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1 Introduction

Volatile oil prices have been drawing a lot of attention in recent years, with Hamilton (2009)

for example suggesting that the oil price spike was a contributing factor in the recession of

2007-2009. There has been considerable interest in whether there is any connection between

this volatility and the flow of dollars into commodity-index funds that take the long position

in crude oil futures contracts. Recent empirical investigations of a possible link include Kilian

and Murphy (forthcoming), Tang and Xiong (2012), Buyuksahin and Robe (2011), Alquist and

Gervais (2011), Mou (2010), Singleton (forthcoming), Irwin and Sanders (2012), and Fattouh,

Kilian, and Mahadeva (forthcoming).

A separate question is the theoretical mechanism by which such an effect could arise in

the first place. Keynes (1930) theory of normal backwardation proposed that if producers

of the physical commodity want to hedge their price risk by selling futures contracts, then

the arbitrageurs who take the other side of the contract may be compensated for assuming

that risk in the form of a futures price below the expected future spot price. Empirical

support for this view has come from Carter, Rausser, and Schmitz (1983), Chang (1985), and

De Roon, Nijman, and Veld (2000), who interpreted the compensation as arising from the

nondiversifiable component of commodity price risk, and from Bessembinder (1992), Etula

(forthcoming) and Acharya, Lochstoer, and Ramadorai (forthcoming), who attributed the

effect to capital limitations of potential arbitrageurs. In the modern era, buying pressure

from commodity-index funds could exert a similar effect in the opposite direction, shifting the

receipt of the risk premium from the long side to the short side of the contract.

In this paper we show that if arbitrageurs care about the mean and variance of their futures
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portfolio, then hedging pressure from commodity producers or index-fund investors can give

rise to an affine factor structure to commodity futures prices. We do so by extending the

models in Vayanos and Vila (2009) and Hamilton and Wu (2012a), which were originally used

to describe how bond supplies affect relative yields, but are adapted in the current context

to summarize how hedging demand would influence commodity futures prices. The result

turns out to provide a motivation for specifications similar to the class of Gaussian affine

term structure models originally developed by Vasicek (1977), Duffie and Kan (1996), Dai

and Singleton (2002), Duffee (2002), and Ang and Piazzesi (2003) to characterize the relation

between yields on bonds of different maturities. Related affine models have also been used

to describe commodity futures prices by Schwartz (1997), Schwartz and Smith (2000), and

Casassus and Collin-Dufresne (2006), among others.

In addition, this paper offers a number of methodological advances for use of this class

of models to study commodity futures prices. First, we develop the basic relations directly

for discrete-time observations, extending the contributions of Ang and Piazzesi (2003) to the

setting of commodity futures prices. This allows a much more transparent mapping between

model parameters and properties of observable OLS regressions. Second, we show how param-

eter estimates can be obtained directly from unbalanced data in which the remaining duration

of observed contracts changes with each new observation, developing an alternative to the

Kalman filter methodology used for this purpose by Cortazar and Naranjo (2006). Third, we

show how the estimation method of Hamilton and Wu (2012b) provides diagnostic tools to

reveal exactly where the model succeeds and where it fails to match the observed data.

We apply these methods to prices of crude oil futures contracts over 1990-2011. We
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document significant changes in risk premia in 2005 as the volume of futures trading began to

grow significantly. While traders taking the long position in near contracts earned a positive

return on average prior to 2005, that premium decreased substantially after 2005, becoming

negative when the slope of the futures curve was high. This observation is consistent with the

claim that historically commercial producers paid a premium to arbitrageurs for the privilege

of hedging price risk, but in more recent periods financial investors have become natural

counterparties for commercial hedgers. We also uncover seasonal variation of risk premia over

the month, with changes as the nearest contract approaches expiry that cannot be explained

from a shortening duration alone.

The plan of the paper is as follows. Section 2 develops the model, and Section 3 describes

our approach to empirical estimation of parameters. Section 4 presents results for our baseline

specification, while Section 5 presents results for a model allowing for more general variation

as contracts near expiration. Conclusions are offered in Section 6.

2 Model.

2.1 Role of arbitrageurs.

Consider the incentives for a rational investor to become the counterparty to a commercial

hedger or mechanical index-fund trader. We will refer to this rational investor as an ar-

bitrageur, so named because the arbitrageur’s participation guarantees that risk is priced

consistently across all assets and futures contracts in equilibrium. Let Fnt denote the price

of oil associated with an n-period futures contract entered into at date t. Let znt denote
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the arbitrageur’s notional exposure (with znt > 0 denoting a long position and znt < 0 for

short), so that znt/Fnt is the number of barrels purchased with n-period contracts. Following

(Duffie, 1992, p. 39), we interpret a long position entered into at date t and closed at date

t + 1 as associated with a cash flow of zero at date t and Fn−1,t+1 − Fnt at date t + 1. The

arbitrageur’s cash flow for period t + 1 associated with the contemplated position znt is then

znt(Fn−t,t+1 − Fnt)/Fnt. We assume the arbitrageur also takes positions qjt in a set of other

assets j = 0, 1, ..., J with gross returns between t and t + 1 denoted exp(rj,t+1) (so that the

net return is approximately rj,t+1) and where r0,t+1 is assumed to be a risk-free yield. Then

the arbitrageur’s total wealth at t+ 1 will be

Wt+1 =
J∑
j=0

qjt exp(rj,t+1) +
N∑
n=1

znt
Fn−1,t+1 − Fnt

Fnt
. (1)

The arbitrageur is assumed to choose {q0t, ..., qJt, z1t, ..., znt} so as to maximize1

Et(Wt+1)− (γ/2)Vart(Wt+1) (2)

subject to
∑J

j=0 qjt = Wt.

We posit the existence of a vector of factors xt that jointly determine all returns, which

1It is trivial to extend this to adding positions in futures contracts for a number of alternative commodities.
We discuss here the case of the single commodity oil for notational simplicity.
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we assume follows a Gaussian vector autoregression (VAR):2

xt+1 = c+ ρxt + Σut+1 ut ∼ i.i.d. N(0, Im). (3)

Log commodity prices and returns are assumed to be affine functions of these factors

fnt = logFnt = αn + β′nxt n = 1, ..., N (4)

rjt = ξj + ψ′jxt j = 1, ..., J.

Using a similar approximation to that in Hamilton and Wu (2012a), we show in Appendix A

that under these assumptions,

Et(Wt+1) ≈ q0t(1 + r0,t+1) +
J∑
j=1

qjt
[
1 + ξj + ψ′j(c+ ρxt) + (1/2)ψ′jΣΣ′ψj

]
(5)

+
N∑
n=1

znt
[
αn−1 + β′n−1(c+ ρxt)− αn − β′nxt + (1/2)β′n−1ΣΣ′βn−1

]

Vart(Wt+1) ≈

(
J∑
j=1

qjtψ
′
j +

N∑
n=1

zntβ
′
n−1

)
ΣΣ′

(
J∑
j=1

qjtψj +
N∑
`=1

z`tβ`−1

)
. (6)

The first-order conditions for the arbitrageur’s positions satisfy

∂Et(Wt+1)

∂qjt
= 1 + r0,t+1 + (γ/2)

∂Vart(Wt+1)

∂qjt
j = 1, ..., J

2The assumption of Gaussian homoskedastic errors greatly simplifies the estimation because it implies that
parameters of the reduced-form representation of the model can be optimally estimated using simple OLS.
For an extension of this approach to the case of non-Gaussian factors with time-varying variances, see Creal
and Wu (2013).
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∂Et(Wt+1)

∂znt
= (γ/2)

∂Vart(Wt+1)

∂znt
n = 1, ..., N.

Under (5) and (6) these become

ξj + ψ′j(c+ ρxt) + (1/2)ψ′jΣΣ′ψj = r0,t+1 + ψ′jλt

αn−1 + β′n−1(c+ ρxt)− αn − β′nxt + (1/2)β′n−1ΣΣ′βn−1 = β′n−1λt (7)

for

λt = γΣΣ′

(
J∑
j=1

qjtψj +
N∑
`=1

z`tβ`−1

)
. (8)

Suppose we conjecture that in equilibrium the positions qjt, znt selected by arbitrageurs are

themselves affine functions of the vector of factors, so that

λt = λ+ Λxt. (9)

Then (7) requires

β′n = β′n−1ρ− β′n−1Λ (10)

αn = αn−1 + β′n−1c+ (1/2)β′n−1ΣΣ′βn−1 − β′n−1λ. (11)

From (5), the left side of (7) is the approximate expected return to a $1 long position in

an n-period contract entered at date t. Equation (7) thus characterizes equilibrium expected
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returns in terms of the price of risk λt:

Et

(
Fn−1,t+1 − Fnt

Fnt

)
≈ β′n−1λt. (12)

In the special case of risk-neutral arbitrageurs (γ = 0), from (8) we would have λ = 0 and

Λ = 0 in (9).

Note that this framework allows for all kinds of factors (as embodied in the unobserved

values of xt) to influence commodity futures prices through equation (4), including interest

rates, fundamentals affecting supply and demand, and factors that might influence risk premia

in other asset markets. If we consider physical inventory as another possible asset qjt, this

may help offset the risks associated with futures positions z`t as described in equation (8) and

could also be an element of the hypothesized factor vector xt. We will demonstrate below that

it is not necessary to have direct observations on the factor vector xt itself in order to make

use of the model’s primary empirical implications (10) and (11). Instead, these restrictions

can be represented solely in terms of implications for the dynamic behavior of the prices of

different commodity-futures contracts that have to hold as a result of the factor structure itself

and the behavior of the arbitrageurs. Moreover, we will see that it is possible to estimate the

risk-pricing parameters λ and Λ solely on the basis of any predictabilities in the returns from

positions in commodity-futures contracts.3

The recursions (10) and (11) can equivalently be viewed as the equilibrium conditions that

would result if risk-neutral arbitrageurs were to regard the factor dynamics as being governed

3Alternatively, one can try to make use of direct observations on the positions of commodity index-fund
investors as we do in Hamilton and Wu (2013).
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not by (3) but instead by

xt+1 = cQ + ρQxt + ΣuQt+1 (13)

cQ = c− λ (14)

ρQ = ρ− Λ (15)

uQt+1

Q∼ N(0, Im).

The recursions (10) and (11) that characterize the relation between the prices of futures

contracts of different maturities will be recognized as similar to those that have been devel-

oped in the affine term structure literature4 to characterize the relations that should hold in

equilibrium between the interest rates on assets of different maturities. In addition to pro-

viding a derivation of how these relations can be obtained in the case of commodity futures

contracts, the derivation above demonstrates how commercial hedging or commodity-index

funds might be expected to influence commodity futures prices. An increase in the demand

for long positions in contract n will require in equilibrium a price process in which arbitrageurs

are persuaded to take a corresponding short position in exactly that amount. A larger abso-

lute value of znt in turn will expose arbitrageurs to different levels of risk which would change

the equilibrium compensation to risk λt according to equation (8). Again, from (8) and (9),

these index traders could be responding through an affine function to interest rates or other

4Our recursions (10) and (11) are essentially the same as equations (17) in Ang and Piazzesi (2003), with
the important difference being that their recursion for the intercept adds a term δ0 for each n, corresponding
to the interest earned each period. No such term appears in our expression because there is no initial capital
invested. Another minor notational difference is that our λ corresponds to their Σλ0 while our Λ corresponds
to their Σλ1. An advantage of our notation in the current setting is that our λt is then measured in the same
units as xt and is immediately interpreted as the direct adjustment to c and ρ that results from risk aversion
by arbitrageurs.
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economic fundamentals. What matters is that this behavior causes the net risk exposure

of arbitrageurs λt to be an affine function of the factors in equilibrium. In the following

subsection we illustrate this potential effect using a simple example.

2.2 Example of the potential role of index-fund traders.

Suppose there are some investors who always want to have a long position in the 2-period

contract, regardless of anything happening to fundamentals. At the start of each new period,

these investors close out their previous position (which is now a 1-period contract) and replace

it with a new long position in what is now the current 2-period contract.5 Let the scalar Kt

denote the notional value of 2-period contracts that investors want to buy in period t, and

suppose this evolves exogenously according to

Kt = cK + ρKKt−1 + ΣKuKt . (16)

If investors and arbitrageurs are the only participants in the market, then equilibrium futures

prices must be such as to persuade arbitrageurs to take the opposite side of the investors. Thus

arbitrageurs are always short the two-period contract, close that position when it becomes a

1-period contract, take the short side of the new 2-period contract, and have zero net exposure

to any other contract in equilibrium. In other words, the process for {fnt}Nn=0 must be such

5In the case of crude oil contracts, what typically happens is that the commodity-index fund takes a long
position from a swap dealer which in turn hedges its exposure by taking a long position in an organized
exchange contract. We view the swap fund in such an arrangement as simply an intermediary, with the
ultimate demand for the long position (Kt) coming from the commodity-index fund and the index-fund’s
ultimate counterparty being the short on the organized exchange contract (z2t).
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that (7) and (8) are satisfied with

znt =


−Kt for n = 2

0 otherwise

.

Suppose that arbitrageurs’ only risk exposure comes from commodities (qjt = 0 for j =

1, ..., J). Then from (8), in equilibrium we will have

λt = −γΣΣ′β1Kt. (17)

Suppose that the spot price depends solely on a scalar “fundamentals” factor x∗t :

f0t = x∗t (18)

x∗t = c∗ + ρ∗x∗t−1 + Σ∗u∗t .

We conjecture that in equilibrium, the factor xt governing futures prices includes both funda-

mentals and the level of index-fund investment, xt = (x∗t , Kt)
′, with (18) implying β′0 = (1, 0)

and the factor evolving according to

xt = c+ ρxt−1 + Σut
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or written out explicitly,

 x∗t

Kt

 =

 c∗

cK

+

 ρ∗ 0

0 ρK


 x∗t−1

Kt−1

+

 Σ∗ 0

0 ΣK


 u∗t

uKt

 .

We can then recognize (17) as a special case of (9) with

λ = 0

Λ
(2×2)

=

[
0 −γΣΣ′β1

]
.

Hence

ρQ =

 ρ∗ 0

0 ρK

+

[
0 γΣΣ′β1

]
(19)

β′1 = β′0ρ
Q

=

[
1 0

]
ρQ

=

[
ρ∗ γ

[
(Σ∗)2 0

]
β1

]

β1 =

 ρ∗

γρ∗(Σ∗)2

 . (20)

Assuming ρ∗ > 0 and Kt > 0, the effect of index-fund buying of the 2-period contract is also

to increase the price of a 1-period contract. The reason is that the 2-period contract that the

arbitrageurs are currently being induced to short exposes the arbitrageurs to risk associated
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with uncertainty about the value of x∗t+1. The 1-period contract is also exposed to risk from

x∗t+1. If a 1-period contract purchased at t provided zero expected return, arbitrageurs would

want to go long the 1-period contract in order to diversify their risk associated with being

short the 2-period contract. But there is no counterparty who wants to short the 1-period

contract, so equilibrium requires a price f1t such that someone shorting the 1-period contract

would also have a positive expected return, earned in the form of a higher price for f1t.

Substituting (20) into (19), we now know ρQ and can calculate βn =
(
ρQ′
)n
β0 for each n.

Thus investment buying does not matter for f0t but does affect every fnt for n > 0, through

the same mechanism as operates on the 1-period contract. In particular, from (12),

Et

(
Fn−1,t+1 − Fnt

Fnt

)
≈ −γβ′1(ρQ)n−2ΣΣ′β1Kt,

which in general has the opposite sign of Kt for all n; someone would earn a positive expected

return by taking the short position in a contract of any duration.

2.3 Empirical implementation.

There are two general strategies for empirical implementation of this framework. The first is

to make direct use of data on the positions of different types of traders. Hamilton and Wu

(2013) use this approach to study agricultural futures prices. Unfortunately, the data publicly

available on trader positions in crude oil futures contracts have some serious problems (see

the discussion in Irwin and Sanders (2012) and Hamilton and Wu (2013)). An alternative

approach, which we adopt for purposes of modeling crude oil futures prices in this paper,
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is to infer the factors xt based on the behavior of the futures prices themselves. In this

case, risk premia are identified from differences between observed futures prices and a rational

expectation of future prices. We will use the framework to characterize the dynamic behavior

of risk premia and their changes over time.

For purposes of empirical estimation we interpret t as describing weekly intervals. This

allows us to capture some key calendar regularities in the data without introducing an excessive

number of parameters. NYMEX crude oil futures contracts expire on the third business day

prior to the 25th calendar day of the month prior to the month on which the contract is

written. To preserve the important calendar structure of the raw data, we divide the “month”

leading up to a contract expiry into four “weeks”, defined as follows:

week 1 ends on the last business day of the previous calendar month

week 2 ends on the 5th business day of the current calendar month

week 3 ends on the 10th business day of the current calendar month

week 4 ends on the day when the near contract expires

Associated with any week t is an indicator jt ∈ {1, 2, 3, 4} of where in the month week t falls.

Our estimation uses the nearest three contracts. If we interpret the price at expiry as an

n = 0 week-ahead contract, the observation yt for week t would be characterized using the
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notation of Section 2 as follows:

yt =



(f3t, f7t, f11,t)
′ if jt = 1

(f2t, f6t, f10,t)
′ if jt = 2

(f1t, f5t, f9t)
′ if jt = 3

(f0t, f4t, f8t)
′ if jt = 4

.

Table 1 summarizes the relation between the weekly indicator (j), months until expiry is

reached (k), and weeks remaining until expiry (n). This feature that the maturity of observed

contracts changes with each observation t is one reason that much of the research with com-

modity futures contracts has used monthly data. However, in our application a key interest is

in the higher-frequency movements and specific calendar effects. Fortunately, the framework

developed in Section 2 gives us an exact description of the likelihood function for the data as

actually observed, as we now describe.

We will assume that there are two underlying factors (that is, xt is 2 × 1). Since (4)

implies that each element of the (3× 1) vector yt could be written as an exact linear function

of xt, the system as written is stochastically singular– according to the model, the third

element of yt should be given by an exact linear combination of the first two. This issue also

commonly arises in studies of the term structure of interest rates. A standard approach in

that literature6 is to assume that some elements or linear combinations of yt differ from the

magnitude predicted in (4) by a measurement or specification error. In the results reported

below, we assume that the k = 1- and 2- month contracts are priced exactly as the model

6See for example Chen and Scott (1993), Ang and Piazzesi (2003) and Joslin, Singleton, and Zhu (2011).
The observable implications of this assumption are explored in detail in Hamilton and Wu (forthcoming).
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predicts. It is helpful for purposes of interpreting parameter estimates to summarize the

information in these contracts in terms of the average level of the two prices, which we will

associate with the first factor in the system, and spread between them, which we will associate

with the second factor:

y1t = H1yt

H1 =

 0 (1/2) (1/2)

0 −1 1

 . (21)

The two elements of y1t are plotted in Figure 1.

We assume that the model correctly characterizes these two observed magnitudes. Since

yt = (f4−jt , f8−jt , f12−jt)
′, this implies that

y1t = A1,jt +B1,jtxt (22)

A1,jt
(2×1)

= H1


α4−jt

α8−jt

α12−jt

 for jt = 1, 2, 3, or 4

B1,jt
(2×2)

= H1


β′4−jt

β′8−jt

β′12−jt

 for jt = 1, 2, 3, or 4. (23)

We will use the notational convention that if jt = 1, then A1,jt−1 = A14.

If B1j is invertible, the dynamics of the observed vector y1t can be characterized by sub-
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stituting (22) into (3):

y1t = A1,jt +B1,jtc+B1,jtρ
[
B−1

1,jt−1

(
y1,t−1 − A1,jt−1

)]
+B1,jtΣut.

Since ut is independent of {yt−1, yt−2, ..., y0}, this means that the density of y1t conditional on

all previous observations is characterized by a VAR(1) with seasonally varying parameters:

y1t|yt−1, yt−2, ..., y0 ∼ N(φjt + Φjty1,t−1,Ωjt) (24)

Ωjt = B1,jtΣΣ′B′1,jt

Φjt = B1,jtρB
−1
1,jt−1

φjt = A1,jt +B1,jtc− ΦjtA1,jt−1 .

Note that the predicted seasonal parameter variation arises from the fact that the number of

weeks remaining until expiry of the observed contracts changes with each new week.

We postulate that the nearest contract, which we write as

y2t = H2yt

H2 =

[
1 0 0

]
, (25)

differs from the value predicted by the framework by a measurement or specification error

17



with mean zero and variance σ2
e,jt :

y2t = A2,jt +B2,jtxt + σe,jtue,t

A2,jt
(1×1)

= H2


α4−jt

α8−jt

α12−jt

 for j = 1, 2, 3, 4

B2,jt
(1×2)

= H2


β′4−jt

β′8−jt

β′12−jt

 for jt = 1, 2, 3, or 4.

If the measurement error uet is independent of past observations, this gives the conditional

distribution

y2t|y1t, yt−1, yt−2, ...., y0 ∼ N(γjt + Γjty1t, σ
2
e,jt) (26)

Γjt = B2,jtB
−1
1,jt

(27)

γjt = A2,jt − ΓjtA1,jt .

The density of yt conditional on its own past history is thus the product of (24) with (26),

meaning that the log likelihood for the full sample of observations (y′T , y
′
T−1, ..., y

′
1)′ conditional

on the initial observation y0 is given by

L =
∑T

t=1

[
log g(y1t;φjt + Φjty1,t−1,Ωjt) + log g(y2t; γjt + Γjty1t, σ

2
e,jt

]
(28)
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where g(y;µ,Ω) denotes the multivariate Normal density with mean µ and variance Ω evalu-

ated at the point y.

3 Estimation.

3.1 Unrestricted reduced form.

The traditional approach to estimation of these kind of models would be to maximize the

likelihood function with respect to the unknown structural parameters. However, Hamilton

and Wu (2012b) demonstrate that there can be big benefits from using an estimator that turns

out to be asymptotically equivalent to MLE but is derived from simple OLS regressions. To

understand this estimator, consider first how we would maximize the likelihood if we thought

of φj, Φj, Ωj, γj, Γj, and σej in the above representation as completely unrestricted parameters

rather than the particular values implied by the structural model presented above. From this

perspective, the log likelihood (28) could be written

L(φ1,Φ1,Ω1, γ1,Γ1, σe1, ..., φ4,Φ4,Ω4, γ4,Γ4, σe4) (29)

=
∑4

j=1
L1j(φj,Φj,Ωj) +

∑4

j=1
L2j(γj,Γj, σej)

L1j(φj,Φj,Ωj) =
∑T

t=1
δ(jt = j) log g(y1t;φj + Φjy1,t−1,Ωj)

log g(y1t;φj + Φjy1,t−1,Ωj) = − log 2π − (1/2) log |Ωj|

−(1/2)(y1t − φj − Φjy1,t−1)′Ω−1
j (y1t − φj − Φjy1,t−1)
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L2j(γj,Γj, σej) =
∑T

t=1
δ(jt = j) log g(y2t; γj + Γjy1t, σ

2
ej)

log g(y2t; γj + Γjy1t, σ
2
ej) = −(1/2) log 2π − (1/2) log σ2

ej −
(y2t − γj − Γjy1t)

2

2σ2
ej

where for example δ(jt = 1) is 1 if t is in the first week of the month and is zero otherwise.

It is clear that the unconstrained likelihood function is in fact maximized by a series of OLS

regressions. To estimate the parameters in block j, we collect all observations whose left-hand

variable is in the jth week of the month, and simply perform OLS regressions on what now

looks like a monthly data set.

Specifically, to estimate (φj,Φj,Ωj) for a particular j, we associate month τ with an ob-

served monthly-frequency vector y†1,j,τ defined as follows. For illustration, consider j = 1 and

suppose that τ corresponds to the month spanned by the last week of December and first 3

weeks of January. The first element of y†1,1,τ |month(τ)=Jan is the average of the log prices of the

March and April contracts as of the last business day of December. The second element of

y†1,1,τ |month(τ)=Jan is based on the log price of the April contract on the last day of December

minus the log price of March contract. For j = 1 and general τ ,

y†1,1,τ = H1


f3,t(τ)

f7,t(τ)

f11,t(τ)


for H1 given in (21) and where t(τ) denotes the week t associated with month τ . The

explanatory variables in these j = 1 block regressions consist of a constant, the average log

prices of the February and March contracts on the day in December when the January contract
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expired, and the spread between the March price and February price at the December expiry

of the January contract:

x†1,1,τ =



1

H1


f0,t(τ)−1

f4,t(τ)−1

f8,t(τ)−1




. (30)

Consider the estimates from OLS regression of y†1,1,τ on x†1,1,τ ,

[
φ̂1 Φ̂1

]
=
(∑T

τ=1
y†1,1,τx

†′
1,1,τ

)(∑T

τ=1
x†1,1,τx

†′
1,1,τ

)−1

Ω̂1 = T −1
∑T

τ=1

(
y†1,1,τ −

[
φ̂1 Φ̂1

]
x†1,1,τ

)(
y†1,1,τ −

[
φ̂1 Φ̂1

]
x†1,1,τ

)′

where T denotes the number of months in the sample. These estimates maximize the log

likelihood (29) with respect to {φ1,Φ1,Ω1}.

For j = 2 we regress y†1,2,τ (whose first element, for example, would be the average of the

March and April contracts as of the fifth business day in January) on x†1,2,τ (e.g., a constant

and the level and spread as of the last day of December),

[
φ̂2 Φ̂2

]
=
(∑T

τ=1
y†1,2,τx

†′
1,2,τ

)(∑T

τ=1
x†1,2,τx

†′
1,2,τ

)−1

Ω̂2 = T −1
∑T

τ=1

(
y†1,2,τ −

[
φ̂2 Φ̂2

]
x†1,2,τ

)(
y†1,2,τ −

[
φ̂2 Φ̂2

]
x†1,2,τ

)′
,

to obtain φ̂2, Φ̂2, and Ω̂2. Similar separate monthly regressions of the 1- and 2-month prices

in the third or fourth week of each month on their values the week before produce {φ̂j, Φ̂j, Ω̂j}
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for j = 3 or 4.

Likewise, note that the components of
∑4

j=1 L2j(γj,Γj, σe) take the form of regressions

in which the residuals are uncorrelated across blocks, meaning full-information maximum

likelihood estimates of γj and Γj are obtained by OLS regressions for individual j. For example,

for j = 1 and τ corresponding to December-January, y†2,j,τ is the price of the February contract

on the last day of December,

y†2,1,τ = H2


f3,t(τ)

f7,t(τ)

f11,t(τ)

 ,

for H2 in (25) and explanatory variables the level and slope as of the last day of December:

x†2,1,τ =



1

H1


f3,t(τ)

f7,t(τ)

f11,t(τ)




.

The maximum likelihood estimates are given by

[
γ̂j Γ̂j

]
=
(∑T

τ=1
y†2,j,τx

†′
2,j,τ

)(∑T

τ=1
x†2,j,τx

†′
2,j,τ

)−1

for j = 1, 2, 3, 4

σ̂2
ej = T −1

∑T

τ=1

(
y†2,j,τ −

[
γ̂j Γ̂j

]
x†2,j,τ

)2

. (31)

22



3.2 Structural estimation of the baseline model.

Now consider estimation of the underlying structural parameters of the model presented in Sec-

tion 2. The key point to note is that the above OLS estimates {φ̂1, Φ̂1, Ω̂1, γ̂1, Γ̂1, σ̂e1, ..., φ̂4, Φ̂4,

Ω̂4, γ̂4, Γ̂4, σ̂e4} are sufficient statistics for inference about these parameters– anything that the

full sample of data is able to tell us about the model parameters can be summarized by the

values of these OLS estimates. The idea behind the minimum-chi-square estimation proposed

by Hamilton and Wu (2012b) is to choose structural parameters that would imply reduced-

form coefficients as close as possible to the unrestricted estimates, an approach that turns out

to be asymptotically equivalent to full MLE.

Note that the model developed here specifies observed prices in terms of an unobserved

factor vector xt. There is an arbitrary normalization in any such system, in that if we were to

multiply xt by a nonsingular matrix and add a constant, the result would be observationally

equivalent in terms of the implied likelihood for observed yt.
7 Since we have treated the factors

xt as directly inferable from the values of y1t, we normalize the factors so that they could be

interpreted as the level and slope as of the date of expiry of the near-term contract:

xt = H1yt for jt = 4. (32)

7For further discussion of identification and normalization, see Hamilton and Wu (2012b).
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Recalling (22), this would be the case if

H1yt = H1


α0

α4

α8

+H1


β′0

β′4

β′8

xt for jt = 4. (33)

Substituting (32) into (33), our chosen normalization thus calls for

xt = H1


α0

α4

α8

+H1


β′0

β′4

β′8

xt for jt = 4

H1


β′0

β′4

β′8

 = I2 (34)

H1


α0

α4

α8

 = 0. (35)

Since 
f0t

f4t

f8t

 =


α0

α4

α8

+


β′0

β′4

β′8

xt,

our normalization could alternatively be described as xt = H1(f0t, f4t, f8t)
′ for all t. Following
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Joslin, Singleton, and Zhu (2011) and Hamilton and Wu (forthcoming), this can be imple-

mented by defining ξ1 and ξ2 to be the eigenvalues of ρQ = ρ− Λ. Given this normalization

and values for ξ1, ξ2, Σ, and α0, we can then determine the values for ρQ, cQ, and {βn, αn}Nn=0;

details are provided in Appendix B. These along with ρ, c, and σe then provide everything

we need to evaluate the likelihood function or to calculate what the predicted values for any

of the unrestricted reduced-form coefficients ought to be.

Let θ denote the vector of unknown structural parameters, that is, the 16 elements of

{ξ1, ξ2,Σ, α0, ρ, c, σe1, σe2, σe3, σe4} for Σ lower triangular. Collect elements of the unrestricted

OLS estimates in a vector π̂:

π̂ = (π̂′Φ, π̂
′
Ω, π̂

′
Γ, π̂σ)

′

π̂Φ =

([
vec

([
φ̂1 Φ̂1

]′)]′
, ...,

[
vec

([
φ̂4 Φ̂4

]′)]′)′

π̂Ω =

([
vech

(
Ω̂1

)]′
, ...,

[
vech

(
Ω̂4

)]′)′

π̂Γ =

([
vec

([
γ̂1 Γ̂1

]′)]′
, ...,

[
vec

([
γ̂4 Γ̂4

]′)]′)′

π̂σ = (σ̂e1, σ̂e2, σ̂e3, σ̂e4)′.

Let g(θ) denote the corresponding predicted values for those coefficients from the model;

specific values for the elements of g(θ) are summarized in Appendix C. The minimum-chi-

square (MCS) estimate of θ is the value that minimizes

T [π̂ − g(θ)]′R̂[π̂ − g(θ)] (36)

25



for R̂ the information matrix associated with the OLS estimates π̂, which is also detailed in

Appendix C. The MCS estimator has the same asymptotic distribution as the maximum

likelihood estimator, but has a number of computational and interpretive advantages over

MLE discussed in Hamilton and Wu (2012b). Because R̂ is block-diagonal with respect to

πσ, the MCS estimates of these parameters are given immediately by the OLS estimates (31).

Hamilton and Wu (2012b) show that asymptotic standard errors can be estimated using

E(θ̂ − θ0)(θ̂ − θ0)′ ' T −1(Ĝ′R̂Ĝ)−1

Ĝ =
∂g(θ)

∂θ′

∣∣∣∣
θ=θ̂

,

which are identical to the usual asymptotic errors that would be obtained by taking second

derivatives of the log likelihood function (28) with respect to θ.

4 Empirical results for the baseline model.

Crude oil futures contracts were first traded on the New York Mercantile Exchange (NYMEX)

in 1983. In the first few years, volume was much lighter than the more recent data, and

we choose to begin our empirical analysis in January, 1990. Figure 2 plots the total open

interest on all NYMEX light sweet crude contracts. Volume expanded very quickly after 2004,

in part in response to the increased purchases of futures contracts as a vehicle for financial

diversification. Some researchers have suggested that participation in the markets by this new

class of traders resulted in significant changes in the dynamic behavior of crude oil futures
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prices.8 A likelihood ratio test (e.g., (Hamilton, 1994, p. 296)) of the null hypothesis that

the coefficients of the unrestricted reduced form are constant over time against the alternative

that all 52 parameters changed in January 2005 produces a χ2(52) statistic of 181.96, which

calls for dramatic rejection of the null hypothesis (p value of 2.2 × 10−16). Since one of our

interests in this paper is to document how futures price dynamics have changed over time, we

conduct our analysis on two subsamples, the first covering January 1990 through December

2004, and the second January 2005 through June 2011.

The first panel of Table 2 reports minimum-chi-square estimates of the 16 elements of θ

based on the first subsample. The eigenvalues of ρ, the matrix summarizing the objective

P -measure persistence of factors, are 0.9956 and 0.9319, implying that both level and slope

are highly persistent, with similar estimates for their Q-measure counterparts (ξ1 and ξ2).

The differences between the P - and Q-measures, or implied characterization of λt, are

reported in the second panel of Table 2.9 The individual elements of λ and Λ are generally

small and statistically insignificant. The last two entries of Table 2 report the elements of

λ + Λx, where x is the average value for the level and spread over the sample. The positive

value of 0.0037 for the first element of this vector suggests that an investor who was always

long in the two contracts would on average have come out ahead over this period, an estimate

that is just statistically significant at the 5% level.10

8See for example Alquist and Kilian (2007), Singleton (forthcoming), Tang and Xiong (2012), Mou (2010),
and Buyuksahin and Robe (2011).

9Standard errors for λ and Λ were obtained by reparameterizing the MCS estimation in terms of λ and Λ
instead of c and ρ. The values of λ and Λ can be obtained analytically from λ = c− cQ and Λ = ρ− ρQ with
cQ given by equation(47) and ρQ given by equation (42).

10Note from (12) and (34) that the expected return on a portfolio with equal weights on the second and
third contracts is given by

(1/2)(β′4 + β′8)λt =
[

1 0
]
λt

whose average value is the first element of λ+ Λx.
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Table 3 reports parameter estimates for the later subsample, in which there appear to

be significant differences in risk pricing from the earlier data. Most noteworthy is the large

negative value for Λ12. This signifies that when the spread (the second element of xt) gets

sufficiently high, a long position in the 1- and 2-month contracts would on average lose money.

We also see from the last entry of Table 3 that the first element of λ+Λx is smaller in the second

subsample than in the first, and is no longer statistically significant. The average reward for

taking long positions in the second subsample is not as evident in the first subsample.

Figure 3 plots our estimated values for λt = λ+ Λxt for each week t in our sample, along

with 95% confidence intervals. The price of level risk (top panel) was uniformly positive up

until 2006, but has often been negative since 2008. By contrast, slope risk (bottom panel)

was typically not priced before 2004, whereas going long the 2-month contract and short the

1-month has frequently been associated with positive expected returns since then.11

Following Cochrane and Piazzesi (2009) and Bauer, Rudebusch, and Wu (2012), another

way to summarize the implications of these results is to calculate how different the log price

of a given contract would be if there was no compensation for risk. To get this number, we

calculate f̃nt = α̃n+ β̃nxt, where β̃n and α̃n denote the values that would be obtained from the

recursions (10) and (11) if Λ and λ were both set to zero. The value for the difference f̃nt−fnt

for n = 8 weeks is plotted in Figure 4. In the absence of risk effects, an 8-week contract price

would have been a few percent higher on average over the 1990-2004 subsample.12 Since 2005,

11From (12) and (34), the expected return on a portfolio that is long the third contract and short the second
is given by

(β′8 − β
′
4)λt =

[
0 1

]
λt

whose average value is the second element of λ+ Λx.
12The average size of this risk premium is 2.9% for the first sample. This compares with an average realized

2-month ex post return over this period of 2.0% for the long position on a 3-month contract (that is, the
average log value of the first contract minus the average log value of the third contract two months earlier),
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risk aversion has made a more volatile contribution, though the average effect is significantly

smaller.

In terms of the framework proposed in Section 2 for interpreting these results, the positive

average value for the first element of λt in the first subsample suggests that arbitrageurs were

on average long in crude oil futures contracts over this period, accepting the positive expected

earnings from their positions as compensation for providing insurance to sellers, who were

presumably commercial producers who wanted to hedge their price risks by selling futures

contracts. From that perspective, an increase in index fund buying could have been one

explanation for why a long position in futures contracts no longer has a statistically significant

positive return. In effect, index-fund buyers are serving as counterparty for commercial

hedgers, and are willing to do so without the risk compensation that the position earned on

average in the first subsample. The emerging positive return to a spreading position (positive

average second element of λt in the second subsample) would be consistent with the view that

arbitrageurs are buying and holding 2-month futures from oil producers, but then selling these

positions and going short 1-month futures as they sell to index-fund investors.

As noted by Hamilton and Wu (2012b), another benefit of estimation by minimum chi

square is that the optimized value for the objective function provides an immediate test of

the overall framework. Under the null hypothesis that the model is correctly specified, the

minimum value achieved for (36) has an asymptotic χ2 distribution with degrees of freedom

and an average difference between the first contract and third contract at the same date of 1.2% (that is,
the futures curve sloped down on average with a slope of -1.2%). The last number is similar to the value
reported by Alquist and Kilian (2010), who noted that the 3-month futures price was 1.1% below the spot
price on average over 1987-2007. The difference between the average ex post return to the long position and
the negative of the average slope results from the significantly higher price of oil at the end of the sample than
at the beginning.
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given by the number of overidentifying restrictions. The first column of Table 4 reports the

value of this statistic for each of the two subsamples. The model is overwhelmingly rejected

in either subsample.

Because the weighting matrix R̂ in (49) is block-diagonal, it is easy to decompose these test

statistics into components coming from the respective elements of π, as is done in subsequent

columns of Table 4. In the first subsample, about half of the value of the test statistic comes

from the πΩ block– the differences in the variability of the level and slope across different

weeks of the month is more than can be explained by the fact that the maturities of observed

contracts are changing week to week. The biggest problem in the second subsample come

from the πΦ block– unrestricted forecasts of the level and slope vary more week-to-week than

is readily explained by differences in the maturities of the contracts.

It is also possible to look one parameter at a time at where the structural model misses.

For each of the unrestricted reduced-form parameters π there is a corresponding prediction

from the model g(θ) for what that value is supposed to be if the model is correct. Figures

5 and 6 plot the unrestricted OLS estimates of the various elements of π along with their

95% confidence intervals for the first subsample. The thick red lines indicate the value the

coefficient is predicted to have according to the structural parameters reported in Table 2. The

biggest problems come from the fact that the model underpredicts the difficulty of forecasting

the spread in weeks 1 and 3 (the lower left panel of Figure 6). Figures 7 and 8 provide the

analogous plots for the second subsample. Here the biggest problems come from the fact

that the equations one would want to use to forecast the spread in weeks 3 and 4 are quite

different from those found for weeks 1 and 2 (see the right-hand column of Figure 7). These

30



considerations suggest looking at models that allow for more general seasonal variation than

our baseline specification, which we explore in the next section.

5 Less restrictive seasonal models.

5.1 Structural estimation.

Here we consider a system in which the dynamic process followed by the factors is itself

dependent on which week of the month we are looking at:

xt+1 = cjt + ρjtxt + Σjtut+1.

If we hypothesize that the risk-pricing parameters also vary with the season,

λt = λjt + Λjtxt

then the no-arbitrage conditions (10) and (11) generalize to

β′n = β′n−1ρ
Q
j(n) (37)

αn = αn−1 + β′n−1c
Q
j(n) + (1/2)β′n−1Σj(n)Σ

′
j(n)βn−1.

where which observation week j is associated with a given maturity n can be read off of Table 1

and where we have defined ρQj = ρj−Λj and cQj = cj−λj. Unfortunately, if all the parameters

were allowed to vary with the week j in this way, the model would be unidentified. The reason
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is that even if one hypothesizes different values of ρQj for different j, a generalization of the

algebra in (48) still implies that Γj should be the same for all j:

Γj = H2


β′0

β′4

β′8

 for j = 1, 2, 3, 4.

Since β′4 = β′0ρ
Q
3 ρ

Q
2 ρ

Q
1 ρ

Q
4 and β′8 = β′4ρ

Q
3 ρ

Q
2 ρ

Q
1 ρ

Q
4 , the only information available from the regres-

sions in which y2t is the dependent variable (26) is about the product ρQ3 ρ
Q
2 ρ

Q
1 ρ

Q
4 , which does

not allow identification of the individual terms. In the next subsection we report estimates

for a system in which although cj, ρj, λj, and Λj all vary with j, the differences cQ = cj − λj

and ρQ = ρj − Λj do not. For this system, the flexibility of the cj and ρj parameters allows

us to fit the unrestricted OLS values for φj and Φj perfectly. Details of the normalization

and estimation for this less restrictive specification are reported in Appendices B and C.

5.2 Empirical results for the less restrictive seasonal model.

Empirical estimates for the parameters of the above system for each of the two subsamples

are reported in Tables 5 and 6. In the first subsample, the main differences are that the

specification allows the spread to become harder to forecast as the near contract approaches

expiry (that is, the (2,2) element of Σj increases in j) and the level and slope at the end of

the month are less related to their values at expiry than is typical of the relation between y1t

and y1,t−1 at other times (that is, diagonal elements of ρj are smaller for j = 4). Although

implied values for λ and Λ are estimated with much less precision, the overall conclusion that
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individual elements are small and statistically insignificant applies across individual weeks as

well.

For the second subsample (Table 6), the dependence of Λ12,j on week j is very dramatic,

with an average value of −0.78 for j = 1, 2, or 3 but an estimated value of +0.46 for j = 4.

A high spread signals lower returns to the long position during weeks 1-3, but this effect

completely disappears, and may even take on the opposite sign, during expiry week 4. This

may be related to the strong weekly pattern to index-fund strategies. For example, to replicate

the crude oil holdings of the Goldman Sachs Commodity Index, an index fund would be selling

the k = 0 contract and buying the k = 1 contract during week j = 3. It is interesting that

we also find strong weekly patterns in the pricing of risk in data since 2005, though trying to

interpret those changes in detail is beyond the scope of this paper.

Although our more general specification can fit the unrestricted OLS estimates φ̂j and Φ̂j

perfectly, it still imposes testable overidentifying restrictions on other parameters, essentially

using the 3 parameters in {α0, ξ1, ξ2} to fit the 12 values for {γ̂j, Γ̂j}4
j=1. The resulting

χ2(9) MCS test statistic for the first subsample is 13.86, which with a p-value of 0.13 is

consistent with the null hypothesis that the model has adequately captured all the week-to-

week variations in parameters. The second subsample (χ2(9) = 13.25, p = 0.15) also passes

this specification test.
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6 Conclusions.

In this paper, we studied the interaction between hedging demands from commercial producers

or financial investors and risk aversion on the part of the arbitrageurs who are persuaded to

be the hedgers’ counterparties. We demonstrated that this interaction can produce an affine

factor structure for the log prices of futures contracts in which expected returns depend on

the arbitrageurs’ net exposure to nondiversifiable risk. We developed new algorithms for

estimation and diagnostic tools for testing this class of models appropriate for an unbalanced

data set in which the duration of observed contracts changes with each observation.

Prior to 2005, we found that someone who consistently took the long side of nearby oil fu-

tures contracts received positive compensation on average, with relatively modest variation of

this risk premium over time, consistent with the interpretation that the primary source of this

premium was hedging by commercial producers. However, we uncovered significant changes

in the pricing of risk after the volume of trading in these contracts increased significantly in

2005. The expected compensation from a long position is lower on average in the recent data,

often significantly negative when the futures curve slopes upward. We suggest that increased

participation by financial investors in oil futures markets may have been a factor in changing

the nature of risk premia in crude oil futures contracts.
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Appendix A. Approximations to portfolio mean and vari-

ance.

We first note that if logX ∼ N(µ, σ2) then E(X) = exp(µ+σ2/2). Taking a first-order Taylor

approximation around µ = σ2 = 0 we have E(X) ≈ 1 + µ+ σ2/2. Thus in particular since

log(Fn−1,t+1/Fnt) ∼ N(µn−1,t, σ
2
n−1)

µn−1,t = αn−1 + β′n−1(c+ ρxt)− αn − β′nxt (38)

σ2
n−1 = β′n−1ΣΣ′βn−1 (39)

we have the approximations

Et[(Fn−1,t+1 − Fnt)/Fnt] ≈ µn−1,t + σ2
n−1/2

Et[exp(rj,t+1)] ≈ 1 + ξj + ψ′j(c+ ρxt) + ψ′jΣΣ′ψj/2.

Sustituting these into (1) gives (5).

Likewise, if  logXi

logXj

 ∼ N


 µi

µj

 ,
 σii σij

σji σjj


 ,

then

Cov(Xi, Xj) = exp
[
(µi + µj) + (σii + σjj)/2

]
[exp(σij)− 1] .
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A first-order Taylor expansion around µi = µj = σii = σjj = σij = 0 gives

Cov(Xi, Xj) ≈ σij.

To use this result we define

yt+1
(L×1)

= (r1,t+1, ..., rJ,t+1, f0,t+1 − f1t, f1,t+1 − f2t, ..., fN−1,t+1 − fNt)′

for L = J +N. Notice that conditional on information at date t, yt+1 ∼ N(µt, H
′ΣΣ′H) for13

H =

[
ψ1 · · · ψJ β0 · · · βN−1

]
.

Notice further that (1) can be written Wt+1 = kt +
∑L

`=1 h`t exp(y`,t+1) for h`t = q`t for

` = 1, ..., J and h`t = z`−J,t for ` = J + 1, ..., L. Thus for ht = (h1t, ..., hLt)
′,

Vart(Wt+1) ≈ h′tH
′ΣΣ′Hht

=

(
J∑
j=1

qjtψ
′
j +

N∑
n=1

zntβ
′
n−1

)
ΣΣ′

(
J∑
j=1

qjtψj +
N∑
`=1

z`tβ`−1

)
.

13Here µt = (µ1t, ..., µLt)
′ for µ`t = ξ` + ψ′`(c+ ρxt) for ` = 1, ..., J and µ`t = α`−J−1 + β′`−J−1(c+ ρxt)−

α`−J − β′`−Jxt for ` = J + 1, ..., L.
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Appendix B. Normalization.

Baseline model. Let ρQ = ρ− Λ, and notice from (10) that

βn = (ρQ′)nβ0. (40)

We will parameterize this in terms of ξ = (ξ1, ξ2)′ where ξi denotes an eigenvalue of ρQ′. We

could calculate the following matrix as a function of those eigenvalues:

K(ξ)
(2×3)

=

 ξ0
1 ξ4

1 ξ8
1

ξ0
2 ξ4

2 ξ8
2

 . (41)

The claim is that if we specify

ρQ′

(2×2)

=

[
K(ξ)
(2×3)

H ′1
(3×2)

]−1

 ξ1 0

0 ξ2


[
K(ξ)
(2×3)

H ′1
(3×2)

]
(42)

β0
(2×1)

=

[
K(ξ)
(2×3)

H ′1
(3×2)

]−1

 1

1

 , (43)
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then (34), the desired condition for βn, would be satisfied. To prove this, observe from (40)

that

βn = [K(ξ)H ′1]
−1

 ξn1 0

0 ξn2

 [K(ξ)H ′1] [K(ξ)H ′1]
−1

 1

1



= [K(ξ)H ′1]
−1

 ξn1

ξn2

 (44)

so that

H1


β′0

β′4

β′8

 = H1


ξ0

1 ξ0
2

ξ4
1 ξ4

2

ξ8
1 ξ8

2

 [H1K(ξ)′]
−1
. (45)

Substituting (41) into (45) produces (34), as claimed. Thus if we know ξ, we can use (41)

and (44) to calculate the value of βn for any n as well as ρQ from (42).

To achieve the separate condition (35) on αn, notice from (11) that

αn = α0 + (β′n−1 + β′n−2 + · · ·+ β′0)cQ (46)

+(1/2)(β′n−1ΣΣ′βn−1 + β′n−2ΣΣ′βn−2 + · · ·+ β′0ΣΣ′β0).

Define

ζn(ξ)
(1×2)

= β′n−1 + β′n−2 + · · ·+ β′0

ψn(ξ, α0,Σ)
(1×1)

= α0 + (1/2)(β′n−1ΣΣ′βn−1 + β′n−2ΣΣ′βn−2 + · · ·+ β′0ΣΣ′β0)
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so that (46) can be written

αn = ζn(ξ)cQ + ψn(ξ, α0,Σ)

where for n = 0 we have ζ0(ξ) = 0 and ψ0(ξ, α0,Σ) = α0. We claim that if we choose

cQ = −

H1


ζ0(ξ)

ζ4(ξ)

ζ8(ξ)





−1H1


ψ0(ξ, α0,Σ)

ψ4(ξ, α0,Σ)

ψ8(ξ, α0,Σ)



 , (47)

then (35) would be satisfied. This is demonstrated as follows:

H1


α0

α4

α8

 = H1


ζ0(ξ)cQ + ψ0(ξ, α0,Σ)

ζ4(ξ)cQ + ψ4(ξ, α0,Σ)

ζ8(ξ)cQ + ψ8(ξ, α0,Σ)



= −H1


ψ0(ξ, α0,Σ)

ψ4(ξ, α0,Σ)

ψ8(ξ, α0,Σ)

+H1


ψ0(ξ, α0,Σ)

ψ4(ξ, α0,Σ)

ψ8(ξ, α0,Σ)


= 0.

Thus if we know ξ, α0, and Σ, we can use (46) and (47) to calculate the value of αn for any

n. Also ξ, α0, and Σ allow calculation of cQ from (47).

Seasonal model. Just as in the baseline model, we let (ξ1, ξ2) denote the ordered eigen-

values of ρQ and write

β′n =

[
ξn1 ξn2

]
[H1K(ξ)′]

−1
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which achieves the normalization (34). Likewise for αn we again use (47) where now

ζn(ξ) = β′n−1 + β′n−2 + · · ·+ β′0

ψn(ξ, α0,Σ) = α0 +(1/2)(β′n−1Σj(n)Σ
′
j(n)βn−1 +β′n−2Σj(n−1)Σ

′
j(n−1)βn−2 +· · ·+β′0Σj(1)Σ

′
j(1)β0).

Appendix C. Mapping from structural to reduced-form

parameters.

Baseline model. Expressions involving B1j in (23) can be simplified by noting from (40)

and (34) that

B1j = H1


β′4−j

β′8−j

β′12−j

 = H1


β′0

β′4

β′8


(
ρQ
)4−j

=
(
ρQ
)4−j

.
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Thus for example (27) simplifies to

Γj = H2


β′4−j

β′8−j

β′12−j



H1


β′4−j

β′8−j

β′12−j





−1

= H2


β′0

β′4

β′8


(
ρQ
)4−j

[(
ρQ
)4−j

]−1

(48)

= H2


β′0

β′4

β′8

 for j = 1, 2, 3, 4.

The population magnitudes corresponding to the other reduced-form OLS coefficients are as

follows:

Ωj =
(
ρQ
)4−j

ΣΣ′
(
ρQ′
)4−j

for j = 1, 2, 3, 4

Φ1 =
(
ρQ
)3
ρ

Φj =
(
ρQ
)4−j

ρ
[(
ρQ
)−1
]4−j+1

for j = 2, 3, 4

φ1 = H1


α3

α7

α11

+H1


β′3

β′7

β′11

 c− Φ1H1


α0

α4

α8


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φj = H1


α4−j

α8−j

α12−j

+H1


β′4−j

β′8−j

β′12−j

 c− ΦjH1


α5−j

α9−j

α13−j

 for j = 2, 3, 4

γj = H2


α4−j

α8−j

α12−j

− ΓjH1


α4−j

α8−j

α12−j

 for j = 1, 2, 3, 4.

Given the scalars {ξ1, ξ2} (corresponding to the eigenvalues of ρQ = ρ− Λ), we can calculate

βn from (44) and (41). These βn give us predicted values for {Γj}4
j=1, and the βn along with

Σ give predicted values for {Ωj}4
j=1. Note {ξ1, ξ2} also gives us ρQ, and this plus ρ gives

predicted values for {Φj}4
j=1. From βn, Σ, and α0 we can calculate cQ from (47) and αn from

(46). Using these along with c we then obtain the predicted values for {φj}4
j=1 and {γj}4

j=1.

The information matrix for the OLS estimates π̂ = (π̂′Φ, π̂
′
Ω, π̂

′
Γ, π̂σ)

′
is given by

R̂π =



R̂Φ 0 0 0

0 R̂Ω 0 0

0 0 R̂Γ 0

0 0 0 R̂σ


(49)

R̂Φ =



R̂Φ1 0 0 0

0 R̂Φ2 0 0

0 0 R̂Φ3 0

0 0 0 R̂Φ4


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R̂Φj = Ω̂−1
j ⊗ T −1

∑T

τ=1
x†1,j,τx

†′
1,j,τ

R̂Ω =



R̂Ω1 0 0 0

0 R̂Ω2 0 0

0 0 R̂Ω3 0

0 0 0 R̂Ω4


R̂Ωj = (1/2)D′2

(
Ω̂−1
j ⊗ Ω̂−1

j

)
D2

D2 =



1 0 0

0 1 0

0 1 0

0 0 1



R̂Γ =



R̂Γ1 0 0 0

0 R̂Γ2 0 0

0 0 R̂Γ3 0

0 0 0 R̂Γ4


R̂Γj = σ̂−2

ej

(
T −1

∑T

τ=1
x†2,j,τx

†′
2,j,τ

)

R̂σ =



(1/2)σ̂−4
e1 0 0 0

0 (1/2)σ̂−4
e2 0 0

0 0 (1/2)σ̂−4
e3 0

0 0 0 (1/2)σ̂−4
e4


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where D2 is the duplication matrix satisfying D2vech(Ω) = vec(Ω) for 2×2 symmetric matrix

Ω. Note that for all models considered the MCS estimate of σej is always equal to the

unconstrained MLE σ̂ej and so contributes 0 to the weighted objective function.

Unrestricted seasonal model. For this model the specifications for γj and Γj are the

same as in the baseline model, while the expressions for the other parameters become

Ω1 =
(
ρQ
)3

Σ4Σ′4
(
ρQ′
)3

Ωj =
(
ρQ
)4−j

Σj−1Σ′j−1

(
ρQ′
)4−j

for j = 2, 3, 4

Φ1 =
(
ρQ
)3
ρ4

Φj =
(
ρQ
)4−j

ρj−1

[(
ρQ
)−1
]4−j+1

for j = 2, 3, 4 (50)

φ1 = H1


α3

α7

α11

+H1


β′3

β′7

β′11

 c4 − Φ1H1


α0

α4

α8



φj = H1


α4−j

α8−j

α12−j

+H1


β′4−j

β′8−j

β′12−j

 cj−1 − ΦjH1


α5−j

α9−j

α13−j

 for j = 2, 3, 4.

Minimum-chi-square estimation in this case is achieved by first choosing {ξ, α0,Σ1,Σ2,Σ3,Σ4}

so as to minimize the distance from the OLS estimates {γ̂j, Γ̂j, Ω̂j}4
j=1. From ξ we can then

calculate ρQ, with which we can obtain ρj analytically from (50) in order to fit these OLS
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coefficients perfectly. The values cj−1 are likewise obtained analytically from φ̂j.
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Table 1: Weekly durations associated with monthly contracts at different points in time

j k = 0 k = 1 k = 2
1 3 7 11
2 2 6 10
3 1 5 9
4 0 4 8

For specified week of the month j and months until the contract expires k, table entry indicates
weeks n remaining until expiry.
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Table 2: Pre-2005 parameter estimates for baseline model

Estimated parameters Implied parameters
c 0.0102 0.0016 λ 0.0104 -0.0061*

(0.0209) (0.0029) (0.0209) (0.0029)
ρ 0.9974* 0.1839* Λ -0.0023 -0.0591

(0.0067) (0.0918) (0.0067) (0.0918)
-0.0006 0.9301* 0.0020* -0.0050
(0.0009) (0.0134) (0.0009) (0.0136)

ξ 0.9876* 0.9473* λ+ Λx̄ 0.0037* 3.53e-005
(0.0010) (0.0044) (0.0018) (2.63e-004)

Σ 0.0449* 0
(0.0012)
-0.0038* 0.0047*
(0.0002) (0.0001)

α0 0.0357*
(0.0007)

πσ 0.0099* 0.0081*
(0.0005) (0.0004)
0.0105* 0.0201*
(0.0006) (0.0011)

Left panel: MCS estimates of elements of θ for data from January 1990 through December 2004
(asymptotic standard errors in parentheses). Right panel: assorted magnitudes of interest
implied by value of θ̂ (asymptotic standard errors in parentheses). * denotes statistically
significant at the 5% level.
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Table 3: Post-2005 parameter estimates for baseline model

Estimated parameters Implied parameters
c 0.1802* 0.0164* λ 0.1813* 0.0179*

(0.0574) (0.0070) (0.0574) (0.0070)
ρ 0.9600* -0.3487 Λ -0.0400* -0.5892*

(0.0131) (0.2018) (0.0131) (0.2018)
-0.0035* 0.8629* -0.0039* -0.0311
(0.0016) (0.0241) (0.0016) (0.0243)

ξ 1.0010* 0.8931* λ+ Λx̄ 0.0028 0.0009*
(0.0001) (0.0047) (0.0026) (0.0003)

Σ 0.0439* 0
(0.0019)
-0.0021* 0.0049*
(0.0003) (0.0002)

α0 -0.0086*
(0.0009)

πσ 0.0059* 0.0086*
(0.0005) (0.0007)
0.0087* 0.0223*
(0.0007) (0.0018)

Left panel: MCS estimates of elements of θ for data from January 2005 through June 2011
(asymptotic standard errors in parentheses). Right panel: assorted magnitudes of interest
implied by value of θ̂ (asymptotic standard errors in parentheses). * denotes statistically
significant at the 5% level.

Table 4: χ2 specification test and breakdown by individual components

χ2 d.f. p-value πΦ πΩ πΓ

Before 2005 86.57 36 4.73e-6 25.61 43.98 16.99
Since 2005 151.87 36 3.33e-16 120.01 17.22 14.64

χ2: minimum value achieved for MCSE objective function. d.f.: degrees of freedom. p-value:
probability of observing χ2(d.f.) value this large. Last 3 columns: contribution to χ2 of
individual parameter blocks.

53



Table 5: Pre-2005 parameter estimates for seasonal model

Estimated parameters Implied parameters

cbase 0.0102 0.0016 λbase 0.0104 -0.0061*
c1 0.0042 0.0005 λ1 0.0044 -0.0068

(0.0467) (0.0056) (0.0467) (0.0055)
c2 -0.0359 0.0023 λ2 -0.0356 -0.0050

(0.0422) (0.0066) (0.0422) (0.0065)
c3 -0.0054 0.0053 λ3 -0.0051 -0.0020

(0.0414) (0.0055) (0.0414) (0.0054)
c4 0.0871* -0.0003 λ4 0.0874* -0.0077

(0.0422) (0.0073) (0.0421) (0.0079)
ρbase 0.9974* 0.1839* -0.0006 0.9301* Λbase -0.0023 -0.0591 0.0020* -0.0050
ρ1 0.9992* 0.2166 -0.0003 0.9369* Λ1 -0.0005 -0.0271 0.0022 -0.0061

(0.0152) (0.2386) (0.0018) (0.0285) (0.0152) (0.2386) (0.0018) (0.0281)
ρ2 1.0137* 0.0371 -0.0010 0.9825* Λ2 0.0139 -0.2067 0.0015 0.0395

(0.0138) (0.2190) (0.0022) (0.0343) (0.0138) (0.2190) (0.0021) (0.0339)
ρ3 1.0011* 0.5076* -0.0018 0.9310* Λ3 0.0014 0.2639 0.0007 -0.0120

(0.0135) (0.2061) (0.0018) (0.0274) (0.0135) (0.2061) (0.0018) (0.0270)
ρ4 0.9726* -0.0718 0.0000 0.8690* Λ4 -0.0272* -0.3155 0.0025 -0.0740

(0.0138) (0.2063) (0.0024) (0.0350) (0.0138) (0.2063) (0.0026) (0.0375)
Σbase 0.0449* -0.0038* 0.0047*
Σ1 0.0491* -0.0042* 0.0039*

(0.0026) (0.0004) (0.0002)
Σ2 0.0447* -0.0046* 0.0052*

(0.0024) (0.0005) (0.0003)
Σ3 0.0447* -0.0029* 0.0051*

(0.0024) (0.0004) (0.0003)
Σ4 0.0446* -0.0035* 0.0059*

(0.0024) (0.0005) (0.0003)

ξbase 0.9876* 0.9473*
ξ 0.9854* 0.9574*

(0.0029) (0.0070)
αbase0 0.0357*
α0 0.0331*

(0.0051)
πσ 0.0099* 0.0081* 0.0105* 0.0201*

Left panel: MCS estimates for elements of θ (asymptotic standard errors in parentheses)
for the unrestricted seasonal model, with estimates from baseline model also reported for
comparison, with all estimates based on data from January 1990 through December 2004.
Elements of matrices reported as first row, then second row. Right panel: values implied by
the reported estimates of θ. * denotes statistically significant at the 5% level.

54



Table 6: Post-2005 parameter estimates for seasonal model

Estimated parameters Implied parameters

cbase 0.1802* 0.0164* λbase 0.1813* 0.0179*
c1 0.0361 0.0106 λ1 0.0374 0.0119

(0.1528) (0.0169) (0.1528) (0.0167)
c2 0.2252* -0.0299* λ2 0.2264* -0.0286

(0.1094) (0.0147) (0.1094) (0.0144)
c3 0.0508 0.0443* λ3 0.0520 0.0456*

(0.1127) (0.0120) (0.1127) (0.0119)
c4 0.1852 0.0102 λ4 0.1865 0.0115

(0.1081) (0.0175) (0.1081) (0.0184)
ρbase 0.9600* -0.3487 -0.0035* 0.8629* Λbase -0.0400* -0.5892* -0.0039* -0.0311
ρ1 0.9918* -0.4445 -0.0021 1.0026* Λ1 -0.0082 -0.6847 -0.0025 0.1141

(0.0346) (0.5708) (0.0038) (0.0627) (0.0346) (0.5708) (0.0038) (0.0622)
ρ2 0.9488* -0.5659 0.0066* 1.1369* Λ2 -0.0512* -0.8061* 0.0062 0.2484*

(0.0247) (0.3810) (0.0033) (0.0507) (0.0247) (0.3811) (0.0033) (0.0500)
ρ3 0.9895* -0.6038 -0.0097* 0.6759* Λ3 -0.0105 -0.8440* -0.0100* -0.2126*

(0.0257) (0.3454) (0.0027) (0.0367) (0.0257) (0.3454) (0.0027) (0.0364)
ρ4 0.9592* 0.7020 -0.0021 0.8796* Λ4 -0.0409 0.4618 -0.0025 -0.0089

(0.0245) (0.4244) (0.0040) (0.0661) (0.0245) (0.4244) (0.0042) (0.0684)
Σbase 0.0439* -0.0021* 0.0049*
Σ1 0.0579* -0.0031* 0.0055*

(0.0047) (0.0007) (0.0005)
Σ2 0.0423* -0.0013* 0.0054*

(0.0035) (0.0006) (0.0004)
Σ3 0.0456* -0.0020* 0.0044*

(0.0037) (0.0005) (0.0004)
Σ4 0.0417* -0.0029* 0.0055*

(0.0034) (0.0007) (0.0005)

ξbase 1.0010* 0.8931*
ξ 1.0008* 0.8877*

(0.0010) (0.0059)
αbase0 -0.0086*
α0 -0.0077

(0.0106)
πσ 0.0059* 0.0086* 0.0087* 0.0223*

Left panel: MCS estimates for elements of θ (asymptotic standard errors in parentheses) for the
unrestricted seasonal model, with estimates from baseline model also reported for comparison,
with all estimates based on data from January 2005 through June 2011. Elements of matrices
reported as first row, then second row. Right panel: values implied by the reported estimates
of θ. * denotes statistically significant at the 5% level.
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Figure 1: Data used in the analysis
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Weekly observations (with specification of weeks as given in text), January 1990 to June 2011. Top

panel: first element of y1t (the average of the log prices of second and third contracts). Bottom panel:

second element of y1t (the difference between the log price of third and second contracts).
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Figure 2: Open Interest
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Total number of outstanding crude oil futures contracts of all maturities, daily observations, March

3, 1983 to July 17, 2011. Vertical lines drawn at January 1, 1990 and January 1, 2005.
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Figure 3: Prices of factor risk
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Top panel: first element of λ + Λxt as estimated from baseline model, with sample split in 2005.

Bottom panel: second element. Dashed lines indicate 95% confidence intervals.
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Figure 4: Risk premium on 8-week futures contract
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Plot of f̃8t − f8t as estimated from the baseline model with sample split in 2005.
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Figure 5: πΦ before 2005
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Light blue line: Unrestricted OLS estimates of coefficients for regression in which y1t is the dependent

variable, plotted as a function of week of the month. Dashed blue lines: 95% confidence intervals

for unrestricted OLS estimates. Bold red line: predicted values for coefficients derived from baseline

model. All estimates based on data January 1990 to December 2004.
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Figure 6: πΩ and πΓ before 2005
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First column: estimated elements of variance-covariance matrix for regression in which y1t is the

dependent variable, plotted as a function of week of the month. Second column: Estimated values

of coefficients for regression in which y2t is the dependent variable, plotted as a function of week

of the month. In each panel, light blue lines are unrestricted OLS estimates, dashed blue lines are

95% confidence intervals for unrestricted OLS estimates, and bold red lines are predicted values for

coefficients derived from baseline model. All estimates based on data January 1990 to December

2004.

61



Figure 7: πΦ since 2005
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Light blue line: Unrestricted OLS estimates of coefficients for regression in which y1t is the dependent

variable, plotted as a function of week of the month. Dashed blue lines: 95% confidence intervals

for unrestricted OLS estimates. Bold red line: predicted values for coefficients derived from baseline

model. All estimates based on data January 2005 to June 2011.
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Figure 8: πΩ and πΓ since 2005

1 2 3 4
0

5
x 10

−3 Ω
11

1 2 3 4
−5

0

5
x 10

−4 Ω
21

1 2 3 4
0

2

4
x 10

−5 Ω
22

1 2 3 4
−0.2

0

0.2
γ

1 2 3 4
0.95

1

1.05

Γ
1

1 2 3 4
−2.5

−2

−1.5

Γ
2

First column: estimated elements of variance-covariance matrix for regression in which y1t is the

dependent variable, plotted as a function of week of the month. Second column: Estimated values

of coefficients for regression in which y2t is the dependent variable, plotted as a function of week

of the month. In each panel, light blue lines are unrestricted OLS estimates, dashed blue lines are

95% confidence intervals for unrestricted OLS estimates, and bold red lines are predicted values for

coefficients derived from baseline model. All estimates based on data January 2005 to June 2011.
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