200) 0.699* (0.270)
Oasq 0.114** (0.020) 0.178** (0.057)
Payas 0.304** (0.155) 0.331% (0.148)
Payas -0.061 (0.357) -0.155 (0.335)
Pasas 0.113 (0.253) -0.069 (0.448)
Idiosyncratic errors
Oc,y 1.817** (0.068) 1.638"* (0.145)
Ocq 0.325 (0.006) 0.597** (0.022)
Peycy 0.99, fixed after grid search 0.95, fixed after grid search
Peyes -0.177"* (0.071) -0.292** (0.075)
Preyes -0.162** (0.071) -0.287* (0.079)
# observations 2505 1639
Log-likelihood -3923.032 -3267.536

I Three dummies of category of industry, a time dummy and an intercept are included in each equation.
Significance levels :  : 10%  *: 5%  #*x: 1%

that R&D activities undertaken continuously during the previous two to four years, and the inten-

sity of such activities, affect significantly the occurrence and the intensity of product innovations.
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We find weak, if any, evidence of persistence in product innovation, but strong evidence of persis-
tence in labor productivity levels. Both the occurrence and the intensity of product innovation play
an important role in enhancing firm labor productivity. Past productivity does not, however, affect
product innovation significantly. Thus, our results provide evidence of a unidirectional causality
running from innovation to productivity, without a feedback effect, and of a strong persistence
in productivity but not in innovation. Our results are robust to different ways of modeling and
estimating and hold for both countries.

In order to assess the generality of the result, it would be interesting to estimate the same
model on more country data and longer periods, which will become possible with additional waves
of innovation surveys in many countries. With the decision, at least in the European Union, to
hold innovation surveys every two years, it would be worthwhile in the future to re-estimate this
model with shorter lags (two years instead of four) and see whether the conclusions regarding the
dynamics of innovation still hold. Productivity increases could also be due to process innovation.
The introduction of process (and possibly other forms of) innovation would require one or more

additional equations, a challenging but not impossible task.
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Appendix A Numerical evaluation of the likelihood of the
model with yj,, or y;;; as a predictor of labor
productivity

After obtaining the conditional likelihood functions shown in equations (3.13) and (3.14), the next
step consists in deriving the unconditional counterparts to l3;q, and ly;)q,, which are obtained by

integrating out respectively a; and a; with respect to their normal distribution. Formally,

N
ll = H/ / / lli|ﬂh3(a1i, agi,@|...)da“da2id@, (Al)
i=1Ya1i Y a2i v a3i

and
N
lg = H/ / / lgi|aih3(a1i,a2i, a3i|...)da1ida2ida3i. (AZ)
i=1Ya1i Y a2i Jaszq

Evidently, I3 and Iy cannot be derived analytically. Hence, we use Gauss-Hermite quadrature
sequentially, along the lines of Raymond (2007), to evaluate the triple integrals.?® The Gauss-

Hermite quadrature states that

M

/oo e f()dr = 3w f(am), (A.3)

—o0 m=1
where w,, and a,, are respectively the weights and abscissae of the quadrature with M being the
total number of integration points.2” Numerical tables with values of w,, and a,, are formulated
in mathematical textbooks (Abramowitz and Stegun, 1964). The larger M, the more accurate the
approximation.

The trivariate normal density function of the structural form projection errors, ay;, as; and as;,

denoted by hs(a1;, ag;, as;|...), is written as

2 2 2
LAy 2y op 21i 921 ygp 5 210 981 49Ny, 220 A3i 4 A 9% 4 A “311)’
hs(a1i, azi, asil...) =Te ” < Hody 1T ey Tay TERTay Tag T Tay Tay TR, TS T, (A.4)
where
— =3 =L
T = (00,04,00,) " (27)2 (A)7 (A.5)

26The use of this numerical method is well documented in the econometric literature in the context of panel data
single-equation models (see e.g. Butler and Moffitt, 1982; Rabe-Hesketh et al., 2005). However, its use in the context
of panel data models with multiple equations remains to date limited. A few exceptions are Raymond (2007, chapter
3) who studies the performance of the method in two types of dynamic sample selection models, and Raymond et al.
(2010) who apply the method to estimate the persistence of innovation incidence and innovation intensity.

27The abscissae of the quadrature, a,,, should not be confused with the projections errors ay;, az; and as;.
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and the expressions of A and Ay (k,l =1,2,3; Ay = Aix) are given by

A=1- p31a2 - p?uaa - pgzaa + 2pa1a2pa1a3pa2a37

2
All = ! _£a2a37 A12 = pa1a3p0«2£3_pa1az,
1- P2 PaiazParasz P
A — & A 1a2 1a3 a2a3 A.6
22 A 23 = A ) ( )
1- p2 PaiaszPasas —P,
A — ayaz A — 142 20a3 aijas )
33 A ) 13 A

The trivariate density expression of the reduced-form projection errors is written straightforwardly
by replacing asi, 0as, Pajas a0d Payas by their underlined counterparts to obtain the expressions
of A and Ap (Aw = Aw)-

Let us rewrite I; (eq. (A.1)) as

T.
v it A 7 A 3
l1 = H Gl a3z ) H 7¢ <y3 i sit 1At ) Hl(a31| )d&, (A7)

o
i=1793i t=0,4+1 23 ZEs

where Gi(as,|...) and Hj(as,|...) are functions of the sole projection error as;. G1(as;)...) is derived

o . . . S (Ass a2, 02
from the trivariate density of the reduced-form projection errors and is equal to e * (ﬁafg‘ U&)

with Ay obtained from equation (A.6), and Hq(as;|...) is given by

T; —
2 2z
Hl(%|) :/ G2 CL2“(137| H |: ( p5253) :|
azi t=0,;+1
P 392
Y2it — Asir —a %( Y3it — Asu - ’YlAm ﬂ)
qf)l Hg(a2i,@|...)da2i.
o 1— p?
€2 p5253

(A.8)

G2(agi, asi...) is also derived from the trivariate density of the reduced-form projection errors. It

Agzal,o a2) Aszazio,, 0310

is equal to e 2 *(Azz , and Hs(ag;, asi|...) is written as

1-y14¢
-1 i
T —Avg—ari—p.,., 0z, (Ysie—Asi—71 41 —a3:)
2(a2i, asq|. Gs (@14, a2q, asql...) H ®q =

t=0;+1 1= Peies

Y1it

Avit + ani + p12,30521 (y2it — A2t — a2i) + Pis.2 0531 (ysit — Asit —y1 A1t — asi)

B Ji-R’,

dali,
(A.9)

—1
- (Anah Ta; ) Aiza1,0,. amU 2—/\13!1110 asm

with G3(ai;, az;, asil...) being equal to e . The sequen-

tial quadrature approach consists in approximating the single integral in equation (A.9) using the
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formula of equation (A.3) after making an appropriate variable change. Then, Ha(ag;, asil...) is
replaced by the resulting approximated expression into equation (A.8). A second approximation
is carried out for the single integral of equation (A.8) using the same formula. We then plug the
resulting expression of Hi(as,|...) into equation (A.7) and apply again the quadrature formula.

The final expression of the unconditional likelihood, [1, is then written as

N =3 Tl o ys3it — Asit — V1 A1t — @
- 2 2 2 it T it T 1t — Um,
ll:Héﬂ— 2 |:(1_pa1a2)(1_pa1a3)(1_pa1a2 ] Z’wm3 H 7(25 ( 3 )

. 0'
i=1 m3z=1 t=0;4+1—2

p5253 €2

M, —2Ag30myamg Ty [ 1 Y2it —A2it — Qmy [ . ]

Y1it
A —~ (ySZt - A3zt - 'YlAlzt - amg )
Zw"u e 22 A3 ¢1

11 — =
mo=1 t= 0i+1l052 1 p5253 5253

—2am, <am2A12 am3A13> T 1 1—y14¢

Zwmle A na H (I'l e 1[ ] piﬁ Ui(y‘?’ t 3it— Y1 A1t — @ 3[ ])
mi—=1 t=0,+1 \/1 - p§153

Avit + am, [...] + p12_3U;21 (y2it—Azit— amy [.-]) + Piso U;g,l(ySit — Aszit =71 Avit— amg]...])
1 )

1— R?

1.23

d>

Y1it

where Wy, , am, and My (k = 1,2,3) are respectively the weights, abscissae and total number

amko'ak\/5
VA

the structural parameters of the model where yj,, enters the APF are obtained by maximizing

of points of the quadrature in each stage, and ap,[...] = The FIML estimates of
Inl; subject to the constraints defined in equations (3.7a)-(3.7c).

The evaluation of [ is done in a similar fashion and yields a similar expression except that the
underlined parameters are replaced by their non-underlined equivalents and that v, A1, is replaced
by v1y1i¢. The FIML estimates of the structural parameters of the model where y,;; enters the
APF are obtained by maximizing Inly without additional constraints.

The performance of the Gauss-Hermite quadrature is worth mentioning. It is known to be
inaccurate if the panel size, T}, or intraclass correlation, also known as equicorrelation, is large.?®
For instance, Rabe-Hesketh et al. (2005) show that, in the context of a random-effect probit,
the quadrature yields biased estimates when T; = 10 with an equicorrelation of 0.9, or for any
equicorrelation greater than or equal to 0.45 when T; = 100 (see also Lee, 2000). However,
Raymond (2007, chapter 3) shows that the quadrature works very well in the context of dynamic
sample selection models with a panel of small size (T; = 4) and equicorrelation between 0.3 and

0.5, the latter range being that of the equicorrelation when these models are estimated on the

281n the context of panel data, the intraclass correlation is a special form of serial correlation. It is defined as

O'
m(]*l ;3).
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Dutch innovation survey data. Thus, we expect the quadrature to produce accurate estimates.?’
Evidently, we would need to carry out Monte Carlo analyses that use our nonlinear dynamic
simultaneous equations models as a benchmark in order to assess the extent of the accuracy of the

quadrature in these models. This is beyond the scope of our analysis and is left for future research.

Appendix B Models with v, or y»; as a predictor of labor
productivity

Model with latent share of innovative sales

The model with latent share of innovative sales as a predictor of labor productivity consists
of equations (2.1)-(2.4) and (2.5a) with j = 2 in equation (2.5a). These equations constitute the

structural form of the model. The reduced-form equations are given by equations (2.1)-(2.4) and

ysie = U33Ysie—1 + BsXzit + 72 [1922y21‘,t—1 + Y23Y3i,6—1 + ,@;X%t] + Yoz; + i +V2e2:t + €3i¢,  (B.1)

@34 €3it

where y3;, has been replaced by its right-hand side expression of equation (2.3). The relations

between the underlined components of ¥, and ¥, and the structural counterparts become

2 2 2 2 2 2 2 2
Oeg = V20e, +0c; + 2'7295253 Oe30¢3, Oag = V20ay + 04y + 27200305005 0as, (B.2a)
E€1€ O- + €1€ U
Pores = — PlanZe TPan?s L = — 2P T TPmesfon - (B.2b)
(v302, + 02, + 272p,., ., 0cy0cy) (v302, + 02, + 272pa050a20as3) 2
20’ + EQE U S a aga a
Peyey = 205 T Peaes T : Pagas = V20a; + PazasTas . (B2

Nl=
Nl

(Y302, 4+ 02, + 272p.,.,0c,0¢5) (V302, + 02, + 272Pasa30a50a;)

The likelihood function of this model is similar to I; except that v Ay is replaced by 2 Ag;; where
Asgyy is defined in equation (3.11a). The FIML estimates of the structural parameters are obtained

by maximizing the log-likelihood subject to the constraints (B.2a)-(B.2c¢) in lieu of (3.7a)-(3.7¢).
Model with observed share of innovative sales

The model with observed share of innovative sales as a predictor of labor productivity consists
of equations (2.1)-(2.4) and (2.5b) with j = 2 in equation (2.5b). The likelihood function of this
model is similar to [y except that the underlined parameters are replaced by their non-underlined
equivalents and that 1 Ay is replaced by v2y2,:. The FIML estimates of the structural parameters

of this model are obtained by maximizing the log-likelihood with no additional constraints.

29The equicorrelation is about 0.1 when the dynamic sample selection models are estimated on the French inno-
vation survey data. Thus, the poor performance of the Gauss-Hermite quadrature is even less of an issue.
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Appendix C Labor productivity elasticity of the share of
innovative sales

Let the productivity equation be written as

In(ys:) = ¥2 logit(y2:) + ... + €31, (C.1)

where y3; denotes productivity, yo; denotes the share of innovative sales and logit(y2:) = In (1372;%) 30

The labor productivity elasticity of the share of innovative sales, denoted by Fl,, .., is by defini-

tion O1n(ys:)/01n(y2:) and is derived as

d0In(ys;) Ologit(yas) _ Vgalogit(ygt)
0logit(yar) O1n(ya:) 01n(ya:)

Ely3t7y2t =

By making the variable change vo; = In(yo;) and writing

logit(y2:) = vor — In[1 — €], (C.2)

we can derive 9 logit(ya:)/01n(ya:) as

0logit(yar) _ 0logit(yar) S | (C.3)
O1In(yar) Ovgy 1—ev2e 1 —yo '
The elasticity is then written as
Y2
Ely3t7y2t = (04)

1—ya
and is to be evaluated at values of interest (e.g. sample mean) of the share of innovative sales (in
level). When the latent share of innovative sales enters the productivity equation, we evaluate this
elasticity at predicted values of interest of the latent share of innovative sales.
Since El,,, ,, is a linear function of vs, the standard error of the estimated elasticity is straight-

forwardly obtained as

_SE()

S.B.(Elyy o) = = e (C.5)

30For simplicity in the notation, we discard the firm subscript 4, the other regressors and the individual effects.
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Appendix D FIML estimates with yj;, in the labor produc-
tivity equation and distance to frontier regres-
SOr'S

Table 10: FIML estimates of the model with latent innovation propensity to explain productivity and with
distance to frontier regressors: Unbalanced panel from Dutch and French CIS 2, CIS 38 and CIS 4

Variable Slope (Std. Err.) Slope (Std. Err.)
France The Netherlands
Innovation occurrence

Innovation occurrence;_1 0.071F (0.042) 0.025 (0.066)
Innovation occurrenceq,, 3 waves 0.068 (0.044) 0.282** (0.074)
Innovation occurrenceq,, 2 waves 0.137** (0.024) 0.275** (0.038)
Distance to frontier

(DQz)t—l 0.019 (0.031) 0.018 (0.043)

(DQ3)t—1 0.015 (0.032) 0.025 (0.043)

(DQ4)t,1 0.035 (0.035) 0.050 (0.046)
(R&D/employee);_1, in log 0.011 (0.011) 0.070™* (0.018)
(Dnon—continuous R&D)t—l -0.202™* (0-028) -0.233™* (0~037)
Size class

D employees<50 -0.174** (0.051) -0.104 (0.067)

D50<# employees<250 -0.131** (0.035) -0.014 (0.056)

D250<# employees<500 -0.099 (0.076) 0.130 (0.111)
Market share;_1, in log 0.033** (0.011) 0.036** (0.012)

Share of innovative salest, in logit

Share of innov. sales;_1, in logit 0.116* (0.049) 0.046 (0.043)
Share of innov. salesg,, 3 waves 0.057 (0.046) 0.130** (0.040)
Share of innov. salesg,, 2 waves 0.185** (0.026) 0.171** (0.027)
Distance to frontier

(DQQ)tfl 0.305* (0.132) 0.040 (0.146)

(DQg)tfl 0.055 (0.136) 0.046 (0.147)

(DQ4)t—1 0.072 (0.147) -0.255 (0.159)
(R&D /employee)s_1, in log 0.069 (0.044) 0.123** (0.031)
(Dnon-continuous R&D)t—1 -0.319™* (0.101) -0.249™* (0.143)
Size class

D employees<50 0.369 (0.238) 0.308 (0.230)

D50<# employees<250 0.144 (0.157) 0.104 (0.188)

D250<# employees<500 0.269 (0.127) 0.196 (0.233)
Market share; 1, in log 0.056** (0.002) 0.043* (0.020)

Labor productivity: sales/employee, in log

(Sales/employee); 1, in log 0.531%* (0.056) 0.324** (0.066)
(Sales/employee)g, , 3 waves 0.337** (0.056) 0.280** (0.066)
(Sales/employee)q,, 2 waves 0.857** (0.012) 0.587** (0.024)
Latent innovation propensityy 0.080** (0.021) 0.124** (0.029)
(Investment/employee);, in log 0.065** (0.006) 0.119** (0.012)
Employmenty, in log -0.029** (0.009) -0.083** (0.018)
# observations 2505 1639
Log-likelihood -5045.059 -3918.637

TThree dummies of category of industry, a time dummy and an intercept are included in each equation.
To save space, the covariance matrix of the individual effects and the error terms are not reported.
Significance levels :  1: 10%  *: 5%  *x: 1%

The notion of technological frontier is mostly used in the macroeconomic literature on growth
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convergence. Among various testable hypotheses one is that innovation becomes more important
as an economy approaches the world technology frontier (see e.g. Acemoglu et al., 2003, 2006). We
can identify in each 3-digit industry the enterprise with the largest productivity and then define
for each enterprise a technology gap variable as the difference between the largest productivity
within each 3-digit industry and the productivity of the enterprise belonging to that industry.
Then, looking at the distribution (within each industry) of the technology gap variable, we define
three dummy variables Dg,, Dq, and D, which take the value one if the technology gap lies
respectively between the first (>) and second quartile (<), the second (>) and the third quartile
(<), and above (>) the third quartile. The dummy variable Dq , which takes the value one if the
technology gap lies below or at the first quartile, is used as the reference. Firms for which Dq,
is equal to one are the closest to the technological frontier. If the above-mentioned hypothesis is
satisfied, we expect the effects of D, Dq, and D, to be negative and statistically significant.
We consider the lagged values of the dummy variables in the estimation for the same reason as for
the market share regressor. Furthermore, these dummy variables capture not only the distance to
technological frontier but also a type of (indirect) feedback effect of productivity on innovation. As
a result, in order to avoid multicollinearity problems, whenever these dummy variables are included
in the estimation, the above-mentioned feedback effect of productivity is ignored, i.e. we assume
U3 = a3 = 0.

Since the results with the distance to frontier regressors are very similar across model specifi-
cations, we report them only for the model with the innovation propensity as a predictor of labor
productivity (see Table 10). In other words, we still observe a unidirectional causality running
from innovation to productivity with the lagged distance to frontier dummies being insignificant.

The remaining estimation results can be obtained upon request.
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