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ABSTRACT

In this review, we discuss three major contributions economists have made to our understanding of
the relationship between the environment and individual well-being. First, in explicitly recognizing
how optimizing behavior, particularly in the form of residential sorting, can lead to non-random assignment
of pollution, economists have employed a wide range of quasi-experimental techniques to develop
causal estimates of the effect of pollution.  Second, economic research has placed a considerable focus
on the role of avoidance behavior, which is an important component for understanding the difference
between biological and behavioral effects of pollution and for proper welfare calculations.  Lastly,
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quasi-experimental evidence on this topic suggests that pollution does indeed have a wide range of
effects on individual well-being, even at levels well below current regulatory standards.  Given the
importance of health and human capital as an engine for economic growth, these findings underscore
the role of environmental conditions as an important factor of production.
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1. Introduction 
 
The recognition that environmental factors can affect human health can be traced at least 

as far back as the 13th century when the King of England banned the burning of sea-coal in 

London because it was ‘prejudicial to health’ (Brimblecombe, 1999). In the eight-hundred years 

that have followed, our understanding of biology, chemistry, and medicine have evolved 

considerably.  Alongside large-scale increases in pollution due to industrialization, modern 

environmental concerns were born.  Today, nearly every country in the world regulates the 

environment to some degree, and pollution is a canonical example of both externalities and 

public goods in microeconomic textbooks. 1  The principal motivation for environmental 

regulation is the protection of human health, with significant impacts on the welfare of both 

producers and consumers around the globe.2     

Historically, much of our understanding about this relationship between the environment 

and health comes from the health sciences literature.  The field of toxicology uses controlled 

settings akin to randomized experiments to study the adverse effects of environmental stressors.  

While the controlled setting allows researchers to isolate biological impacts, ethical concerns 

over providing humans with known poisons generally leads to the use of studies based on the 

dosing of animal subjects, which provides limited external validity for the policy making context 

at hand.  When the contaminant can be delivered in a sufficiently non-harmful way to allow 

human experimentation, studies typically focus on surrogate outcomes, such as spirometry 

measures of lung function, that are straightforward to measure but do not clearly map into 

realized health impairment, particularly for sensitive populations who are often omitted from 

such studies (Hazucha et al., 2003). Epidemiology, on the other hand, exploits real-world 

contamination to examine the relationship between environment and health in situ in an effort to 

better inform environmental policy.  In this uncontrolled setting, however, humans can respond 

to environmental conditions, thus complicating statistical inference. 

Given that there are literally thousands of investigations on the relationship between 

pollution and health in the health sciences -- a search on PubMed for “pollution” and “health” 
                                                            
1 See Vahlsing and Smith (2011) for a list of nations that regulate two important pollutants, particulate matter and 
sulfur dioxide. 
2 The US Environmental Protection Agency, for example, describes its mission as ensuring that “all Americans are 
protected from significant risks to human health and the environment where they live, learn and work…” 
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revealed 25,754 publications -- what can economists add to an already crowded field? In this 

essay, we highlight three important contributions from the burgeoning economics literature on 

this topic over the past decade. First, economists explicitly recognized how optimizing behavior, 

particularly in the form of residential sorting, can lead to non-random assignment of pollution.  

For example, since air quality is capitalized into housing prices (Chay and Greenstone, 2005), 

individuals with higher incomes are likely to sort into locations with better air quality.3 

Conversely, cities attract high skilled workers because of greater employment opportunities, but 

are also a major source of pollution. These same individuals may also make additional 

investments in their health, and failing to account for these investments will bias estimates of the 

effects of pollution.  In light of concerns regarding endogenous exposure to pollution, 

economists have employed a wide range of quasi-experimental techniques to develop causal 

estimates of the effect of in vivo pollution levels on health and human capital.  Such causal 

inference provides estimates more relevant for policy making.   

Second, economic research has placed a considerable focus on avoidance behavior.  

Since the consequences of toxic exposures are costly, individuals may engage in activities to 

avert them.  This can muddy pure biologic signals in epidemiologic research.  Ignoring 

avoidance behavior can also lead to gross mischaracterizations of social welfare since a narrow 

focus on the costs of morbidity and mortality will exclude avoidance activities which can be 

quite costly (Courant and Porter, 1981; Harrington and Portney, 1987; Bartik, 1988).  

Encouraging avoidance behavior has also become an increasingly important policy lever through 

the use of informational approaches that empower citizens to make individual-level decisions 

regarding these tradeoffs (Magat and Viscusi, 1992; Shimshack, 2007; Neidell, 2009, Graff Zivin 

et al. 2011). 

Lastly, economic research on the impacts of environmental pollution has expanded the 

focus of analysis beyond traditional health outcomes.  Many health shocks can affect human 

capital and productivity, both in the short-run (Strauss and Thomas, 1998; Currie and Stabile, 

2006) and the long-run (Cunha and Heckman, 2007; Currie and Hyson, 1999). A blossoming 

literature has begun to make these links more explicit by examining outcomes ranging from labor 

                                                            
3Moreover, since air quality is bundled with other neighborhood attributes, locational sorting based on those 
attributes alone can also lead to the non-random assignment of pollution.  
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supply and productivity to cognitive formation and performance (Graff Zivin and Neidell, 2012; 

Hanna and Oliva, 2012; Lavy et al. 2012, Almond et al., 2009).  Many of these impacts, 

particularly those on the intensive margin, are quite subtle with little known about their 

pervasiveness throughout the economy.  Given the importance of human capital as an engine for 

economic growth (Schultz, 1961; Nelson and Phelps, 1966; Romer, 1986), these impacts may 

also be large and quite long lasting relative to those associated with acute morbidity.  In some 

sense, these human capital impacts invoke the early economic models of Smith and Ricardo 

which viewed the environment, albeit mostly land and natural resources, as an essential factor of 

production.  Together, these papers underscore the role of environmental protection as a national 

investment in addition to a consumption good, and thus should not be treated purely as a tax on 

producers and consumers that retards economic growth.4  

The remainder of this paper is organized as follows.  We begin with a brief scientific 

background section followed by a conceptual model of the environmental health production 

function and its implications for estimation and optimal policy design.  Section 4 highlights the 

primary challenges to empirical economic research in this area.  In Section 5 we summarize key 

quasi-experimental evidence on both health and human capital outcomes.5  Section 6 offers some 

concluding remarks and suggestions for future research. 

 
2. Scientific Background 

 
The scientific literature on the environmental health risk generation process typically 

describes the process through which the environment impacts human health as comprised of 

three principal components.  Contamination describes the amount of ‘toxic’ materials in a 

particular site and media.  Exposure is a measure of human contact with the contaminant.  The 

dose-response function translates a given human exposure to pollution into a physiological 

health response.  Since each element is treated as independent and quasi-exogenous within this 

framework, its direct application in economics has generally been limited to theoretical 

                                                            
4 Since exposure to poor environmental quality within and across countries tends to correlate with low income, these 
results also suggest a new sort of poverty trap.  This logic runs counter to much of the literature on the 
Environmental Kuznets Curve, which sees causality exclusively running in the other direction (see Dasgupta et al. 
(2002) for a succinct summary of this literature). 
5 Note that we do not focus on temperature in this review, as a recent review of the health effects from temperature 
extremes can be found in Deschenes (2012).  
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examinations of optimal regulation when individual behaviors are assumed fixed in the face of 

the pollutant (e.g. Lichtenberg and Zilberman, 1988; and Graff Zivin and Zilberman, 2002.)  

While the subsequent section will present a conceptual model that departs from this framework 

in order to better serve economic lines of inquiry, we will use this trichotomy as an organizing 

theme to briefly review some salient scientific features of environmental problems in the 

remainder of this section.    

 
2.A. Contamination 

 
Contamination of the environment comes in many forms, with thousands of compounds 

suspected of damaging human and animal health.  The U.S. Environmental Protection Agency 

alone regulates nearly 200 toxic air pollutants along with six criteria air pollutants that are 

commonly found all over the U.S., which include carbon monoxide, sulfur dioxide, nitrogen 

oxide, ozone, lead, and particulate matter. Drinking water regulations also set standards for 

approximately 100 contaminants.  The list of regulated hazardous wastes that despoil land is 

even longer.6  While pollutants can be attributed to many different sources, a considerable 

amount of pollution can be traced to industrial processes, electricity generation, and the 

transportation sector.    

Two features of contamination are particularly important for economic analyses.  First, 

many pollutants form as the result of interaction with other environmental variables.  For 

example, ozone pollution is not directly emitted, but rather forms as the result of complex 

interactions between two other emitted pollutants – nitrogen oxides (NOx) and volatile organic 

chemicals (VOCs) – in the presence of heat and sunlight (see Auffhammer and Kellogg (2011) 

for a discussion).  Furthermore, many pollutants are co-emitted from the same source and wind 

up in multiple medium, such as air, water, and soil. As such, the scope for co-pollutant 

confounding is potentially large since each of these elements may also impact human health 

either directly or through its influence on activity choice.   

Second, pollutants can vary widely in their deposition patterns.  Many pollutants fall 

relatively close to their source while others can travel great distances.  For example, a sizable 

                                                            
6 Although climate forcing pollutants, such as carbon dioxide, are another concern, as previously mentioned we do 
not include them in this review.   
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fraction of the mercury contamination in the Western U.S. originates at coal-fired power plants 

in China and other parts of Asia (Cristian et al., 2004).   Apart from the obvious importance of 

deposition in designing policy – cap-and-trade only works for pollutants with non-linear dose 

response functions when pollution does not accumulate in hot spots – pollution transport also 

matters for the estimation of the health effects from pollution.  Local pollutants are generally 

correlated with economic activity within the region that also impact health, making causal 

inference more challenging.  This problem is lessened for distant pollutants.  In either case, 

meteorological conditions can affect deposition: rain can "clean" the air and flush toxins from the 

soil, wind can move pollution around, and temperature can affect the formation of pollutants. 

Since meteorology can also have a direct impact on one's health (Deschenes and Greenstone, 

2011), it is also an important variable to control for as a confounder. 

 
2.B. Exposure 

 
The existence of pollution is only a problem from a human health perspective if people 

are exposed to the pollutant.  The relevant measure of exposure, and thus the appropriate 

identification strategy for empirical research, will depend on the contaminant of interest.  For 

some pollutants acute exposure is sufficient to cause illness while for others illness only occurs 

after a prolonged exposure to pollution over days, weeks, or even years for some carcinogens.    

The other important aspect of exposure is the role of avoidance behavior.  While 

laboratory studies force exposure in order to estimate a pure biologic effect, outside of this 

experimental setting individuals can respond to ambient pollution levels by taking actions to 

limit their exposure to it.  This avoidance behavior drives a wedge between "potential" exposure 

-- ambient levels of pollution in one's community -- and "realized" exposure – the amount of 

ambient pollution inhaled or ingested. As such, reduced form estimates of the impacts of 

potential exposure on health, which is often all that can be measured in observational analyses, 

may differ considerably from laboratory-based estimates of the impact of realized exposure.  

Welfare calculations and thus the design of optimal policy will depend critically on these 

avoidance behaviors.   

While this wedge between potential and realized exposure can arise due to incidental 

avoidance, e.g. well-insulated homes may limit exposure to pollution although they were not 
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adopted with such attributes in mind, deliberate avoidance is of particular interest as its costs are 

a direct result of pollution and thus part of the economic impacts of pollution.  Clearly, deliberate 

avoidance can only exist for observable pollutants.  Some pollutants are detectable by smell or 

sight, while others are colorless, odorless, and tasteless. Public warnings, such as air quality 

alerts and water quality violations, can inform people of dangerous pollution levels, which is 

particularly useful for the less detectable pollutants. For those pollutants with rapid health 

effects, effective avoidance behavior may also be instigated by experienced changes in health.7  

 
2.C. Dose-Response 

 
Conditional on realized human exposure to a given contaminant, the dose-response 

function can be viewed as a damage function in an economic model, although perhaps one that 

only paints a partial picture of aggregate economic damages.  Several features of the biological 

effects of pollutant exposure are important for thinking about the estimation of health effects and 

the design of policy.   

First, dose-response functions come in a variety of shapes.  While some are (quasi-) 

linear, others can be nonlinear and even contain thresholds.  For example, chamber studies of 

ozone pollution suggest a threshold of approximately 40 parts-per-billion, below which 

respiratory function appears unaffected (Dimeo et al., 1981).  Moreover, pollutants also vary in 

the types of health responses they elicit and the temporal signature associated with them.  Some 

will impair respiratory function and manifest quite quickly while the effects of exposure to 

carcinogens appear with a considerable time delay (e.g. Folinsbee et al., 1988; Huff and 

Hasemen, 1991; Kampa and Castanas, 2008).  Cardiovascular impacts can appear in both the 

short- and long-run (Le Tertre et al., 2002; and Kaufman et al., 2012).  Thus, choice of functional 

form and lag structure are essential for estimation in this context and, when appropriate, should 

be attentive to the underlying science.8 

                                                            
7 Note that even when pollution is neither ex ante nor ex post observable, avoidance behavior will remain a concern 
if pollution is correlated with other conditions that affect activity choice, e.g. individuals may spend less time 
outside when it is very hot and thus avoid ozone due to temperature effects. 
8 That said, some study designs that are correlational in nature are more limited in their usefulness for economic 
studies of environmental health effects tied to particular policies or programs.  
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Second, there is considerable inter-individual heterogeneity in responses to a given dose 

of pollution.  For example, children tend to be more vulnerable because limitations in their 

immune system and partial lung development make it difficult for them to cope with 

environmental assaults (Schwartz, 2004).  Comorbid conditions can also impact dose response 

functions.  HIV patients will be more susceptible to nearly all pollutants due to their 

compromised immune system.  Asthmatics may only be more sensitive to those pollutants that 

act upon the respiratory system.  While this heterogeneity will not limit the estimation of average 

treatment effects, it could mask potentially important outcomes.  Perhaps more interestingly, 

since much of this heterogeneity is known ex ante, it broadens the sets of hypotheses that can be 

tested and parameters that can be estimated in many empirical settings.    

Lastly, while the public health and medical literatures have generally defined responses 

in terms of physical health outcomes, it is plausible that many pollutants generate non-health 

sequelae of interest to economists.  Poor health as a result of pollution exposure can 

contemporaneously impact earnings by increasing worker absenteeism and diminishing worker 

productivity for adults and school absenteeism and performance for children.  It can also reduce 

earnings in the long run by limiting human capital formation, through both direct channels (via 

neurological insults) and indirect ones (via subsequent investments and skill formation).  

Estimation of these effects represents an exciting frontier of economic research in this area. 

 
3. Conceptual Framework 

 
The natural departure point for economic models of environmental health is the explicit 

recognition that individuals can play a direct and deliberate role in the production of their own 

health, principally through defensive and ameliorative actions.  Here we build upon the seminal 

model of Grossman (1972) that characterized health as an investment good to examine the 

particular case of environmental health, extending the model to reflect the fact that health can 

influence labor productivity, with one significant departure from the existing literature. Attention 

to the impacts of health on labor has generally been limited to the extensive margin whereby 

illness reduces labor supply (Smith, 2003; McCllelan 1998). In the spirit of Currie and Madrian 

(1999), we extend our model to include the intensive margin as well, where labor productivity is 
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impacted holding labor supply fixed. This adjustment allows the model to capture more subtle 

health effects.  

For simplicity, we model the health production function of a representative individual.9  

In its simplest form individual health can be expressed as a function of ambient pollution levels 

P, exposure to that pollution, which is mitigated by avoidance behavior A, and medical care M 

that ameliorates the negative health consequences from pollution exposure (Harrington and 

Portney, 1987; Cropper and Freeman 1991):  

ܪ ൌ ,ܯ,ሺܲܪ  .ሻ         (1)ܣ

While avoidance behavior and the consumption of medical care both reduce the health burden 

from pollution, they are quite distinct in terms of their timing and their costs.  Avoidance 

behavior is a preventive measure that takes place before pollution exposure is realized.  Its costs 

include any expenditure on defensive measures, e.g. air filtration, as well as the disutility 

associated with reallocations of time across activities that constitute part of the avoidance 

behavior.10  In contrast, medical care consumption takes place after exposure is realized in 

response to an illness episode.  Medical treatment costs include direct healthcare costs (such as 

doctor visits and the use of medications) as well as any disutility that results from those medical 

encounters. 

While we eschew the complexity of a formal dynamic model, we re-express the health 

production function in a non-conventional form to better reflect these features as well as to draw 

connections between several strands of empirical literature in environment, health, and labor 

economics. In particular, we make a distinction between individual health H and an illness 

episode φ and allow the health production function to take the following form:   

ܪ ൌ ,ሺ߶ሻܯሺܪ ߶ሺܲ,   .ሻሻ        (2)ܣ

As can be seen in (2), ambient pollution levels and avoidance behavior jointly determine 

environmentally-driven illness episodes.  Medical expenditure, in turn, depends on these illness 

episodes.  Since medical expenditure is meant to decrease the severity, i.e. disutility, of illness, 

                                                            
9 As noted in the previous section, individuals may differ in their susceptibility to pollution for a variety of reasons.  
This heterogeneity will affect the relative returns to avoidance and ameliorative behaviors, but the basic insights 
from the model remain the same. 
10 For expositional simplicity, we focus our attention on short-run avoidance behavior but the same logic applies to 
long-run avoidance behaviors, such as sorting.  This distinction is discussed in greater detail in Section 4C. 
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individual health depends jointly on illness episodes and medical expenditure.   Of course, the 

marginal productivity of medical treatment will differ by condition, and thus the relative 

importance of avoidance behavior will also vary by illness type and thus pollutants.  We assume 

that the usual concavity assumptions apply to the health function and its subparts described in 

(2). 

While individual utility depends on health, it also depends on consumption (X) and 

leisure (L): U(X,L,H).  Labor productivity is presumed to increase in health at a decreasing rate.  

Importantly, since individuals are allocating scarce time between work and leisure, this labor 

productivity effect and its resulting impact on wages may lead to changes in hours worked.11 

Letting I denote non-wage income, w denote the wage, cj denote the price of good j,12 and T the 

total time endowment, the individual’s utility maximization problem can be expressed as: 

ࣦ							௑,௅,஺,ெݔܽ݉  ൌ ܷሺܺ, ,ܮ ሻܪ ൅ ܫሾߣ ൅ ሻሾܶܪሺݓ െ ሿܮ െ ܿ௑ܺ െ ஺ܿܣ െ ܿெܯሿ    (3). 

The first order conditions are: 

డࣦ
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െ ௑ܿߣ ൌ 0         (4) 
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Equations (4) and (5) highlight the standard tradeoffs between labor and leisure.  Equations (6) 

and (7) can be combined to yield the following intuitive expression: 

ቀ೏ಹ
೏ಲ
ቁ

ቀ೏ಹ
೏ಾ

ቁ
ൌ ஼ಲ

஼ಾ	
           (8). 

Avoidance behavior and medical treatment will be consumed such that the ratio of the marginal 

productivities of each in increasing health is equal to their ratio of prices.  Perhaps more 

                                                            
11 This basic framework could be simplified if one assumes that sickness does not directly enter the utility function 
but only indirectly through its impacts on labor productivity, i.e. if health is a pure investment good in the Grossman 
sense.  In that case, an individual would invest in avoidance/ameliorative behavior such that the costs of those 
behaviors are equal to the marginal utility gain associated with the extra earnings due to avoidance and medical 
treatment. 
12 For simplicity, we assume that the costs of avoidance are all market-based, e.g. the purchase of air filters.  As 
discussed in Section 4C, activity reallocations are another form of avoidance behavior.  The costs of non-market 
behavioral responses should be captured by the utility foregone due to this reallocation. 
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importantly, equations (4)-(7) implicitly define avoidance behavior and medical treatment as a 

function of all exogenous variables: A(P,φ,cj) and M(P,φ,cj) for all j.   Optimal avoidance 

behavior and medical treatment will depend on pollution levels, the function that translates 

pollution into illness episodes, and the costs of avoidance, medical care, and all other 

consumption goods.   

Since avoidance behavior and medical care consumption depend on ambient pollution 

levels, the relationship between health and pollution levels can be expressed as the following 

total derivative of equation (2):  

ௗு

ௗ௉
ൌ ቀడு

డெ

డெ

డథ
൅ డு

డథ
ቁᇣᇧᇧᇧᇤᇧᇧᇧᇥ

೏ಹ
೏ഝ

∙ ቀడథ
డ௉
൅ డథ

డ஺

డ஺

డ௉
ቁᇣᇧᇧᇧᇤᇧᇧᇧᇥ

೏ഝ
೏ು

 .        (9) 

The reduced form effect of pollution on population health depends on two distinct components: 

the relationship between pollution and illness (as captured by the second parenthetical 

expression) and the degree to which illness is translated into poor health status (as captured by 

the first parenthetical expression).  We begin with a breakdown of the second expression.  The 

first term (δφ/δP) describes the pure biological effect of pollution, while the second term 

(δφ/δA*δA/δP) describes the role of avoidance behavior in averting illness episodes by limiting 

contact with pollutants.  Thus, the entire second parenthetical expression (dφ/dP) describes the 

net, or reduced form, effect of pollution on illness episodes based on individual exposure levels. 

Importantly, it is possible to observe no change in illness despite the existence of a biological 

effect if avoidance behavior is sufficiently productive.  On the other hand, if avoidance behavior 

is not possible or ineffective, then biological and reduced form effects will be identical.13 

The first expression also has two components.  The first term (δH/δM*δM/δφ) describes 

the degree to which medical treatment, a post-exposure intervention, ameliorates the negative 

effects of pollution on health.  The second term (δH/δφ) describes how health responds to illness, 

which reflects the degree to which pollution-induced illness episodes are not treated, either 

because the condition is untreatable or because individuals do not seek treatment for it.  Clearly 

                                                            
13 Avoidance behavior may be unproductive if a pollutant can't be avoided despite defensive actions. For example, 
while going indoors greatly reduces ozone exposure because it rapidly breaks down indoors, the penetration of fine 
particular matter indoors can be as high as 80% (Jones et al., 2000). 
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this final term will vary by medical condition, but it can also be viewed as capturing some of the 

transient suffering that accrues before medical treatments take effect. 

The principal value of equation (9) is conceptual.  Data limitations imply that all 

empirical investigations in this area will paint a partial picture of this total derivative.  

Nonetheless, it connects a wide range of empirical research, within not only the environmental 

field but also in labor and health economics, in a unified framework grounded in basic economic 

theory.  We will refer back to it as we review the contributions and limitations of the relevant 

empirical literature throughout the remainder of this paper. 

This basic model also yields results that can serve as a guide for policy. Optimal 

regulation requires policy choices that balance the costs and benefits of regulation designed to 

reduce pollution levels in order to maximize social welfare.14   Policy design will necessarily 

attend to economies of scale in pollution abatement as well as the costs and consequences of 

private actions to reduce the impacts of pollution.  Denoting the costs of regulation as cR, optimal 

regulation will occur at the point where the marginal costs of regulations R designed to reduce 

pollution levels are equal to the averted health, avoidance, and medical costs associated with that 

marginal reduction in pollution: 

ப୔

பୖ
cୖ ൌ

ப୵

பୌ

ୢୌ

ୢ୔
൅ ப୙

பୌ

ୢୌ

ୢ୔

ଵ

஛
൅ ப୅

ப୔
c୅ ൅

ப୑

ப୔
c୑     (10). 

The costs of abatement technologies and their impacts on pollution levels are frequently derived 

from engineering as well as economic studies.  Estimates of the benefits from regulation are 

more exclusively the domain of economists.  The right-hand-side of equation (10) can be 

usefully viewed as a measure of willingness-to-pay (WTP) to reduce pollution.15  The first term 

reflects the impacts of pollution on earnings, the second term is the direct disutility associated 

with pollution driven morbidity, the third captures the avoidance costs, and the fourth represents 

pollution-driven medical expenditures.  Given that researchers estimate different variants of (9), 

each has a slightly different relationship to (10) that must be considered when estimating WTP.  

                                                            
14 As mentioned in the introduction, informational approaches to regulation that attempt to engage avoidance 
behavior directly have also been used in a limited number of policy settings over the past decade.  In this 
framework, such an intervention can be viewed as a change in the price of avoidance behavior.  While policies 
designed to alter medical care prices are not generally viewed as part of the environmental regulator’s toolkit, they 
would operate in a similar manner, though with potentially important general equilibrium effects.  
15 For alternative expressions for WTP, see Cropper and Freeman (1991). 
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Moreover, even if avoidance/amelioration fully insulates one from negative health effects, 

abatement may still be optimal if its marginal costs are sufficiently lower than those associated 

with those individual actions. 

 
4. Empirical Issues 

 
In this section, we highlight the frequent empirical challenges faced by researchers in this 

field. The approaches that have been used to overcome many of these challenges are detailed in 

the section that follows.  

 
4.A. Data 

 
Empirical analyses examining the impact of pollution on health and human capital are 

data intensive, even by empirical economic standards. The first significant hurdle is obtaining 

environmental data on a sufficient spatial and temporal scale.  Data on water pollution and toxins 

typically come from either proprietary projects using small samples, or are generally not 

measured in units conducive to estimating health effects.16  Air pollution data, on the other hand, 

are much more widely available, and in many cases were expressly designed for the purposes of 

health impact assessment. As a result, the vast majority of empirical research on the relationship 

between environmental quality and health / human capital focuses on air pollution.  

Ambient air pollution monitors typically measure pollution concentrations at very high 

frequencies, such as hourly, at a fixed location.  While this frequency of measurement generates 

data at a fine temporal scale, the limited number of monitor locations relative to the size of a 

country and the geographic distribution of the population generates data that is rather coarse on a 

spatial scale, even in the most highly monitored areas.  Furthermore, since these data are 

typically collected by government agencies, most research has focused on developed countries 

where such data are more widely abundant, although many pollution problems are more extreme 

in developing countries. Remote sensing (i.e., satellite) data offers promise for developing 

                                                            
16 For example, water quality is continuously monitored at all public water systems, but the only publicly available 
data is for reported violations (see Graff Zivin et al., 2011). Likewise, the toxic release inventory (TRI) contains 
self-reported data on the release of hundreds of toxins at their source, but does not include measures of ambient 
concentrations. See, however, Currie and Schmieder (2009), Agarwal et al. (2010), and Currie et al. (2013) for a 
health impact analysis using the TRI. 
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countries, where institutions are often limited in their ability to directly monitor environmental 

quality.  Several limitations make it an imperfect substitute for ground-based data collection, 

although the science and technology is rapidly evolving in this area (Martin, 2008).17 

Figure 1 shows air pollution levels over time for China, Mexico, and one city in the US, 

Pittsburgh, focusing on particulate matter less than 10 microns in diameter (PM10).18 Several 

features of this Figure are noteworthy. First, since developed countries began monitoring 

environmental quality earlier than their developing country counterparts and are more likely to 

place that data in the public domain, we can construct a longer time series for the U.S. than for 

Mexico or China.19  Second, air pollution has improved tremendously over time in all 3 

countries, regardless of development status. Levels in Pittsburgh dropped by over 80% since 

1950 and 40% since 1990, and levels in both China and Mexico have fallen by roughly 50% 

since 1990. Third, although pollution levels in China and Mexico are always higher than levels 

in the US at the same point in time, the levels experienced in those countries today are not unlike 

historical levels in the U.S. Contemporary pollution levels in China and Mexico are similar to 

those found in Pittsburgh in the mid-1970s and mid-1990s, respectively. As such, studies based 

on historical pollution levels in the U.S. may also be informative about current health and human 

capital impacts in developing countries.    

Acquiring time-stamped health data with geographic identifiers that permit the merging 

of environmental data is an additional challenge, regardless of country development status.  

Health surveys often contain limited geographic identifiers in order to protect subject 

confidentiality, although increased access to non-pubic versions via various Research Data 

Centers has eased this constraint.20  Various health censuses, such as birth and death records 

                                                            
17 In addition to the limited scope of pollutants for which remote sensing is feasible, other problems include poor 
spatial resolution, the inability to distinguish surface from upper atmospheric pollution, and the interference cloud 
cover causes in obtaining reliable estimates.  
18 We focus on PM10, rather than PM2.5, because of data availability. We also focus on Pittsburgh because of the 
availability of a particularly long time series (Davidson, 2000; Rawski 2006); values for Pittsburgh are, however, 
quite close to the average across all major cities. Since PM10 has only been measured more recently, older values of 
PM10 are obtained by multiplying measures of Total Suspended Particles (TSP) by 0.55. A complete time series for 
TSP was imputed using data on dust fall. We thank Thomas Rawski for generously sharing this data, originally 
obtained from Cliff Davidson. 
19 While reported pollution levels in China may be subject to manipulation, evidence also indicates that reported 
pollution levels are highly correlated with data from independent sources (Chen et al., 2013). 
20 Although access to non-public versions of these health surveys offer promise, it is important to keep in mind that 
such data were not designed to be used for spatial analyses. For example, the National Health and Nutrition 
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stored in Vital Records and Hospital Discharge Data, often provide easier access to geographic 

identifiers as well as the exact date of the birth, death, or hospital admission.  As we describe in 

the following section, several studies have acquired administrative data sets with detailed 

geographic identifiers to more precisely assign pollution exposure. 

Once environmental and the relevant outcome data sets are identified, merging them is a 

non-trivial exercise as well. It requires important assumptions about individual mobility and the 

spatial distribution of pollution, which is often non-uniform even over relatively small spatial 

scales.  For example, the New York City Community Air Survey (NYCCAS), a unique project 

launched by both the city and academic institutions within the city, found that differences in 

building heating oils, proximity to traffic, and vegetative cover lead to considerable variation in 

particulate matter contamination in the air across closely located city blocks (Clougherty et al., 

2009).  

 
4.B. Measuring pollution 
 

i. Assigning pollution to individuals 
 
Given the geographic information contained in large scale data sets, studies often 

approximate contemporaneous pollution levels based on an individual’s general location and the 

location of the monitor.  This crude approach leads to measurement error that increases with an 

individual’s distance from the monitor and the degree to which pollutants disperse non-

uniformly. This measurement error will typically bias estimates downward, but with a large 

enough dataset researchers can use data from multiple monitors, various weighting techniques, 

and factors that affect the dispersion of pollution to obtain more precise assignments of localized 

pollution.21 A finer level of geographic disaggregation for individuals, such as a residential 

address, also allows for better assignment of relevant pollution levels and hence is more likely to 

provide precise estimates. 

The usual mobility of individuals throughout their life (i.e., not as a form of avoidance 

behavior in response to pollution, which we discuss below in 4C), both within a day and over 
                                                                                                                                                                                                
Examination Survey (NHANES) only samples from a small number of counties in order to keep survey costs down, 
which greatly limits spatial variability. 
21 Such methods include inverse distance weighted average (Currie and Neidell, 2005), kriging (Lleras-Muney, 
2010), and land-use regression (Jerret et al. 2005). 
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time, can also present a challenge for assigning potential exposure.  On a daily basis, individuals 

spend their time not only at home but at work, school, and other possible locations that are not 

typically recorded.  Although the use of personal monitors attests to this mobility (Tonne et al., 

2004), two issues remain: 1) the high costs of personal monitoring often result in the use of a 

small, unrepresentative sample without a clearly defined control group; and 2) the link to policy 

is less clear because indoor sources also contribute to pollution, making it difficult to pin down 

the sources of pollution and the scope for regulation.  Mobility over time also presents a 

significant measurement challenge in assigning cumulative exposure over longer periods of time. 

Focusing on children, and in particular infants, whose shorter life span has permitted less 

mobility, can greatly limit this concern (Joyce et al., 1988; Chay and Greenstone, 2003a).  

Clearly, this comes at a cost since studies of children may not tell us much about impacts on 

alternative populations of interest, such as the elderly or those with respiratory problems.  

Instrumental variables offers one approach for combating "classical" measurement error in 

pollution, and below we describe several instruments that have been used in the literature.  

 
ii. Functional form of pollution 
 
Early epidemiological investigations on the health effects of pollution predominantly 

focused on extreme pollution events, with one of the most famous being the “killer fog” in 

London, England in December, 1952 (Logan and Glasg, 1953).  A temperature inversion 

combined with windless conditions led to a sudden and dramatic increase in air pollution.  Since 

residents were used to winter fogs, there were little, if any, changes in behavior, leading to a 

rather clean measure of pollution impacts in this case.  The dramatic rise in mortality that 

precisely coincided with the timing of the fog, along with results from studies with similar 

research designs (e.g. Townsend, 1950; Firket, 1936; Greenburg, 1962), have produced 

compelling evidence that high levels of pollution pose a significant threat to human health.   

While high pollution levels may be relevant in developing countries, these extremes are 

dramatically higher than those faced by nearly all people in developed countries today (refer to 

Figure 1).  This is important because the processing of pollutants by the human body is subject to 

a number of rate-limiting steps that imply non-linear health effects that have been widely 

supported by laboratory studies in the toxicology literature (e.g. Lefohn et al., 2010; Smith and 
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Peel, 2010).  Indeed, thresholds below which no harmful effects are observed have been found 

for some pollutants (Stoeger et al., 2006; Pottenger et al., 2009), raising serious concerns about 

extrapolating health effects from high pollution levels to low ones.  

As such, interest has largely shifted to understanding the health effects from more modest 

pollution levels, with an emphasis on identifying ‘safe’ levels below which pollutants have no 

meaningful health effects.  This shift in emphasis to the lower-end of the pollution distribution, 

however, makes the choice of study outcomes particularly important.  It may be that mortality or 

hospital admissions are only induced when pollution exceeds a certain threshold, while more 

subtle forms of morbidity and impairment arise at lower levels.  Our limited understanding of the 

human capital and productivity effects of pollution at any level, however, underscore the 

importance of studies throughout the pollution level spectrum in order to better explore the full 

range of impacts in this emerging area of importance.  

To explore possible non-linear effects, the most widely used approach is to discretize 

pollution levels through the use of dummy variables, which can be specified in several ways. 

One approach is to specify thresholds based on government standards, which helps to relate 

estimates directly to policy. For example, Currie et al. (2009a) include a series of dummy 

variables for pollutants as they relate to National Ambient Air Quality Standards. Another 

approach is to use laboratory evidence on thresholds, though measurement error in assigning 

pollution may limit its effectiveness. The most flexible but also data demanding approach is to 

define pollution as a series of dummy variables, with somewhat arbitrarily chosen knots. This 

approach is akin to a nonparametric regression with a uniform kernel and no overlap; unlike non-

parametric regression it can be estimated in an ordinary least squares framework, and is therefore 

amenable to a wide range of econometric tools for causal inference. 

 
 iii. Duration of exposure 

 
Specifying the appropriate duration of exposure is also important. Some pollutants have a 

nearly immediate effect – exposure to ozone can inflict symptoms in as quickly as 1-2 hours – 

while some have a longer incubation period. Even more complicated, some have both immediate 

and delayed effects. Since we may not know which period of exposure is most important a priori, 

this is largely an empirical question. A distributed lag specification, which allows for both 
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contemporaneous and lagged exposure, allows for a flexible duration.  Correlations in pollution 

values over short periods of time, however, can lead to multi-collinearity, hampering our ability 

to precisely identify the coefficients for specific time periods. A joint F-test of all time periods 

enables one to obtain an overall understanding of the relationship between multi-day exposure 

and outcomes without distinguishing between individual days. The precise temporal pattern of 

impacts is generally unimportant for policy, which typically uses rather blunt instruments to limit 

contamination and exposure at a broad level rather than on specific days. .  

For examining long run effects, analyses become increasingly complicated, particularly 

for understanding the impacts from cumulative exposure over a lifetime. In addition to individual 

mobility over time hampering the assignment of cumulative exposure, specifying the proper 

functional form for this relationship is a major obstacle. Accounting for the other behaviors over 

one’s lifetime that affect health and thus potentially confound this relationship is equally 

challenging. In Section 5 we discuss quasi-experimental evidence on long-run effects that arise 

due to a latent response to an acute exposure in the distant past, but we are unaware of any quasi-

experimental evidence on the cumulative effects of pollution exposure.22  

When focusing on birth outcomes, an area of intellectual inquiry that has grown 

tremendously in recent years, the relevant period of exposure is also important, albeit more from 

a developmental perspective than an environmental policy one (Salam et al., 2005). For instance, 

the first trimester is the period during which the neural tube is transformed into the brain and 

spinal cord and many other organs experience rapid development (de Graaf-Peters and Hadders-

Algra, 2006; Cunningham et al., 2010), making this a particularly vulnerable stage in terms of 

environmental insults. One complication when parsing exposure by trimester of pregnancy is that 

length of gestation can be affected by pollution, making the definition of each trimester, and thus 

the total in utero exposure, endogenous (Currie et al., 2013).  More challenging, however, is that 

including multiple trimesters of pollution simultaneously can lead to severe multi-collinearity, 

sometimes resulting in seemingly beneficial effects from pollution in certain exposure periods. 

 
4.C. Endogeneity of pollution 

 

                                                            
22 For recent evidence on the association between cumulative exposure to pollution over several years and health, 
see Janes et al. (2007), Pope et al. (2002), Jerrett et al. (2009), Rojas-Martinez et al. (2007), and Miller et al. (2007). 
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Early research on the health impacts of pollution took a rather fatalistic approach – 

people (and thus markets) are unaware of ambient pollution levels such that once it is in the air 

nothing can be done about it. As knowledge about pollution has grown, both in terms of our 

ability to detect it and to understand its health effects, the fallacy of this original assessment has 

become clear. Pollution exposure can be altered in a variety of ways, making it an endogenous 

variable with all of the usual concerns that come with it.  Recognizing these sources of 

endogeneity has led to the use of quasi-experimental research designs that effectively eliminate 

(or significantly reduce) this problem. 

 
 i. Residential sorting 

 
The major driver of endogeneity is residential sorting: individuals choose residential 

locations based on the attributes of that area, which leads to a non-random assignment of 

pollution.  Preferences over residential neighborhoods depend on the employment opportunities, 

commuting costs, and local amenities in the area (Tiebout, 1956; Roback, 1982), where local 

amenities include elements such as school quality, parks, housing stock, crime, hospitals, and 

environmental quality.23  Importantly, these amenities are bundled such that environmental 

quality is packaged with other attributes in a location, although the specific contents of a 

particular bundle vary by location. For example, urban areas may have worse air quality but 

better schools than rural areas, while suburban areas may have both better air quality and schools 

than inner cities.  The key point is that optimizing individuals make tradeoffs along multiple 

dimensions based on the intensity of their preferences for each local attribute, which implies that 

the characteristics of the neighborhood in which individuals live, including pollution levels, are 

endogenously determined.24   

Different levels of exposure due to sorting can be driven by three factors. The first is 

heterogeneity in preferences over local amenities. Since these local amenities are often correlates 

                                                            
23 For simplicity, we assume preferences over environmental quality solely because of health benefits, but the same 
basic intuition holds if we extend this to include preferences over environmental quality because of visibility or 
odor. 
24 Of course, an individual’s ability to trade off attributes will be a function of prices, which depend on aggregate 
preferences over attributes and thus market demand for and supply of housing in a given location (see, for example, 
Bayer et al., 2010).  For an explicit ‘test’ of the Tiebout mechanism in an environmental context, see Banzhaf and 
Walsh, 2008). 
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of air quality, we can view them as indirect preferences over air quality. The second is income. If 

local amenities are normal goods, then wealthier people will live in areas with better local 

amenities, which can affect air quality to the extent that it is correlated with other amenities.  The 

third is heterogeneity in susceptibility to pollution.  In this case, we view sorting as a direct result 

of preferences over air quality.   

The importance of highlighting these three factors is that they have different implications 

for cross-sectional estimates of the relationship between pollution and health/human capital.  The 

former two factors lead to omitted variable bias. Wealthier individuals might live in 

neighborhoods with better air quality (driven by preferences for local amenities correlated with 

air quality), and they also are likely to make other investments in their health that are difficult to 

observe; this would bias estimates down. On the other hand, people who live in or near cities 

face worse levels of air quality but could have access to better quality health care and jobs that 

improve health; this would bias estimates up. Clearly, the overall direction of bias introduced by 

this sort of endogeneity is theoretically ambiguous. 

In contrast, residential sorting due to direct preferences for cleaner air can lead to a 

simultaneity bias. If susceptible people relocate to less polluted areas to reduce the onset of 

symptoms, then health is affecting one's pollution exposure.  To fix ideas, imagine an extreme 

case where there are two types of individuals, non-asthmatics and asthmatics.  Pollution causes 

asthmatics to have hospital admissions, but not non-asthmatics. Initially, individuals are evenly 

distributed across a "dirty" area and a "clean" area.  If the asthmatics relocate to the clean area to 

reduce clinical symptoms induced by pollution, the average health stock in the clean area will 

decrease while the health stock in the dirty area will improve. If this sorting were not recognized, 

it would look as if pollution actually improved health. Although the stylized nature of this 

extreme case is unrealistic, it underscores one important mechanism through which sorting may 

hinder inference. 

Table 1 illustrates the sorting problem.  Data for this Table are from the 2001-2006 waves 

of Behavioral Risk Factor Surveillance System (BRFSS).25 We focus on these 6 years because it 

already includes merged air pollution data at the MSA level; a rather crude measure but one that 

is still sufficient for illustrating our point.  In each row, we present the mean and the coefficient 
                                                            
25 For more details on the BRFSS, see http://www.cdc.gov/Brfss/. 
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of each variable, where the coefficient is obtained by regressing each variable on the Air Quality 

Index (AQI) – a summary measure of air quality across several pollutants -- and dummies for 

each survey wave.  For example, the first row shows that roughly 77 percent of respondents have 

participated in some form of exercise in the past month. The estimate of -0.118 implies that for 

each 10 unit increase in the AQI, there is an 11.8 percentage point drop in the rate of exercise. 

Consistent with sorting, we see that respondents of higher socioeconomic status and those with 

higher levels of health investments generally live in neighborhoods with better air quality, 

though not necessarily in a monotonic pattern.   This underscores the non-random assignment of 

pollution levels.  While it is possible to control for these factors, it is unclear whether one can 

adequately control for all relevant factors, highlighting the potential for bias under cross-

sectional approaches.  

Although a complicated and seemingly insurmountable empirical challenge, the main 

approach for tackling sorting is to find "shocks" to air quality that push the market temporarily 

out of equilibrium, often accompanied by fixed effects that hold other characteristics of the area 

constant. These shocks can be driven by air quality regulations, abrupt changes in industrial 

production (such as strikes and plant closings), or catastrophic events (such as temperature 

inversions or wildfires). Finding such shocks presents a major obstacle, and it is not surprising 

that many of the same shocks are used across studies. Controlling for other major changes that 

may accompany a shock is also a challenge.  For example, a plant closing that lowers pollution 

might lead to disruptions in income and health insurance that could also impact health and 

human capital. 

Since many pollutants exhibit a high level of variability from one day to the next, high 

frequency variation in pollution can also be exploited to address sorting.26  Figure 2 provides a 

glimpse of this for ozone. The first panel plots demeaned, daily ozone levels for a downtown Los 

Angeles, CA monitor for June-September, 2010. Immediately evident, ozone swings from one 

day to the next are substantial, often nearly as large as the overall mean level of ozone of 0.043 

parts per million (ppm).  Focusing on such short-run variation, however, requires careful 

consideration of what causes the higher frequency changes in pollution levels to ensure they are 

                                                            
26 Of course individuals can modify their activities (and the location of activities) in response to these daily 
fluctuations, a point we return to in the next subsection. 
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not driven by local activities that might also affect health and human capital. In the case of 

ozone, this variation is due to weather, regional transport of ozone and its precursors, and the 

highly nonlinear ozone formation process. Since weather is an important confounder, the second 

panel of Figure 2 plots the residuals from a regression of ozone against several weather variables 

(along with day of week dummies), and the variation is only minimally dampened, providing 

additional support to the notion that daily variation can be viewed as plausibly exogenous. 

One concern with using such high frequency variation, however, is that daily changes in 

pollution may be less informative about possible impacts from new regulations, which lead to 

more permanent shifts in pollution.  A second concern, and one that only arises when examining 

mortality impacts, is short-term mortality displacement, commonly referred to as “harvesting.” 

Mortality for an otherwise healthy individual represents a significant loss to society, but 

mortality for an already ill person, whereby pollution serves to hasten the death by a few days or 

weeks, presumably imposes less social cost. While an offered solution is to assess the degree to 

which estimates change when aggregating to a lower frequency, this is an imperfect solution 

because it shifts away from the underlying premise of this approach.   

To illustrate the value of exploiting plausibly exogenous changes in pollution, we present 

some basic estimation results in Table 2 using the same BRFSS sample. We approximate a 

‘shock’ by including MSA fixed effects -- an admittedly imperfect quasi-experiment that exploits 

the natural year-to-year fluctuations in pollution, but one that again illustrates our principal point. 

The first panel focuses on tooth loss as a dependent variable. Tooth loss should not be affected 

by air pollution, so evidence to the contrary suggests model misspecification.27 The first three 

columns present cross-sectional estimates and the last three fixed effects estimates, with a 

gradual increase in controls within each model as we move rightward. The estimate in column 

(1) implies that a 10 unit increase in the AQI leads to a 6.3 percentage point increase in having 

lost any teeth, which represents a 13% increase from the mean. The result becomes somewhat 

smaller as we add more controls, but remains statistically significant at conventional levels, 

supporting the surprising conclusion that air pollution makes one's teeth fall out.  A more likely 

explanation is that oral health is the result of an accumulation of unobserved investments in 

                                                            
27 While pollution could indirectly affects tooth loss through interactions with comorbidities over long time periods, 
the gradual nature of tooth loss implies it will be insensitive to a short term change in pollution. 
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health, and people living in more polluted areas have lower levels of investment. In support of 

this, when we include fixed effects to capture time invariant characteristics of MSAs, this odd 

finding disappears, shown in columns (4)-(6).  These results illustrate the importance of fixed 

effects even when a rich set of controls are available.    

Since fixed effects over such a short time frame may have the unintended consequence of 

removing too much of the variation in pollution, we continue this example focusing on two self-

reported outcomes plausibly affected by pollution. The first is the number of days in the past 

month with bad physical health (panel 2), which can be viewed as a measure of illness (φ). The 

second focuses on self-reported general health status (panel 3), a measure of health capital (H). 

Repeating the same set of regressions, cross-sectional estimates for days of bad health are 

statistically insignificant and quite unstable; the addition of a handful of behavioral factors 

(exercise, smoking, and whether one had the flu shot) halves the estimate. The fixed effect 

estimates, however, are much more stable, considerably larger in magnitude and statistically 

significant, suggesting ample variation across years for detecting changes in health flows. The 

estimate of 1.225 from the last column implies a 10 unit increase in AQI increases bad health 

days by over a third. Since health status has less variation than illness, we do not find a 

statistically significant relationship between AQI and being in poor, fair, or good health in any 

specification. While this table highlights the potential strength from using fixed effects, it also 

demonstrates the caution needed in interpreting results across dependent variables that arise from 

different processes, a point we discuss in more detail below in 4D. 

 
 ii. Environmental confounding 

 
In addition to optimizing behavior causing endogenous pollution exposure, omitted 

variable bias may also arise from concurrent changes in the environment. Of particular concern 

is weather.  As previously mentioned, weather interacts with some types of emissions to form 

pollution.  Weather may also have a direct impact on health (Deschenes and Greenstone, 2011), 

making it a potentially important confounder.  Since weather is typically observable at the same 

or finer scale than pollution data, this challenge can be obviated through the careful control of 

relevant variables. As with pollution, the functional form of weather must be carefully 

considered.  
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Environmental confounding can also occur because the emissions of many pollutants are 

highly correlated. Many air pollutants, especially in urban areas, are co-emitted. For instance, 

automobiles emit particulate matter, carbon monoxide, and contribute to ozone pollution.  

Similarly, industrial mix and geography can create pollution hot spots, with high levels of toxics 

in air, water, and soil.  As with meteorology, the careful selection of controls is essential and thus 

requires an understanding of both the pollution generation process and its likely impacts. For 

example, nitrogen dioxide leads to the formation of ozone, but may also have direct health 

effects; controlling for it may unnecessarily dampen estimates of the impact of ozone pollution 

on health and human capital, but not controlling for it may overstate the impact.   

The fact that many pollutants can be traced back to the same emission source introduces a 

complication for instrumental variable (IV) approaches. A single shock to an emission source, 

such as a plant closure or unexpected changes in boat or vehicle traffic, can affect multiple 

pollutants simultaneously, making the model unidentified without further assumptions. Since 

meteorological conditions, such as wind speed and direction, interact with emissions to impact 

pollution formation and deposition, knowledge of this process can be incorporated to aid in 

identifying the effects of multiple pollutants. However, weather is also an important confounder 

in its own right, necessitating additional assumptions regarding the functional form of the 

relationship between health, pollution, and meteorological conditions in order for this to improve 

identification. See, for example, Schlenker and Walker (2011) and Knittel et al. (2011), for 

applications along these lines. Reduced form relationships focusing on the source of emissions, 

rather than pollutants per se, may be estimated to circumvent this issue. 

 
 iii. Avoidance behavior 

 
Another source of endogeneity stems from avoidance behavior – transient actions 

individuals deliberately take to reduce their realized exposure to pollution.28 For example, on a 

high ozone day, spending less time outside or shifting outdoor activities towards twilight hours is 

                                                            
28 Although residential sorting with respect to preferences for clean air can be viewed as a form of avoidance 
behavior, we distinguish it from this more temporary avoidance behavior because failing to account for the two 
different types of avoidance behavior have different implications for estimates, as elaborated below.  A similar logic 
applies to more permanent actions designed to limit exposure to pollution, such as home air or water filters that run 
constantly once purchased. 
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a highly effective means for reducing exposure.  Such short-run responses require knowledge 

about daily and even hourly pollution levels.  Certain pollutants are observable at high levels of 

concentration, thereby facilitating avoidance.  Others are correlated with observable phenomenon 

and thus can be inferred, e.g. the proliferation of face masks in many Asian cities is in response 

to an observed haze that is indicative of ozone and fine particulate matter pollution.  When 

pollution levels are more modest and thus less easily discernible by the citizenry, direct 

observation has largely been replaced by air quality alerts and other public information 

campaigns.  The most susceptible individuals can also independently monitor their lung 

functioning to approximate their sensitivity on any given day, indicating a role for private 

information in avoidance behavior as well. In the end, the degree to which such short-run 

behavioral responses will be important depends upon the ‘visibility’ of pollution, either literally, 

through information dissemination, or through health feedbacks that allow individuals to infer it 

based on physiological responses.   

Unlike sorting, which affects the ambient levels of pollution where an individual resides, 

avoidance behavior is a response to ambient levels. That is, avoidance behavior occurs after an 

individual learns the ambient pollution level (a “post-treatment” variable). As such, including or 

excluding avoidance behavior does not introduce a bias per se, but affects the interpretation of 

estimates. For example, if focusing on hospital admissions, directly controlling for avoidance 

behavior yields estimates of the biological effect (δφ/δP), while omitting it yields estimates of 

the reduced-form effect (dφ/dP).   

Moreover, the scope for short-run avoidance behavior complicates the use of shocks to 

identify the effect of pollution. When a shock leads to an abrupt change in pollution that is 

unobservable by the populace, behavioral responses are not feasible and the shock can be used to 

derive a measure of the biological impacts of pollution.  However, when a shock is more gradual 

(such that information about pollution can be publicly disseminated), or individuals can directly 

observe the change (possibly because a pollutant or its correlates are visible), the shock does not 

obviate the need to account for avoidance behavior. Clearly the degree to which shocks allow 

potential time-varying behavioral responses to changes in pollution levels will vary across 

settings depending on the availability of this public and private information.  
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The question then becomes, should one control for avoidance behavior? The reduced 

form is generally more convenient for valuation, described in more detail below in 4E, because 

the econometrician does not need to specify the functional form of the environmental health 

production function with respect to P and A.  This is particularly helpful since data limitations 

often necessitate the use of proxy or incomplete measures for avoidance behavior. The pure 

biological effect may be of interest to economists for its generalizability, at least across settings 

that are relatively homogenous in terms of age composition and underlying health.29  Avoidance 

behavior is clearly very context specific, even within the same population over time (Graff Zivin 

and Neidell, 2009), so reduced form estimates are likely to vary across settings.  Furthermore, it 

is important to know the biological effect in order to design policies to encourage avoidance 

behavior. Ideally, one would estimate both the biological and reduced form effects, with the 

difference reflecting the benefits from avoidance behavior -- δφ/δA*δA/δP (or δH/δA* δA/δP). 

When avoidance behavior is precipitated by the provision of information, this difference then 

reflects the value of the information provided. 

 
4.D. Outcome measurement  

 
Pollution can have myriad health effects and a simultaneous accounting of all of them is 

essential for welfare calculations and the design of optimal policy.  For example, a high pollution 

concentration may cause an individual to use more medication, visit the ER, and then, ultimately, 

to die prematurely.  Many additional impacts may occur that are not captured by health 

encounters.  Data limitations require all studies to paint a partial picture, which can often be 

considered a lower bound of the full effects.  Yet, taken as a whole, economists have examined a 

wide range of outcomes that result from an equally varied set of quasi-experiments.  These 

results have deepened our understanding of which impacts are economically significant.  

Moreover, by bounding impacts they may help us determine threshold rules for policy whereby 

regulatory action is taken when a subset of the benefits exceed the costs. 

                                                            
29 While toxicologists should have a comparative advantage in measuring the pure biological effect through the use 
of chamber studies, as previously mentioned the endpoints used in these laboratory settings are often of limited 
value for policy design since they are frequently designed solely to understand the mechanisms of action. This 
leaves ample room for learning about the biological effects in a non-experimental setting by controlling for 
avoidance behavior. 
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In the discussion that follows, we group health outcomes as they relate to equation (9). 

The first distinction we make is between health capital (H) and illness (φ), where health capital 

can be thought of as a stock measure and illness as a flow that draws down that stock, at least 

until medical treatment is completed or the disease has run its self-limited course. The second 

and perhaps more novel distinction is to separate between classes of illnesses. Some illnesses 

lead to health encounters, such as hospital admissions, doctor visits, and medication use. These 

highly visible encounters end up in standard health data sets, and as such are readily observable 

by the econometrician.  

The other class of illnesses is more subtle and while it may not result in any formal health 

encounters (δM/δφ = 0), it nonetheless leaves a ‘signature’ of impacts.  For example, pollution 

may cause an individual to feel minor discomfort, irritation, or labored breathing, not unlike that 

from cold or seasonal allergies. This does not prevent them from participating in usual activities, 

but affects performance conditional on participating – a distinction between the extensive and 

intensive margin we will return to later. Alternatively, a fetus exposed to pollution may 

experience physiological changes that result in lifelong impacts, but such changes may be latent 

and not readily detectable and treatable at birth.  Although these effects are more subtle, they 

may be more pervasive, suggesting potentially large welfare effects.  We maintain this 

distinction here since the absence of a health encounter that can be directly associated with 

pollution exposure makes them particularly difficult for the econometrician to observe.30   

 
 i. Health capital 

 
Since health is a complicated construct often influenced by subjective interpretations, 

there is unfortunately a rather limited set of reliable measures of health capital available.31   One 

of the most commonly used measures in environmental and health research is mortality.  As 

quite possibly the most objective measure of health, it serves as a useful benchmark for making 

comparisons across large spatial and temporal scales. Furthermore, since it typically comes from 

                                                            
30 It is worth noting that the lack of a health encounter may arise for at least three distinct reasons: 1) effective 
treatments are unavailable; 2) symptoms are minor enough that they do not necessitate the use of formal care; or 3) 
symptoms are sufficiently subtle that they are not ‘observed’ by the individual experiencing them. 
31 Despite our use of self-reported health status in Table 2, reliability concerns with self-reported data of this nature 
have limited their use in the environmental economics literature. 
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vital records maintained by governmental agencies, it often captures a census of deaths, 

permitting large samples for analysis.  Reasonably detailed geographic identifiers, such as the 

county of residence, are also routinely available, facilitating the assignment of pollution to 

individuals.  In the context of our conceptual model, it is useful to define mortality as health 

stock falling below a certain threshold (H<h*).  In that case, researchers typically estimate dH/dP 

as defined in equation (9).32  

Birth outcomes, such as birth weight, gestation, and APGAR scores, are another desirable 

measure of health capital, albeit for a select population. Since a fetus goes through rapid 

development in a short period of time, understanding the effects of pollution on this group are 

particularly important. Birth outcomes have been linked with both higher healthcare costs at birth 

and later in life (Almond et al., 2005; Currie and Hyson, 1999).  Since these data generally come 

from vital records, they share many of the desirable properties of mortality data (large samples, 

date of event, and detailed geographic information). Since pollution may affect both conception 

(Buck Louis et al., 2009) and fetal deaths (Sanders and Stoecker, 2011), focusing on birth 

outcomes also introduces a potential concern regarding the endogeneity of births. 

While these outcomes measure specific aspects of health, it is also important to recall that 

health is affected by how illness episodes are treated, as discussed in the conceptual framework.  

This link between health and illness suggests that health capital will show less variation than 

illness, which can greatly influence statistical inference. For example, pollution may induce a 

large increase in hospital admissions for myocardial infarctions (i.e., heart attacks), but a 

considerably smaller change in mortality because major medical advances have significantly 

improved survival rates (Cutler et al., 2006).  A study only focusing on mortality may fail to 

uncover this relationship; this is precisely the pattern found in Table 2, which focused on self-

reported health status and daily episodes of compromised physical health. Since this link 

between health and illness also varies with technology and access to high-quality health care, 

                                                            
32 Note that these studies seldom employ controls for medical treatment (M) that may have preceded death.  For 
example, if particulate matter induces a death from a heart attack, that individual likely received hospital treatment 
for their cardiovascular complications before passing. These expenditures are often not considered because mortality 
and hospitalization data come from distinct sources that are not linked.  Since the value of a statistical life (VSL), 
which is often used to monetize these impacts, does not include end of life spending, estimates of willingness-to-pay 
to reduce pollution based solely on VSL will miss this component, though they may be small relative to the VSL. 
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estimates of the relationship between pollution and health may vary considerably over time and 

across space. 

 
 ii. Illness 

 
In addition to measuring impacts on health capital, research often focuses on the impact 

of pollution on illness (φ).  Throughout, we use the term illness to broadly refer to any 

underlying physiological impact, some of which may be readily treatable through medical 

interventions while others may be less conducive to medical management.   

 
 ii.a. Observable illnesses 

 
The vast majority of studies that examine illness endpoints rely on health encounters as 

their data source. Illnesses that result in hospital and emergency department (ED) visits have 

been the bread and butter of epidemiological studies, and a common focus in economics as well.  

The appeal of such outcomes lies in the quality and quantity of data: these visits come from 

administrative hospital files, form a census of patients, rely on the standard "International 

Classification of Diseases" to identify specific health conditions, contain the date of discharge, 

and provide detailed geographic residence, such as the ZIP code of the patient, that allows this 

information to be merged with pollution data.33   

Despite the significant appeal, using these visits may introduce sample selection bias.  

Those who have a relationship with a primary care physician (PCP) may receive routine or 

preventative care so that they never experience a hospitalization; access to a PCP is clearly 

endogenous.  To illustrate, imagine two areas where pollution has biologically-equivalent effects 

on people and increases identically over time, but the areas differ in terms of access to PCPs.  

The high access area may experience little change in hospitalizations, while the low access area 

may witness significant increases.  Since access to non-hospital-based healthcare is often highly 

correlated with other determinants of health (Institute of Medicine, 2002), this introduces a non-

                                                            
33 The exact date of discharge and patient ZIP code is typically only available in non-public versions of the data, 
which often requires some form of human subjects review. 
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random selection of data for analysis.34  Administrative data from countries with more universal 

access to healthcare can help overcome this challenge when all forms of care are reported.  

Hospital data can also be used to calculate medical expenditures.  Medical expenditure 

data has two advantages: it is already monetized and it can reflect the severity of disease. For 

example, some hospital admissions for respiratory difficulties are relatively minor events that are 

remedied by the use of quick-relief inhalers and steroids, while others can be life threatening and 

require the use of infusions and ventilators. Hospital charges will differ across the two types of 

admissions and thus serve as an indicator of disease severity.35 The validity of this construct will 

depend, in part, on the marginal productivity of medical care (δH/δM) for each of the two disease 

types since health at discharge is an important component of impacts. Since this approach also 

involves use of the admissions data, the same strengths and limitations described above apply.  

Increases in the availability of emergency room data in the US can lessen selection bias concerns 

by capturing the universe of individuals seeking hospital-based care, including individuals who 

may use the emergency room as a source of primary care. 

Medical care expenditures can also be assessed based on sales of medications.  

Asthmatics, for example, often take both controller medications on a routine basis and quick-

relief medications to relieve symptoms as they arise. Hence, the use of quick-relief medications 

provides a unique opportunity to examine more subtle health effects that may not be captured in 

the use of health care services. Since recovery using these inhalers is generally quite rapid, 

medication expenditures likely capture most of the pollution-induced costs associated with that 

particular exposure episode.  Despite this potential advantage, storability of these medications -- 

quick-relief asthma inhalers can deliver hundreds of "puffs" -- may lead to little variation in 

purchases over short time periods.  Obtaining such data is also complicated by the fact that it is 

often the proprietary information of retailers. Through individual agreements, researchers can 

sometimes obtain data on store-level sales.  Some agencies, such as IMS Health, obtain and 

aggregate data from multiple retailers, though such data is often only available at a significant 

                                                            
34 In principle researchers could focus directly on physician visits as another measure of illness, but obtaining this 
data with suitable geographic identifiers is a significant challenge.  Moreover, sample selection bias remains a 
concern, unless used in conjunction with data on substitute encounters, e.g. emergency room and pharmacy visits, 
for the same sample.   
35 Note, however, that many studies that use hospital admissions value the pollution effects using average hospital 
charges, which does not capture severity. 
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price. Even with store-level sales data, assigning pollution to those sales can be tricky as the 

transaction location may differ from the location where exposure took place, e.g. exposure may 

be at work while one may use a pharmacy near their home.  Given these limitations, medication 

data has seldom been used in the environmental economics literature, though Deschenes et al. 

(2012) are an important exception.  

It is worth noting that illness encounters are typically viewed as indicative of illness, but 

they also represent ameliorative actions. Therefore, how these illnesses translate into health 

impacts vis-à-vis our conceptual model is governed by the demand for health care (δM/δφ) and 

its effectiveness (δH/δM).  Both are areas of major preoccupation within the field of health 

economics (e.g., Manning et al., 1987; Finkelstein et al., 2011; Card et al., 2009; Cutler, 2007; 

Lichtenberg, 2007).  When combined they reveal the transient and perhaps residual, untreatable 

health effects due to pollution (as implied by δH/δφ).  To be concrete, imagine a patient that is 

hospitalized with an acute cardiac condition.  The relevant health measure would not describe the 

patient’s health condition at admission but rather the one at discharge.  In practice, this complete 

accounting is rarely done.   

 
 ii.b. Unobservable illnesses  

 
While the aforementioned measures of illness are relatively straightforward to observe, 

health can be impacted in more subtle ways that do not generate health encounters of any sort.  

These ‘unobservable’ effects from exposure can begin with symptoms such as eye, ear, nose, and 

throat irritation, and may manifest themselves in labored breathing, increased fatigue, and lack of 

focus, all of which create disutility and can affect performance at work or in school.  They also 

include changes in human development, which are particularly important for understanding the 

impact of early life exposures. Given the difficulty in observing these impacts, the emerging 

economic research in this area focuses on proximate outcomes, such as worker productivity, 

student test scores, and birth outcomes.  Of course, such outcomes are also of direct interest to 

economists as human capital has long been viewed as an engine for economic growth (Schultz, 

1961; Nelson and Phelps, 1966; Romer, 1986).  

In medical and epidemiological fields, there is a long history of using surrogate health 

outcomes that are predictive of an endpoint of interest, such as forced expiratory volume, 
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microvascular function, and blood pressure (e.g., Hazucha et al., 2003; Pope et al., 2011).36  

These surrogate measures capture subtle changes in physiologic function that do not result in 

medical treatment, and may even be unobserved by the individual. Nonetheless, these subclinical 

changes may have impacts on mental and physical functioning that impair learning and job 

performance, providing a strong rationale for human capital and productivity impacts.37 

The biggest challenge to research in this area is finding suitable sources of data.  An 

emerging body of economic research focuses on the manifestation of these subtle effects as 

captured by outcomes at school or the workplace, principally absenteeism and performance.  The 

use of such data does not involve sample selection since outcomes are not only measured for the 

sick but for all.  They are also generally straightforward to monetize, as test scores and 

performance can be readily linked with wages – a rich area of study in the labor and education 

fields (Black et al., 2007; Currie and Thomas, 2001; Oreopolous et al., 2008; Royer, 2009) – and 

thus directly inform our understanding of δw/δH*δH/δP.38 Limited data availability, especially 

for representative samples, is, however, a formidable obstacle to the conduct of credible 

empirical work in this area.  

 
4.E. Valuation 

 
A common goal of environmental economics research is to take estimates of the 

environmental-health relationships to develop measures of willingness-to-pay for reductions in 

pollution, as specified in equation (10), in order to inform the design of optimal environmental 

policy.39 To obtain the welfare impacts from a change in environmental quality, one would want 

to measure all of the aforementioned health impacts. For example, particulate matter pollution 

                                                            
36 The primary reason for the focus on surrogate measures is that it is often the only ethical way to conduct a 
chamber study (i.e., randomized experiment) without inducing disease. 
37 Such impacts are also consistent with the large economic literature that has found linkages between health, 
education, and labor market outcomes. See, for example, Strauss and Thomas (1998). 
38 Since these effects are more subtle, there are often limited opportunities for avoidance behavior (δA/δP=0) and 
medical consumption (δM/δP=0). As such, the biological and reduced-form effects on health will be identical 
(δH/δP = dH/dP). 
39 Several alternative approaches for valuing environmental quality exist, including the hedonic pricing method, 
contingent valuation, and the travel cost method. For a detailed review of these valuation approaches, see Braden 
and Kolstad (1991). 
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may affect mortality, hospitalizations, medication use, and productivity, so one would want to 

sum up all components, being sure not to double count.40   

In addition to measuring all of these components, one must also place a monetary value 

on each, and all are not without controversies. With the exception of mortality, which is 

monetized by using the value of a statistical life (VSL), all valuations likely understate the true 

economic costs.41 Charges are typically the only measure available for hospital admissions, and 

they do not capture the costs associated with the pain and suffering experienced by sickened 

individuals or their family members.42 The use of medications as an outcome provides a clean, 

direct measure in dollars, but it does not account for possible side effects from medication use 

(e.g., routine use of inhalers may cause arrhythmias (Singh et al., 2011)). Changes in birth 

outcomes can be linked with future earnings (Black et al., 2007; Royer, 2009), but this does not 

include the disutility or medical expenditures due to health effects later in life.  

In addition to these direct health impacts, avoidance behavior should also be included 

when valuing demand for environmental quality.43 This is where the differing empirical 

approaches for attending to avoidance behavior become especially important.  If the reduced 

form approach is taken, a separate analysis is needed to estimate the demand for avoidance 

behavior as a function of pollution (δA/δP), and then these changes in demand need to be valued. 

If the biologic approach is taken, avoidance will have already been measured, but the health 

impacts need to be adjusted to reflect the effectiveness of avoidance behavior and thus value net 

health effects. Again, the costs of avoidance behavior must be tabulated.44  Some types of 

avoidance behavior are market based, such as the purchase of air filters, and can be valued using 

market prices. Other types of avoidance behavior, however, are non-market based, like spending 

                                                            
40 Nearly every study focuses on one component at a time. For a noteworthy exception, see Deschenes et al. (2012). 
41 The potential direction of bias from using VSL is ambiguous. The use of VSL is also not without limitations, 
requiring strong theoretical and empirical assumptions (see Deleire et al. (2012) for a list of common concerns).  
Furthermore, using VSL to monetize these impacts may be misleading if the loss only represents short-term 
mortality displacement. 
42 Market imperfections also imply that hospital charges will not reflect social costs.  Cross-subsidization across 
clinical activities means some will be over-estimates while others will be too low. Furthermore, insurance-induced 
moral hazard may induce individuals to seek more care than they otherwise would if they faced the full costs of 
healthcare at the point of consumption 
43 This distinction is a significant difference between economic and epidemiological, or cost of illness, approaches. 
See Harrington and Portney (1987) for a full discussion of this distinction. 
44 For formal derivations of willingness-to-pay expressions that include avoidance behavior, see Cropper and 
Freeman (1991), Deschenes and Greenstone (2011), and Harrington and Portney (1987). 
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time indoors, making valuation more complex. In either case, it is essential to measure and 

monetize all types of avoidance behavior to conduct a proper valuation, regardless of whether 

the reduced form or biological approach is taken.  

 
5. Quasi-experimental evidence 

 
While the vast literature in the health sciences pays particular attention to environmental 

confounding, the overwhelming majority do little, if anything, to address behavioral 

confounding, and thus are likely to provide significantly biased estimates.45 In light of this, we 

focus our review on quasi-experimental studies within economics, nearly all of which have 

emerged in the past decade.  This literature is focused on a set of inter-linked questions of 

interest.  Does pollution affect health or human capital? How do these effects vary across 

pollution levels and population subgroups?  Do individuals engage in behaviors to limit these 

effects? What are the long-term consequences from these exposures?  Since they differ widely in 

the identification strategies and outcome variables employed, each provide different insights into 

these underlying relationships and their importance for societal welfare.46 

 
5.A. Health capital and illness 
 
 i. Impacts of pollution 

 
One of the earliest examples of a quasi-experimental approach to estimate an 

environmental health relationship is found in a series of studies by Pope and Ransom (1989, 

1992, 1995). The authors used changes in pollution that resulted from a labor strike that forced 

the closing and re-opening of a steel mill, which was a major source of particulate matter in the 

central Valley of Utah.  Since the steel mill closed due to a labor strike, the temporary changes in 

pollution are credibly exogenous and unlikely to lead to any immediate residential sorting.  

Furthermore, the authors select a neighboring, unaffected community as a control group to 

account for time trends by estimating difference-in-differences models.  When the steel mill was 

                                                            
45 For a description of state-of-the-art epidemiological models, see Dominici et al. (2000, 2002, 2008), Sacks et al. 
(2012), Peng et al. (2006), and Bell et al. (2004).  
46 As previously discussed, all of the papers discussed in this review are focused on health effects due to acute 
exposures to pollutants.  While correlational analysis provides suggestive evidence of cumulative effects across 
multiple years, there is no quasi-experimental evidence on this topic. 
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closed, the authors found significant declines in school absences, respiratory-related hospital 

admissions, and mortality. As an “event study,” one concern with this design is that, despite the 

availability of individual level health outcomes as dependent variables, the pollution variable is 

common to all members in a group for a given time period (Moulton, 1986).  As a result their 

standard errors are likely to be non-trivially understated, making the appropriate statistical 

inference in this setting particularly challenging (Donald and Lang, 2007).47  

One important study by Chay and Greenstone (2003a) overcame this problem by 

focusing on the recession of the early 1980s in the US.  Manufacturing is a key input into the 

emissions process, so a slowing of the economy can produce far reaching changes in pollution. 

Furthermore, manufacturing is not evenly spread throughout the US, so the shocks to 

manufacturing from this recession induced considerable spatial variation in pollution.  In fact, 

the authors found that total suspended particulates (TSPs) declined by as much as 35-percent in 3 

years in the most heavily manufacturing areas, with some areas experiencing relatively small 

changes.  Since these changes in TSPs are driven by a global phenomenon, it is unlikely to be 

related to other factors affecting health.  Chay and Greenstone use this exogenous variation in 

levels of pollution at the county-year level to identify environmental health effects. Although a 

potential concern with this strategy is that income changes due to unemployment losses are 

correlated with the pollution changes, the authors carefully document that this is not the case. 

They find that a one-unit decline in TSPs associated with the recession prevented between 4 and 

7 infant deaths per 100,000 births. 

The Chay and Greenstone results apply to a time period when pollution levels in the U.S. 

were considerably higher than today. Currie and Neidell (2005) turn their attention to infant 

mortality in California during the 1990s, a period that is much more reflective of contemporary 

pollution levels across much of the developed world.  Absent a large-scale shock to pollution 

levels, they use zip code fixed effects to estimate models at the weekly level.  Switching to a 

higher time frequency exploits the strong temporal fluctuations in pollution (as described in 

Figure 2) that may act as a shock without allowing sorting to occur, while the fixed effects 

                                                            
47 Another potential concern with this study is that the steel mill closure also led to a temporary change in income, 
which may affect one’s use of time and consumption of health services.  Such concerns are unlikely to impact causal 
inference with respect to school absences. 
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control for time invariant characteristics of the area. They find that reductions in carbon 

monoxide over the 1990s saved approximately 1000 infant lives in California, which translates 

into benefits of roughly $4.8 billion. Currie and Neidell find quite similar effects when 

aggregating to a higher frequency (from weekly to monthly), suggesting that harvesting may not 

be a significant issue in the case of pollution and infant mortality. 

In a more direct approach for accounting for sorting, Lleras-Muney (2010) uses the 

relocation of military personnel from 1989 to 1995 to estimate the effect of various pollutants on 

children's health.  Military personnel are assigned to military bases entirely based on “the needs 

of the army,” and any relocation decisions follow this dictum as well.  To the extent that military 

families are required to live on or very near the base, they do not choose neighborhoods based on 

their amenities, thereby offering a plausibly exogenous source of variation in pollution.  

Furthermore, all military personnel are covered by identical health insurance plans, so the price 

of care is not a factor in determining usage. Using this design, Lleras-Muney finds that a one 

standard deviation decrease in ground-level ozone exposure decreases the probability of a 

respiratory hospitalization for children by about 8-23 percent.   

Currie et al. (2009b), like Currie and Neidell (2005), focuses on outcomes in a more 

recent time period, but they focus on birth outcomes (in addition to infant mortality), use the 

exact address of the mother to improve pollution assignment and estimate maternal fixed effect 

models to control for differences in family background and genetics.  They find that a one unit 

change in mean CO during the last trimester of pregnancy increases the risk of low birth weight 

by 8 percent, and a one unit change in mean CO during the first two weeks after birth also 

increases the risk of infant mortality by 2.5 percent relative to baseline levels.  The authors 

calculate that the 15-year decline in CO from 1989-2003 translates into $720 million in lifetime 

earnings from improvements in birth weight and $2.2 billion from the reduction in infant 

mortality for the 2003 U.S. birth cohort.  The use of maternal fixed effects increases estimates, 

suggesting the importance of accounting for maternal characteristics within neighborhoods. The 

better assignment of pollution by using the mother’s exact address rather than zip code also 

increases point estimates, consistent with measurement error inducing a downward bias. 

While the previous mentioned studies rely on data from well-maintained health and 

pollution records, such data are often not available in developing countries. Jayachandran (2009) 
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creatively overcomes this limitation in her study of the health effects of the Indonesian wildfires, 

which led to an exogenous and sizeable increase in particulate matter. First, she infers mortality 

by looking at “missing children” a la Sen (1992) from surviving cohorts (available from a 

population census). Second, absent reliable ground-level pollution monitoring data, she uses 

daily satellite data of airborne smoke which reliably captures the movement of the fire given its 

size.  She finds that the fires caused a roughly 17 percent increase in under age two mortality.  

Another context where data are difficult to observe is with respect to fetal deaths, as these 

are rarely reported and can even go unnoticed by the mother herself. Sanders and Stoecker 

(2011) cleverly overcome this problem by estimating the effect of pollution on sex ratios -- the 

Trivers-Willard hypothesis suggests that males are more susceptible to fetal shocks than females 

(Trivers and Willard, 1973).  Their analysis closely follows the identification strategy of Chay 

and Greenstone (2003b) and Chay et al. (2003), which focused on the differential reductions in 

pollution levels under the 1970 Clean Air Act Amendments for counties that were in and out of 

attainment for air quality standards at the time.  They find that a one standard deviation increase 

in the annual average TSPs (approximately 35 micrograms per cubic meter) decreases the 

probability a live birth is male by 3.1 percentage points. 

Most studies on this topic focus on the impacts of air pollution, in large part due to data 

availability. A notable exception is Ebenstein (2012), who examines water pollution in China. 

The rapid industrialization in China has led to a tremendous increase in pollution, though the 

increase varied considerably across space - perhaps best described as the Chay and Greenstone 

recession-induced pollution changes in reverse. Mobility was also greatly limited for inhabitants 

because of government restrictions, making sorting less likely to induce bias. Water pollution 

data come from a national water monitoring system (a rare availability in a developing or 

developed country), and mortality from a data set akin to vital records, although focused only on 

select cities. He finds that a 1-grade deterioration in water quality (on a 6-grade scale) increases 

the incidence of digestive cancers by nearly 10%. Efforts to clean wastewater would avert one 

additional death due to digestive cancer at a cost of $30,000, well below even the most modest 

estimates of the VSL. 

 
 ii. Impacts of emissions 
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While most studies focus on the direct health effect of a particular pollutant, others focus 

on the impacts of emission policies. Recall from Section 2 that emissions interact with 

meteorological conditions to form pollution, such that P = f(E, W).  Focusing on a pollutant 

provides a more generalizable estimate, whereas focusing on emissions may not because the 

effects may be specific to the meteorological conditions at the time of shock or the source of 

emissions.  Focusing on emissions offers several advantages, however. One, emissions, rather 

than pollution, are often all that can be directly regulated. Two, this provides an estimate of an 

externality from a specific factor of production, which has a clearer economic interpretation. 

Three, as previously discussed, identifying the reduced form effect of emissions is often easier 

than identifying the effect of particular pollutants. This focus on emissions is an area where 

economists can make particularly important contributions through the use of natural experiments. 

One notable paper taking this approach is Currie and Walker (2011). The authors 

examine the effects on birth outcomes from the introduction of an electronic toll collection 

system (E-ZPass), which significantly reduced traffic congestion near highway toll plazas and 

thus local vehicle emissions.  Their study provides estimates of an externality from highway 

congestion, which can contribute to the optimal design of congestion policies.  To control for 

sorting, they exploit the introduction of E-ZPass to estimate difference-in-differences models, 

comparing areas close to toll plazas before and after E-ZPass to areas far from plazas. They find 

that the introduction of E-ZPass reduced the incidence of prematurity and low birth weight by 

roughly 11-12 percent in the areas directly adjacent to toll plazas.  

Nearly every paper on pollution and health – and certainly all thus far reviewed in this 

paper – focus on only one health construct at a time.48 Deschenes et al (2012) is an exception, 

providing a more comprehensive assessment of the effect of NOx emissions through an 

examination of impacts on mortality, hospitalizations, and medication expenditures. To address 

sorting, the authors exploit the NOx Budget Trading Program (NBP), which, beginning in 2003, 

created a cap-and-trade system for major contributors to NOx emissions in Eastern and 

Midwestern States.  Because NOx emissions are a precursor to ozone formation, the NBP only 

operated during the warmer times of the year, which is when ozone spikes. The authors use a 

                                                            
48 Studies looking at birth outcomes often include several dependent variables, such as birth weight, gestation, and 
APGAR scores, but these are all designed to capture the same construct: health capital at birth. 
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triple-difference model by comparing Eastern and Midwestern States to Western States, before 

and after the advent of NBP, and across seasons within each year.  The authors find that the 

reduction in NOx emissions led to a significant decrease in ozone pollution. Furthermore, the 

NBP led to considerable decreases in mortality and medication purchases, but surprisingly had 

no impact on hospitalizations.  This is also the first analysis to directly evaluate the health 

impacts of an emissions trading program, with the authors finding that the savings in medication 

expenditures alone exceeds the costs of the program. 

 
iii. The role of avoidance behavior  
 
The previously mentioned studies exploit ‘natural’ experiments that generate exogenous 

changes in ambient pollution or emissions in order to minimize concerns about residential 

sorting and other long-run behavioral responses to poor environmental quality.  They generally 

ignore short-run avoidance behavior that could also impact the environment-health relationship, 

and hence provide estimates of a reduced-form relationship between pollution and health.  The 

degree to which this reduced-form relationship differs from the biological effect depends on the 

existence and magnitude of avoidance behavior. 

 
iii.a. Evidence of avoidance behavior 
 
Results from a nascent literature suggest avoidance behavior is unlikely to be trivial. 

Since avoidance behavior is typically a non-market behavior, researchers often must obtain 

unique sources of data to explore this topic. For example, Neidell (2009) uses attendance data 

from several outdoor facilities in Los Angeles to examine the relationship between air quality 

information and outdoor activities. Air quality information predominantly consists of “smog 

alerts,” which are based on ozone forecasts. Since smog alerts are only issued when ozone is 

forecasted to exceed a particular threshold, Neidell employs a regression discontinuity design to 

compare attendance on days just above the threshold to just below. He finds significant decreases 
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in attendance of approximately 6 to 13 percent, though it remains unclear how these estimates 

generalize to other contexts.49  

Graff Zivin et al. (2011) focus on water quality, examining the impact of drinking water 

violations on the consumption of bottled water using purchase data from a national grocery 

chain.  Since violations are issued at the local water district level, the authors use grocery store 

fixed effects to compare the changes in consumption over time in response to violations, with the 

change in violations unlikely to be related to changes in underlying consumption preferences.  

They find that violations increase bottled water consumption by 17 to 22 percent, depending on 

the contaminant responsible for the violation.  

Mercury, like other heavy metals, impairs neurological development in fetuses, infants, 

and children.  The primary route of human exposure to mercury is through fish consumption, 

either by children or pregnant mothers. In 2001 year, the Food and Drug Administration began 

issuing advisories encouraging at-risk populations to reduce consumption of certain types of fish 

known to contain high mercury levels.  Shimshack et al. (2007) examine the impact of these 

advisories on the consumption of fish as measured in the consumer expenditure survey. They 

estimate difference-in-differences models by comparing consumption before and after the 

advisory for informed vs. uninformed consumers, using newspaper readership and several other 

measures to define informed.  Among groups particularly sensitive to mercury, they found a 

roughly 19 percent reduction in fish consumption.   

The above studies on avoidance behavior all focus on the impact of publicly disclosed 

information; Madajewicz et al. (2007) focus on privately disclosed information. Arsenic 

pollution in drinking water is a significant problem in Bangladesh, and this study examines 

behavioral responses to information regarding contamination in tested wells.  Since arsenic is 

naturally occurring and varies widely in its distribution, they conduct a simple cross sectional 

comparison across households with tested wells. They find that households that are informed that 

their well contains high levels of arsenic are 37 percent more likely to use a neighbor’s well.   

                                                            
49 In a closely related study, Graff Zivin and Neidell (2009) examine successive days of smog alerts, and find that 
responses to an alert issued on two consecutive days declines considerably, suggesting the costs of avoidance 
behavior are non-trivial as well. 
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While many pollutants are not directly detectable, making the need for explicit 

information essential, people may also respond to risk independent of information campaigns 

when environmental quality (or its correlates) is directly observable. Deschenes and Greenstone 

(2011) examine the relationship between temperature and residential energy consumption, where 

variation in energy consumption is predominantly driven by changes in the usage of air 

conditioning.  While not a pollutant per se, we can view responses to temperature as a form of 

avoidance behavior because it represents a response to changes in risk; air conditioning reduces 

the risks associated with heat.50 The econometric models include county fixed effects to exploit 

the presumably random variation in temperature across years. The authors find that an additional 

day over 90 degrees F (relative to 50-60 degrees) increases annual energy consumption by 0.4 

percent, suggesting people may avoid the health risk from higher temperatures.  

 
iii.b. Accounting for avoidance behavior 
 
The above studies suggest that avoidance behavior may be non-trivial, such that 

controlling for avoidance behavior is likely to lead to considerable differences between the 

biological effect (δφ/δP) and the reduced form effect (dφ/dP) of pollution. Since measuring 

avoidance behavior is challenging, there are only a handful of studies that attempt to control for 

avoidance behavior to assess this gap. Building on the previous result, Neidell (2009) accounts 

for avoidance behavior indirectly by including smog alerts (and the ozone forecasts that 

determine them) when estimating the relationship between ozone and respiratory-related hospital 

admissions.  Using zip code fixed effects and exploiting the strong daily temporal variation in 

ozone, he finds that including these proxies significantly increases the estimated impact of ozone 

on health.  Estimates that ignore avoidance behavior find that a 1 ppb decrease in ozone 

decreases admissions for children by roughly 1 percent; this increases to nearly 3 percent when 

incorporating avoidance behavior. 

Moretti and Neidell (2011) use daily boat arrivals and departures into the port of Los 

Angeles as an instrumental variable (IV) for ozone levels, which deals with both avoidance 

behavior and measurement error in pollution assignment.  Boat traffic represents a major source 

                                                            
50 Since air conditioning may also create a more comfortable indoor environment, it also provides benefits in the 
form of direct utility (Cropper and Oates, 1992).  
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of pollution for the Los Angeles region and, because of the extended length of travel and 

unpredictable conditions at sea, daily variation in boat traffic is arguably uncorrelated with other 

short run determinants of health. Importantly, since boat traffic is not included in ozone forecasts 

and is not directly observable, it is unlikely to encourage avoidance behavior. Therefore, to the 

extent that avoidance behavior is an omitted variable, using boat traffic as an instrument 

uncovers the effect of ozone holding avoidance behavior fixed, i.e., the biological effect.  While 

boat emissions may affect multiple pollutants, the authors attempt to limit concerns with 

identification by focusing solely on the summer period, when ozone levels are at their highest 

and all other criteria pollutants are at their lowest. They find that holding avoidance behavior 

fixed leads to significantly larger estimates for the impacts of pollution on health, with estimates 

nearly 4 times larger than estimates that do not control for avoidance behavior.   

 
5.B. Environment and Human Capital 
  
In addition to the health outcomes discussed thus far, pollution may also affect human capital, 

either through direct or indirect routes. For example, pollution may lead to direct neurological 

insults which affect cognitive ability.   Alternatively, decrements in lung functioning may affect 

one’s ability to focus and thus perform a wide range of tasks.  Data requirements are a particular 

obstacle to this line of research. As such, our understanding of the relationship between poor 

environmental quality and non-health elements of human capital is only just beginning to 

emerge.   

 
i. Contemporaneous effects 

 
As with many of the respiratory-related health outcomes discussed above, we might 

expect pollution to have an immediate effect on school and job performance.  It is not hard to 

imagine that a child experiencing an asthma attack might spend the night in the hospital, and as a 

result does not go to school the next day.  Absences may also be a more sensitive measure of 

health capital than hospital admissions, picking up less severe impacts as when an individual 

does not feel well and takes a day off to recover.  Impacts may occur on the intensive margin as 

well.  For example, small changes in lung functioning may not result in a change in labor supply, 
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but could make a worker less able to concentrate and thus underperform on cognitive and 

physical tasks.51 

 
i.a. Schooling outcomes 
 
School is widely seen as the main vehicle for improving human capital, and missing 

school because of illness may impede human capital development (Grossman and Kaestner, 

1997). In the aforementioned Ransom and Pope design, they also found a significant decrease in 

school absences due to the steel mill strike.  Currie et al. (2009a) use administrative data from 

the 39 largest school districts in Texas to estimate models of the impact of pollution on 

attendance in elementary and middle schools.  By following schools over time, their model 

exploits variation in pollution over time at the same school, hence controlling for residential 

factors that may be important determinants of absences.  They find that when carbon monoxide 

(CO) levels rise, absences also rise, even when levels are well below current federal air quality 

standards.  

While absences may ultimately impair knowledge acquisition, impacts may also occur 

even for those present. Pollution can affect a child’s ability to concentrate, and may also have a 

direct effect on brain development (Block and Calderón-Garcidueñas, 2009).  Zweig et al. (2009) 

merge data from the Children’s Health Study (CHS), a longitudinal respiratory health study of 

Southern California school children that contains detailed pollution data, with test score data 

from schools linked to the children. Using school fixed effects to account for sorting, they find 

that a 10% decrease in PM2.5 raises math test scores by 0.14% and reading scores by 0.21%.  

Lavy et al. (2012) merge data on high stakes test scores from Israeli high school students with 

detailed environmental monitoring data. Employing student fixed effects, they find a 10 unit 

increase in PM2.5 decreases test scores by 1.9% of a standard deviation, and a 10 unit increase in 

CO decreases test scores by 2.4% of a standard deviation. While neither study can isolate which 

channel is driving these impacts, both underscore the important cognitive effects that can result 

from pollution exposure. 

 
i.b. Labor market outcomes 

                                                            
51 To draw a fine distinction from absenteeism, this is sometimes referred to as “presenteeism” (Pauly et al., 2008). 
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Just as schooling absences may be affected by illness, worker absences may as well. 

Hanna and Oliva (2011) focus on the labor supply of workers in Mexico City. To account for the 

endogeneity of pollution, they exploit the closing of a local oil refinery that was a major emitter 

of sulfur dioxide, comparing residents near and far from the refinery, before and after the 

refinery closure. While similar in spirit to Ransom and Pope’s investigations centered on a steel 

mill closure, the closure of the oil refinery was in a densely populated, urban community, thus 

affecting hundreds of thousands of residents. A notable limitation is that demand shocks from the 

refinery closure may have had an impact on hours worked as well, though they attempt to 

address this by incorporating data on imputed wind patterns. The authors find that a 1 percent 

increase in sulfur dioxide levels decreases hours worked by 0.72 percent. 

Carson et al. (2011) also explore labor supply impacts, with a focus on arsenic pollution 

in drinking water wells in Bangladesh.  They exploit the fact that the distribution of arsenic in 

tube wells is highly variable and that households were largely unaware of the problem and thus 

unlikely to have engaged in sorting or avoidance behavior.52  It is notable that, while the 

distribution of arsenic is highly variable, regions near the Bay of Bengal tend to have much 

higher levels of contamination on average, thus some of the usual concerns regarding cross-

sectional comparisons across regions apply in this case as well.  In the end, the authors find that 

arsenic pollution leads to a large 8 percent reduction in labor supply. 

The focus on the extensive margin, where behavioral responses are non-marginal, 

captures high-visibility labor market impacts.53  Less visible impacts may also occur on the 

intensive margin whereby productivity is affected, even when labor supply does not change.  

These changes in performance are perhaps more difficult to detect than absenteeism, but may be 

pervasive so that even small individual effects may translate into large welfare losses when 

aggregated across the economy.  Graff Zivin and Neidell (2012) address this issue by focusing 

on the impact of pollution on worker productivity. They obtain daily measures of worker 

productivity using a unique panel data set on agricultural workers who are paid by piece rate.  

Furthermore, the labor supply of agricultural workers is highly inelastic in the short run, hence 

                                                            
52 Unlike the sample from Madajewicz et al. (2007), these individuals were not targeted by informational campaigns. 
53 These non-marginal behavioral responses may also be accompanied by health encounters that can be readily 
observed by the econometrician. 
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limiting the scope for avoidance behavior.  Using models that exploit the plausibly exogenous 

daily variation in ozone levels, they find that a 10 ppb decrease in ozone concentrations increases 

worker productivity by 5.5 percent.54 

In a novel design,  Clay et al. (2010) examine the effect of lead exposure in the early 20th 

century on several equilibrium measures of productivity, thus capturing impacts on both the 

extensive and intensive margin. The authors identify the impact of differential lead exposure 

using differences in the use of lead (as opposed to other metal) service pipes as well as local 

acidity and hardness of water across cities, both of which affect lead levels in tap water. 

Importantly, lead pipes were generally believed to be safe at the time, so it is unlikely that 

residents sorted based on the type of metal used in the pipes servicing their homes. The authors 

find that cities with lead-only service pipes and more acidic water, and thus higher levels of lead 

exposure, had substantially lower wages, value added per worker and value of capital per 

worker. 

 
ii. Latent effects 
 
In addition to contemporaneous effects, pollution may also have latent effects on human 

capital. In particular, the fetal origins hypothesis and its extensions into early childhood suggests 

that negative shocks early in life may lead to a wide range of lasting effects, which may arise 

even without noticeable impacts at the time of exposure.55  Moreover, self-productivity and 

dynamic complementarities in skill formation may exacerbate the pure biologic effects of 

pollution (Cunha and Heckman, 2007; Behrman et al., 1994; Almond and Currie, 2011).  

Empirical work in this setting is complicated, however, since the research requires not only 

information on current human capital levels but also information on residential location around 

the time of birth to assign early childhood exposure.  Despite this challenge, understanding latent 

effects is particularly important from a policy perspective because short run changes in pollution 

can lead to lifelong changes in well-being. 

                                                            
54 In a notable case study of 17 citrus harvesters in heavily polluted Southern California in the early 1970s, Crocker 
and Horst (1981) document similar productivity effects. 
55 For more discussion of the fetal origins hypothesis, see Almond and Currie (2011). 
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Almond et al. (2009) examine the impact from prenatal exposure to radioactive fallout 

from the 1986 Chernobyl accident on both birth and schooling outcomes for children in Sweden.  

Although Sweden is more than 500 miles away from Chernobyl, weather conditions forced some 

of the plume to pass over Sweden, and local variation in rainfall levels led to stark geographic 

variation in the levels of fallout throughout the country.  The authors also take advantage of the 

meticulous recordkeeping that linked nearly all births (along with birth outcomes) of affected 

cohorts with schooling outcomes in high school, using the parish of birth to link to radiation 

exposure. Their study reveals that radiation exposure exhibits latent effects that shape human 

capital development later in life.  While they find little evidence of health effects as measured by 

birth outcomes and childhood hospitalizations, they find significant decreases in several 

schooling outcomes, including math test scores and graduation rates. They estimate that these 

impacts translate into a 3% reduction in future earnings for those most exposed to the fallout. 56 

Sanders (2012) adds to this line of research by focusing directly on the effect of prenatal 

exposure to TSPs on student performance in high school.  The author focuses on high schools in 

Texas, obtaining school performance records for the universe of students from the State. Absent 

information on the location of birth, Sanders assumes the county of residence in high school 

serves as the county of birth. While clearly not without limitations, migration records from an 

external data source at a later date provide little evidence that migration was related to pollution. 

Using a similar identification strategy as that employed by Chay and Greenstone (2003a), only 

focused solely on Texas, he finds that a one standard deviation decrease in ambient TSP levels 

during pregnancy led to 2 percent of a standard deviation increase in high school test 

performance.  

A large body of epidemiological evidence shows that high levels of lead exposure cause 

neurological defects (see Skerfving and Bergdahl, 2007 for a summary of evidence), but again 

the more probing question centers around the causal effects from lower levels of exposure to 

neurotoxins more commonly found today. Understanding the effects from low level exposure is 

particularly important during the early stages of human development.57  Nilsson (2009) tackles 

                                                            
56 It is notable that the radiation levels found in Sweden are quite comparable to those found in radon and medical 
radiation, though policy levers for influencing both are quite different than typical environmental policy. 
57 For a compelling paper on the impact of lead on infant mortality, albeit at much higher levels, see Troesken 
(2003). 
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this question by examining the effect of lead exposure in the first few years of life by following 

several cohorts of children born in Sweden from the early 1970s to the mid-1980s. He exploits 

the gradual phase-out of leaded gasoline from 1973-1981, which induced sharp temporal and 

spatial decreases in lead levels, with the spatial decreases arising from differences in initial lead 

levels.58 He finds that decreases in lead improve several aspects of human capital, including 

years of schooling and cognitive ability, as well as labor market outcomes.  Importantly, 

allowing for a nonlinear effect of lead through the use of dummy variables, Nilsson finds effects 

from exposure at levels below current levels of concern (as dictated by, for example, the US 

Center for Disease Control and Prevention), suggesting further reductions in lead levels are 

likely to yield significant human capital benefits. 

 
6. Conclusion 

 
While the impacts of pollution on human health have long been recognized, research over 

the past few decades has revealed impacts at much more modest levels of pollution than 

previously imagined.  Moreover, a blossoming literature has begun to link pollution-induced 

illnesses to a range of human capital outcomes.  Since environmental contamination of varying 

degrees is part of the ether in which all human activity takes place, pollution should be viewed as 

an important factor of production – one that is conceptually similar to technology in that it 

‘transforms’ the ways in which labor, capital, and land can be combined to produce output.  This 

relationship is made all the more interesting by the fact that most pollution is a direct byproduct 

of economic production.   

All economies produce pollution and nearly all societies regulate it.  Regulation is 

typically viewed as a tax on producers and consumers to be weighed against the consumption 

benefits associated with improved environmental quality.  The evidence reviewed within this 

paper suggests that environmental regulation may also contribute to economic productivity and 

thus fruitfully be viewed as an investment in economic growth as well.59 Moreover, since 

                                                            
58 Note that the studies finding a strong neurological effect of lead are what prompted the phase-out of leaded 
gasoline, so by definition they focus on higher levels of pollution which are less relevant for today. 
59 In less developed countries, where individuals routinely face higher levels of pollution and avoidance behavior is 
more costly since large sectors of the economy rely on industries where workers are routinely exposed to ambient 
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exposure to poor environmental quality within and across countries tends to correlate with low 

income, these results point toward a new form of poverty trap.  Might the causality underpinning 

the Environmental Kuznets curve also run in the other direction (Dasgupta et al., 2002)?  Could 

the poor, at least partially, regulate their way toward economic growth?  

While an analysis of regulatory approaches is beyond the scope of this paper (for a good 

review see Stavins, 2003), it is important to underscore that optimal policy requires a careful 

enumeration of all costs and benefits.  This tabulation is fraught with empirical challenges and is 

rarely comprehensive in its scope.   Indeed, only the most visible impacts described in sections 3 

and 4 are typically included in policy design calculations, with the more subtle but perhaps more 

pervasive impacts generally ignored. That said, cost-benefit calculations even on this partial 

analysis, which understates the benefits from pollution reduction, often find that the benefits of 

regulation significantly outweigh the costs (see, for example, Deschenes et al., 2012; Ebenstein, 

2012).  This almost certainly contributes to the contentiousness surrounding nearly every 

environmental standard.  Better tools and more evidence are needed to inform this debate.  We 

utilize this opportunity to highlight several areas that merit further investigation.    

First, the biomedical science literature is filled with pollution-health relations that have 

not been subjected to the causality tests typical of economic inquiry.  A growing epidemiology 

literature has found a relationship between pollution and mental health (see, e.g., Pedersen et al., 

2004 for schizophrenia; Perera et al., 2012 for behavioral problems; Volk et al., 2012 for autism).  

Our understanding of epigenetics – how environmental stressors can alter gene expression – and 

what it implies for human development is a topic of immense interest in biology (see Goldberg et 

al., 2007; Baccarelli et al., 2009).  Both have clear economic consequences and merit further 

scrutiny. 

Second, a better understanding of avoidance activities is also needed.  This is an area – 

behavioral responses to incentives under incomplete information – that is especially ripe for 

economists to contribute.  Avoidance requires individual actions that weigh costs and benefits.  

These, in turn, depend on a wide range of socioeconomic factors that influence, for example, 

mobility, health insurance status, and the availability of intellectual and financial resources 

                                                                                                                                                                                                
conditions -- such as agriculture, mining, and construction -- the human capital and productivity returns on this 
‘investment’ may be especially large. 
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required to avert.  For those pollutants with subtle impacts, models of learning and inattention 

may be particularly important.  The current stalemate on actions to avert climate change suggests 

that avoidance and adaptation are likely to play an increasingly large role in global welfare going 

forward. 

Lastly, the evidence on human capital and especially labor market effects from pollution 

exposure are just beginning to emerge. Despite its beginning stages, the limited evidence thus far 

suggests negative impacts on cognitive ability, school performance, and job performance.   Much 

more should be done to replicate these results in other contexts and to unpack the mechanisms 

driving them, which in turn will help to generalize them beyond the narrow settings that have 

thus far been necessary to pin down empirical identification.   

The collection of environmental, health, and human capital data is being rapidly 

transformed.  The past decade has witnessed a proliferation of cheaper and more sophisticated 

environmental sensors as well as significant improvements in the science that allow us to  

transform satellite data into meaningful measures of environmental conditions on the ground.  

The proliferation of electronic surveillance and data capture in schools and the workplace, 

combined with increased digitization and linkage of historical data, has significantly increased 

access to not only better human capital and productivity data but also to data that spans a lifetime 

of exposures, encounters, and outcomes.60 These advances promise to improve the resolution and 

scope of our analytic purview.  Ironically, these improvements are occurring at the same time 

that access to finely geocoded health data, which have been the mainstay of research in this area, 

are being threatened by proposed NIH revisions regarding data confidentiality. Nonetheless, we 

remain optimistic about to the prospects for deepening our understanding of the role played by 

the environment as a largely ignored factor production in the coming decades.   

                                                            
60 Examples of longitudinal data sets that cover multiple life stages include the National Children's Study 
(underway), birth data linked with health and schooling outcomes in Sweden and Chile (see, for example, Almond et 
al., 2009, Nilsson 2009, and Bharadwaj et al., 2012), and linked National Health Service data from England. 
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Figure 1. Trends in Air Pollution for United States (Pittsburgh, PA), China, and Mexico 
 

 
Notes: All data are annual average of daily measures of particulate matter less than 10 microns in 
diameter (PM10). Data for Mexico and China are averages across all major cities, obtained from 
the World Bank's database of World Development Indicators. Pittsburgh data from 1990-2009 
are from the Environmental Protection Agency Air Quality System Data Mart. Data from before 
1990 are courtesy of Cliff Davidson via Thomas Rawski; these data are total suspended particles 
multiplied by 0.55, where missing values for TSP are imputed using dustfall. 
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Figure 2. Daily Variation in Ozone  
 

 
Notes: "Adjusted" plots the residual from a regression of ozone on mean daily temperature, solar 
radiation, dew point, barometric pressure, wind speed and direction, and day of week dummies. 
Data are taken from central Los Angeles monitor (North Main Street, AIRS# 060371103) or 
closest monitor when unavailable. 
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Table 1. Evidence of Residential Sorting, BRFSS 2001-06 
 
 mean difference SE 
any exercise 0.771 -0.118** [0.041]
ever smoked 100 cigs 0.467 -0.016 [0.038]
received flu shot 0.352 -0.140** [0.040]
health insurance 0.891 -0.031 [0.031]
high school drop out 0.0817 0.092** [0.023]
high school grad. 0.269 0.013 [0.052]
attended any college 0.649 -0.105 [0.064]
income <$10k 0.039 0.032* [0.013]
income $10-15k 0.043 0.026 [0.013]
income $15-20K 0.060 0.022 [0.014]
income $20-25K 0.077 -0.02 [0.017]
income $25-35K 0.113 -0.036 [0.020]
income $35-50K 0.149 -0.049** [0.014]
income $50-75K 0.160 -0.034* [0.015]
income >$75K 0.240 0.075 [0.066]
# of children in HH 0.693 0.117 [0.071]
married 0.537 -0.100* [0.042]
divorced 0.141 -0.017 [0.020]
# of adults in HH 1.854 -0.03 [0.121]
age 49.29 -1.877 [1.405]
white, non-Hispanic 0.755 -0.163 [0.231]
black, non-Hispanic 0.113 0.326** [0.092]
Hispanic 0.0693 0.079 [0.084]
Notes: Column 1 shows the mean for each variable. Column 2 shows the coefficient from the 
regression of each variable on the Air Quality Index (/10) and year dummies. Column 3 shows 
standard errors clustered on MSA in brackets. *,** indicates statistical significance at 5% and 
1%, respectively. 
 



‐ 65 ‐ 

 

Table 2. Cross-sectional and fixed effect regression estimates of the relationship between 
pollution and health, BRFSS 2001-06 
 
 Cross sectional model MSA fixed effects model 
 1 2 3 4 5 6 
1. Any teeth missing (mean = 0.480, SD = .500) 
AQI*10 0.063* 0.058* 0.059* -0.012 -0.017 -0.018 
 [0.033] [0.031] [0.031] [0.014] [0.014] [0.014] 
Observations 312,963 312,963 312,963 312,963 312,963 312,963 
R-squared 0.247 0.262 0.265 0.252 0.267 0.27 
       
2. Number of days in past month with bad physical health (mean = 3.39, SD =7.82) 
AQI*10 0.407 0.204 0.22 1.299** 1.240* 1.225** 
 [0.336] [0.361] [0.357] [0.633] [0.629] [0.613] 
Observations 592,134 592,134 592,134 592,134 592,134 592,134 
R-squared 0.077 0.106 0.112 0.079 0.108 0.114 
       
3. Self-reported health status poor, fair or good (mean = .437, SD =.496) 
AQI*10 0.024 0.015 0.017 0.014 0.011 0.009 
 [0.020] [0.019] [0.017] [0.023] [0.023] [0.021] 
Observations 592,134 592,134 592,134 592,134 592,134 592,134 
R-squared 0.137 0.161 0.181 0.139 0.162 0.182 
behavior N Y Y N Y Y 
other health N N Y N N Y 
Notes: *,** indicates statistical signifance at 5% and 1%, respectively. Standard errors that 
cluster on MSA in brackets. AQI is median of daily AQI for MSA throughout year. All 
regressions include number of children in household, number of adults in household, 
respondent's age, separate dummy variables for whether respondent is married, divorced, black 
non-Hispanic, and Hispanic, income dummies, education dummies, a dummy for insured, and 
year dummies. 'Behavior' controls include dummy variables for any exercise, smoked at least 
100 cigarettes in lifetime, and received flu shot. 'Other heallth' includes BMI based on self-
reported height and weight. 
 
 


