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1 Introduction

Energy is the most important commodity in the world today. And by almost any metric,

the energy industry is impossibly large. Yearly energy sales at over 10 trillion dollars dwarf

expenditures on any other single commodity; trade and transport of energy is immense

with over 3 trillion dollars in international transactions driving product deliveries through 2

million kilometers of pipelines and 500 million deadweight tons of merchant shipping; 8 of

the 10 largest global corporations are energy companies; and a third of the global shipping

fleet is occupied shipping oil. Given these figures it may not be surprising that world energy

consumption takes the energy equivalent of over 2800 barrels of oil per second to quench.1

Against this background of facts and figures testifying to the enormity of energy in our

world today, stands an energy economics literature that is very applied in focus, and often

partial equilibrium in nature. While general equilibrium and more aggregative approaches to

energy economics are not uncommon, most energy economists today eschew a more abstract

and aggregative approach to energy for a decidedly micro-based attention to individual mar-

kets, firms and energy supplies. This IO approach to energy is quite natural and appropriate

given energy is not a homogenous commodity; energy firms often wield substantial market

power; and government regulation is ubiquitous - but one wonders, what questions are left

unanswered as a result.2

The purpose of this paper is to introduce a new, and decidedly abstract and aggregative,

approach to energy economics that may be useful in answering some of the more macro

questions surrounding energy use and economic activity. We think our approach may

prove useful to researchers examining long run and large scale questions regarding energy

transitions, the role of energy in economic growth, and the impact of energy supplies on

economic geography.

Our approach is informed by three key observations. The first is that energy is not

physically scarce. The second is that exploiting far flung energy resources and moving

energy to markets is primarily what the energy industry does. And third, perhaps the

most important attribute of an energy source is its density: its ability to deliver substantial

power relative to its weight or physical dimensions. To implement an approach based on

these observations we build a very simple spatial model of energy exploitation where the

location and density of available energy resources determines the amount of energy available

for economic activity in a city center or core.

The assumptions we adopt eliminate any role for physical scarcity by assuming energy

1See the appendix for sources and methods of construction.
2A short list of important contributions typefying the IO approach are Borenstein, Bushnell and Wolak

(2002), Joskow and Kahn (2002), and Wolfram (1999).
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resources are limitless, but still costly to exploit. Exploitation requires transportation to

the core, and these costs limit energy use. Since energy resources are located in geographic

space, the density of energy resources at any location affects deliveries and ultimate energy

supplies. Together these assumptions produce our “Only Energy” model where the location

and density of energy resources determines economic outcomes.

We think a spatial approach is valuable for many reasons. Apart from descriptive realism,

a spatial approach allows us to focus on the limits to energy use created when resources are

sourced from distant or difficult to exploit regions. Many sources of energy available today -

solar, wind, coal and non-conventional oil and gas - represent vast, almost limitless, potential

supplies. The economic costs of exploiting them however limits their use. For example,

the costs of transporting energy today determines the impact local energy sources have on

economic development, and transport costs explain why we enlarge markets for natural gas

by liquefaction and solar power by concentration.

Several results from our model echo these observations. We find the extent to which

we exploit difficult or distant energy sources is determined by their energy density. Low

density energy sources like straw or wood must be sourced nearby. Dense energy sources like

fossil fuels can be exploited at great distances, and our spatial approach produces a natural

definition of a resource frontier. Resources within this frontier constitute the intensive

margin of use and generate large rents; resources at the frontier are by definition marginal,

earn zero rents and define the extensive margin. For example, arctic oil and some forms of

tar sands production may define the resource frontier for oil today, while Saudi crude is part

of the intensive margin.

This focus on the resource frontier also reveals an important scaling law linking the

extensive margin of exploitation to energy supply. Altering the density of available energy

resources creates changes at both intensive and extensive margins. Energy supply rises

proportionately with energy density at the intensive margin, but having denser resources to

exploit means the extensive margin rises as well. In a spatial setting this implies a scaling

law: the area of exploitation (or exploration) scales with the square of the extensive margin

in a two dimensional setting.

This scaling law plays out differently for renewables and non-renewables. Common to

both is the result that once we combine the adjustments on both margins we find that

energy supplies (or potential reserves) are homogenous of degree three in our measure of

energy density. This implies, in the case of renewables, that access to an energy source

twice as energy dense delivers eight times the energy supply. In the case of non-renewables,

we find that every new resource play must first boom and then (optimally) bust. Extractions

at first rise and then fall, and peak extractions are also increasing in the energy density of
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the resource.

To these impacts we must also add dense energy resources provide strong incentives

for improvements in transportation. We first show how the (exogenous) introduction of a

low cost transportation option act as if it magnifies the energy density of available nearby

resources; placing a road or river near our core is equivalent to endowing the region with

resources of higher energy density. Then, and perhaps not surprisingly, we show how the

existence of energy dense resources creates large incentives for (endogenous) investments

in infrastructure. Together these two results reveal a strong complementarity: energy

dense resources beget large investments; and large investments can make any distribution of

resources appear more energy dense.

These results tell us why the energy infrastructure for oil is the largest and most com-

plicated ever constructed for a single commodity; why villagers in Africa only collect crop

residue and dung from nearby sources; why charcoal is created worldwide despite an incredi-

bly inefficient process; and why canals were laboriously developed almost exclusively to move

coal in the 19th century but not firewood, grain or people in earlier centuries. They are also

suggestive of the strong tendency we see towards natural monopoly in the transmission and

distribution of many of today’s energy dense resources.

Finally, a spatial approach may well be appropriate in a world soon to contain over 9

billion people. Rising populations are likely to make the areal constraint faced by renew-

able energies tighter while ongoing and even accelerating urbanization raises the geographic

density of energy demands. Indeed the most salient feature of the history of world energy

consumption in the last two hundred years is the world’s increasing reliance on very dense

energy sources delivered to rapidly growing cities in a rapidly urbanizing world. To meet

these challenges and those of climate change, both renewable and non-renewable energies are

required, and we provide a common framework for thinking about how the supplies of both

renewable and non-renewables energy sources may meet this challenge. Moreover, we do

so by operating at a resolution level somewhere between the highly detailed industry level

studies of the IO approach to energy economics and the highly abstract and aggregative

analysis common to resource economics and growth theory.3 Indeed we hope to bridge this

gap by showing how detailed discussions of power concepts, transport costs, and resource

frontiers can be incorporated into a highly abstract and aggregate setting potentially useful

to future work in energy, resource and growth economics.4

Introducing new theory requires new measurements as well, and hence we provide meth-

3For a recent treatment see Acemoglu et.al. 2012. A very nice review of several of the energy, environment
and growth issues is contained in Smulders (2005).

4One such extension is contained in Moreno-Cruz and Taylor (2012).
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ods to measure energy densities for both renewable and non-renewable resources. Energy

density can be measured in a variety of ways. One method is to rank sources according to

their energy content measured in Joules/kg. Under this metric, the energy contained in a

kg of crop residue is less than that in a kg of wood, which is in turn less than that of coal,

and less than that of oil. While this metric for density is very useful for resources like fossil

fuels, it may be less useful for many renewables. Another possible method recognizes that

some energy resources take up large areas for their maintenance and exploitation (crops,

forest resources, game animals, solar power installations and wind farms) in comparison to

what might be called punctiform resources where energy resources are highly concentrated

geographically (coal, fast moving rivers and uranium). To capture the areal implications of

these resources we can measure the flow of energy per unit area these resources can deliver

taking into account the area needed for exploitation or maintenance. This second method is

in fact a generalization of the first since it captures both the energy content of sources (key

to fossil fuels) and their geographic requirements (key to many renewables).

Since power is the flow of energy per unit time, typically measured in Watts, power den-

sity measures the flow of energy a source can provide in Watts per unit area needed for its

exploitation and maintenance.5 In the case of renewables power density comes directly from

the area requirement for a resource (say timber or biofuels or solar power), together with its

ability to provide a steady state flow of energy measured in Watts. To facilitate measure-

ment we provide a neat decomposition of the power density of renewable resources into three

resource characteristics: its intrinsic growth rate, its physical density in the environment or

yield; and its energy content.

In the case of non-renewables surface area is still important, but high energy content

non-renewable resources are primarily found subsurface, and energy flows now come from

the depletion of energy stocks. To make renewables and non-renewables commensurate we

aggregate over the sub-surface deposits using the marginal costs of recovery. Using this

method we provide a simple decomposition linking the power density of non-renewables to

their energy contents and physical density in the environment. With these methods in hand

we then provide estimates of the power density for various food crops, fuel wood, renewable

power sources, coal and oil. Although exact measures depend on site specific assumptions

regarding deposit quality, in general we find non-renewables are several orders of magnitude

more dense than renewables.

Our work is of course related to previous contributions in both energy and resource eco-

nomics, and has benefitted in perhaps less obvious ways from the contributions of economic

5Expending one Joule of energy per second provides one Watt of power. Power density is typically
measured in Watts per m2.
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historians.6 Although the Only Energy model is constructed from first principles, it bears

some resemblance to von Thunen’s model of an Isolated State. In contrast to von Thunen

however, transport costs and, by implication, the extensive margin are set by appeal to

physical laws governing energy use and work. It seems only appropriate in a model offering

a new approach to energy economics to go back to the basics of work, force and friction to

derive costs, define concepts, and develop measurement. By doing so we are able to gener-

ate a clear extensive margin limiting resource use and link this margin to fundamentals.7 In

addition, the physics of the problem imbue the model with a form of constant returns that

proves useful time and time again in our derivations.

Our work is also related to two streams of the existing energy and resource literature. It

bears a family resemblance to other spatial models of resource and energy use where resources

and demand centers are treated as points in space (Gaudet, Moreaux and Salant (2001));

where consumers (Kolstad (1994)) or resources (Laffont and Moreaux (1986)) are distributed

on line segments; where resource pools are differentiated by costs, suggestive of a spatial

setting (Pindyck (1978), Livernois and Uhler (1987), Swierzbinski and Mendelsohn (1989),

and Chakravorty, Roumasset, and Tse (1997); and situations where resources themselves

move across space (Sanchirico and Wilen (1999)). These contributions are however quite

different and focus on very different questions and problems.

Our non-renewables model is also novel but for much of our analysis we employ a refor-

mulation first introduced by Solow and Wan (1976) to translate our spatial model (and its

assumptions) into a very tractable equivalent where resources are homogenous but extraction

is subject to rising marginal costs. In this setting our finding of a boom and bust pattern for

extractions is not novel as this possibility has long been recognized (see for example Pindyck

(1978), Livernois and Uhler (1987), and Holland (2008)).8 Our innovation here is to tightly

tie the boom and bust pattern of extractions to the implications of our scaling law; to show it

is a necessary consequence within our spatial setting; and to link the peak of the extraction

path to the energy density of resources.

The rest of the paper proceeds as follows. In section two we develop a simple model

linking power density to energy supply. This section develops definitions and establishes

the production possibility frontier and the optimal extraction rules for both renewable and

non-renewable energy sources. We examine the renewables model in a stationary state

6See for example Wrigley (2010), Smil (2008), Fouquet and Pearson (1998) and Fouquet (2006).
7von Thunen’s iceberg costs have the unfortunate and clearly counterfactual implication that any energy

resource can be transported anywhere and still yield positive energy rents. See Appendix A.2 for a proof of
this assertion.

8For related empirical work see the thoughtful and skeptical review of the existing Peak Oil literature by
Boyce (Forthcoming) and the early work by Slade (1982) on U-shaped paths for energy prices.
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since recharge rates for many renewables are extremely rapid (solar, wind, hydro). The

non-renewables model is examined in a planning context to maximize its connections with

the existing literature. Section three discusses methods to measure power density. We

derive measures of power density directly from our theory and then construct empirical

counterparts using readily available data. A short conclusion ends the paper. An appendix

contains several lengthy calculations and a discussion of data sources.

2 The Only Energy Model

We develop a simple model of energy exploitation where energy is the only input and only

output of production. This simple structure allows us to introduce our assumptions on

geography and costly transport in a transparent manner and define power and energy density

measures very easily. Extensions to introduce additional factors and a market based economy

are possible.9

We assume consumption and production activities are located at an economic core while

potential energy sources are distributed in the surrounding space. The economy’s core con-

tains all of its production and consumption units but is zero dimensional — occupies no

space. The location of the core is exogenous and fixed throughout. The exploitation zones

where energy sources can be found are two dimensional planes allowing us to employ defini-

tions of area, distance, and density. Distance is meant to capture any and all costs incurred

when incremental amounts of energy are exploited. Timber resources for example may only

be available some distance from the core; and for some renewable energies - solar or wind

power, or biofuels - measures of area are important to consider. For other energy sources,

like fossil fuels, area considerations are less important, but here increasing distance can re-

flect the difficulties firms have in accessing incremental resources due to well depth, weather

conditions, and non-standard geological formations.

2.1 Renewable Resources

We first consider the case of renewables, since it is simpler and admits a steady state analysis

that we can then modify to allow for depletion and exhaustion in the case of non-renewables.

We start with a definition. The area exploited to find and collect energy is related to the

power obtained measured in Watts [W], and the power density measured in Watts per meter

squared [W/m2], of the particular energy source exploited. If the flow of power obtained is

W , and the available energy source has power density Δ, then the exploitation zone we need

9One such extension is developed in Moreno-Cruz and Taylor (2012).
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to meet this demand must equal:

EX = W/Δ (1)

where EX is measured in meters squared, [m2].

2.1.1 The Geography of Exploitation

If the energy resources are distributed uniformly, then minimum cost search implies energy

will be collected from a circular area with the economy’s core at its center. Therefore W will

be collected from a circular area with size EX defined by a radius R. We assume extraction

itself is costless, but transport to the core requires use of energy.10 To determine the margin

of exploitation and energy supply the first step is to relate the distance a resource travels

with the density of resources at that distance. The density of resources at any given radii

r less than R is simply given by the circumference at this distance, 2πr, divided by the sum

of all radii up to and including the limiting radius of R. Since the total area exploited

is πR2, the density function for energy resources must be given by f(r) = 2r/R2. The

average distance any resource is transported is then simply the distance r times the density

of resources at that distance. We will refer to this as the average carry distance, ACD, and

it is given by:

ACD =

∫ R

0

r[2r/R2]dr =
2

3
R (2)

While we assume energy resources are uniformly distributed across (a two-dimensional)

space, it should be clear that other options are easily dealt with at some cost in terms

of tractability. In Figure 1 we depict three alternatives. For example, suppose the core

was located with resource availability in mind (not an unlikely scenario), then resources may

be dense near the core and less dense further away. This is shown in Panel 1.(a) where

shading indicates higher power densities. Alternatively, we could allow for the equally likely

possibility that a new energy source is located further from the core than was the older

established source (think of the potential wind resources on the Great Plains or solar power

farms in Arizona). This possibility is shown in Panel 1.(b). And finally, resources could

exist in patches or fields within some region, and exploitation may alter the density itself.

This possibility is depicted in Panel 1.(c).

In principle, all of these cases can be examined with an appropriate adjustment of the

density f(r) and naturally they will generate average carry distances less than or greater

than that given in (2).11 One specific and important possibility we discuss in Section 2.2

10Adding in constant per unit extraction costs adds little except notation to the analysis.
11We analyze situations where resources are either patchy (there are holes) or punctiform (they differ in

density) in a subsequent section.
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Figure 1: Alternative distributions of resources on land
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occurs when the exploitation of a non-renewable resource alters the density of resources in

a continuous manner hollowing out the exploitation zone over time.

In the uniform case the area of exploitation is a circle with A = πR2 and since EX

represents the area of exploitation, we can simply link the average carry distance to the

energy exploited via ACD = (2/3)(EX/π)1/2 = (2/3
√
π)(W/Δ)1/2 using (1). ACD is

measured in meters but to calculate the work done in transporting energy resources we

need to find what we will call “Total Carry,” measured in kg-meters. This is found by

multiplying the average carry distance by the total weight of resources transported. Total

energy resources transported is equal to the area under exploitation times the density of fuel

over this area. Therefore, Total Carry is given by:

∼

TC = ACD × EX × d = [m][m2][kg/m2]=[kg × m]

∼

TC =

(
2

3
√
π

)(
W

Δ

)1/2

EX.d (3)

∼

TC =

(
2d

3
√
π

)(
W

Δ

)3/2

where we used (1), and d is the (uniform) physical density of this resource in [kg/m2]. Total

carry is the number of kilogram-meters covered in transporting energy to the core when the

power requirements are W and the energy source has density Δ.

Not surprisingly, the greater are the power requirements, the greater are total carrying

costs. Less obvious is that marginal (carrying) costs are strictly increasing in power. As

power demand rises, larger and larger areas for exploitation must come at the fringe of

already sourced areas.

2.1.2 The Physics of Transport

Production possibilities are determined by the amount of power that can be supplied to

the core. This section sets out maximum supplied power as a function of energy resource

characteristics. A first step in doing so is to recognize that power collected does not equal

power available for use in the core. The collection and transportation of resources, like

everything else, requires power. The net power supplied to the core is equal to total power

collected in the exploitation zone, W , minus the power needed for transportation. In obvious

notation, W S = W −W T .

To calculate the power used in transport, a little high school physics is required. Recall

Work is equal to force, f , times distance, x, or work is Wk = f · x. Force is in turn equal to

mass, M , times acceleration g; as any mass moved horizontally must overcome the force of
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gravity as mediated by friction in transport.12 All this implies:

Wk = μ[M · g]x = [Newton.meters] = [Joules] (4)

Wk = μg[M · x]
Wk = μg[Total Carry]

where μ is the coefficient of friction, g is the acceleration of gravity at 9.81m/s2, and Wk

is then measured in Joules. This work is done per unit time since power is a flow (as is

for example the flow of labor and capital services that creates the flow of useful output in

standard analyses).

Choosing units is inconsequential and if we measure time in seconds, then the flow of

work, Wk, measured in Joules per second is now power requirements measured in Watts.13

Putting this all together we find that the total cost of delivering the flow of power W to the

core is given by TC(W ). Using (3) and (4) we can write this total cost as:

W T = μg
∼

TC(W ) = TC(W ) (5)

where we note TC(W ) is a strictly convex function with TC(0) = TC ′(0) = 0.

It is now a simple matter to examine how different choices for exploitation generate

different supplies of power delivered and available to the core. The calculation of power

supplied and delivered to the core, W S, is made easy by plotting Watts delivered against

Watts collected as shown in Figure 2. TC(W ) is the strictly convex function shown with the

properties just derived. Its vertical height at any W gives the power used in transporting

to the core the flow of energy resources represented by the associated power collected on the

horizontal axis. By construction, the gap between the 45 degree line and TC(W ) represents

the power left over to supply the core. Naturally extending the exploitation zone to collect

power WE results in zero power supplied since all of it would be exhausted in transport.

In contrast, the choice W ∗ maximizes supplied power because the vertical distance between

W ∗ and TC(W ∗) represents maximum of W S = W ∗ − TC(W ∗). We will focus throughout

on choices that are optimal in this sense.

One important feature of Figure 2 is that it depicts an energy system that is always

productive; i.e. an energy system that can provide positive supplied power to the economy

because there always exists extraction levels for which the power needed for delivery to

12We are ignoring static friction encountered when the object first moves. The force that needs to be
overcome to keep an object in motion is equal to the normal force times the coefficient of friction. Since the
object is moving horizontally, the normal force is just gravity times the mass of the object . The coefficient
of friction is a pure number greater than zero; and force is measured in Newtons.

13Expending 1 Joule of energy in 1 second means you are delivering 1 Watt of power.
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Figure 2: Optimal Energy Exploitation

the core does not exhaust power collected. The system developed here is always productive

regardless of the costs of transport. Even if we push the coefficient of friction towards infinity

making transport very costly in terms of energy, the slope of the total carry curve at zero

Watts, is still zero. In contrast the slope of the 45 degree line remains one even at zero

Watts, and hence for any finite coefficient of friction, there will always exist an opportunity

to deliver positive power to the core.14

It is straightforward to show that the maximum supplied power is increasing in power

density Δ as this shifts TC(W ) outwards, and increasing, for the same reason, when the

transportation system becomes more efficient in the physical sense (μ falls). Associated

with any W ∗ is an area of exploitation EX∗. If we focus on efficient (in terms of maximized

supplied power) outcomes then we have a simple model of how the density of an energy

resource affects power available for use in the core.

When supplied power is maximized, total power is given by:

W ∗ =
πΔ3

[μgd]2
(6)

14This does not imply that all landscapes have sufficient resources to support life or a productive economy.
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The optimal solution is a cubic function of power density. The intuition is illuminating.

Suppose we increase power density but leave the area of exploitation fixed; then supplied

power should rise proportionately with power density; i.e. appear with power 1 in an expres-

sion like (6) because W = ΔEX. But a higher power density also implies the marginal cost

of exploitation falls. With lower marginal costs, exploitation rises and the extensive margin

of exploitation moves outwards. Since area is proportional to the square of radius, total

power rises with the square of power density because the extensive margin of exploitation

changes.

Although it may not be apparent at present, this result is not a function of the circular

region of exploitation but follows instead from a well known scaling law. Since area scales

with the square of length (here the margin of exploitation), power density will enter as a

cube in determining supplied power even when the exploitation zone is not circular. Putting

this logic together tells us that the power density of energy sources, and differences in their

power densities, is likely to play an important role in determining outcomes.

To find the portion of power used in transport and the remainder that is supplied to the

core, evaluate total carry at W ∗ and subtract to find:

W S =
1

3
W ∗, W T =

2

3
W ∗ (7)

Two thirds of the energy collected is spent in transport leaving only one third to supply the

power needs of the core. This result is linked to the uniform density of resources since an

average carry distance of 2/3R∗ implies only 1/3 of the energy collected will remain for use

in the core.

Finally, the area of exploitation is also a function of power density since at the optimum:

EX∗ = W ∗/Δ = π
Δ2

[μgd]2
= π[R∗]2 where R∗ =

Δ

μgd
(8)

Having a more dense energy source means the energy costs of exploiting far away regions is

less: dense energy sources feed further exploitation. The area of exploitation for a fuel twice

as dense as another is four times larger. For example, villages in the Middle Ages rarely

sourced fuel wood from more than a few miles away.15 Coal however has been transported

hundreds of miles on barges, wagons and trains for much of the last two centuries. Today oil

is sourced from some of the most inhospitable climates in the far reaches of the planet and

from wells drilled literally miles deep below the ocean surface. Equation (8) tells us this is no

15Towns on rivers would be an exception, since their transport costs are far less. See our discussion of
rivers in section 2.1.3.
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surprise - dense energy sources beget large exploitation zones. The reason is straightforward.

Since gravity cares nothing about the energy content of any mass transported, higher energy

content fuels can in effect fuel their own exploitation by extending the range of (energy)

profitable exploitation.

To see why this is true, consider the costs of moving energy resources providing one Watt

of power just one meter. Since friction is a constant returns process, the one meter distance

calculation is all we really need to understand. One Watt of power, takes up 1/Δ square

meters of area which in turn implies the energy resources it represents must weigh d/Δ

kilograms. Moving this mass one meter, and overcoming friction, requires a flow of power of

μgd/Δ. Therefore, μgd/Δ is the number of Watts needed to transport one Watt worth of

an energy source with power density Δ, one meter. With this in hand, it is now apparent

that (8) identifies marginal energy resources which are located R∗ meters from the core and

therefore provide zero net energy supply, that is we must have at the margin of exploitation

that:

1−R∗μgd
Δ

= 0

Therefore, the more dense are the energy resources, the lower are the transport costs of

obtaining a marginal Watt of power, and not surprisingly the energy exploitation zone must

be larger.

This discussion of the margin of exploitation suggests an alternative method of finding

net supply that we will sometimes use. Net power supplied must come from adding up, what

we could call, “energy rents.” These rents, 1− μgd
Δ
r, are collected at distances r ≤ R∗ from

the core. To add them up we use a two step procedure. Along any ray from the core, there

are Δ Watts of power every meter and transporting these resources from the core yields a

density of Δ
[
1− μgd

Δ
r
]
net Watts of power at distance r from the core. The first step is to

add up these resources along our ray over all distances less than R∗. The second step is to

accumulate these quantities by sweeping across the 2π radians of our circular exploitation

zone. By doing so we obtain net power supply to the core as the sum of all energy rents:

W S =

∫ 2π

0

∫ R∗

0

vΔ[1− μgd

Δ
· v]dvdϕ = 2π

∫ R∗

0

vΔ[1− μgd

Δ
· v]dv (9)

W S =
πΔ3

3 [μgd]2

Which is of course identical to what we found earlier.

This discussion is also useful in highlighting our relationship to the formulation of von

Thunen (1826) and his many successors (for a thorough and excellent treatment see Samuel-

son (1983)). In von Thunen’s work crops of various types generate economic rent gradients
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falling with distance to the core; and the market economy’s demands for wood, cereals, or

meat determines relative prices, rents, and therefore land use. Despite some strong simi-

larities our formulation and that of von Thunen are not identical. Where we associate any

energy source with a finite region of exploitation tied to its power density, the geometric

transport costs of von Thunen - cleverly coined iceberg costs by Samuelson - imply an infi-

nite exploitation zone for any and all energy resources. As a result the iceberg assumption

of von Thunen leads to the somewhat uncomfortable implication that we can move a barrel

of oil (a cord of wood, a bale of hay, a pound of dung, an Ampere of electricity etc.) a

billion miles and still reap some energy resources from it. Most importantly it rules out the

adjustment in the extensive margin of exploitation that is critical in linking differences in

energy density to ultimate supplies; and by implication eliminates the scaling law we find so

important.16 Although von Thunen’s rents do fall with distance, the differences across our

approaches is subtle and we leave to an appendix a fuller discussion of these differences.

2.1.3 Incentives for Natural Monopoly? Roads, rivers and canals.

Rivers, roads, and canals were all important components of the energy transportation system

in the 19th century just as power lines, oil pipelines, and LNG terminals are important

features today. What these components have in common is that they represent low friction

and presumably low cost methods of transporting energy to markets. In this section we

consider the case of a low friction alternative by examining the impact of a having a river or

a road cross the economic core. Analytically, we treat roads as rivers that lower transport

costs in both directions.

The analysis proceeds in two steps. First, given the lower transport costs along a river

or road energy suppliers may now decide to take a longer route to the core if it offers lower

costs. This decision problem affects the shape of our exploitation zone. Second, since a

river or road lowers transport costs the overall size of the exploitation zone will also change.

To proceed consider the decision problem of a potential energy supplier located on one

meter squared of land with the flow of energy produced equal to Δ Watts. The supplier

can take energy directly into the core or deviate to take advantage of a road or river nearby.

Rivers and roads help to reduce the amount of work used in transportation, increasing the

16How then do authors in this literature find adjustments along this margin? While we have not read
all related work, a close read of Samuelson’s (1983) treatment will show that city size is fixed by assuming
there is a minimum finite bound on the labor to land ratio. This finite limit rules out an infinite zone
of food production where small dose of labor combine with large quantities of land to produce output at
distant locations that can suffer large transport costs to the core. We suspect all analyses adopt, in one way
or another, a similar vehicle for limiting exploitation zones. Whether the margin is infinite or exogenous
matters little to us since in both cases it is not linked to energy density and therefore cannot play a role in
determining energy supplies.
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amount of energy delivered to the core. To capture this in our analysis we allow for the

coefficient of friction of the river or road to differ from the coefficient of friction of land by

a fraction ρ < 1. That is, while the coefficient of friction of land is equal to μ, a road’s

coefficient of friction is ρμ in both directions. When traveling with the current a river’s

coefficient of friction is also ρμ but against it μ/ρ. By this assumption, river transport

is only useful when you are an energy producer upstream; whereas road transport reduces

frictions in two directions and not one.17

We assume the river or road is a straight line that crosses the core and expands indef-

initely.18 The location of a supplier relative to the core is described by two terms: ι, the

distance from the core and θ the angle between the segment formed by the core and the

supplier and the river as shown in Figure 3.

We solve the energy producer’s problem in two stages. In the first stage transportation

costs are minimized by choosing how much distance to cover by land and how much distance

to cover by river. In the second stage profits are maximized. The cost minimization problem

is given by:

min
ι1,ι2

(
μgd

Δ

)
Δι1 + ρ

(
μgd

Δ

)
Δι2 (10)

subject to

ι2 = ι21 − ι22 + 2ιι2 cos θ (11)

where ι1 is the distance travelled by land and ι2 is the distance travelled by river or road.

The constraint follows directly from the law of triangles with ι1 being opposite to the

angle θ, as shown in Figure 3. We can replace the constraint in the objective function to

find the optimal distances travelled by land and by river:

ι∗1 =
ι sin θ

(1− ρ2)1/2
(12)

and

ι∗2 = ι cos θ − ρι sin θ

(1− ρ2)1/2
. (13)

If the distance ι∗2 is strictly positive, the supplier deviates to the river, otherwise the

supplier goes straight to the core . We can solve for the critical value of θ that separates the

suppliers that go straight to the core from those who deviate to the river:

ι∗2 > 0 if and only if θ ≤ cos−1 ρ ≡ θ̄ (14)

17We are ignoring the physics of buoyancy which can make travel by a river even upstream quite efficient.
The analytics of this case are left to the interested reader.

18The case where the river does not cross the core is similar and available from the authors.
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Figure 3: Transport via Road or River

Energy suppliers located at any angle θ < θ̄ are “close” to the low friction alternative

and choose to use it. Since ρ = cos(θ̄) we know that as ρ → 0, everyone deviates to the

river as they should, since it is so cost effective. Alternatively, as ρ → 1, the river offers no

advantage and no one uses it.

The second part of the energy producer’s problem is to decide whether or not to take

its energy to the economic core. An energy producer situated a distance ι from the core

and forming an angle θ with the river will go to the core if the energy supplied to the core

is positive; i.e., if there are positive energy rents at this location. Energy supplied by this

producer is given by

W S = Δ− μgd

Δ
(ι∗1 + ρι∗2)Δ (15)

Replacing equations (12) and (13) in the previous equation makes energy rents a function

of the distance to the core ι. There is a critical distance ι∗ at which suppliers become

indifferent between bringing their energy production to the core or supplying zero. This

distance is determined by setting W S = 0 and it is given by:

ι∗ =
Δ

μgd

{ (
(1− ρ2)1/2 sin θ + ρ cos θ

)−1
if θ ≤ θ̄

1 if θ ≥ θ̄
(16)

which determines the area of exploitation. The zero rent margin, if the producer does not

deviate, is exactly as before. But if the producer finds it useful to use the low friction

alternative, energy rents are greater and the zero rent margin further from the core.
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Total energy supplied to the core can then be written by “adding up” all energy rents

over the two regions to obtain:

W S = 2×
[∫ θ̄

0

∫ ι∗

0

v

(
Δ− μgd

Δ
(ι∗1 + ρι∗2)Δ

)
dvdθ +

∫ π

θ̄

∫ ι∗

0

v

(
Δ− μgd

Δ
vΔ

)
dvdθ

]

The integral is multiplied by 2 since our method only adds up over the half circle of

π radians whereas total energy comes from the entire exploitation zone. The first integral

represents energy coming from suppliers who are close enough to the river to use it in

transport. The second integral represents the energy coming from those who travel directly

to the core.

Integrating and simplifying gives us a net energy supplied much like that we had before:

W S =
1

3

Δ3

(μgd)2
(π + g(ρ)) (17)

g(ρ) =

∫ θ̄

0

(
(1− ρ2)1/2 sin θ + ρ cos θ

)−2 − θ̄dθ � 0 (18)

where the function g(ρ) is positive and monotonic and approaches infinity as ρ goes to zero.

We depict the exploitation zone in the river and road case in the two panels of Figure 4

assuming ρ < 1.

It is now possible to redefine terms slightly to rewrite supply as:

W S =
1

3

πΔ̃3

(μgd)2
where Δ̃ ≡ Δm(ρ)

m(ρ) = ((1 + g(ρ))/π)1/3 > 1

which is exactly the same form as our earlier supply. The role of improved river transport

is identical to being granted a more dense resource base in terms of energy supplied to the

core! River location multiplies by m(ρ) the power density of available resources to an extent

determined by its capacity for reducing transport costs as reflected in ρ. Setting ρ = 1 means

the river or road offers no advantage in terms of transportation. This implies g(ρ) = 0 since

then θ̄ = 0 and equation (17) reduces to equation (7). Any ρ < 1 effectively magnifies power

density; and letting ρ approach zero implies g(ρ) approaches infinity and energy is no longer

even economically scarce.

An important feature of this magnification effect is that it is increasing in the power

density of available resources. Improved transport is most powerful for very dense resources,

and least powerful for low density resources. Any transportation improvement increases the
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Figure 4: Exploitation with Rivers or Roads
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extensive margin proportionately, regardless of the energy source; but the resulting change

in energy supply is larger for more dense resources because of the scaling law linking changes

in the extensive margin to energy supply.

These calculations can be easily expanded to accommodate the case of a road for which

the direction of flow is not important. In this case energy suppliers can take advantage of

the reduced coefficient of friction in either direction away from the core. Using similar steps,

this leads to supply being given by:

W S =
1

3

πΔ̂3

(μgd)2
where Δ̂ ≡ Δn(ρ)

n(ρ) ≡ ((1 + 2g(ρ))/π)1/3 > 1

which is of course very similar to the flow of the river case.

The implication of these results is that transport infrastructure is most valuable to convey

dense energy resources since the benefits of an existing system are increasing in density.

To make this connection clear, suppose we could build roads, canals, or other low cost

transportation systems to facilitate energy transport. Suppose further the flow cost of

building and maintaining these facilities depend on their efficacy in reducing costs; and we

can choose the optimal quality of these investments. Let the cost of building and maintaining

transport that delivers an efficiency of ρ be given by l(ρ) which is a decreasing and convex

function: l′(ρ) < 0 , l′′(ρ) > 0. Then energy supplied net of infrastructure costs are

WN = W S(ρ)− l(ρ). For concreteness consider the case where W S(ρ) is given by equation

(17) and we are improving river transportation by dredging, locks, canals, maintaining ports

etc. The optimal investment problem is simply given by

max
ρ

WN = W S(ρ)− l(ρ) =
1

3

Δ3

(μgd)2
(π + g(ρ))− l(ρ) (19)

The first order condition that maximizes energy requires

1

3

Δ3

(μgd)2
g′(ρ) = l′(ρ) (20)

The lefthand side of this equation is the marginal benefit from improved transport and it

is again a cubic in power density showing a strong relationship between density and the

marginal benefit of further investments. The right hand side is simply marginal costs of

improved transportation. Denote the implicit solution to (20) as ρ̃(Δ) and total differentiate
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it to find19

dρ

dΔ
=

Δ2

(μgd)2
g′(ρ)

l′′(ρ)− 1
3

Δ3

(μgd)2
g′′(ρ)

< 0

where the second order conditions ensure the denominator is positive. Therefore, not only do

dense resources benefit differentially from existing transportation options like rivers, roads,

and sea lanes, but they naturally create large incentives for further improvements magnifying

the already large impact differences in transportation make to energy availability in a power

dense rich environment.

2.2 Non-Renewable Resources

Using non-renewable energy today precludes you from using it tomorrow. As a result, the

exploitation zone will change over time as the resource stock is depleted. This is true because

with non-renewables, energy flows come from depleting the resource stock and not from

harvesting the perpetual yields flowing from a renewing resource. But stock depletion is not

the only way in which renewables and non-renewables differ. Non-renewables are often found

beneath the earth’s surface in pools, seams, and reservoirs; and naturally their exploitation

takes many forms including surface collection (salts, some coals), strip mining (coal, oil sands,

peat), and deep mining and drilling (oil, natural gas, uranium). Because non-renewables

are often found in topographically concentrated deposits and often at considerable depth,

we will need to account for the punctiform nature of these quite different resources in both

theory and measurement.

We leave these questions for the moment to examine how the exploitation zone for a non-

renewable energy source may evolve over time as energy is supplied from it. One simple and

natural way to capture depletion is to have ongoing extraction hollow out the exploitation

zone as the resource is extracted. This would for example satisfy a least cost sequence

depletion path.20 We present one snap shot of the exploitation zone this path generates in

Figure 5. At this point in time, all the energy resources up to r have been extracted, and

in order to generate the flow of power W , the new area exploited, EX, would need to be a

19We have already assumed l′′(ρ) > 0; it can be shown that g(ρ) is convex for low values of ρ and concave for
high values of ρ. Because of the change in concavity there may exist two solutions to the first order conditions,

but only one maximum. The second order conditions required for a maximum imply 1
3

Δ3

(μgd)2 g
′′(ρ) < l′′(ρ)

which simply says the costs are more convex than the benefits from investing in infrastructure.
20There is a small literature examining least cost paths for depletion in situations with multiple deposits or

resources. This literature, started by Herfindahl (1967), examines when, and under what conditions, a least
cost order of extraction path will be optimal. Chakravorty and Kruice (1994) contains relevant references,
some discussion, and a neat result showing the typical least cost path prediction does not hold up when the
resources in question are not perfect substitutes in use. This possibility is ruled out in our one energy source
set up, but would be relevant in any extension with two, less than perfectly substitutable, resource types.
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ring with outer radius R satisfying:

EX = π
(
R2 − r2

)
= W/Δ (21)

By rearranging we can neatly link the new exploitation zone with the resource flow extracted

W = πΔ(R2 − r2).

r

R
CORE 

Figure 5: Extraction with Depletion

These W resources have to be brought to the core for use, and we can again calculate

the average carry distance by relating the distance a resource travels with the density of

resources at that distance. Recalling previous methods, the density of energy resources

located a distance v between r and R is given by f(v) = 2v/[(R2 − r2)]. The average

distance resources are transported is again v times the density of resources at that distance.

Putting this together we find the average carry distance, ACD, is now given by:

ACD(R, r) =

∫ R

r

v
2v

(R2 − r2)
dv =

2(R3 − r3)

3(R2 − r2)
(22)

or writing in terms of power W we find:

ACD(W, r) =
2

3

πΔ

W

[[
W

πΔ
+ r2

]3/2
− r3

]
(23)
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Using now familiar methods, Total Carry is given by:

∼

TC = ACD × EX × d = [m][m2][kg/m2]=[kg × m]

∼

TC =
2πd

3

[[
W

πΔ
+ r2

]3/2
− r3

]
(24)

where again use has been made of (23). Using (24) and (4) we can write this total cost in

terms of energy used in transporting energy as:

W T = μg
∼

TC(W, r) = TC(W, r) (25)

This total cost function is identical to our earlier renewables formulation when we evaluate

it at r = 0. More generally it is increasing and convex in W with TC(0, r) = 0, but now

marginal extraction costs also depend on r. Differentiating shows:

TCW (W, r) =
2

3

μgd

Δ

[
W

πΔ
+ r2

]1/2
> 0 (26)

Whenever r > 0, the marginal cost of delivering even the very first unit of power is strictly

positive and this marginal cost is increasing in r.

This result is very natural and has two straightforward implications. First, if ongoing

extractions drive r upwards over time then the marginal cost of extraction rises over time.

As a result, if the resource frontier is currently at r(t), then cumulative extractions must be

Δπr(t)2 and marginal extraction costs are an increasing function of cumulative extractions

to date. Second, since the marginal benefit of extracting one more Watt is 1, and marginal

costs are rising as the resource frontier moves outwards, eventually extractions must cease.

To find this point we can set (26) equal to one and solve to find, not surprisingly, that this

occurs when r equals Δ/μgd. Therefore, when the resource frontier r(t) approaches the

zero rent margin at R̄ = Δ/μgd the energy system is incapable of delivering any more net

energy.

While we have assumed above that the resource frontier would move slowly outwards

over time, there is (as yet) no reason for today’s energy maximizing planner to save even

an iota worth of energy resources for tomorrow. As a result, all resources within the zero

rent margin would be extracted as fast as possible with the frontier jumping to the zero rent

margin. Once we assume that current and future energy flows are not perfect substitutes

the problem becomes far more interesting.
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2.2.1 A Solow-Wan Reformulation

To examine optimal depletion paths it is useful to reformulate our problem. From the dis-

cussion above it may already be apparent that our spatial model with reserves differentiated

by location and hence rent, is isomorphic to a standard zero dimensional problem where

there is a fixed and given resource stock that can be exploited subject to marginal extraction

costs that rise with cumulative extractions. A similar reformulation was first suggested

by Solow and Wan (1976) in an environment where resources were differentiated by their

grade.21

What we do here is a standard Solow-Wan reformulation, but with one important twist.

The difference comes from the fact that our spatial environment carries with it a built in

restriction on the cost distribution of resources. In short an implication of our spatial

assumptions is that very high quality - high rent - resources are rare while low quality - low

rent - resources are abundant. This follows because as the extensive margin moves outwards

resource quality falls linearly, while the quantity of resources available rises quadratically.22

As a result, for any zero rent margin R̄, resources within the top 50% of the quality spectrum

represent only 25% of available resources. In this sense high quality reserves are scarce and

low quality reserves are abundant. This implication of our spatial assumptions has major

implications for the extraction cost function and the optimal depletion path.

To reformulate the problem along Solow-Wan lines, the first step is to link current ex-

tractions to remaining reserves. To start we recognize that the maximal exploitation zone

has radius R̄, and this maximal exploitation zone implies a corresponding limit on recov-

erable reserves which we denote X̄. It is apparent that these recoverable reserves can be

represented by X̄ = πΔ3/[μgd]2. Therefore, if the current resource frontier is r̄(t) < R̄, then

the remaining recoverable reserves at t, which we denote X(t) are given by

X(t) =

∫ R̄

r̄(t)

f(ι)dι

where f(ι) = 2ι
R̄2−r̄2

is defined above and r(0) = 0 since no resources have been extracted at

the start of time. This allows us to write remaining reserves as

X(t) = X̄ −Δπr(t)2 (27)

21Solow and Wan (1976) suggested this reformulation in a short footnote; for a more illuminating treatment
see section 2 of Swierzbinski and Mendelsohn (1989).

22While it is not apparent now we show subsequently that the implications of the scaling law still hold
when the resource exploitation zone is patchy (has heterogeneous power densities), punctiform (has holes in
it), or when resources are present in certain locations only probabalistically.
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where we note cumulative extractions at t, are simply Δπr(t)2.

Now if we differentiate (27) with respect to time we find the needed link between remain-

ing recoverable reserves and today’s rate of extractions:

Ẋ = −2Δπr(t)ṙ(t) = −W (t) (28)

The intuition is simple. As extraction proceeds, the resource base is drawn down and the

frontier expands. The frontier expands at rate ṙ(t) and resources with power density Δ are

reaped from a ring with density 2πr(t) per unit time. The last equality in (28) follows

because the instantaneous change in the stock must equal W (t), the flow of energy extracted

at t measured in Watts. This completes the first step of the reformulation.

The second step in the reformulation is to find the associated cost function for extrac-

tions. To find the cost function recall that at any t when W (t) is extracted, we use W S(t) for

consumption andW T (t) for fuel extraction. At this t there is also a unique r(t) and therefore

extraction costs must be W T (t) = r(t)[μgd/Δ]W (t) since W S(t) = W (t)−r(t)[μgd/Δ]W (t).

Consequently, r(t)[μgd/Δ] is one measure of the per unit extraction cost. To eliminate the

reliance on r, note that equation (27) gives us a relation between remaining reserves X(t),

total reserves X̄, and cumulative extractions to date Δπr(t)2. Use this expression to substi-

tute for r(t) in terms of remaining and recoverable reserves. With some simplification, we

can now write the relationship between energy services supplied, W S(t), current extractions,

W (t), remaining reserves X(t), and recoverable reserves X̄, as follows:

W S(t) = [1− C(X(t))]W (t) (29)

C(X) =

(
1− X

X̄

)1/2

(30)

where we can now interpret C(X(t))W (t) as the cost of extracting W (t) units of energy from

a homogenous pool of recoverable reserves X̄, when remaining reserves equal X. C(X(t))

is therefore the unit extraction cost function (where we have suppressed its reliance on

recoverable reserves, X̄).

As we mentioned above our spatial formulation imposes further restrictions on the unit

extraction cost function. In particular, it has several properties directly tied to our spatial

environment.

First consider the role played by remaining reserves X. The unit cost of extraction, when

there has been no extraction at all, is zero, C(X = X̄) = 0. The very first units of the resource

extracted are costless since they are proximate. But as extraction proceeds and remaining
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reserves fall, the costs of extraction increase. This is reflected in the finding C ′(X) < 0.

With enough extraction the remaining reserves approach zero, and unit extraction costs hit

their upper bound. When all reserves depleted X = 0 and we have C(0) = 1. The number

one has special significance because at the zero rent margin it takes one unit of energy to

extract one unit of energy. Therefore, the spatial structure implies unit costs start at zero,

rise with extraction, but are always less than one: C(X) < 1 for X < X̄.

Second, consider the role of total recoverable reserves X̄. An increase in total reserves

raises unit extraction costs. This, at first blush, is perplexing. But holding remaining

reserves constant, an increase in total reserves implies we are currently exploiting inferior

and very costly reserves. As a result cumulative production must be greater and costs

higher. By increasing X̄ we are in effect adding reserves at the extensive - more expensive

- margin and costs rise. In contrast, an increase in remaining reserves X (with given total

reserves) adds reserves at the intensive margin. Adding reserves at this margin implies

there are more yet to exploit high quality reserves remaining. Unit extraction costs fall.

Therefore, the spatial structure allows us to distinguish between the intensive and extensive

margins.

Third, and perhaps most importantly, the form of the unit extraction cost function

reflects the scaling law we have found so important elsewhere. Since the costs of extraction

rise linearly in distance (or what is the same reserve quality falls linearly) while reserves

obtained by incurring these costs rise with its square, costs must rise with the square root

of cumulative extractions. This is nothing but the dual (cost) implications of the scaling

law.

2.2.2 Optimal Depletion

To highlight our connections with the existing literature we adopt a standard planning

perspective. We assume a social planner maximizes the welfare of a representative consumer

who values the energy services available for consumption in the core. By choosing service

units appropriately, utility is defined over net energy supplied. Very little is lost if we adopt

a CRRA instantaneous utility function given by:

U(W S) =
(W s)1−σ − 1

1− σ
(31)

where σ > 0 and write social welfare as simply:

max
W (t)

∫ ∞

0

e−ρtU(W S(t))dt (32)
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The planner maximizes (32) subject to the constraints (28) and (29). We write the

current value Hamiltonian as

H = U [(1− C(X(t)))W (t)]− λ(t)W (t) (33)

where λ(t) is the co-state variable associated with the stock of resources. The optimality

conditions are given by:

∂H

∂W (t)
= U ′(W S(t))(1− C(X(t)))− λ(t) = 0 (34)

∂H

∂X(t)
= −U ′(W S(t))C ′(X)W = ρλ(t)− λ̇(t) (35)

with transversality condition

lim
t→∞

eρtλ(t)X(t) = 0 (36)

Equation (34) is the static optimization condition. It says to equate the marginal value

of an extra unit of energy consumed to the shadow value of resources needed to deliver it.

To deliver one unit of consumption requires 1/(1−C(X(t)) units of the resource be extracted

at a shadow cost λ(t) per unit extracted; that is:

U ′(W S(t)) =
λ(t)

(1− C(X(t)))
(37)

Equation (35) is the intertemporal asset market condition. Rearranging slightly:

ρλ(t) = λ̇(t)− U ′(W S(t))C ′(X)W (38)

Leaving a marginal unit of the resource in situ is an investment of λ(t) and this requires a

return of ρ. The return provided is composed of expected capital gains at rate λ̇(t) plus the

marginal reduction in the costs of providing current consumption or −U ′(W S(t))C ′(X)W .

Using (31) and taking the time derivative of (34), substituting in (35), and rearrang-

ing we find one differential equation linking the current rate of extractions to cumulative

extractions:
Ẇ (t)

W (t)
= −ρ

σ
− C ′(X)W S(t) (39)

A second differential equation is provided by (28) while one initial condition and the transver-

sality condition close the system.
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Before proceeding to an examination of the extraction path in the phase plane, it is

useful to understand the two quite different motivations at work in (39). This equation

is especially important to understand since it is the only behavioral equation governing

extractions. First, and not surprisingly, there are the standard Hotelling motives arising

from the finiteness of the resource stock and the impatience of our planner. To isolate this

motive suppose extraction costs are zero, then using (37) and (38) the shadow value of the

resource in situ rises at the rate of time preference. Energy extracted equals energy supplied

and we would simply have
Ẇ (t)

W (t)
= −ρ

σ
< 0

The values of marginal utilities discounted to time zero must be equalized across all periods

and this is achieved by energy consumption falling at a rate proportional to time preference

and the elasticity of marginal utility. This motivation follows from the finiteness of the

reserves; it predicts a declining path for extractions, and it reflects the forces identified in

Hotelling’s classic work (Hotelling 1931).

The second motivation at work is a Ricardian one, as it follows from the fact that reserves

differ in their Ricardian rents. To see this connection return to our spatial structure for

a moment. We know that very proximate resources have large rents and are relatively

scarce; very distant ones have very little rent and are relatively abundant. Therefore,

resources differ in the Ricardian rent created by their location relative to the core. Once

we translate this spatial structure - via the Solow-Wan reformulation - into an implication

on extraction costs, it implies that differences in Ricardian rent across reserves are now

reflected in extraction costs that rise with cumulative extraction. Since any unit extracted

today raises the cost of all future extractions, it pays to shift extraction into later periods.

This Ricardian motivation - which follows from differences in energy rents across resources -

argues for a delay in extractions or what is the same, a rising path of extractions over time.

Ignoring the first Hotelling term in (39) we would find an extraction path that reflects only

Ricardian considerations given by

Ẇ (t)

W (t)
= −W S(t)C ′(X) > 0

Since both cumulative extractions and energy consumed vary with time, the strength

of the Ricardian motives vary over time. In contrast with time separable preferences and

CRRA instantaneous utility, what we have described as the Hotelling motives are pinned

down only by parameters. As we show below, the interplay of these two forces will always
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produce a boom and bust path for energy production.23

2.2.3 Boom and Bust

The behavior of the dynamic system is presented in Figure 6. The Ẇ (t) = 0 isocline is

depicted by the solid curve in Figure 6. This curve is positive for values of X(t) ∈ [0, X̄]

and has a maximum value when cumulative extraction is one quarter of total reserves; i.e.

with remaining reserves X(t) = 3X̄/4 and cumulative extraction X̄ − X(t) = X̄/4. The

Ẋ(t) = 0 isocline is coincident with the horizontal axis. At all points above the Ẋ(t) = 0

isocline, movement must be rightwards to extract all reserves, giving arrows of motion in

the positive direction parallel to the horizontal axis. At points above the Ẇ (t) = 0 isocline,

extractions must be increasing since costs are currently too low; below the isocline just the

opposite is true. This information is captured by the arrows of motion shown.

Imagine we start with a new resource and hence cumulative extractions are zero. Since

the arrows of motion near the origin imply all movement must be upwards and to the right,

we know the system must move immediately to an initial extraction point like that shown

by W (0) = W0. From this initial point, the arrows of motion indicate we move upwards

and to the right and cut the Ẇ (t) = 0 isocline at zero slope. Once we cross this isocline,

the arrows of motion tell us the extraction path must turn downwards and the transversality

condition requires the path slowly approach X̄ on the horizontal axis. Working backwards

it is now apparent the transversality condition chooses the initial W0 and this choice has to

feature less extraction than that given by the peak of the Ẇ (t) isocline.

The key result is of course the peak in energy extraction.24 Descriptively, the result

23One other way to isolate these two forces is to divide up extractions into those going to consumption
and those allocated to extraction costs. Hotelling forces must rule the former; Ricardian the latter. To do
so take the time derivative of (29). to find:

ẆS(t) = (1− C(X(t)))Ẇ (t)− C ′(X(t))W (t)Ẋ(t) (40)

and using equations (28) and (39), canceling terms and rearranging obtain:

ẆS(t) = − ρ

σ
WS(t) (41)

with solution given by WS(t) = WS
0 e−(ρ/σ)t where WS

0 = W0. Therefore, energy consumption follows a
very simple Hotelling like rule ensuring that discounted marginal utilities are equal at time zero. It is now
immediate then that the profile for energy used in extraction must reflect the Ricardian forces highlighted
above. These forces argue for a rising profile for extractions over time, and since they rely on endogenous
magnitudes the strength of this force should vary over time. The reader can verify that this component of
energy extraction does initially rise quite steeply with time, but eventually falls since energy extracted itself
also falls.

24It is well known that the typical Hotelling’s prediction that the extraction path is always declining only
applies when, among other things, the extraction costs are independent of cumulative extraction or what is
equivalent remaining reserves; that is, C ′(X) = 0. When costs are increasing in cumulative extraction then
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Figure 6: Optimal Extraction Rule

follows because the Ricardian motivations dominate the Hotelling ones up to the point

where the system crosses the Ẇ (t) = 0 isocline. Thereafter the Hotelling forces dominate.

Analytically, it follows because at the very first instant of time, energy consumption must

be positive W S(0) > 0, and C ′(X(0)) = −∞ implying Ẇ (t) > 0 at least initially. And as

extraction proceeds W S(t) must approach zero (the resource is finite) and C ′(X(t)) increases

to a finite bound. Therefore, the Ricardian forces fall over time and are eventually dominated

by the Hotelling ones.

More deeply, the impact of using up the very first unit of resources on subsequent extrac-

tion costs is extremely high, C ′(X(0)) = −∞, not because these resources have the greatest

rents (which they do) but because they are so scarce in relation to the resource pool whose

extraction costs are now raised. Scarcity drives the result; and high rent resources are so

scarce because of our scaling law.25

C ′(X) < 0 and the second term in the righthand side of equation (39) is positive, and if this term is large
enough then it is possible for Ẇ > 0, at least for a period of time. This observation is often credited to
Livernois and Uhler (1987).

25As a check on our intuition and our scarcity measure we present in the appendix a simplified model with
spatially distributed resources, a Solow-Wan reformulation, and an identical planning problem. We assume
however that the extensive margin can only expand in one direction, by letting the length of a fixed width
rectangular exploitation zone adjust to economic conditions. Under this assumption, the area of exploitation
rises only proportionately with the extensive margin and energy supply does not scale with the square of the
extensive margin: our scaling law is absent. As well, we now have a cost distribution over resources given
by F (r) = [r/R̄] - one quarter of reserves are now within the lowest one quarter of costs since F (.25) = .25.
We find the unit extraction cost function is C(X) =

(
1−X/X̄

)
which reflects the absence of our scaling

law. And C ′(0) = −1/X̄ < 0 is finite and constant. Perhaps not surprisingly, the Hotelling motivations
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2.2.4 Two Small Mysteries

Two questions remain unanswered. How is the extraction path related to resource charac-

teristics - most importantly, its power density? And secondly, what is the division of energy

across consumption and extraction services over time?

To answer the first, we present in Panel 7.(a) the time paths of reserves and extraction

for three different values of power density, ΔI < ΔII < ΔIII . An increase in power density

increases total initial reserves, so that X̄I < X̄II < X̄III . The initial level of extraction

also increases when power density increases, W I
0 < W II

0 < W III
0 . And the boom and bust

pattern we have found is accentuated when the resource in question is of higher density.

Therefore, while all new resource plays must boom and then bust this pattern may be most

visible in the case of very productive, and power dense, fossil fuels. Moreover the peaks

in energy extraction occur later in the life of the resource when cumulative extractions are

much larger.

The intuition follows from our earlier discussions. An increase in power density raises

the quality of all reserves we would have exploited (an intensive margin effect) and adds new

ones (an extensive margin effect). Giving the economy more resources would normally call

for a level shift in energy consumption in all periods via the Hotelling motive. In fact, if only

Hotelling motives were at play it is easy to show an increase in power density would be met

with a uniform shift in energy consumption in all periods. But higher power density also

moves the resource frontier outwards and this expansion along the extensive margin makes

quite costly reserves now economic to recover. The Ricardian motive strengthens and this

argues for a shift in the extraction path. Together we find higher extractions but a path

shifted forward.

One useful way to examine how the optimal division of energy across consumption and

extraction services is to examine how the shares of energy going to each activity varies as the

resource is exploited. The share of energy allocated to consumption is simplyW S(t)/W (t) =

1 − C(X(t)) which starts at one and approaches zero in the limit. Similarly, the share

of energy used in extraction is simply W T (t)/W (t) = C(X(t)) which starts at zero and

approaches one. The two shares are equal when C(X(t)) = .5 which occurs when remaining

reserves are .75 of total reserves and the Ẇ (t) = 0 isocline peaks. We plot several of these

shares in Panel 7.(b) showing how these profiles change as the power density of the underlying

resource changes. Naturally with more power dense resources extractions are higher than

otherwise, but so too is consumption and this implies that the share of consumption in energy

use remains larger later in the life of the resource. Power dense resource forestall the day

always outweigh the Ricardian ones and the extraction path is everywhere declining.
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when energy costs of extraction limit energy consumption. In all cases the figure shows the

share of energy going to extraction costs rises as the resource is developed but this impact

is delayed with power dense resources. It is immediate that the energy costs of extraction

only rises above 50% after the peak in extraction occurs.
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Figure 7: Optimal Extraction and Power Density
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2.3 Patchy, Punctiform and Probabilistic Resource distributions

Thus far we have assumed resources are uniformly distributed, the space containing resource

plays is connected, and there is no uncertainty regarding whether the energy resources in

question are present. These are strong assumptions, but for some resources they seem

innocuous. For example, crops and woodlands typically satisfy these constraints at least

over fairly large areas. But for other resources they fit less well and it is unclear how

our analysis would change under these assumptions. For example, the available locations

for resource exploitation may be patchy (containing holes) because of land use restrictions,

habitat conservation, or noise considerations. The siting decisions for wind and solar farms

certainly fit this description. In other cases, most notably fossil fuels, there are often a few

very significant deposits surrounded by areas with little if any resource potential (the space

contains resource “plays” with widely different power densities). We will refer to this case

as one where the resource distribution is punctiform. Finally in some cases it is not clear

ex ante whether resources are present in any specific location although there maybe a well

defined probability distribution over them (oil and gas deposits come to mind). We refer

to this case as one where the distribution of resources is probabilistic. We will show that

often very little of substance changes with alternative resource distributions although the

calculations become more lengthy and the expressions less transparent.

To understand why these complications rarely matter, recall our discussion of energy

rents which allowed us to define the extensive margin R∗, for a resource of given power

density Δ. Let this reliance of the extensive margin on the power density of resources be

written as R∗(Δ). Then since all resources within this margin provide positive energy rents it

should be apparent that they will be exploited even if the resource base is not connected nor

homogenous. And if we locate all such potential resources, identify their extensive margins,

and then integrate over their relevant regions this (more complicated) sum of energy rents

will equal the energy supply just as before. Apart from mathematical complications, patchy

and punctiform resource distributions pose no special problem. Alternatively if we assume

resources are present in specific locations with given probabilities, we can again identify

R∗(Δ) and integrate over this space to find what would now be expected energy supply.

And if the space defined by R∗(Δ) can be divided into many resource plays with identical

and independent success distributions, then a law of large numbers result could be invoked

to render expected energy supply equal to ex post energy supply. At bottom the reason why

these complications do not matter much is the constant returns built into transport costs

by the physics of the underlying problem. Moving an object twice as far is twice the work;

moving an object with twice the mass is twice the work; and if movement is output and work

(energy) is the input, this production function is CRS. The CRS feature of the problem
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allows us to aggregate easily, define boundaries simply, and replace patchy, punctiform and

probabilistic resource distributions with much simpler connected and homogenous ones in

many cases.

To see exactly how we to incorporate complicated resource distributions, we construct

two examples.

2.3.1 Patchy and Punctiform

It may be clear from the description above that the key complication is locating the various

resources in space. To make the analysis tractable and transparent, we construct discrete

resource distributions. Consider a division of the space surrounding the core into concentric

circles that are then divided further into wedges created by extending rays from the core.

The result, shown in Figure 8, is a sequence of land parcels we will refer to as resource plays.

(m, n) 
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m 

Figure 8: Uneven distribution of power density into parcels

Let there be n = 1, ..., N rays and m = 1, ...,M circles, then there are N ×M resource

plays each uniquely identified by the duple (m,n). Suppose each play has an associated

power density Δmn with geometrical shape characterized by its width rm = rmh − rml and the

angle of the wedge θn = θnh − θnl . Where h and l refer to both the higher and lower radius

34



bounds defining the play; and the higher and lower angles (measured in radians) that define

its location in the plane. Using the same approach as in equation (9) we can find write the

(maximum) energy supplied by any given resource play:

Wmn =

∫ θnh

θnl

∫ rmh

rml

vΔmn

(
1− μgd

Δmn

v

)
dvdϕ

Wmn =
1

2
(θnh − θnl )

(
(rmh )

2 − (rml )
2
)
Δmn

(
1− 2

3

μgd

Δmn

(rmh )
3 − (rml )

3

(rmh )
2 − (rml )

2

)
(42)

Since an energy supplier with play (m,n) supplies energy if the play provides positive

energy rents, we need to account for this complication by noting that each density Δmn has

an associated energy margin R̄mn = Δmn

μgd
. This implies the actual energy supplied to the

core by any resource play must be such that:

W S
mn =

⎧⎪⎨
⎪⎩

Wmn if rmh ≤ R̄mn

W̄mn if rml ≤ R̄mn < rmh
0 if R̄mn < rml < rmh

(43)

where W̄mn has the same form as equation (42) but where rmh is replaced by R̄mn.

To find the aggregate energy supplied we add the n plays of each annulus m and then add

all the annulus. Without further restrictions, the possibilities are very numerous. Therefore

consider the case where each play within an annulus m has the same power density Δm.

As well, order the power densities from lowest to highest such that Δ0 = 0 < Δ1 < ... <

Δm < ... < ΔM so distant resources are the most power dense, and in order to eliminate

potential gaps in our distribution we assume the width of each annulus is determined by

the energy margins of the neighboring annulus. That is assume rml = R̄m−1 and rmh = R̄m.

Alternate assumptions are readily investigated. Using these assumptions we can now replace

the definition of R̄m back in equation (42) to find the energy supplied to the core :

Wmn =
1

2
(θnh − θnl )

((
Δm

μgd

)2

−
(
Δm−1

μgd

)2
)
Δm

(
1− 2

3

μgd

Δm

(Δm

μgd
)3 − (Δm−1

μgd
)3

(Δm

μgd
)2 − (Δm−1

μgd
)2

)

Wmn =
1

2
(θnh − θnl )

1

(μgd)2

(
Δ3

m

3
−ΔmΔ

2
m−1 +

2

3
Δ3

m−1

)

Add over all wedges in the annulus m to find

Wm =
π

(μgd)2

(
Δ3

m

3
−ΔmΔ

2
m−1 +

2

3
Δ3

m−1

)
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and add over all annulus M to find:

W S =
π

3(μgd)2

M∑
m=1

Δ3
m

(
1− 3

Δ2
m−1

Δ2
m

+ 2
Δ3

m−1

Δ3
m

)

Two observations are in order. First, since the summation is over primitive determinants

of the model, we could just as well replace this complicated sum with Δ̃, where Δ̃ is the

power density of a hypothetical connected and uniformly distributed resource base yielding

the same energy supply. Δ̃ > 0 by virtue of our ordering of power densities, and we can

write it simply as:

Δ̃ =

[
M∑

m=1

Δ3
m

(
1− 3

Δ2
m−1

Δ2
m

+ 2
Δ3

m−1

Δ3
m

)]1/3

Second, if we alter the power density of our hypothetical resource base, Δ̃ , by λ > 0 this is

equivalent to uniform scaling by λ of all power densities in the heterogenous resource zone.

A moment’s reflection will show that energy supply is homogenous of degree three in all

power densities taken together. Therefore, for many purposes we can simply write

W S =
πΔ̃3

3(μgd)2

and ignore the fact that the exploitation zone in question is both patchy and punctiform.

2.3.2 Probabilistic

Here we assume the power density of the resource is uniform across space and it is given by Δo.

This implies all the resources found inside the margin of extraction given by Ro = Δo/μgd

are going to be exploited. Divide this space as we did before using N rays and M circles

to identify N ×M resource plays but now assume each play has a probability q of having a

resource with power density Δo in place and a probability 1− q of being empty. Given Δo is

uniform and constant, our previous assumptions imply the width of each annulus is equal to

Ro/M . Thus, the geometrical shape of the parcel (m,n) is characterized by its boundaries

set by rhm = (m+ 1)Ro

M
and rlm = mRo

M
and the angle of the wedge θn = θnh − θnl . In the case

where parcel (m,n) is not empty, we can calculate the same double integral we calculated

for the case of patchy distributions and replace the values for rlm and rhm to find

Wmn =
1

2
(θnh − θnl )

(
Ro

M

)2

Δo

(
(m+ 1)2 −m2

)(
1− 2

3

1

M

((m+ 1)3 −m3)

((m+ 1)2 −m2)

)
(44)
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Replacing the definition for Ro and noting the wedges are of equal size given by θn = 2π/N

we find:

Wmn =
π

NM2

Δ3
o

(μgd)2
(
(m+ 1)2 −m2

)(
1− 2

3

1

M

((m+ 1)3 −m3)

((m+ 1)2 −m2)

)
(45)

As we mentioned above, the power collected from parcel (m,n) is Wmn with probability

q and it is zero with probability 1− q. Therefore, the expected value of energy provided by

parcel (m,n) is:

E[Wmn] = q ·Wmn + (1− q) · 0 (46)

We can now aggregate across parcels and use the linearity of the expected value operator to

find:

E[W S] = q · M̄ πΔ3
o

3(μgd)2
(47)

where M̄ is a constant given by:

M̄ =
M∑

m=0

((m+ 1)2 −m2)

M2

(
3− 2

1

M

((m+ 1)3 −m3)

((m+ 1)2 −m2)

)
(48)

In this more complicated case very little seems to change. Power density again enters

as a cubic as before since now the area of exploration rises with the square of the extensive

margin and success is proportional to this exploration zone. As well, as mentioned earlier if

the number of plays were large a variety of assumptions are available on the joint distribution

across the plays that would render a law of large numbers result. The simplest case being the

one employed above where each play is treated as an independent and identically distributed

Bernoulli random variable.

3 Measuring Power Density

Thus far we have taken power density as a primitive. While this is a natural starting point, it

is important to develop a deeper understanding of the determinants of power density in order

to provide estimates useful for empirical work, for calibration exercises, etc. We start by

developing the theory required for measurement. While there exist in the literature estimates

of power densities for many energy sources, how these figures are constructed is unclear and

rarely documented adequately. Measuring power density for some renewable resources is

fairly straightforward; for example, crops dedicated to biofuels or human consumption can

be turned into energy equivalents and then power flows by taking account of crop cycle,
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length, and area planted; similarly coppiced forests can provide stable flows of wood products

for heating and cooking needs and similarly occupy well defined areas. In these cases, the

renewable flows are captured by the physical quantity of fuel reaped from a resource stock.

In other cases the renewable flow does not have mass but provides either kinetic or

electromagnetic energy we capture and exploit directly. In these cases the measurement is

straightforward and represents the potential of these flows. For example, the power density

of solar is easily estimated once we are armed with knowledge of insolation potential at a

location. Similarly, wind or wave farms provide useful kinetic energy and we again find the

potential power flow from the resource per unit area.

In the case of non-renewables, measurement is generally more challenging. One common

method is to calculate the actual physical footprint of a energy facility’s size and divide this

by the current energy output. So for example, if a coal based generating station produces a

constant flow of 1MW, and the mine and generating station takes up 1 km2, then its power

density is simply [1× 106W]/[1× 103m]2=1W/m2. There are several obvious problems with

this method. First, the measure of power density is technology dependent. Improvements

in generation technology will affect power density, and therefore power density will not be

a characteristic of an energy source but rather reflect current technology in place. Second,

it is difficult to know which “inputs” we should include in the measurement. For example,

by including mining, crushing, and generating facilities in the calculation we make implicit

decisions about which facilities to include and which to exclude. Should we also include

the area taken up by transmission lines, relay stations, and other parts of the grid? In the

case of oil, do we include pipelines, refineries and gas stations? If pipelines are buried and

transmission lines are above ground, how do we deal with this?

How these decisions are made will materially affect the calculation. Replication of any

measure produced will be almost impossible. As a result any comparison across measurement

attempts will be far to reliant on the individual judgment of the researcher.

In order to resolve these issues, we present a method to measure power density for both

renewables and non-renewables that is independent of technology, easy to replicate, and al-

lows for a comparison of power densities across energy types. To do so we use restrictions

from economic theory to help aggregate resources along the dimensions on which they differ,

and we provide measures assuming an ideal environment where resource stocks are homoge-

nous and where the only costs of exploitation are those arising from energy costs. Our goal

is to develop measures that reflect only the physical properties of the resource and not our

current, past, or future ability to reap these energy flows.

We start our discussion with the case of renewables since it is simpler to understand and

relatively straightforward in practice.
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3.1 Power Density for Renewables

3.1.1 Theory

Any renewable flow of energy resources produced from a renewable resource F [Watts] can

be written as the product of the current (and steady state) physical size of the resource

stock S [kg] multiplied by the energy content of the resource, e [Joules/kg] and a growth

rate r [1/time]. This implies the flow is given by F = reS.26 The physical size of the stock

can be similarly written as the product of the physical density of the resource, d [kg/m2]

times the area actually used by the resource a[m2]. Making this substitution we obtain the

flow of energy as F = (red)a. Power density is just the flow of energy per unit area or

Δ = F/a = red [W/m2].

Power density is proportional to the product of the maximal rate of regeneration, r, which

measures the percentage rate of growth of the resource in an unconstrained environment.

Perhaps not surprisingly, a renewable energy source that grows twice as fast has twice the

power density. It is also proportional to the energy content of the fuel, e, measured in

[Joules/kg], again perhaps not surprising that energy density matters but the specific form

is of course not obvious. Finally power density also depends on a fuel’s physical density,

d, measured in [kg/m2]. All else equal a fuel that produces a greater output in terms of

harvest weight gives more energy.

Two special cases deserve attention. The first case applies to resources like wind or

solar where there is no associated physical product. In this case we replace the stationary

harvest of the resource that we used above by a measure of an average flow per unit time, and

then apply energy equivalents to obtain a measure in terms of energy production per unit

time. For example, average wind flow per unit area in a given location can be transformed

into its kinetic energy equivalent per unit time; average solar insolation in a location is

already measured in Watts per unit area terms, and measures of the energy in wave motion

can likewise be measured in power density terms. In these three cases while there is no

physical resource reaped, power density is simply measured by the potential energy flow

these resources deliver per unit area, per unit time.

The second case arises when the harvest from a resource affects the resource stock size,

and in turn the power density of the energy source. For example this is most likely to occur

when resources are crops, forest land, or hydro power. In these situations it is natural to

pin down the power density of the resource by assuming the energy supplier manages the

resource to maximize the discounted flow of energy over time. In the appendix we show

26For example, a 100kg forest growing at 10% per year generates 10 kg of firewood per year. Firewood
contains 15 MJ per kg; and there are 31,536 x 103 seconds in a year. The forest provides 4.75 W on average
for the year.
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Table 1: Power Density Crops

Energy Power
Yield Content Density

Crop [kg/m2] [MJ/kg] W/m2

Sugar cane 7.16 17.01 3.86
Sugar beet 4.87 9.75 1.50
Cassava 1.25 6.69 0.27
Bananas 2.05 3.73 0.24
Rice, paddy 0.43 15.5 0.21
Potatoes 1.78 3.22 0.18
Sweet Potatoes 1.25 3.60 0.14
Wheat 0.30 15.07 0.14
Barley 0.26 14.74 0.12

Note: Data are shown in the Appendix.

that even in this case, the decomposition of power density is very simple and given by:

Δ = γred γ > 0

where the new term γ captures the intensity of harvesting and is tied directly to the energy

suppliers discount rate. Taking this complication into account we find power density is

simply linked to four potentially observable magnitudes: the rate of resource regeneration,

the energy content of the fuel provided, its physical density, and the discount rate applied

to future rents by energy suppliers.

3.1.2 Empirics

Renewable energy has two final uses: food and fuel. One use is supplying energy to main-

tain bodily functions, while the other use is supplying energy for heating, light and power

applications. In Table 1, we present figures on the power density of various staple crops

from around the world. The figures presented for yields are estimates of “typical” yields for

these crops in a system with sustainable rotation (fallow periods). As shown food crops,

even staples, offer relatively small power density. Even the powerful potato offers only 0.18

W/m2 in terms of food for fuel, but some tropical crops such as cassava (.26 W/m2) and

bananas (.24 W/m2) provide much more. Crops that have found use as biofuels such as sugar

cane (3.87 W/m2) and sugar beet (1.50 W/m2) have power densities one order of magnitude

larger than other crops.

Table 2 presents figures on the power density of forests for six regions of the U.S. Since

the productivity of forests and their composition varies so too does their power density. For
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example, the South Central forests have the highest growth rates (column three) whereas

the North Central forests have the greatest percent of Hardwoods (column five). The power

density figures are again relatively small and on the order of 0.1 to 0.15 W/m2.

Table 2: Power Density of Wood

Average
Forest Region Total Acres Ave. Prod. Percent Percent Power Dens.

(1,000s) (ft3/acre/yr) Softwood Hardwood (W/m2)
Northeast 79,803 57.10 25.21% 74.79% 0.10
North Central 84,215 66.54 18.72% 81.28% 0.12
Southeast 85,665 80.22 41.00% 59.00% 0.14
South Central 118,364 84.69 35.20% 64.80% 0.15
Rocky Mountain 70,969 52.00 90.29% 9.71% 0.08
Pacific Coast 75,197 81.71 89.01% 10.99% 0.12

Note: Data are shown in the Appendix.

Comparing Table 1 to Table 2 we see that in general wood provides lower power density

than crops. This is true even though wood density, d, and energy content, e, are much higher

than the standard crop. The result follows, because forest’s rate of growth, r, is very low

relative to that provided by annual crops.

Finally in Table 3 we present estimates for solar and wind energy for six regions in the

US. In all cases, we measure the potential provided by the resource rather than measures

of our current ability to reap the resources in question. The power density of solar energy

captures the yearly average amount of radiation collected by one squared meter of surface

with tilt equal to the latitude of the point of measurement. Solar radiation data is reported

in the first column on Table 3.

The amount of power that can be extracted from wind is a cubic function of the speed

of the wind (column 2), and it is proportional to the area of the cross-section perpendicular

to the velocity of the wind. Assuming one squared meter cross-section give us the amount

of power extracted at any given velocity. If we further assume one meter squared of land is

used by one meter squared of cross-section then we can find the power density of wind. This

is what we show in the last column of Table 3.

It is interesting to note the huge differences across these tables measuring the power

density of crops or timber versus the raw energy flows in solar. Photosynthesis is, even

in the best environments, a very inefficient process taking solar power from the sun and

then via nature’s capital equipment turning it into biomass. Estimates on this efficiency

vary but a common estimate is below 1% efficiency, and this is similar to what a very naive

comparison of these tables might suggest.
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Table 3: Power Density of Wind and Sun

Region Solar Wind
Power Density Speed Power Density

[W/m2] [m/s] [W/m2]
Northeast 164 7 122
North Central 226 9 281
Southeast 217 7.5 136
South Central 219 7 115
Rocky Mountain 256 9.5 296
Pacific Coast 229 7.5 144

Note: Data are shown in the Appendix.

3.2 Power Density for Non-renewables

3.2.1 Theory

When exploiting a non-renewable energy source of homogenous quality, the flow of energy

obtained is proportional to the change in the resource stock over time. If we measure

energy in Joules, and time in seconds, then the flow is in Watts; if we measure the resource

stock in kilograms then the coefficient of proportionality, e, should be in units of [Joules/kg]

while the change in the stock must be in units of kilograms per second. If the resource

was distributed uniformly on a two dimensional plane, then the change in the stock is equal

to the physical density of the resource, which we will denote by d[kg/m2], times the area

exploited, a[ m2]. This implies the power density of a non-renewable resource, if distributed

on a two dimensional plane, would be written as:

W = eda (49)

Δ = W/a = ed (50)

This makes perfect sense: the flow of energy comes from the change in a stock; the magnitude

of the flow is determined by the stock’s energy content; the change in the stock is equal to the

product of the area extracted times the physical density of the energy source; and dividing

by the size of the area exploited, we obtain the result.

This measure of power density may be useful but it only holds in those cases where non-

renewables are distributed very thinly across Earth’s surface. For example, shallow deposits

of the non-renewable Peat may well fit this description. In the vast majority of cases however

non-renewables are not thinly distributed as surface deposits. Their key characteristic is in

fact their punctiform nature. Our task is to develop a method to allow the density of

resources available at the surface to reflect an appropriate aggregate of available resources
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lying below. Perhaps not surprisingly, our method of aggregation uses relative prices which

in this case reflect the marginal energy costs of exploiting underlying deposits.

The Ideal Deposit: Consider a hypothetical resource owner with resource rights to one

meter squared of surface area in our exploitation zone of homogenous resource quality. If

this resource owner extracts a 1m3 cube of energy resources with energy content e[J/kg] and

volumetric density dv[kg/m
3], then this cubic meter has mass of dv[kg] and weight of dvg[N].

The total energy contained in this cube would be simply edv[J] and if it was exhausted in

one second the power delivered would be edv [Watts].

Now consider resources contained beneath this 1m2 as shown in Figure 9.(a). If resources

are located at distance η[m] from the surface, then the work needed to bring them to the

surface would be just gdvη[J] since work must be done to offset gravity.27 The energy

contained in any cube mined is just edv[J] as before, therefore the net energy this cube

represents at the surface is what we have referred to previously as energy rents. Energy

rents in this case are just edv − gdvη. Resources where the energy cost of extraction equals

their entire energy content produce zero energy rents and are located at depth η∗ = e/g.

These are the resources at the margin of profitability. Resources above this depth provide

positive energy rents; resources below it provide negative energy rents. Hence, any resources

located at depth η > η∗ will not be recovered. The depth of marginal resources is determined

by the energy cost of extraction — it is proportional to g, and is rising in the energy content

of the resource itself, e.

Putting all of this together shows the energy extracted below 1m2 of surface area is given

by the volume of the mined area η[m3], the implied mass of mined materials per unit volume,

dv, and the energy content of this extraction, e. This extraction represents the change in

the stock over time. The net energy available must account for the energy costs of extraction

and is found by the following simple integration.

Δ =

η∗∫
0

[edv − gdvη] dη =

∫ η∗

0

edv [1− (g/e)η] dη (51)

Δ = e2dv/2g (52)

The power density of non-renewable resources in units of [W/m2] is given by e2dv/2g. This

is a very important result. It links the power density of non-renewables to two observable

27We assume here the resource is not under pressure as many liquid or gaseous forms of hydrocarbons are,
nor is the extraction subject to friction. Adding either of these complications is relatively easy, but require
deposit specific information.
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Figure 9: Non-renewable deposit

44



and commonly measured characteristics of energy resources – their energy content e and

volumetric density dv – and one parameter g. The power density of exhaustible sources is a

quadratic in the energy content of a resource, and linear in its (volumetric) density. It is a

quadratic in energy content because doubling energy content doubles the energy contained

in any given extraction, while also doubling mine depth. Here again we see the role played

by changes in both the intensive and extensive margins. While doubling volumetric density

doubles the energy contained in any extraction - since mass rises linearly with density - it

has no effect on mine depth. The reason is simply that increased density doubles energy

per unit volume, but also doubles the energy costs per unit volume extracted. Since costs

and benefits both double, mine depth is independent of volumetric density.

Not surprisingly, this result is quite similar to the preliminary calculation contained in

equation (50) and quite similar to our earlier decomposition for renewables. In fact these

measures are identical at some level. To see why, it is necessary to recognize the density of

deposits (measured in kg/m2 or d) brought to the surface net of the energy costs of extraction

is equal to edv/2g. This is true since e/g is depth of the ideal deposit, and dv/2 is average

carry. Therefore, it is now easy to see how our earlier formulation can account for the

sub-surface aggregation proposed above, and we have for nonrenewables:

Δ = ed where d = edv/2g (53)

3.2.2 Empirics

Non-renewable resources are found in all continents. Reservoirs can be shallow or deep; they

can be large or small; and fuels can be of different qualities. For example, the “quality” of

coal as measured by its energy content depends on the depth of burial. Lignite coal is the

coal with the lowest energy content and it is formed when Peat is buried between 200 and

1500 meters during the coalification process. The process of Lignite coalification increases

the energy content from around 13 MJ/kg for Peat to 16 MJ/kg but it almost doubles its

volumetric density from around 355 kg/m3 to 700 kg/m3. The formation of Bituminous coal

occurs at greater depths (between 2500 and 6000 meters), and in the process the energy

content increases to 32 MJ/kg and the volumetric density again increases to over 900 kg/m3.

Anthracite coal is formed deeper that other ranks of coal (between 6000 and 7500 meters).

It is the purest form of coal (up to 96% pure carbon) with an energy content of 35 MJ/kg

and volumetric density as high as 950 kg/m3. Erosion, earthquakes and volcanic activity

can expose these deposits or bury them even more. For example, the maximum depth of

deposits in Argentina is 600 meters for sub-bituminous coal and minimum seam thickness of

1.8 meters, Ukraine has deposits of bituminous coal that are 1600 meters deep and have a
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minimum seam thickness of 0.5 meters. Australia has Lignite coal deposits at a maximum

depth of 300 meters and minimum seam thickness of 3 meters (WEC 2010). Many places in

the world also feature surface deposits.

Oil and Natural Gas deposits can also be found at various depths and the quality of the

resources also depends on the depth of burial, although the process of formation is quite

different. The formation of petroleum occurs anywhere between 2500m and 4500m (Deffeyes

2005). The temperature and pressure at this depth combine to transform decayed organic

matter into oil. Just as with coal, erosion and other geological forces can bury the oil deposit

further or expose it. Oil deposits can be right at the surface of Earth’s crust or they can be

as deep as 12,000 meters; extreme temperatures below this point are likely to bake most of

the crude in the deposit (WEC 2010).

These complications mean that our theoretical construct of a continuous ideal deposit

running η meters in depth from the surface is rarely obtained. To amend our calculation for

any specific deposit, suppose the upper limit of the deposit is located at a distance h0 from

the surface, and suppose the thickness of the deposit is h, so the maximum depth of the

deposit is h0 + h; as shown in Figure 9.(b). Because the resource rights are over one meter

squared the dimensions of the deposit are simply h[m3]. In this case to measure the power

density of this deposit, we use:

Δ =

∫ min{h0+h,η∗}

h0

[edv − gdvη] dη =

∫ min{h0+h,η∗}

h0

edv [1− (g/e)η] dη

Δ = min{h [dve− gdv(h0 + h/2)] , e2dv/2g} (54)

Given the large variation in deposit size, depth, and thickness across energy sources we

present several possible configurations in Table 4. Several observations are in order. First,

non-renewable resources have very high energy contents and correspondingly large power

densities. Even a cubic meter of Peat contains a huge energy supply as shown by the deposit

at zero depth and 1m thick which contains 4340 MJ. Part of this feature comes from the

fact that a Watt is a very small unit of power; and part from the high energy content of

non-renewables.

Second, energy content and volumetric density are positively correlated. Energy resources

dense in energy content Joules/kg also tend to be dense in a volumetric sense kg/m3. As a

result, as “density” increases these fuels contain increasingly large amounts of energy.

Third, the term hdve in equation (54) dominates the energy costs hgdv(h0 + h/2) of any

extraction. While depth matters, it matters relatively little to overall energy delivered. As

a result, power density can be approximated by a linear function of thickness, h. This is

apparent by looking across any row of the table at deposits of the same thickness buried at
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Table 4: Power Density Non-Renewables

Energy Volumetric Power Density [GW/m2]
Resource Content Density h0=0 m h0=10000m

[MJ/kg] [kg/m3] h=1m h=10m h=1m h=10m
Bituminous Coal 33 913 30.1 301 30 300
Lignite 16 865 13.8 138 13.8 138
Peat 14 310 4.34 43.4 4.31 43.1
Qinhuangdao Crude 44 960 42.2 422 42.1 421
Brent Crude 46 830 38.2 382 38.1 381

different depths.

Finally, it is very natural to compare the estimates in Tables 1-3, and Table 4 and

conclude non-renewables are far superior to renewables. This conclusion is premature. We

would start by reminding the reader that the power densities in Tables 1-3 are flows provided

indefinitely by the resources in question whereas the power densities reported in Table 4

are flows coming from the exhaustion of a quantity of non-renewable resources in a second.

In addition it is unclear what superior means. In an economic context superior means of

greater social value, and we are abstracting from differences across energy resources in terms

of their storability, intermittency and environmental impact.28

4 Conclusions

This paper set out a simple model where energy resources differ in their power and energy

density; where the collection, exploitation and transport of any energy resource is costly; and

where energy resources are distributed in space. We did so to highlight a hitherto under

appreciated characteristic of energy supplies - their densities. Although everyone knows a

kilogram of straw offers less energy than one of wood or coal, it is less obvious how these

differences can affect the extent to which we exploit these energy resources, the production

plans we make, and the surpluses we reap. Although we enjoy the benefits of exploiting

dense energy sources everywhere in our daily lives - when we drive to work, turn on an space

heater, or use our cell phones - a clear and explicit examination of the implications of energy

density is nowhere to be found.

To understand how density may matter to economic outcomes, we built a very simple

spatial model where energy is the only input and output in the economy and all outcomes

are efficient. A spatial approach is necessary if we are to define and employ measures of

28See Borenstein (2012) for an excellent description and analysis of the methods and pitfalls in comparing
renewable and non-renewable energy technologies for electricity generation.
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power and energy density; a cost to exploiting energy resources is required if we are to

understand how energy densities may affect economic outcomes; a one factor energy-in-

energy-out framework is the simplest possible setting in which to introduce, develop and

discuss key results; and a planning perspective is innocuous in a world where all technologies

are CRS and ownership of resources is assumed to be diffuse.

The model has two key characteristics that drive many results: energy resources are

distributed spatially and marginal energy resources require more energy inputs to exploit.

The spatial setting delivers a scaling law, linking the margin of exploitation of a resource to

its supply. Supplies scale with the square of the margin of exploitation and this has large

economic consequences. Since dense energy resources are in some sense cheaper to move we

are likely to search far and wide to exploit them. The very density of the energy resource we

seek, fuels our efforts to obtain more. Therefore differences in power density across energy

resources create large differences in energy supply. We find that roads, rivers and other

low friction alternatives effectively magnify the power density of available resources turning

what could be a resource poor region into a resource rich one. And while our energy system

today is extremely complex and features an incredible transport of energy from producers

to consumers that suggests locations and energy density may be irrelevant, we turn this

logic on its head by showing how the incentive to create such an infrastructure relies on the

existence of dense energy sources in the first place.

Our assumption of rising marginal energy costs of exploitation is also key to many results.

Even though we assume the potential supply of energy resources is limitless, we show how

the energy supply available for use will always be constrained by the physical necessity of

using energy in the costly exploitation and transportation of energy resources. A rising

marginal cost to energy exploitation interacted with our scaling law to produce a boom and

bust pattern for non-renewable production.

Finally, since there can be no useful theory without measurement we developed ideal

measures of power and energy densities for both renewable and non-renewable resources.

The measures came directly from our theory, are independent of available technology, and

are relatively easy to implement. We then showed how to implement these formulas by

providing measures for a range of both renewable and non-renewable energy sources. Our

measures show non-renewables are often 4 or 5 orders of magnitude more power dense than

renewables implying that the most salient feature of the history of energy use in the last two

hundred years is our increasing reliance on extremely energy dense fuel sources.
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A Appendix

A.1 Data and Data Manipulation

A.1.1 How large is the Energy Industry

The aggregate 10 trillion dollar number is an estimate calculated as follows: annual energy

consumption was 12,274.6 million tons of oil equivalent in 2011 (British Petroleum, 2012,

40). A ton of oil is equivalent to 7.33 barrels, and the average spot price of a barrel of Brent

crude oil, a common benchmark for the world price of oil, was $111.26 (US) in 2011 (Energy

Information Administration, 2012). Calculating annual global energy sales in 2011 using this

information yields an estimate of $10.010 trillion US.

Global energy consumption in barrels of oil equivalent per second in 2011 is calculated

by once again taking annual energy consumption of 12,274.6 million tons of oil equivalent,

multiplying by 7.33 barrels of oil per ton and then dividing that figure by 31,536,000 =

60 × 60 × 24 × 365 seconds in 2011 to get 2853.02 barrels of oil equivalent consumed per

second.

The World Trade Organization valued 2011 global fuels exports (f.o.b.) at $3.171 trillion

US (2012, 3). Fuels are classified by the United Nations Statistics Division (2006) in section

3 of the Standard International Trade Classification, Rev. 4 as: coal, coke and briquettes;

petroleum, petroleum products and related materials; gas, natural and manufactured; and

electric current.

Data on global pipeline infrastructure listed by country is accessible through the Cen-

tral Intelligence Agency’s World Factbook (2012). Simple addition yields global oil and

gas pipeline infrastructure totaling 1,934,298 km, with natural gas pipelines accounting for

1,217,324 km. Oil, refined products and liquid petroleum gas pipelines account for the

remaining 716,974 km.

The global oil tanker fleet has a total capacity of 474.846 million deadweight tons (DWT),

corresponding to a 34.0 percent share of the total capacity of the global merchant fleet.

Liquefied natural gas (LNG) carriers have a combined total capacity of 43.339 million DWT,

a 3.1 percent share of the deadweight tonnage of the global merchant fleet. Combining

these numbers yields a total global oil and gas merchant vessel capacity of 518.185 DWT.

All Information on capacity and percentage share of global fleet capacity is taken from the

United Nations Conference on Trade and Development (2011, 37).

Fortune Magazine’s Global 500 list (2012) ranks the largest companies in the world, by

revenue. Included in the list’s top 10 are energy companies Royal Dutch Shell, Exxon Mobil,

British Petroleum, Sinopec Group, China National Petroleum, State Grid, Chevron and
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ConocoPhillips.

A.1.2 Table 1: Crops.

Data on 2011 global crop yields in Table 1 is provided by the Food and Agriculture Orga-

nization of the United Nations’ (FAO) FAOSTAT Production database (2013). Global crop

yield is calculated automatically by the FAO database by dividing annual crop production

by area harvested. Production and harvest figures are reported to the FAO by individual

countries via questionnaire or national agriculture publications. Detailed information on the

collection methods for this data can be found in the Metadata section of the FAO Statistical

Yearbook (2012, 357-358) as well as in the entry for agricultural production on the FAO’s

Methods & Standards Webpage.

Data on energy content for the crops given in Table 1 is provided by the United States

Department of Agriculture, Agricultural Research Service’s National Nutrient Database,

Release 25. Energy content is given in kilocalories (kcal) per 100 grams, which is converted

to MJ/kg by multiplying by 4.1868 kJ/kcal and then dividing by 100 to convert kJ/100g

into MJ/kg.

A.1.3 Table 2: Forests.

Average power density for a forest in each of the United States regions listed in Table 2 is

calculated by the formula:

(Average Productivity in Region (hg/m2/year) × Power Density of Average Hardwood

(J/m2/year)× Percentage Hardwood in Average Forest) + (Average Productivity (kg/m2/year)

× Power Density of Average Softwood × Percentage Softwood in Average Forest)

The power density of average hardwoods and softwoods is calculated from data provided

by Engineering Toolbox. To be precise, power density for individual tree species is calculated

by dividing the recoverable heat value of a dry cord of wood (million BTU/cord) by the

weight of a dry cord (lb/cord) given by Engineering Toolbox to get the recoverable heat

value per pound of wood (million BTU/lb), which is then converted to recoverable heat

value per kilogram of wood (MJ/kg), also called potential heat value per kilogram of wood,

using conversion factors of 1 lb = 0.4536 kg and 1 million BTU = 1055.06 MJ. Calculations

in Table 2 are based on an average dry hardwood density of 35.52 lb/ft3 with a 14.89 MJ/Kg

potential heat value, and an average dry softwood density of 27.45lb/ft3 with a 14.87 MJ/Kg

potential heat value.

Average hardwood power density is then calculated by averaging the potential heat value

per kilogram of wood for five species (aspen, cottonwood, red oak, red maple and white oak)
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considered common in American forests by the USDA (2007, 62). An identical calculation is

done for four species of softwood (hemlock, ponderosa pine, balsam fir and white pine) also

considered common in American forests by the USDA (2007, 62) to get an average softwood

power density. It should be noted that the variation in potential heat value per kilogram

between different species of tree is always less than 1%, so average hardwood and softwood

heat values do not vary much if different species of tree are chosen for the calculation.

Data on percentage of softwoods and hardwoods in an average forest is calculated using

data on hardwood and softwood volumes provided by the United States Department of

Agriculture (USDA) (2007, 206-208). Data on average productivity classifications for forests

is also taken from the USDA (2007, 160-162). Forests are categorized by the USDA by

cubic feet of wood per acre per year (cu. ft.) into one of five different classifications: 120+

cu. ft., 85-119 cu. ft., 50-84 cu. ft., 20-49 cu. ft. and 0-19 cu. ft. A simple average of

the extreme values in each productivity class is taken to represent average productivity for

forests within that class, while forests with a productivity exceeding 120 cu. ft. are capped

at a productivity of 120 cu. ft. The productivity of an average forest in any region of the

United States can then be calculated after making these assumptions. Forests on reserved

land, or with an average productivity between 0-19 cubic feet per acre per year, are omitted

from the stocks of total hardwood and softwood by the USDA, and hence are also omitted

from the calculation of average forest productivity.

A.1.4 Table 3: Solar and Wind.

Solar energy calculations based on data from the National Renewable Energy Laboratory

NREL 2012. The data can be downloaded from http://www.nrel.gov/gis/data solar.html.

We use the annual average direct normal irradiance for the lower 48 states and Hawaii PV

10km Resolution 1998 to 2009. The data are originally in kWh/m2/day. We transform them

to W/m2 multiplying by 1000 to get Watts and diving by 24 to eliminate day from the

calculation.

Wind energy calculations are also from NREL and can be downloaded from

http://www.nrel.gov/gis/data wind.html and it is using wind speeds at a height of 50 meters.

The exact relation between speed and power is given by the following equation W = 1
2
ρv3,

where ρ is the density of air and v is the speed. Increasing the height of the tower increases

speed. For example increasing the height of the wind tower from 10 to 50 meters increases

speed by approximately 25% which in turn would increase power density. Here we also

assume wind speeds at 50 meters. To calculate power we assume air density at sea-level and

temperature of 15oC which is ρ = 1.225kg/m3. Gipe P. (2004) “Wind Power: Renewable

Energy for Home, Farm, and Business.” Chelsea Green Publishing Company ISBN: 978-1-
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931498-14-2. We assume a cross-sectional area of 1m2 sitting on 1m2 of land. That is, we

assume the radius of the wind turbine is approximately 55% of the area it sit on.

For both solar and wind energy we use GIS to aggregate at the state level calculating

the area-weighted average of the cells contained in each state. We then obtain the regional

area weighted average using the same regions described above.

The six regions of the United States listed in Table 2 and Table PD Sun are defined by

the USDA (2007, 1) as follows:

• Northeast: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire,

New Jersey, New York, Pennsylvania, Rhode Island, Vermont, West Virginia

• North Central: Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, Wisconsin

• Southeast: Florida, Georgia, North Carolina, South Carolina, Virginia

• South Central: Alabama, Arkansas, Kentucky, Louisiana, Mississippi, Oklahoma, Ten-

nessee, Texas

• Rocky Mountain: Kansas, Nebraska, North Dakota, South Dakota, Arizona, Colorado,

Idaho, Montana, Nevada, New Mexico, Utah, Wyoming

• Pacific Coast: Alaska, Oregon, Washington, California, Hawaii

A.2 von Thunen and Iceberg Costs of Transport

The transport cost assumptions adopted in von Thunen are subtly, but importantly, differ-

ent from what we have assumed here. In short, iceberg costs require the energy costs of

transportation to fall immediately and completely as energy is expended. At the practical

level this rules out containers for fuel storage or combustion, residues left from incomplete

combustion, and no mass of the vehicle carrying the load. In terms of the oat eating horse

example both Von Thunen and Samuelson used, the horse cannot have any mass, the oats

cannot remain resident in the horse, and there is of course no wagon to pull. It is fair to

say that while the iceberg assumption is tractable it is also a knife edge assumption as we

will show below. If even an epsilon of the mass of energy is wasted in moving containers,

in moving engines or left in incompletely combusted particles then the transport process

produces a result significantly different than von Thunen’s but qualitatively the same as in

our specification. Specifically it will lead to a formulation where there is a maximum zone

of exploitation tied to the power density of energy.
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To be precise, assume there is some fixed cost associated with moving energy a distance

dx. Then transportation costs over this increment are given by:

W T (x) =

(
C(W0) +

μgd

Δ
W (x)

)
dx

Total energy remaining at distance x+dx is given byW (x+dx) = W (x)−(
C(W0) +

μgd
Δ
W (x)

)
dx.

Rearranging terms we can rewrite this expression as

W (x+ dx)−W (x)

dx
=

dW (x)

dx
= −

(
C(W0) +

μgd

Δ
W (x)

)

The solution to this differential equation is:

W (x) =

(
W0 +

Δ

μgd
C(W0)

)
e−

μgd
Δ

x − Δ

μgd
C(W0)

Define R as the radius for which W (R) = 0; that is, the energy supplied to the core by

any energy source further away than R is zero. The solution for R is:

R =
Δ

μgd
ln

(
1 +

μgd

Δ

W0

C(W0)

)

The iceberg assumption occurs when C(W0) = 0 since in this case R goes to infinity.

The case we consider in the text occurs arises when C(W0) is proportional to the mass of

energy transported; specifically that C(W0) =
μgd
Δ

W0

e−1
since then we obtain R = Δ

μgd
.

Two observations are in order. First, there exists a finite margin of exploitation for any

C(W0) > 0. Thus, iceberg costs represent a knife edge assumption; any value other than

C(W0) = 0 generates a qualitatively different result. Any and all energy sources sharing

the same - infinite - margin of exploitation when C(W0) = 0; they have finite and different

margins of exploitation for any C(W0) > 0. Second, iceberg costs have proven tractable in

general equilibrium models because they allow us to model the transportation system without

introducing another economic activity complicating predictions in small dimensional models.

The formulation in the body of the paper does however respect this constraint. Note the

only costs of transport come from moving energy (and not containers, equipment or engines

even though the result is consistent with formulations with these fixed costs), the key to our

result is our assumption that the mass of energy is transported even as it is used (converted)

in transport. In Von Thunen and Samuelson terms, we are either a) still feeding the horse,

but only when it gets to town; or b) keeping the oats resident in the horse throughout.
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A.3 Renewables with Stock Effects

To investigate further it is necessary to be specific about the dynamics of resource growth.

Suppose the energy source is a renewable fuel with natural growth given by G(S) with

G(0) = G(K) = 0. As is standard let G be strictly concave and let S denote the stock

in physical units. For example, the energy source could be a forest, an area dedicated

to biofuels, or even an area dedicated to solar or wind power. It is helpful to first take a

specific example with explicit units. To that end, let G(S) = rS[1−S/K] and the maximum

sustainable yield harvest, Hmsy, as one possible plan for taking from the resource. Then in

perpetuity this harvest is given by:

Hmsy = G(Smsy) = G(K/2) = rK/4 (A.1)

where r is the intrinsic resource growth rate andK is the carrying capacity (i.e. a growth rate

times a stock level). Now consider units explicitly. If K is measured in kilograms and K =

100 kg, and r = 10% per unit time, then the sustainable harvest is (.1)(100)/(4)=2.5kg/unit

time. If we multiply this quantity by the energy content of the fuel in [Joules/kg] denoted

by e, we obtain a measure of Joules per unit time that could be harvested from the resource.

Choosing to measure time in seconds, we obtain Watts. The final step is to divide this flow

of power by the area of exploitation needed to maintain it. Since the carrying capacity is K

kg, and if the fuel has a physical density, d, measured in [kg/m2], then the total area needed

for this resource flow is K/d. All this implies we can write power density for this renewable

energy resource, Δ, as:

Hmsye = F [Joules/second] = [Watts]

Δ =
(rK/4)e

K/d
=

[
Watts

m2

]
(A.2)

Δ = γred γ > 0.

Power density is the simple product of three fundamental, commonly used, and poten-

tially observable characteristics of an energy source, plus one behavioral component captured

in the parameter γ. The remaining term in power density is the factor of proportionality

γ which captures the intensity of harvesting. To see this note that if harvesting results

in a steady state stock equal to a fraction of the carrying capacity given by κK, then γ =

κ(1− κ) < 1. Harvesting zero implies κ = 1, γ = 0 and Δ = 0; harvesting sufficiently high

to cause extinction implies κ = 0, γ = 0 and again Δ = 0. The example given above has

κ = 1/2 and γ = 1/4. We chose this example for a particular reason: if the resource owner
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was interested in maximizing total energy collected over an indefinite future, then the owner

would adjust their take to match that of the maximum sustainable yield. This is obvious,

but more generally, if the owner discounts the value of future versus current energy flows,

the optimal stationary harvest maximizing this objective would lead to δ = G′(S∗) where

δ is the discount rate on future periods. This is an application of a well known result in

resource economics.29

A.4 A One-dimensional model of Energy Exploitation

Consider due to geographical limitations, the area of exploitation is restricted to a two

dimensional stripe that can only expand along the one dimension shown by the horizontal

axis as shown in Figure 10.a. This stripe is h meters wide. The core is centered in the origin.

Here the exploitation zone is given by

EX =
W

Δ
= h.R (A.3)

where R is the distance away from the core that is needed to collect W Watts. That is

W = Δ.h.R. The density of resources at a distance r is given by f(r) = h/h.R and using

familiar methods we find the average carrying distance is given by ACD = W/2Δh. Assume

the resource is renewable, then total energy extracted is given by W ∗ = Δ2

μgd
h, the energy

used in transportation is W T = W ∗/2 and the energy supplied to the core is W S = W ∗/2.

The zero energy margin can by found by setting EX = hR = W ∗/Δ so that R̄ = Δ
μgd

. Note

with one less dimension supply is no longer a cubic in power density.

Now assume the resource is non-renewable. Then the stock of non-renewable resources

is X̄ = ΔhR̄ = Δ2

μgd
h. Using the same techniques as in section 5 we find X(t) = X̄ −Δhr(t)

so that r(t) = X̄−X(t)
Δh

. The cost function is then given by

C(X) =
r(t)

R̄
= 1− X

X̄
. (A.4)

Note from the figure it should be clear that one half the resources are in the first one half

of resource quality, unlike our previous case and this is why the cost function appears as it

does. Now replacing this equation in equation 39 we find:

Ẇ = −ρ

σ
W +

W 2

X
; (A.5)

29 The optimal stock and attendant harvesting is set only by impatience and is independent of prices. In
our simple example with logistic growth, power density is simply Δ = γred, and γ = [1− δ/r]2/4 is positive
as long as suppliers discount rate is not too high.
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which implies the Ẇ = 0 locus is a straight line of the form W = ρ
σ
X. The phase diagram

is shown in Figure 10.b. It shows the transition path towards exhaustion is monotonic.
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Figure 10: One-directional energy search model

56



References

Acemoglu, D., P. Aghion, L. Bursztyn, and D. Hemous. 2012. “The Environment

and Directed Technical Change.” American Economic Review, 102(1): 131-66.

Boyce, J.R. “Prediction and Inference in the Hubbert-Deffeyes Peak Oil Model.” The

Energy Journal, forthcoming.

Borenstein, S. 2012. “The Private and Public Economics of Renewable Electricity Gener-

ation.” Journal of Economic Perspectives, 26(1): 67-92.

Borenstein, S. J. Bushnell, and F. Wolak. 2002. “Measuring Market Inefficiencies in

California’s Restructured Wholesale electricity market.” The American Economic Review,

92(5): 1376-1405.

British Petroleum. 2012. BP Statistical Review of World Energy. London: British

Petroleum.

Central Intelligence Agency. 2012. The World Factbook: Field Listing: Pipelines. Avail-

able at: https://www.cia.gov/library/publications/the-world-factbook/fields/2117.html, Ac-

cessed March 10, 2013.

Chakravorty, U. and D.L. Kruice. 1994. “Heterogenous Demand and Order of Resource

Extraction.” Econometrica, 62(6): 1445-1452.

Chakravorty, U., J. Roumasset, and K. Tse. 1997. “Endogenous substitution among

energy resources and global warming.” Journal of Political Economy, 195: 1201-1234.

Exxon Mobil. 2010. The Outlook for Energy: A View to 2030.

Energy Information Administration. 2012. 2012 Brief: Average 2012 Crude Oil Prices

Remain Near 2011 Levels. Available at: http://www.eia.gov/todayinenergy/detail.cfm?id=9530,

Accessed March 10, 2013.

Engineering Toolbox. Wood and Combustion Heat Values. Available at:

http://www.engineeringtoolbox.com/wood-combustion-heat-d 372.html, Accessed March 12,

2013.

Food and Agriculture Organization of the United Nations. 2013. FAOSTAT Produc-

tion. United Nations. Available at: http://faostat.fao.org/site/339/default.aspx, Accessed

March 12, 2013.

Food and Agriculture Organization of the United Nations. 2012. FAO Statistical

Yearbook 2012 World Food and Agriculture. Rome: United Nations.

Food and Agriculture Organization of the United Nations. 2012. Methods &

Standards. Available at: http://faostat3.fao.org/home/index.html#METADATA, Accessed

March 12, 2013.

Fouquet, R. and R. Pearson. 1998. “A Thousand Years of Energy Use in the United

57



Kingdom.” The Energy Journal, 19(4): 1-41.

Fouquet, R. 2006. “Seven Centuries of Energy Services: The price and Use of Light in the

United Kingdom (1300-2000).” The Energy Journal, 1: 139-177.

Fortune Magazine. 2012. Global 500. Available at: http://money.cnn.com/magazines/fortune/global500

Accessed March 10, 2013.

Gaudet, G., M. Moreaux, and S.W. Salant. 2001. “Intertemporal Depletion of Re-

source Sites by Spatially Distributed Users.” American Economic Review, 91(4): 1149-1159.

Gipe, P. 2004. Wind Power: Renewable Energy for Home, Farm, and Business. USA:

Chelsea Green Publishing Company.

Herfindahl, O.C. 1967. “Depletion in Economic Theory.” In Extractive Resources and

Taxation, edited by Mason Gaffney, 63-90. Madison, Wisconsin: University of Wisconsin

Press.

Holland, S.P. 2008. “Modeling Peak Oil.” The Energy Journal, 29(2): 61-79.

Hotelling, H. 1931. “The Economics of Exhaustible Resources.” Journal of Political Econ-

omy, 39(2): 137-175.

International Atomic Energy Agency. 2009. World Distribution of Uranium Deposits

(UDEPO) with Uranium Deposit Classification Vienna. IAEA-TECDOC-1629

Joskow, P. and E. Kahn. 2002. “Quantitative Analysis of Pricing Behavior in California’s

Electricity Market During the Summer 2000.” The Energy Journal, 23(4): 1-35.

Krautkraemer, J.A. 1998. “Nonrenewable Resource Scarcity.” Journal of Economic Lit-

erature, 36(4): 2065-2107.

Kolstad, C.D. 1994. “Hotelling Rents in Hotelling Space: Product Differentiation in

Exhaustible Resource Markets.” Journal of Environmental Economics and Management,

26: 163-180.

Laffont, Jean-Jacques and Moreaux, Michel. 1986. “Bordeaux Contre Gravier: Une

Analyse par les Anticipations Rationnelles,” in Gerard Gaudet and Pierre Lasserre, eds.,

Ressources naturelles et theorie economique. Quebec: Presses de l’Universite Laval, 1986,

pp. 231- 53.

Livernois, J.R. and R.S. Uhler. 1987. “Extraction Costs and the Economics of Nonre-

newable Resources.” Journal of Political Economy, 95(11): 195-203.

Moreno-Cruz, J. and M.S. Taylor. 2012. “Back to the Future of Green Powered

Economies,” The National Bureau of Economic Research, Working Paper No: 18236.

Neher, P.A. 1990. Natural Resource Economics: Conservation and Exploitation. New

York: Cambridge University Press.

Pindyck, R.S. 1978. “The Optimal Exploration and Production of Nonrenewable Re-

sources.” Journal of Political Economy, 86(5): 841-861.

58



Sanchirico, J.N. and J.E. Wilen. 1999. “Bioeconomics of Spatial Exploitation in a

Patchy Environment.” Journal of Environmental Economics and Management, 37: 129-

150.

Samuelson, P.A. 1983. “Thunen at Two Hundred.” Journal of Economic Literature, 21(4):

1468-1488.

Slade, M.E. 1982. “Trends in Natural-Resource Commodity Prices: An Analysis of the

Time Domain.” Journal of Environmental Economics and Management, 9: 122-137.

Smil, V. 2008. Energy in Nature and Society: General Energetics of Complex Systems.

USA: MIT Press.

Smith, M.D., J.N. Sanchirico, and J.E. Wilen. 2009. “The Economics of Spatial-

dynamic Processes: Applications to Renewable Resources.” Journal of Environmental Eco-

nomics and Management. 57: 104-121.

Smulders, S. 2005. “Endogenous Technological Change, Natural Resources, and Growth.”

In Scarcity and Growth Revisited: Natural Resources and the Environment in the New Mil-

lennium, edited by R.D. Simpson, M.A. Toman, and R.U. Ayres, Chapter 5. Baltimore: The

John Hopkins University Press for Resources for the Future.

Solow, R.M. and F.Y. Wan. 1976. “Extraction Costs in the Theory of Exhaustible

Resources.” The Bell Journal of Economics, 7(2): 359-370.

Swierzbinski, J.E. and Mendelsohn, R. 1989. “Exploration and Exhaustible Resources:

The Microfoundations of Aggregate Models.” International Economic Review, 30(1): 175-

186.

United Nations Conference on Trade and Development. 2011. Review of Maritime

Transport. Geneva: United Nations.

United Nations Statistics Division. 2006. Standard International Trade Classifica-

tion, Revision 4. Available at: http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=28,

Accessed March 10, 2013.

United States Department of Agriculture. 2007. Forest Resources of the United States.

Available at: http://www.fs.fed.us/nrs/pubs/gtr/gtr wo78.pdf, Accessed March 12, 2013.

United States Department of Agriculture. 2012. Agricultural Research Service. USDA

National Nutrient Database for Standard Reference, Release 25. United States Department

of Agriculture. Available at: http://ndb.nal.usda.gov/ndb/search/list, Accessed March 12,

2013.

Von Thunen, J.H. 1826. “Der Isolierte Staat,” In Beziehung auf Landwirtschaft und

Nationalekonomie. Hamburg.

World Trade Organization. 2012. World Commodity Profiles for 2011. Available

at: http://www.wto.org/english/res e/statis e/world commodity profiles11 e.pdf, Accessed

59



March 10, 2013.

Wolfram, C.D. 1999. “Measuring Duopoly Power in the British Electricity Spot Market.”

The American Economic Review, 89(4): 805-826.

World Trade Organization. 2011. “World Commodity Profiles for 2011.” WTO,

Geneva.

World Energy Council. 2010. Survey of Energy Resources. ISBN: 978 0 946121 021.

Wrigley, E.A. 2010. Energy and the English Industrial Revolution. Cambridge, U.K.:

Cambridge University Press.

60




