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1 Introduction

Aggregate real output is surely the most fundamental and important concept in macroe-

conomic theory. Surprisingly, however, significant uncertainty still surrounds its measure-

ment. In the U.S., in particular, two often-divergent GDP estimates exist, a widely-used

expenditure-side version, GDPE, and a much less widely-used income-side version, GDPI .
1

Nalewaik (2010) and Fixler and Nalewaik (2009) make clear that, at the very least, GDPI

deserves serious attention and may even have properties in certain respects superior to those

of GDPE. That is, if forced to choose between GDPE and GDPI , a surprisingly strong case

exists for GDPI . But of course one is not forced to choose between GDPE and GDPI , and

a GDP estimate based on both GDPE and GDPI may be superior to either one alone. In

this paper we propose and implement a framework for obtaining such a blended estimate.

Our work is related to, and complements, Aruoba et al. (2012). There we took a forecast-

error perspective, whereas here we take a measurement-error perspective.2 In particular, we

work with a dynamic factor model in the tradition of Geweke (1977) and Sargent and Sims

(1977), as used and extended by Watson and Engle (1983), Edwards and Howrey (1991),

Harding and Scutella (1996), Jacobs and van Norden (2011), Kishor and Koenig (2011), and

Fleischman and Roberts (2011), among others.3 That is, we view “true GDP” as a latent

variable on which we have several indicators, the two most obvious being GDPE and GDPI ,

and we then extract true GDP using optimal filtering techniques.

The measurement-error approach is time honored, intrinsically compelling, and very dif-

ferent from the forecast-combination perspective of Aruoba et al. (2012), for several reasons.4

First, it enables extraction of latent true GDP using a model with parameters estimated with

exact likelihood or Bayesian methods, whereas the forecast-combination approach forces one

to use calibrated parameters. Second, it delivers not only point extractions of latent true

GDP but also interval extractions, enabling us to assess the associated uncertainty. Third,

the state-space framework in which the measurement-error models are is embedded facili-

tates exploration of the relationship between GDP measurement errors and the economic

environment, such as stage of the business cycle, which is of special interest. Fourth, the

1Indeed we will focus on the U.S. because it is a key egregious example of unreconciled GDPE and GDPI
estimates.

2Hence the pair of papers roughly parallels the well-known literature on “forecast error” and “measure-
ment error” properties of of data revisions; see Mankiw et al. (1984), Mankiw and Shapiro (1986), Faust
et al. (2005), and Aruoba (2008).

3See also Smith et al. (1998), who take a different but related approach.
4On the time-honored aspect, see, for example, Gartaganis and Goldberger (1955).



state-space framework facilitates real-time analysis and forecasting, despite the fact that

preliminary GDPI data are not available as quickly as those for GDPE.

We proceed as follows. In section 2 we consider several measurement-error models and

assess their identification status, which turns out to be challenging and interesting in the most

realistic and hence compelling case. In section 3 we discuss the data, estimation framework

and estimation results. In section 4 we explore the properties of our new GDP series. We

conclude in section 5.

2 Five Measurement-Error Models of GDP

We use dynamic-factor measurement-error models, which embed the idea that both GDPE

and GDPI are noisy measures of latent true GDP . We work throughout with growth rates

of GDPE, GDPI and GDP (hence, for example, GDPE denotes a growth rate).5 We assume

throughout that true GDP growth evolves with simple AR(1) dynamics, and we entertain

several measurement structures, to which we now turn.

2.1 (Identified) 2-Equation Model: Σ Diagonal

Here we assume that the measurement errors are orthogonal to each other and to transition

shocks at all leads and lags. The model has a natural state-space structure, and we write

[
GDPEt

GDPIt

]
=

[
1

1

]
GDPt +

[
εEt

εIt

]
(1)

GDPt = µ(1− ρ) + ρGDPt−1 + εGt,

where GDPEt and GDPIt are expenditure- and income-side estimates, respectively, GDPt is

latent true GDP , and all shocks are Gaussian and uncorrelated at all leads and lags. That

is, (εGt, εEt, εIt)
′ ∼ iidN(0,Σ), where

Σ =

 σ2
GG 0 0

0 σ2
EE 0

0 0 σ2
II

 . (2)

5We will elaborate on the reasons for this choice later in section 3.
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This model has been used countless times. As is well known, the Kalman filter delivers opti-

mal extractions of GDPt conditional upon observed expenditure- and income-side measure-

ments. Moreover, the model can be easily extended, and some of its restrictive assumptions

relaxed, with no fundamental change. We now proceed to do so.

2.2 (Identified) 2-Equation Model: Σ Block-Diagonal

The first extension is to allow for correlated measurement errors. This is surely important,

as there is roughly a 25 percent overlap in the counts embedded in GDPE and GDPI , and

moreover, the same deflator is used for conversion from nominal to real magnitudes.6 We

write [
GDPEt

GDPIt

]
=

[
1

1

]
GDPt +

[
εEt

εIt

]
(3)

GDPt = µ(1− ρ) + ρGDPt−1 + εGt,

where now εEt and εIt may be correlated contemporaneously but are uncorrelated at all other

leads and lags, and all other definitions and assumptions are as before; in particular, εGt and

(εEt, εIt)
′ are uncorrelated at all leads and lags. That is, (εGt, εEt, εIt)

′ ∼ iidN(0,Σ), where

Σ =

 σ2
GG 0 0

0 σ2
EE σ2

EI

0 σ2
IE σ2

II

 . (4)

Nothing is changed, and the Kalman filter retains its optimality properties.

2.3 (Unidentified) 2-Equation Model, Σ Unrestricted

The second key extension is motivated by Fixler and Nalewaik (2009) and Nalewaik (2010),

who document cyclicality in the statistical discrepancy (GDPE − GDPI), which implies

failure of the assumption that (εEt, εIt)
′ and εGt are uncorrelated at all leads and lags. Of

particular concern is contemporaneous correlation between εGt and (εEt, εIt)
′. Hence we allow

the measurement errors (εEt, εIt)
′ to be correlated with GDPt, or more precisely, correlated

6See Aruoba et al. (2012) for more. Many of the areas of overlap are particularly poorly measured, such
as imputed financial services, housing services, and government output.
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with GDPt innovations, εGt. We write[
GDPEt

GDPIt

]
=

[
1

1

]
GDPt +

[
εEt

εIt

]
(5)

GDPt = µ(1− ρ) + ρGDPt−1 + εGt,

where (εGt, εEt, εIt)
′ ∼ iidN(0,Σ), with

Σ =

 σ2
GG σ2

GE σ2
GI

σ2
EG σ2

EE σ2
EI

σ2
IG σ2

IE σ2
II

 . (6)

In this environment the standard Kalman filter is rendered sub-optimal for extracting GDP ,

due to correlation between εGt and (εEt, εIt), but appropriately-modified optimal filters are

available.

Of course in what follows we will be concerned with estimating our measurement-equation

models, so we will be concerned with identification. The diagonal-Σ model (1)-(2) and

the block-diagonal-Σ model (3)-(4) are identified. Identification of less-restricted dynamic

factor models, however, is a very delicate matter. In particular, it is not obvious that the

unrestricted-Σ model (5)-(6) is identified. Indeed it is not, as we prove in Appendix A. Hence

we now proceed to determine minimal restrictions that achieve identification.

2.4 (Identified) 2-Equation Model: Σ Restricted

The identification problem with the general model (5)-(6) stems from the fact that we can

make true GDP more volatile (increase σ2
GG) and make the measurement errors more volatile

(increase σ2
EE and σ2

II), but reduce the covariance between the fundamental shocks and the

measurement errors (reduce σ2
EG and σ2

IG), without changing the distribution of observables.

2.4.1 Restricting the Original Parameterization

But we can achieve identification by slightly restricting parameterization (5)-(6). In par-

ticular, as we show in Appendix A, the unrestricted system (5)-(6) is unidentified because

the Σ matrix has six free parameters with only five moment conditions to determine them.

Hence we can achieve identification by restricting any single element of Σ. Imposing any

such restriction would seem challenging, however, as we have no strong prior views directly
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on any single element of Σ. Fortunately, the problem is made tractable by a simple re-

parameterization.

2.4.2 A Useful Re-Parameterization

Define

ζ =

1
1−ρ2σ

2
GG

1
1−ρ2σ

2
GG + 2σ2

GE + σ2
EE

. (7)

Then, rather than fixing an element of Σ to achieve identification, we can fix ζ, about which

we have a more natural prior view. In particular, at first pass we might take σ2
GE ≈ 0, in

which case 0 < ζ < 1. Or, put differently, ζ > 1 would require a very negative σ2
GE, which

seems unlikely. All told, we view a ζ value less than, but close to, 1.0 as most natural. We

take ζ = 0.80 as our benchmark in the empirical work that follows, although we explore a

wide range of ζ values both below and above 1.0.

2.5 (Identified) 3-Equation Model: Σ Unrestricted

Thus far we showed how to achieve identification by fixing a parameter, ζ, and we noted

that our prior is centered around ζ = 0.80. It is of also of interest to know whether we can

get some complementary data-based guidance on choice of ζ. The answer turns out to be

yes, by adding a third measurement equation with a certain structure.

Suppose, in particular, that we have an additional observable variable Ut that loads on

true GDPt with measurement error orthogonal to those of GDPI and GDPE. In particular,

consider the 3-equation model GDPEt

GDPIt

Ut

 =

 0

0

κ

+

 1

1

λ

GDPt +

 εEt

εIt

εUt

 (8)

GDPt = µ(1− ρ) + ρGDPt−1 + εGt,

where (εGt, εEt, εIt, εUt)
′ ∼ iidN(0,Ω), with

Ω =


σ2
GG σ2

GE σ2
GI σ2

GU

σ2
EG σ2

EE σ2
EI 0

σ2
IG σ2

IE σ2
II 0

σ2
UG 0 0 σ2

UU

 . (9)

5



Note that the upper-left 3x3 block of Ω is just Σ, which is now unrestricted. Nevertheless,

as we prove in Appendix B, the 3-equation model (8)-(9) is identified. Of course some of the

remaining elements of the overall 4x4 covariance matrix Ω are restricted, which is how we

achieve identification in the 3-equation model, but the economically interesting sub-matrix,

which the 3-equation model leaves completely unrestricted, is Σ.

Depending on the application, of course, it is not obvious that an identifying variable

Ut with measurement errors orthogonal to those of GDPE and GDPI (i.e., with stochastic

properties that satisfy (9)), is available. Hence it is not obvious that estimation of the 3-

equation model (8)-(9) is feasible in practice, despite the model’s appeal in principle. Indeed,

much of the data collected from business surveys is used in the BEA’s estimates, invalidating

use of that data as Ut since any measurement error in that data appears directly in either

GDPE or GDPI , producing correlation across the measurement errors. Moreover, variables

drawn from business surveys similar to those used to produce GDPE and GDPI , even if they

are not used directly in the estimation of GDPE and GDPI , might still be invalid identifying

variables if the survey methodology itself produces similar measurement errors.7

Fortunately, however, some important macroeconomic data is collected not from surveys

of businesses, but from samples of households. A sample of data drawn from a universe of

households seems likely to have measurement errors that are different than those contami-

nating a data sample drawn from a universe of businesses, especially when the “universes” of

businesses and households are not complete census counts, as is the case here. For example,

the universe of business surveys is derived from tax records, so businesses not paying taxes

will not appear on that list, but individuals working at that business may appear in the

universe of households.

Importantly, very little data collected from household surveys are used to construct

GDPE and GDPI , so a Ut variable computed from a household survey seems most likely to

meet our identification conditions. The change in the unemployment rate is a natural choice

(hence our notational choice Ut). Ut arguably loads on true GDP with a measurement error

orthogonal to those of GDPE and GDPI , because the Ut data is being produced indepen-

dently (by the BLS rather than BEA) from different types of surveys. In addition, virtually

all of the GDPE and GDPI data are estimated in nominal dollars and then converted to real

dollars using a price deflator, whereas Ut is estimated directly with no deflation.

All told,we view “3-equation identification” as a useful complement to the “ζ-identification”

7 For example, if the business surveys used to produce GDPE and GDPI tend to oversample large firms,
variables drawn from a business survey that also oversamples large firms may have measurement errors that
are correlated with those in GDPE and GDPI , absent appropriate corrections.
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Figure 1: Divergence Between Σ̂ζ and Σ̂3

Notes: We show the Frobenius-norm divergence D(ζ) between Σ̂ζ and Σ̂3 as a function of ζ. The optimum

is ζ = 0.82. See text for details.

discussed earlier in section 2.4. All identifications involve assumptions. ζ-identification in-

volves introspection about likely values of ζ, given its structure and components, and that

introspection is of course subject to error. 3-equation identification involves introspection

about various measurement-error correlations involving the newly-introduced third variable,

which is of course also subject to error. Indeed the two approaches to identification are

usefully used in tandem, and compared.

One can even view the 3-equation approach as a device for implicitly selecting ζ. In

particular, we can find the ζ implied by the 3-equation model estimate, that is, find the ζ

that minimizes the divergence between Σ̂ζ and Σ̂3, in an obvious notation.8 For example,

using the Frobenius matrix-norm to measure divergence, we obtain an optimum of ζ∗ = 0.82.

We show the full surface in Figure 1, and the minimum is sharp and unique. The implied

ζ∗ of 0.82 is of course quite close to the directly-assessed value of 0.80 at which we arrived

earlier, which lends additional credibility to the earlier assessment.

3 Data and Estimation

We intentionally work with a stationary system in growth rates, because we believe that

measurement errors are best modeled as iid in growth rates rather than in levels, due to

BEA’s devoting maximal attention to estimating the “best change.”9 In its above-cited

8We will discuss subsequently the estimation procedure used to obtain Σ̂ζ and Σ̂3.
9For example, see “Concepts and Methods in the U.S. National Income and Product Accounts,” available

at http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf.
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Figure 2: GDP and Unemployment Data

Notes: GDPE and GDPI are in growth rates and Ut is in changes. All are measured in annualized percent.

“Concepts and Methods ...” document, for example,the BEA emphasizes that:

Best change provides the most accurate measure of the period-to-period move-

ment in an economic statistic using the best available source data. In an annual

revision of the NIPAs, data from the annual surveys of manufacturing and trade

are generally incorporated into the estimates on a best-change basis. In the cur-

rent quarterly estimates, most of the components are estimated on a best-change

basis from the annual levels established at the most recent annual revision.

The monthly source data used to estimate GDPE (such as retail sales) and GDPI (such as

nonfarm payroll employment) are generally produced on a best-change basis as well, using a

so-called “link-relative estimator.” This estimator computes growth rates using firms in the

sample in both the current and previous months, in contrast to a best-level estimator, which

would generally use all the firms in the sample in the current month regardless of whether

or not they were in the sample in the previous month. For example, for retail sales the BEA

8



notes that:10

Advance sales estimates for the most detailed industries are computed using a

type of ratio estimator known as the link-relative estimator. For each detailed

industry, we compute a ratio of current-to-previous month weighted sales using

data from units for which we have obtained usable responses for both the current

and previous month.

Indeed the BEA produces estimates on a best-level basis only at 5-year benchmarks. These

best-level benchmark revisions should drive only the very-low frequency variation in GDPE,

and thus probably matter very little for the quarterly growth rates estimated on a best-

change basis.

3.1 Descriptive Statistics

We show time-series plots of the “raw” GDPE and GDPI data in Figure 2, and we show

summary statistics in the top panel of Table 1. Not captured in the table but also true is that

the raw data are highly correlated; the simple correlations are corr(GDPE, GDPI) = 0.85,

corr(GDPE, U) = −0.67, and corr(GDPI , U) = −0.73. Median GDPI growth is a bit higher

than that of GDPE, and GDPI growth is noticeably more persistent than that of GDPE.

Related, GDPI also has smaller AR(1) innovation variance and greater predictability as

measured by the predictive R2.11

3.2 Bayesian Analysis of Measurement-Error Models

Here we describe Bayesian analysis of our three-equation model, which of course also includes

our various two-equation models as special cases. Bayesian estimation involves parameter

estimation and latent state smoothing. First, we generate draws from the posterior distribu-

tion of the model parameters using a Random-Walk Metropolis-Hastings algorithm. Next,

we apply a simulation smoother as described in Durbin and Koopman (2001) to obtain draws

of the latent states conditional on the parameters.

3.2.1 State-Space Representation

We proceed by introducing a state-space representation of (8) for estimation. Let yt =

[GDPEt, GDPIt, Ut]
′ , C = [0, 0, κ]′ , st = [GDPt, εEt, εIt, εUt]

′ , D = [µ(1− ρ), 0, 0, 0]′ , εt =

10See http://www.census.gov/retail/marts/how_surveys_are_collected.html.
11On this and related predictability measures, see Diebold and Kilian (2001).
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Table 1: Descriptive Statistics for Various GDP Series

x̄ 50% σ̂ Sk ρ̂1 ρ̂2 ρ̂3 ρ̂4 Q12 σ̂e R2 V̂e

GDPE 3.03 3.04 3.49 -0.31 .33 .27 .08 .09 47.07 3.28 .06 12.12
GDPI 3.02 3.39 3.40 -0.55 .47 .27 .22 .08 81.60 2.99 .12 11.43

GDPM 2-eqn, Σ diag 3.02 3.22 3.00 -0.56 .56 .34 .21 .09 108.25 2.48 .18 8.92
GDPM 2-eqn, Σ block 3.02 3.35 2.64 -0.64 .70 .45 .28 .13 170.08 1.89 .29 6.90
GDPM 2-eqn, ζ = 0.65 3.02 3.32 2.61 -0.64 .67 .43 .27 .12 157.56 1.92 .26 6.73
GDPM 2-eqn, ζ = 0.75 3.02 3.30 2.77 -0.63 .65 .41 .26 .11 148.23 2.08 .25 7.60
GDPM 2-eqn, ζ = 0.80 3.02 3.29 2.87 -0.62 .64 .39 .25 .11 141.14 2.19 .24 8.16
GDPM 2-eqn, ζ = 0.85 3.02 3.31 2.89 -0.64 .66 .41 .28 .12 153.27 2.15 .25 8.29
GDPM 2-eqn, ζ = 0.95 3.02 3.26 3.02 -0.64 .66 .40 .28 .12 149.61 2.27 .25 9.07
GDPM 2-eqn, ζ = 1.05 3.01 3.22 3.12 -0.65 .67 .40 .28 .12 155.60 2.30 .26 9.69
GDPM 2-eqn, ζ = 1.15 3.04 3.34 3.07 -0.67 .76 .47 .31 .15 201.15 1.99 .35 9.46
GDPM 3-eqn 3.02 3.37 3.02 -1.14 .63 .37 .21 .03 141.79 2.33 .23 9.03

GDPF 3.02 3.29 3.30 -0.51 .46 .29 .19 .07 78.28 2.92 .12 10.80

Notes: The sample period is 1960Q1-2011Q4. In the top panel we show statistics for the raw data. In the
middle panel we show statistics for various posterior-median measurement-error-based (“M”) estimates of
true GDP , where all estimates are smoothed extractions. In the bottom panel we show statistics for the
forecast-error-based (“F”) estimate of true GDP produced by Aruoba et al. (2012). x̄, 50%, σ̂ and Sk are
sample mean, median, standard deviation and skewness, respectively, and ρ̂τ is a sample autocorrelation at a
displacement of τ quarters. Q12 is the Ljung-Box serial correlation test statistic calculated using ρ̂1, ..., ρ̂12.

R2 = 1− σ̂2
e

σ̂2 , where σ̂e denotes the estimated disturbance standard deviation from a fitted AR(1) model, is

a predictive R2. V̂e is the unconditional variance implied by a fitted AR1 model, V̂e =
σ̂2
e

1−ρ̂2 .

[εGt, εEt, εIt, εUt]
′ and

Z =

 1 1 0 0

1 0 1 0

λ 0 0 1

 , Φ =


ρ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Our state-space model is

yt = C + Zst (10)

st = D + Φst−1 + εt, εt ∼ N(0,Ω).

We collect the parameters in (10) in Θ = (µ, ρ, σ2
GG, σ

2
GE, σ

2
GI , σ

2
EE, σ

2
EI , σ

2
II , σ

2
GU , σ

2
UU , κ, λ).
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3.2.2 Metropolis-Hastings MCMC Algorithm

Now let us proceed to our implementation of the Metropolis-Hastings MCMC Algorithm.

Denote the number of MCMC draws by N. We first maximize the posterior density

p(Θ|Y1:T ) ∝ p(Y1:T |Θ)p(Θ) (11)

to obtain the mode Θ0 and construct a covariance matrix for the proposal density, ΣΘ, from

the inverse Hessian of the log posterior density evaluated at Θ0. We also use Θ0 to initialize

the algorithm. At each iteration j we draw a proposed parameter vector Θ∗ ∼ N(Θj−1, cΣΘ),

where c is a scalar tuning parameter that we calibrate to achieve an acceptance rate of 25-

30%. We accept the proposed parameter vector, that is, we set Θj = Θ∗, with probability

min
{

1, p(Y1:T |Θ∗)p(Θ∗)
p(Y1:T |Θj−1)p(Θj−1)

}
, and set Θj = Θj−1 otherwise. We adopt the convention that

p(Θ∗) = 0 if the covariance matrix Ω implied by Θ∗ is not positive definite. The results

reported subsequently are are based on N = 50, 000 iterations of the algorithm. We discard

the first 25,000 draws and use the remaining draws to compute summary statistics for the

posterior distribution.

3.2.3 Filtering and Smoothing

The evaluation of the likelihood function p(Y1:T |Θ) requires the use of the Kalman filter.

The Kalman filter recursions take the following form. Suppose that

st−1|(Y1:t−1,Θ) ∼ N(st−1|t−1, Pt−1|t−1), (12)

where st−1|t−1 and Pt−1|t−1 are the mean and variance of the latent state at t− 1. Then the

means and variances of the predictive densities p(st|Y1:t−1,Θ) and p(yt|Y1:t−1,Θ) are

st|t−1 = D + Φst−1|t−1, Pt|t−1 = ΦPt−1|t−1Φ′ + Ω

yt|t−1 = C + Zst|t−1, Ft|t−1 = ZPt|t−1Z
′,

respectively. The contribution of observation yt to the likelihood function p(Y1:T |Θ) is given

by p(yt|Y1:t−1,Θ). Finally, the updating equations are

st|t = st|t−1 + (ZPt|t−1)′F−1
t|t−1

(
yt − ŷt|t−1

)
Pt|t = Pt|t−1 − (ZPt|t−1)′(ZPt|t−1Z

′)−1(ZPt|t−1),

11



leading to

st|(Y1:t,Θ) ∼ N(st|t, Pt|t). (13)

We initialize the Kalman filter by drawing s0|0 from a mean-zero Gaussian stationary distri-

bution whose covariance matrix, P0|0, is the solution of the underlying Ricatti equation.

Because we are interested in inference for the latentGDP , we use the backward-smoothing

algorithm of Carter and Kohn (1994) to generate draws recursively from st|(St+1:T , Y1:T ,Θ),

t = T − 1, T − 2, . . . , 1, where the last iteration of the Kalman filter recursion provides the

initialization for the backward simulation smoother,

st|t+1 = st|t + Pt|tΦ
′P−1
t+1|t

(
st+1 −D − Φst|t

)
(14)

Pt|t+1 = Pt|t − Pt|tΦ′P−1
t+1|tΦPt|t

draw st|(St+1:T , Y1:T ,Θ) ∼ N(st|t+1, Pt|t+1),

t = T − 1, T − 2, ..., 1.

3.3 Parameter Estimation Results

Here we present and discuss estimation results for our various models. In Table 2 we show

details of parameter prior and posterior distributions, as well as statistics describing the

overall posterior and likelihood, for various 2-equation models, and in Table 3 we provide

the same information for the 3-equation model.

The complete estimation information in the tables can be difficult to absorb fully, how-

ever, so here we briefly present aspects of the results in a more revealing way. For the

2-equation models, the parameters to be estimated are those in the transition equation and

those in the covariance matrix Σ, which includes variances and covariances of both transi-

tion and measurement shocks. Hence we simply display the estimated transition equation

and the estimated Σ matrices. For the 3-equation model, we also need to estimate a factor

loading in the measurement equation, so we display the estimated measurement equation as

well. Below each posterior median parameter estimate, we show a the posterior interquartile

range in brackets.

For the 2-equation model with Σ diagonal, we have

GDPt = 3.07
[2.81,3.33]

(1− 0.53) + 0.53
[0.48,0.57]

GDPt−1 + εGt, (15)
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Table 2: Priors and Posteriors, 2-Equation Models, 1960Q1-2011Q4

Diagonal Block Diagonal
Prior Posterior Posterior

(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%

µ N(3,10) 2.81 3.07 3.33 2.77 3.06 3.34
ρ N(0.3,1) 0.48 0.53 0.57 0.57 0.62 0.68
σ2
GG IG(10,15) 6.39 6.90 7.44 4.39 5.17 5.95
σ2
GE N(0,10) - - - - - -
σ2
GI N(0,10) - - - - - -

σ2
EE IG(10,15) 2.12 2.32 2.55 3.34 3.86 4.48
σ2
EI N(0,10) - - - 0.96 1.43 1.95
σ2
II IG(10,15) 1.52 1.68 1.85 2.25 2.70 3.22

posterior - -984.57 -983.46 -982.60 -986.23 -985.00 -984.01
likelihood - -951.68 -950.41 -949.43 -950.70 -949.49 -948.60

ζ = 0.75 ζ = 0.80
Prior Posterior Posterior

(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%

µ N(3,10) 2.75 3.03 3.31 2.79 3.08 3.35
ρ N(0.3,1) 0.53 0.59 0.64 0.51 0.57 0.62
σ2
GG IG(10,15) 5.78 6.31 6.92 6.54 7.09 7.70
σ2
GE N(0,10) -0.76 -0.29 0.15 -1.15 -0.69 -0.29
σ2
GI N(0,10) -0.34 0.01 0.34 -0.74 -0.38 -0.04

σ2
EE IG(10,15) 3.08 3.88 4.75 3.14 3.90 4.77
σ2
EI N(0,10) 0.73 1.23 1.78 0.80 1.29 1.85
σ2
II IG(10,15) 1.94 2.30 2.76 1.98 2.36 2.82

posterior - -982.50 -980.99 -979.87 -982.48 -981.05 -979.91
likelihood - -950.93 -949.55 -948.40 -950.85 -949.44 -948.41

ζ = 0.85 ζ = 0.95
Prior Posterior Posterior

(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%

µ N(3,10) 2.72 2.96 3.14 2.84 3.03 3.25
ρ N(0.3,1) 0.51 0.56 0.60 0.49 0.54 0.60
σ2
GG IG(10,15) 6.67 7.19 7.76 7.69 8.43 9.28
σ2
GE N(0,10) -2.17 -1.98 -1.77 -2.88 -2.73 -2.50
σ2
GI N(0,10) -0.97 -0.80 -0.53 -1.99 -1.58 -1.22

σ2
EE IG(10,15) 5.36 5.79 6.28 5.64 6.10 6.39
σ2
EI N(0,10) 2.04 2.33 2.63 2.43 2.64 2.93
σ2
II IG(10,15) 2.36 2.65 3.04 2.45 3.22 3.81

posterior - -982.62 -981.40 -980.48 -984.09 -982.80 -981.57
likelihood - -949.42 -948.25 -947.49 -950.19 -948.84 -947.81

ζ = 1.05 ζ = 1.15
Prior Posterior Posterior

(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%

µ N(3,10) 2.85 3.07 3.33 2.55 2.89 3.21
ρ N(0.3,1) 0.48 0.53 0.58 0.52 0.56 0.61
σ2
GG IG(10,15) 8.92 9.57 10.25 9.07 9.88 10.73
σ2
GE N(0,10) -4.04 -3.88 -3.70 -5.61 -5.50 -5.22
σ2
GI N(0,10) -3.09 -2.65 -2.29 -4.38 -4.21 -4.01

σ2
EE IG(10,15) 6.74 7.13 7.41 8.51 9.07 9.30
σ2
EI N(0,10) 3.23 3.46 4.13 5.29 5.52 5.89
σ2
II IG(10,15) 3.27 3.66 4.43 5.68 6.00 6.31

posterior - -984.89 -983.63 -982.49 -988.63 -987.18 -986.32
likelihood - -949.31 -948.30 -947.53 -949.82 -948.51 -947.67
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Table 3: Priors and Posteriors, 3-Equation Model, 1960Q1-2011Q4

Parameter Prior Posterior
(Mean, Std) 25% 50% 75%

µ N(3,10) 2.60 2.78 2.95
ρ N(0.3,1) 0.54 0.58 0.63
σ2
GG IG(10,15) 6.73 6.96 7.35
σ2
GE N(0,10) -1.27 -1.10 -0.84
σ2
GI N(0,10) -1.03 -0.82 -0.59

σ2
EE IG(10,15) 4.17 4.57 4.79
σ2
EI N(0,10) 1.70 1.95 2.12
σ2
II IG(10,15) 2.54 3.07 3.27

σ2
GU N(0,10) 1.27 1.46 1.66
σ2
UU IG(0.3,10) 0.50 0.59 0.71
κ N(0,10) 1.53 1.62 1.71
λ N(-0.5,10) -0.55 -0.52 -0.50

posterior - -1251.1 -1249.6 -1248.3
likelihood - -1199.0 -1197.5 -1196.2

Σ =


6.90

[6.39,7.44]
0 0

0 2.32
[2.12,2.55]

0

0 0 1.68
[1.52,1.85]

 . (16)

For the 2-equation model with Σ block-diagonal, we have

GDPt = 3.06
[2.77,3.34]

(1− 0.62) + 0.62
[0.57,0.68]

GDPt−1 + εGt, (17)

Σ =


5.17

[4.39,5.95]
0 0

0 3.86
[3.34,4.48]

1.43
[0.96,1.95]

0 1.43
[0.96,1.95]

2.70
[2.25,3.22]

 . (18)

For the 2-equation model with benchmark ζ = 0.80, we have
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GDPt = 3.08
[2.79,3.35]

(1− 0.57) + 0.57
[0.51,0.62]

GDPt−1 + εGt, (19)

Σ =


7.09

[6.54,7.70]
−0.69

[−1.15,−0.29]
−0.38

[−0.74,−0.04]

−0.69
[−1.15,−0.29]

3.90
[3.14,4.77]

1.29
[0.80,1.85]

−0.38
[−0.74,−0.04]

1.29
[0.80,1.85]

2.36
[1.98,2.82]

 . (20)

Finally, for the 3-equation model, we have

 GDPEt

GDPIt

Ut

 =


0

0

1.62
[1.53,1.71]

+


1

1

−0.52
[−0.55,−0.50]

GDPt +

 εEt

εIt

εUt

 (21)

GDPt = 2.78
[2.60,2.95]

(1− 0.58) + 0.58
[0.54,0.63]

GDPt−1 + εGt, (22)


εGt

εEt

εIt

εUt

 ∼ N




0

0

0

0

 ,


6.96
[6.73,7.35]

−1.10
[−1.27,−0.84]

−0.82
[−1.03,−0.59]

1.46
[1.27,1.66]

−1.10
[−1.27,−0.84]

4.57
[4.17,4.79]

1.95
[1.70,2.12]

0

−0.82
[−1.03,−0.59]

1.95
[1.70,2.12]

3.07
[2.54,3.27]

0

1.46
[1.27,1.66]

0 0 0.59
[0.50,0.71]




(23)

Many aspects of the results are noteworthy; here we simply mention a few. First, every

posterior interval in every model reported above excludes zero. Hence the diagonal and block

diagonal models do not appear satisfactory.

Second, the Σ estimates are qualitatively similar across specifications. Covariances are

always negative, as per our conjecture based on the counter-cyclicality in the statistical

discrepancy (GDPE − GDPI) documented by Fixler and Nalewaik (2009) and Nalewaik

(2010). Shock variances always satisfy σ̂2
GG > σ̂2

EE > σ̂2
II .

Finally, GDPM is highly serially correlated across all specifications (ρ ≈ .6), much more

so than the current “consensus” based on GDPE (ρ ≈ .3). We shall have much more to say

about these and other results in the next section.
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Figure 3: GDP Sample Paths, 1960Q1-2011Q4

Notes: In each panel we show the sample path of GDPM in red together with a light-red posterior in-

terquartile range, and we show one of the competitor series in black. For GDPM we use our benchmark

estimate from the 2-equation model with ζ = 0.80.

4 New Perspectives on the Properties of GDP

Our various extracted GDPM series differ in fundamental ways from other measures, such

as GDPE and GDPI . Here we discuss some of the most important differences.

4.1 GDP Sample Paths

Let us begin by highlighting the sample-path differences between our GDPM and the obvious

competitors GDPE and GDPI . We make those comparisons in Figure 3. In each panel we

show the sample path of GDPM in red together with a light-red posterior interquartile range,

and we show one of the competitor series in black.12 In the top panel we show GDPM vs.

GDPE. There are often wide divergences, with GDPE well outside the posterior interquartile

range of GDPM . Indeed GDPE is substantially more volatile than GDPM . In the bottom

panel of Figure 3 we show GDPM vs. GDPI . Noticeable divergences again appear often,

with GDPI also outside the posterior interquartile range of GDPM . The divergences are

not as pronounced, however, and the “excess volatility” apparent in GDPE is less apparent

12For GDPM we use our benchmark estimate from the 2-equation model with ζ = 0.80.
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Figure 4: GDP Sample Paths, 2007Q1-2009Q4

Notes: In each panel we show the sample path of GDPM in red together with a light-red posterior in-

terquartile range, and we show one of the competitor series in black. For GDPM we use our benchmark

estimate from the 2-equation model with ζ = 0.80.

in GDPI . That is because, as we will show later, GDPM loads relatively more heavily on

GDPI .

To emphasize the economic importance of the differences in competing real activity as-

sessments, in Figure 4 we focus on the tumultuous period 2007Q1-2009Q4. The figure makes

clear not only that both GDPE and GDPI can diverge substantially from GDP , but also that

the timing and nature of their divergences can be very different. In 2007Q3, for example,

GDPE growth was strongly positive and GDPI growth was negative.

4.2 Linear GDP Dynamics

In our framework, population true GDPt is simply a pair (σ2
GG, ρ). In Figure 5 we show those

pairs across MCMC draws for all of our measurement-error models, and for comparison we

show (σ2, ρ) values corresponding to AR(1) models fit to GDPE alone and GDPI alone. In

addition, in Table 1 we show a variety of statistics quantifying the properties of our various

GDPM measures vs. those of GDPE, GDPI and GDPF .

First consider Figure 5. Across measurement-error models M , GDPM is robustly more
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Figure 5: (ρ̂, σ̂2
GG) Pairs Across MCMC Draws

Notes: Solid lines indicate 90% (σ2
GG, ρ) posterior coverage ellipsoids for the various models. Stars indicate

posterior median values. The sample period is 1960Q1-2011.Q4. For comparison we show (σ2, ρ) values

corresponding to AR(1) models fit to GDPE alone and GDPE alone.

serially correlated than both GDPE and GDPI , and it also has a smaller innovation variance.

Hence most of our models achieve closely-matching unconditional variances, but they are

composed of very different underlying (σ2, ρ) values from those corresponding to GDPE.

GDPM has smaller shock volatility, but much more shock persistence – roughly double that

of GDPE (ρ of roughly 0.60 for GDPM vs. 0.30 for GDPE).

Now consider Table 1. The various GDPM series are all less volatile than each of GDPE,

GDPI and GDPF , and a bit more skewed left. Most noticeably, the GDPM series are much

more strongly serially correlated than the GDPE, GDPI and GDPF series, and with smaller

innovation variances. This translates into much higher predictive R2’s for GDPM . Indeed

GDPM is twice as predictable as GDPI or GDPF , which in turn are twice as predictable as

GDPE.
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4.3 Non-Linear GDP Dynamics

In Table 4 we show Markov-switching AR(1) model results for a variety of GDP series. The

model allows for simultaneous switching in both mean and serial-correlation parameters.

The model switches between high- and low-growth states, with low-growth states generally

including recessions as defined by the National Bureau of Economic Research’s Business

Cycle Dating Committee (see also Nalewaik (2012)). The most interesting aspect of the

results concerns the estimated low- and high-state serial-correlation parameters (ρ̂0 and ρ̂1,

respectively).

First, always and everywhere, ρ̂0 > ρ̂1; that is, a disproportionate share of overall se-

rial correlation comes from low-growth states. This interesting result parallels recent work

indicating that a disproportionate share of stock market return predictability comes from

recessions (Rapach et al. (2010)), as well as work showing that shocks to business orders for

capital goods are more persistent in downturns (Nalewaik and Pinto (2012)).

Second, comparison of GDPI to GDPE reveals that they have identical ρ̂0 values (0.55),

but that ρ̂1 is much bigger for GDPI than for GDPE (0.31 vs. 0.14). Hence the stronger

overall serial correlation of GDPI comes entirely from its stronger serial correlation during

expansions.

Finally, comparison of GDPM to GDPE reveals much bigger ρ̂0 and ρ̂1 values for GDPM

than for GDPE, regardless of the particular measurement-error model M examined. The

general finding of ρ̂0 > ρ̂1 is preserved, but both ρ̂0 and ρ̂1 are much larger for GDPM than for

GDPE. In our benchmark 2-equation model with ζ = 0.80, for example, we have ρ̂0 = 0.78

and ρ̂1 = 0.55.

4.4 On the Relative Contributions of GDPE and GDPI to GDPM

It is of interest to know how the observed indicators GDPE and GDPI contribute to our

extracted true GDP. We do this in two ways; in section 4.4.1 we examine Kalman gains, and

in section 4.4.2 we find the convex combination of GDPE and GDPI closest to our extracted

GDP .

4.4.1 Kalman Gains

The Kalman gains associated with GDPE and GDPI govern the amount by which news

about GDPE and GDPI , respectively, causes the optimal extraction of GDPt (conditional

on time-t information) to differ from the earlier optimal prediction of GDPt (conditional
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Table 4: Regime-Switching Model Estimates, 1960Q1-2011Q4

µ̂0 µ̂1 ρ̂0 ρ̂1 σ̂2
H σ̂2

L p̂00 p̂11

GDPE 1.31 4.71 0.55 0.14 16.55 4.81 0.81 0.88
GDPI 1.28 4.87 0.55 0.31 12.07 5.51 0.82 0.87

GDPM 2-eqn, Σ diag 1.76 5.12 0.73 0.41 9.81 3.37 0.83 0.85
GDPM 2-eqn, Σ block 1.75 4.72 0.83 0.63 6.22 2.41 0.81 0.86
GDPM 2-eqn, ζ = 0.80 1.79 4.95 0.78 0.55 7.96 3.04 0.82 0.85
GDPM 3-eqn 1.88 5.32 0.88 0.39 7.85 2.95 0.80 0.85

GDPF 1.51 4.93 0.64 0.30 13.20 4.17 0.82 0.87

Notes: In the top panel we show posterior median estimates for two-state regime-switching AR(1) models
fit to raw data. In the middle panel we show posterior median estimates for Regime-switching models fit
to GDPM , and in the bottom panel we show posterior median estimates for regime-switching models fit to
GDPF . We allow for a one-time structural break in volatility in 1984 (the “Great Moderation”).

on time-(t − 1) information). Put more simply, the Kalman gain of GDPE (resp. GDPI)

measures its importance in influencing GDPM , and hence in informing our views about latent

true GDP .

We summarize the posterior distributions of Kalman gains in Figure 6. Posterior median

GDPI Kalman gains are large in absolute terms, and most notably, very large relative to those

for GDPE. Indeed posterior median GDPE Kalman gains are zero in several specifications.

In any event, it is clear that GDPI plays a larger role in informing us about GDP than does

GDPE. For our benchmark ζ-model with ζ = 0.80, the posterior median GDPI and GDPE

Kalman gains are 0.59 and 0.23, respectively.

4.4.2 Closest Convex Combination

The Kalman filter extractions average not only over space, but also over time. Nevertheless,

we can ask what contemporaneous convex combination of GDPE and GDPI , λGDPE + (1−
λ)GDPI , is closest to the extracted GDPM . That is, we can find λ∗ = argminλ L(λ), where

L(λ) is a loss function. Under quadratic loss we have

λ∗ = argminλ

T∑
t=1

[(λGDPEt + (1− λ)GDPIt)−GDPMt]
2 ,
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Figure 6: (KGE, KGI) Pairs Across MCMC Draws

Notes: Solid lines indicate 90% posterior coverage ellipsoids. Stars indicate posterior median values.

where GDPMt is our smoothed extraction of true GDPt. Over our sample of 1960Q1-

2011Q4, the optimum under quadratic loss is λ∗ = 0.29. The minimum is quite sharp, as

we show in Figure 7, and it puts more than twice as much weight on GDPI than on GDPE.

That weighting accords closely with both the Kalman gain results discussed above and the

forecast-combination calibration results in Aruoba et al. (2012). It does not, of course, mean

that time series of GDPM will “match” time series of GDPF , because the Kalman filter does

much more than simple contemporaneous averaging of GDPE and GDPI in its extraction of

latent true GDP .

4.5 A Final Remark on the Serial Correlation in GDPM

Obviously a key result of our analysis is the strong serial correlation (persistence, forecasta-

bility, smoothness, ...) of our extracted GDPM , regardless of the particular specification.

One might perhaps wonder whether this is a spurious artifact of our extraction method,

which effectively amounts to a Kalman “smoother.” We hasten to add that the answer is

no. Indeed optimal extractions of covariance stationary series (in our, case latent true GDP

growth) must be less variable than the series being extracted, because the optimal extraction
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Figure 7: Closest Convex Combination

Notes: We show quadratic loss, L(λ) =
∑2011Q4
t=1960Q1 [(λGDPEt + (1− λ)GDPIt)−GDPMt]

2
, as a function

of λ. We obtain GDPMt from the 3-equation model.

is a conditional expectation.13 Given our models, with Gaussian errors and under quadratic

loss, any other GDP extractions are sub-optimal and hence inferior.

5 Concluding Remarks and Directions for Future Re-

search

We produce several estimates of GDP that blend both GDPE and GDPI . All estimates

feature GDPI prominently, and our blended GDP estimate has properties quite different

from those of the “traditional” GDPE (as well as GDPI). In a sense we build on the

literature on “balancing” the national income accounts, which extends back almost as far as

national income accounting itself, as for example in Stone et al. (1942). We do not, however,

advocate that the U.S. publish only GDPM , as there may at times be value in being able

to see the income and expenditure sides separately. But we would advocate the additional

calculation of GDPM and using it as the benchmark GDP estimate.

Many interesting extensions are possible, including (1) Allowing for richer GDP dynam-

ics. We might want to add GDPt−1 to the unemployment equation in addition to GDPt,

because unemployment tends to lag GDP ; (2) Allowing for serially correlated unemployment

13The forecast-error approach of Aruoba et al. (2012) also has optimality properties, but of a different sort,
and there is no reason why in the forecast-error framework the optimal combination should be smoother
than latent true GDP growth. Instead it could go either way, depending on the correlation of the forecast
errors in GDPE and GDPI .
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measurement errors. We might want to allow the unemployment measurement errors to be

serially correlated, because they are really more than just measurement errors, in contrast

to the GDPE and GDPI measurement errors; (3) Including additional identifying variables,

which could be used alternatively or in addition to unemployment. The Michigan consumer

confidence index, for example, is released before GDPE and GDPI , which are not based on

it in any way. Another possibility is non-U.S. GDP .

Perhaps the two most interesting directions for future work, however, concern forecasting

and real-time analysis. First consider forecasting. When forecasting a “traditional” GDP

series such as GDPE, we must take it as given (i.e., we must ignore measurement error).

The analogous procedure in our framework would take GDPM as given, modeling and fore-

casting it directly, ignoring the fact that it is based on a first-stage extraction subject to

error. Fortunately, however, in our framework we need not do that. Instead we can es-

timate and forecast directly from the dynamic factor model, accounting for all sources of

uncertainty, which should translate into superior interval and density forecasts. Related, it

would be interesting to calculate directly the point, interval and density forecast functions

corresponding to the measurement-error model.

Second, consider real-time analysis. Although GDPI data are not as timely as GDPE

data, our filtering framework still uses all available data efficiently, appropriately handling

any missing data. A key insight is that when using simple convex combinations as in the

forecast-error approach of Aruoba et al. (2012), missing GDPI data for the most-recent

quarter(s) forces all weight to be put on GDPE. Our measurement-error framework is very

different, however, because the Kalman filter averages not just over space, but also over time,

and earlier quarters for which we do have GDPI data are informative for the most-recent

quarters with “missing” GDPI data.
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Appendices

Here we report various details of theory, establishing identification results for the two- and

three-variable models in appendices A and B, respectively. The identification analysis is

based on Komunjer and Ng (2011).

A Identification in the Two-Variable Model

The constants in the state-space model can be identified from the means of GDPEt and

GDPIt. To simplify the subsequent exposition we now set the constant terms to zero:

GDPt = ρGDPt−1 + εGt (A.1)[
GDPEt

GDPIt

]
=

[
1

1

]
GDPt +

[
εEt

εIt

]
(A.2)

and the joint distribution of the errors is

εt =

 εGt

εEt

εIt

 ∼ iidN
(
0,Σ

)
, where Σ =

 ΣGG · ·
ΣEG ΣEE ·
ΣIG ΣIE ΣII

 .
Using the notation in Komunjer and Ng (2011), we write the system as

st+1 = A(θ)st +B(θ)εt+1 (A.3)

yt+1 = C(θ)st +D(θ)εt+1, (A.4)

where

st = GDPt, yt =

[
GDPEt

GDPIt

]
(A.5)

A(θ) = ρ, B(θ) =
[

1 0 0
]

C(θ) =

[
ρ

ρ

]
, D(θ) =

[
1 1 0

1 0 1

]

and θ = [ρ, vech(Σ)′]′. Note that only A(θ) and C(θ) are non-trivial functions of θ.
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Assumption 1 The parameter vector θ satisfies the following conditions: (i) Σ is positive

definite; (ii) 0 ≤ ρ < 1.

Because the rows of D are linearly independent, Assumption 1(i) implies that DΣD′ is

non-singular. In turn, we deduce that Assumptions 1, 2, and 4-NS of Komunjer and Ng

(2011) are satisfied.

We now express the state-space system in terms of its innovation representation

st+1|t+1 = A(θ)st|t +K(θ)at+1 (A.6)

yt+1 = C(θ)ŝt|t + at+1,

where at+1 is the one-step-ahead forecast error of the system whose variance we denote by

Σa(θ). The innovation representation is obtained from the Kalman filter as follows. Suppose

that conditional on time t information Y1:t the distribution of st|Y1:t ∼ N(st|t, Pt|t). Then

the joint distribution of [st+1, y
′
t+1]′ is[

st+1

yt+1

] ∣∣∣∣Y1:T ∼

([
Ast|t

Cst|t

]
,

[
APt|tA

′ +BΣB′ APt|tC
′ +BΣD′

CPt|tA
′ +DΣB′ CPt|tC

′ +DΣD′

])
.

In turn, the conditional distribution of st+1|Y1:t+1 is

st+1|Y1:t+1 ∼ N
(
st+1|t+1, Pt+1|t+1

)
,

where

st+1|t+1 = Ast|t + (APt|tC +BΣD′)(CPt|tC
′ +DΣD′)−1(yt − Cst|t)

Pt+1|t+1 = APt|tA
′ +BΣB′ − (APt|tC

′ +BΣD′)(CPt|tC
′ +DΣD′)−1(CPt|tA

′ +DΣB′).

Now let P be the matrix that solves the Riccati equation,

P = APA′ +BΣB′ − (APC ′ +BΣD′)(CPC ′ +DΣD′)−1(CPA′ +DΣB′), (A.7)

and let K be the Kalman gain matrix

K = (APC ′ +BΣD′)(CPC ′ +DΣD′)−1. (A.8)
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Then the one-step-ahead forecast error matrix is given by

Σa = CPC ′ +DΣD′. (A.9)

Equations (A.7) to (A.9) determine the matrices that appear in the innovation-representation

of the state-space system (A.6).

In order to be able to apply Proposition 1-NS of Komunjer and Ng (2011) we need to

express P , K, and Σa in terms of θ. While solving Riccati equations analytically is in general

not feasible, our system is scalar, which simplifies the calculation considerably. Replacing A

by ρ and P by p such that scalars appear in lower case, and defining

ΣBB = BΣB′, ΣBD = BΣD′, and ΣDD = DΣD′,

we can write (A.7) as

p = pρ2 + ΣBB − (pρC ′ + ΣBD)(pCC ′ + ΣDD)−1(pρC + ΣDB). (A.10)

Likewise,

K = (pρC ′ + ΣBD)(pCC ′ + ΣDD)−1 and Σa = pCC ′ + ΣDD. (A.11)

Because ΣBB − ΣBDΣ′DDΣDB > 0 we can deduce that p > 0. Moreover, because A = ρ ≥ 0

and C ≥ 0, we deduce that K 6= 0 and therefore Assumption 5-NS of Komunjer and Ng

(2011) is satisfied. According to Proposition 1-NS in Komunjer and Ng (2011), two vectors

θ and θ1 are observationally equivalent if and only if there exists a scalar γ 6= 0 such that

A(θ1) = γA(θ)γ−1 (A.12)

K(θ1) = γK(θ) (A.13)

C(θ1) = C(θ)γ−1 (A.14)

Σa(θ1) = Σa(θ). (A.15)

Define θ = [ρ, vech(Σ)′]′ and θ1 = [ρ1, vech(Σ1)′]′. Using the definition of the scalar A(θ)

in (A.5) we deduce from (A.12) that ρ1 = ρ. Since C(θ) depends on θ only through ρ we can

deduce from (A.14) that γ = 1. Thus, given θ and ρ, the elements of the vector vech(Σ1)

26



have to satisfy conditions (A.13) and (A.15), which, using (A.11), can be rewritten as

Σa = Σa1 = p1CC
′ + ΣDD1 (A.16)

K = K1 = (p1ρC
′ + ΣBD1)Σ−1

a . (A.17)

Moreover, p1 has to solve the Riccati equation (A.10):

p1 = p1ρ
2 + ΣBB1 −K0(p1ρC + ΣBD). (A.18)

Equations (A.16) to (A.18) are satisfied if and only if

pCC ′ + ΣDD = p1CC
′ + ΣDD1 (A.19)

pρC ′ + ΣBD = p1ρC
′ + ΣBD1 (A.20)

p(1− ρ2)− ΣBB = p1(1− ρ2)− ΣBB1. (A.21)

We proceed by deriving expressions for the Σxx matrices that appear in (A.19) to (A.21):

ΣBB = ΣGG

ΣBD =
[

ΣGG + ΣGE ΣGG + ΣGI

]
ΣDD =

[
ΣGG + ΣEE + 2ΣEG ·

ΣGG + ΣGE + ΣGI + ΣEI ΣGG + ΣII + 2ΣGI

]

Without loss of generality let

ΣGG1 = ΣGG + (1− ρ2)δ, (A.22)

which implies that

ΣBB1 = ΣBB + (1− ρ2)δ.

We now distinguish the cases δ = 0 and δ 6= 0.

Case 1: δ = 0. (A.21) implies p1 = p. It follows from (A.20) that ΣBD1 = ΣBD. In

turn, ΣGE1 = ΣGE and ΣGI1 = ΣGI . Finally, to satisfy (A.19) it has to be the case that

ΣDD1 = ΣDD, which implies that the remaining elements of Σ and Σ1 are identical. We

conclude that θ1 = θ.
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Case 2: δ 6= 0. (A.21) implies p1 = p+ δ. Now consider (A.20):

pρC ′ + ΣBD = pρ2
[

1 1
]

+
[

ΣGG + ΣGE ΣGG + ΣGI

]
!

= pρ2
[

1 1
]

+ δρ2
[

1 1
]

+
[

ΣGG + ΣGE1 ΣGG + ΣGI1

]
+δ(1− ρ2)

[
1 1

]
We deduce that

ΣGE1 = ΣGE − δ, ΣGI1 = ΣGI − δ. (A.23)

Finally, consider (A.19), which can be rewritten as

0 = ΣDD1 − ΣDD + δCC ′.

Using the previously derived expressions for ΣDD and ΣDD1 we obtain the following three

conditions

0 = (1− ρ2)δ + (ΣEE1 − ΣEE)− 2δ + ρ2δ = ΣEE1 − ΣEE − δ

0 = (1− ρ2)δ − 2δ + (ΣEI1 − ΣEI) + ρ2δ = ΣEI1 − ΣEI − δ

0 = (1− ρ2)δ + (ΣII1 − ΣII)− 2δ + ρ2δ = ΣII1 − ΣII − δ.

Thus, we deduce that

ΣEE1 = ΣEE + δ, ΣEI1 = ΣEI + δ, and ΣII1 = ΣII + δ. (A.24)

Combining (A.22), (A.23), and (A.24) we find that

Σ1 =

 ΣGG + δ(1− ρ2) ΣGE − δ ΣGI − δ
ΣGE − δ ΣEE + δ ΣEI + δ

ΣGI − δ ΣEI + δ ΣII + δ

 . (A.25)

Thus, we have proved the following theorem:

Theorem A.1 Suppose Assumption 1 is satisfied. Then the two-variable model is

(i) identified if Σ is diagonal as in section 2.1;

(ii) identified if Σ is block-diagonal as in section 2.2;
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(iii) not identified if Σ is unrestricted as in section 2.3;

(iv) identified if Σ is restricted as in section 2.4.

B Identification in the Three-Variable Model

The identification analysis of the three-variable is similar to the analysis of the two-variable

model in the previous section. The system is given by

GDPt = ρGDPt−1 + εGt (A.26) GDPEt

GDPIt

Ut

 =

 1

1

λ

GDPt +

 εEt

εIt

εUt

 , (A.27)

and the joint distribution of the errors is

εt =


εGt

εEt

εIt

εUt

 ∼ iidN
(
0,Σ

)
, , where Σ =


ΣGG · · ·
ΣEG ΣEE · ·
ΣIG ΣIE ΣII ·
ΣUG ΣUE ΣUI ΣUU

 .

The matrices A(θ), B(θ), C(θ), and D(θ) are now given by

A(θ) = ρ, B(θ) =
[

1 0 0 0
]

C(θ) =

 ρ

ρ

λρ

 , D(θ) =

 1 1 0 0

1 0 1 0

λ 0 0 1

 ,
where θ = [ρ, λ, vech(Σ)′]′.

Assumption 2 The parameter vector θ satisfies the following conditions: (i) Σ is positive

definite; (ii) 0 < ρ < 1; (iii) λ 6= 0; (iv) ΣUE = ΣUI = 0.

Condition (A.12) implies that ρ1 = ρ. Moreover, (A.14) implies that γ = 1 and that

λ1 = λ provided that ρ 6= 0. As for the two-variable model, we have to verify that (A.19)
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to (A.21) are satisfied. The matrices Σxx that appear in these equations are given by

ΣBB = ΣGG

ΣBD =
[

ΣGG + ΣGE ΣGG + ΣGI λΣGG + ΣGU

]
ΣDD =

 ΣGG + ΣEE + 2ΣGE · ·
ΣGG + ΣGE + ΣGI + ΣEI ΣGG + ΣII + 2ΣGI ·
λΣGG + λΣGE + ΣGU λΣGG + λΣGI + ΣGU λ2ΣGG + 2λΣGU + ΣUU

 .
Without loss of generality, let

ΣGG,1 = ΣGG + (1− ρ2)δ,

which implies that

ΣBB,1 = ΣBB + (1− ρ2)δ.

Case 1: δ = 0. (A.21) implies p1 = p. It follows from (A.20) that ΣBD,1 = ΣBD. In turn,

ΣGE,1 = ΣGE, ΣGI,1 = ΣGI , and ΣGU,1 = ΣGU . Finally, to satisfy (A.17) it has to be the case

that ΣDD,1 = ΣDD, which implies that the remaining elements of Σ and Σ1 are identical for

the two parameterizations. We conclude that it has to be the case that θ1 = θ.

Case 2: δ 6= 0. (A.21) implies p1 = p+ δ. Now consider (A.20):

pρC ′ + ΣBD = pρ2
[

1 1 λ
]

+
[

ΣGG + ΣGE ΣGG + ΣGI λΣGG + ΣGU

]
!

= pρ2
[

1 1 λ
]

+ δρ2
[

1 1 λ
]

+
[

ΣGG + ΣGE,1 ΣGG + ΣGI,1 λΣGG + ΣGU,1

]
+(1− ρ2)δ

[
1 1 λ

]
.

We deduce that

ΣGE,1 = ΣGE − δ, ΣGI,1 = ΣGI − δ, ΣGU,1 = ΣGU − δ.

Finally, consider (A.19), which can be rewritten as

0 = ΣDD,1 − ΣDD + δCC ′.
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Using the previously derived expressions for ΣDD and ΣDD1 we obtain the following five

conditions

0 = (1− ρ2)δ + (ΣEE1 − ΣEE)− 2δ + ρ2δ = ΣEE1 − ΣEE − δ

0 = (1− ρ2)δ − 2δ + (ΣEI1 − ΣEI) + ρ2δ = ΣEI1 − ΣEI − δ

0 = (1− ρ2)δ + (ΣII1 − ΣII)− 2δ + ρ2δ = ΣII1 − ΣII − δ

0 = λ(1− ρ2)δ − λδ − δ + λρ2δ = δ

0 = λ2(1− ρ2)δ − 2λδ + (ΣUU1 − ΣUU) + λ2ρ2δ = ΣUU1 − ΣUU − λ(2− λ)δ.

Thus, we deduce that

δ = 0, ,ΣEE1 = ΣEE, ΣEI1 = ΣEI , ΣII1 = ΣII , and ΣUU1 = ΣUU .

This proves the following theorem:

Theorem B.1 Suppose Assumption 2 is satisfied. Then the three-variable model is identi-

fied.
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