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1 Introduction
Recent volatility of prices of major grains has revealed new interest in under-

standing the price behavior of storable commodities such as grains. A well-grounded
model of a market for a storable staple product subject to random shocks to excess
supply has been available since Gustafson (1958). Its basic logic of inter-temporal
arbitrage is widely accepted, and it can generate price series that have large “spikes”
and “runs” of the type that attract the concern of consumers and policy makers.
However models of this type have been little used in recent analyses of commodity
price fluctuations.
There are two key reasons. One is the absence of empirical support. For more

than three decades the model could not be seriously tested, due to lack of both
appropriate data and a satisfactory estimation procedure. When a version of the
Gustafson model was eventually tested (Deaton and Laroque 1992, 1995, 1996), it
was roundly rejected due to failure to replicate the high levels of serial correlation
observed in commodity price data. Cafiero et al. (2011), after solving a problem
of numerical accuracy in the Deaton and Laroque estimation procedure, derived
estimates for several commodities consistent with the observed price correlations.
A second reason is the common impression that commodity prices can occasion-

ally exhibit bubble-like behavior in which conditional price expectations rise with-
out bound, and that the storage model cannot satisfactorily replicate such behavior.
Recent tests have in some cases detected price “exhuberance” in observations of
sporadic runs of prices of securities rising faster than the rate of interest. Some
authors (for example Phillips et al. 2011) have related such price behavior to for-
mer United States Federal Reserve Bank Chairman Greenspan’s remark in Decem-
ber 1996 regarding “irrational exhuberance” of asset prices. Researchers including
Gilbert (2010) and Gutierrez (2012) have looked for similar behavior in commodity
markets. Others believe that the existence of bubbles in recent grain price data is
obvious only after they “crash.” (Timmer 2009).
In models in the tradition of Gustafson (1958), (including Samuelson 1971, Gard-

ner 1979, Newbery and Stiglitz 1981, andWright andWilliams 1982), the conditional
expectation of price at far horizons is bounded. In their pioneering model of com-
modity price behavior with responsive supply, Scheinkman and Schechtman (1983,
p.433) presented a model in which, if price at zero harvest is infinite, and zero har-
vest has positive probability, then the long run conditional expectation of price is
unbounded. They inferred that in this case “the model is exactly like an exhaustible
resource model. Since stocks are always held, discounted price must exceed today’s
price by the marginal cost of storage. This seems very unrealistic behavior for the
price of a producible commodity”. Since continuously increasing price is something
not observed in commodity markets (in contrast to price spikes, or price runs that
eventually “crash”), their decision to restrict attention to models in which stocks
carried to the next period are zero so that “mean reversion” occurs when available
supply is below some strictly positive level is understandable.
Several studies have identified “mean reversion” variously defined, in commod-

ity prices, adding empirical support to the informal inference of Scheinkman and
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Schechtman (1983) that the standard model of storage must have occasional ”stock-
outs.” (i.e. periods with zero discretionary stocks).
After a brief review of the issues regarding consistency of the standard version of

the model with observed time series of prices, we focus on the questions regarding
the capacity of the model to replicate bubble behavior, and mean reversion. We
draw on Scheinkman and Schechtman (1983) and Bobenrieth et al. (2002) to derive
new implications for price behavior, and simulate an example of price realizations in
which the conditional expectation of price goes to infinity. We then establish some
empirical implications for sample averages of returns from time series of prices, and
relate these to findings of mean reversion.

2 The Model
In this paper we use a stylized model of a market for a storable commodity such as

a food grain, to reconsider the capacity of storage arbitrage to replicate key features
of commodity price behavior identified in empirical studies. We model a competitive
market for a single storable consumption commodity such as a food grain in which
time is discrete and all agents have rational expectations, in which the price process
has an invariant distribution similar to that of Scheinkman and Schechtman (1983)
and Bobenrieth, Bobenrieth and Wright (2002). The distribution of the harvest
disturbance can have an atom at its minimum value, here normalized at zero, and
price at zero consumption is infinite.
Production is subject in each period to a common exogenous i.i.d. disturbance

ω ∈ [0, ω̄], 0 < ω̄ < ∞. The distribution of ω is of the form αLd + (1 − α)Lc,
where α ∈ [0, 1], Ld is a discrete distribution with a unique atom at 0, and Lc is an
absolutely continuous distribution, with continuous derivative when restricted to its
support [0, ω̄].
Assume that there is a continuum of identical producers, a continuum of identical

storers, and a continuum of identical consumers; each of the three has total measure
one. There is a one-period lag between the producers’ choice of effort λ ≥ 0 and
output of the commodity ω′λ, where ω′ is next period’s harvest shock. Cost of effort
is given by a function g : R+ → R+, with g(0) = 0, g′(0) = 0, and g′(λ) > 0, g′′(λ) >
0 for all λ > 0. Storers can hold any non-negative amount of available supply from
one year to the next, and then these stocks are all available for consumption or for
further storage.
We replace the key assumption of Scheinkman and Schechtman (1983) that the

physical storage cost function is strictly convex and its derivative appears additively
in the Euler equation with the assumption that the physical storage cost function
is zero; the sole cost of storage is the cost of capital invested. Given storage x and
effort λ, the next period’s total available supply is z′ ≡ x + w′λ. Producers and
storers are risk neutral and have a common constant discount factor δ ≡ 1/(1 + r),
where r > 0 is the discount rate.
The utility function of the representative consumer U : R+ → R+ is continuous,

once continuously differentiable, strictly increasing and strictly concave. It satisfies
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U(0) = 0, U ′(0) = ∞.1 The inverse consumption demand curve, with zero income
elasticity, is then f = U ′.2 We assume U has a finite upper bound, and thus total
revenue cf(c) is also bounded, and that the expectation of f with respect to Lc is
finite.3 The perfectly competitive market yields the same solution as the surplus
maximization problem. The Bellman equation for the surplus problem is:

ν(z) = max
x,λ

{U(z − x)− g(λ) + δE[ν(z′)]}, subject to

z′ = x+ ω′λ,

x ≥ 0, z − x ≥ 0, λ ≥ 0,

where E[.] denotes the expectation with respect to next period’s productivity shock
ω′.
By standard results (see for example Stokey and Lucas with Prescott, 1989), ν is

continuous, strictly increasing, strictly concave, and the optimal storage and effort
functions x(z) and λ(z) are single valued and continuous.
Consumption and price are given by the functions c(z) ≡ z − x(z), p(z) ≡

f(z − x(z)).

The storage and effort functions x and λ satisfy the Euler conditions:

(1) f(z − x(z)) ≥ δE[ν ′(x(z) + ω′λ(z))], with equality if x(z) > 0,

(2) g′(λ(z)) ≥ δE[ω′ν ′(x(z) + ω′λ(z))], with equality if λ(z) > 0,

and the envelope condition ν ′(z) = f(z − x(z)).

Given initial available supply z > 0, if the probability of zero productivity shock,
α, is strictly positive, condition (1) implies that z′ > 0 and x(z′) > 0, and this
arbitrage condition holds with equality in the current period and for the indefinite
future. When positive, storage x(z) is strictly increasing with z, and effort λ(z) is
decreasing with z. Note that p(0) = f(0) = ∞.
Define available supply at time t as zt. Given arbitrary fixed z0 > 0, the function

that yields the supremum of the support of zt+1 is ẑ(zt) ≡ x(zt) + λ(zt)ω̄. From
the fact that there exists a unique fixed point z∗ of ẑ such that ẑ(z) < z for all

1Unbounded marginal utility implies no substitution in the margin, an assumption which is more
plausible for aggregate rather than for individual food commodities.
2As discussed in footnote 1 of Scheinkman and Schechtman 1983, specification of a quasilinear
utility function is one way to incorporate income, in the setting of general equilibrium models that
generate the same set of equilibria as this partial equilibrium specification.
3This guarantees that for a model with harvest disturbances with distribution Lc there is a finite
threshold price above which discretionary stocks are zero.
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z > z∗, we conclude that zt ≤ z̄ ≡ max{z0,max{ẑ(z) : 0 ≤ z ≤ z∗}}, for all t ≥ 0.
Then a suitable state space is S ≡ [0, z̄]. Storage takes values in the set [0, x̄], where
x̄ ≡ x(z̄).

3 Empirical Relevance Revisited

3.1 Failure to match observed high price correlations

Deaton and Laroque (1992, 1995, 1996) presented empirical tests of the Gustafson
model (1958) using first simulations of the model, and then econometric estimates
based on the short available annual time series of prices of a number of commodities.
Deaton (forthcoming, 2012) summarizes their overall conclusion:
“We have a long-established theory - whose insights are deep enough that some

part of them must be correct - which is wildly at odds with the evidence, and where
it is far from obvious what is wrong [...].”
Cafiero et al. (2011) show, first, that a version of the Gustafson model with lower

consumption demand elasticity, can generate the high levels of serial correlation
observed in commodity prices. Second, they show that application of Deaton and
Laroque’s (1995, 1996) econometric approach, modified to improve its numerical
accuracy, using the same data set, yields empirical results that are consistent with
observed levels of price variation and autocorrelation for seven major commodities.
In a subsequent paper, Cafiero et al. (2012) derive maximum likelihood estimates
that impose no more assumptions than the previous pseudo-maximum likelihood
estimates, for the global sugar market, and obtain even better results.
Thus we are now in a position to consider the relevance of the Gustafson model for

interpreting and testing recent claims regarding the behavior of commodity prices.
In particular, we address in this paper claims that grain markets display “mean
reversion,” or that they have recently been disrupted by “bubbles” (Gilbert 2010,
Piesse and Thirtle, 2009,Timmer 2009, 2010, Gutierrez 2012), or by “exhuberant”
behavior (Phillips et al. 2011), and by the popular notion that such claims can be
resolved, at least in principle, from observed price behavior.
The model tested by Deaton and Laroque (1992, 1995, 1996) and Cafiero et al.

(2011, 2012) assumes linear demand, with stocks that go to zero at a finite price. To
address questions about mean reversion, speculative runs and related phenomena,
we have adopted a demand specification that, if α > 0, does not impose mean
reversion at high prices, and allows for unbounded price expectations.4 Thus our
model is capable of producing behavior that includes conditional expectations of
prices that go to infinity as the horizon recedes, as observed by Scheinkman and
Schechtman (1983). But, is this extension of the model of any empirical relevance
to actual price behavior in commodities such as grains?

4As for the linear case, questions have been raised about the realism of the behavior of prices in
that model.
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3.2 Behavior of the model with unbounded conditional price
expectations

Scheinkman and Schechtman (1983) stated that price behavior when α > 0 and
price at zero consumption is infinite is very unrealistic for a producible commodity,
since it is “exactly like that of a natural resource model in which discounted price
rises by the marginal cost of storage.” Thus we start by considering a case of the
model which is in fact a natural resource model.

3.2.1. The deterministic finite natural resource model

If α = 1 then our model, which has no storage cost, is the deterministic Hotelling
model of consumption of a finite resource with unbounded price. Standard results
are that price rises monotonically at the rate of interest, so that discounted future
prices equal the current price. Such price behavior is indeed inconsistent with actual
stochastic evolution of prices for commodities such as food grains. Does this price
behavior generalize to the case in which 0 < α < 1?

3.2.2. The stochastic model with unbounded price expectations

Intertemporal storage arbitrage implies that, in the model with 0 < α < 1,
{δtpm+t}t≥0 is a martingale and {Em[δ

tpm+t] : t ≥ 0} = pm, where Em[.] denotes
the expectation conditional on the price pm at time m. Indeed the conditional ex-
pectation of price behaves exactly as the price in the deterministic natural resources
model discussed above. But in this stochastic model the price path does not follow
its expectation, contrary to the inference of Scheinkman and Schechtman (1983).
Nor does the statement of Bessembinder et al. (1995 p. 362) that the path of
conditional expectations at different horizons “describes several points on the path
that investors expect the spot price will take” hold for this model. To the contrary,
as the horizon recedes, the path of realized prices eventually drifts down and away
from the rising profile of conditional expectations, any fraction of which becomes an
upper bound on that realized path.
The sequence of probability measures of prices conditional on any initial price

pm converges to a unique invariant measure, uniformly in pm, and consequently the
sequence of discounted prices converges in probability to zero, uniformly in pm.

5

More precisely:

THEOREM 1: Let α < 1. Given β > 0 and ε > 0, there exists T ∈ N such that
for any price realization pm,

5If 0 ≤ α < 1, the sequence of probability measures of zt, {γt}∞t=0, converges in the total
variation norm to a unique invariant probability γ∗, regardless of the value of z0. The idea of the
proof for the case 0 ≤ α < 1 can be found in Bobenrieth, Bobenrieth and Wright (2002). It
follows immediately that the sequence of probability measures of prices {γtc−1f−1}∞t=0 converges
in the total variation norm to the unique invariant probability measure γ∗c

−1f−1. Note that
Prob[pt ≥ y] = (γtc

−1f−1)([y,∞]), where pt = f(c(zt)) is the price at time t. Ht(y) ≡ Prob[pt ≥ y]
converges uniformly to a unique invariant upper c.d.f. H∗, with limp→∞ H∗(p) = 0. If 0 ≤ α < 1,
then the support of the invariant distribution of prices is an interval [p,∞] with 0 < p < ∞.
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Prob
[
δtpm+t < β | pm

]
≥ 1− ε, ∀ t ≥ T.

Theorem 1 implies that for any sample size N ∈ N, given any finite sequence of
realized initial prices {pm, pm+1, · · · , pm+N−1}, we have the following bound on the
joint probability of the gross discounted relative price changes from each initial price
in the sample, beyond a finite T ′, where T ′ is independent of the finite sequence of
initial price realizations:

Prob

[
δtpm+t

pm
< β,

δtpm+1+t

pm+1

< β, · · · , δtpm+N−1+t

pm+N−1

< β | pm+N−1

]
≥ 1− ε,

for all t ≥ T ′.6

The existence of a unique invariant distribution which is a global attractor implies
for this price process that, with probability one, the sequence of price realizations
is dense on the support [p,∞] of the invariant distribution. The infinite sequence of
price realizations visits every neighborhood of every price in the support, no matter
how high, infinitely often, almost surely. Given this fact, the following proposition
regarding discounted prices might not be surprising:

PROPOSITION 1: Let α < 1. For any given price realization pm, for arbitrary
positive real number D, there exists a horizon d ∈ N, such that:

Prob[δtpm+t > D | pm] > 0, ∀ t ≥ d.

For the case 0 < α < 1, the maximum of the support of the conditional distri-
bution of discounted price goes to infinity as the horizon increases, in contrast to
the case for the standard Gustafson model with bounded price, where the maximum
goes to zero. To prove Proposition 1, we need Proposition 2, which might seem
counter-intuitive given Proposition 1.
For the discussion that follows, given a price realization pm, let Em[.] denote the

expectation conditional on pm.

PROPOSITION 2: Let α < 1. Given any price realization pm, the sequence of
discounted prices, {δtpm+t}t≥0, goes to zero, almost surely (as t → ∞).

PROOF OF PROPOSITION 2: The Euler condition for storage arbitrage (1)
implies that, if α > 0, {δtpm+t}t≥0 is a martingale and sup {Em[δ

tpm+t] : t ≥ 0 } =
pm < ∞. In the case α = 0, {δtpm+t}t≥0 is a supermartingale and sup {Em[δ

tpm+t] :

6In the proof, presented in the Appendix, we use the facts that the Markov operator is stable
and quasicompact, and that given any initial price, any neighborhood of infinity, and any integer
k, the price process visits that neighborhood in a time that is some multiple of k, with positive
probability.
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t ≥ 0 } = p∗ < ∞. In both cases, by the Martingale Convergence Theorem (due to
Doob) we conclude that δtpm+t → Y a.s. (as t → ∞), where Y is a real random
variable. By Theorem 1, δtpm+t → 0 in probability (as t → ∞), and hence Y = 0
almost surely. Q.E.D.

PROOF OF PROPOSITION 1: For the nontrivial case 0 < α < 1, we prove the
result by contradiction. If not, there exist a price realization pm, a real number
D > 0 and a sequence of natural numbers {tk}k∈N ↑ ∞ with Prob[δtkpm+tk >
D | pm] = 0, for all tk. Therefore δtkpm+tk ≤ D a.s., for all tk. Then the Lebesgue
dominated convergence theorem and the fact that limtk→∞ δtkpm+tk = 0 a.s. imply
that limtk→∞ Em[δ

tkpm+tk ] = 0, a contradiction to Em[δ
tkpm+tk ] = pm > 0, for all tk.

Q.E.D.

If 0 < α < 1, we have that Em[δ
tpm+t] = pm, ∀ t ≥ 0. Nevertheless, Proposition

2 states {δtpm+t}t≥0, converges to zero almost surely, implying that {Em[δ
tpm+t]}t≥0

does not converge to the expectation of the almost sure limit of {δtpm+t}t≥0. As a
consequence, the sequence of discounted prices is not uniformly integrable.
Proposition 2 is easy to understand in a model with α = 0, but if 0 < α < 1,

how can the discounted price be going to zero, almost surely, if there is positive
probability that discounted price exceeds D at any sufficiently far horizon? The
explanation hinges on the distinction drawn above between a profile of expectations
conditional on a price realization and the path of realizations. By Proposition 2,
with probability one, for any given path of discounted price realizations there is a
time beyond which that path is permanently below D. But by Proposition 1, there is
no finite horizon beyond which all paths possible from date m are below D. In fact,
at any finite horizon, with positive probability price rises at a rate greater than the
discount rate r, continuously within that horizon. Although any path of discounted
price realizations eventually remains permanently below D, before it does so, it can
exceed any given arbitrary high finite bound. It is recognition of such a possibility
that keeps Em[δ

tpm+t] equal to pm as the horizon, and the probability that the
discounted price will be below D at that horizon, both increase.
Proposition 2 implies that, given a price realization pm, the sample mean and

sample variance of a discounted price sequence go to zero almost surely, that is:
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N−1

N−1∑
t=0

δtpm+t → 0 a.s. (as N → ∞) , and

N−1

N−1∑
t=0

[
δtpm+t −N−1

N−1∑
j=0

δjpm+j

]2

→ 0 a.s. (as N → ∞).

Thus the estimators are consistent with respect to the first two moments of the
limiting distribution of discounted price. For the case 0 < α < 1, the sample average
of discounted price realizations starting at any price realization pm, is eventually
permanently below any arbitrary positive fraction of the profile of expectations,
conditional on pm, of discounted price. Nevertheless the variance of the distribution
of discounted price, conditional on pm, goes to infinity as t → ∞.
The behavior of the price path is related to the profile of conditional expectations

at time m by the following theorem:

THEOREM 2: Let 0 < α < 1. Given any price realization pm, with probability
one, for any 1 ≤ l < ∞, there exists a finite time τ(l), which depends on the sequence
of price realizations, such that:

Em[pm+t]

l
> pm+t, ∀ t ≥ τ(l),

implying that

pm+t = o(Em[pm+t]), a.s.

PROOF OF THEOREM 2: By Proposition 2, δtpm+t → 0 (as t → ∞), with
probability one. Therefore, given any l, 1 ≤ l < ∞, there exists a time τ(l) that
satisfies δtpm+t · l < pm = δtEm[pm+t], ∀ t ≥ τ(l). Q.E.D.

Theorem 2 defines a sequence of upper bounds on the path of price realizations.
Note that the profile of conditional expectations Em[pm+t] is itself an upper bound
beyond some date τ(1). Any given fraction of the profile of expectations conditional
on initial price is an upper bound on any price realized beyond some fixed horizon,
with probability one.
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4 Price Behavior in this Model: Do We See Bub-
bles?
The behavior of price expectations and realizations in the model is illustrated in

the example in Figure 1. At time 0 profile of conditional expectations, E0[pt], rises to
infinity at the discount rate. A possible sequence of price realizations is illustrated
as a grey curve beginning at p0.

7 After period 23, all the realizations of price lie
below E0[pt]. The curve E0[pt]/2 shows another bound at half the price expectations
is effective beginning at date 39. It is obvious that further bounds generated by
successively higher values of l would imply that the long-run rate of increase of
realized price is strictly lower than the discount rate, 4%, even though the storage
arbitrage condition (1) holds, with equality, each period, and that price runs of any
finite length, understood as sequences of prices rising faster than the interest rate,
recur infinitely often along the path of realizations, almost surely. Figure 2 shows the
logarithms of the same price series, dramatizing the runs of price increases greater
than the rate of interest.
These figures show that runs of prices rising for several years at a rate greater than

the rate of interest before crashing, denoted “explosive” by Phillips et al. (2011), and
fulfilling the empirical ex post criterion for identification of bubbles in grain prices
enunciated by Timmer (2009, 2010), are consistent with our equilibrium model with
rational expectations. In this model, they do not signify the disruptive effects of
irrational speculation, but rather the dampening effect of storage that prevents
sharper price jumps, but with declining effectiveness if low harvests persist.
Discussions of volatile grain price behavior often raise the issue of price bubbles,

frequently without defining the term. Brunnermeier (2008) includes a key feature
of most definitions of finance economists when he states that “Bubbles refer to
asset prices that exceed an asset’s fundamental value because current owners believe
they can resell the asset at an even higher price.” Are price runs characteristic of
price behavior in our model, as illustrated in Figures 1 and 2, consistent with this
definition? In our model we have assumed no convenience yield, and the law of
one price holds. In that setting, when storage is positive, the value of a commodity
such as food grain equals its value in consumption, as indicated in the envelope
condition after equations (1) and (2) above. Storage is a one period investment,
so its “fundamental” is the market price, which derives its marginal value from its
value in consumption. Thus in our model bubbles consistent with Brunnermeier’s
definition cannot occur. In this model, they do not signify the disruptive effects of
rational or irrational speculation, but rather the dampening effect of storage that
prevents sharper price jumps, but with declining effectiveness, during episodes of
repeated low harvests.

7Bobenrieth, Bobenrieth and Wright (2008) offers a foundation for a strategy for numerical solution
of marginal values in cases where they are unbounded.
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5 Some Empirical Implications
Implications of the model for the empirical behavior of sample averages of returns

on the stocks, held over specific intervals, are summarized in the following theorem:

THEOREM 3: Let 0 < α < 1. With probability one, for any given path of
price realizations {pt}t≥0, for any n ∈ N and for any β > 0, there exist J =
J({pt}t≥0, n, β) ∈ N, k = k({pt}t≥0, J, β) ∈ N, k > n, and K = K({pt}t≥0, k, β) ∈
N, K > J, such that:

(i) J−1

J−1∑
t=0

[
δnpt+n − pt

pt

]
∈ (−β, β),

(ii) J−1

J−1∑
t=0

[
δkpt+k − pt

pt

]
∈ (−1, −1 + β), and

(iii) K−1

K−1∑
t=0

[
δkpt+k − pt

pt

]
∈ (−β, β).

PROOF OF THEOREM 3: For j ∈ N and for t ∈ N∪ {0}, let Yt+j ≡
δjpt+j − pt

pt
.

The arbitrage equation for storage (1) implies that there exists p̄ ≥ p(xj(zt)), p̄
depends on zt, such that δjαj

1p̄ = pt, where α1 is the size of the atom at zero of the
distribution of ω, and xj ≡ x ◦ x ◦ · · · ◦ x (j times). Therefore,

−1 ≤ Yt+j ≤ δj
p̄

pt
=

1

αj
1

.

The arbitrage equation (1) also implies Et[Yt+j] = 0. It follows that the sequence

{Xt}t≥0, where Xt ≡ Yt+j, is uniformly bounded, and
∞∑
i=1

supt|Cov(Xt, Xt−i)| < ∞.

A strong law of large numbers (see Davidson 1994, p.297) implies that

(2) lim
N→∞

N−1

N−1∑
t=0

[
δjpt+j − pt

pt

]
= 0, a.s.

Evaluating (2) for j = n we conclude that there exists J ∈ N such that (i) holds.
For this J, by Proposition 2,

lim
k→∞

J−1

J−1∑
t=0

[
δkpt+k − pt

pt

]
= −1, a.s.,
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establishing (ii) for large enough k. Finally, evaluating (2) for j = k we obtain
K, K > J, satisfying (iii). Q.E.D.

Expression (i) of Theorem 3 shows that the average excess rate of return on
stocks held over n periods is greater than a given, arbitrary −β, for a sufficiently
large sample size J, as implied by a strong law of large numbers.8 Expression (ii)
states that, with the same sample of initial holding dates, if we increase the holding
interval sufficiently, to k periods, (and increase the sample size by k − n periods to
accommodate the extended lead), the average gross discounted return is within an
arbitrary β of a total loss. At this sample size, the sample average (ii) could be
considered a downward-biased estimator of the expected k−period rate of increase
in price, which in this model is constant. Thus for any sample of prices of any given
length, one can find a sufficiently far horizon such that the estimated average return
can be taken to imply “mean reversion,” as defined for example in Bessembinder et
al. (1995) even if the behavior of prices does not exhibit mean reversion, as in the
stationary model considered here. Expression (iii) reflects the fact that the sample
average for the longer holding period approaches the conditional expectation for
that horizon, when the sample size is sufficiently increased.
Comparison of results (i) through (iii) has another interpretation, more relevant

for estimation of the long-run return on storage from any given time zero. As the
horizon is increased, the discounted present value of price realizations conditional
on any price pt in the sample of size J in (i) eventually converges, along the path
of realizations, to a neighborhood of zero in finite time, as stated in Proposition 2.
From this point of view, comparison of (ii) with (i) reflects the convergence of the
gross discounted value to its almost sure limit of a one hundred percent loss over
the holding period, as the latter goes to infinity. But (iii) shows an increase in the
average excess rate of return back to an arbitrary neighborhood of the conditional
expectation of zero when sufficient observations are added to include some that have
high rates of price increase through the fixed horizon. Note that (iii) does not imply
that an initial investment at time zero can be restored to profitability if held for a
sufficiently long time.

6 Conclusions
The remarkable work of Gustafson (1958) introduced a market model that numer-

ically derives the storage demand given consumer demand, yield distribution, cost of
storage and interest rate, assuming maximization of expected profits. The standard
model shows why price distributions tend to be skewed, and why do not closely
reflect production shocks. Recent empirical results confirm that it can, contrary
to previous claims, also match the high price correlations seen in annual prices of
major commodities. However the model as presented by Gustafson cannot address

8A similar result is confirmed (on a very different time scale) for daily returns for wheats on the
Kansas City and Minneapolis grain exchanges in Bobenrieth (1996).
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the behavior of prices if their profile of conditional expectations are unbounded, as
in some models of speculative behavior.
Here we consider an extension of the Gustafson model, introduced in Scheinkman

and Schechtman (1983) and addressed by Bobenrieth et al. (2002), in which price
expectations are unbounded, and derived its implications for price time series and
empirical tests of price behavior. We present versions of the model that exhibit price
behavior that could be characterized as “explosive” or “exhuberant” with episodes
of price runs that might be identified as “bubbles.” In this model, conditional price
expectations go to infinity as the horizon recedes, consistent with stationary be-
havior. This behavior is indistinguishable from that produced by a version of the
standard model with bounded conditional price expectations, so a test to establish
that price is unbounded is infeasible.
The stationary price process that we have examined reveals the importance of dis-

tinguishing any given profile of conditional price expectations from the path of price
realizations. The rate of increase of any profile of conditional price expectations in
our model is constant at the discount rate, while beyond some future period the path
of realized prices lies permanently below the profile of expectations conditional on
the current price. Returns on storage are returns consistent with “mean reversion”
at sufficiently long holding periods, even though the long run expectation of price
is infinite.
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APPENDIX. PROOF OF THEOREM 1: Consider the probability of the comple-
ment,

Prob
[
δtpm+t ≥ β | pm

]
= Prob

[
pm+t ≥

β

δt
| pm

]
= µt

([
β

δt
,∞

])
,

where µt is the probability measure of the price at time m+ t, conditional on pm.
Furthermore,

µt

([
β

δt
,∞

])
≤ |µt − µ∗| + µ∗

([
β

δt
,∞

])
,

where µ∗ is the invariant probability measure of the price process and | · | denotes the total
variation norm.

The transition probability of the price process satisfies, with respect to the point ∞,
what is called in Futia a Generalized Uniqueness Criterion (Futia, 1982, p.390). In ad-
dition, the corresponding Markov operator L is stable and quasicompact (Theorems 4.6
and 4.10 in Futia, 1982, p.394 and p. 397). Using Theorem 3.6 in Futia (1982, p.390),
and Theorem 4 in Yosida and Kakutani (1941, p.200), we obtain the following conclusion:
independent of pm, there exist constants M > 0, η > 0, such that :

||(L∗)t − L∗
1|| ≤ M

(1 + η)t
∀ t ∈ N,

where L∗ is the adjoint of the Markov operator L, L∗
1 is a continuous linear operator, the

image of which consists precisely of the fixed points of L∗, and || · || is the operator norm.
Therefore, if δpm denotes the unit point mass at pm, then :

|µt − µ∗| = |(L∗)t(δpm)− L∗
1(δpm)| ≤ ||(L∗)t − L∗

1|| ≤
M

(1 + η)t
∀ t ∈ N.

Finally, since µ∗ has no atom at infinity, we have that limt→∞ µ∗

([
β
δt ,∞

])
= 0.

Q.E.D.
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