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1.   Introduction 

The 2007-2009 crisis has intensified the need for indicators of the risk aversion of 

market participants. It has also become increasingly commonplace to assume that 

changes in risk appetites are an important determinant of asset prices. Not surprisingly, 

the behavioral finance literature (see e.g. Baker and Wurgler, 2007) has developed 

“sentiment indices,” and financial institutions have created a wide variety of “risk 

aversion indicators” (see Coudert and Gex (2008) for a survey). 

One simple candidate indicator is the equity variance premium, the difference 

between the squared VIX index and an estimate of the conditional variance of the stock 

market. The VIX index is the “risk-neutral” expected stock market variance for the US 

S&P500 contract and is computed from a panel of options prices. Well-known as a “fear 

index” (Whaley, 2000) for asset markets, it reflects both stock market uncertainty (the 

“physical” expected volatility), and a variance risk premium, which is also the expected 

premium from selling stock market variance in a swap contract. Bollerslev, Tauchen and 

Zhou (2009) show that an estimate of this variance premium predicts stock returns; 

Bekaert, Hoerova, Lo Duca (2012) show that there are strong interactions between 

monetary policy and the variance premium, suggesting that monetary policy may actually 

affect risk aversion in the market place. The variance premium uses objective financial 

market information and naturally “cleanses” option-implied volatility from the effect of 

physical volatility dynamics and uncertainty. We show that in a variety of economic 

settings, the variance premium is increasing in risk aversion and can therefore serve as an 

easy-to-compute risk aversion measure.  
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How to measure the variance premium is not without controversy however, because it 

relies on an estimate of the conditional variance of stock returns. For example, the 

measure proposed in Bollerslev, Tauchen and Zhou (2009), BTZ, henceforth, assumes 

that the conditional variance of stock market returns is a martingale, which is strongly at 

odds with the data, leading to biased variance premiums. 

In this paper, we tackle several measurement issues for the variance premium, 

assessing a plethora of state-of-the art volatility models and making full use of 

overlapping daily data, rather than sparse end-of-month data, which is standard. 

The conditional variance measure is of interest in its own right. First, there is a long 

literature on the trade-off between risk, as measured by the conditional variance of stock 

market returns, and the aggregate risk premium on the market (see e.g. French, Schwert 

and Stambaugh (1987) for a seminal contribution). This long line of research has mostly 

failed to uncover a strong positive relationship between risk and return (see Bali, 2008, 

for a summary). Second, stock market volatility can also be viewed as a market-based 

measure of economic uncertainty. For example, Bloom (2009) shows that heightened 

“economic uncertainty” decreases employment and output. Interestingly, he uses the VIX 

index to measure uncertainty, so that his results may actually be driven by the variance 

premium rather than uncertainty per se.  

Using more plausible estimates of the variance premium and stock market volatility, 

we then assess whether they predict stock returns and economic activity. We find that the 

well-known results in BTZ exaggerate the predictive power of the variance premium for 

stock returns. However, the equity variance risk premium remains a reliable predictor of 

stock returns, with its predictive power even stronger when the recent crisis period is 
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added to the sample. Stock market volatility does not predict the stock market, but it is a 

much better predictor of economic activity than is the equity variance premium.   

The remainder of the paper is organized as follows. Section 2 provides some 

theoretical background regarding the interpretation of the variance premium as an 

indicator of risk aversion. Section 3 discusses the econometric framework that we use to 

forecast volatility and compare different estimates of the conditional variance of stock 

returns. Section 4 reports the results of our specification analysis and forecasting horse 

race. Section 5 uses the preferred estimates of the variance premium and stock market 

volatility to predict stock returns and economic activity. Section 6 concludes.  

 

2.   The VIX, Uncertainty and Risk Aversion 

To obtain intuition on how the VIX is related to the actual (“physical”) expected 

variance of stock returns and to risk preferences, we analyze a one-period discrete state 

economy. Imagine a stock return distribution with three different states , as follows: ix

Good state: axg    with probability 2/)1( p , 

Bad state : axb    with probability 2/)1( p , 

Crash state:  with probability 0 cxc
p , 

where 0 ,  and  are parameters to be determined. We set them to match 

moments of US stock returns - the mean (

0a 0p

X ), the variance (V) and the skewness ( ) - 

while fixing the crash return at an empirically plausible number. These moments are 

readily computed from the state values and probabilities.  

Sk

Consider an investor with power utility over wealth in a one-period world, so that in 

equilibrium she invests her entire wealth in the stock market: 
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where R
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 is the gross return on the stock market,  is initial wealth and 0W   is the 

coefficient of relative risk aversion. The “pricing kernel” in this economy is given by 

marginal utility, denoted by , and is proportional to m R
~

. Hence, the stochastic part of 

the pricing kernel moves inversely with the return on the stock market.  

The physical variance of the stock market is exogenous in this economy, and is 

simply given by V. This variance is computed using the actual probabilities. The 

(squared) VIX represents the “risk-neutral” conditional variance. It is computed using the 

so-called “risk-neutral probabilities,” which are simply probabilities adjusted for risk. In 

particular, for a general state probability i  for state , the risk-neutral probability is: i
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So, for a given , we can easily compute the risk-neutral probabilities since 1 ii xR . 

For an economy with K  states, the risk-neutral variance is then given by: 
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In our economy, the risk-neutral probability puts more weight on the crash state. 

The higher is risk aversion, the more weight the crash state gets. As the crash state 

induces plenty of additional variance, the variance premium is positive.  
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Numerical Examples 

Suppose the statistics to match are as follows: %10X , %15 , both on an 

annualized basis; and on a monthly basis. These numbers roughly match 

statistics for the aggregate U.S. stock market. We set 

1Sk

%25c  (a monthly number). 

This crash return is in line with the stock market collapses in October 1987 and October 

2008. The implied crash probability to match the skewness coefficient of -1 is given 

by . With a monthly investment horizon, the crash probability implies a crash 

every 200 months, or roughly once every 15 years. Panel A of Table 1 provides, for 

different values of the coefficient of relative risk aversion 

% 5.0p

 , the values for the VIX on an 

annualized basis in percent (VIX) and the annualized variance premium (VP). Note that 

the variance premium is increasing in the coefficient of relative risk aversion  .  

In structural models,   is typically assumed to be time-invariant, and the time 

variation in the variance premium is generated through different mechanisms. For 

example, in Drechsler and Yaron (2011), who formulate a consumption-based asset 

pricing model with recursive preferences, the variance premium is directly linked to the 

probability of a “negative jump” to expected consumption growth. The analogous 

mechanism in our simple economy would be to decrease the skewness of the return 

distribution by increasing the crash probability p . This obviously represents “risk” 

instead of “risk aversion”. Yet, it is the interaction of risk aversion and skewness that 

gives rise to large readings in our risk aversion proxy. To illustrate, let us consider an 

example with lower skewness. Setting skewness equal to -2 requires a higher crash 

probability of . Panel B of Table 1 shows that the VIX increases, and increases % 1p
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more the higher the coefficient of relative risk aversion, both in absolute and in relative 

terms. The variance premium roughly doubles for all   levels. 

In Bekaert and Engstrom (2010), when a recession becomes more likely, the 

representative agent also becomes more risk averse through a Campbell-Cochrane 

(1999)-like external habit formulation. The recession fear then induces high levels of the 

VIX. We can informally illustrate such a mechanism in our one-period model. Imagine 

that the utility function is over wealth relative to an exogenous benchmark wealth level 

. Normalizing the initial wealth  to 1, the pricing kernel is now given by bmW

 R

0W

 

bmW
~

, and the coefficient of relative risk aversion is  bmWRR ~
/

~ . Consequently, 

risk aversion is state dependent and increases as R
~

 decreases towards the benchmark 

level. It is easy to see how a dynamic version of this economy, for instance with a slow-

moving , could generate risk aversion that is changing over time as return realizations 

change the distance between actual wealth and the benchmark wealth level.  

bmW

To illustrate this mechanism, Panel C considers three different benchmark levels for 

 (0.05, 0.25 and 0.5) with bmW   fixed at 4 and 1Sk , implying . The 

second column shows expected relative risk aversion in the economy (RRA), weighting 

the three possible realizations for risk aversion with the actual state probabilities. The 

other columns are as in the panels above. Clearly, for 

% 5.0p

0bmW , RRA = 4 and we replicate 

the values in Panel A for 4 . Keeping   fixed and increasing W , effective risk 

aversion increases. For example, RRA increases from 5.323 to 7.968 as  increases 

from 0.25 to 0.5. The VIX increases from 19.059 to 26.010 and the variance premium 

more than triples from 0.014 to 0.045. 

bm

bmW
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3.   Econometric Framework 

Introduction 

We define the variance risk premium as:  

 )22(

1

2

 tttt RVEVIXVP                (5) 

Here the VIX is the implied option volatility for contracts with a maturity of one month, 

and )  is the realized variance measured over the next month (22 trading days) using 

5 minute returns. Note that 

22(

1tRV

2)22(

1 tt VIXRV 

2

 is the return to buying variance in a variance 

swap contract. Therefore, technically speaking, the variance risk premium refers to the 

negative of VP. Since that number is always negative, we prefer to define it as we did in 

Equation (5). The unconditional mean of the variance premium is easy to compute by 

simply computing the average of )22(

1 tRVtVIX . However, we are interested in the 

conditional variance premium as described in Equation (5), which relies on the physical 

conditional expected value of the future realized variance. The common approach to 

estimate this uses empirical projections of the realized variance on variables in the 

information set, and subtracts this estimated expected variance from the 2VIX  to arrive at 

VP. Hence, the problem is reduced to one of variance forecasting. 

Variance forecasting 

There is an extensive econometric literature on volatility forecasting. 1  It is now 

generally accepted that models based on high frequency realized variances dominate 

standard models in the GARCH class (see e.g. Chen and Ghysels, 2012) and we therefore 

examine the state-of-the-art models in that class. These models stress the importance of 

                                                 
1 Fernandes, Medeiros and Scharth (2009) forecast the VIX index instead. 
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persistence (using lagged realized variances as predictors), additional information content 

in the most recent return variances (Corsi, 2009), asymmetry between positive and 

negative return shocks (the classic volatility asymmetry, see e.g. Engle and Ng, 1993) and 

potentially differing predictive information present in jump versus continuous volatility 

components (Andersen, Bollerslev, and Diebold, 2007). We accommodate all of these 

elements in our model.  

In the finance literature, it has been pointed out as early as in Christensen and 

Prabhala (1998) that option prices as reflected in implied volatility should have 

information about future stock market volatility. This motivates using the VIX as a 

predictive variable, a variable curiously absent in the econometrics literature.2 Of course, 

because the VIX also embeds a risk premium, it will not be an unbiased predictor of 

future realized volatility. Chernov (2007) argues that spot volatility is likely to have 

additional information about future volatility. Finally, it is well-known that estimation 

noise hurts out-of-sample forecasting performance. Simple models such as the martingale 

model may therefore outperform more complex models. We therefore also consider a 

number of non-estimated models that are special cases of our general framework.  

Our most general forecasting model can be represented as follows:  
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        (6) 

As explained below, we want to forecast the monthly (22 trading days) realized variance, 

denoted by . Our first independent variable is the , and we expect  to be 

positive. The next three variables (realized variances at the monthly, weekly and daily 

)22(

tRV 2VIX

                                                 
2 Exceptions are Busch, Christensen and Nielsen (2011) who examine a number of variance forecasting  
models embedding option-implied volatility for bond, currency and stock markets and Andersen and 
Bondarenko (2007), who mostly focus on measurement issues with the officially published VIX index.  
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frequencies) reflect the HAR (Heterogeneous Autoregressive) specification of Corsi 

(2009), incorporating volatility persistence and the idea that more recent variances may 

be especially informative.  

The third set of variables comprises jumps, denoted as , at the monthly, weekly 

and daily frequencies. To isolate the jumps contribution to daily quadratic variation, we 

use bipower variation (Barndorff-Nielsen and Shephard, 2004). Weekly (h=5) and 

monthly (h=22) jumps are defined as follows: J . The separation of the 

quadratic variation in a continuous (captured by the RV-variables) and a discontinuous 

(“jump”) component follows Andersen, Bollerslev and Diebold (2007). 

tJ

 jtJ 1



h

j

h

t
1

)(

Finally, following Corsi and Renò (2012), we add negative returns over the past day, 

week and month, to incorporate a potential leverage effect (see Campbell and Hentschel, 

1991; Bekaert and Wu, 2000). To model the leverage effect at different frequencies, they 

define  where ( ) ( )min ,0h

t tr r  h 



h

j
jt

h

t r
h

r
1

1

)( 1
. 

Initial specification analysis and models 

Our data start on January 02, 1990 (the start of the model-free VIX series)3 and covers 

the period until October 01, 2010. The recent crisis period presents special challenges as 

stock market volatilities peaked at unprecedented levels, but at the same time the crisis 

represents an informative period during which risk aversion may have been particularly 

pronounced. For that reason, our main analysis retains the crisis period but also considers 

a winsorized sample. In addition, we consider models that predict the logarithm of 
                                                 
3 The CBOE changed the methodology for calculating the VIX, initially measuring implied volatility for the 
S&P100 index, to be measured in a model–free manner from a panel of option prices (see Bakshi, Madan 
and Kapadia, 2003, for details) only in September 2003. It then backdated the new model–free index to 
1990 using historical option prices.  
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realized variances, and we put much emphasis on parameter stability in our model 

selection procedure.  

Our S&P500 realized variance measurements are computed using five-minute 

intraday returns plus the close-to-open return. As is standard in the literature (see, e.g., 

Andersen et al., 2007 or Corsi and Renò, 2012), we exclude holidays and other inactive 

trading days in our regressions (specifically, we exclude days with less than 64 return-

observations per day). We are left with a total of 5177 daily, overlapping observations. 

As a first step in our model selection, we use the full sample and estimate the model 

in Equation (6). To avoid poorly estimated coefficients, we “pare down” the regression 

using a model selection procedure akin to the one proposed by Campos, Hendry, and 

Krolzig (2003), among many others. Step 1 conducts a joint estimation using all 

(remaining) independent variables. Step 2 collects all variables that have coefficients 

insignificantly different from zero at the 10% level (using a two-sided test). If this set is 

empty, the final specification is reached. Step 3 performs an F-test in that specification on 

the non-significant variables. If the test does not reject at the 10% level, all these 

variables are dropped from the specification and we go back to step 1. If the test rejects, 

we only drop the variable with the lowest t-statistic (in absolute value) and go to step 1.  

We conduct this model selection procedure, which we refer to as the “Hendry-

approach,” on the original data and three alternative, modified data sets. The first 

alternative data set uses winsorized data to mitigate the impact of the extreme 

observations encountered during the crisis.4 While the crisis observations constitute less 

than 4% of the sample, their relative contribution to the variance of RV(22) is 81%! We 

                                                 
4 We define the crisis as the period from September 14, 2008 (collapse of Lehman Brothers) to June 2009 
(end of the NBER recession). 
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select the level of winsorization to bring this relative contribution to below 50%. This 

leads us to winsorizing the top 1.5% of the RV(22) data. We apply the same winsorization 

cutoff to all of our variables (winsorizing the bottom 1.5% in case of the negative return 

variable). The third and fourth data sets use logarithms of all variables in the winsorized 

and non-winsorized samples except negative returns (for the jump variables, we take the 

logarithm of ). Because variances have right-skewed distributions, but logarithmic 

variances tend to have near Gaussian distributions, it may be easier to predict logarithmic 

variances with linear models. However, ultimately, we still need to identify the model 

that best forecasts the level of the realized variance. To this end, when we consider a 

logarithmic model, we assume log-normality to predict levels of monthly realized 

variances: 

( )1 h

tJ

     





  

)22(

1

)22(

1

)22(

1 var
2

1
exp ttttt rvrvERVE             (7) 

where . We use the logarithmic model to compute the conditional 

expectation of  and the sample variance of )  to compute the variance term. 

 )22(

1

)22(

1 ln   tt RVrv

)22(

1trv


22(

1trv

The model specification analysis delivers the model with the best in sample fit over 

the full sample. This may not be the best model as simpler models may give more robust, 

stable and precise forecasts going forward. Therefore our second step in model selection 

consists of an out-of-sample forecasting horse race between various special cases of the 

encompassing model in Equation (6), including some non-estimated models.  

Table 2 summarizes the models we consider. We estimate the models by projecting 

the current realized variance onto the past values of the explanatory variables using OLS. 

The first model is to simply use the  as a predictor. The other benchmark models 2VIX
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are the purely econometric models, either using the realized monthly variance only 

(model 2) or the realized variance at three frequencies (monthly, weekly and daily) in 

model 9. We can then add jumps (models 5 and 11), or jumps and negative returns 

(models 7 and 13). Then we also consider all these models with the  as an 

additional predictor, yielding a total of 13 models (models 3, 4, 6, 8, 10 and 12). Model 

14 is the model selected by the Hendry analysis, which we discuss below. The three non-

estimated models are: the lagged squared VIX; the lagged realized variance (this is the 

model used in BTZ); and 0.5 times the lagged squared VIX plus 0.5 times the lagged 

realized variance. Finally, we follow the exact same procedure for the logarithmic model, 

yielding another 14 models. Thus, we consider 31 models in total. 

2VIX

Forecast accuracy and stability analysis 

To select among the various models, we verify their out-of-sample forecasting 

performance and examine their stability. We estimate the models using data between 

January 1, 1990 and July 15, 2005 (representing 75% of the full sample) and use the rest 

of the sample (till October 01, 2010) to measure forecasting performance. The parameters 

are not updated. We examine five different criteria.  

We compute the mean-squared error (MSE), mean absolute error (MAE), and mean 

absolute percentage error (MAPE; the absolute error in percent of the actual realized 

variance). We evaluate whether the forecast error measures are significantly different 

among competing forecasting models through the Diebold and Mariano (1995) test (with 

standard errors computed using 44 Newey-West lags), using a 10% significance level. 

We also compute the R2 of Mincer–Zarnowitz (1969) forecasting regressions, that is, we 
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compute the R2 in a regression of actual data on their forecasted values. 5  The final 

criterion we examine is a simple joint Chow test for parameter stability over the last part 

of the sample versus the estimation part of the sample. We also produce the average 

correlation of the forecasts produced by a particular model with the forecasts produced by 

the winning model on each of the first 4 criteria. This gives a sense of how close different 

forecast models are economically.  

 

4. Model Selection Results 

Full sample model selection 

In Table 3, we discuss the models chosen by the Hendry analysis over the four 

different data sets. The standard errors below the parameters are computed using 44 

Newey-West (1987) lags. The model selection always yields models with weekly and 

daily realized variances. The monthly realized variance is highly significant in three out 

of four cases, but it would be dropped in the case of the level regression using the original 

data. We nevertheless still keep the monthly variance as part of the winning model since 

the monthly jumps and negative returns, meant to complement its forecast, are significant 

at the 5% level, and the three variables are jointly significant at the 1% level.  

The VIX is chosen whenever the monthly realized variance would be, i.e., in all cases 

except for the non-winsorized levels data, where the Hendry analysis, apart from the VIX, 

also eliminates the weekly jumps and negative returns. In the non-winsorized data with 

the log regression, the VIX enters, but jumps at all frequencies and monthly negative 

returns are eliminated. With winsorized data, both level and log regressions select the 

                                                 
5 We also computed two other statistics; the heteroskedasticity adjusted root mean square error suggested in 
Bollerslev and Ghysels (1996) and the QLIKE loss function (see Patton, 2011). However, these statistics 
produce rankings very similar to the MAPE-criterion, so we do not discuss them further. 
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same model. The winning model includes daily jumps and negative returns, in addition to 

the squared VIX and Corsi’s realized variances at three frequencies.  

In comparison with the other models, the Hendry-chosen models rank among the top 

three in terms of the Akaike and Bayesian Information Criteria (AIC and BIC henceforth) 

in each of the four data samples we considered (winsorized/not winsorized; logged/not-

logged).  

Forecasting horse race 

Table 4 produces the ranks of our 31 considered models according to the five criteria 

discussed above for the non-winsorized data. Results for the winsorized sample are quite 

similar and are relegated to an online Appendix. Recall that for the logarithmic models, 

we are predicting the level of the realized variance as discussed in Section 3. For the first 

three criteria, we test for each model whether it generates a statistic significantly different 

from the statistic generated by the best ranked model. When such a test fails to reject, the 

rank is bolded. We view such tests as critical in model selection. A model may rank 

relatively low, but the criterion may have little power to distinguish different models and 

generate very similar forecast errors. For example, a quick glance at the table reveals that 

the MSE criterion has little power to distinguish alternative models. For the R2 criterion, 

we view a difference of more than 5% with the winning model as a significant difference 

in economic terms. Models similar in R2 to the winning model are bolded. The 5th column 

produces an average correlation, averaging the correlation of each model’s forecasts with 

the forecasts of the winning models in all four categories. If a model were to be the top 

model on each criterion, it would get a correlation of 1. Finally, the 6th column reports 

whether the model is stable or not according to the Chow test (using a 10% significance 
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level). Stable models are bolded.  

Using this information, we winnow down our set of models by requiring a good 

model to be bolded in at least 3 out of 4 criteria, in both non-winsorized and winsorized 

samples. This leaves us with only 6 models: models 1, 4, 8, 10, 12 and 14. However, the 

simplest models, models 1 and 4, as well as model 12, are not always stable. We 

therefore select models 8, 10 and 14 as the winning models. Model 8 is Corsi’s HAR 

model, supplemented with the squared VIX. Model 10 adds jump terms to this model, 

whereas Model 14 is the model shown in Table 3, picked by the full sample model 

selection procedure.  

In Table 5, we show the actual statistics for these 6 models, again focusing on non-

winsorized data, but also for some popular simple models used in the literature: the 

squared VIX – realized variance model used in Bekaert, Hoerova, Lo Duca (2013) (our 

model 3), the martingale model of BTZ (model 16) and the AR(1) model of Londono 

(2011) (model 2). In the last column, we also produce the average ranks of these models 

in the forecasting horse race over the 4 different criteria. The MAPE criterion is the most 

distinguishing one. Model 4 is the best performing model according to the MAPE 

criterion, but the other selected models produce MAPE statistics that are quite close with 

the exception of Model 14. Compared to the top models, the martingale and simple 

autoregressive models perform an order of magnitude worse but the squared VIX – 

realized variance model delivers quite similar performance. The MAE and MSE criteria 

have much less power to reject models. Simply investigating the magnitudes of the 

average forecast errors, the presence of realized variances at all three frequencies is 

important in delivering lower error statistics. Of the simpler models, the squared VIX – 
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realized variance model again performs best. In terms of R2, models 8, 10, 12 and 14 

yield substantial higher values than the other models, with the squared VIX – realized 

variance model one of the best behind these top models. When computing a simple 

average ranking across the four criteria, our selected models have very low average 

ranking scores. We also computed the AIC and the BIC criteria for all these models over 

the “in sample” period. These criteria favor more complex models, with Model 12 

minimizing these criteria in both the non-winsorized and winsorized data. 

Additional exercises 

We performed two alternative exercises. First, a more dramatic way to deal with the 

crisis is to leave it out of the analysis entirely. We performed our analysis using 

September 14, 2008 as the end of the sample, thus excluding crisis data points. For this 

sample, models 1, 4 and 10 of the level models, and models 1, 4 and 6 of the log models 

yield at least 3 bolded criteria. Hence, three of our previously identified models overlap.6 

Moreover, our preferred models (models 8, 10 and 14) display an average correlation of 

about 96% with the winning models over this sample period.  

Second, we re-consider our forecasting exercise with end-of-month data. In most of 

the existing articles (including BTZ, Londono, 2011, and Busch, Christensen and 

Nielsen, 2011), end-of-month data are used to estimate conditional variance models. The 

use of daily data should lead to more efficient estimates, but the correlation between daily 

and monthly data induced by the overlapping data structure, may make the increase in 

efficiency minor. We estimated all our models using end-of-the-month data till mid-2005, 

mimicking the time span used in our forecasting exercise with daily data. We then use the 

obtained regression coefficients to construct daily out-of-sample realized variance 
                                                 
6 Note that none of these models is stable. 
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forecasts for the remainder of the sample. Computing the usual criteria, we check whether 

we can accept the various models by looking for three “bolds” (fails to reject) on our four 

quantitative criteria (MAPE, MAE, MSE, and R2), and verify the stability criterion.  

Not surprisingly, monthly models do not “win” on any of the criteria. Yet, models 1 

and 8 still get 3 bolds out of 4. However, only model 8 is also stable. Interestingly, model 

8, based on monthly estimates, does well relative to the best models based on the daily 

information. The monthly model puts less weight on the squared VIX and more weight on 

RV(1) than the daily model does. The more complex models, like our previously winning 

models 10 and 14, which include jumps and/or asymmetric volatility, are, not 

surprisingly, more difficult to identify with monthly data. The use of monthly estimation 

samples should therefore best be restricted to relatively simple models, where the loss of 

efficiency is not very costly. 

 

5.   Economics and Predictability 

Risk and risk aversion  

In Figure 1, we plot the daily series for the variance risk premium (VP henceforth; 

displayed in Panel A), which may potentially serve as a proxy for risk aversion, and the 

conditional (physical) variance of the stock market (CV henceforth; in Panel B), which 

may potentially serve as a measure of economic uncertainty. We use the non-winsorized 

sample to do so and show the three series obtained from the winning models 8, 10 and 14 

on one graph. The VP and CV series display peaks at the expected times. The largest 

peaks for CV are observed during the Lehman aftermath in the recent crisis and at the 

time of the corporate scandals following the Enron debacle. Interestingly, the 1998 

Russian crisis and the Gulf war did not generate much uncertainty, but these events do 
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feature substantially elevated levels of VP. The Lehman event seems to have caused both 

massive uncertainty and massive risk aversion. As the three series are generally highly 

correlated, they tend to produce similar peaks and valleys; yet, it is visible that model 8, 

which does not feature jumps and volatility asymmetry, is less jagged than the other 

models, especially for the VP series.  

When realized variances show extreme peaks, the VP series can become negative, 

which happens more for models 10 and 14 than for model 8. This is a disadvantage of all 

these models. It is unlikely that during these periods of stress, there was a sudden increase 

in risk appetite. The more mundane explanation is that realized variances likely have 

different components with different levels of mean reversion. In a massive crisis, some of 

the realized variance movements should probably be allowed to mean-revert more 

quickly and not affect the conditional variance as much as they do now. The models with 

jumps could theoretically capture this by having negative coefficients on the jump terms. 

However, when using non-winsorized data, models 10 and 14 put a very large positive 

coefficient on the monthly jump component, and a negative one on the daily jump 

component. With the winsorized data, this problem is less prevalent, partially because of 

the milder data, but also because model 14 now does not feature a monthly jump 

component, and the daily jump term gets a negative coefficient. Overall, it is likely that a 

non-linear model may be better equipped to capture the behavior of CV and VP in severe 

crises.  

Contemporaneous correlations 

In Table 6, we report correlation matrices for the full sample. We show the three VP 

and CV measures from the winning models, excess stock returns (the S&P500 return in 

 18



excess of the Fama-French one-month rate; denoted Ret), industrial production growth 

(the log-difference of the total industrial production index; denoted IP) and two financial 

stress indicators, one created by the Kansas Fed (denoted FS Fed), and one created by the 

ECB (called CISS, see Hollo, Kremer and Lo Duca, 2012; denoted FS ECB). The Kansas 

Fed indicator combines a large number of interest rate variables such as the TED spread 

and the off/on-the-run-Treasury spread; a number of corporate yield spreads, risk 

indicators drawn from banking stock returns, but also the stock-bond return correlation 

and the VIX itself (see Hakkio and Keeton, 2009, for details). The series starts in 

February 1990. The ECB indicator is based on European Monetary Union data, 

combining information from the money, equity, bond, and foreign exchange markets, and 

some financial intermediaries-related information. The indicators mostly comprise 

realized volatilities for various return, currency or interest rate measures.  

The different CV measures are very highly correlated (correlations in excess of 94%), 

but Model 8’s VP measure shows correlation lower than 90% with the other two VP 

measures. Before the crisis, these correlations (unreported) were above 90%. The VP 

measures of Models 10 and 14 are 96% correlated. The VP and the CV measures display 

correlations roughly in the 25-45% range. In a pre-crisis sample (unreported), these 

correlations would be 20% higher.  

The financial instability indicators are relatively more correlated with the CV 

measures, than with the VP measures. The Kansas Fed measure shows a stronger 

association with the VIX components than does the ECB measure, which is not surprising 

given that it is based on US data and includes the VIX index itself. Excess returns not 

surprisingly correlate negatively with both VIX components, but the correlations are 
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higher (in absolute magnitude) for the CV measure. Industrial Production growth is 

negatively correlated with both the CV and VP measures, with the VP – industrial 

production growth correlations being generally lower in absolute magnitude.7  

Finally, while not reported, we should point out that when BTZ’s martingale model is 

used, it produces the relatively lowest correlation between VP and CV, and it produces 

surprisingly positive (but very small) correlations between the variance premium and 

both industrial production and excess returns. One reason for this is that the martingale 

model generates negative variance premiums during the crisis period more often than our 

preferred models.  

Predicting stock market returns  

The two components of the squared VIX index have been considered as separate 

potential predictors of stock market returns. Starting with French, Schwert and 

Stambaugh (1987), a large literature focuses on the relationship between aggregate stock 

market returns and their conditional variance. In a simple static CAPM model, the 

coefficient on the conditional stock market variance would be the wealth weighted risk 

aversion coefficient, but such a relationship need not hold perfectly in a dynamic model. 

In the literature on the risk–return relationship, estimates vary from positive to negative 

and the relationship is often insignificant. Lundblad (2007) suggests that the samples 

typically used are too short to uncover a relationship that is robustly and statistically 

significantly positive in the sample of over 150 years that he considers. Yet, the 

measurement of the conditional variance of stock returns may matter too. The bulk of the 

extant literature has considered GARCH-in-mean models to measure the conditional 

                                                 
7 The correlation matrices for winsorized data look similar to the ones discussed here and are therefore not 
reported. 
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stock market variance, which likely induces substantial measurement error in the 

regression. Ghysels, Santa Clara and Valkanov (2005) recover a positive risk–return 

trade-off measuring the conditional variance with a flexible function of past returns, 

applying MIDAS modeling.  

BTZ recently showed that the variance risk premium has predictive power for future 

stock returns, which is logical since it harbors information about aggregate risk aversion. 

As we showed above, their measure implicitly uses a volatility model that is strongly 

rejected by the data. We therefore reconsider the predictive power of both the equity 

variance risk premium (“risk”) and the conditional variance of the stock market 

(“uncertainty”), using our improved measures of the conditional variance of stock market 

returns.  

Given the importance of the BTZ-paper, we start by replicating their results using 

their sample period, which ends in December 2007 and therefore conveniently excludes 

the crisis period. We also rely on end-of-the-month observations but we consider various 

estimates of the variance premium as a predictor of equity returns. Table 7 contains the 

results. The left hand side variable is always Ret, as described above. We use three 

different horizons, monthly, quarterly and annual (denoted by 1, 3 and 12, respectively). 

The overlap in the monthly data creates serial correlation in the error term that must be 

corrected for in creating standard errors. We use a relatively large number of Newey-

West lags, namely max{3, 2*horizon}, to do so, rather than create standard errors under 

the null of no predictability, as in Hodrick (1992). While the Hodrick estimator has very 

good size properties, selecting a large number of lags may improve power (see Sun, 

Phillips, and Jin, 2008). 
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In the last specification, we show that the squared VIX itself fails to predict stock 

returns. Just above, we repeat the BTZ specification that uses the past realized variance as 

the estimate of the conditional variance of stock market returns. The resulting variance 

premium proxy predicts stock market returns at all three horizons with the predictive 

power strongest at the quarterly horizon, both in terms of statistical significance of the 

coefficient and the adjusted R2. These results confirm the results in BTZ.8 Compared to 

the predictability results when using the three best models - models 8, 10 and 14 - to 

estimate the variance premium, BTZ’s martingale model maximizes the predictive power 

of the variance premium for returns. For the best models, there is only statistical 

significant predictive power at the quarterly frequency and the R2 drops from 7% to 

somewhere between 3 and 5%.9 

In unreported results, we find that various estimates of the conditional variance do not 

predict future stock market returns for this sample. With the exception of model 14, 

where the conditional variance predicts future stock market returns next month, we do no 

record any significant coefficients.  

This generates somewhat of a puzzle regarding the origin of the strong predictive 

power of the BTZ-variance premium. If the VIX itself does not predict stock market 

returns and aggregate realized variance does not either, why does their difference provide 

strong predictive power? The coefficient on the variance premium can be decomposed as 

follows: 

                                                 
8 Our results differ slightly from BTZ estimates because our monthly realized variance measure is based on 
the sum of squared returns over 22 trading days, whereas the BTZ measure is based on the sum of squared 
returns over a calendar month (which is mostly, but not always, 22 trading days). 
9 One possibility is that because we pre-estimate the conditional variance and BTZ do not, measurement 
noise affects our estimates. However, our measurement provides proxies for the variance premium and the 
conditional stock market variance closer to the true economic concepts. 
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It turns out that the variance of the squared VIX is higher than the variance of RV, 

which is itself rather similar to the variance of the variance risk premium. Therefore, the 

variance premium coefficient at the quarterly frequency scales up the positive coefficient 

on the VIX, and gets an additional small contribution from the coefficient on stock market 

volatility which is negative at the quarterly horizon.  

Economically, it does appear that the variance risk premium uncovers a component in 

the VIX index that is related to future stock market returns, but the statistical evidence is 

not very strong. Apart from the small sample, one possible reason for this is the well-

known fact that equity risk premiums are likely driven by multiple state variables (see 

Ang and Bekaert; 2007, Menzly, Santos and Veronesi, 2004) so that the univariate 

regressions are necessarily mis-specified. In the consumption-based asset pricing model 

of Bekaert, Engstrom and Xing (2009), risk aversion and uncertainty are the two state 

variables driving time-variation in the equity risk premium.10  

Switching to the full sample, we therefore investigate bivariate regressions using both 

the variance premium and the conditional variance as predictors, a specification not 

considered in BTZ. We also performed tests allowing for dummies to capture potential 

coefficient changes during the crisis. However, we do not report these regressions with 

dummies as the evidence for changes during the crisis is overall econometrically weak. 

When there are interesting changes, we simply note them in the text. 

The bivariate regression results are in Panel A of Table 8. The VP remains overall the 

                                                 
10 Anderson, Ghysels, and Juergens (2009) also examine the impact of “risk” and “uncertainty”, but in their 
paper risk represents physical volatility and uncertainty disagreement among forecasters. 
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stronger predictor, with its coefficients and t-stats increasing relative to the shorter 

sample. It is now statistically significant at both the quarterly and annual horizons for all 

three preferred measures. The CV coefficients are always negative and sometimes 

significantly so for models 8 and 10.  

These results have implications for the consumption–based asset pricing literature, 

where there is a persistent debate about what economic mechanism generates a large 

equity premium, volatile stock market and long–horizon stock return predictability. In the 

Bansal–Yaron (2004) long-run risk model, time–variation in the equity premium comes 

from time–variation in economic uncertainty. Recent versions of the model (see e.g. 

Bansal, Kiku, Yaron, 2012) put more and more emphasis on the role of volatility and 

argue that substantial persistence in volatility is necessary to make the models fit the 

salient asset return features. However, our empirical results cast doubt on this economic 

mechanism. The persistence of the conditional variance varies between 0.67 and 0.73 

across models. Moreover, the time-varying risk premium component in equity returns 

comes predominantly from the variance risk premium, not from time-varying economic 

uncertainty. The effects of economic uncertainty on risk premiums we do document seem 

short-lived. This suggests that the alternative class of models (see Campbell and 

Cochrane, 1999), which relies on counter-cyclical changes in risk aversion to generate 

variation in risk premiums, has more chance of being the true economic mechanism 

explaining time-variation in equity risk premiums. 

In Panel B, we consider a multivariate regression including other well-known 

predictor-variables, namely the real 3-month rate (the three-month T-bill minus CPI 

inflation, denoted 3MTB), the log dividend yield (denoted Log(DY)), the credit spread 
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(the difference between Moody’s BAA and AAA bond yield indices, denoted CS) and the 

term spread (the difference between the 10-year and the 3-month Treasury yields, 

denoted TS). The addition of the other variables strengthens the predictive power of the 

variance premium for equity returns, with the coefficients uniformly increasing slightly. 

The evidence for the predictive power of CV does change considerably. The uncertainty 

coefficients are now mostly small and insignificantly different from zero.  

As to the other variables, the term structure variables are never significant. Both the 

real rate and the term spread have consistently positive coefficients, reversing a pattern 

observed when crisis data are excluded, where they have negative coefficients at the 

monthly and quarterly horizons, but positive ones at the annual horizon (which are also 

not significant). The credit spread obtains a large negative coefficient that is not 

significantly different from zero, and the dividend yield is at best significant at the 10% 

level, mostly at the longer horizons. Here, the crisis adversely affected the predictive 

power of these variables. Excluding crisis data, the dividend yield and the credit spread 

were highly statistically significantly different from zero at all horizons for all 

specifications, with the dividend yield having the expected positive coefficient, but the 

credit spread negatively affecting the equity premium.11  

The adjusted R2’s remains small at the one month horizon, but now becomes quite 

large at the quarterly (12 to 20% range) and annual horizons (around 27%). It is likely 

that this high explanatory power may partially reflect statistical bias (see Boudoukh, 

                                                 
11 There is no issue of multi-collinearity in the regression as the dividend yield–credit spread correlation is 
in fact close to zero.  While the negative credit spread coefficient may surprise some readers, BTZ also 
report negative coefficients for the credit spread in univariate excess return regressions. It is conceivable 
that the credit spread is a good indicator of economic prospects (for example, it is relatively highly 
correlated with economic uncertainty) and therefore helps cleanse the dividend yield from variation driven 
by cash flows, rather than risk premiums (see Golez, 2012 for a recent interesting attempt to cleanse the 
dividend yield of cash flow effects in a predictability regression). 
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Richardson and Whitelaw, 2007).  

We conducted the full sample analysis using winsorized data, finding that our 

results are unchanged. We therefore omit the results. 

Predicting the Real Economy 

In Table 9, we examine the predictive power of the variance risk premium, and stock 

market volatility (using our three preferred measures) for economic activity as measured 

by industrial production growth. Bloom (2009) shows that uncertainty shocks lead to a 

rapid drop and rebound in aggregate output and employment. In a model with adjustment 

costs to labour and capital, this occurs because higher uncertainty causes firms to 

temporarily pause their investment and hiring. In some of his empirical work, Bloom 

actually uses the VIX to help measure uncertainty shocks. Here, we investigate whether 

the VIX and/or its two components predict economic activity in a simple regression 

framework.  

The last specification shows that the squared VIX itself predicts economic activity 

with a negative sign at all horizons (significant at the 1% level). The bivariate regressions 

with its two components show that whatever predictive power the VIX has for future 

output, is coming from the uncertainty component. The coefficient on VP is negative at 

monthly and quarterly horizons, but it is always statistically insignificantly different from 

zero. The coefficient on CV is always negative, and statistically significant at the 1% 

level for all three horizons. We conclude that CV is a robust and significant predictor of 

economic activity.  
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6.   Conclusions 

We decompose the squared VIX, the risk neutral expected stock market variance, into 

two components, the conditional (physical) variance of the stock market (CV) and the 

equity variance premium (VP), which is the difference between the two (VP=VIX2-CV). 

Because this decomposition critically depends on the accuracy of the model for CV, we 

first conduct an extensive analysis of state-of-the-art variance forecasting models, where 

we make sure to also consider the squared VIX itself as a potential predictor. We find that 

the winning models on a number of forecasting criteria and specification tests always 

include the VIX. Of the two components, the conditional variance is more strongly 

correlated with some recent financial stress indicators, tracked by the Fed and the ECB, 

than is the variance premium.  

We use these models to re-examine and expand the evidence on the predictive power 

of VP and CV for stock returns and economic activity, as measured by industrial 

production. We find that the variance premium is a significant predictor of stock returns, 

but the conditional variance mostly is not. However, CV robustly and significantly 

predicts economic activity with a negative sign, whereas VP has no predictive power for 

future output growth.   
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Table 1: The VIX and variance premium 

Panel A: Varying  , 1Sk , % 5.0p  

Parameters VIX VP 
2,1  Sk  15.925 0.003 
4,1  Sk  17.342 0.008 
6,1  Sk  19.472 0.015 

Panel B: Varying  , 2Sk , % 1p  

Parameters VIX VP 
2,2  Sk  16.838 0.006 
4,2  Sk  19.516 0.016 
6,2  Sk  23.194 0.031 

Panel C: Varying , bmW 4 , 1Sk , % 5.0p  

Parameters RRA VIX VP 
     0,4  bmW 4.000 17.342 0.008 

25.0,4  bmW  5.323 19.059 0.014 

50.0,4  bmW  7.968 26.010 0.045 
 

Notes: Values of the VIX on an annualized basis in percent (VIX) and the annualized variance premium 
(VP) for different values of the underlying parameters, while keeping the crash return c fixed at -25%. In 
Panel A, the varying parameter is the coefficient of relative risk aversion γ while skewness Sk is fixed at -1. 
In Panel B, Sk is fixed at -2. Panel C computes, for γ fixed at 4 and Sk fixed at -1, expected relative risk 
aversion (RRA), VIX and VP for different values of the benchmark wealth level Wbm.  
 
 
 

Table 2: Models considered 

Variables 2VIX  )22(RV  )  1()5( , RVRV )22(J  
)1()5( , JJ  )22(r  

 )1()5( , rr  

Estimated models 
Model 1 X       
Model 2  X      
Model 3 X X      
Model 4 X X  X    
Model 5  X  X    
Model 6 X X  X  X  
Model 7  X  X  X  
Model 8 X X X     
Model 9  X X     
Model 10 X X X X X   
Model 11  X X X X   
Model 12 X X X X X X X 
Model 13  X X X X X X 
Model 14 Hendry-chosen model - see Table 3 
Non-estimated models 
Model 15 X       
Model 16  X      
Model 17 0.5* X 0.5*X      

 

Notes: Summary of variables included in estimated and non-estimated models.  
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Table 3: Hendry analysis 

Model (1) (2) (3) (4) 

2VIX   0.203*** 0.162** 0.235*** 
  [0.074] [0.076] [0.069] 

)22(RV  -0.255 0.359*** 0.233*** 0.349*** 
 [0.276] [0.054] [0.077] [0.052] 

)5(RV  0.216** 0.241*** 0.204** 0.228*** 
 [0.103] [0.052] [0.087] [0.042] 

)1(RV  0.141*** 0.101*** 0.165*** 0.122*** 
 [0.033] [0.014] [0.035] [0.017] 

)22(J  4.954**    
 [2.352]    

)5(J      
     

)1(J  -0.308**  -0.252** -61.924** 
 [0.145]  [0.112] [28.381] 

)22(r  -0.013**    
 [0.006]    

)5(r   -0.356*   
  [0.195]   

)1(r  -0.002*** -0.231*** -0.0009*** -0.283*** 
 [0.0009] [0.060] [0.0003] [0.049] 
Constant 0.0003** -0.810*** 0.0002 -0.621*** 
  [0.0001] [0.186] 0.0001 [0.191] 
# daily observations 5155 5155 5155 5155 

 

Notes: The table reports the OLS estimates for monthly variance forecast regressions. Columns 1-2 use 
the daily non-winsorized sample and Columns 3-4 use the daily winsorized sample. Columns 2 and 4 
use the data in logarithms. The standard errors reported in brackets are computed using 44 Newey-
West lags. ***, **, * denote significance at the 0.01, 0.05 and 0.10-level. 
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Table 4: Model ranking, non-winsorized sample 

Model MAPE rank MAE rank MSE rank R2 rank Corr w/ #1 models Stable 

Estimated level models 

Model 1 2 12 22 22 0.952 N 
Model 2 18 15 14 14 0.963 Y 
Model 3 5 9 13 13 0.977 Y 
Model 4 1 10 19 19 0.974 Y 
Model 5 17 14 15 15 0.963 N 
Model 6 6 7 11 11 0.983 Y 
Model 7 12 11 9 9 0.977 Y 
Model 8 3 3 8 8 0.986 Y 
Model 9 11 8 4 4 0.981 Y 
Model 10 4 1 7 7 0.989 Y 
Model 11 13 6 3 3 0.984 Y 
Model 12 7 2 5 5 0.991 N 
Model 13 9 4 2 2 0.989 N 
Model 14 10 5 1 1 0.989 Y 

Non-estimated models 

Model 15 31 31 25 25 0.952 N/A 
Model 16 20 26 23 23 0.963 N/A 
Model 17 30 30 20 20 0.977 N/A 

Estimated log models 

Log Model 1 8 13 17 17 0.955 N 
Log Model 2 29 24 12 12 0.964 Y 
Log Model 3 21 20 18 18 0.977 N 
Log Model 4 14 28 30 30 0.719 N 
Log Model 5 27 29 31 31 0.702 Y 
Log Model 6 15 23 29 29 0.793 N 
Log Model 7 26 27 27 27 0.830 Y 
Log Model 8 22 17 10 10 0.988 N 
Log Model 9 28 16 6 6 0.988 N 
Log Model 10 16 22 28 28 0.818 N 
Log Model 11 25 25 26 26 0.842 N 
Log Model 12 19 19 24 24 0.835 N 
Log Model 13 23 18 21 21 0.842 N 
Log Model 14 24 21 16 16 0.973 N 

 

Notes: Model ranking based on the out-of-sample performance, non-winsorized sample. Parameters are 
estimated using data between January 1, 1990 and July 15, 2005 and the rest of the sample (till October 01, 
2010) is used to assess forecasting performance. The first three columns produce ranking according to the 
mean absolute percentage error (MAPE), mean absolute error (MAE) and mean-squared error (MSE). The 
rank is bolded if the Diebold-Mariano test fails to reject (at 10% level) the null of no significant difference 
from the best ranked model. The 4th column produces ranking according to the Mincer-Zarnowitz R2, with 
the rank bolded if the difference with the winning model is less than 5%. The 5th column produces the 
average correlation of each model with the winning models in the 4 categories. The 6th column reports 
whether the model is stable or not according to the Chow test (using 10% significance level); stable models 
are bolded. 
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Table 5: Selected model statistics, non-winsorized sample 

Model MAPE MAE MSE R2 Average score 

Model 1 0.342 1.878E-03 2.840E-05 0.410 14.50 
Model 2 0.494 1.914E-03 2.490E-05 0.483 15.25 
Model 3 0.354 1.775E-03 2.460E-05 0.489 10.00 
Model 4 0.338 1.784E-03 2.570E-05 0.466 12.25 
Model 8 0.346 1.693E-03 2.150E-05 0.553 5.50 
Model 10 0.353 1.681E-03 2.120E-05 0.559 4.75 
Model 12 0.374 1.682E-03 2.090E-05 0.565 4.75 
Model 14 0.437 1.711E-03 1.990E-05 0.587 4.25 
Model 16 0.501 2.228E-03 2.850E-05 0.407 23.00 

 

Notes: Selected model statistics based on the out-of-sample performance. The first three columns show the 
mean absolute percentage error (MAPE), mean absolute error (MAE) and mean-squared error (MSE). The 
statistic is bolded if the Diebold-Mariano test fails to reject (at 10% level) the null of no significant 
difference from the best ranked model. The 4th column reports Mincer-Zarnowitz R2, with the statistic 
bolded if the difference with the winning model is less than 5%. The 5th column produces the average 
ranking score of each model in the 4 categories.  
 
 
 
 
 
 
 
 

Table 6: Correlation matrix 

Correlations 

 VP 8 VP 10 VP 14 CV 8 CV 10 CV 14 FS ECB FS Fed Ret IP 

VP 8 1          

VP 10 0.871 1         

VP 14 0.838 0.963 1        

CV 8 0.375 0.443 0.414 1       

CV 10 0.426 0.343 0.318 0.955 1      

CV 14 0.418 0.336 0.266 0.942 0.986 1     

FS ECB 0.457 0.363 0.360 0.670 0.718 0.696 1    

FS Fed 0.584 0.508 0.518 0.772 0.807 0.772 0.837 1   

Ret -0.172 -0.221 -0.050 -0.456 -0.425 -0.515 -0.237 -0.238 1  

IP -0.211 -0.096 -0.147 -0.234 -0.299 -0.260 -0.371 -0.479 -0.004 1 
 

Notes: Sample period February 1990 – September 2010, monthly observations. Correlations for the three VP 
and CV measures from the winning models 8, 10 and 14; two financial stress indicators, one created by the 
Kansas Fed (FS Fed) and one created by the ECB (FS ECB); excess stock returns (Ret), and industrial 
production growth (IP). 
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Figure 1: Variance premium and conditional variance 

Panel A: Variance premia 
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Panel B: Conditional variances 
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Notes: Daily series for the variance premium (VP) and the conditional variance (CV) from the winning 
models 8, 10 and 14 (full non-winsorized sample).  
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Table 7: Stock return regressions, sample till 2007 

Monthly, quarterly and annual regressions with variance premium 

Horizon 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 

VP 8 0.381 0.462*** 0.116             

 [0.237] [0.171] [0.140]             

VP 10    0.232 0.382** 0.0643          

    [0.246] [0.174] [0.143]          

VP 14       0.123 0.351** 0.0592       

       [0.266] [0.172] [0.139]       

VP 16          0.363* 0.501*** 0.188**    

          [0.189] [0.097] [0.086]    

VIX2             0.192 0.188 -0.007 

             [0.134] [0.122] [0.100] 

constant 0.231 -1.423 3.626 2.496 -0.356 4.422 4.286 0.133 4.501 -0.0402 -2.826 2.184 -0.0439 -0.262 5.732 

 [4.117] [4.012] [3.914] [4.180] [3.829] [3.441] [4.393] [3.813] [3.543] [3.843] [3.507] [4.062] [4.426] [4.424] [3.779] 

Adj. R2
 0.007 0.049 0.006 0.000 0.035 -0.001 -0.003 0.029 -0.002 0.008 0.070 0.028 0.005 0.023 -0.005 

 

Notes: Sample period January 1990 – December 2007. All regressions are based on monthly observations. The standard errors reported in brackets are computed using 
max{3, 2*horizon} Newey-West lags. ***, **, * denote significance at the 0.01, 0.05 and 0.10-level. 



 

Table 8, Panel A: Stock return regressions, full sample 

Panel A: Monthly, quarterly and annual regressions with variance premium and conditional variance 

Horizon 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 

VP 8 0.487 0.705*** 0.245**             

 [0.347] [0.134] [0.095]             

CV 8 -0.269* -0.294*** -0.025             

 [0.139] [0.050] [0.059]             

VP 10    0.393 0.485*** 0.254**          

    [0.327] [0.133] [0.119]          

CV 10    -0.239 -0.209* -0.034          

    [0.231] [0.119] [0.066]          

VP 14       0.317 0.410*** 0.260**       

       [0.311] [0.143] [0.118]       

CV 14       -0.200 -0.170 -0.035       

       [0.229] [0.123] [0.060]       

VP 16          0.459** 0.572*** 0.204**    

          [0.182] [0.109] [0.084]    

CV 16          -0.057 -0.010 0.053    

          [0.080] [0.054] [0.062]    

VIX2
             -0.036 0.014 0.059 

             [0.167] [0.140] [0.047] 

constant 1.548 -1.772 1.175 2.604 0.358 1.228 3.068 0.802 1.111 -2.274 -5.239 0.326 5.913 3.993 2.733 

 [5.157] [4.072] [5.098] [4.624] [3.857] [4.999] [4.794] [4.123] [5.056] [4.574] [4.071] [5.257] [5.563] [4.689] [4.452] 

Adj. R2
 0.017 0.111 0.034 0.012 0.056 0.042 0.008 0.045 0.050 0.032 0.132 0.037 -0.003 -0.004 0.010 

 

Notes: Sample period January 1990 – September 2010. All regressions are based on monthly observations. The standard errors reported in brackets are computed 
using max{3, 2*horizon} Newey-West lags. ***, **, * denote significance at the 0.01, 0.05 and 0.10-level. 
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Table 8, Panel B: Stock return regressions, full sample 

Panel B: Monthly, quarterly and annual regressions with variance premium, conditional variance and other predictors 

Horizon 1 3 12 1 3 12 1 3 12 1 3 12 

3MTB 4.146 3.472 3.716 4.073 3.654 3.532 3.961 3.456 3.314 3.897 3.450 3.726 
 [3.351] [3.426] [3.205] [3.157] [3.660] [3.119] [3.103] [3.696] [3.068] [3.452] [3.506] [3.209] 

Log(DY) 19.19 21.67* 19.20* 19.60 21.72 19.63* 19.96 22.26* 20.11* 19.38 21.46 19.13* 
 [14.54] [13.08] [10.69] [14.40] [13.36] [10.69] [14.38] [13.37] [10.67] [14.48] [13.04] [10.67] 

CS -13.92 -16.40 -6.016 -12.27 -14.53 -5.253 -14.82 -17.53 -6.496 -10.28 -12.23 -5.138 
 [16.98] [12.45] [4.890] [18.50] [14.59] [5.141] [17.77] [14.89] [4.922] [16.47] [12.59] [4.976] 

TS 2.420 2.297 4.224 2.357 2.431 4.076 2.270 2.277 3.905 2.123 2.161 4.207 
 [4.022] [4.369] [3.671] [3.987] [4.505] [3.618] [3.953] [4.490] [3.575] [4.033] [4.365] [3.662] 

VP 8 0.562** 0.809*** 0.274***          
 [0.283] [0.141] [0.102]          

CV 8 -0.078 -0.090 0.076          
 [0.210] [0.091] [0.050]          

VP 10    0.421 0.539*** 0.271***       
    [0.312] [0.166] [0.079]       

CV 10    -0.045 -0.002 0.062       
    [0.290] [0.118] [0.057]       

VP 14       0.388 0.514*** 0.291***    
       [0.304] [0.188] [0.089]    

CV 14       0.005 0.050 0.069    
       [0.261] [0.116] [0.052]    

VP 16          0.513*** 0.646*** 0.233*** 
          [0.177] [0.107] [0.078] 

CV 16          0.069 0.130 0.125** 
          [0.126] [0.096] [0.054] 

constant -12.65 -15.25 -20.39 -12.49 -14.52 -20.63 -10.58 -12.31 -19.79 -17.54 -20.37 -21.44 

 [16.55] [13.00] [13.01] [17.50] [14.03] [12.76] [16.87] [14.16] [12.63] [16.22] [12.98] [13.03] 

Adj. R2
 0.034 0.189 0.270 0.027 0.131 0.272 0.025 0.126 0.278 0.045 0.199 0.270 

 

Notes: Sample period January 1990 – September 2010. All regressions are based on monthly observations. The standard errors reported in 
brackets are computed using max{3, 2*horizon} Newey-West lags. ***, **, * denote significance at the 0.01, 0.05 and 0.10-level. 
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Table 9: Industrial production regressions 

Monthly, quarterly and annual regressions with variance premium and conditional variance 

Horizon 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 

VP 8 -0.043 -0.027 0.020             

 [0.043] [0.041] [0.024]             

CV 8 -0.097*** -0.109*** -0.053***             

 [0.019] [0.007] [0.011]             

VP 10    -0.042 -0.015 0.038          

    [0.060] [0.038] [0.023]          

CV 10    -0.098*** -0.116*** -0.063***          

    [0.028] [0.008] [0.016]          

VP 14       -0.053 -0.021 0.038       

       [0.059] [0.038] [0.024]       

CV 14       -0.092*** -0.113*** -0.063***       

       [0.023] [0.008] [0.015]       

VP 16          -0.036 -0.027 0.014    

          [0.033] [0.030] [0.019]    

CV 16          -0.082*** -0.086*** -0.033***    

          [0.019] [0.010] [0.011]    

VIX2
             -0.080*** -0.084*** -0.031*** 

             [0.020] [0.018] [0.009] 

constant 4.792*** 4.728*** 2.724** 4.808*** 4.671*** 2.617** 4.887*** 4.695*** 2.591** 4.370*** 4.263*** 2.411** 5.103*** 5.205*** 3.145*** 

 [0.846] [0.694] [1.118] [0.885] [0.659] [1.133] [0.951] [0.711] [1.139] [0.849] [0.701] [1.178] [0.820] [0.678] [0.959] 

Adj. R2
 0.123 0.278 0.083 0.124 0.294 0.118 0.122 0.293 0.129 0.131 0.296 0.095 0.122 0.257 0.056 

 

Notes: Sample period January 1990 – September 2010. All regressions are based on monthly observations. The standard errors reported in brackets are computed 
using max{3, 2*horizon} Newey-West lags. ***, **, * denote significance at the 0.01, 0.05 and 0.10-level. 
 


